TW201105403A - Dynamic filtration device using centrifugal force - Google Patents

Dynamic filtration device using centrifugal force Download PDF

Info

Publication number
TW201105403A
TW201105403A TW99101921A TW99101921A TW201105403A TW 201105403 A TW201105403 A TW 201105403A TW 99101921 A TW99101921 A TW 99101921A TW 99101921 A TW99101921 A TW 99101921A TW 201105403 A TW201105403 A TW 201105403A
Authority
TW
Taiwan
Prior art keywords
filter
permeate
concentrate
influent
filters
Prior art date
Application number
TW99101921A
Other languages
Chinese (zh)
Inventor
Brent Lee
Original Assignee
Brent Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/538,825 external-priority patent/US8048307B2/en
Application filed by Brent Lee filed Critical Brent Lee
Publication of TW201105403A publication Critical patent/TW201105403A/en

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention generally relates to a filtration system having one or more apparatuses for filtering gases, liquids, or fluids (e.g., water) to remove particulate matter, and methods of making and using the apparatus. More particularly, embodiments relate to apparatuses and methods for applying centrifugal force(s) to push a fluid or gas to be filtered through a porous membrane or filter within the apparatus to separate particulate matter therefrom. The present invention takes advantage of the Coriolis effect within a cylindrical filter radiating out from a rotating central body. The filtration apparatus provides an energy efficient system for microfiltration (or other filtration process) to remove contaminants from gases and fluids, such as waste water.

Description

201105403 六、發明說明: 【發明所屬之技術領域】 本發明一般係關於一種氣體或流體之過滤系統’其具 有一個或多個用於過濾氣體及/或流體(如:水)以將其中之 微粒物質移除之裝置。本發明亦關於一種製造該裝置之方 法及一種使用該裝置過濾氣體及/或流體之方法。於—種實 施態樣中’本發明係關於一種製造金屬過慮膜之方法。更 特別地,本發明之實施態樣係關於產生離心力及/或利用科 氏效應(Coriolis effect)來使待過濾、之氣體或流體通過裝置 内之多孔膜或過濾器,進而使微粒物質與氣體或液體分開 之裝置及方法。 【先前技術】 微過滤、超過滤(Ultra-filtration)及逆滲透皆係關於以物 理方式將流體中之微粒物質分離出。一般而言,微粒汙染 物係可藉由提供有夠小之空孔以將顆粒排除之過濾器的機 械過濾法來將之移除。比膜内孔洞大之物質會被完全移除 掉,比膜之孔洞小之物質則有部分會被移除’其取決於膜 上垃圾層(refuse layer)或過遽層之結構或構造。 於水純化(例如:工業用水、城市用水及/或生活用水純 化)之情形中,所溶解固體、濁度、微生物及離子被移除之 程度係取決於膜内孔洞的大小。第七圖提供各種孔徑及/或 尺寸大小範圍之尺規’以及藉由具有確定孔徑之過濾 '膜所 能過濾之流體内物質類型(例如:微粒物質)。微過遽係使 用孔徑為0.1〜10微米之膜,其差不多能夠將待過濾的水中 内的細菌全部移除。超過濾(UF)膜的孔徑典型係在 〇.〇1〜〇.1〇微米的範圍内,而其能夠有效地將細菌、大部分 4 201105403 的病毒、膠體(例如:錯)及泥沙移除。 分離效率隨著過濾器所含之孔徑愈小而增加,但需要 更高之壓力使其持續流經該過濾器’因此,過濾、器之孔徑 愈小愈需要高壓幫浦或其他產生高壓之工具。這樣的設備 典型是需要並耗損極大量之能量來使過濾程序進行,而且 需要更複雜及/或昂貴的技術來清潔過濾器。 一般用來將液體中的固體分離出之方法係包含將固體 及液體混合物通過管狀膜或過濾器。舉例而言,這樣的過 濾器典型係使用於逆滲透程序内。這樣的分離程序係需要 使用高的流體壓力來促使液體流過過濾器,而使液體與汙 染,分離,典型係使用高壓幫浦來產生高流體壓力,這此 高壓幫浦於產生合適的過濾壓力時,特別是當 微粒物質的量增加時,會耗損大量之能4,因此 要更焉效能之流體過濾裝置。 流=_物=:選機 :;==轉機環繞著中心傳動軸旋轉所產= =的裝置在應用於進行其他諸如豕廢C然而,這 洛劑 '藥品及血液製。0 曆Κ處理、回收工業 時’於技術上會遇到幾種 ϋ '造業的水淨化之作業 d分離水中微粒污染物之心:系於廢水 浮固雜,會過一無法分離廢水中4部= 過之系統、結構巧的且改善 旯回之效率、可擴充 201105403 性(scalability)且更易於清潔之方式來將相對高容量之流體 或氣體中之微粒物質分離出。 【發明内容】 /本發明之實施態樣係關於過㈣統(例如:水或氣體過 遽系統)及其使財法,其能夠有效地將流體或氣體中 粒物質移除’並且相當容易清潔。本發明之其他實施態樣 係關於,造本發明過齡統之方法,以及製造適合於‘樣 的過濾系統中使用的經改質之金屬過濾器之方法。 腺-Γ二月之一態樣係提供一種用於在連續操作中 中之微粒物質過滤出’以解決或克服前述 於1知裝置及方法中所遇到之_及/或限制之娜裝置及 而Λ’本發明之—紐係提供—種使用離心力 ^或科氏效應來有效的將㈣者想要純化之氣體及/或流 體中之微粒物質分離出的新穎過㈣統。 一 本發明之第-態樣係關於—種包含—個或多個裝 過滤祕,該裝置係包含_用來接收料社流人物的入 :他二流入物分配單元的旋轉中心滾筒、軸或 m 分配單元係具有適合用來接收該流入 :出:=收管:以及複數個由該中心接收管放射狀延 個過濾、器’其係配置成以環狀方式圍 體’各㈣輯器係與該複數個輸送管中 ,ί且各個該過濾器係具有—安裝成用來接收 所排出之流入物的入口、-供濃縮物 J =或=卜部腔室,各個該外部腔室係環“二大 之滲透物’複數個滲透物收集管,各個該渗透物收集管係 201105403 與該外部腔室中& 加^ 該外部腔室傳並係安裝成用來使滲透物自 -驅減裝成來使濃縮物自該過滤11傳送出;及 π二Ϊ電動機,其係安裝成用來旋轉該旋轉中心體 及该過^(例如:延著中心軸旋轉)。 於本發,之第二態樣中,本發明係關於一種過渡流入 仲之t法/亥„方法包含輸送該流入物進入一個或多個過濾 卓一 °玄過/慮單元内係具有中心滾筒(centrai drum)或其他物 體以及一流入物分配單元’其中該流入物分配單元係適合 用^將流入物輪送至複數個自該中心體放射狀延伸出之過 濾器,該複數個過濾器各自具有適合濃縮物通過之末端, 以及一個或多個孔徑高達約5〇〇μιη之多孔管狀膜;以一足 以透過該多孔管狀膜過濾該流入物之速度旋轉該中心體; 及收集於一個或多個環繞該過濾器之外部腔室中之滲透 物0 本發明之第三態樣係關於一種製造過濾裝置之方法, 其包含將複數個過濾器中的每一個以環狀方式與對應的複 數個自中心滾筒或其他物體中之中心接收管放射延伸出之 輸送管連接’各個該過濾器係具有適合濃縮物通過之末 端’以及一個或多個孔徑高達約500μπι之多孔管狀膜;沿 著一個或多個該過濾器之周圍放置一個或多個外部腔室, 务外部腔室係安裝成用來收集通過該過濾器之滲透物;將 第一出口管與各個該外部腔室連接,該第一出口管係適合 用來收集該滲透物;將第二出口管與該過濾器之末端抑或 是該外部腔室之末端連接,該第二出口管係適合用來收集 該濃縮物;及操作上將驅動機構或電動機與該中心體結 合,該驅動機構或電動機係安裝成用來旋轉該旋轉中心體。 201105403 本發明成功地研發出可用於廢水處理、家用水純化、 工業溶劑回收、工業廢氣洗務及/或回收(industrial effluent gas scrubbing and/or recycling)、藥品及血液製品純化、食品 工業的水純化、及前述用途之其他過濾應用的節能過濾系 統。過濾系統的幾種實施態樣及其使用方法敘述於本文 中。於一些應用(例如:廢水處理)中,本發明係可提高過濾 效率(例如:能源效率)。本發明亦提供一種相當容易清潔這 樣的裝置、系統及方法内過據II之技術。由下述各種實施 態樣的詳細描述將可更清楚本發明之這些以及其他的優 點0 【實施方式】 參考文獻係詳載於本發明各種之實施態樣中, 態樣係伴隨著圖式舉例㈣。t本發明與該些實施態樣一 起,明’應了㈣說明並;ϊ;意圖將本發明限制到這 態^相反地,本發明意圖去涵蓋在如後附 利^ =義之精神及範圍内的替換、變更及相等:圍 2具:的細節。然而,所屬技術領域具有通常知識:: 不必要地模糊本發明之態樣%素==欠述,以免 被限制在本文中所敘述之具體置‘及; 果需互相抵觸,改變係可相二二 土;便及簡單的目的,除非 =二:r、i·連結,,、:.