WO2020230793A1 - Technology for controlling migration of hollow nanoparticles to brain from blood - Google Patents

Technology for controlling migration of hollow nanoparticles to brain from blood Download PDF

Info

Publication number
WO2020230793A1
WO2020230793A1 PCT/JP2020/019007 JP2020019007W WO2020230793A1 WO 2020230793 A1 WO2020230793 A1 WO 2020230793A1 JP 2020019007 W JP2020019007 W JP 2020019007W WO 2020230793 A1 WO2020230793 A1 WO 2020230793A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow particles
group
pic
particles
hollow
Prior art date
Application number
PCT/JP2020/019007
Other languages
French (fr)
Japanese (ja)
Inventor
泰孝 安楽
片岡 一則
優 福里
乃理子 中村
拓也 西薗
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2020230793A1 publication Critical patent/WO2020230793A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions

Definitions

  • the present invention relates to a technique for controlling the migration of hollow nanoparticles from blood to the brain. More specifically, the present invention relates to a technique for controlling the transfer of hollow nanoparticles from blood to cerebrospinal fluid and to the brain parenchyma.
  • the permeation selectivity of the blood-brain barrier is high, and it can hardly pass through except for some substances (for example, alcohol, caffeine, nicotine and glucose). This has made it difficult to treat brain diseases with brain therapeutic agents, diagnose brain diseases with brain diagnostic agents, or image the brain with contrast media.
  • Patent Document 1 a technique for delivering vesicles to the brain parenchyma has been developed.
  • Patent Document 1 when an animal to which a glucose-coated vesicle is administered is preliminarily placed in a hypoglycemic state by fasting, and the vesicle is administered to the animal and glucose is administered, the vesicle is effectively transferred to the brain. It is disclosed that it will be delivered.
  • the present invention provides a technique for controlling the migration of hollow nanoparticles from blood to the brain. More specifically, the present invention provides techniques for controlling the transfer of hollow nanoparticles from blood to cerebrospinal fluid and to the brain parenchyma.
  • the present inventors use the glial limiting membrane as a barrier to inhibit the transfer of nanoparticles having a particle size of 80 nm or more to the brain parenchyma, and to cerebrospinal fluid. I found it to be fastened. The present inventors have also found that even such particles having a particle size of 80 nm or more easily pass through the glial limit membrane and easily migrate to the brain parenchyma when the rigidity is low.
  • Hollow particles having an average particle size of 80 to 200 nm measured by a dynamic light scattering method and a polydispersity index (PDI) of less than 0.2, and having a surface rigidity of 10 pN / nm or more.
  • a composition comprising hollow particles that are.
  • the surface rigidity includes hollow particles having the first predetermined value, and the first predetermined value is a value in the range of 10 pN / nm to 40 pN / nm. Composition.
  • composition according to (1) above wherein the surface rigidity contains hollow particles having a second predetermined value, and the second predetermined value is a value of 35 pN / nm or more.
  • the hollow particles are polyion complex type polymersomes.
  • the composition according to any one of (1) to (4) above, wherein the hollow particles contain an aqueous solution.
  • the composition according to (2) above for use in delivering the encapsulated aqueous solution to the brain parenchyma.
  • the composition according to (3) above for use in delivering the encapsulated aqueous solution to cerebrospinal fluid.
  • a method of delivering hollow particles to cerebrospinal fluid in a subject wherein the surface rigidity contains hollow particles having a second predetermined value, and the second predetermined value is a value of 35 pN / nm or more.
  • a method comprising administering to the subject the composition according to any one of (1) to (7) above.
  • (9) A method of administering hollow particles to a subject. The step of providing the composition according to any one of (1) to (7) above, and A step of administering the composition to the subject, whereby the hollow particles are transferred to the cerebrospinal fluid, and the hollow particles are stably present in the cerebrospinal fluid for 60 minutes or more.
  • Method. (10) The method according to (9) above.
  • a method, wherein the step of administration is a step of administering the composition to cerebrospinal fluid.
  • (11) A method for producing a composition containing hollow particles having a particle size of 80 nm to 200 nm.
  • hollow particles with an average particle size of 80 nm or more measured by the dynamic light scattering method.
  • the method, wherein the polydispersity index (PDI) of the hollow particles is less than 0.2.
  • PDI polydispersity index
  • a method for adjusting the permeability of hollow particles having a particle size of 80 nm to 200 nm to a glial limit film A method comprising adjusting the stiffness of the hollow particles to make the stiffness 35 pN / nm to 50 pN / nm.
  • a method for adjusting the permeability of hollow particles having a particle size of 80 nm to 120 nm to a glial limit film A method comprising adjusting the stiffness of the hollow particles to make the stiffness 10 pN / nm to 35 pN / nm.
  • FIG. 1 shows a polyion complex type micelle (PIC / m) having a particle size of 30 nm and a glucose modification rate of 25% and a glucose modification rate of 0%, 25%, 50% and 100% having a particle size of 100 nm administered to mice.
  • the amount of polymersome (PIC / some) accumulated in the brain tissue is shown.
  • FIG. 2 is an in vivo imaging image of a mouse brain tissue intraperitoneally administered with a mixture of Cy5-labeled 25% Gluc-PIC / some (100 nm) and Dlyght488-labeled 25% Gluc-PIC / m (30 nm).
  • FIG. 1 shows a polyion complex type micelle (PIC / m) having a particle size of 30 nm and a glucose modification rate of 25% and a glucose modification rate of 0%, 25%, 50% and 100% having a particle size of 100 nm administered to mice.
  • FIG. 3 shows mice intraperitoneally administered 25% Gluc-PIC / some (100 nm) containing ⁇ -galactosidase, and the substrate fluorescein di ( ⁇ -D-galactopyranoside) was intracerebrospinal fluidly administered.
  • Panel (a) is the result of the 25% Gluc-PIC / some (100 nm) administration group containing ⁇ -galactosidase
  • panel (b) is the result of the free ⁇ -galactosidase administration group (negative control).
  • FIG. 4 shows the results of measuring the synthesis of PIC / some using a cantilever of an atomic force microscope.
  • FIG. 5 is a diagram showing the relationship between the rigidity of PIC / some having a particle size of 100 nm and the half-life in blood.
  • FIG. 6 shows the distribution of PIC / some having a particle size of 100 nm and having various rigidity administered intraperitoneally to mice in the brain tissue.
  • FIG. 7 shows an outline of the present invention.
  • FIG. 8 shows a polyion complex type micelle (PIC / m) having a particle size of 30 nm and a glucose modification rate of 25% and a glucose modification rate of 0%, 25%, 50% and 100% having a particle size of 100 nm administered to mice.
  • PIC / m polyion complex type micelle
  • FIG. 9 shows a schematic diagram of the tissue structure from blood vessels to the brain parenchyma in the brain tissue, and a consideration of the causes causing the difference in the localization of particles of different sizes.
  • FIG. 10 shows an outline of the properties of PIC / some.
  • FIG. 11 shows that a clinical trial of enzyme replacement therapy using an AAV1 vector has been started, and an alternative enzyme replacement therapy using the hollow particles of the present invention (allylsulfatase A was used as an example in the figure). The explanation of is shown.
  • FIG. 12 shows a scheme of proof of principle of enzyme replacement therapy using hollow particles (second embodiment) of the present invention.
  • FIG. 13 shows that the substrate fluorescein di ( ⁇ -D-galactopyranoside) was intraperitoneally administered to mice intraperitoneally administered with 25% Gluc-PIC / some (100 nm) containing ⁇ -galactosidase. The results of in vivo imaging of brain tissue are shown.
  • the upper panel is the result of the 25% Gluc-PIC / some (100 nm) administration group containing ⁇ -galactosidase
  • the lower panel is the result of the free ⁇ -galactosidase administration group (negative control).
  • the term "subject” refers to mammals, especially primates such as humans and monkeys, rodents such as mice, rats, rabbits and guinea pigs, cats, dogs, sheep, pigs, cows and horses. Examples include donkeys, goats, ferrets, etc.
  • the “nanoparticle” refers to a particle having an average particle size (D50) of 1000 nm or less as measured by a dynamic light scattering method.
  • D50 average particle size
  • Hollow nanoparticles are particles that have cavities inside and can contain a solution in the cavities.
  • Internal capsule means enclosing a substance inside. Encapsulation can reduce the rate of diffusion of substances in the encapsulated solution out of the particles. Encapsulation can protect the encapsulating substance in the body from the extraparticle immune system. Preferably, it means that the inside is spatially separated from the outside by the membrane. However, the inclusion allows the membrane to be material permeable.
  • the "hollow particle” means a particle-shaped object including an internal aqueous solution and a film structure covering the internal aqueous solution.
  • Hollow particles can contain various substances by dissolving or suspending the various substances in the aqueous solution inside. Examples of the substance contained in the hollow particles include a water-soluble compound, a physiologically active substance (for example, an enzyme, for example, a proteinaceous enzyme), and a contrast medium.
  • Hollow particles include vesicles, such as lipid vesicles (eg, liposomes). Hollow particles also include PIC / some.
  • drug transport particles refers to particles containing a drug and suitable for transporting the drug in the body.
  • the drug transport particles are preferably hollow particles containing an aqueous solution containing a drug in the internal space.
  • the "polyion complex” (hereinafter, also referred to as "PIC”) is a copolymer of a non-charged hydrophilic polymer block such as PEG and an anionic block, and a non-charged hydrophilic polymer block such as PEG. It is an ionic layer formed between the cationic block and the anionic block of both block copolymers when the copolymer of the copolymer and the cationic block is mixed in an aqueous solution so as to neutralize the charge.
  • PIC polyion complex
  • the significance of binding PEG to the above-mentioned charged chain is to prevent the polyion complex from aggregating and precipitating, thereby forming a monodisperse core-shell structure with a particle size of several tens of nm. It is to form the nanoparticles to have.
  • the uncharged hydrophilic polymer block such as PEG covers the outer shell (shell) of the nanoparticles, it is also known to be highly biocompatible and convenient in improving the retention time in blood.
  • one charged block copolymer does not require a non-charged hydrophilic polymer block moiety such as PEG and may be replaced with homopolymers, detergents, nucleic acids and / or enzymes.
  • At least one of the anionic polymer and the cationic polymer forms a copolymer with a non-charged hydrophilic polymer block such as PEG, and both of them form a non-charged hydrophilic polymer such as PEG.
  • a copolymer with the block may be formed.
  • PIC micelles are likely to be formed by increasing the content of the uncharged hydrophilic polymer block such as PEG, and the content of the uncharged hydrophilic polymer block such as PEG is decreased or the copolymer concentration is increased.
  • PIC / some polyion complex type polymersomes
  • PIC / some are hollow particles having an average particle size of about 80 nm to 1,000 nm (particularly about 100 nm to 1,000 nm)
  • an aqueous solution for example, an aqueous solution containing a substance such as a physiologically active substance or a contrast agent
  • PIC / some are particles formed by ionic interactions and are permeable to ions, small molecules (lipids and amino acids), and water (see FIG. 10).
  • the "average particle size measured by the dynamic light scattering method” is based on the median diameter (D50), which is a particle size indicating a 50% integrated value of the integrated distribution curve of the particle size distribution based on the number.
  • D50 median diameter
  • the "multidispersity index” is a dimensionless index indicating the spread of particle size distribution.
  • the PDI is a numerical value of 0 or more and 1 or less, and the smaller the numerical value, the more uniform the particle size of the measured particles.
  • the PDI is 0.3 or less, 0.2 or less, or 0.1 or less, it is expected that the pharmacokinetics of each particle becomes homogeneous due to the high homogeneity of the particle size of the particles. Therefore, when the PDI is 0.3 or less, 0.2 or less, or 0.1 or less, it becomes more important to adjust the characteristics of the homogeneous particles to those suitable for the purpose.
  • rigidity is a force (pN) required to generate a deformation displacement (nm).
  • the rigidity of the nanoparticles can be measured, for example, using a cantilever of an atomic force microscope.
  • the elasticity can be obtained by applying a force so as to press the particles on the solid phase plane against the plane using a cantilever and measuring the displacement of the deformation of the particles and the force at that time.
  • lower alkyl and lower alkylene mean C 1-6 alkyl and C 1-6 alkylene, respectively. Lower can mean C 1-2 , C 1-3 , C 1-4 , or C 1-5 .
  • the important structures in the transport of substances from the blood vessels of the brain to the parenchyma of the brain are the blood vessels of the brain, cerebrospinal fluid endothelial cells (cerebrospinal fluid barrier, BCSFB), cerebrospinal fluid, and glia limit membrane. (Boundary membrane), and brain parenchyma are present.
  • BCSFB cerebrospinal fluid barrier
  • the blood-brain barrier (BBB) is composed of cerebrovascular endothelial cells and glial limit membrane.
  • the particles existing in the cerebral blood vessels can pass through the glia limit membrane even if they pass through the cerebral vascular endothelial cells.
  • the present inventors have found that the passability of the glial limit film changes depending on the rigidity even for hollow particles having a size of 100 nm. That is, it was clarified that even particles having a size that does not pass through the glial limit film (for example, PIC / some) are more likely to pass through the glial limit film as the rigidity becomes lower.
  • compositions Containing Hollow Particles of the First Embodiment the average particle size measured by a dynamic light scattering method is 80 to 120 nm, and the polydispersity index (PDI) is less than 0.2.
  • PDI polydispersity index
  • the hollow particles can be hollow vesicles.
  • the hollow particles can be, for example, hollow lipid particles, for example, liposomes.
  • the hollow particles can be PIC / some.
  • the average particle size of the particles can be 80-120 nm, 90-120 nm, 90-110 nm, 95-105 nm, 80-100 nm, 80-200 nm, 80-150 nm, or 100-120 nm.
  • the particle size of PIC / some can be controlled by the degree of polymerization of the uncharged hydrophilic polymer block and the concentration of cationic and anionic polymers.
  • the polydispersity index (PDI) of the particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less. In a preferred embodiment of the invention, the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08.
  • the surface rigidity of the hollow particles is the first predetermined value.
  • the first predetermined value can be in the range of 10 pN / nm to 40 pN / nm.
  • the first predetermined value can be, for example, 15 pN / nm to 35 pN / nm.
  • the first predetermined value can also be between 35 pN / nm and 45 pN / nm.
  • the lower limit of the range of values that the surface rigidity of the hollow fine particles of the first embodiment can take is, for example, more than 10 pN / nm, 15 pN / nm, 20 pN / nm, 25 pN / nm, 30 pN / nm, 35 pN / nm. Or it can be 40 pN / nm.
  • the upper limit of the range of values that the surface rigidity of the hollow fine particles of the first embodiment can take is, for example, 50 pN / nm, 45 pN / nm, 40 pN / nm, 35 pN / nm, 30 pN / nm, 25 pN / nm, or 20 pN. Can be / nm.
  • the hollow particles may have a surface stiffness of 10 pN / nm or more and 35 pN / nm or less.
  • composition containing the hollow nanoparticles of the first embodiment can be preferably used to deliver the encapsulated aqueous solution to the brain parenchyma.
  • the average particle size measured by a dynamic light scattering method is 80 to 200 nm, and the polydispersity index (PDI) is less than 0.2.
  • PDI polydispersity index
  • the hollow particles can be hollow vesicles.
  • the hollow particles can be, for example, hollow lipid particles, for example, liposomes.
  • the hollow particles can be PIC / some.
  • the average particle size of the particles can be 80-200, 80-150 nm, 80-120 nm, 90-120 nm, 90-110 nm, 95-105 nm, 80-100 nm, or 100-120 nm.
  • the particle size of PIC / some can be controlled by the degree of polymerization of the uncharged hydrophilic polymer block and the concentration of cationic and anionic polymers.
  • the polydispersity index (PDI) of the particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less. In a preferred embodiment of the invention, the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08.
  • the surface rigidity of the hollow particles is a second predetermined value.
  • the second predetermined value can be in the range of 30 pN / nm to 50 pN / nm.
  • the second predetermined value can be, for example, 30 pN / nm to 35 pN / nm.
  • the second predetermined value can also be 35 pN / nm to 45 pN / nm, 45 pN / nm to 50 pN / nm.
  • the lower limit of the surface rigidity of the hollow fine particles of the second embodiment can be, for example, 30 pN / nm, 35 pN / nm, 36 pN / nm, 37 pN / nm, 38 pN / nm, 39 pN / nm, or 40 pN / nm.
  • the upper limit of the surface rigidity of the hollow fine particles of the second embodiment can be, for example, 50 pN / nm, 45 pN / nm, or 40 pN / nm.
  • the surface stiffness of the hollow particles of the second embodiment can be 35 pN / nm or more and 50 pN / nm or less.
  • the composition containing the hollow nanoparticles of the second embodiment can be preferably used for delivering the encapsulated aqueous solution to the cerebrospinal fluid.
  • delivering to cerebrospinal fluid it means that at least part of what was administered in cerebrospinal fluid some time after administration is retained.
  • the fixed time can be, for example, 60 to 90 minutes.
  • the hollow particles of the first embodiment and the hollow particles of the second embodiment may be collectively referred to as the hollow particles of the present invention.
  • Aqueous solution contained in the hollow particles of the present invention contain an aqueous solution inside.
  • the aqueous solution may contain water and a pharmaceutically acceptable carrier and / or excipient.
  • the aqueous solution can be, for example, water, saline, and a buffer.
  • the aqueous solution may further contain a substance selected from the group consisting of bioactive substances and contrast agents (eg, biocompatible substances).
  • bioactive substances and contrast agents eg, biocompatible substances.
  • the physiologically active substance include proteins such as antibodies (about 10 to 15 nm), antigen-binding fragments thereof, growth factors, enzymes and the like, and nucleic acids such as ribozymes, miRNA and non-coding RNA inhibitory nucleic acids. Be done.
  • Enzymes include, for example, enzymes used in enzyme replacement therapy, such as arylsulfatase, islonate-2-sulfatase, ⁇ -galactosidase, agarsidase alpha, agarsidase beta, imiglucerase, taliglucerase alpha, velaglucerase alpha. , Alglucerase, Severipase Alpha, Laronidase, Izulfatase, and Erosulfase Alpha.
  • the hollow particles of the present invention are preferably PIC / some.
  • Physiologically active substances also include therapeutic agents for cranial nerve diseases.
  • Drugs for treating neurological disorders include, for example, therapeutic agents for brain disorders such as anxiety, depression, sleep disorders, Alzheimer's disease, Parkinson's disease and multiple sclerosis.
  • a ⁇ antibody As a therapeutic agent for Alzheimer's disease, for example, A ⁇ antibody is well known, as a therapeutic agent for Parkinson's disease, for example, dopamine receptor agonist and L-dopa are well known, and as a therapeutic agent for multiple sclerosis, for example, adrenal gland. Steroids, interferon ⁇ (IFN ⁇ ), and immunosuppressants are well known and these therapeutic agents can be used in the present invention.
  • Peripheral neuropathy includes peripheral neuropathy that can be treated by passing a therapeutic agent for peripheral neuropathy across the blood-brain barrier, such as Guillain-Barré syndrome, Miller syndrome and chronic inflammatory demyelinating multiple neuropathy.
  • the contrast medium include ultrasonic waves, contrast media for MRI and CT, and radioisotopes.
  • the biocompatible substance may be an anti-cancer agent and may not be an anti-cancer agent.
  • the ribozyme any of a hammer head type, a hairpin type, and a lasso type ribozyme may be used.
  • nucleic acids that inhibit non-coding RNA, microRNA, etc. miRNA sponge (Nature Methods 6,897-903 (2009)), RNA decoy (NAR 2009 Apr; 37 (6): e43, NAR 2012 Appr; 40 (8) :. e58) may be used.
  • the biocompatible substance contained in PIC / some is contained. It can stay inside the PIC / some stably.
  • a bulky structure may be added as needed to stably enclose the hollow particles.
  • the rigidity of the surface of the hollow particles can be appropriately adjusted by, for example, the type of the raw material of the hollow particles and the cross-linking thereof.
  • PIC / some it is selected from the group consisting of the degree of polymerization of polycation as a raw material of PIC / some, the degree of polymerization of polyanion, the degree of polymerization of uncharged hydrophilic polymer block, and the degree of intermolecular cross-linking thereof. It can be adjusted by controlling one or more.
  • the rigidity of PIC / some can be imparted by increasing the degree of polymerization of the polycation and the polyanion.
  • the rigidity of PIC / some By increasing the degree of polymerization of the uncharged hydrophilic polymer block, the rigidity of PIC / some can be reduced.
  • rigidity can be imparted to the PIC / some by forming an intermolecular crosslink on the ionic polymer constituting the PIC / some.
  • the rigidity of the particles can be controlled by using various methods for imparting the rigidity to the hollow particles. Since the PIC / some membrane is permeable to moisture, it can be advantageously used to adjust the rigidity.
  • raw materials for PIC / some include a combination of a copolymer and a homopolyanion containing a non-charged hydrophilic polymer block and a polycation block, and a non-charged hydrophilic polymer block and a polyanion block.
  • examples thereof include a combination of a copolymer containing and a homopolycation.
  • the uncharged hydrophilic polymer block can be a polymer containing monomeric units that are both uncharged and hydrophilic.
  • Non-charged hydrophilic polymer blocks include, for example, polyalkylene glycol (eg, polyethylene glycol), and polyoxazoline (eg, poly-C 1-4 alkyloxazoline, eg, poly (2-ethyl-2-oxazoline), poly (eg, poly). 2-Isopropyl-2-oxazoline).
  • the uncharged hydrophilic polymer block may contain branches in the molecule, but preferably does not include branches.
  • the uncharged hydrophilic polymer block may contain branches.
  • the number average molecular weight may be 1,000 to 15,000, for example, 2,000 to 12,000.
  • the polycation block and the polyanion block have a number average degree of polymerization of 40 to 150, 50 to 130, or. Can have 60-100.
  • polycation blocks and homopolycations include non-natural polycations and natural polycations.
  • the polycation block and homopolycation are also represented by-(NH- (CH 2 ) 2 ) p- NH 2 with a polymer of naturally cationic amino acids such as polylysine and polyornithine and a polypeptide as the main chain.
  • examples thereof include polymers of unnatural cationic amino acids having a group (where p is 2, 3 or 4) as a side chain.
  • the main chain polypeptide has, for example, a polymer of amino acids selected from the group consisting of aspartic acid and glutamic acid as the main chain, and is a group represented by-(NH- (CH 2 ) 2 ) p- NH 2 ⁇
  • a polymer of an unnatural cationic amino acid having (p is 2, 3 or 4) as a side chain can be mentioned.
  • Those skilled in the art will be able to obtain such a polymer by reacting a polymer containing aspartic acid or glutamic acid as a monomer unit with diethyltriamine, triethyltetraamine or tetraethylpentamine.
  • the cationic polymer is composed of the following general formula (I): ⁇ In the formula, R 1 can be a hydrogen atom, a lower alkyloxy group, or an optionally substituted linear or branched C 1-12 alkyl group, or polyethylene glycol, in this case adjacent to polyethylene glycol.
  • Amino acids may be linked via a linker
  • R 2 is a lower alkylene and R 3 is a group represented by-(NH- (CH 2 ) 2 ) p- NH 2 or -NH- (CH 2 ) q- NH 2
  • p is 2, 3 or 4
  • R 4 is hydrogen, a protecting group, a hydrophobic group or polymerizable group, for example, a hydrogen atom, an acetyl group, trifluoroacetyl group which may be an acryloyl group or a methacryloyl group
  • X is a cationic amino acid and n is an integer of 2 to 5000, n 1 is an integer from 0 to 5000, n 3 is an integer from 0 to 5000, nn 1- n 3 is an integer of 0 or more, and each repeating unit in the formula is shown in a specific order for convenience of description, but each repeating unit can exist in random order, and each repeating unit can exist
  • the protecting groups include C 1-6 alkylcarbonyl group, preferably an acetyl group, a hydrophobic group, a benzene, naphthalene, anthracene, pyrene and derivatives thereof, or C 1 -6 Alkyl group is mentioned, and the polymerizable group includes a methacryloyl group and an acetylloyl group.
  • polyethylene glycol has an average degree of polymerization of 5 to 20000, preferably 10 to 5000, and more preferably 40 to 500, unless the formation of a polyion complex between the block copolymer and mRNA is inhibited. Not particularly limited.
  • the PEG ends of the cationic polymer may be protected by hydroxyl groups, methoxy groups or protecting groups.
  • the linker is, for example, ⁇ (CH 2 ) r-NH- ⁇ where r is an integer of any one of 1 to 5. ⁇ Or-(CH 2 ) s-CO- ⁇ where s is an integer of any of 1-5. ⁇ , And preferably it can be bound to an adjacent amino acid of the formula (I) by a peptide bond. Further, the linker may preferably be bonded to PEG via the O atom of PEG on the methylene side of PEG.
  • n is an integer of 0 to 5000, for example, an integer of 0 to 500
  • m is an integer of 0 to 5000, for example. It is an integer of 0 to 500
  • m + n is an integer of 2 to 5000, for example, an integer of 2 to 500.
  • a compound defined by any of the formulas (II) to (V) described later can be used as the cationic polymer.
  • the cationic polymer is a block copolymer of a PEG-linker-polycation block ⁇ where the PEG, linker and polycation block are as defined above. ⁇ Can be. In some aspects of the invention, the cationic polymer may be a homopolycation.
  • the anionic polymer block and the anionic polymer can be polymers formed by peptide bonds of natural or unnatural amino acids.
  • Anionic polymer blocks and anionic polymers include, for example, polyglutamic acid and polyaspartic acid.
  • anionic polymer a compound defined by any of the formulas (VI) to (IX) described later can be used.
  • phospholipids can be used as the lipids.
  • phospholipids include phosphatidylcholine (for example, dioleoil phosphatidylcholine, dilauroylphosphatidylcholine, dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, etc.), phosphatidylglycerol (eg, dioleoil phosphatidylglycerol, dilauroylphosphatidylglycerol, etc.).
  • phosphatidylcholine for example, dioleoil phosphatidylcholine, dilauroylphosphatidylcholine, dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, etc.
  • phosphatidylglycerol eg, di
  • PIC / some is a solution containing a combination of a copolymer containing a non-charged hydrophilic polymer block and a polycation block and a homopolyanion in an aqueous solution, or a copolymer containing a non-charged hydrophilic polymer block and a polyanion block. And can be obtained by mixing solutions containing a combination of homopolycations. When the biocompatible substance is introduced into the contained aqueous solution, the biocompatible substance may be contained in the solution to be mixed above.
  • Cross-linking can be performed after the vesicles have been formed, for example, using a cross-linking agent.
  • the cross-linking agent can be appropriately selected and used.
  • 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) is a water-soluble cross-linking agent capable of cross-linking intermolecular carboxylic acid groups and amino groups.
  • EDC 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride
  • the degree of cross-linking can be controlled by the amount of the cross-linking agent added and the reaction time between the cross-linking agent and the hollow vesicles.
  • the hollow particles of the present invention can be coated with a substance having an affinity for the surface of cerebrovascular endothelial cells. Thereby, the hollow fine particles can be imparted with transferability to the brain.
  • substances having an affinity for the surface of cerebral vascular endothelial cells include molecules that bind to molecules expressed on the surface of cerebral vascular endothelial cells (for example, antibodies (for example, antibodies that bind to transferrin) and GLUT1 ligands). Be done.
  • the GLUT1 ligand is a molecule that binds to GLUT1.
  • GLUT1 ligands include various molecules that bind to GLUT1, such as glucose, 2-N-4- (1-azi-2,2,2-trifluoroethyl) benzoyl-1,3-bis (D).
  • -Mannose-4-yloxy) -2-propylamine ATB-BMPA
  • 6-NBDG N- (7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino
  • 6-NBDG N- (7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino
  • 6-NBDG 4,6-O-ethylidene- ⁇ -D-glucose
  • 2-deoxy-D-glucose and 3-O-methylglucose also include molecules that bind to GLUT1.
  • the GLUT1 ligand can be exposed on the surface of hollow particles so that it can be recognized by GLUT1.
  • glucose is a polymer (particularly the tip of an uncharged hydrophilic polymer block) that constitutes hollow particles via carbon atoms at the 2-, 3-, or 6-position (and preferably O atoms bonded to the carbon atom).
  • Hollow particles can be coated, for example, by covalently linking to polyethylene glycol (O atom), and the coated particles can be preferably recognized by GLUT1.
  • the coating of particles with GLUT1 increases the tendency of the particles to stay in the vascular endothelial cells as the amount increases, and increases the tendency of the particles to pass through the vascular endothelial cells (transitosis) and reach the parenchyma of the brain when the amount decreases. From this point of view, the degree of coating of the particles with the GLUT1 ligand can be adjusted.
  • the particles are coated with glucose, depending on the particles, for example, 10 to 40 mol% (for example, 15 to 35 mol%, for example, 20 to 30 mol%) of the polymer or polymer constituting the vesicle is glucose. Can be connected (introduced).
  • the composition containing the hollow particles of the present invention can be administered into the cerebrospinal fluid of the subject.
  • the hollow particles of the first embodiment of the present invention can be transferred to the brain parenchyma, and the hollow particles of the second embodiment can be retained in the cerebrospinal fluid.
  • Whether to transfer to the brain parenchyma or to stay in the cerebrospinal fluid may be appropriately selected according to the purpose at that time.
  • the hollow particles of the present invention do not need to have a molecule having an affinity for the surface of cerebrovascular endothelial cells.
  • composition containing the hollow particles of the present invention can be orally administered to a subject.
  • Parenteral administration includes, for example, intravenous administration and intraperitoneal administration.
  • the hollow particles of the present invention preferably have a molecule having an affinity for the surface of cerebrovascular endothelial cells, and it is particularly preferable to express the GLUT1 ligand so as to be recognizable by GLUT1. preferable.
  • Nanoparticles expressing the GLUT1 ligand can further increase the transfer rate to the brain by administering the nanoparticles according to the administration plan of the present invention.
  • the dosing regimen of the invention comprises administering the composition to a fasted or hypoglycemic subject and inducing an increase in blood glucose levels in the subject. This method is as detailed in WO 2015/075942A, which is incorporated herein by reference in its entirety.
  • the composition can be administered to the subject continuously or sequentially at the same time as inducing an increase in blood glucose level in the subject.
  • the dosing regimen may or may not have an interval between administration of the composition to the subject and induction of elevated blood glucose levels in the subject.
  • the composition may be administered to the subject in a mixed form with an agent that induces an increase in blood glucose level. , It may be administered in a form different from the drug that induces an increase in blood glucose level in the subject.
  • the composition when the composition is administered to the subject continuously or sequentially, the composition is prior to the induction of an increase in blood glucose level in the subject. May be administered to the subject or later, but preferably the composition can be administered to the subject prior to inducing an increase in blood glucose level in the subject.
  • inducing an increase in blood glucose level in the subject prior to administration of the composition to the subject within 1 hour, within 45 minutes, within 30 minutes after inducing the increase in blood glucose level in the subject.
  • compositions to the subject are preferred to administer the composition to the subject within, within 15 minutes or within 10 minutes.
  • inducing an increase in blood glucose level in the subject after administration of the composition to the subject within 6 hours, within 4 hours, or 2 hours after the administration of the composition to the subject.
  • Within 1 hour, within 45 minutes, within 30 minutes, within 15 minutes or within 10 minutes it is preferable to induce an increase in blood glucose level in the subject.
  • the administration planning cycle described above may be performed more than once.
  • the context of glucose administration and sample administration can be determined by the timing of crossing the blood-brain barrier.
  • inducing hypoglycemia means lowering the blood glucose level in the subject than the blood glucose that would have been indicated if the treatment was not performed.
  • examples of the method for inducing hypoglycemia include administration of a diabetic drug.
  • inducing hypoglycemia it is permissible to take, for example, other drugs or drink beverages such as water, as long as the purpose of inducing hypoglycemia is achieved.
  • Inducing hypoglycemia may be accompanied by other treatments that have no substantial effect on blood glucose.
  • fasting means fasting to a subject, for example, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, 8 hours or more, 9 hours or more, 10 hours or more. 11 hours or more, 12 hours or more, 13 hours or more, 14 hours or more, 15 hours or more, 16 hours or more, 17 hours or more, 18 hours or more, 19 hours or more, 20 hours or more, 21 hours or more, 22 hours or more, 23 hours 24 hours or more, 25 hours or more, 26 hours or more, 27 hours or more, 28 hours or more, 29 hours or more, 30 hours or more, 31 hours or more, 32 hours or more, 33 hours or more, 34 hours or more, 35 hours or more, 36 hours or more, 37 hours or more, 38 hours or more, 39 hours or more, 40 hours or more, 41 hours or more, 42 hours or more, 43 hours or more, 44 hours or more, 45 hours or more, 46 hours or more, 47 hours or more or 48 hours It means to fast as above.
  • the subject causes hypoglycemia by fasting.
  • the fasting period is determined by a doctor or the like in consideration of the health condition of the subject, and is preferably a period longer than the time when the subject reaches fasting blood glucose, for example.
  • the fasting period may be, for example, longer than the expression of GLUT1 on the inner surface of blood vessels of cerebrovascular endothelial cells increases or reaches a plateau.
  • the fasting period can be, for example, the above period of 12 hours or more, 24 hours or more, or 36 hours or more.
  • Fasting may also be accompanied by other treatments that do not substantially affect blood glucose levels or expression of GLUT1 on the inner surface of blood vessels.
  • the time for maintaining the blood glucose level of the subject in a low blood glucose state is, for example, 0 hours or more, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, 8 Hours or more, 9 hours or more, 10 hours or more, 11 hours or more, 12 hours or more, 13 hours or more, 14 hours or more, 15 hours or more, 16 hours or more, 17 hours or more, 18 hours or more, 19 hours or more, 20 hours or more , 21 hours or more, 22 hours or more, 23 hours or more, 24 hours or more, 25 hours or more, 26 hours or more, 27 hours or more, 28 hours or more, 29 hours or more, 30 hours or more, 31 hours or more, 32 hours or more, 33 Hours or more, 34 hours or more, 35 hours or more, 36 hours or more, 37 hours or more, 38 hours or more, 39 hours or more, 40 hours or more, 41 hours or more, 42 hours or more, 43 hours or more, 44 hours or more, 45 hours
  • the blood sugar level can be raised.
  • "maintaining blood glucose” is permitted, for example, to take other agents or drink beverages such as water, as long as the subject achieves the purpose of maintaining hypoglycemia. Inducing hypoglycemia may be accompanied by other treatments that have no substantial effect on blood glucose.
  • blood glucose levels can be elevated by a variety of methods well known to those skilled in the art, for example, administration of one that induces elevated blood glucose levels, eg, induction of elevated blood glucose levels such as glucose, fructose (fructose), galactose, etc. It can be increased by administration of monosaccharides, administration of polysaccharides such as maltose that induce an increase in blood glucose level, intake of carbohydrates that induce an increase in blood glucose level such as starch, or diet.
  • a method for controlling the permeability of hollow particles to the glare limit film by controlling the particle size (average particle size) and the rigidity, the hollow particles changed the permeability to the glial limit film.
  • the permeability to the glial limit film decreases as the particle size increases for particles that are resistant to deformation by external force (that is, high rigidity), but this decrease in permeability decreases the rigidity of the particles. It can be suppressed by this. Thereby, the distribution in the brain of the aqueous solution (for example, the aqueous solution containing a drug) contained in the hollow particles can be controlled.
  • hard hollow particles having a particle size of 80 nm or more have low permeability of the glial limit film. Therefore, according to the present invention, it is a method of increasing the permeability of hollow particles having a particle size of 80 nm or more, 90 nm or more, or 100 nm or more to the glial limit film, and the rigidity of the hollow particles is adjusted to increase the rigidity.
  • a method is provided, including setting the value below the first predetermined value.
  • the permeability of the glial limit film of the hollow particles can be increased based on the disclosure of the hollow particles of the first embodiment ⁇ for example, as compared with the hollow particles having the rigidity of the second predetermined value. ⁇ .
  • the rigidity can be set to a value exceeding 10 pN / nm. By doing so, blood stability can be enhanced.
  • the present invention is a method of reducing the permeability of hollow particles having a particle size of 80 nm or more, 90 nm or more, or 100 nm or more to a glial limit film, and the rigidity of the hollow particles is adjusted to increase the rigidity.
  • the method including setting the value to a second predetermined value or more.
  • the permeability of the glial limit film of the hollow particles can be reduced based on the disclosure of the hollow particles of the second embodiment ⁇ for example, as compared with the hollow particles having the rigidity of the first predetermined value. hand ⁇ .
  • a method is provided that includes adjusting the stiffness to be less than or equal to the first predetermined value.
  • the PDI of hollow particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less.
  • the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08.
  • a composition containing hollow particles can be produced in the same manner as in the method for producing hollow particles of the first embodiment based on the disclosure of the hollow particles of the first embodiment.
  • the present invention it is also a method for producing a composition containing hollow particles having a particle size of 80 nm to 200 nm, in which hollow particles having a particle size of 80 nm or more are prepared and the rigidity of the hollow particles is determined.
  • a method is provided that includes adjusting the stiffness to a second predetermined value or higher.
  • the PDI of hollow particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less.
  • the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08.
  • a composition containing hollow particles can be produced in the same manner as in the method for producing hollow particles of the second embodiment based on the disclosure of the hollow particles of the second embodiment.
  • a method for administering a hollow vesicle to a subject comprising providing a composition containing the hollow particles of the first embodiment and administering the composition to the subject.
  • the hollow vesicles may contain, for example, an aqueous solution containing a biocompatible substance.
  • the hollow vesicles may be administered according to the above dosing regimen. This allows hollow vesicles that are administered and reside in blood vessels to cross the blood-brain barrier and be delivered to the brain parenchyma.
  • a method for administering a hollow vesicle to a subject comprising providing a composition containing the hollow particles of the second embodiment and administering the composition to the subject.
  • the hollow vesicles may contain, for example, an aqueous solution containing a biocompatible substance.
  • the hollow vesicles may be administered without following the above dosing regimen. If the dosing regimen is not followed, administration may preferably be directed to cerebrospinal fluid. Further, in the above embodiment, the hollow vesicles may be administered according to the above administration plan.
  • a method comprising administering the hollow particles of the above or the hollow particles of the second embodiment is provided.
  • the hollow particles of the first embodiment or the hollow particles of the second embodiment containing the bioactive substance can be administered according to the administration plan of the present invention.
  • the hollow particles of the first embodiment accumulate in the brain parenchyma
  • the hollow particles of the second embodiment accumulate in the cerebrospinal fluid at least in part.
  • Item 1 A method of setting drug transport particles that pass through a glial limit membrane by controlling particle size and elastic modulus (rigidity).
  • Item 2 The method according to item 1 above, wherein the GLUT-1 ligand is added to the surface of the particles.
  • Item 3 The method according to Item 1 or 2, wherein the particles are covered with a block copolymer containing a nonionic uncharged hydrophilic segment and a charged segment.
  • Item 4 The method according to item 3 above, wherein the elastic modulus is controlled by adjusting the cross-linking rate between block copolymers.
  • Item 5 A first block copolymer having a nonionic uncharged hydrophilic segment, a positively charged charged segment, a nonionic uncharged hydrophilic segment, and a negative ion charged.
  • Item 6 The method according to any one of items 2 to 5 above, wherein the uncharged hydrophilic segment is polyethylene glycol and / or poly (2-isopropyr-2-oxazoline).
  • Item 7 The method according to item 5 or 6 above, wherein the charged segment of the first block copolymer is represented by the formula (II).
  • R 1 represents ⁇ (CH 2 ) 3 NH 2 or ⁇ CONH (CH 2 ) s ⁇ X, and s is 0 to 20, where X is ⁇ NH 2 , pyridyl group, morpholic group, 1-imidazolyl group, piperazinyl group, 4- (C 1-6 alkyl) -piperazinyl group, 4- (amino C 1-6 alkyl) -piperazinyl group, pyrrolidine-1-yl group, N-methyl-N-phenylamino At least one selected from the group consisting of group, piperidinyl group, diisopropylamino group, dimethylamino group, diethylamino group,-(CH 2 ) t NH 2 or-(NR 9 (CH 2 ) o ) p NHR 10
  • R 1 represents
  • P is 1 to 5
  • t is 0 to 15
  • R2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
  • a is 0 to 5,000
  • b is 0 to 5,000
  • a + b is 2 to 5,000.
  • R 1 represents -CONH (CH 2 ) S- NH 2 , and s is 2 to 5.
  • R 2 represents a hydrogen atom The method according to item 7, wherein a is 0 to 200, b is 0 to 200, and a + b is 10 to 200.
  • Item 9 The method according to any one of items 5 to 8 above, wherein the charged segment of the second block copolymer is represented by the formula (III).
  • R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
  • R 3 independently represents a methylene group or an ethylene group, respectively. c is 0 to 5,000, d is 0 to 5,000, and c + d is 2 to 5,000.
  • R 2 represents a hydrogen atom
  • R 3 represents a methylene group 9. The method according to item 9, wherein c is 0 to 200, d is 0 to 200, and c + d is 10 to 200.
  • Item 11 The method according to item 5 above, wherein the first block copolymer is represented by the formula (IV).
  • R 1 represents ⁇ (CH 2 ) 3 NH 2 or ⁇ CONH (CH 2 ) s ⁇ X, and s is 0 to 20, where X is ⁇ NH 2 , pyridyl group, morpholic group, 1-imidazolyl group, piperazinyl group, 4- (C 1-6 alkyl) -piperazinyl group, 4- (amino C 1-6 alkyl) -piperazinyl group, pyrrolidine-1-yl group, N-methyl-N-phenylamino At least one selected from the group consisting of group, piperidinyl group, diisopropylamino group, dimethylamino group, diethylamino group,-(CH 2 ) t NH 2 or-(NR 9 (CH 2 ) o ) p NHR 10
  • R 9 represents a hydrogen
  • R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
  • R 4 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
  • R 5 represents ⁇ (CH 2 ) g NH-, and g is 0 to 5. a is 0 to 5,000, b is 0 to 5,000, and a + b is 2 to 5,000. e is 5 to 2,500. )
  • R 1 represents -CONH (CH 2 ) S- NH 2 , and s is 2 to 5.
  • R 2 represents a hydrogen atom
  • R 4 represents a methyl group a is 0 to 200, b is 0 to 200, and a + b is 10 to 200.
  • Item 13 The method according to item 5 above, wherein the first block copolymer is represented by the formula (V).
  • R 1 represents ⁇ (CH 2 ) 3 NH 2 or ⁇ CONH (CH 2 ) s ⁇ X, and s is 0 to 20, where X is ⁇ NH 2 , pyridyl group, morpholic group, 1 -Imidazolyl group, piperazinyl group, 4- (C 1-6 alkyl) -piperazinyl group, 4- (amino C 1-6 alkyl) -piperazinyl group, pyrrolidine-1-yl group, N-methyl-N-phenylamino group , Piperidinyl group, diisopropylamino group, dimethylamino group, diethylamino group,-(CH 2 ) t NH 2 , or-(NR 9 (CH 2 ) o ) p NHR 10 at least selected from the group.
  • R 9 represents a hydrogen atom or a methyl group
  • R 10 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, a benzyloxycarbonyl group or a tert-butoxycarbonyl group, and o is 1-5.
  • p is 1-5
  • t is 0-15
  • R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
  • R 6 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
  • R 7 represents ⁇ (CH 2 ) h NH-, and h is 0 to 5.
  • R 8 represents a linear or branched C 1-12 alkyl group.
  • a is 0 to 5,000
  • b is 0 to 5,000
  • a + b is 2 to 5,000.
  • f is
  • Item 14 R 1 represents ⁇ (CH 2 ) 3 NH 2
  • R 2 represents a hydrogen atom
  • R 6 represents a methyl group
  • R 8 represents -CH (CH 3 ) 2 and represents a is 0 to 200, b is 0 to 200, and a + b is 10 to 200.
  • Item 13 The method according to item 13, wherein f is 10 to 300.
  • Item 15 The method according to item 5 above, wherein the second block copolymer is represented by the formula (VI).
  • R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
  • R 3 independently represents a methylene group or an ethylene group, respectively.
  • R 4 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
  • R 5 represents ⁇ (CH 2 ) g NH-, and g is 0 to 5.
  • c is 0 to 5,000
  • d is 0 to 5,000
  • c + d is 2 to 5,000.
  • i is 5 to 2,500.
  • R 2 represents a hydrogen atom
  • R 3 represents a methylene group
  • R 4 represents a methyl group c is 0 to 200, d is 0 to 200, and c + d is 10 to 200.
  • Item 17 The method according to item 5 above, wherein the second block copolymer is represented by the formula (VII).
  • R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
  • R 3 independently represents a methylene group or an ethylene group, respectively.
  • R 6 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
  • R 7 represents ⁇ (CH 2 ) h NH-, and h is 0 to 5.
  • R 8 represents a linear or branched C 1-12 alkyl group.
  • c is 0 to 5,000
  • d is 0 to 5,000
  • c + d is 2 to 5,000.
  • j is 5 to 2,500.
  • R 2 represents a hydrogen atom
  • R 3 represents a methylene group
  • R 6 represents a methyl group
  • R 8 represents -CH (CH 3 ) 2 and represents c is 0 to 200, d is 0 to 200, and c + d is 10 to 200.
  • R 1 represents a hydrogen atom or an unsubstituted or substituted linear or branched C 1-12 alkyl group.
  • L 1 is-(CH 2 ) b -NH-, b is an integer of 1 to 5,
  • L 2 is-(CH 2 ) c -CO-, and
  • c is an integer of 1 to 5.
  • R 2 represents a methylene group or an ethylene group
  • R 3 represents a hydrogen atom, a protecting group, a hydrophobic group or a polymerizable group.
  • R 4 is the same as R 5 or is -NH-R 9 , where R 9 represents an unsubstituted or substituted linear or branched C 1-20 alkyl group.
  • R 5 is independently a hydroxyl group, an oxybenzyl group, or an amine group, except that 85% or more of R 5 is an amine group.
  • the amine group is a group represented by the following formula (X): Selected from, a is an integer from 1 to 5, m is an integer from 5 to 20,000, and n is an integer of 2 to 5,000 and x is an integer of 0 to 5,000, but x is not greater than n)
  • X formula
  • Item 20 Drug transport particles designed by the method according to any one of items 1 to 19 above.
  • the composition containing the hollow particles of the first embodiment and the composition containing the hollow particles of the second embodiment are subjected to enzyme replacement therapy (particularly, the hollow particles of the first embodiment are applied to the brain parenchyma.
  • the hollow particles of the second embodiment can be used for enzyme replacement of cerebrospinal fluid).
  • the composition containing the hollow particles of the first embodiment and the composition containing the hollow particles of the second embodiment contain an aqueous solution containing an enzyme in the hollow particles, and the enzyme is introduced into a living body. Can be replenished.
  • the hollow particles can be PIC / some.
  • PIC / some stably encloses an enzyme having a molecular weight of 10,000 Da or more in particles, but the substrate has permeability to the membrane of PIC / some. Therefore, the enzyme can convert the substrate outside the PIC / some by its original enzyme activity by being provided in the PIC / some.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain an agar cedar zebeta in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat Fabry disease.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain agarsidase alpha in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat Fabry disease.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain imiglucerase in the hollow particles, and the hollow fine particles are PIC / some and a goucher. It can be used to treat the disease.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain taligulcerase alpha in the hollow particles, and the hollow fine particles are PIC / some. And can be used to treat goucher disease.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain velaglucerase alfa in the hollow particles, and the hollow fine particles are PIC / some. And can be used to treat Goucher's disease.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain alglucerase in the hollow particles, the hollow fine particles are PIC / some, and I. It can be used to treat type goucher disease.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain severipase alpha in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat lysosomal lipase deficiency.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain laronidase in the hollow particles, and the hollow fine particles are PIC / some and mucopolysaccharidans. It can be used to treat polysaccharidosis (MPS) type I.
  • MPS polysaccharidosis
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain isul sulphase in the hollow particles, and the hollow fine particles are PIC / some. It can also be used to treat mucopolysaccharidosis (MPS) type II.
  • MPS mucopolysaccharidosis
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain elosulfase alfa in the hollow particles, and the hollow fine particles are PIC / some. It can also be used to treat mucopolysaccharidosis (MPS) type IVA.
  • MPS mucopolysaccharidosis
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain galsulfase in the hollow particles, the hollow fine particles are PIC / some, and muco. It can be used to treat polysaccharidosis (MPS) type VI.
  • MPS polysaccharidosis
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain alglucosidase alfa in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat Pombe's disease.
  • the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain arylsulfatase in the hollow particles, the hollow fine particles are PIC / some, and the hollow particles are PIC / some. It can be used to treat lysosomal storage diseases, such as metachromatic leukodystrophy (MLD).
  • MLD metachromatic leukodystrophy
  • the present invention is a method of supplementing an enzyme in a subject.
  • the subject is a composition containing hollow particles of the first embodiment and a composition containing hollow particles of the second embodiment for use in enzyme replacement therapy, wherein the composition contains an enzyme to be supplemented into the hollow particles.
  • Encapsulating, hollow microparticles are PIC / some, including administering the composition.
  • the method is provided.
  • the relationship between the enzyme and the indicated disease of enzyme replacement therapy is as defined in the above composition.
  • the use of a supplementing enzyme in the production of a composition containing hollow particles of the first embodiment and a composition containing hollow particles of the second embodiment for use in enzyme replacement therapy is provided.
  • the relationship between the enzyme and the indicated disease of enzyme replacement therapy is as defined in the above composition.
  • a composition is provided in which the hollow fine particles are PIC / some.
  • the relationship between the enzyme and the indicated disease of enzyme replacement therapy is as defined in the above composition.
  • composition of the present invention may be a pharmaceutical composition and is pharmaceutically acceptable in addition to the hollow particles selected from the group consisting of the composition comprising the hollow particles of the first embodiment and the hollow particles of the second embodiment. It may contain possible excipients. Excipients include, but are not limited to, buffering agents, tonicity agents, pharmaceutically acceptable salts, dispersants, antioxidants, preservatives, and soothing agents.
  • Example 1 Relationship between BBB passage and particle size of nanoparticles 1.
  • PIC Gluc-Modified Polyion Complex
  • PEG Polyethylene glycol
  • Gluc-PEG-PAsp Mn of PEG is 2000, DP of P (Asp) is 80) and PEG-PAsp without glucose (Mn of PEG is 2000, DP of P (Asp) is 80)
  • CH 3 O-PEG-P (Asp-AP) -Cy5 (DP of P (Asp) is 80) in which a fluorescent dye (Cy5) is introduced at the ⁇ end is also adjusted to 1 mg / mL in 10 mM PB. (Polycation solution), mix so that the charge ratio of the polyanion / cation solution is 1: 1 and add 10 equal amounts of 1-ethyl-3- (3-dimethyl) to the carboxyl group of PEG-PAsp. Aminopropyl) carbodiimide hydrochloride (EDC) was added and allowed to stand overnight.
  • EDC aminopropyl) carbodiimide hydrochloride
  • Gluc-PIC / m (diameter 30 nm).
  • "X%" immediately before Gluc means that the proportion of the polymer having Gluc modification in the total polymer mixed when preparing the PIC vesicle (PIC micelle; PIC / m) is X%.
  • Gluc-PIC / some having a diameter of 100 nm is a DP of Gluc-PEG-PAsp, PEG-PAsp, and Homo-P (Asp-AP) -Cy5 (P (Asp-AP)) having no PEG as described above. 75) was mixed in the same manner, EDC crosslinked, and purified to prepare.
  • Glucose-modified micelles Gluc-PICs
  • glucose-modified PIC some particle size and PDI
  • the glucose-modified micelle had a particle size of about 30 nm and a PDI of 0.08.
  • the particle size of the glucose-modified PIC / some had a particle size of about 100 to 105 nm regardless of the glucose modification rate, and the PDI was about 0.04 to 0.08.
  • Gluc-PIC / some As for Gluc-PIC / some, 0% Gluc-PIC / some, which does not carry a glucose ligand, hardly accumulated in the brain (0.06% dose / g-brain), whereas 25 , 50, 100% Gluc-PIC / some (100 nm) was confirmed to accumulate in the brain. As with the previously reported glucose-modified PIC micelles (30 nm), the accumulation varies greatly depending on the ligand density, especially 25% Gluc-. PIC / some (100 nm) was the most efficient, and accumulation of 3.2% / g-brain was confirmed (Figs. 1 and 8), and 25% Gluc-PIC / m (30 nm) was the same as previously reported.
  • Example 2 Enzyme replacement therapy in CSF 1. Preparation of Enzyme-Encapsulated Gluc-PIC / Some In the same manner as above, an aqueous solution (1 mg / ml) of Gluc-PEG-PAsp, PEG-PAsp, and Homo-P (Asp-AP) -Cy5 is adjusted so that the positive and negative charge ratios are balanced. Was mixed and stirred to form a hollow 25% Gluc-Cy5-PIC / some through self-association by electrostatic interaction.
  • ⁇ -galactosidase ( ⁇ -Gal) was added thereto, and the reversible dissociation / reassociation behavior of PIC was induced by stirring, so that ⁇ -Gal was encapsulated inside the obtained PIC / some.
  • EDC e.g., EEC, removing unencapsulated ⁇ -Gal
  • limit filtration was performed to prepare 25% Gluc- ⁇ -Gal @ Cy5-PIC / some (diameter 100 nm).
  • Example 3 Gluc-PIC / some with different rigidity and distribution in the brain 1.
  • Preparation of Gluc-PIC / some with different rigidity Similar to the above, the positive and negative charge ratios of Gluc-PEG-PAsp, PEG-PAsp, and Homo-P (Asp-AP) -Cy5 aqueous solution (1 mg / ml) are balanced. As described above, the mixture was mixed and stirred to form a hollow 25% Gluc-Cy5-PIC / some through self-association by electrostatic interaction.
  • an amount of EDC different from 0.3, 0.5, 1, 3, 5, 10, 20 equivalents is added to the carboxyl group of PEG-PAsp.
  • Rigidity evaluation method For the sample prepared above, the rigidity known as a physical quantity representing deformability was evaluated. Here, the measurement was performed using the Quantitative Imaging mode of an atomic force microscope (AFM, NanoWizard ULTRA SpeedTM (JPK)). The measurement was carried out at room temperature of 25 ° C. Prior to the measurement, a cantilever (OLYMPUS: BL-AC 40 TS-C2, Biolever mini; Nominal Spring constant 0.09 N / m) mounted on the AFM head was calibrated by the Thermal noise method.
  • the cantilever was immersed in the prepared liquid sample for about 10 minutes for thermal equilibrium and stabilization, and then AFM measurement was performed under the following condition settings in the Quantitative Imaging (QI) mode of NanoWizard ULTRA SpeedTM. set point: 100-140 pN; cantilever speed: 15 ⁇ m / s; scanner 1 ⁇ m ⁇ 1 ⁇ m / 128 ⁇ 128 pixels.
  • QI Quantitative Imaging
  • particles with a particle size of 30 nm can pass through the glial limit membrane and migrate from the vascular endothelium to the brain regardless of stiffness, while particles with a particle size of 100 nm have low stiffness (eg,).
  • the permeability of the glial limit membrane decreases when the rigidity is high (for example, 40 pN or more). It was.