··以相 逆些用语於本文中係可交替使用,但該些用語—般^本 201105403 領域所接$之意思來做解釋。基於方便及簡 田银“都放,,„ 5¾ I二a 、部分”、及‘‘部位,,係可交替使用,但該些用 浯一般係以本領域所接受之意思來做解釋。再者,除^從 其使用之上下文來看另有所指,否則用語“已知的,,、“固4定 的”、“指定的”、“確定的,,及“預定的,,一般係指數值、數量心 參數、限制條件(constraint)、情況、狀態、程序、步驟、方 法、慣例或其結合,換言之’理論上其係可變的,但通常 是預先設定好的,之後在使用時並不會改變。 本發明之實施態樣係關於一種能夠將流體或氣體中之 微粒物質有效移除之過濾系統(例如:氣體或流體過遽系 統,諸如:水過濾、系統)及其使用方法。參考下文中之例示 性實施態樣,將可更詳細說明本發明的各種態樣。 ~ 例示性的流體過濾系統 本發明之實施態樣係關於一種過滤系統,其包含—個 或多個離心過濾裝置^各個過濾裝置係包含一用來接收待 過濾流入物之入口; 一可旋轉之中心滚筒或其他物體,其 内具有一流入物分配單元;複數個過濾器,其係配置成以 環狀方式圍繞著該中心體;一個或多個外部腔室;複數個 出口管;及一驅動機構或電動機。該流入物分配單元一般 係具有一用來接收該流入物之中心接收管及複數個自該中 心接收管放射狀延伸出之輸送管。各個過濾器典型係與該 複數個輸送管中的一個連接,並且係具有一接收來自輪送 管之流入物之入口、供濃縮之流入物(》農、^目物)通過之^ 端、及一個或多個孔徑高達約50(^m之多孔管狀臈。該過 濾裝置一般係進一步包含一個或多個外部腔室,其每一個 係環繞著該過濾器中的一個或多個,各個外部腔室一般係 安裝成用來收集通過該過濾器之滲透物。該過濾裝置〜般 201105403 亦包含複數個第一出口管,各個該第—出口管係與用來收 集該滲透物之該外部腔室中的一個連接,以及包含複數個 第二出口管’各個該第二出口管係與該過濾器中的一個或 該外部腔室中的一個之末端(亦即,遠離該旋轉中心體)連 結,其係用來收集該濃縮物。該過遽裂置亦包含安裝成用 來旋轉該中心體及該過濾、器之驅動機構或電動機。本發明 之過滤裝置係用來移除氣體或流體中之微粒物質,並適合 用於一些過濾及純化流體之應用。舉例來說,該裝置係可 用於廢水處理、家用水純化、工業溶劑回收、工業廢氣洗 滌、藥品及血液製品純化、食品工業的水純化、以及前述 用途之其他過濾應用。 第一圖提供離心過濾、裝置的例示性實施態樣的放射狀 剖面圖。該例示性的過濾裝置係可包含複數個獨立的離心 過濾裝置。於進行該過濾系統的應用中,於該過濾系統中 過濾裝置的數目係必需能滿足處理氣體或流體之最小門檻 量及平均量。舉例來說,圖中呈現的流體過濾系統係可用 於家用水的純化。於這樣的應用中,單一離心過濾裝置係 足以提供,例如:每天提供單一家庭100至2000公升之純 化過的飲用或灌溉及/或洗滌水。然而,於城市用水處理廠 中,取決於該水處理廠所服務之地區大小,該流體過濾系 統係可包含數十到數百個過濾裝置,其可每天提供500,000 到10,000,000或更多公升純化過的水。本文所述之該過濾 系統係可廣泛使用於過濾及純化的應用。流體過濾系統中 所含的裝置數目係取決於其應用時之需求。 該過濾裝置係可安裝成用來過濾流體流入物,該流體 流入物係可包含水性及/或有機性流體,其内係可包含固體 及/或微粒物質。舉例來說,該過濾系統係可安裝成用來將 廢水處理廠内受污染水中的微粒物質過濾出,或是係可安 201105403 裝^用來純化含有沉澱污染物的溶劑。要不該過濾裝置係 可安裝成用來過濾氣體流入物(例如:來自化學處理區或化 子處理至的排氣、來自煤爐或油基爐(〇^_based ^^时^)或垃 圾焚化爐的排放氣體等等)中的微粒物質。 。各個過濾裝置係具有如圖所示之圓柱形或環形(諸如: 圓筒或環狀物)的一旋轉體或旋轉構件106,該旋轉構件1〇6 係以於進行過濾程序期間可連續進行旋轉之方式安裝。第 - 一圖顯不該過濾系統沿著與旋轉軸108校直之中心戈中央 線1〇〇對半的截面圖。該旋轉構件1〇6(例如:圓筒)係與該 旋轉轴108連接,並且係被該旋轉軸1〇8支樓。該旋轉車: 108係配置於用來旋轉該旋轉軸1〇8之發動機1〇7上。嗜發 動機107能夠使該旋轉軸108於任何想要之速度(例如:在 〇至約3000 RPM間、200至1200 RPM或於其中之任何其 他範圍)下轉動。 於例示性的實施態樣中,該旋轉構件1〇6之直徑係可 為50〜200公分、1〜5公尺、3〜15公尺或任何適用特定應用 的其他範圍。s玄圓筒的大小及施加於該圓筒之轉速可改變 或設計以提供相對於輸出相似數量之經純化之流體或氣體 的壓力系系統能夠減少能耗的有效率運作的系統。 該離心過濾裝置進一步包含一流入物入口 1〇1,其係與 -該旋轉構件106及該旋轉軸108之中心校直。該流入物乂 口 ι〇1係安裝成用來將受微粒物質(例如:泥沙、重金屬、 有機固體、微生物等等)汙染之流入流體(例如:水或有機溶 劑)或氣體(例如:C02、C〇、N2、〇2、空氣、Ar等等)輸送 至配置於旋轉構件廳上之管道及過濾器的系統内。如第 一圖所示,例示性的水過濾系統係可包含一用來接收來自 流入物入口或供給管101之流入物之流入物擋器 102(mflUentCatch’亦即一中心接收管)。然而,任何1他汽 11 201105403 體或氣體係可以相同的裝置(或許所屬技術領域具有通常知 識者會稍做改變)來進行過滤或純化。該流入物擋器1 02係 與該旋轉構件106及該旋轉軸108之中心校直。該離心過 濾裝置係可進一步包含於進行反沖洗程序期間,透過該流 入物入口 101供應清潔水之清潔水源(未顯示出),其係描述 於後述之例示性過濾方法的說明中。 如第一圖及第二圖A所示,流入物擋器1〇2係與複數 個放射狀輸送管102A連接。該放射狀輸送管1〇2A係自該 流入物擋器102放射出,一般而言,該放射狀輸送管1〇2八 係沿著該流入物擋器102之末端的單一水平面放射出。該 放射狀輸送管102A係以對稱的形態配置,使其能沿著流入 物擔器102之周圍均勻分佈。舉例而言,有4至24個(例如: 4、6、8、12或16個)自流入物擋器1〇2放射狀延伸出之輸 送管102A。各個放射狀輸送管ι〇2Α係與一組安裝成用來 將流入物輸送至複數個過濾筒109之管道(例如:1〇4,105) 及閥(例如:103)連接。舉例來說,該放射狀輸送管102A係 各自與進料管105及反沖洗管1〇4連接。 該放射狀輸送管102A係各自與分區閥l〇3(divisional valves 103)(例如:三向閥)連接。如第一圖中所示,該分區 閥103係位於各個放射狀輸送管ι〇2Α與進料管105及反沖 洗管104之匯合處。分區閥1〇3係用來控制使來自該放射 狀輸送管102A之流入物流到一組進料管1〇5。於進行反沖 洗程序期間,分區閥103亦用來控制來自於清潔水源透過 反沖洗管104進入之清潔水的流向。或者反沖洗管104係 可由一獨立供給管獨立供應清潔用水(或流體或氣體)至外 部腔室112,並且/各個分區閥103可在安裝後改變三種位 置而得到下述效果:阻止流入物流入進料管105及反沖洗 管104内;當阻止反沖洗流流入時,讓流入物流入進料管 12 201105403 阻止流人物流人進料*iG5 β,但讓其流至反沖 >无管104内。 於第一圖所示之例示性實施態樣中,該進料仍係 为支成許多分支到數個進料口 111,該進料管105係安裝 分區閥103係位於允許流入物流入進料管105之^ 如十時成將流入物輸送至過濾筒109 a。於第-圖所述之 例不性實施態樣中,進料管105係分支到三個進料口。然 進料管⑽亦可安裝成分支到更多或更少的進料口 内,每個^料^或丄至3〇個)。再者’於相同離心過濾裝置 母個料官連結之進料口的數量係可改變。舉例來說, 顯不-種過料’係延著旋轉構件1()6的壁的配 Ο加如圖所示,該過濾筒109之配置交替設有3個立 =或2個立柱。各個該過濾筒1〇9之立柱係自一進料管1〇5 ^ = ^料口 U1進料。因此’第三圖例子中的進料管105交 也,、2個進料口或3個進料口連結。 第二圖僅意圖作為過濾筒109及進料口 ill的一種例示 生排列。該過遽裝置中的過據筒1〇9、進料口⑴、進料管 5 ^閥1〇3係可選擇性地以其他的交_列方式來進行安 :二舉例來說,該過濾筒1〇9及該進料管1〇5係可以相鄰 ^桂(verticd c〇i_)的過濾筒比例為n :㈣之交替模式配 ’其中η為1-20之整數,而父為〇_1〇之整數。進一步地, j據筒亦可沿著該旋轉構件廳之外壁以任何對稱的模 ^配置。進-步地’各個進料f 1()5係可與單一過渡筒 9連結。於進料f 105卜附加閥係可配置於相鄰的進料 山ill之間及/或該歧管之接合處係可位在該 圓筒106之頂 鹄,且在閥103之前。 進料管105之進料α 11!係固定於圓枉狀旋轉構件1〇6 壁上’並且各個進料口 1^能夠穿過該外壁而與單一過濾 201105403 筒109連結。各個過濾筒109之外形係可為管狀或圓柱狀, 其中該過濾筒109係配置於旋轉構件106外壁之外部上, 以使該過濾筒109之中心軸自旋轉構件106向外放射。各 個入口 111係與圓柱狀過濾筒109連結,使得該入口跟與其 連接之過濾筒109校直(例如:同心校直)。 第四圖A顯示過濾筒的例示性實施態樣。該過濾筒一 般係為具有中心轴之管狀形狀,其中橫切該中心軸之剖面 係可為任何的形狀(例如:正方形、矩形、圓形、橢圓形、 六角形、八角形、不規則的形狀[例如:使其符合某些尺寸 或透過安排使其環繞著中心體丨〇6]等),但該過濾筒較佳係 圓柱狀。該進料口 111係直接與過濾筒109之内部腔室連 結,該内部腔室一般係指多孔過濾器401的内部區域。該 内部腔室係以多孔過濾器401及在該過濾器401的一端或 兩端上的蓋子或密封元件來與該過遽筒的外部腔室(以外壁 402定義出)隔離。該多孔過濾器401亦係為具有中心軸之 管狀形狀,其中橫切該中心軸之刮面係可為任何各式各樣 的形狀(例如:正方形、矩形、圓形、橢圓形、六角形、八 角形等等),但該多孔過濾器401亦係圓柱狀為較佳。該密 封元件在過濾器401的近端具有供進料口 111伸入的開口, 在過濾器401的末端則具有濃縮物出口 112(當該濃縮物出 口 112之外徑係小於該過濾器4〇1内徑時)。該過濾筒的内 部與外部腔室的隔離僅讓滲透物(亦即過濾後之流體)穿過 該多孔過濾器401進入到該外部腔室,其中滲透物出口 113(其係與該外部腔室連結)係將滲透物輸送至收集器或收 集室。