Abstract

The present invention provides a technology for controlling migration of hollow nanoparticles to the brain from blood. More specifically, the present invention provides a technology for controlling migration of hollow nanoparticles to the cerebrospinal fluid and to the cerebral parenchyma from blood.

Description

血中からの中空ナノ粒子の脳への移行制御技術Technology for controlling the migration of hollow nanoparticles from the blood to the brain
 本発明は、血中からの中空ナノ粒子の脳への移行制御技術に関する。より具体的には、本発明は、血中からの中空ナノ粒子の脳脊髄液への移行および脳実質への移行の制御技術に関する。 The present invention relates to a technique for controlling the migration of hollow nanoparticles from blood to the brain. More specifically, the present invention relates to a technique for controlling the transfer of hollow nanoparticles from blood to cerebrospinal fluid and to the brain parenchyma.
 血液と脳との間には、物質交換を制限する血液脳関門が存在することが知られている。これは脳血管内皮細胞が密着結合を形成し、細胞の隙間が極めて狭いこと、並びに、細胞自体が選択的な物質の取り込みおよび排出を行なっていることによると考えられている。 It is known that there is a blood-brain barrier that limits substance exchange between the blood and the brain. It is considered that this is because the cerebrovascular endothelial cells form tight junctions, the gaps between the cells are extremely narrow, and the cells themselves selectively take up and excrete substances.
 血液脳関門の透過選択性は高く、一部の物質(例えば、アルコール、カフェイン、ニコチンおよびグルコース)を除いてはほとんど通過することができない。そして、このことが、脳治療薬による脳疾患の治療、脳診断薬による脳疾患の診断または造影剤による脳の造影を困難なものにしてきた。 The permeation selectivity of the blood-brain barrier is high, and it can hardly pass through except for some substances (for example, alcohol, caffeine, nicotine and glucose). This has made it difficult to treat brain diseases with brain therapeutic agents, diagnose brain diseases with brain diagnostic agents, or image the brain with contrast media.
 特許文献1では、脳実質に小胞を送達する技術が開発されている。特許文献1では、グルコースで被覆した小胞を投与する動物を、予め絶食により低血糖状態にしておき、当該動物に小胞を投与すると共にグルコースを投与すると、当該小胞が効果的に脳へ送達されることが開示されている。 In Patent Document 1, a technique for delivering vesicles to the brain parenchyma has been developed. In Patent Document 1, when an animal to which a glucose-coated vesicle is administered is preliminarily placed in a hypoglycemic state by fasting, and the vesicle is administered to the animal and glucose is administered, the vesicle is effectively transferred to the brain. It is disclosed that it will be delivered.
US2016/0287714AUS2016 / 0287714A
 本発明は、血中からの中空ナノ粒子の脳への移行制御技術を提供する。より具体的には、本発明は、血中からの中空ナノ粒子の脳脊髄液への移行および脳実質への移行の制御技術を提供する。 The present invention provides a technique for controlling the migration of hollow nanoparticles from blood to the brain. More specifically, the present invention provides techniques for controlling the transfer of hollow nanoparticles from blood to cerebrospinal fluid and to the brain parenchyma.
 本発明者らは、脳血管内腔から脳実質に粒子が運ばれる過程において、グリア限界膜が障壁となって粒径80nm以上のナノ粒子の脳実質への移行を阻害し、脳脊髄液に留めることを見出した。本発明者らはまた、そのような粒径80nm以上の粒子であっても、剛性が低い場合には、グリア限界膜を通過して脳実質に移行しやすくなることを見出した。 In the process of transporting particles from the cerebrovascular lumen to the brain parenchyma, the present inventors use the glial limiting membrane as a barrier to inhibit the transfer of nanoparticles having a particle size of 80 nm or more to the brain parenchyma, and to cerebrospinal fluid. I found it to be fastened. The present inventors have also found that even such particles having a particle size of 80 nm or more easily pass through the glial limit membrane and easily migrate to the brain parenchyma when the rigidity is low.
 すなわち、本発明によれば以下の発明が提供される。
(1)動的光散乱法で測定される平均粒径が80~200nmであり、多分散性指数(PDI)が0.2未満である中空粒子であって、表面の剛性が10pN/nm以上である中空粒子を含む、組成物。
(2)表面の剛性が、第一の所定の値である中空粒子を含み、第一の所定の値は、10pN/nm~40pN/nmの範囲内の値である、上記(1)に記載の組成物。
(3)表面の剛性が、第二の所定の値である中空粒子を含み、第二の所定の値は、35pN/nm以上の値である、上記(1)に記載の組成物。
(4)中空粒子が、ポリイオンコンプレックス型ポリマーソームである、上記(1)~(3)のいずれかに記載の組成物。
(5)中空粒子が、水溶液を内包している、上記(1)~(4)のいずれかに記載の組成物。
(6)内包した水溶液を脳実質に送達することに用いるための、上記(2)に記載の組成物。
(7)内包した水溶液を脳脊髄液に送達することに用いるための、上記(3)に記載の組成物。
(8)対象において、脳脊髄液に中空粒子を送達する方法であって、
 当該対象に上記上記(1)~(7)のいずれかに記載の組成物を投与することを含む、方法。
(9)対象に中空粒子を投与する方法であって、
 上記上記(1)~(7)のいずれかに記載の組成物を提供する工程と、
 当該対象に当該組成物を投与し、これにより、中空粒子が脳脊髄液に移行させ、中空粒子を脳脊髄液中で60分以上安定に存在させる工程とを含む、
方法。
(10)上記(9)に記載の方法であって、
 投与する工程が、当該組成物を脳脊髄液に投与する工程である、方法。
(11)80nm~200nmの粒径を有する中空粒子を含む組成物を製造する方法であって、
 動的光散乱法により測定される平均粒径が80nm以上でる中空粒子を用意することと、
 当該中空粒子の剛性を調整して、剛性を10pN/nm~35pN/nmまたは35pN/nm~50pN/nmとすることを含み、
 ここで、当該中空粒子の多分散性指数(PDI)は、0.2未満である、方法。
(12)80nm~200nmの粒径を有する中空粒子のグリア限界膜に対する透過性を調整する方法であって、
 該中空粒子の剛性を調整することを含む、方法。
(13)80nm~200nmの粒径を有する中空粒子のグリア限界膜に対する透過性を調整する方法であって、
 該中空粒子の剛性を調整して、当該剛性を35pN/nm~50pN/nmとすることを含む、方法。
(14)80nm~120nmの粒径を有する中空粒子のグリア限界膜に対する透過性を調整する方法であって、
 該中空粒子の剛性を調整して、当該剛性を10pN/nm~35pN/nmとすることを含む、方法。
That is, according to the present invention, the following invention is provided.
(1) Hollow particles having an average particle size of 80 to 200 nm measured by a dynamic light scattering method and a polydispersity index (PDI) of less than 0.2, and having a surface rigidity of 10 pN / nm or more. A composition comprising hollow particles that are.
(2) The above-mentioned (1), wherein the surface rigidity includes hollow particles having the first predetermined value, and the first predetermined value is a value in the range of 10 pN / nm to 40 pN / nm. Composition.
(3) The composition according to (1) above, wherein the surface rigidity contains hollow particles having a second predetermined value, and the second predetermined value is a value of 35 pN / nm or more.
(4) The composition according to any one of (1) to (3) above, wherein the hollow particles are polyion complex type polymersomes.
(5) The composition according to any one of (1) to (4) above, wherein the hollow particles contain an aqueous solution.
(6) The composition according to (2) above, for use in delivering the encapsulated aqueous solution to the brain parenchyma.
(7) The composition according to (3) above, for use in delivering the encapsulated aqueous solution to cerebrospinal fluid.
(8) A method of delivering hollow particles to cerebrospinal fluid in a subject.
A method comprising administering to the subject the composition according to any one of (1) to (7) above.
(9) A method of administering hollow particles to a subject.
The step of providing the composition according to any one of (1) to (7) above, and
A step of administering the composition to the subject, whereby the hollow particles are transferred to the cerebrospinal fluid, and the hollow particles are stably present in the cerebrospinal fluid for 60 minutes or more.
Method.
(10) The method according to (9) above.
A method, wherein the step of administration is a step of administering the composition to cerebrospinal fluid.
(11) A method for producing a composition containing hollow particles having a particle size of 80 nm to 200 nm.
To prepare hollow particles with an average particle size of 80 nm or more measured by the dynamic light scattering method.
Including adjusting the stiffness of the hollow particles to make the stiffness 10 pN / nm to 35 pN / nm or 35 pN / nm to 50 pN / nm.
Here, the method, wherein the polydispersity index (PDI) of the hollow particles is less than 0.2.
(12) A method for adjusting the permeability of hollow particles having a particle size of 80 nm to 200 nm to a glial limit film.
A method comprising adjusting the stiffness of the hollow particles.
(13) A method for adjusting the permeability of hollow particles having a particle size of 80 nm to 200 nm to a glial limit film.
A method comprising adjusting the stiffness of the hollow particles to make the stiffness 35 pN / nm to 50 pN / nm.
(14) A method for adjusting the permeability of hollow particles having a particle size of 80 nm to 120 nm to a glial limit film.
A method comprising adjusting the stiffness of the hollow particles to make the stiffness 10 pN / nm to 35 pN / nm.
図1は、マウスに投与した粒径30nmのグルコース修飾率25%のポリイオンコンプレックス型ミセル(PIC/m)と粒径100nmのグルコース修飾率0%、25%、50%および100%のポリイオンコンプレックス型ポリマーソーム(PIC/some)の脳組織内での蓄積量を示す。FIG. 1 shows a polyion complex type micelle (PIC / m) having a particle size of 30 nm and a glucose modification rate of 25% and a glucose modification rate of 0%, 25%, 50% and 100% having a particle size of 100 nm administered to mice. The amount of polymersome (PIC / some) accumulated in the brain tissue is shown. 図2は、Cy5標識した25%Gluc-PIC/some (100nm)とDylight488標識した25%Gluc-PIC/m (30nm)の混合物を腹腔内投与したマウスの脳組織におけるインビボイメージング画像である。FIG. 2 is an in vivo imaging image of a mouse brain tissue intraperitoneally administered with a mixture of Cy5-labeled 25% Gluc-PIC / some (100 nm) and Dlyght488-labeled 25% Gluc-PIC / m (30 nm). 図3は、β-ガラクトシダーゼを内包した25%Gluc-PIC/some(100nm)を腹腔内投与したマウスに対して、その基質フルオレセイン ジ(β-D-ガラクトピラノシド)を脳脊髄液内投与し、脳組織をインビボイメージングした結果を示す。パネル(a)は、β-ガラクトシダーゼを内包した25%Gluc-PIC/some(100nm)投与群の結果であり、パネル(b)は、遊離β-ガラクトシダーゼ投与群(陰性対照)の結果である。FIG. 3 shows mice intraperitoneally administered 25% Gluc-PIC / some (100 nm) containing β-galactosidase, and the substrate fluorescein di (β-D-galactopyranoside) was intracerebrospinal fluidly administered. The results of in vivo imaging of brain tissue are shown. Panel (a) is the result of the 25% Gluc-PIC / some (100 nm) administration group containing β-galactosidase, and panel (b) is the result of the free β-galactosidase administration group (negative control). 図4は、PIC/someの合成を原子間力顕微鏡のカンチレバーを用いて測定した結果を示す。FIG. 4 shows the results of measuring the synthesis of PIC / some using a cantilever of an atomic force microscope. 図5は、粒径100nmのPIC/someの剛性と血中半減期との関係を示す図である。FIG. 5 is a diagram showing the relationship between the rigidity of PIC / some having a particle size of 100 nm and the half-life in blood. 図6は、マウスに腹腔内投与された様々な剛性を有する粒径100nmのPIC/someの脳組織内での分布を示す。FIG. 6 shows the distribution of PIC / some having a particle size of 100 nm and having various rigidity administered intraperitoneally to mice in the brain tissue. 図7は、本発明の概要を示す。FIG. 7 shows an outline of the present invention. 図8は、マウスに投与した粒径30nmのグルコース修飾率25%のポリイオンコンプレックス型ミセル(PIC/m)と粒径100nmのグルコース修飾率0%、25%、50%および100%のポリイオンコンプレックス型ポリマーソーム(PIC/some)の脳組織内での蓄積量(左)と、Cy5標識した25%Gluc-PIC/some (100nm)とDylight488標識した25%Gluc-PIC/m (30nm)の混合物を腹腔内投与したマウスの脳組織におけるインビボイメージング画像(右)を示す。FIG. 8 shows a polyion complex type micelle (PIC / m) having a particle size of 30 nm and a glucose modification rate of 25% and a glucose modification rate of 0%, 25%, 50% and 100% having a particle size of 100 nm administered to mice. A mixture of polymersomes (PIC / some) accumulated in brain tissue (left) and Cy5-labeled 25% Gluc-PIC / some (100 nm) and In vivo-labeled 25% Gluc-PIC / m (30 nm). An in vivo imaging image (right) of intraperitoneally administered mouse brain tissue is shown. 図9は、脳組織における血管から脳実質までの組織構造の模式図と、大きさの異なる粒子の局在の相違をもたらす原因の考察を示す。FIG. 9 shows a schematic diagram of the tissue structure from blood vessels to the brain parenchyma in the brain tissue, and a consideration of the causes causing the difference in the localization of particles of different sizes. 図10は、PIC/someの性質の概要を示す。FIG. 10 shows an outline of the properties of PIC / some. 図11は、AAV1ベクターを用いた酵素補充療法の臨床試験が開始されたことと、その代替としての本発明の中空粒子を用いた酵素補充療法(図中は例示としてアリルスルファターゼAを用いた)の説明を示す。FIG. 11 shows that a clinical trial of enzyme replacement therapy using an AAV1 vector has been started, and an alternative enzyme replacement therapy using the hollow particles of the present invention (allylsulfatase A was used as an example in the figure). The explanation of is shown. 図12は、本発明の中空粒子(第二実施形態)を用いた酵素補充療法の原理権証のスキームを示す。FIG. 12 shows a scheme of proof of principle of enzyme replacement therapy using hollow particles (second embodiment) of the present invention. 図13は、β-ガラクトシダーゼを内包した25%Gluc-PIC/some(100nm)を腹腔内投与したマウスに対して、その基質フルオレセイン ジ(β-D-ガラクトピラノシド)を脳脊髄液内投与し、脳組織をインビボイメージングした結果を示す。上パネルは、β-ガラクトシダーゼを内包した25%Gluc-PIC/some(100nm)投与群の結果であり、下パネルは、遊離β-ガラクトシダーゼ投与群(陰性対照)の結果である。FIG. 13 shows that the substrate fluorescein di (β-D-galactopyranoside) was intraperitoneally administered to mice intraperitoneally administered with 25% Gluc-PIC / some (100 nm) containing β-galactosidase. The results of in vivo imaging of brain tissue are shown. The upper panel is the result of the 25% Gluc-PIC / some (100 nm) administration group containing β-galactosidase, and the lower panel is the result of the free β-galactosidase administration group (negative control).
発明の具体的な説明Specific description of the invention
 本明細書では、「対象」とは、哺乳動物であり、特にヒト、サル等の霊長類、マウス、ラット、ウサギ、モルモット等のげっ歯類、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレット等が挙げられる。 As used herein, the term "subject" refers to mammals, especially primates such as humans and monkeys, rodents such as mice, rats, rabbits and guinea pigs, cats, dogs, sheep, pigs, cows and horses. Examples include donkeys, goats, ferrets, etc.
 本明細書では、「ナノ粒子」とは、動的光散乱法によって測定される平均粒径(D50)が1000nm以下である粒子をいう。ナノ粒子には、中空のナノ粒子と非中空のナノ粒子とが存在する。中空のナノ粒子は、内部に空洞が存在し、空洞に溶液を内包することが可能な粒子をいう。「内包」とは、物質を内部に包み込むことを意味する。内包は、内包した溶液中の物質の粒子外への拡散速度を低下させ得る。内包は、体内では内包した物質を粒子外の免疫系から保護し得る。好ましくは、膜によって内部が空間的に外部から離されていることを意味する。但し、内包は、膜が物質透過性を有することを許容する。 In the present specification, the “nanoparticle” refers to a particle having an average particle size (D50) of 1000 nm or less as measured by a dynamic light scattering method. There are hollow nanoparticles and non-hollow nanoparticles in the nanoparticles. Hollow nanoparticles are particles that have cavities inside and can contain a solution in the cavities. "Internal capsule" means enclosing a substance inside. Encapsulation can reduce the rate of diffusion of substances in the encapsulated solution out of the particles. Encapsulation can protect the encapsulating substance in the body from the extraparticle immune system. Preferably, it means that the inside is spatially separated from the outside by the membrane. However, the inclusion allows the membrane to be material permeable.
 本明細書では、「中空粒子」とは、内部の水溶液とそれを覆う膜構造とを含む粒子形状の物体を意味する。中空粒子は、内部の水溶液に様々な物質を溶解または懸濁することによって、様々な物質を内包し得る。中空粒子に内包する物質としては、例えば、水溶性の化合物、生理活性物質(例えば、酵素、例えば、タンパク質性酵素)、造影剤が挙げられる。中空粒子としては、小胞、例えば、脂質小胞(例えば、リポソーム)が挙げられる。中空粒子としてはまた、PIC/someが挙げられる。本明細書では、「薬剤輸送粒子」とは、薬剤を内包した粒子であって、当該薬物の体内での輸送に適した粒子をいう。薬剤輸送粒子は、好ましくは、内部の空間に薬剤を含む水溶液を内包した中空粒子である。 In the present specification, the "hollow particle" means a particle-shaped object including an internal aqueous solution and a film structure covering the internal aqueous solution. Hollow particles can contain various substances by dissolving or suspending the various substances in the aqueous solution inside. Examples of the substance contained in the hollow particles include a water-soluble compound, a physiologically active substance (for example, an enzyme, for example, a proteinaceous enzyme), and a contrast medium. Hollow particles include vesicles, such as lipid vesicles (eg, liposomes). Hollow particles also include PIC / some. As used herein, the term "drug transport particles" refers to particles containing a drug and suitable for transporting the drug in the body. The drug transport particles are preferably hollow particles containing an aqueous solution containing a drug in the internal space.
 本明細書では、「ポリイオンコンプレックス」(以下、「PIC」ともいう)とは、PEGなどの非電荷親水性ポリマーブロックとアニオン性ブロックとの共重合体と、PEGなどの非電荷親水性ポリマーブロックとカチオン性ブロックとの共重合体とを水溶液中で荷電を中和するように混合すると両ブロック共重合体のカチオン性ブロックとアニオン性ブロックとの間で形成されるイオン層である。PEGと上記の荷電性連鎖とを結合させる意義は、ポリイオンコンプレックスが凝集して沈殿することを抑制すること、および、それにより、ポリイオンコンプレックスが粒径数十nmの単分散なコア-シェル構造を有するナノ微粒子を形成することである。この際、PEGなどの非電荷親水性ポリマーブロックはナノ微粒子の外殻(シェル)を覆うため、生体適合性が高く、血中滞留時間を向上させる点で都合がよいことでも知られている。また、ポリイオンコンプレックス形成において、一方の荷電性ブロックコポリマーは、PEGなどの非電荷親水性ポリマーブロック部分を必要とせず、ホモポリマー、界面活性剤、核酸および/または酵素に置き換えてもよいことが明らかとなっている。そして、ポリイオンコンプレックス形成においては、アニオン性ポリマーおよびカチオン性ポリマーの少なくとも1つがPEGなどの非電荷親水性ポリマーブロックとの共重合体を形成しており、その両方がPEGなどの非電荷親水性ポリマーブロックとの共重合体を形成していてもよい。また、PEGなどの非電荷親水性ポリマーブロック含有量を増加させるとPICミセルが形成されやすいことが知られ、PEGなどの非電荷親水性ポリマーブロック含有量を低減させる、または共重合体濃度を増加させると粒径80nm~1,000nm程度(特に、100nm~1,000nm程度)の平均粒径を有する中空の粒子であるポリイオンコンプレックス型ポリマーソーム(PIC/some)が形成されやすいことが知られている。PIC/someは、PICにより形成される膜構造と内部の空洞を有する中空の粒子であるため、内部の空洞に水溶液(例えば、生理活性物質や造影剤等の物質を含む水溶液)を内包させることができる。PIC/someは、イオン性相互作用により形成される粒子であり、イオンや小分子(脂質やアミノ酸)、および水に対して透過性を有する(図10参照)。 In the present specification, the "polyion complex" (hereinafter, also referred to as "PIC") is a copolymer of a non-charged hydrophilic polymer block such as PEG and an anionic block, and a non-charged hydrophilic polymer block such as PEG. It is an ionic layer formed between the cationic block and the anionic block of both block copolymers when the copolymer of the copolymer and the cationic block is mixed in an aqueous solution so as to neutralize the charge. The significance of binding PEG to the above-mentioned charged chain is to prevent the polyion complex from aggregating and precipitating, thereby forming a monodisperse core-shell structure with a particle size of several tens of nm. It is to form the nanoparticles to have. At this time, since the uncharged hydrophilic polymer block such as PEG covers the outer shell (shell) of the nanoparticles, it is also known to be highly biocompatible and convenient in improving the retention time in blood. It is also clear that in polyion complex formation, one charged block copolymer does not require a non-charged hydrophilic polymer block moiety such as PEG and may be replaced with homopolymers, detergents, nucleic acids and / or enzymes. It has become. Then, in the formation of the polyion complex, at least one of the anionic polymer and the cationic polymer forms a copolymer with a non-charged hydrophilic polymer block such as PEG, and both of them form a non-charged hydrophilic polymer such as PEG. A copolymer with the block may be formed. Further, it is known that PIC micelles are likely to be formed by increasing the content of the uncharged hydrophilic polymer block such as PEG, and the content of the uncharged hydrophilic polymer block such as PEG is decreased or the copolymer concentration is increased. It is known that polyion complex type polymersomes (PIC / some), which are hollow particles having an average particle size of about 80 nm to 1,000 nm (particularly about 100 nm to 1,000 nm), are likely to be formed. There is. Since PIC / some is a hollow particle having a film structure formed by PIC and an internal cavity, an aqueous solution (for example, an aqueous solution containing a substance such as a physiologically active substance or a contrast agent) is contained in the internal cavity. Can be done. PIC / some are particles formed by ionic interactions and are permeable to ions, small molecules (lipids and amino acids), and water (see FIG. 10).
 本明細書では、「動的光散乱法で測定される平均粒径」とは、個数基準による粒子径分布の積算分布曲線の50%積算値を示す粒子径であるメジアン径(D50)による。 In the present specification, the "average particle size measured by the dynamic light scattering method" is based on the median diameter (D50), which is a particle size indicating a 50% integrated value of the integrated distribution curve of the particle size distribution based on the number.
 本明細書では、「多分散性指数」(PDI)とは、粒子径分布の広がりを示す無次元の指数である。PDIは、0以上1以下の数値であり、数値が小さいほど、測定した粒子の粒径が均質であることを示す。PDIが0.3以下、0.2以下、または0.1以下の場合、粒子の粒径の均質性が高いために、それぞれの粒子の体内動態が均質となることが予想される。それ故に、PDIが0.3以下、0.2以下、または0.1以下の場合、その均質な粒子の特性を目的に適したものに調整することの重要性が高まる。 In the present specification, the "multidispersity index" (PDI) is a dimensionless index indicating the spread of particle size distribution. The PDI is a numerical value of 0 or more and 1 or less, and the smaller the numerical value, the more uniform the particle size of the measured particles. When the PDI is 0.3 or less, 0.2 or less, or 0.1 or less, it is expected that the pharmacokinetics of each particle becomes homogeneous due to the high homogeneity of the particle size of the particles. Therefore, when the PDI is 0.3 or less, 0.2 or less, or 0.1 or less, it becomes more important to adjust the characteristics of the homogeneous particles to those suitable for the purpose.
 本明細書では、「剛性」とは、変形の変位(nm)を生じさせるために必要な力(pN)である。ナノ粒子の剛性は、例えば、原子間力顕微鏡のカンチレバーを用いて測定することができる。カンチレバーを用いて固相平面上の粒子を上記平面に押しつけるように力を加え、粒子の変形の変位とそのときの力を測定して、弾性を求めることができる。 In the present specification, "rigidity" is a force (pN) required to generate a deformation displacement (nm). The rigidity of the nanoparticles can be measured, for example, using a cantilever of an atomic force microscope. The elasticity can be obtained by applying a force so as to press the particles on the solid phase plane against the plane using a cantilever and measuring the displacement of the deformation of the particles and the force at that time.
 本明細書では、「低級アルキル」および「低級アルキレン」はそれぞれ、C1-6アルキルおよびC1-6アルキレンを意味する。低級は、C1-2、C1-3、C1-4、またはC1-5を意味し得る。 As used herein, "lower alkyl" and "lower alkylene" mean C 1-6 alkyl and C 1-6 alkylene, respectively. Lower can mean C 1-2 , C 1-3 , C 1-4 , or C 1-5 .
 図9に示されるように、脳の血管から脳の実質への物質の輸送において重要な構造として、脳の血管、脳血管内皮細胞(脳脊髄液関門、BCSFB)、脳脊髄液、グリア限界膜(境界膜)、および脳実質が存在している。脳血管内皮細胞とグリア限界膜とで脳血液関門(BBB)が構成されると考えられる。本発明者らは、脳血管内に存在する粒子は、初期の条件では、100nmの大きさを有する中空の粒子の場合には、脳血管内皮細胞を通過したとしても、グリア限界膜を通過せず、脳脊髄液に保持される。これに対して、小さなサイズ(例えば、30nm)の大きさを有するミセルは、脳血管内皮細胞を通過すると、グリア限界膜も通過して脳の実質に移行しやすいことを明らかにした。また、100nmのサイズを有する中空の粒子であっても、剛性によってグリア限界膜の通過性が変化することを本発明者らは見出した。すなわち、グリア限界膜を通過しないサイズの粒子(例えば、PIC/some)であっても、剛性が低くなるほどグリア限界膜を通過しやすくなることを明らかにした。 As shown in FIG. 9, the important structures in the transport of substances from the blood vessels of the brain to the parenchyma of the brain are the blood vessels of the brain, cerebrospinal fluid endothelial cells (cerebrospinal fluid barrier, BCSFB), cerebrospinal fluid, and glia limit membrane. (Boundary membrane), and brain parenchyma are present. It is considered that the blood-brain barrier (BBB) is composed of cerebrovascular endothelial cells and glial limit membrane. In the case of hollow particles having a size of 100 nm under the initial conditions, the particles existing in the cerebral blood vessels can pass through the glia limit membrane even if they pass through the cerebral vascular endothelial cells. It is retained in the cerebrospinal fluid. On the other hand, it was revealed that micelles having a small size (for example, 30 nm) easily pass through the glia limit membrane and migrate to the parenchyma of the brain when they pass through the cerebrovascular endothelial cells. Further, the present inventors have found that the passability of the glial limit film changes depending on the rigidity even for hollow particles having a size of 100 nm. That is, it was clarified that even particles having a size that does not pass through the glial limit film (for example, PIC / some) are more likely to pass through the glial limit film as the rigidity becomes lower.