該多孔過濾器401之末端係與濃縮物出口 112連結, 於過濾進行期間(但是是在該流入物已經穿過該過濾器4 01 後),於多孔過濾器401内之濃縮物係可從濃縮物出口 112 被排出或被收集。 201105403 第四圖B顯示圓柱狀過濾筒之例示性的另一實施態 樣,其包含一於過濾膜内之螺旋狀或渦旋狀的插入物405。 於一種實施態樣中,插入物405的方向實質上係與流入物 進入膜401内部403的螺旋流相同。典塑地,該插入物係 固著及/或固定於過濾膜401的内部403内。該插入物4〇5 本質上係具有任何與第四圖過濾器或第一至二圖裝置的設 計相容的旋轉圈數(number of turn)。咸信該插入物405會連 同科氏力效應一起作用來增加流入物流經膜401内表面的 離心力及/或速度。 第五圖顯示過濾筒的另一實施態樣。該進料口 111係直 接與過濾筒的流入物接收室501連結。該接收室501係與 複數個多孔過濾器502連結,並且係與滲透物收集室5〇3 隔絕。該過濾器502係順著該滲透物收集室503的長度以 一個或多個圓柱狀同心排列之方式配置,或者,係以實質 上是呈平行(但有點不規則)排列之方式串在一起。此種排列 方式使流入物由接收室501流入多孔過濾器502’而該渗透 物流經該多孔過遽器502而流進渗透物收集室503。該多孔 過濾器502的末端係與濃縮物收集室504連結,於過遽進 行期間,多孔過濾器502内的濃縮物係可由濃縮物收集室 504來收集。為了降低多孔過濾、器502内出口的孔徑並增加 流體壓力,該多孔過濾器502係可具有變小的(pinched)、窄 化的或縮小的(drawn-down)末端。(相同的技術係可應用至 第四圖A的例示性過濾筒)。該濃縮物收集室504接收來自 每一個該過濾器502的濃縮物’並且其係與將該濃縮物排 出或輸送至外部位置(例如:使用幫浦或其他方式反進料 (feed back)至该流入物擔益102 ;參看第一至二圖)之濃縮物 出口 112連接。 該過濾、筒的外壁(例如·· 402或505)包含一剛性物質, 15 201105403 該剛性物質能夠禁得起該離心過濾裝置高速旋轉,且其實 質上並不會與滲透物反應。該外壁係包含一剛性聚合、玻 璃纖維或金屬(例如:不銹鋼)的殼體。該多孔過濾器401或 502係包含一孔徑為約0.0005到約0.1 μηι、約0.01到約1〇〇 μιη、0.1到約50 μιη、約1到500 μηι或任何其中之其他數 值範圍的多孔過濾膜。該多孔過濾器膜的孔洞分佈亦可為 由約 10 到約 10,000,000 pores/cm2、約 100 到約 1〇〇,〇〇〇 pores/cm2或任何其中的其他數值範圍。 該多孔過濾器係可由任何一些適合微過濾或超過濾應 用的材料製備而成。舉例來說,該多孔過濾膜係包含一纖 維的、聚合的材料及/或天然的疏水性材料,諸如:聚石風 (PS)、聚醚石風(polyethersulfone ; PES)、聚丙烯(PP,其適合 用來過遽氣體)或聚偏氟乙烯(PVDF)。舉例來說,雙壁式 (double-walled)的中空纖維超過濾膜(或其他包含中空纖維 之膜)係可由高度聚合材料(諸如本文中所述的)製成。這些 材料能夠提供堅固的(比單壁式中空纖維膜不易損壞)、幾乎 無缺陷的雙壁式纖維膜,其具有高的孔洞分布(例如:5〇〇 到2000孔洞/cm2),並且不會損害該膜之流通量。或者該過 濾膜亦可包含習知的奈米管材料(例如:奈米級的奈米碳 管,其孔徑係可為2 nm或更小;參看Holt等人,Science,vol. 312, May 19, 2006, p. 1034 ;其相關的部分以引用方式併入 本文内)。 第六圖A顯示被包含於過濾筒内的多孔過濾器620之 另一例示性實施態樣。該多孔過濾器包含一作用為支撐層 的牆構造體621,其具有大量的讓滲透物於過濾後流經多孔 膜層625後通過之孔洞622。複數個扣件624 (例如:螺栓) 係用來使多孔膜層625固定至具有一配置在螺栓624及牆 構造體621間的絕緣體623(選擇性具有金屬網篩626)之牆 201105403 構造體621上。或者/並且’該膜層係可使用習知的黏 來互相固定。該多孔膜層625可為一個將全部牆構造物621 完全覆蓋的片。或者,該多孔膜層625係可包含數片固 於牆構造物621不同部份的多孔材料(例如:金屬)。 該多孔膜層625係可包含一多孔金屬。該多孔金屬係 具有均勻的孔隙率。用於該多孔金屬的基底材料係包含 • 鎳、鈦、鉬、鉻、鈷、鐵、銅、錳、锆、鋁、鈮、錳、碳、 - 矽、鎢或其合金。舉例而言,該多孔金屬係可包含不銹^、 主要包含鎳與鉬以及選擇性一個或多個其他上述之金屬之 合金(例如:HASTELLOY耐腐蝕的金屬合金;由Haynes International購得)、或主要包含鎳與鉻、鈮以及選擇性一個 或多個其他上述之金屬之合金(例如:INC〇NEL金屬合金; 由 Special Metals Corp.購得)。 。、’ 該多孔膜層625的多孔金屬層係可透過一些技術來製 造。舉例來說’可將上述所列之一個或多個金^的粉末壓 緊而形成圓柱,接著燒結而得到一剛性構造物。戋者,萨 由傳統的方法製造出一片的金屬(metal 0Γ _此/,然後^ 熱並彎曲或鍛造成圓柱。於該多孔過濾器中的孔徑為次 微米到數百微米(例如:約0.1到500 μηι或任何於本申往^ 中所述之數值的其他範圍)。然而,以緊壓並燒結所製^ • 最小孔徑一般而自為約〇. 1 。但是,該多孔金屬的孔徑 係可藉由如下所述之方式進一步降低。 二 如第六圖B所示,該多孔金屬層625係可具有一沉積 於其上之薄層602。該薄層602係可以物理氣相沉積(p〇D) 法(選擇性於真空中進行),諸如高溫真空蒸發⑻非 temperature vacuum evaporation)或電激辅助濺渡沉積 (plasma-assisted sputter deposition)來沉積至該多孔金屬層 625上。於一例示性實施態樣中,該薄層6〇2包含用於形成 17 201105403 多孔金屬層625的相同金屬。於另一實施態樣中,係可使 用不同之金屬,諸如:鎳、鈦、鉬、鉻、銘、鐵、銅、猛、 錄、铭、碳、鶴或其結合。該薄層602係沉積至一無法覆 蓋該多孔金屬層625内孔洞604之厚度。因為沉積製程的 遮蔽效應(shadowing effect),所以少數的薄膜602會容易沉 積在多孔金屬層625内孔洞604的内部。因此,該薄金屬 層602於沉積製程間’容易圍著各個孔洞的開口 604逐步 沉積(build up) ’進而使開口 604變窄,而沒有使孔洞之内 部變窄。該超薄層602能夠使過濾器的孔徑減小到該經燒 結之多孔金屬層的下限(例如:從約〇 1到5 μηι)而變成孔徑 為約0.01至Ιμηι ’並且不會大幅減少通過該孔洞之流量, 因為除了開口 604之外,該孔徑仍然大致保持不變。 第六圖C顯示另一實施態樣,其中金屬顆粒層係沉積 在該多孔金屬層上’而非沉積在超薄層602上。於此實施 態樣中,金屬顆粒603係以陰極電弧沉積法(cath0dic are deposition)來沉積至多孔金屬層625上。該金屬顆粒係可包 含用於形成該多孔金屬層625的相同金屬。或者,如同前 面所述’可使用不同的金屬。相較於該孔洞的大小,該顆 粒的大小可為〇·〇5到〇 5 μηι。然而,該顆粒係無法覆蓋該 孔洞’而是附著至多孔金屬層625的水平面,使靠近表面 的孔洞開口 604變窄。又或者,係可將一薄金屬網篩附著 至該多孔金屬層。係可將複數個細小的網篩層一起編入或 加入而形成一薄金屬網篩過濾器,並附著至該多孔金屬層 的内側。 本文中所述之過濾膜(例如:第六圖Α至第六圖c的結 構)係提供一具有报大強度及财用性之過濾、器,該過遽器能 夠過濾很細小的顆粒而不會有在穿過該過濾膜後有顯著的 壓力下降之情形發生。另外,通過變窄的孔洞開口 604的 201105403 流入物中之顆粒將會變 m201105403 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to a gas or fluid filtration system that has one or more particles for filtering gases and/or fluids (eg, water) to contain particles therein. Device for material removal. The invention also relates to a method of making the device and a method of filtering gases and/or fluids using the device. In the present invention, the present invention relates to a method of producing a metal over-treasure film. More particularly, embodiments of the present invention relate to generating centrifugal force and/or utilizing a Coriolis effect to pass a gas or fluid to be filtered through a porous membrane or filter within the apparatus, thereby allowing particulate matter and gas. Or a device and method for separating liquids. [Prior Art] Microfiltration, ultra-filtration and reverse osmosis are all related to the physical separation of particulate matter in a fluid. In general, particulate contaminants can be removed by mechanical filtration that provides a filter with small enough pores to remove the particles. Substances that are larger than the pores in the membrane are completely removed, and