第一実施形態の中空粒子を含む組成物
 本発明によれば、動的光散乱法で測定される平均粒径が80~120nmであり、多分散性指数(PDI)が0.2未満である中空粒子であって、表面の剛性が第一の所定の値である、中空粒子を含む、組成物が提供される。
Compositions Containing Hollow Particles of the First Embodiment According to the present invention, the average particle size measured by a dynamic light scattering method is 80 to 120 nm, and the polydispersity index (PDI) is less than 0.2. A composition comprising hollow particles, wherein the surface rigidity is the first predetermined value, is provided.
 本発明のある態様では、中空粒子は、中空の小胞であり得る。本発明のある態様では、中空粒子は、例えば、中空の脂質粒子であり得、例えば、リポソームであり得る。本発明のある態様では、中空粒子は、PIC/someであり得る。 In some aspects of the invention, the hollow particles can be hollow vesicles. In some aspects of the invention, the hollow particles can be, for example, hollow lipid particles, for example, liposomes. In some aspects of the invention, the hollow particles can be PIC / some.
 本発明のある態様では、粒子の平均粒径は、80~120nm、90~120nm、90~110nm、95~105nm、80~100nm、80~200nm、80~150nm、または100~120nmであり得る。PIC/someの粒径は、非電荷親水性ポリマーブロックの重合度ならびにカチオン性ポリマーおよびアニオン性ポリマーの濃度によって制御することができる。 In some aspects of the invention, the average particle size of the particles can be 80-120 nm, 90-120 nm, 90-110 nm, 95-105 nm, 80-100 nm, 80-200 nm, 80-150 nm, or 100-120 nm. The particle size of PIC / some can be controlled by the degree of polymerization of the uncharged hydrophilic polymer block and the concentration of cationic and anionic polymers.
 本発明のある態様では、粒子の多分散性指数(PDI)は、0.3以下、0.25以下、0.2以下、0.15以下、または0.1以下であり得る。本発明の好ましい態様では、粒子のPDIは、例えば、0.04~0.1、例えば、0.04~0.08であり得る。 In some aspects of the invention, the polydispersity index (PDI) of the particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less. In a preferred embodiment of the invention, the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08.
 本発明のある態様では、中空粒子は、表面の剛性が、第一の所定の値である。第一の所定の値は、10pN/nm~40pN/nmの範囲の値であり得る。たとえは、第一の所定の値は、例えば、15pN/nm~35pN/nmであり得る。第一の所定の値はまた、35pN/nm~45pN/nmであり得る。 In one aspect of the present invention, the surface rigidity of the hollow particles is the first predetermined value. The first predetermined value can be in the range of 10 pN / nm to 40 pN / nm. For example, the first predetermined value can be, for example, 15 pN / nm to 35 pN / nm. The first predetermined value can also be between 35 pN / nm and 45 pN / nm.
 第一実施形態の中空微粒子の表面の剛性が採りうる値の範囲の下限値は、例えば、10超pN/nm、15pN/nm、20pN/nm、25pN/nm、30pN/nm、35pN/nm、または40pN/nmであり得る。第一実施形態の中空微粒子の表面の剛性が採りうる値の範囲の上限値は、例えば、50pN/nm、45pN/nm、40pN/nm、35pN/nm、30pN/nm、25pN/nm、または20pN/nmであり得る。 The lower limit of the range of values that the surface rigidity of the hollow fine particles of the first embodiment can take is, for example, more than 10 pN / nm, 15 pN / nm, 20 pN / nm, 25 pN / nm, 30 pN / nm, 35 pN / nm. Or it can be 40 pN / nm. The upper limit of the range of values that the surface rigidity of the hollow fine particles of the first embodiment can take is, for example, 50 pN / nm, 45 pN / nm, 40 pN / nm, 35 pN / nm, 30 pN / nm, 25 pN / nm, or 20 pN. Can be / nm.
 ある好ましい態様では、中空の粒子は表面の剛性が10pN/nm以上35pN/nm以下であり得る。 In some preferred embodiments, the hollow particles may have a surface stiffness of 10 pN / nm or more and 35 pN / nm or less.
 第一実施形態の中空ナノ粒子を含む組成物は、内包した水溶液を脳実質に送達することに好ましく用いられ得る。 The composition containing the hollow nanoparticles of the first embodiment can be preferably used to deliver the encapsulated aqueous solution to the brain parenchyma.
第二実施形態の中空粒子を含む組成物
 本発明によれば、動的光散乱法で測定される平均粒径が80~200nmであり、多分散性指数(PDI)が0.2未満である中空粒子であって、表面の剛性が第二の所定の値である、中空粒子を含む、組成物が提供される。
Composition Containing Hollow Particles of Second Embodiment According to the present invention, the average particle size measured by a dynamic light scattering method is 80 to 200 nm, and the polydispersity index (PDI) is less than 0.2. A composition comprising hollow particles, wherein the surface rigidity is a second predetermined value, is provided.
 本発明のある態様では、中空粒子は、中空の小胞であり得る。本発明のある態様では、中空粒子は、例えば、中空の脂質粒子であり得、例えば、リポソームであり得る。本発明のある態様では、中空粒子は、PIC/someであり得る。 In some aspects of the invention, the hollow particles can be hollow vesicles. In some aspects of the invention, the hollow particles can be, for example, hollow lipid particles, for example, liposomes. In some aspects of the invention, the hollow particles can be PIC / some.
 本発明のある態様では、粒子の平均粒径は、80~200、80~150nm、80~120nm、90~120nm、90~110nm、95~105nm、80~100nm、または100~120nmであり得る。PIC/someの粒径は、非電荷親水性ポリマーブロックの重合度ならびにカチオン性ポリマーおよびアニオン性ポリマーの濃度によって制御することができる。 In some aspects of the invention, the average particle size of the particles can be 80-200, 80-150 nm, 80-120 nm, 90-120 nm, 90-110 nm, 95-105 nm, 80-100 nm, or 100-120 nm. The particle size of PIC / some can be controlled by the degree of polymerization of the uncharged hydrophilic polymer block and the concentration of cationic and anionic polymers.
 本発明のある態様では、粒子の多分散性指数(PDI)は、0.3以下、0.25以下、0.2以下、0.15以下、または0.1以下であり得る。本発明の好ましい態様では、粒子のPDIは、例えば、0.04~0.1、例えば、0.04~0.08であり得る。 In some aspects of the invention, the polydispersity index (PDI) of the particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less. In a preferred embodiment of the invention, the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08.
 本発明のある態様では、中空粒子は、表面の剛性が、第二の所定の値である。第二の所定の値は、30pN/nm~50pN/nmの範囲の値であり得る。たとえは、第二の所定の値は、例えば、30pN/nm~35pN/nmであり得る。第二の所定の値はまた、35pN/nm~45pN/nm、45pN/nm~50pN/nmであり得る。 In one aspect of the present invention, the surface rigidity of the hollow particles is a second predetermined value. The second predetermined value can be in the range of 30 pN / nm to 50 pN / nm. For example, the second predetermined value can be, for example, 30 pN / nm to 35 pN / nm. The second predetermined value can also be 35 pN / nm to 45 pN / nm, 45 pN / nm to 50 pN / nm.
 第二実施形態の中空微粒子の表面の剛性の下限値は、例えば、30pN/nm、35pN/nm、36pN/nm、37pN/nm、38pN/nm、39pN/nm、または40pN/nmであり得る。第二実施形態の中空微粒子の表面の剛性の上限値は、例えば、50pN/nm、45pN/nm、または40pN/nmであり得る。ある好ましい態様では、第二実施形態の中空微粒子の表面の剛性は、35pN/nm以上50pN/nm以下であり得る。 The lower limit of the surface rigidity of the hollow fine particles of the second embodiment can be, for example, 30 pN / nm, 35 pN / nm, 36 pN / nm, 37 pN / nm, 38 pN / nm, 39 pN / nm, or 40 pN / nm. The upper limit of the surface rigidity of the hollow fine particles of the second embodiment can be, for example, 50 pN / nm, 45 pN / nm, or 40 pN / nm. In one preferred embodiment, the surface stiffness of the hollow particles of the second embodiment can be 35 pN / nm or more and 50 pN / nm or less.
 第二実施形態の中空ナノ粒子を含む組成物は、内包した水溶液を脳脊髄液に送達することに好ましく用いられ得る。脳脊髄液に送達することによって、投与から一定時間後に脳脊髄液中で投与されたものの少なくとも一部は保持されることを意味する。一定時間は例えば、60分~90分間であり得る。 The composition containing the hollow nanoparticles of the second embodiment can be preferably used for delivering the encapsulated aqueous solution to the cerebrospinal fluid. By delivering to cerebrospinal fluid, it means that at least part of what was administered in cerebrospinal fluid some time after administration is retained. The fixed time can be, for example, 60 to 90 minutes.
 本明細書では、第一実施形態の中空粒子と、第二実施形態の中空粒子とを合わせて、本発明の中空粒子ということがある。 In the present specification, the hollow particles of the first embodiment and the hollow particles of the second embodiment may be collectively referred to as the hollow particles of the present invention.
本発明の中空粒子に内包される水溶液
 本発明の中空粒子は、内部に水溶液を含む。水溶液は、水と薬学的に許容可能な担体および/または賦形剤を含み得る。水溶液は、例えば、水、生理食塩水、および緩衝液であり得る。水溶液は、生理活性物質および造影剤からなる群から選択される物質(例えば、生体適合性物質)をさらに含んでいてもよい。生理活性物質としては、例えば、タンパク質、例えば、抗体(10~15nm程度)、その抗原結合性断片、成長因子、および酵素など、核酸、例えば、リボザイム、miRNAやnon-codingRNA阻害用核酸などが挙げられる。酵素としては、例えば、酵素補充療法で用いられる酵素、例えば、アリルスルファターゼ、イズロネート-2-スルファターゼ、α-ガラクトシダーゼ、アガルシダーゼアルファ、アガルシダーゼベータ、イミグルセラーゼ、タリグルセラーゼアルファ、ベラグルセラーゼアルファ、アルグルセラーゼ、セベリパーゼアルファ、ラロニダーゼ、イズルスルファーゼ、およびエロスルファーゼアルファが挙げられる。酵素補充療法に用いる場合には、本発明の中空粒子は、PIC/someであることが好ましい。PIC/someは、水や小分子に対する透過性を有するため、内部に酵素を内包しておくと、基質は膜を透過してPIC/some内部の酵素にアクセスでき、基質が返還されてPIC/some外に放出されることが期待できるからである。生理活性物質としてはまた、脳神経疾患治療薬が挙げられる。脳神経疾患治療薬としては、例えば、脳疾患、例えば、不安、うつ病、睡眠障害、アルツハイマー病、パーキンソン病および多発性硬化症の治療薬が挙げられる。アルツハイマー病治療薬としては、例えば、Aβ抗体がよく知られ、パーキンソン病治療薬としては、例えば、ドーパミン受容体アゴニストおよびL-ドーパがよく知られ、多発性硬化症治療薬としては、例えば、副腎ステロイド薬、インターフェロンβ(IFNβ)、および免疫抑制剤がよく知られ、これらの治療薬が本発明で用いられ得る。末梢神経疾患としては、末梢神経疾患治療薬に血液脳関門を通過させることで治療できる末梢神経疾患、例えば、ギランバレー症候群、フィッシャー症候群および慢性炎症性脱髄性多発ニューロパチーが挙げられる。造影剤としては、超音波、MRIおよびCT用造影剤、ならびに放射線同位元素などが挙げられる。生体適合性物質は、抗がん剤であってもよく、抗がん剤でないこともある。リボザイムとしては、ハンマーヘッド型、ヘアピン型、投げ縄型のリボザイムのいずれを用いてもよい。non-codingRNA、microRNA等を阻害する核酸として、miRNAスポンジ(Nature Methods 6,897-903(2009))、RNAデコイ(NAR 2009 Apr; 37(6):e43, NAR 2012 Apr;40(8):e58)を用いてもよい。生体適合性物質の分子量が、約5000Da以上、約6000Da以上、約7000Da以上、約8000Da以上、約9000Da以上、または約10000Da以上である場合、PIC/someに内包された当該生体適合性物質は、安定的にPIC/someの内部に留まり得る。中空粒子に安定に内包させるため必要に応じて嵩高い構造体を付加してもよい。
Aqueous solution contained in the hollow particles of the present invention The hollow particles of the present invention contain an aqueous solution inside. The aqueous solution may contain water and a pharmaceutically acceptable carrier and / or excipient. The aqueous solution can be, for example, water, saline, and a buffer. The aqueous solution may further contain a substance selected from the group consisting of bioactive substances and contrast agents (eg, biocompatible substances). Examples of the physiologically active substance include proteins such as antibodies (about 10 to 15 nm), antigen-binding fragments thereof, growth factors, enzymes and the like, and nucleic acids such as ribozymes, miRNA and non-coding RNA inhibitory nucleic acids. Be done. Enzymes include, for example, enzymes used in enzyme replacement therapy, such as arylsulfatase, islonate-2-sulfatase, α-galactosidase, agarsidase alpha, agarsidase beta, imiglucerase, taliglucerase alpha, velaglucerase alpha. , Alglucerase, Severipase Alpha, Laronidase, Izulfatase, and Erosulfase Alpha. When used for enzyme replacement therapy, the hollow particles of the present invention are preferably PIC / some. Since PIC / some has permeability to water and small molecules, if an enzyme is included inside, the substrate can permeate the membrane and access the enzyme inside PIC / some, and the substrate is returned to PIC / some. This is because it can be expected to be released to the outside of some. Physiologically active substances also include therapeutic agents for cranial nerve diseases. Drugs for treating neurological disorders include, for example, therapeutic agents for brain disorders such as anxiety, depression, sleep disorders, Alzheimer's disease, Parkinson's disease and multiple sclerosis. As a therapeutic agent for Alzheimer's disease, for example, Aβ antibody is well known, as a therapeutic agent for Parkinson's disease, for example, dopamine receptor agonist and L-dopa are well known, and as a therapeutic agent for multiple sclerosis, for example, adrenal gland. Steroids, interferon β (IFNβ), and immunosuppressants are well known and these therapeutic agents can be used in the present invention. Peripheral neuropathy includes peripheral neuropathy that can be treated by passing a therapeutic agent for peripheral neuropathy across the blood-brain barrier, such as Guillain-Barré syndrome, Miller syndrome and chronic inflammatory demyelinating multiple neuropathy. Examples of the contrast medium include ultrasonic waves, contrast media for MRI and CT, and radioisotopes. The biocompatible substance may be an anti-cancer agent and may not be an anti-cancer agent. As the ribozyme, any of a hammer head type, a hairpin type, and a lasso type ribozyme may be used. As nucleic acids that inhibit non-coding RNA, microRNA, etc., miRNA sponge (Nature Methods 6,897-903 (2009)), RNA decoy (NAR 2009 Apr; 37 (6): e43, NAR 2012 Appr; 40 (8) :. e58) may be used. When the molecular weight of the biocompatible substance is about 5000 Da or more, about 6000 Da or more, about 7000 Da or more, about 8000 Da or more, about 9000 Da or more, or about 10000 Da or more, the biocompatible substance contained in PIC / some is contained. It can stay inside the PIC / some stably. A bulky structure may be added as needed to stably enclose the hollow particles.
本発明の中空粒子の剛性
 本発明では、中空粒子の表面の剛性は、例えば、中空粒子の原料の種類、およびその架橋によって適宜調整することができる。例えば、PIC/someにおいては、PIC/someの原料としてのポリカチオンの重合度、ポリアニオンの重合度、非電荷親水性ポリマーブロックの重合度、およびこれらの分子間架橋の程度からなる群から選択される1以上を制御することによって、調整できる。例えば、ポリカチオンおよびポリアニオンの重合度を大きくすることによってPIC/someに剛性を与えることができる。非電荷親水性ポリマーブロックの重合度を大きくすることによって、PIC/someの剛性を低下させることができる。また、PIC/someを構成するイオン性高分子に分子間架橋を形成させることによってもPIC/someに剛性を与えることができる。このように、本発明では、中空粒子に剛性を与える様々な方法を用いて、粒子の剛性を制御することができる。PIC/someの膜は、水分に対して透過性を有するので、剛性を調整することに有利に用い得る。
Rigidity of Hollow Particles of the Present Invention In the present invention, the rigidity of the surface of the hollow particles can be appropriately adjusted by, for example, the type of the raw material of the hollow particles and the cross-linking thereof. For example, in PIC / some, it is selected from the group consisting of the degree of polymerization of polycation as a raw material of PIC / some, the degree of polymerization of polyanion, the degree of polymerization of uncharged hydrophilic polymer block, and the degree of intermolecular cross-linking thereof. It can be adjusted by controlling one or more. For example, the rigidity of PIC / some can be imparted by increasing the degree of polymerization of the polycation and the polyanion. By increasing the degree of polymerization of the uncharged hydrophilic polymer block, the rigidity of PIC / some can be reduced. In addition, rigidity can be imparted to the PIC / some by forming an intermolecular crosslink on the ionic polymer constituting the PIC / some. As described above, in the present invention, the rigidity of the particles can be controlled by using various methods for imparting the rigidity to the hollow particles. Since the PIC / some membrane is permeable to moisture, it can be advantageously used to adjust the rigidity.
本発明の中空粒子の調製
 PIC/someの原材料としては、例えば、非電荷親水性ポリマーブロックとポリカチオンブロックとを含む共重合体およびホモポリアニオンの組合せ、ならびに非電荷親水性ポリマーブロックとポリアニオンブロックとを含む共重合体およびホモポリカチオンの組合せが挙げられる。ここで、非電荷親水性ポリマーブロックは、非電荷であり、かつ親水性である単量体単位を含むポリマーであり得る。非電荷親水性ポリマーブロックとしては、例えば、ポリアルキレングリコール(例えば、ポリエチレングリコール)、およびポリオキサゾリン(例えば、ポリC1-4アルキルオキサゾリン、例えば、ポリ(2-エチル-2-オキサゾリン)、ポリ(2-イソプロピル-2-オキサゾリン)が挙げられる。非電荷親水性ポリマーブロックは、分子内に分岐を含んでいてもよいが、好ましくは分岐を含まなくてもよい。非電荷親水性ポリマーブロックは、例えば、数平均分子量1,000~15,000、例えば、2,000~12,000を有し得る。また、ポリカチオンブロックおよびポリアニオンブロックは、数平均重合度40~150、50~130、または60~100を有し得る。
Preparation of hollow particles of the present invention Examples of raw materials for PIC / some include a combination of a copolymer and a homopolyanion containing a non-charged hydrophilic polymer block and a polycation block, and a non-charged hydrophilic polymer block and a polyanion block. Examples thereof include a combination of a copolymer containing and a homopolycation. Here, the uncharged hydrophilic polymer block can be a polymer containing monomeric units that are both uncharged and hydrophilic. Non-charged hydrophilic polymer blocks include, for example, polyalkylene glycol (eg, polyethylene glycol), and polyoxazoline (eg, poly-C 1-4 alkyloxazoline, eg, poly (2-ethyl-2-oxazoline), poly (eg, poly). 2-Isopropyl-2-oxazoline). The uncharged hydrophilic polymer block may contain branches in the molecule, but preferably does not include branches. The uncharged hydrophilic polymer block may contain branches. For example, the number average molecular weight may be 1,000 to 15,000, for example, 2,000 to 12,000. Further, the polycation block and the polyanion block have a number average degree of polymerization of 40 to 150, 50 to 130, or. Can have 60-100.
 ポリカチオンブロックおよびホモポリカチオンとしては、非天然のポリカチオンおよび天然のポリカチオンが挙げられる。ポリカチオンブロックおよびホモポリカチオンとしてはまた、ポリリジン、およびポリオルニチンなどの天然カチオン性アミノ酸の重合体と、ポリペプチドを主鎖とし、-(NH-(CH-NHで表される基{ここで、pは2、3または4である}を側鎖として有する非天然カチオン性アミノ酸の重合体とが挙げられる。主鎖であるポリペプチドは、例えば、アスパラギン酸およびグルタミン酸からなる群から選択されるアミノ酸の重合体を主鎖とし、-(NH-(CH-NHで表される基{ここで、pは2、3または4である}を側鎖として有する非天然カチオン性アミノ酸の重合体が挙げられる。このような重合体は、当業者であれば、アスパラギン酸またはグルタミン酸をモノマー単位として含む重合体とジエチルトリアミン、トリエチルテトラアミンまたはテトラエチルペンタアミンを反応させることにより得ることができるであろう。 Examples of polycation blocks and homopolycations include non-natural polycations and natural polycations. The polycation block and homopolycation are also represented by-(NH- (CH 2 ) 2 ) p- NH 2 with a polymer of naturally cationic amino acids such as polylysine and polyornithine and a polypeptide as the main chain. Examples thereof include polymers of unnatural cationic amino acids having a group (where p is 2, 3 or 4) as a side chain. The main chain polypeptide has, for example, a polymer of amino acids selected from the group consisting of aspartic acid and glutamic acid as the main chain, and is a group represented by-(NH- (CH 2 ) 2 ) p- NH 2 { Here, a polymer of an unnatural cationic amino acid having (p is 2, 3 or 4) as a side chain can be mentioned. Those skilled in the art will be able to obtain such a polymer by reacting a polymer containing aspartic acid or glutamic acid as a monomer unit with diethyltriamine, triethyltetraamine or tetraethylpentamine.
 本発明の好ましい態様では、カチオン性ポリマーは、下記一般式(I):
Figure JPOXMLDOC01-appb-C000001
{式中、
 Rは、水素原子、低級アルキルオキシ基、もしくは置換されていてもよい直鎖もしくは分岐鎖のC1-12アルキル基であり得、またはポリエチレングリコールであり得、この場合、ポリエチレングリコールと隣り合うアミノ酸とはリンカーを介して結合してもよく、
 Rは、低級アルキレンであり、
 Rは、-(NH-(CH-NHまたは-NH-(CH-NHで表される基であり、pは、2、3または4であり、qは、2、3、4、または5であり、
 Rは、水素、保護基、疎水基、または重合性基であり、例えば、水素原子、アセチル基、トリフルオロアセチル基、アクリロイル基またはメタクリロイル基であり得、
 Xは、カチオン性アミノ酸であり、
 nは、2~5000のいずれかの整数であり、
 nは、0~5000のいずれかの整数であり、
 nは、0~5000のいずれかの整数であり、
 n-n-nは、0以上の整数であり、式中の各繰り返し単位は記載の都合上特定の順で示されているが、各繰り返し単位は順不同に存在することができ、各繰り返し単位はランダムに存在してもよく、また、各繰り返し単位は同一であっても異なっていてもよい}で表されるものとすることができる。
In a preferred embodiment of the present invention, the cationic polymer is composed of the following general formula (I):
Figure JPOXMLDOC01-appb-C000001
{In the formula,
R 1 can be a hydrogen atom, a lower alkyloxy group, or an optionally substituted linear or branched C 1-12 alkyl group, or polyethylene glycol, in this case adjacent to polyethylene glycol. Amino acids may be linked via a linker,
R 2 is a lower alkylene and
R 3 is a group represented by-(NH- (CH 2 ) 2 ) p- NH 2 or -NH- (CH 2 ) q- NH 2 , p is 2, 3 or 4, q Is 2, 3, 4, or 5
R 4 is hydrogen, a protecting group, a hydrophobic group or polymerizable group, for example, a hydrogen atom, an acetyl group, trifluoroacetyl group which may be an acryloyl group or a methacryloyl group,
X is a cationic amino acid and
n is an integer of 2 to 5000,
n 1 is an integer from 0 to 5000,
n 3 is an integer from 0 to 5000,
nn 1- n 3 is an integer of 0 or more, and each repeating unit in the formula is shown in a specific order for convenience of description, but each repeating unit can exist in random order, and each repeating unit can exist in any order. The repeating units may exist randomly, and each repeating unit may be the same or different}.
 上記式(I)において、保護基としては、C1-6アルキルカルボニル基が挙げられ、好ましくはアセチル基であり、疎水性基としては、ベンゼン、ナフタレン、アントラセン、ピレンおよびこれらの誘導体またはC1-6アルキル基が挙げられ、重合性基としては、メタクリロイル基およびアクリロイル基が挙げられる。これらの保護基、疎水性基および重合性基をブロックコポリマーに導入する方法は当業者に周知である。 In the formula (I), the protecting groups include C 1-6 alkylcarbonyl group, preferably an acetyl group, a hydrophobic group, a benzene, naphthalene, anthracene, pyrene and derivatives thereof, or C 1 -6 Alkyl group is mentioned, and the polymerizable group includes a methacryloyl group and an acetylloyl group. Methods of introducing these protecting, hydrophobic and polymerizable groups into block copolymers are well known to those of skill in the art.
 上記式(I)において、ポリエチレングリコール(PEG)は、平均重合度5~20000、好ましくは10~5000、より好ましくは40~500であるが、ブロックコポリマーとmRNAとのポリイオンコンプレックス形成が阻害されない限り特に限定されない。カチオン性ポリマーのPEGの末端は、水酸基、メトキシ基または保護基で保護されていてもよい。 In the above formula (I), polyethylene glycol (PEG) has an average degree of polymerization of 5 to 20000, preferably 10 to 5000, and more preferably 40 to 500, unless the formation of a polyion complex between the block copolymer and mRNA is inhibited. Not particularly limited. The PEG ends of the cationic polymer may be protected by hydroxyl groups, methoxy groups or protecting groups.
 上記式(I)において、リンカーは、例えば、-(CH)r-NH-{ここでrは、1~5のいずれかの整数である。}または-(CH)s-CO-{ここでsは、1~5のいずれかの整数である。}とすることができ、好ましくはペプチド結合により式(I)の隣り合うアミノ酸と結合することができる。また、リンカーは、好ましくは、PEGのメチレン側でPEGとPEGのO原子を介して結合していてもよい。 In the above formula (I), the linker is, for example, − (CH 2 ) r-NH- {where r is an integer of any one of 1 to 5. } Or-(CH 2 ) s-CO- {where s is an integer of any of 1-5. }, And preferably it can be bound to an adjacent amino acid of the formula (I) by a peptide bond. Further, the linker may preferably be bonded to PEG via the O atom of PEG on the methylene side of PEG.
 上記式(I)において、nは、0~5000のいずれかの整数であり、例えば、0~500のいずれかの整数であり、mは、0~5000のいずれかの整数であり、例えば、0~500のいずれかの整数であり、m+nは、2~5000のいずれかの整数であり、例えば、2~500のいずれかの整数である。 In the above formula (I), n is an integer of 0 to 5000, for example, an integer of 0 to 500, and m is an integer of 0 to 5000, for example. It is an integer of 0 to 500, and m + n is an integer of 2 to 5000, for example, an integer of 2 to 500.
 本発明のある態様では、カチオン性ポリマーとして、後述する式(II)~(V)のいずれかに定義された化合物を用いることができる。 In one aspect of the present invention, as the cationic polymer, a compound defined by any of the formulas (II) to (V) described later can be used.
 本発明のある態様では、カチオン性ポリマーは、PEG-リンカー-ポリカチオンブロックのブロック共重合体をカチオン性ポリマー{ここで、PEG、リンカーおよびポリカチオンブロックは、上記で定義される通りである。}とすることができる。本発明のある態様では、カチオン性ポリマーは、ホモポリカチオンであってもよい。 In some aspects of the invention, the cationic polymer is a block copolymer of a PEG-linker-polycation block {where the PEG, linker and polycation block are as defined above. } Can be. In some aspects of the invention, the cationic polymer may be a homopolycation.
 本発明のある態様では、アニオン性ポリマーブロックおよびアニオン性ポリマーは、天然または非天然のアミノ酸がペプチド結合により形成する重合体であり得る。アニオン性ポリマーブロックおよびアニオン性ポリマーとしては、例えば、ポリグルタミン酸、およびポリアスパラギン酸が挙げられる。 In some aspects of the invention, the anionic polymer block and the anionic polymer can be polymers formed by peptide bonds of natural or unnatural amino acids. Anionic polymer blocks and anionic polymers include, for example, polyglutamic acid and polyaspartic acid.
 本発明のある態様では、アニオン性ポリマーとして、後述する式(VI)~(IX)のいずれかに定義された化合物を用いることができる。 In one aspect of the present invention, as the anionic polymer, a compound defined by any of the formulas (VI) to (IX) described later can be used.
 中空小胞が、脂質粒子である場合、脂質としては、例えば、リン脂質を用いることができる。リン脂質としては、例えば、ホスファチジルコリン(例えば、ジオレオイルホスファチジルコリン、ジラウロイルホスファチジルコリン、ジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリン等)、ホスファチジルグリセロール(例えば、ジオレオイルホスファチジルグリセロール、ジラウロイルホスファチジルグリセロール、ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファチジルグリセロール、ジステアロイルホスファチジグリセロール等)、ホスファチジルエタノールアミン(例えば、ジオレイルホスファチジルエタノールアミン、ジラウロイルホスファチジルエタノールアミン、ジミリストイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミン、ジステアロイルホスファチジエタノールアミン等)、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジン酸、カルジオリピン、スフィンゴミエリン、セラミドホスホリルエタノールアミン、セラミドホスホリルグリセロール、セラミドホスホリルグリセロールホスファート、1、2-ジミリストイル-1、2-デオキシホスファチジルコリン、プラスマロゲン、卵黄レシチン、大豆レシチン、およびこれらの水素添加物等が挙げられる。 When the hollow vesicles are lipid particles, for example, phospholipids can be used as the lipids. Examples of phospholipids include phosphatidylcholine (for example, dioleoil phosphatidylcholine, dilauroylphosphatidylcholine, dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, etc.), phosphatidylglycerol (eg, dioleoil phosphatidylglycerol, dilauroylphosphatidylglycerol, etc.). Dipalmitoylphosphatidylglycerol, dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol, etc.), phosphatidylethanolamine (eg, diolaylphosphatidylethanolamine, dilauroylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine) Stearoyl phosphatidylethanolamine, etc.), phosphatidylserine, phosphatidylinositol, phosphatidylic acid, cardiolipin, sphingomyelin, ceramide phosphorylethanolamine, ceramidephosphorylglycerol, ceramidephosphorylglycerol phosphate, 1,2-dipalmitoyl-1,2-deoxyphosphatidylcholine, Examples thereof include plasmalogen, egg yolk lecithin, soy lecithin, and hydrogenated additives thereof.
 PIC/someは、水溶液中で、非電荷親水性ポリマーブロックとポリカチオンブロックとを含む共重合体およびホモポリアニオンの組合せを含む溶液、または非電荷親水性ポリマーブロックとポリアニオンブロックとを含む共重合体およびホモポリカチオンの組合せを含む溶液を混合することにより得られ得る。内包する水溶液に生体適合性物質を導入する場合には、上記で混合する溶液に当該生体適合性物質を含ませておけばよい。 PIC / some is a solution containing a combination of a copolymer containing a non-charged hydrophilic polymer block and a polycation block and a homopolyanion in an aqueous solution, or a copolymer containing a non-charged hydrophilic polymer block and a polyanion block. And can be obtained by mixing solutions containing a combination of homopolycations. When the biocompatible substance is introduced into the contained aqueous solution, the biocompatible substance may be contained in the solution to be mixed above.
 中空小胞において、分子間架橋を形成させる方法は、当業者に周知である。架橋は、小胞を形成させた後に行うことができ、例えば、架橋剤を用いて行うことができる。架橋剤は適宜選択して用いることができる。例えば、1-エチル-3-[3-ジメチルアミノプロピル]カルボジイミド塩酸塩(EDC)は、水溶性の架橋剤であり、分子間のカルボン酸基とアミノ基を架橋することができる。架橋は、架橋剤の添加量および架橋剤と中空小胞との反応時間によってその程度を制御することができる。 Methods of forming intermolecular crosslinks in hollow vesicles are well known to those skilled in the art. Cross-linking can be performed after the vesicles have been formed, for example, using a cross-linking agent. The cross-linking agent can be appropriately selected and used. For example, 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) is a water-soluble cross-linking agent capable of cross-linking intermolecular carboxylic acid groups and amino groups. The degree of cross-linking can be controlled by the amount of the cross-linking agent added and the reaction time between the cross-linking agent and the hollow vesicles.
本発明の中空粒子の修飾
 本発明の中空粒子は、その外表面を脳血管内皮細胞の表面に親和性を有する物質で被覆することができる。これによって、中空微粒子に脳への移行性を付与し得る。脳血管内皮細胞の表面に親和性を有する物質としては、例えば、脳血管内皮細胞の表面に発現する分子に結合する分子(例えば、抗体(例えば、トランスフェリンに結合する抗体)およびGLUT1リガンド)が挙げられる。GLUT1リガンドは、GLUT1に結合する分子である。GLUT1リガンドとしては、GLUT1に結合する様々な分子が挙げられ、例えば、グルコース、2-N-4-(1-アジ-2,2,2-トリフルオロエチル)ベンゾイル-1,3-ビス(D-マンノース-4-イルオキシ)-2-プロピルアミン(ATB-BMPA)、6-(N-(7-ニトロベンズ-2-オキサ-1,3-ジアゾール-4-イル)アミノ)-2-デオキシグルコース(6-NBDG)、4,6-O-エチリデン-α-D-グルコース、2-デオキシ-D-グルコースおよび3-O-メチルグルコースもGLUT1と結合する分子が挙げられる。GLUT1リガンドは、GLUT1によって認識できるように中空粒子表面に表出させることができる。例えば、グルコースは、2位、3位、または6位の炭素原子(および好ましくは当該炭素原子に結合したO原子)を介して中空粒子を構成するポリマー(特に非電荷親水性ポリマーブロックの先端、例えば、ポリエチレングリコールとO原子)に共有結合により連結させることによって、中空粒子を被覆することができ、当該被覆された粒子は、好ましくGLUT1によって認識されることができる。GLUT1による粒子の被覆は、その量が増加すると粒子が血管内皮細胞に留まる傾向が強まり、低下すると粒子が血管内皮細胞を通過して(transcytosis)脳の実質に到達する傾向が強まる。この観点から、GLUT1リガンドによる粒子の被覆の程度を調整することができる。粒子をグルコースで被覆する場合には、粒子によるが、例えば、小胞を構成するポリマーまたは高分子の10~40モル%(例えば、15~35モル%、例えば、20~30モル%)にグルコースを連結(導入)することができる。
Modification of Hollow Particles of the Present Invention The hollow particles of the present invention can be coated with a substance having an affinity for the surface of cerebrovascular endothelial cells. Thereby, the hollow fine particles can be imparted with transferability to the brain. Examples of substances having an affinity for the surface of cerebral vascular endothelial cells include molecules that bind to molecules expressed on the surface of cerebral vascular endothelial cells (for example, antibodies (for example, antibodies that bind to transferrin) and GLUT1 ligands). Be done. The GLUT1 ligand is a molecule that binds to GLUT1. GLUT1 ligands include various molecules that bind to GLUT1, such as glucose, 2-N-4- (1-azi-2,2,2-trifluoroethyl) benzoyl-1,3-bis (D). -Mannose-4-yloxy) -2-propylamine (ATB-BMPA), 6- (N- (7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino) -2-deoxyglucose ( 6-NBDG), 4,6-O-ethylidene-α-D-glucose, 2-deoxy-D-glucose and 3-O-methylglucose also include molecules that bind to GLUT1. The GLUT1 ligand can be exposed on the surface of hollow particles so that it can be recognized by GLUT1. For example, glucose is a polymer (particularly the tip of an uncharged hydrophilic polymer block) that constitutes hollow particles via carbon atoms at the 2-, 3-, or 6-position (and preferably O atoms bonded to the carbon atom). Hollow particles can be coated, for example, by covalently linking to polyethylene glycol (O atom), and the coated particles can be preferably recognized by GLUT1. The coating of particles with GLUT1 increases the tendency of the particles to stay in the vascular endothelial cells as the amount increases, and increases the tendency of the particles to pass through the vascular endothelial cells (transitosis) and reach the parenchyma of the brain when the amount decreases. From this point of view, the degree of coating of the particles with the GLUT1 ligand can be adjusted. When the particles are coated with glucose, depending on the particles, for example, 10 to 40 mol% (for example, 15 to 35 mol%, for example, 20 to 30 mol%) of the polymer or polymer constituting the vesicle is glucose. Can be connected (introduced).
本発明の中空粒子の投与法
 本発明の中空粒子を含む組成物は、対象の脳脊髄液中に投与することができる。このようにすることによって、本発明の第一実施形態の中空粒子を脳実質に移行させることができ、第二実施形態の中空粒子を脳脊髄液中に留まらせることができる。脳実質に移行させるか、脳脊髄液中に留まらせるかは、そのときの目的に応じて適宜選択することでよい。この投与方法においては、本発明の中空粒子は、脳血管内皮細胞の表面に親和性を有する分子を有している必要は無い。
Method of Administration of Hollow Particles of the Present Invention The composition containing the hollow particles of the present invention can be administered into the cerebrospinal fluid of the subject. By doing so, the hollow particles of the first embodiment of the present invention can be transferred to the brain parenchyma, and the hollow particles of the second embodiment can be retained in the cerebrospinal fluid. Whether to transfer to the brain parenchyma or to stay in the cerebrospinal fluid may be appropriately selected according to the purpose at that time. In this administration method, the hollow particles of the present invention do not need to have a molecule having an affinity for the surface of cerebrovascular endothelial cells.
 本発明の中空粒子を含む組成物は、対象に非経口投与することができる。非経口投与としては、例えば、静脈内投与、および腹腔内投与が挙げられる。この投与方法においては、本発明の中空粒子は、脳血管内皮細胞の表面に親和性を有する分子を有していることが好ましく、GLUT1リガンドをGLUT1により認識可能なように表出させることが特に好ましい。 The composition containing the hollow particles of the present invention can be orally administered to a subject. Parenteral administration includes, for example, intravenous administration and intraperitoneal administration. In this administration method, the hollow particles of the present invention preferably have a molecule having an affinity for the surface of cerebrovascular endothelial cells, and it is particularly preferable to express the GLUT1 ligand so as to be recognizable by GLUT1. preferable.
 GLUT1リガンドを表出するナノ粒子は、本発明の投与計画によって投与することによって、より脳への移行率を高めることができる。具体的には、本発明の投与計画は、絶食させるか、または血糖を低下させた対象に該組成物を投与することおよび該対象において血糖値の上昇を誘発させることを含む。この方法は、引用することによりその全体が本明細書に組込まれるWO2015/075942Aに詳述されている通りである。本発明による投与計画では、該組成物は、該対象における血糖値の上昇の誘発と、同時に、連続してまたは逐次的に該対象に投与され得る。投与計画は、該対象への組成物の投与と該対象における血糖値の上昇の誘発との間にインターバルを有してもよいし、有さなくてもよい。該組成物が該対象における血糖値の上昇の誘発と同時に投与される場合には、該組成物は、血糖値の上昇の誘発を引き起こす薬剤と混合した形態で該対象に投与してもよいし、該対象における血糖値の上昇の誘発を引き起こす薬剤とは別の形態で投与してもよい。また、該組成物は、該対象における血糖値の上昇の誘発と、連続してまたは逐次的に該対象に投与される場合には、該組成物は該対象における血糖値の上昇の誘発より前に該対象に投与してもよいし、後に投与してもよいが、好ましくは、該組成物は該対象における血糖値の上昇の誘発より前に該対象に投与することができる。該対象への該組成物の投与よりも先に該対象において血糖値の上昇を誘発させる場合には、該対象において血糖値の上昇を誘発させてから、1時間以内、45分以内、30分以内、15分以内または10分以内に該対象に該組成物を投与することが好ましい。また、該対象への該組成物の投与よりも後に該対象において血糖値の上昇を誘発させる場合には、該対象に該組成物を投与してから、6時間以内、4時間以内、2時間以内、1時間以内、45分以内、30分以内、15分以内または10分以内に該対象において血糖値の上昇を誘発させることが好ましい。上記の投与計画のサイクルは、2回以上行なってもよい。グルコース投与とサンプル投与の前後関係は、血液脳関門を通過させるタイミングにより決定することができる。 Nanoparticles expressing the GLUT1 ligand can further increase the transfer rate to the brain by administering the nanoparticles according to the administration plan of the present invention. Specifically, the dosing regimen of the invention comprises administering the composition to a fasted or hypoglycemic subject and inducing an increase in blood glucose levels in the subject. This method is as detailed in WO 2015/075942A, which is incorporated herein by reference in its entirety. In the dosing regimen according to the invention, the composition can be administered to the subject continuously or sequentially at the same time as inducing an increase in blood glucose level in the subject. The dosing regimen may or may not have an interval between administration of the composition to the subject and induction of elevated blood glucose levels in the subject. If the composition is administered simultaneously with the induction of an increase in blood glucose level in the subject, the composition may be administered to the subject in a mixed form with an agent that induces an increase in blood glucose level. , It may be administered in a form different from the drug that induces an increase in blood glucose level in the subject. Also, when the composition is administered to the subject continuously or sequentially, the composition is prior to the induction of an increase in blood glucose level in the subject. May be administered to the subject or later, but preferably the composition can be administered to the subject prior to inducing an increase in blood glucose level in the subject. When inducing an increase in blood glucose level in the subject prior to administration of the composition to the subject, within 1 hour, within 45 minutes, within 30 minutes after inducing the increase in blood glucose level in the subject. It is preferred to administer the composition to the subject within, within 15 minutes or within 10 minutes. In addition, when inducing an increase in blood glucose level in the subject after administration of the composition to the subject, within 6 hours, within 4 hours, or 2 hours after the administration of the composition to the subject. Within 1 hour, within 45 minutes, within 30 minutes, within 15 minutes or within 10 minutes, it is preferable to induce an increase in blood glucose level in the subject. The administration planning cycle described above may be performed more than once. The context of glucose administration and sample administration can be determined by the timing of crossing the blood-brain barrier.
 本明細書では、「低血糖を誘発させる」とは、対象において、その処置がされなければ示したはずの血糖よりも血糖値を低下させることをいう。低血糖を誘発させる方法としては、糖尿病薬の投与などが挙げられる。例えば、低血糖を誘発させる際に、低血糖を誘発させるという目的を達する限りにおいて、例えば、他の薬剤を摂取し、または水などの飲料を飲むことは許容される。低血糖を誘発させることは、血糖に実質的に影響しない他の処置を伴ってもよい。 In the present specification, "inducing hypoglycemia" means lowering the blood glucose level in the subject than the blood glucose that would have been indicated if the treatment was not performed. Examples of the method for inducing hypoglycemia include administration of a diabetic drug. For example, when inducing hypoglycemia, it is permissible to take, for example, other drugs or drink beverages such as water, as long as the purpose of inducing hypoglycemia is achieved. Inducing hypoglycemia may be accompanied by other treatments that have no substantial effect on blood glucose.
 本明細書では、「絶食させる」とは、対象に絶食、例えば、3時間以上、4時間以上、5時間以上、6時間以上、7時間以上、8時間以上、9時間以上、10時間以上、11時間以上、12時間以上、13時間以上、14時間以上、15時間以上、16時間以上、17時間以上、18時間以上、19時間以上、20時間以上、21時間以上、22時間以上、23時間以上、24時間以上、25時間以上、26時間以上、27時間以上、28時間以上、29時間以上、30時間以上、31時間以上、32時間以上、33時間以上、34時間以上、35時間以上、36時間以上、37時間以上、38時間以上、39時間以上、40時間以上、41時間以上、42時間以上、43時間以上、44時間以上、45時間以上、46時間以上、47時間以上または48時間以上の絶食をさせることを意味する。絶食により対象は低血糖を引き起こす。絶食期間は、対象の健康状態に鑑みて医師等により決定され、例えば、対象が空腹時血糖に達する時間以上の期間とすることが好ましい。絶食期間は、例えば、脳血管内皮細胞の血管内表面でのGLUT1の発現が増大する、またはプラトーに達する以上の時間としてもよい。絶食期間は、例えば、12時間以上、24時間以上または36時間以上である上記期間とすることができる。また、絶食は、血糖値やGLUT1の血管内表面での発現に実質的に影響しない他の処置を伴ってもよい。対象の血糖値を血糖の低い状態に維持する時間は、例えば、0時間以上、1時間以上、2時間以上、3時間以上、4時間以上、5時間以上、6時間以上、7時間以上、8時間以上、9時間以上、10時間以上、11時間以上、12時間以上、13時間以上、14時間以上、15時間以上、16時間以上、17時間以上、18時間以上、19時間以上、20時間以上、21時間以上、22時間以上、23時間以上、24時間以上、25時間以上、26時間以上、27時間以上、28時間以上、29時間以上、30時間以上、31時間以上、32時間以上、33時間以上、34時間以上、35時間以上、36時間以上、37時間以上、38時間以上、39時間以上、40時間以上、41時間以上、42時間以上、43時間以上、44時間以上、45時間以上、46時間以上、47時間以上、48時間以上とすることができる。その後、血糖値を上昇させることができる。本明細書では、「血糖を維持する」とは、対象において低血糖を維持するという目的を達する限りにおいて、例えば、他の薬剤を摂取し、または水などの飲料を飲むことは許される。低血糖を誘発させることは、血糖に実質的に影響しない他の処置を伴ってもよい。 In the present specification, "fasting" means fasting to a subject, for example, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, 8 hours or more, 9 hours or more, 10 hours or more. 11 hours or more, 12 hours or more, 13 hours or more, 14 hours or more, 15 hours or more, 16 hours or more, 17 hours or more, 18 hours or more, 19 hours or more, 20 hours or more, 21 hours or more, 22 hours or more, 23 hours 24 hours or more, 25 hours or more, 26 hours or more, 27 hours or more, 28 hours or more, 29 hours or more, 30 hours or more, 31 hours or more, 32 hours or more, 33 hours or more, 34 hours or more, 35 hours or more, 36 hours or more, 37 hours or more, 38 hours or more, 39 hours or more, 40 hours or more, 41 hours or more, 42 hours or more, 43 hours or more, 44 hours or more, 45 hours or more, 46 hours or more, 47 hours or more or 48 hours It means to fast as above. The subject causes hypoglycemia by fasting. The fasting period is determined by a doctor or the like in consideration of the health condition of the subject, and is preferably a period longer than the time when the subject reaches fasting blood glucose, for example. The fasting period may be, for example, longer than the expression of GLUT1 on the inner surface of blood vessels of cerebrovascular endothelial cells increases or reaches a plateau. The fasting period can be, for example, the above period of 12 hours or more, 24 hours or more, or 36 hours or more. Fasting may also be accompanied by other treatments that do not substantially affect blood glucose levels or expression of GLUT1 on the inner surface of blood vessels. The time for maintaining the blood glucose level of the subject in a low blood glucose state is, for example, 0 hours or more, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, 8 Hours or more, 9 hours or more, 10 hours or more, 11 hours or more, 12 hours or more, 13 hours or more, 14 hours or more, 15 hours or more, 16 hours or more, 17 hours or more, 18 hours or more, 19 hours or more, 20 hours or more , 21 hours or more, 22 hours or more, 23 hours or more, 24 hours or more, 25 hours or more, 26 hours or more, 27 hours or more, 28 hours or more, 29 hours or more, 30 hours or more, 31 hours or more, 32 hours or more, 33 Hours or more, 34 hours or more, 35 hours or more, 36 hours or more, 37 hours or more, 38 hours or more, 39 hours or more, 40 hours or more, 41 hours or more, 42 hours or more, 43 hours or more, 44 hours or more, 45 hours or more , 46 hours or more, 47 hours or more, 48 hours or more. After that, the blood sugar level can be raised. As used herein, "maintaining blood glucose" is permitted, for example, to take other agents or drink beverages such as water, as long as the subject achieves the purpose of maintaining hypoglycemia. Inducing hypoglycemia may be accompanied by other treatments that have no substantial effect on blood glucose.
 本明細書では、「血糖値の上昇を誘発させる」とは、低血糖を誘発させた対象、または、低血糖状態を維持させた対象において血糖値を上昇させることをいう。血糖値は、当業者に周知の様々な方法により上昇させることができるが、例えば、血糖値の上昇を誘発するものの投与、例えば、グルコース、フルクトース(果糖)、ガラクトースなどの血糖値の上昇を誘発する単糖の投与、マルトースなどの血糖値の上昇を誘発する多糖の投与、若しくは、デンプンなどの血糖値の上昇を誘発する炭水化物の摂取、または、食事により上昇させることができる。 In the present specification, "inducing an increase in blood glucose level" means increasing a blood glucose level in a subject who has induced hypoglycemia or a subject who has maintained a hypoglycemic state. Blood glucose levels can be elevated by a variety of methods well known to those skilled in the art, for example, administration of one that induces elevated blood glucose levels, eg, induction of elevated blood glucose levels such as glucose, fructose (fructose), galactose, etc. It can be increased by administration of monosaccharides, administration of polysaccharides such as maltose that induce an increase in blood glucose level, intake of carbohydrates that induce an increase in blood glucose level such as starch, or diet.
中空粒子のグリア限界膜の透過性を制御する方法
 本発明によれば、中空粒子のグリア限界膜に対する透過性を制御する方法が提供される。本発明によれば、粒径(平均粒径)と剛性を制御することによって、中空粒子は、グリア限界膜に対する透過性を変化させた。グリア限界膜に対する透過性は、外力による変形に抵抗性である(すなわち、剛性が高い)粒子では、粒径が大きくなるにしたがって低下するが、この透過性の低下は、粒子の剛性を低下させることによって抑制することができる。これによって、中空粒子に内包した水溶液(例えば、薬剤を含む水溶液)の脳内分布を制御することができる。
Method for Controlling Permeability of Hollow Particles to Glia Limit Film According to the present invention, there is provided a method for controlling the permeability of hollow particles to the glare limit film. According to the present invention, by controlling the particle size (average particle size) and the rigidity, the hollow particles changed the permeability to the glial limit film. The permeability to the glial limit film decreases as the particle size increases for particles that are resistant to deformation by external force (that is, high rigidity), but this decrease in permeability decreases the rigidity of the particles. It can be suppressed by this. Thereby, the distribution in the brain of the aqueous solution (for example, the aqueous solution containing a drug) contained in the hollow particles can be controlled.
 特に、80nm以上の粒径を有する硬い中空粒子は、グリア限界膜の透過性が低い。したがって、本発明によれば、80nm以上、90nm以上、または100nm以上の粒径を有する中空粒子のグリア限界膜に対する透過性を高める方法であって、当該中空粒子の剛性を調整して、剛性を第一の所定値以下とすることを含む、方法が提供される。この態様において、第一実施形態の中空粒子についての開示に基づいて中空粒子のグリア限界膜の透過性を高めることができる{例えば、第二の所定の値の剛性を有する中空粒子と比較して}。この態様において、前記剛性を10pN/nmを越える値とすることができる。このようにすることで、血中安定性を高めることができる。 In particular, hard hollow particles having a particle size of 80 nm or more have low permeability of the glial limit film. Therefore, according to the present invention, it is a method of increasing the permeability of hollow particles having a particle size of 80 nm or more, 90 nm or more, or 100 nm or more to the glial limit film, and the rigidity of the hollow particles is adjusted to increase the rigidity. A method is provided, including setting the value below the first predetermined value. In this embodiment, the permeability of the glial limit film of the hollow particles can be increased based on the disclosure of the hollow particles of the first embodiment {for example, as compared with the hollow particles having the rigidity of the second predetermined value. }. In this embodiment, the rigidity can be set to a value exceeding 10 pN / nm. By doing so, blood stability can be enhanced.
 また、本発明によれば、80nm以上、90nm以上、または100nm以上の粒径を有する中空粒子のグリア限界膜に対する透過性を低下させる方法であって、該中空粒子の剛性を調整して、剛性を第二の所定値以上とすることを含む、方法が提供される。この態様において、第二実施形態の中空粒子についての開示に基づいて中空粒子のグリア限界膜の透過性を低下させることができる{例えば、第一の所定の値の剛性を有する中空粒子と比較して}。 Further, according to the present invention, it is a method of reducing the permeability of hollow particles having a particle size of 80 nm or more, 90 nm or more, or 100 nm or more to a glial limit film, and the rigidity of the hollow particles is adjusted to increase the rigidity. Is provided, the method including setting the value to a second predetermined value or more. In this embodiment, the permeability of the glial limit film of the hollow particles can be reduced based on the disclosure of the hollow particles of the second embodiment {for example, as compared with the hollow particles having the rigidity of the first predetermined value. hand}.