some of the material smaller than the pores of the membrane are removed. Depending on the structure or structure of the refuse layer or the overlying layer on the membrane. In the case of water purification (e.g., industrial water, municipal water, and/or domestic water purification), the extent to which dissolved solids, turbidity, microorganisms, and ions are removed depends on the size of the pores within the membrane. The seventh figure provides a gauge of various apertures and/or size ranges' and the type of fluid within the fluid (e.g., particulate matter) that can be filtered by a filtered membrane having a defined pore size. The micro-pass system uses a membrane having a pore size of 0.1 to 10 μm, which is almost capable of removing all bacteria in the water to be filtered. The pore size of the ultrafiltration (UF) membrane is typically in the range of 〇.〇1~〇.1〇μm, and it is effective in moving bacteria, most of the viruses, colloids (eg, wrong) and sediments of 201105403 except. The separation efficiency increases as the pore size of the filter increases, but higher pressure is required to continue to flow through the filter. Therefore, the smaller the pore size of the filter, the higher the need for a high pressure pump or other high pressure tool. . Such devices typically require and consume a significant amount of energy to allow the filtration process to proceed, and require more sophisticated and/or expensive techniques to clean the filter. A method generally used to separate solids from a liquid comprises passing the solid and liquid mixture through a tubular membrane or filter. For example, such filters are typically used in reverse osmosis procedures. Such separation procedures require the use of high fluid pressure to cause liquid to flow through the filter, which causes the liquid to be contaminated and separated, typically using a high pressure pump to generate high fluid pressure, which produces a suitable filtration pressure. At the time, especially when the amount of particulate matter is increased, a large amount of energy 4 is consumed, so that a more effective fluid filtering device is required. Flow = _ material =: machine: ; = = the machine rotates around the center of the drive shaft = = the device is applied to carry out other such as decadent C, however, this agent 'medicine and blood system. 0 In the process of recycling and recycling, 'technically encounters several kinds of ϋ'. The operation of water purification in the industry d separates the heart of particulate pollutants in water: it is in the waste water, it will pass through an inseparable waste water. Department = Systematic, structurally efficient and improved roundabout efficiency, expandable 201105403 scalability and easier to clean way to separate particulate matter from relatively high volume fluids or gases. SUMMARY OF THE INVENTION / Embodiments of the present invention relate to a system (eg, a water or gas helium system) and a method for enabling the same, which is capable of effectively removing particulate matter from a fluid or gas' and is relatively easy to clean. . Other embodiments of the present invention relate to methods of making the aging of the present invention, as well as methods of making modified metal filters suitable for use in "like filtration systems." An aspect of the gland-Γ2 month provides a means for filtering out particulate matter in a continuous operation to solve or overcome the _ and/or restriction devices encountered in the above-described apparatus and method. And the invention of the present invention provides a novel method for separating the particulate matter in the gas and/or fluid to be purified by using the centrifugal force or the Coriolis effect. A first aspect of the invention relates to a filter comprising one or more filters, the device comprising _ for receiving the input of a streamer: the center of rotation of the two inflowing unit, the shaft or the shaft The m-allocation unit is adapted to receive the inflow: out:=received: and a plurality of filters are radially extended by the central receiving tube, and the device is configured to surround the body in an annular manner. And the plurality of tubes, each of the filters having an inlet for receiving the discharged influent, a concentrate for the J = or a chamber, each of the outer chamber loops The second permeate, a plurality of permeate collection tubes, each of the permeate collection tubes 201105403 and the external chamber are coupled to the external chamber and are installed to facilitate the permeate self-driving The concentrate is conveyed from the filter 11; and the π-second motor is mounted for rotating the rotating center body and the passing (for example, rotating along the central axis). In the aspect, the present invention relates to a transitional inflow to the secondary t method / The method includes transporting the influent into the one or more filtration systems, having a central centrifugal drum or other object and an influent distribution unit, wherein the influent distribution unit is suitable for use Transferring the influent to a plurality of filters extending radially from the central body, the plurality of filters each having a suitable end for the passage of the concentrate, and one or more porous tubular membranes having a pore size of up to about 5 μm Rotating the center body at a rate sufficient to filter the influent through the porous tubular membrane; and collecting the permeate in the one or more outer chambers surrounding the filter. The third aspect of the present invention relates to a A method of making a filter device, comprising: connecting each of a plurality of filters in a ring-like manner to a corresponding plurality of tubes extending from a center receiving tube in a center roller or other object; Having a porous tubular membrane adapted to pass the end of the concentrate and one or more pore sizes up to about 500 μm; along one or more of the filtration One or more external chambers are disposed around the external chambers for collecting permeate through the filter; and a first outlet tube is coupled to each of the external chambers, the first outlet tube being suitable for use Collecting the permeate; connecting the second outlet tube to the end of the filter or to the end of the outer chamber, the second outlet tube being adapted to collect the concentrate; and operating the drive mechanism or motor with The center body is coupled, and the drive mechanism or motor is mounted to rotate the rotating center body. 201105403 The present invention successfully developed water purification for wastewater treatment, domestic water purification, industrial solvent recovery, industrial effluent gas scrubbing and/or recycling, purification of pharmaceutical and blood products, and food industry. And energy-saving filtration systems for other filtration applications of the aforementioned uses. Several embodiments of the filtration system and methods of use thereof are described herein. In some applications (e.g., wastewater treatment), the present invention can increase filtration efficiency (e.g., energy efficiency). The present invention also provides a technique for the relatively easy cleaning of such devices, systems and methods. These and other advantages of the present invention will become more apparent from the following detailed description of the embodiments of the present invention. [Embodiment] References are set forth in the various embodiments of the present invention. (4). The present invention, together with the embodiments, is intended to be construed as limiting the scope of the invention to the scope of the invention. Replacement, change and equality: 2 details: However, the prior art has the general knowledge:: Unnecessarily obscuring the aspect of the present invention, the value of the present invention is not limited, and is not limited to the specific descriptions described herein; Two soils; for simple purposes, unless = two: r, i. links,,, :.············································ The meaning of $ is to explain. Based on the convenience and Jane Silver's “all, „53⁄4 I two a, part”, and '' parts, they can be used interchangeably, but these terms are generally explained in the accepted meaning in the field. In addition to ^ from the context of its use, otherwise referred to, otherwise the terms "known,", "fixed", "designated", "determined," and "predetermined, general Index value, number of heart parameters, constraints, conditions, states, procedures, steps, methods, practices, or a combination thereof, in other words, 'theoretically variable, but usually pre-set, then in use It will not change. Embodiments of the present invention are directed to a filtration system (e.g., a gas or fluid filtration system, such as: water filtration, systems) capable of effectively removing particulate matter from a fluid or gas, and methods of use thereof. Various aspects of the