 本発明によればまた、80nm~120nmの粒径を有する中空粒子を含む組成物を製造する方法であって、80nm以上の粒径を有する中空粒子を用意することと、当該中空粒子の剛性を調整して、剛性を第一の所定値以下とすることを含む方法が提供される。例えば、中空粒子のPDIは、0.3以下、0.25以下、0.2以下、0.15以下、または0.1以下であり得る。本発明の好ましい態様では、粒子のPDIは、例えば、0.04~0.1、例えば、0.04~0.08であり得る。この態様において、第一実施形態の中空粒子についての開示に基づいて第一実施形態の中空粒子の製造方法と同様に中空粒子を含む組成物を製造することができる。 According to the present invention, a method for producing a composition containing hollow particles having a particle size of 80 nm to 120 nm, in which hollow particles having a particle size of 80 nm or more are prepared and the rigidity of the hollow particles is determined. A method is provided that includes adjusting the stiffness to be less than or equal to the first predetermined value. For example, the PDI of hollow particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less. In a preferred embodiment of the invention, the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08. In this aspect, a composition containing hollow particles can be produced in the same manner as in the method for producing hollow particles of the first embodiment based on the disclosure of the hollow particles of the first embodiment.
 本発明によればまた、80nm~200nmの粒径を有する中空粒子を含む組成物を製造する方法であって、80nm以上の粒径を有する中空粒子を用意することと、当該中空粒子の剛性を調整して、剛性を第二の所定値以上とすることを含む方法が提供される。例えば、中空粒子のPDIは、0.3以下、0.25以下、0.2以下、0.15以下、または0.1以下であり得る。本発明の好ましい態様では、粒子のPDIは、例えば、0.04~0.1、例えば、0.04~0.08であり得る。この態様において、第二実施形態の中空粒子についての開示に基づいて第二実施形態の中空粒子の製造方法と同様に中空粒子を含む組成物を製造することができる。 According to the present invention, it is also a method for producing a composition containing hollow particles having a particle size of 80 nm to 200 nm, in which hollow particles having a particle size of 80 nm or more are prepared and the rigidity of the hollow particles is determined. A method is provided that includes adjusting the stiffness to a second predetermined value or higher. For example, the PDI of hollow particles can be 0.3 or less, 0.25 or less, 0.2 or less, 0.15 or less, or 0.1 or less. In a preferred embodiment of the invention, the PDI of the particles can be, for example, 0.04 to 0.1, for example 0.04 to 0.08. In this aspect, a composition containing hollow particles can be produced in the same manner as in the method for producing hollow particles of the second embodiment based on the disclosure of the hollow particles of the second embodiment.
 本発明によれば、中空小胞を対象に投与する方法であって、第一実施形態の中空粒子を含む組成物を提供することと、当該組成物を当該対象に投与することを含む、方法が提供される。この態様において、中空小胞は、例えば、生体適合性物質を含む水溶液を内包していてもよい。この態様において、中空小胞は、上記投与計画に従って投与してもよい。これにより、投与されて血管内に存在する中空小胞が血液脳関門を越えて脳実質に送達され得る。 According to the present invention, a method for administering a hollow vesicle to a subject, comprising providing a composition containing the hollow particles of the first embodiment and administering the composition to the subject. Is provided. In this embodiment, the hollow vesicles may contain, for example, an aqueous solution containing a biocompatible substance. In this embodiment, the hollow vesicles may be administered according to the above dosing regimen. This allows hollow vesicles that are administered and reside in blood vessels to cross the blood-brain barrier and be delivered to the brain parenchyma.
 本発明によれば、中空小胞を対象に投与する方法であって、第二実施形態の中空粒子を含む組成物を提供することと、当該組成物を当該対象に投与することを含む、方法が提供される。この態様において、中空小胞は、例えば、生体適合性物質を含む水溶液を内包していてもよい。
 この態様において、中空小胞は、上記投与計画に従わずに投与してもよい。上記投与計画に従わない場合、投与は、好ましくは脳脊髄液に対して行われ得る。
 また、上記態様において、中空小胞は、上記投与計画に従って投与してもよい。これにより、投与されて血管内に存在する中空小胞が血液脊髄液関門を越えて脳脊髄液に送達され得る。そして、脳脊髄液中で、例えば、60分間以上、70分間以上、80分間以上、または90分間以上留まり得る。
According to the present invention, a method for administering a hollow vesicle to a subject, comprising providing a composition containing the hollow particles of the second embodiment and administering the composition to the subject. Is provided. In this embodiment, the hollow vesicles may contain, for example, an aqueous solution containing a biocompatible substance.
In this embodiment, the hollow vesicles may be administered without following the above dosing regimen. If the dosing regimen is not followed, administration may preferably be directed to cerebrospinal fluid.
Further, in the above embodiment, the hollow vesicles may be administered according to the above administration plan. This allows hollow vesicles that are administered and are present in the blood vessels to be delivered to the cerebrospinal fluid across the blood-spinal fluid barrier. Then, it may stay in cerebrospinal fluid for, for example, 60 minutes or longer, 70 minutes or longer, 80 minutes or longer, or 90 minutes or longer.
 本発明によれば、対象にタンパク質、酵素、核酸、および水溶性薬剤からなる群から選択される生理活性物質を投与する方法であって、当該対象に、前記生理活性物質を含む第一実施形態の中空粒子または第二実施形態の中空粒子を投与することを含む方法が提供される。この態様では、前記生理活性物質を含む第一実施形態の中空粒子または第二実施形態の中空粒子は、本発明の投与計画に従って投与され得る。この方法によれば、第一実施形態の中空粒子は、脳実質に、第二実施形態の中空粒子は、脳脊髄液に、その少なくとも一部は集積する。 According to the present invention, a method of administering a physiologically active substance selected from the group consisting of a protein, an enzyme, a nucleic acid, and a water-soluble drug to a subject, the first embodiment containing the physiologically active substance in the subject. A method comprising administering the hollow particles of the above or the hollow particles of the second embodiment is provided. In this aspect, the hollow particles of the first embodiment or the hollow particles of the second embodiment containing the bioactive substance can be administered according to the administration plan of the present invention. According to this method, the hollow particles of the first embodiment accumulate in the brain parenchyma, and the hollow particles of the second embodiment accumulate in the cerebrospinal fluid at least in part.
 本発明によれば、以下の発明もまた提供され得る。
項目1:粒子サイズと弾性率(剛性)を制御して、グリア限界膜を通過する、薬剤輸送粒子を設定する方法。
According to the present invention, the following inventions may also be provided.
Item 1: A method of setting drug transport particles that pass through a glial limit membrane by controlling particle size and elastic modulus (rigidity).
項目2:粒子の表面にはGLUT-1リガンドは付加されている、上記項目1記載の方法。 Item 2: The method according to item 1 above, wherein the GLUT-1 ligand is added to the surface of the particles.
項目3:粒子が非イオン性の非荷電親水性セグメントと荷電性セグメントとを含むブロック共重合体で覆われた、上記項目1又2は記載の方法。 Item 3: The method according to Item 1 or 2, wherein the particles are covered with a block copolymer containing a nonionic uncharged hydrophilic segment and a charged segment.
項目4:弾性率が、ブロック共重合体間の架橋率を調節することによって制御される、上記項目3記載の方法。 Item 4: The method according to item 3 above, wherein the elastic modulus is controlled by adjusting the cross-linking rate between block copolymers.
項目5:非イオン性の非荷電親水性セグメントと、正イオンに荷電した荷電性セグメントとを有する第一のブロック共重合体と、非イオン性の非荷電親水性セグメントと、負イオンに荷電した荷電性セグメントとを有する第二のブロック共重合体とにより形成された膜を含む上記項目1又は2記載の方法。 Item 5: A first block copolymer having a nonionic uncharged hydrophilic segment, a positively charged charged segment, a nonionic uncharged hydrophilic segment, and a negative ion charged. The method according to item 1 or 2 above, which comprises a film formed by a second block copolymer having a charged segment.
項目6:非荷電親水性セグメントが、ポリエチレングリコールおよび/またはポリ(2-イソプ ロピル-2-オキサゾリン)である、上記項目2乃至5のいずれか記載の方法。 Item 6: The method according to any one of items 2 to 5 above, wherein the uncharged hydrophilic segment is polyethylene glycol and / or poly (2-isopropyr-2-oxazoline).
項目7:第一のブロック共重合体の荷電性セグメントが、式(II)で表される、上記項目5又は6記載の方法。
Figure JPOXMLDOC01-appb-I000002
(上記式中、
 Rが、-(CHNHまたは-CONH(CH-Xを表し、かつsが0~20であり、ここで、Xが、-NH、ピリジル基、モルホリル基、1-イミダゾリル基、ピペラジニル基、4-(C1-6アルキル)-ピペラジニル基、4-(アミノC1-6アルキル)-ピペラジニル基、ピロリジン-1-イル基、N-メチル-N-フェニルアミノ基、ピペリジニル基、ジイソプロピルアミノ基、ジメチルアミノ基、ジエチルアミノ基、-(CHNH、または-(NR(CHNHR10からなる群から選択される少なくとも一つのものであり、ここで、Rが水素原子またはメチル基を表し、R10が、水素原子、アセチル基、トリフルオロアセチル基、ベンジルオキシカルボニル基またはtert―ブトキシカルボニル基を表し、oが1~5であり、pが1~5であり、tが0~15であり、
 R2が、水素原子、アセチル基、トリフルオロアセチル基、アクリロイル基またはメタクリロイル基を表し、
 aが0~5,000であり、bが0~5,000であり、かつa+bが2~5,000である。)
Item 7: The method according to item 5 or 6 above, wherein the charged segment of the first block copolymer is represented by the formula (II).
Figure JPOXMLDOC01-appb-I000002
(In the above formula,
R 1 represents − (CH 2 ) 3 NH 2 or −CONH (CH 2 ) s − X, and s is 0 to 20, where X is −NH 2 , pyridyl group, morpholic group, 1-imidazolyl group, piperazinyl group, 4- (C 1-6 alkyl) -piperazinyl group, 4- (amino C 1-6 alkyl) -piperazinyl group, pyrrolidine-1-yl group, N-methyl-N-phenylamino At least one selected from the group consisting of group, piperidinyl group, diisopropylamino group, dimethylamino group, diethylamino group,-(CH 2 ) t NH 2 or-(NR 9 (CH 2 ) o ) p NHR 10 Where R 9 represents a hydrogen atom or a methyl group, R 10 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, a benzyloxycarbonyl group or a tert-butoxycarbonyl group, and o represents 1-5. , P is 1 to 5, t is 0 to 15, and
R2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
a is 0 to 5,000, b is 0 to 5,000, and a + b is 2 to 5,000. )
項目8:Rが-CONH(CH-NHを表し、かつsが2~5であり、
 Rが水素原子を表し、
 aが0~200であり、bが0~200であり、かつa+bが10~200である、上記項目7に記載の方法。
Item 8: R 1 represents -CONH (CH 2 ) S- NH 2 , and s is 2 to 5.
R 2 represents a hydrogen atom
The method according to item 7, wherein a is 0 to 200, b is 0 to 200, and a + b is 10 to 200.
項目9:前記第二のブロック共重合体の荷電性セグメントが、式(III)で表されるもので ある、上記項目5乃至8のいずれか記載の方法。
Figure JPOXMLDOC01-appb-I000003
(上記式中、
 Rが、水素原子、アセチル基、トリフルオロアセチル基、アクリロイル基またはメタクリロイル基を表し、
 Rがそれぞれ独立してメチレン基またはエチレン基を表し、
 cが0~5,000であり、dが0~5,000であり、かつc+dが2~5,000である。) 
Item 9: The method according to any one of items 5 to 8 above, wherein the charged segment of the second block copolymer is represented by the formula (III).
Figure JPOXMLDOC01-appb-I000003
(In the above formula,
R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
R 3 independently represents a methylene group or an ethylene group, respectively.
c is 0 to 5,000, d is 0 to 5,000, and c + d is 2 to 5,000. )
項目10: Rが水素原子を表し、
 Rがメチレン基を表し、
 cが0~200であり、dが0~200であり、かつc+dが10~200である、上記項目9記載の方法。 
Item 10: R 2 represents a hydrogen atom
R 3 represents a methylene group
9. The method according to item 9, wherein c is 0 to 200, d is 0 to 200, and c + d is 10 to 200.
項目11: 第一のブロック共重合体が、式(IV)で表されるものである、上記項目5記載の方法。
Figure JPOXMLDOC01-appb-I000004
(上記式中、
 Rが、-(CHNHまたは-CONH(CH-Xを表し、かつsが0~20であり、ここで、Xが、-NH、ピリジル基、モルホリル基、1-イミダゾリル基、ピペラジニル基、4-(C1-6アルキル)-ピペラジニル基、4-(アミノC1-6アルキル)-ピペラジニル基、ピロリジン-1-イル基、N-メチル-N-フェニルアミノ基、ピペリジニル基、ジイソプロピルアミノ基、ジメチルアミノ基、ジエチルアミノ基、-(CHNH、または-(NR(CHNHR10からなる群から選択される少なくとも一つのものであり、かつRが水素原子またはメチル基を表し、R10が、水素原子、アセチル基、トリフルオロアセチル基、ベンジルオキシカルボニル基またはtert―ブトキシカルボニル基を表し、oが1~5であり、pが1~5であり、tが0~15であり、
 Rが、水素原子、アセチル基、トリフルオロアセチル基、アクリロイル基またはメタクリロイル基を表し、
 Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖のC1-12アルキル基を表し、
 Rが-(CHNH-を表し、かつgが0~5であり、
 aが0~5,000であり、bが0~5,000であり、かつa+bが2~5,000であり、
 eが5~2,500である。) 
Item 11: The method according to item 5 above, wherein the first block copolymer is represented by the formula (IV).
Figure JPOXMLDOC01-appb-I000004
(In the above formula,
R 1 represents − (CH 2 ) 3 NH 2 or −CONH (CH 2 ) s − X, and s is 0 to 20, where X is −NH 2 , pyridyl group, morpholic group, 1-imidazolyl group, piperazinyl group, 4- (C 1-6 alkyl) -piperazinyl group, 4- (amino C 1-6 alkyl) -piperazinyl group, pyrrolidine-1-yl group, N-methyl-N-phenylamino At least one selected from the group consisting of group, piperidinyl group, diisopropylamino group, dimethylamino group, diethylamino group,-(CH 2 ) t NH 2 or-(NR 9 (CH 2 ) o ) p NHR 10 And R 9 represents a hydrogen atom or a methyl group, R 10 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, a benzyloxycarbonyl group or a tert-butoxycarbonyl group, and o is 1-5. , P is 1-5, t is 0-15,
R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
R 4 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
R 5 represents − (CH 2 ) g NH-, and g is 0 to 5.
a is 0 to 5,000, b is 0 to 5,000, and a + b is 2 to 5,000.
e is 5 to 2,500. )
項目12:Rが-CONH(CH-NHを表し、かつsが2~5であり、
 Rが水素原子を表し、
 Rがメチル基を表し、
 aが0~200であり、bが0~200であり、かつa+bが10~200であり、
 eが10~300である、上記項目11記載の方法。
Item 12: R 1 represents -CONH (CH 2 ) S- NH 2 , and s is 2 to 5.
R 2 represents a hydrogen atom
R 4 represents a methyl group
a is 0 to 200, b is 0 to 200, and a + b is 10 to 200.
The method according to item 11, wherein e is 10 to 300.
項目13: 第一のブロック共重合体が、式(V)で表されるものである、上記項目5に記載の方法。
Figure JPOXMLDOC01-appb-I000005
(上記式中、
 Rが、-(CHNHまたは-CONH(CH-Xを表し、かつsが0~20であり、ここで、Xが-NH、ピリジル基、モルホリル基、1-イミダゾリル基、ピペラジニル基、4-(C1-6アルキル)-ピペラジニル基、4-(アミノC1-6アルキル)-ピペラジニル基、ピロリジン-1-イル基、N-メチル-N-フェニルアミノ基、ピペリジニル基、ジイソプロピルアミノ基、ジメチルアミノ基、ジエチルアミノ基、-(CHNH、または-(NR(CHNHR10からなる群から選択される少なくとも一つのものであり、ここで、Rが水素原子またはメチル基を表し、R10が、水素原子、アセチル基、トリフルオロアセチル基、ベンジルオキシカルボニル基またはtert―ブトキシカルボニル基を表し、oが1~5であり、pが1~5であり、tが0~15であり、
 Rが、水素原子、アセチル基、トリフルオロアセチル基、アクリロイル基またはメタクリロイル基を表し、
 Rが、水素原子または置換されていてもよい直鎖もしくは分岐鎖のC1-12アルキ ル基を表し、
 Rが-(CHNH-を表し、かつhが0~5であり、
 Rが直鎖または分岐鎖のC1-12アルキル基を表し、
 aが0~5,000であり、bが0~5,000であり、かつa+bが2~5,000であり、
 fが5~2,500である。) 
Item 13: The method according to item 5 above, wherein the first block copolymer is represented by the formula (V).
Figure JPOXMLDOC01-appb-I000005
(In the above formula,
R 1 represents − (CH 2 ) 3 NH 2 or −CONH (CH 2 ) s − X, and s is 0 to 20, where X is −NH 2 , pyridyl group, morpholic group, 1 -Imidazolyl group, piperazinyl group, 4- (C 1-6 alkyl) -piperazinyl group, 4- (amino C 1-6 alkyl) -piperazinyl group, pyrrolidine-1-yl group, N-methyl-N-phenylamino group , Piperidinyl group, diisopropylamino group, dimethylamino group, diethylamino group,-(CH 2 ) t NH 2 , or-(NR 9 (CH 2 ) o ) p NHR 10 at least selected from the group. Yes, where R 9 represents a hydrogen atom or a methyl group, R 10 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, a benzyloxycarbonyl group or a tert-butoxycarbonyl group, and o is 1-5. Yes, p is 1-5, t is 0-15,
R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
R 6 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
R 7 represents − (CH 2 ) h NH-, and h is 0 to 5.
R 8 represents a linear or branched C 1-12 alkyl group.
a is 0 to 5,000, b is 0 to 5,000, and a + b is 2 to 5,000.
f is 5 to 2,500. )
項目14:Rが-(CHNHを表し、
 Rが水素原子を表し、
 Rがメチル基を表し、
 Rが-CH(CHを表し、
 aが0~200であり、bが0~200であり、かつa+bが10~200であり、
 fが10~300である、上記項目13記載の方法。 
Item 14: R 1 represents − (CH 2 ) 3 NH 2
R 2 represents a hydrogen atom
R 6 represents a methyl group
R 8 represents -CH (CH 3 ) 2 and represents
a is 0 to 200, b is 0 to 200, and a + b is 10 to 200.
Item 13. The method according to item 13, wherein f is 10 to 300.
項目15: 第二のブロック共重合体が、式(VI)で表されるものである、上記項目5に記載の方法。
Figure JPOXMLDOC01-appb-I000006
(上記式中、Rが、水素原子、アセチル基、トリフルオロアセチル基、アクリロイル基またはメタクリロイル基を表し、
 Rがそれぞれ独立してメチレン基またはエチレン基を表し、
 Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖のC1-12アルキル 基を表し、
 Rが-(CHNH-を表し、かつgが0~5であり、
 cが0~5,000であり、dが0~5,000であり、かつc+dが2~5,000で あり、
 iが5~2,500である。)
Item 15: The method according to item 5 above, wherein the second block copolymer is represented by the formula (VI).
Figure JPOXMLDOC01-appb-I000006
(In the above formula, R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
R 3 independently represents a methylene group or an ethylene group, respectively.
R 4 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
R 5 represents − (CH 2 ) g NH-, and g is 0 to 5.
c is 0 to 5,000, d is 0 to 5,000, and c + d is 2 to 5,000.
i is 5 to 2,500. )
項目16:Rが水素原子を表し、
 Rがメチレン基を表し、
 Rがメチル基を表し、
 cが0~200であり、dが0~200であり、かつc+dが10~200であり、
 iが10~300である、上記項目15記載の方法。 
Item 16: R 2 represents a hydrogen atom
R 3 represents a methylene group
R 4 represents a methyl group
c is 0 to 200, d is 0 to 200, and c + d is 10 to 200.
The method according to item 15, wherein i is 10 to 300.
項目17: 第二のブロック共重合体が、式(VII)で表されるものである、上記項目5に記載の方法。 
Figure JPOXMLDOC01-appb-I000007
(上記式中、
 Rが、水素原子、アセチル基、トリフルオロアセチル基、アクリロイル基またはメタクリロイル基を表し、
 Rがそれぞれ独立してメチレン基またはエチレン基を表し、
 Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖のC1-12アルキル 基を表し、
 Rが-(CHNH-を表し、かつhが0~5であり、
 Rが直鎖または分岐鎖のC1-12アルキル基を表し、
 cが0~5,000であり、dが0~5,000であり、かつc+dが2~5,000で あり、
 jが5~2,500である。) 
Item 17: The method according to item 5 above, wherein the second block copolymer is represented by the formula (VII).
Figure JPOXMLDOC01-appb-I000007
(In the above formula,
R 2 represents a hydrogen atom, an acetyl group, a trifluoroacetyl group, an acryloyl group or a methacryloyl group.
R 3 independently represents a methylene group or an ethylene group, respectively.
R 6 represents a hydrogen atom or an optionally substituted linear or branched C 1-12 alkyl group.
R 7 represents − (CH 2 ) h NH-, and h is 0 to 5.
R 8 represents a linear or branched C 1-12 alkyl group.
c is 0 to 5,000, d is 0 to 5,000, and c + d is 2 to 5,000.
j is 5 to 2,500. )
項目18:Rが水素原子を表し、
 Rがメチレン基を表し、
 Rがメチル基を表し、
 Rが-CH(CHを表し、
 cが0~200であり、dが0~200であり、かつc+dが10~200であり、
 jが10~300である、上記項目17記載の方法。
Item 18: R 2 represents a hydrogen atom
R 3 represents a methylene group
R 6 represents a methyl group
R 8 represents -CH (CH 3 ) 2 and represents
c is 0 to 200, d is 0 to 200, and c + d is 10 to 200.
The method according to item 17, wherein j is 10 to 300.
項目19: 非イオン性の非荷電親水性セグメントと荷電性セグメントとが下記式(VIII)または(IX):
Figure JPOXMLDOC01-appb-C000008
は水素原子または未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基を表し、
は-(CH-NH-であり、bは1~5の整数であり、Lは-(CH-CO-であり、cは1~5の整数であり、
はメチレン基またはエチレン基を表し、Rは水素原子、保護基、疎水性基または重合性基を表し、
はRと同一であるかまたは-NH-Rであり、ここでRは未置換又は置換された直鎖又は分枝のC1-20アルキル基を表し、
はそれぞれ独立して水酸基、オキシベンジル基、又はアミン基であり、但しRの85%以上がアミン基であり、
ここでアミン基は、下記式(X)に記載の基:
Figure JPOXMLDOC01-appb-C000009
から選択され、aは1~5の整数であり、mは5~20,000の整数であり、
nは2~5,000の整数であり、xは0~5,000の整数であるが、xはnより大きくないとする)
で表されるブロック共重合体又はそれらの塩である、上記項目3記載の方法。
Item 19: The nonionic uncharged hydrophilic segment and the charged segment are represented by the following formula (VIII) or (IX):
Figure JPOXMLDOC01-appb-C000008
R 1 represents a hydrogen atom or an unsubstituted or substituted linear or branched C 1-12 alkyl group.
L 1 is-(CH 2 ) b -NH-, b is an integer of 1 to 5, L 2 is-(CH 2 ) c -CO-, and c is an integer of 1 to 5.
R 2 represents a methylene group or an ethylene group, R 3 represents a hydrogen atom, a protecting group, a hydrophobic group or a polymerizable group.
R 4 is the same as R 5 or is -NH-R 9 , where R 9 represents an unsubstituted or substituted linear or branched C 1-20 alkyl group.
R 5 is independently a hydroxyl group, an oxybenzyl group, or an amine group, except that 85% or more of R 5 is an amine group.
Here, the amine group is a group represented by the following formula (X):
Figure JPOXMLDOC01-appb-C000009
Selected from, a is an integer from 1 to 5, m is an integer from 5 to 20,000, and
n is an integer of 2 to 5,000 and x is an integer of 0 to 5,000, but x is not greater than n)
The method according to item 3 above, which is a block copolymer represented by (1) or a salt thereof.
項目20:上記項目1乃至19のいずれか記載の方法により設計された薬剤輸送粒子。 Item 20: Drug transport particles designed by the method according to any one of items 1 to 19 above.
医薬用途
 本発明によれば、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、酵素補充療法(特に第一実施形態の中空粒子は脳実質への酵素補充に、第二実施形態の中空粒子は脳脊髄液への酵素補充)に用いることができる。
 より具体的には、例えば、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中に酵素を含む水溶液を内包し、当該酵素を生体に補充することができる。ここで、中空粒子は、PIC/someであり得る。PIC/someは、分子量1万Da以上の酵素を安定的に粒子中に内包するが、その基質は、PIC/someの膜に対して透過性を有する。したがって、酵素は、PIC/some内に提供されることによってPIC/some外の基質をその本来の酵素活性によって変換することができる。
Pharmaceutical Use According to the present invention, the composition containing the hollow particles of the first embodiment and the composition containing the hollow particles of the second embodiment are subjected to enzyme replacement therapy (particularly, the hollow particles of the first embodiment are applied to the brain parenchyma. For enzyme replacement, the hollow particles of the second embodiment can be used for enzyme replacement of cerebrospinal fluid).
More specifically, for example, the composition containing the hollow particles of the first embodiment and the composition containing the hollow particles of the second embodiment contain an aqueous solution containing an enzyme in the hollow particles, and the enzyme is introduced into a living body. Can be replenished. Here, the hollow particles can be PIC / some. PIC / some stably encloses an enzyme having a molecular weight of 10,000 Da or more in particles, but the substrate has permeability to the membrane of PIC / some. Therefore, the enzyme can convert the substrate outside the PIC / some by its original enzyme activity by being provided in the PIC / some.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にアガルシダーゼベータを内包し、中空微粒子はPIC/someであり、かつ、ファブリー病を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain an agar cedar zebeta in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat Fabry disease.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にアガルシダーゼアルファを内包し、中空微粒子はPIC/someであり、かつ、ファブリー病を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain agarsidase alpha in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat Fabry disease.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にイミグルセラーゼを内包し、中空微粒子はPIC/someであり、かつ、ガウチャー病を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain imiglucerase in the hollow particles, and the hollow fine particles are PIC / some and a goucher. It can be used to treat the disease.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にタリグルセラーゼアルファを内包し、中空微粒子はPIC/someであり、かつ、ガウチャー病を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain taligulcerase alpha in the hollow particles, and the hollow fine particles are PIC / some. And can be used to treat goucher disease.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にベラグルセラーゼアルファを内包し、中空微粒子はPIC/someであり、かつ、ガウチャー病を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain velaglucerase alfa in the hollow particles, and the hollow fine particles are PIC / some. And can be used to treat Goucher's disease.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にアルグルセラーゼを内包し、中空微粒子はPIC/someであり、かつ、I型ガウチャー病を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain alglucerase in the hollow particles, the hollow fine particles are PIC / some, and I. It can be used to treat type goucher disease.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にセベリパーゼアルファを内包し、中空微粒子はPIC/someであり、かつ、ライソゾーム酸リパーゼ欠損症を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain severipase alpha in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat lysosomal lipase deficiency.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にラロニダーゼを内包し、中空微粒子はPIC/someであり、かつ、ムコ多糖症(MPS)I型を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain laronidase in the hollow particles, and the hollow fine particles are PIC / some and mucopolysaccharidans. It can be used to treat polysaccharidosis (MPS) type I.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にイズルスルファーゼを内包し、中空微粒子はPIC/someであり、かつ、ムコ多糖症(MPS)II型を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain isul sulphase in the hollow particles, and the hollow fine particles are PIC / some. It can also be used to treat mucopolysaccharidosis (MPS) type II.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にエロスルファーゼアルファを内包し、中空微粒子はPIC/someであり、かつ、ムコ多糖症(MPS)IVA型を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain elosulfase alfa in the hollow particles, and the hollow fine particles are PIC / some. It can also be used to treat mucopolysaccharidosis (MPS) type IVA.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にガルスルファーゼを内包し、中空微粒子はPIC/someであり、かつ、ムコ多糖症(MPS)VI型を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain galsulfase in the hollow particles, the hollow fine particles are PIC / some, and muco. It can be used to treat polysaccharidosis (MPS) type VI.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にアルグルコシダーゼアルファを内包し、中空微粒子はPIC/someであり、かつ、ポンベ病を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain alglucosidase alfa in the hollow particles, and the hollow fine particles are PIC / some. , Can be used to treat Pombe's disease.