invention will be described in more detail with reference to the exemplary embodiments hereinbelow. Illustrative Fluid Filtration System Embodiments of the present invention relate to a filtration system comprising one or more centrifugal filtration devices. Each filtration device includes an inlet for receiving an influent to be filtered; a central roller or other object having an influent distribution unit therein; a plurality of filters configured to surround the central body in an annular manner; one or more external chambers; a plurality of outlet tubes; and a drive Mechanism or motor. The influent distribution unit typically has a central receiving tube for receiving the influent and a plurality of delivery tubes extending radially from the central receiving tube. Each filter is typically connected to one of the plurality of delivery tubes and has an inlet for receiving the influent from the transfer tube, a passage for the concentrated influent ("agriculture, an object"), and One or more porous tubular crucibles having a pore size of up to about 50 (m). The filtration device generally further comprises one or more external chambers, each of which surrounds one or more of the filters, each external chamber The chamber is typically configured to collect permeate through the filter. The filter device 〜201105403 also includes a plurality of first outlet tubes, each of the first outlet tubes being associated with the outer chamber for collecting the permeate One of the connections, and the plurality of second outlet tubes' each of the second outlet tubes are coupled to one of the filters or one of the outer chambers (ie, away from the rotating center body) It is used to collect the concentrate. The overburden also includes a drive mechanism or motor mounted to rotate the center body and the filter. The filter device of the present invention is used to remove gas or The particulate matter in the body is suitable for some filtration and purification fluid applications. For example, the device can be used for wastewater treatment, domestic water purification, industrial solvent recovery, industrial waste gas washing, pharmaceutical and blood product purification, food industry Water purification, and other filtration applications for the foregoing purposes. The first figure provides a radial cross-sectional view of an exemplary embodiment of a centrifugal filtration, apparatus. The exemplary filtration apparatus can include a plurality of separate centrifugal filtration devices. In the application of the filtration system, the number of filtration devices in the filtration system must be sufficient to meet the minimum threshold and average amount of process gas or fluid. For example, the fluid filtration system presented in the drawings can be used for domestic water. Purification. In such applications, a single centrifugal filtration device is sufficient to provide, for example, 100 to 2000 liters of purified drinking or irrigating and/or washing water per day in a single household. However, in municipal water treatment plants, depending on The size of the area served by the water treatment plant, the fluid filtration system can contain tens to several A filtration unit that provides 500,000 to 10,000,000 or more liters of purified water per day. The filtration system described herein is widely used in filtration and purification applications. The number of units contained in the fluid filtration system depends on The need for its application. The filtration device can be installed to filter fluid influx, the fluid influent system can comprise an aqueous and/or organic fluid, which can comprise solid and/or particulate matter. The filtration system can be installed to filter out particulate matter in the polluted water in the wastewater treatment plant, or can be used to purify the solvent containing the precipitated contaminant. Used to filter gas influx (for example, from the chemical treatment zone or the treatment of the exhaust to the ash, from the coal stove or oil-based furnace (〇 ^ _ ^ ^ ^ ^ ^) or waste incinerator exhaust gas, etc.) Particulate matter. . Each of the filtering devices has a rotating or rotating member 106 of a cylindrical or annular shape (such as a cylinder or an annulus) as shown, which is continuously rotatable during the filtering process. The way to install. The first figure shows a cross-sectional view of the filter system along the center line of the center line aligned with the axis of rotation 108. The rotating member 1〇6 (e.g., a cylinder) is coupled to the rotating shaft 108 and is branched by the rotating shaft 1〇8. The rotating car: The 108 series is disposed on the engine 1〇7 for rotating the rotating shaft 1〇8. The addictive 107 can rotate the rotating shaft 108 at any desired speed (e.g., between 〇 to about 3000 RPM, 200 to 1200 RPM, or any other range therein). In an exemplary embodiment, the diameter of the rotating member 1 6 can be 50 to 200 cm, 1 to 5 meters, 3 to 15 meters, or any other range suitable for a particular application. The size of the squat cylinder and the rotational speed applied to the cylinder can be varied or designed to provide an efficient operation of the pressure system relative to the output of a similar amount of purified fluid or gas to reduce energy consumption. The centrifugal filter device further includes an influent inlet 1〇1 that is aligned with the center of the rotating member 106 and the rotating shaft 108. The influent 〇1〇 is installed to infiltrate a fluid (eg, water or an organic solvent) or a gas (eg, C02) contaminated with particulate matter (eg, sediment, heavy metals, organic solids, microorganisms, etc.). , C〇, N2, 〇2, air, Ar, etc.) are delivered to the system of pipes and filters disposed on the rotating member hall. As shown in the first figure, an exemplary water filtration system can include an inflow blocker 102 (mflUentCatch', i.e., a central receiving tube) for receiving influent from the influent inlet or supply line 101. However, any of the Vapor 11 201105403 body or gas systems may be filtered or purified by the same device (which may be slightly modified by one of ordinary skill in the art). The inflow stopper 102 is aligned with the center of the rotating member 106 and the rotating shaft 108. The centrifugal filtration device can further comprise a source of clean water (not shown) for supplying clean water through the inlet 101 during the backwashing process, as described in the description of the exemplary filtration method described below. As shown in the first figure and the second figure A, the inflow stopper 1 2 is connected to a plurality of radial ducts 102A. The radial duct 1 2A is radiated from the inflow block 102. Generally, the radial duct 1 〇 2 is radiated along a single horizontal plane at the end of the inflow block 102. The radial ducts 102A are arranged in a symmetrical manner so as to be evenly distributed along the circumference of the inflow body 102. For example, there are 4 to 24 (e.g., 4, 6, 8, 12, or 16) transport tubes 102A extending radially from the inflow blocker 1〇2. Each of the radial ducts is connected to a set of pipes (e.g., 1〇4, 105) and valves (e.g., 103) that are installed to transport the influent to the plurality of filter cartridges 109. For example, the radial delivery tubes 102A are each coupled to a feed tube 105 and a backwash tube 1〇4. The radial ducts 102A are each connected to a divisional valve 103 (for example, a three-way valve). As shown in the first figure, the zoned valve 103 is located at the junction of each of the radial delivery tubes ι2 and the feed tube 105 and the backwash tube 104. The zoned valve 1〇3 is used to control the flow of the inflow from the radial transfer pipe 102A to a set of feed pipes 1〇5. The zoned valve 103 is also used to control the flow of clean water from the clean water source through the backwash line 104 during the backwashing process. Alternatively, the backwashing tube 104 can independently supply cleaning water (or fluid or gas) to the external chamber 112 by a separate supply tube, and / each of the partition valves 103 can change three positions after installation to obtain the following effects: In the feed pipe 105 and the backwash pipe 104; when the backwash flow is prevented from flowing in, let the inflow flow into the feed pipe 12 201105403 to prevent the flow person from feeding the feed *iG5 β, but let it flow to the backwash > 104 inside. In the exemplary embodiment shown in the first figure, the feed is still branched into a plurality of feed ports 111, and the feed pipe 105 is installed with a zoned valve 103 located to allow inflow of the feed into the feed. The tube 105 is conveyed to the filter cartridge 109a at ten o'clock. In the exemplary embodiment described in the first embodiment, the feed tube 105 is branched to three feed ports. However, the feed tube (10) can also be installed to branch into more or fewer feed ports, each of