 ある態様では、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物は、中空粒子中にアリールスルファターゼを内包し、中空微粒子はPIC/someであり、かつ、ライソゾーム病、例えば、異染性白質ジストロフィー(MLD)を処置することに用いられ得る。 In some embodiments, the composition comprising the hollow particles of the first embodiment and the composition comprising the hollow particles of the second embodiment contain arylsulfatase in the hollow particles, the hollow fine particles are PIC / some, and the hollow particles are PIC / some. It can be used to treat lysosomal storage diseases, such as metachromatic leukodystrophy (MLD).
 本発明によれば、対象において酵素を補充する方法であって、
 対象に、酵素補充療法に用いるための第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物であって、当該組成物は、中空粒子中に補充する酵素を内包し、中空微粒子はPIC/someである、組成物を投与することを含む、
方法が提供される。酵素と酵素補充療法の適応疾患との関係は、上述の組成物において規定した通りである。
According to the present invention, it is a method of supplementing an enzyme in a subject.
The subject is a composition containing hollow particles of the first embodiment and a composition containing hollow particles of the second embodiment for use in enzyme replacement therapy, wherein the composition contains an enzyme to be supplemented into the hollow particles. Encapsulating, hollow microparticles are PIC / some, including administering the composition.
The method is provided. The relationship between the enzyme and the indicated disease of enzyme replacement therapy is as defined in the above composition.
 本発明によれば、酵素補充療法に用いるための第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物の製造における補充する酵素の使用が提供される。酵素と酵素補充療法の適応疾患との関係は、上述の組成物において規定した通りである。 According to the present invention, the use of a supplementing enzyme in the production of a composition containing hollow particles of the first embodiment and a composition containing hollow particles of the second embodiment for use in enzyme replacement therapy is provided. The relationship between the enzyme and the indicated disease of enzyme replacement therapy is as defined in the above composition.
 本発明によれば、酵素補充療法に用いるための第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子を含む組成物であって、当該組成物は、中空粒子中に補充する酵素を内包し、中空微粒子はPIC/someである、組成物が提供される。酵素と酵素補充療法の適応疾患との関係は、上述の組成物において規定した通りである。 According to the present invention, a composition containing hollow particles of the first embodiment and a composition containing hollow particles of the second embodiment for use in enzyme replacement therapy, the composition being supplemented in the hollow particles. A composition is provided in which the hollow fine particles are PIC / some. The relationship between the enzyme and the indicated disease of enzyme replacement therapy is as defined in the above composition.
 本発明の組成物は、医薬組成物であり得、第一実施形態の中空粒子を含む組成物および第二実施形態の中空粒子からなる群から選択される中空粒子に加えて、薬学的に許容可能な賦形剤を含んでいてもよい。賦形剤としては、特に限定されないが、緩衝剤、等張化剤、薬学的に許容可能な塩、分散剤、抗酸化剤、保存剤、および無痛化剤が挙げられる。 The composition of the present invention may be a pharmaceutical composition and is pharmaceutically acceptable in addition to the hollow particles selected from the group consisting of the composition comprising the hollow particles of the first embodiment and the hollow particles of the second embodiment. It may contain possible excipients. Excipients include, but are not limited to, buffering agents, tonicity agents, pharmaceutically acceptable salts, dispersants, antioxidants, preservatives, and soothing agents.
実施例1:BBB通過とナノ粒子の粒径との関係
1. 直径の異なるグルコース(Gluc)修飾ポリイオンコンプレックス(PIC)型高分子集合体の調製
 C6位のOH基を介してグルコースをポリエチレングリコール(PEG)セグメントのα末端に結合したPEG-poly(α,β-アスパラギン酸) (Gluc-PEG-PAsp) (PEGのMnは2000,P(Asp)のDPは80)とグルコースを有さないPEG-PAsp (PEGのMnは2000,P(Asp)のDPは80)をそれぞれ10 mMリン酸緩衝液(pH7.4, 0 mM NaCl) (10 mM PB)に1 mg/mLとなるように溶解し、1:1(体積比)で混合しポリアニオン溶液を調整した。またω末端に蛍光色素(Cy5)を導入したCHO-PEG-P(Asp-AP)-Cy5 (P(Asp)のDPは80)も同様に10 mM PBに1 mg/mLとなるように溶解し(ポリカチオン溶液)、ポリアニオン/カチオン溶液の電荷比が1:1となるように混合し、PEG-PAspのカルボキシル基に対して10等量の1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 (EDC)を添加し一晩静置した。その後、限界濾過により精製し25%Gluc-PIC/m (直径30 nm)を調製した。ここで、Glucの直前の「X%」は、当該PIC小胞(PICミセル;PIC/m)を調製する際に混合した全ポリマー中のGluc修飾を有するポリマーの割合がX%であることを示す。
 また直径100 nmのGluc-PIC/someは、上記と同様のGluc-PEG-PAspとPEG-PAspとPEGを有さないHomo-P(Asp-AP)-Cy5 (P(Asp-AP)のDPは75)を、同様に混合し、EDC架橋、精製を行い調製した。ここでGlucを担持していないPEG-PAspを任意の比率で混合した溶液(1:3, 1:1 and 1:0)を用い、表層のリガンド密度を制御したGluc-PIC/someを調製した。ここで、Glucの直前の「X%」は、当該PIC小胞(PICsome;PIC/some)を調製する際に混合した全ポリマー中のGluc修飾を有するポリマーの割合がX%であることを示す。本実施例では、X%は、0%(null)、25%、50%、または100%とした。
 それぞれ動的光散乱測定により粒径及び多分散指数(PDI)を測定した(表1)。結果は、以下表1に記載の通りであった。
Example 1: Relationship between BBB passage and particle size of nanoparticles 1. Preparation of Gluc-Modified Polyion Complex (PIC) -Type Polymer Aggregates of Different Diameters PEG-poly (α, β-) in which glucose is bound to the α-terminal of polyethylene glycol (PEG) segment via the OH group at position C6. Aspartic acid) (Gluc-PEG-PAsp) (Mn of PEG is 2000, DP of P (Asp) is 80) and PEG-PAsp without glucose (Mn of PEG is 2000, DP of P (Asp) is 80) ) Was dissolved in 10 mM phosphate buffer (pH 7.4, 0 mM NaCl) (10 mM PB) at 1 mg / mL and mixed at a ratio of 1: 1 (volume ratio) to prepare a polyanion solution. .. In addition, CH 3 O-PEG-P (Asp-AP) -Cy5 (DP of P (Asp) is 80) in which a fluorescent dye (Cy5) is introduced at the ω end is also adjusted to 1 mg / mL in 10 mM PB. (Polycation solution), mix so that the charge ratio of the polyanion / cation solution is 1: 1 and add 10 equal amounts of 1-ethyl-3- (3-dimethyl) to the carboxyl group of PEG-PAsp. Aminopropyl) carbodiimide hydrochloride (EDC) was added and allowed to stand overnight. Then, it was purified by limit filtration to prepare 25% Gluc-PIC / m (diameter 30 nm). Here, "X%" immediately before Gluc means that the proportion of the polymer having Gluc modification in the total polymer mixed when preparing the PIC vesicle (PIC micelle; PIC / m) is X%. Shown.
In addition, Gluc-PIC / some having a diameter of 100 nm is a DP of Gluc-PEG-PAsp, PEG-PAsp, and Homo-P (Asp-AP) -Cy5 (P (Asp-AP)) having no PEG as described above. 75) was mixed in the same manner, EDC crosslinked, and purified to prepare. Here, a solution (1: 3, 1: 1 and 1: 0) in which PEG-PAsp carrying no Gluc was mixed at an arbitrary ratio was used to prepare Gluc-PIC / some in which the ligand density of the surface layer was controlled. .. Here, "X%" immediately before Gluc indicates that the proportion of the polymer having Gluc modification in all the polymers mixed when preparing the PIC vesicle (PICsome; PIC / some) is X%. .. In this example, X% was 0% (null), 25%, 50%, or 100%.
The particle size and polydispersity index (PDI) were measured by dynamic light scattering measurements, respectively (Table 1). The results are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000010
表1:グルコース修飾ミセル(Gluc-PICs)とグルコース修飾PIC/someの粒径およびPDI
Figure JPOXMLDOC01-appb-T000010
Table 1: Glucose-modified micelles (Gluc-PICs) and glucose-modified PIC / some particle size and PDI
 表1に記載の通り、グルコース修飾ミセルは、30nm程度の粒径を有し、PDIは0.08であった。また、グルコース修飾PIC/someの粒径は、グルコース修飾率にかかわらず、100~105nm程度の粒径を有し、PDIは、0.04~0.08程度であった。 As shown in Table 1, the glucose-modified micelle had a particle size of about 30 nm and a PDI of 0.08. The particle size of the glucose-modified PIC / some had a particle size of about 100 to 105 nm regardless of the glucose modification rate, and the PDI was about 0.04 to 0.08.
2. 直径の異なるナノキャリアの脳集積量及び脳内分布に関する評価
 調製したCy5標識した0, 25, 50, 100%Gluc-PIC/some (100nm), 25%Gluc-PIC/m (30nm)のマウス (BALB/cマウス(雌、9週齢)での脳集積を評価した。24時間餌を抜き血糖値を正常な範囲内で低下させたマウス(血糖値約100 mg/dL)に上記のナノキャリアを尾静脈投与(i.v.)し、さらに30分後にグルコース溶液を腹腔内投与(i.p.)することで血糖値を上昇させ、ナノキャリア投与から90分後の脳への集積量を定量した。Gluc-PIC/someについては、グルコースリガンドを担持していない0%Gluc-PIC/someは脳にほとんど集積しなかったのに対し(0.06%dose/g-brain)、25, 50, 100% Gluc-PIC/some(100nm)については脳への集積が確認された。集積性は既報のグルコース修飾PICミセル(30nm)と同様にリガンド密度によって大きく異なり、特に25% Gluc-PIC/some(100nm)は最も効率が高く、3.2 %/g-brainの集積が確認された(図1、および図8)。また25%Gluc-PIC/m(30nm)は既報と同様に5.9%dose/g-brainという高い脳への集積が確認された。
 また脳内分布を確認するために、Cy5標識した25%Gluc-PIC/some (100nm)とDylight488標識した25%Gluc-PIC/m (30nm)を混合し、上記と同様のスケジュールで尾静脈投与し、90分後にin vivo共焦点レーザー蛍光顕微鏡(IVRT-CLSM)を用いて観察した。その結果、Dylight488標識した25%Gluc-PIC/m (30nm)は脳内に一様に分布するのに対し、Cy5標識した25%Gluc-PIC/some (100nm)は脳血管内皮細胞近傍に集積する様子が確認された(図2、および図8)。
 25%Gluc-PIC/m (30nm)は、BBB通過後に脳脊髄液(CSF)から脳実質中へ浸透できるのに対し、25%Gluc-PIC/some (100nm)は血管の周囲にのみ局在することは、25%Gluc-PIC/some (100nm)は、脳血管内皮細胞を覆うグリア境界膜を通過できなかったことを示唆するものであり、このことから、脳実質を覆うグリア境界膜がサイズ依存的なバリアであることが示唆された。
2. Evaluation of brain accumulation and intracerebral distribution of nanocarriers of different diameters Prepared Cy5-labeled 0, 25, 50, 100% Gluc-PIC / some (100 nm), 25% Gluc-PIC / m (30 nm) mice ( Brain accumulation in BALB / c mice (female, 9 weeks old) was evaluated. The above nanocarriers were used in mice (blood glucose level about 100 mg / dL) whose blood glucose level was lowered within the normal range by removing food for 24 hours. Is administered to the tail vein (iv), and 30 minutes later, a glucose solution is intraperitoneally administered (ip) to raise the blood glucose level, and the amount accumulated in the brain 90 minutes after the nanocarrier administration. As for Gluc-PIC / some, 0% Gluc-PIC / some, which does not carry a glucose ligand, hardly accumulated in the brain (0.06% dose / g-brain), whereas 25 , 50, 100% Gluc-PIC / some (100 nm) was confirmed to accumulate in the brain. As with the previously reported glucose-modified PIC micelles (30 nm), the accumulation varies greatly depending on the ligand density, especially 25% Gluc-. PIC / some (100 nm) was the most efficient, and accumulation of 3.2% / g-brain was confirmed (Figs. 1 and 8), and 25% Gluc-PIC / m (30 nm) was the same as previously reported. A high accumulation in the brain of 5.9% dose / g-brain was confirmed.
In order to confirm the distribution in the brain, Cy5-labeled 25% Gluc-PIC / some (100 nm) and Fluorescent 488-labeled 25% Gluc-PIC / m (30 nm) were mixed and administered to the tail vein on the same schedule as above. Then, 90 minutes later, the observation was performed using an in-vivo confocal laser scanning microscope (IVRT-CLSM). As a result, the Dlyght488-labeled 25% Gluc-PIC / m (30 nm) was uniformly distributed in the brain, whereas the Cy5-labeled 25% Gluc-PIC / some (100 nm) accumulated in the vicinity of the cerebrovascular endothelial cells. It was confirmed that this was done (FIGS. 2 and 8).
25% Gluc-PIC / m (30 nm) can penetrate from cerebrospinal fluid (CSF) into the brain parenchyma after passing through the BBB, whereas 25% Gluc-PIC / some (100 nm) is localized only around blood vessels. This suggests that 25% Gluc-PIC / some (100 nm) was unable to cross the glial borderan covering the cerebral vascular endothelial cells, which indicates that the glial borderan covering the brain parenchyma It was suggested that it is a size-dependent barrier.
実施例2:CSF中における酵素補充療法
1. 酵素封入Gluc-PIC/someの調製
上記と同様にGluc-PEG-PAsp、PEG-PAsp、およびHomo-P(Asp-AP)-Cy5 の水溶液(1 mg/ml)を正負の荷電比が釣り合うように混合および撹拌し、静電相互作用による自己会合を通して中空の25%Gluc-Cy5-PIC/someを形成させた。そこにβ-ガラクトシダーゼ (β-Gal)を加え、撹拌によりPICの可逆的な解離/再会合挙動を誘起することで、得られたPIC/someの内部にβ-Galを封入した。PEG-PAspのカルボキシル基に対して10等量のEDCを添加し一晩静置した。その後、限界濾過により精製(EDC、未封入のβ-Galを除去)し25%Gluc-β-Gal@Cy5-PIC/some (直径100nm)を調製した。
Example 2: Enzyme replacement therapy in CSF 1. Preparation of Enzyme-Encapsulated Gluc-PIC / Some In the same manner as above, an aqueous solution (1 mg / ml) of Gluc-PEG-PAsp, PEG-PAsp, and Homo-P (Asp-AP) -Cy5 is adjusted so that the positive and negative charge ratios are balanced. Was mixed and stirred to form a hollow 25% Gluc-Cy5-PIC / some through self-association by electrostatic interaction. Β-galactosidase (β-Gal) was added thereto, and the reversible dissociation / reassociation behavior of PIC was induced by stirring, so that β-Gal was encapsulated inside the obtained PIC / some. To the carboxyl group of PEG-PAsp, 10 equivalents of EDC was added and allowed to stand overnight. Then, purification (EDC, removing unencapsulated β-Gal) by limit filtration was performed to prepare 25% Gluc-β-Gal @ Cy5-PIC / some (diameter 100 nm).
2. 脳内(CSF中)における酵素活性評価
 25%Gluc-β-Gal@Cy5-PIC/some (直径100nm)、未封入のβ-Galを上記と同様の血糖操作を施したマウスにそれぞれ尾静脈投与し、24時間後にβ-Galの基質であり、β-Galによって分解されると蛍光(Ex/Em=490/514 nm)を発する物質フルオレセイン ジ(β-D-ガラクトピラノシド) (FDG)を脳脊髄液(CSF)中に投与し、IVRT-CLSMで観察した(図3、図12および図13)。その結果、25%Gluc-β-Gal@Cy5-PIC/some投与群では脳内で酵素反応によって生成された蛍光が確認されたのに対して、未封入のβ-Gal投与群では蛍光がほとんど確認されなかった。これらの結果は、未封入のβ-Galは脳内で酵素反応を誘発しなかったのに対して、25%Gluc-β-Gal@Cy5-PIC/someが脳内で酵素反応を誘発したことを示唆する。
2. Evaluation of enzyme activity in the brain (in CSF) 25% Gluc-β-Gal @ Cy5-PIC / some (diameter 100 nm) and unencapsulated β-Gal were administered tail vein to mice subjected to the same glycemic procedure as above. Fluorescein (β-D-galactosidase) (FDG), which is a substrate for β-Gal after 24 hours and emits fluorescence (Ex / Em = 490/514 nm) when decomposed by β-Gal. Was administered into cerebrospinal fluid (CSF) and observed with IVRT-CLSM (FIGS. 3, 12, and 13). As a result, fluorescence generated by an enzymatic reaction in the brain was confirmed in the 25% Gluc-β-Gal @ Cy5-PIC / some administration group, whereas most of the fluorescence was confirmed in the unencapsulated β-Gal administration group. Not confirmed. These results show that unencapsulated β-Gal did not induce an enzymatic reaction in the brain, whereas 25% Gluc-β-Gal @ Cy5-PIC / some induced an enzymatic reaction in the brain. Suggests.
実施例3:剛性の異なるGluc-PIC/someと脳内分布について
1. 剛性の異なるGluc-PIC/someの調製
上記と同様にGluc-PEG-PAsp、PEG-PAsp、およびHomo-P(Asp-AP)-Cy5 の水溶液(1 mg/ml)を正負の荷電比が釣り合うように混合・撹拌し、静電相互作用による自己会合を通して中空の25%Gluc-Cy5-PIC/someを形成させた。PIC/someの剛性を変化させる目的で、そこにPEG-PAspのカルボキシル基に対して0.3, 0.5, 1, 3, 5, 10, 20等量と異なる量のEDCを添加し一晩静置した。その後、限界濾過により精製し25%Gluc-Cy5-PIC/someを調製した。DLS測定により、いずれのPIC/someとも直径100nmで単分散(PDI<0.1)であることを確認した。
Example 3: Gluc-PIC / some with different rigidity and distribution in the brain 1. Preparation of Gluc-PIC / some with different rigidity Similar to the above, the positive and negative charge ratios of Gluc-PEG-PAsp, PEG-PAsp, and Homo-P (Asp-AP) -Cy5 aqueous solution (1 mg / ml) are balanced. As described above, the mixture was mixed and stirred to form a hollow 25% Gluc-Cy5-PIC / some through self-association by electrostatic interaction. For the purpose of changing the rigidity of PIC / some, an amount of EDC different from 0.3, 0.5, 1, 3, 5, 10, 20 equivalents is added to the carboxyl group of PEG-PAsp. It was allowed to stand at night. Then, it was purified by limit filtration to prepare 25% Gluc-Cy5-PIC / some. By DLS measurement, it was confirmed that both PIC / some had a monodisperse (PDI <0.1) with a diameter of 100 nm.
2. 剛性の評価法
 上記で調製したサンプルについて、変形能を表す物理量として知られる剛性を評価した。ここでは原子間力顕微鏡(AFM, NanoWizard Ultra SpeedTM (JPK社))のQuantitative Imagingモードを用いて測定した。測定は室温25℃で実施した。測定前に、AFMヘッドに装着したカンチレバー(OLYMPUS: BL-AC 40 TS-C2, Biolever mini; Nominal Spring constant 0.09 N/m)をThermal noise methodにより校正した。作製した液体サンプルにカンチレバーをサンプル液に約10分浸漬して熱平衡化および安定化した後、NanoWizard Ultra SpeedTM のQuantitative Imaging (QI) モードにおける次の条件設定でAFM測定を行った。set point: 100-140 pN; cantilever speed: 15 μm/s; scan area 1μm×1μm/128×128 pixelsとした。
2. Rigidity evaluation method For the sample prepared above, the rigidity known as a physical quantity representing deformability was evaluated. Here, the measurement was performed using the Quantitative Imaging mode of an atomic force microscope (AFM, NanoWizard ULTRA SpeedTM (JPK)). The measurement was carried out at room temperature of 25 ° C. Prior to the measurement, a cantilever (OLYMPUS: BL-AC 40 TS-C2, Biolever mini; Nominal Spring constant 0.09 N / m) mounted on the AFM head was calibrated by the Thermal noise method. The cantilever was immersed in the prepared liquid sample for about 10 minutes for thermal equilibrium and stabilization, and then AFM measurement was performed under the following condition settings in the Quantitative Imaging (QI) mode of NanoWizard ULTRA SpeedTM. set point: 100-140 pN; cantilever speed: 15 μm / s; scanner 1 μm × 1 μm / 128 × 128 pixels.
 8nm/pixel以下の分解となるようにQIモードで取得したAFM画像データについて、1ピクセル単位毎に保存されたフォースカーブから25%Gluc-PIC/someの変形-応力曲線の傾き(剛性pN/nm)を、応力が働いている直線領域(最大応力の約10~20%以上の応力領域)で線形フィッティングし求めた。また得られたAFM画像は、JPK Data Processing Software v.6.0によって画像傾きを補正し、剛性を解析した25%Gluc-PIC/someの面積相当直径、最大高さ、体積をGwyddion software v.2.47によって算出した。統計解析は、One-way ANOVAによって群間の統計的な有意差を確認した後、Turkeyの多重比較検定を行った。 For AFM image data acquired in QI mode so that the decomposition is 8 nm / pixel or less, 25% Gluc-PIC / some deformation-stress curve slope (rigidity pN / nm) from the force curve stored for each pixel. ) Was linearly fitted in a linear region where stress is applied (a stress region of about 10 to 20% or more of the maximum stress). The obtained AFM image is obtained from JPK Data Processing Software v.I. The area-equivalent diameter, maximum height, and volume of the 25% Gluc-PIC / some whose rigidity was analyzed by correcting the image tilt according to 6.0 are determined by Gwydion software v. Calculated according to 2.47. For statistical analysis, Turkey's multiple comparison test was performed after confirming the statistically significant difference between the groups by One-way ANOVA.
 その結果、EDCの添加量が増加するに伴って、25%Gluc-PIC/someの剛性が増加することを確認した(図4)。また、EDC添加量が0.3当量と0.5当量の25%Gluc-PIC/some間および、10当量と20当量の25%Gluc-PIC/some間には剛性(pN/nm)に有意な差は確認されなかった。 As a result, it was confirmed that the rigidity of 25% Gluc-PIC / some increases as the amount of EDC added increases (Fig. 4). In addition, the amount of EDC added is significantly significant in rigidity (pN / nm) between 0.3 equivalent and 0.5 equivalent of 25% Gluc-PIC / some and between 10 equivalent and 20 equivalent of 25% Gluc-PIC / some. No significant difference was confirmed.
3. 剛性の異なるPIC/someの血中安定性評価
上記で調製した剛性の異なる25%Gluc-Cy5-PIC/someをマウスにiv投与し、血中循環性及びそこで得られた情報を元に半減期を算出した。その結果、10 pN/nm以下の剛性を示す25%Gluc -PIC/someは血中安定性が低く、それ以上で高い血中半減期を示すことが明らかとなった(図5)。
3. 3. Evaluation of blood stability of PIC / some with different rigidity The 25% Gluc-Cy5-PIC / some with different rigidity prepared above was administered iv to mice, and the half-life was based on the blood circulation and the information obtained there. Was calculated. As a result, it was clarified that 25% Gluc-PIC / some showing a rigidity of 10 pN / nm or less has low blood stability and shows a high half-life in blood above that (Fig. 5).
4. 剛性の異なるPIC/someの脳内分布
 血中での安定性が担保された18, 32, 40 pN/nmの25%Gluc-Cy5-PIC/someを、上記と同様のスケジュールでマウスに投与し、投与3時間後に脳を摘出し、脳切片を作成し、血管内皮細胞をPECAM-1、核をDAPIで染色し、共焦点顕微鏡で観察した。その結果、高い剛性を示す40 pN/nmは、上記で示した結果と同様にグリア限界膜を通過できずにCSF中に留まるのに対し(図5(c))、剛性を制御する、具体的には低く(柔らかく)することで(18, 32 pN/nm)、グリア限界膜を通過する様子が確認された(図6(a), (b))。
4. Intracerebral distribution of PIC / some with different stiffness 18, 32, 40 pN / nm 25% Gluc-Cy5-PIC / some with guaranteed blood stability was administered to mice on the same schedule as above. , 3 hours after administration, the brain was excised, a brain section was prepared, vascular endothelial cells were stained with PECAM-1, and the nucleus was stained with DAPI, and observed with a confocal microscope. As a result, 40 pN / nm, which shows high rigidity, cannot pass through the glial limit film and stays in the CSF as in the result shown above (FIG. 5 (c)), whereas the rigidity is controlled. It was confirmed that the temperature was lowered (softened) (18, 32 pN / nm) to pass through the glial limit film (FIGS. 6 (a) and 6 (b)).
 このように、粒径が30nmの粒子は、剛性とは関係なくグリア限界膜を通過し、血管内皮から脳へ移行することができるが、粒径が100nmの粒子は、剛性が低い(例えば、40pN未満)の場合にはグリア限界膜を通過し、血管内皮から脳へ移行することができるが、剛性が高い(例えば、40pN以上)とグリア限界膜の透過性が減少することが明らかになった。 Thus, particles with a particle size of 30 nm can pass through the glial limit membrane and migrate from the vascular endothelium to the brain regardless of stiffness, while particles with a particle size of 100 nm have low stiffness (eg,). In the case of less than 40 pN), it can pass through the glial limit membrane and transfer from the vascular endothelium to the brain, but it has been clarified that the permeability of the glial limit membrane decreases when the rigidity is high (for example, 40 pN or more). It was.

Claims (14)

  1.  動的光散乱法で測定される平均粒径が80~200nmであり、多分散性指数(PDI)が0.2未満である中空粒子であって、表面の剛性が10pN/nm以上である中空粒子を含む、組成物。 Hollow particles having an average particle size of 80 to 200 nm measured by dynamic light scattering and a polydispersity index (PDI) of less than 0.2, with a surface rigidity of 10 pN / nm or more. A composition comprising particles.
  2.  表面の剛性が、第一の所定の値である中空粒子を含み、第一の所定の値は、10pN/nm~40pN/nmの範囲内の値である、請求項1に記載の組成物。 The composition according to claim 1, wherein the surface rigidity includes hollow particles having a first predetermined value, and the first predetermined value is a value in the range of 10 pN / nm to 40 pN / nm.
  3.  表面の剛性が第二の所定の値である中空粒子を含み、第二の所定の値は35pN/nm以上の値である、請求項1に記載の組成物。 The composition according to claim 1, wherein the composition contains hollow particles having a surface rigidity of a second predetermined value, and the second predetermined value is a value of 35 pN / nm or more.
  4.  中空粒子が、ポリイオンコンプレックス型ポリマーソームである、請求項1~3のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the hollow particles are polyion complex type polymersomes.
  5.  中空粒子が、水溶液を内包している、請求項1~4のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the hollow particles contain an aqueous solution.
  6.  内包した水溶液を脳実質に送達することに用いるための請求項2に記載の組成物。 The composition according to claim 2, for use in delivering the encapsulated aqueous solution to the brain parenchyma.
  7.  内包した水溶液を脳脊髄液に送達することに用いるための、請求項3に記載の組成物。 The composition according to claim 3, for use in delivering the encapsulated aqueous solution to cerebrospinal fluid.
  8.  対象において、脳脊髄液に中空粒子を送達する方法であって、
     当該対象に請求項1~7のいずれか一項に記載の組成物を投与することを含む、方法。
    A method of delivering hollow particles into the cerebrospinal fluid in a subject.
    A method comprising administering to the subject the composition according to any one of claims 1-7.
  9.  対象に中空粒子を投与する方法であって、
     請求項1~7のいずれか一項に記載の組成物を提供する工程と、
     当該対象に当該組成物を投与し、これにより、中空粒子が脳脊髄液に移行させ、中空粒子を脳脊髄液中で60分以上安定に存在させる工程とを含む、
    方法。
    A method of administering hollow particles to a subject,
    The step of providing the composition according to any one of claims 1 to 7.
    A step of administering the composition to the subject, whereby the hollow particles are transferred to the cerebrospinal fluid, and the hollow particles are stably present in the cerebrospinal fluid for 60 minutes or more.
    Method.
  10.  請求項9に記載の方法であって、
     投与する工程が、当該組成物を脳脊髄液に投与する工程である、方法。
    The method according to claim 9.
    A method, wherein the step of administration is a step of administering the composition to cerebrospinal fluid.
  11.  80nm~200nmの粒径を有する中空粒子を含む組成物を製造する方法であって、
     動的光散乱法により測定される平均粒径が80nm以上である中空粒子を用意することと、
     当該中空粒子の剛性を調整して、剛性を10pN/nm~35pN/nmまたは35pN/nm~50pN/nmとすることを含み、
     ここで、当該中空粒子の多分散性指数(PDI)は、0.2未満である、方法。
    A method for producing a composition containing hollow particles having a particle size of 80 nm to 200 nm.
    To prepare hollow particles having an average particle size of 80 nm or more as measured by the dynamic light scattering method.
    Including adjusting the stiffness of the hollow particles to make the stiffness 10 pN / nm to 35 pN / nm or 35 pN / nm to 50 pN / nm.
    Here, the method, wherein the polydispersity index (PDI) of the hollow particles is less than 0.2.
  12.  80nm~200nmの粒径を有する中空粒子のグリア限界膜に対する透過性を調整する方法であって、
     該中空粒子の剛性を調整することを含む、方法。
    A method for adjusting the permeability of hollow particles having a particle size of 80 nm to 200 nm to a glial limit film.
    A method comprising adjusting the stiffness of the hollow particles.
  13.  80nm~200nmの粒径を有する中空粒子のグリア限界膜に対する透過性を調整する方法であって、
     該中空粒子の剛性を調整して、当該剛性を35pN/nm~50pN/nmとすることを含む、方法。
    A method for adjusting the permeability of hollow particles having a particle size of 80 nm to 200 nm to a glial limit film.
    A method comprising adjusting the stiffness of the hollow particles to make the stiffness 35 pN / nm to 50 pN / nm.
  14.  80nm~120nmの粒径を有する中空粒子のグリア限界膜に対する透過性を調整する方法であって、
     該中空粒子の剛性を調整して、当該剛性を10pN/nm~35pN/nmとすることを含む、方法。