which can be smashed or smashed to 3 )). Furthermore, the number of feed ports connected to the same centrifugal filter unit can be varied. For example, the display of the filter material 109 is alternately provided with three vertical = or two uprights as shown in the figure. The columns of each of the filter cartridges 1〇9 are fed from a feed pipe 1〇5 ^ = ^ port U1. Therefore, the feed pipe 105 in the example of the third figure is also connected, and the two feed ports or the three feed ports are connected. The second drawing is only intended to be an exemplary arrangement of the filter cartridge 109 and the feed port ill. The over-cylinder 1〇9, the feed port (1), the feed pipe 5, and the valve 1〇3 in the passing device can be selectively installed in other ways: for example, the filtering The barrel 1〇9 and the feeding tube 1〇5 series can be adjacent to each other (verticd c〇i_) filter cylinder ratio is n: (four) alternating mode with 'where η is an integer of 1-20, and the father is 〇 _1〇 integer. Further, the j cylinder can also be arranged in any symmetrical mode along the outer wall of the rotating member hall. Each of the feeds f 1 ( ) 5 can be joined to a single transition cylinder 9 . The feed valve 105 can be disposed between adjacent feed hills ill and/or the joint of the manifold can be positioned at the top of the cylinder 106 and before the valve 103. The feed α 11! of the feed pipe 105 is fixed to the wall of the circularly-shaped rotating member 1〇' and the respective feed ports 1^ can pass through the outer wall to be coupled with the single filter 201105403. The outer shape of each of the filter cartridges 109 may be tubular or cylindrical, wherein the filter cartridge 109 is disposed on the outer side of the outer wall of the rotating member 106 such that the central axis of the filter cartridge 109 radiates outward from the rotating member 106. Each of the inlets 111 is coupled to the cylindrical filter cartridge 109 such that the inlet is aligned with the filter cartridge 109 connected thereto (e.g., concentrically aligned). Fourth panel A shows an exemplary embodiment of a filter cartridge. The filter cartridge is generally a tubular shape having a central axis, wherein the cross section transverse to the central axis can be any shape (for example: square, rectangular, circular, elliptical, hexagonal, octagonal, irregular shape) [For example: make it conform to certain sizes or arrange it to surround the center body 6], etc.), but the filter cartridge is preferably cylindrical. The feed port 111 is directly coupled to the internal chamber of the filter cartridge 109, which generally refers to the interior region of the porous filter 401. The internal chamber is isolated from the outer chamber (defined by outer wall 402) of the overtube by a porous filter 401 and a cover or sealing member on one or both ends of the filter 401. The porous filter 401 is also a tubular shape having a central axis, wherein the scraping surface transverse to the central axis can be any of a wide variety of shapes (eg, square, rectangular, circular, elliptical, hexagonal, An octagonal shape or the like), but the porous filter 401 is also preferably cylindrical. The sealing member has an opening at the proximal end of the filter 401 through which the feed port 111 extends, and at the end of the filter 401 a concentrate outlet 112 (when the outer diameter of the concentrate outlet 112 is smaller than the filter 4) 1 inner diameter). The isolation of the interior of the filter cartridge from the external chamber only allows permeate (i.e., filtered fluid) to pass through the porous filter 401 into the external chamber, wherein the permeate outlet 113 (which is coupled to the external chamber) Linking) delivers the permeate to the collector or collection chamber. The end of the porous filter 401 is coupled to the concentrate outlet 112 during the filtration (but after the influent has passed through the filter 410), and the concentrate in the porous filter 401 can be concentrated. The object outlet 112 is discharged or collected. 201105403 Figure 4B shows an alternative embodiment of a cylindrical filter cartridge that includes a helical or vortex insert 405 within the filter membrane. In one embodiment, the orientation of the insert 405 is substantially the same as the spiral flow of the influent into the interior 403 of the membrane 401. Typically, the insert is affixed and/or secured within the interior 403 of the filter