     
    A method for adjusting the permeability of hollow particles having a particle size of 80 nm to 120 nm to a glial limit film.
    A method comprising adjusting the stiffness of the hollow particles to make the stiffness 10 pN / nm to 35 pN / nm.

PCT/JP2020/019007 2019-05-13 2020-05-12 Technology for controlling migration of hollow nanoparticles to brain from blood WO2020230793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962846945P 2019-05-13 2019-05-13
US62/846,945 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020230793A1 true WO2020230793A1 (en) 2020-11-19

Family

ID=73289456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019007 WO2020230793A1 (en) 2019-05-13 2020-05-12 Technology for controlling migration of hollow nanoparticles to brain from blood

Country Status (1)

Country Link
WO (1) WO2020230793A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191289A1 (en) * 2021-03-10 2022-09-15 公益財団法人川崎市産業振興財団 Polyion complex micelle encapsulating therein contrast agent containing paramagnetic, super-paramagnetic or ferromagnetic transition metal element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522111A (en) * 2009-03-31 2012-09-20 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Polymer articles comprising oxygen permeable reinforcing particles
WO2015075942A1 (en) * 2013-11-22 2015-05-28 国立大学法人 東京大学 Carrier for drug delivery and conjugate, composition containing same, and method for administering same
WO2017002979A1 (en) * 2015-07-02 2017-01-05 国立大学法人 東京大学 Drug delivery carrier, and composition containing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522111A (en) * 2009-03-31 2012-09-20 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Polymer articles comprising oxygen permeable reinforcing particles
WO2015075942A1 (en) * 2013-11-22 2015-05-28 国立大学法人 東京大学 Carrier for drug delivery and conjugate, composition containing same, and method for administering same
WO2017002979A1 (en) * 2015-07-02 2017-01-05 国立大学法人 東京大学 Drug delivery carrier, and composition containing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANRAKU, Y. ET AL.: "Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain", NATURE COMMUNICATIONS, vol. 8, no. 1, XP055533568, DOI: 10.1038/s41467-017-00952-3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191289A1 (en) * 2021-03-10 2022-09-15 公益財団法人川崎市産業振興財団 Polyion complex micelle encapsulating therein contrast agent containing paramagnetic, super-paramagnetic or ferromagnetic transition metal element

Similar Documents

Publication Publication Date Title
JP6782415B2 (en) Carriers for drug delivery, conjugates and compositions comprising them and methods of administration thereof.
Park et al. Advances in the synthesis and application of nanoparticles for drug delivery
Wang et al. Polylactide-cholesterol stereocomplex micelle encapsulating chemotherapeutic agent for improved antitumor efficacy and safety
JP6797415B2 (en) Carriers for drug delivery and compositions containing them
US9750687B2 (en) Substance-encapsulating vesicle and process for producing the same
JP2011105792A (en) Block copolymer, block copolymer-metal complex composite material, and hollow structure carrier using the same
Peptu et al. Carbohydrate based nanoparticles for drug delivery across biological barriers
US20170258718A1 (en) Pharmaceutical composition, preparation and uses thereof
US20170333338A1 (en) Sustained and reversible oral drug delivery systems
KR101740895B1 (en) Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan
JP2018145115A (en) Polymer composite
Chou et al. Glycosylation of OVA antigen-loaded PLGA nanoparticles enhances DC-targeting for cancer vaccination
Urandur et al. Nonlamellar liquid crystals: a new paradigm for the delivery of small molecules and bio-macromolecules
WO2020230793A1 (en) Technology for controlling migration of hollow nanoparticles to brain from blood
Jabbari Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles
B Goudoulas Polymers and biopolymers as drug delivery systems in nanomedicine
JP5787323B2 (en) Lipid membrane structure
CN111107842B (en) Capecitabine polymer-lipid hybrid nanoparticles utilizing micro-mixing and capecitabine amphiphilic properties
JP2010526040A (en) Controlled release particles based on polyelectrolytes and active ingredients and formulations containing the particles
JP7320448B2 (en) Carriers and compositions comprising same for drug delivery to the brain
AU2018287142A1 (en) Albumin nanoparticles for the treatment of cancer and ocular diseases
US20180271796A1 (en) Compositions and methods to improve nanoparticle distribution within the brain interstitium
CN109528686A (en) Utilize the polymer-lipid mixing nano particle of microring array and the capecitabine of capecitabine amphipathic characteristic
Jiang et al. Hyaluronic acid-based nanoparticles to deliver drugs to the ocular posterior segment
Nair et al. Delivery of biomolecules to the central nervous system using a polysaccharide nanocomposite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP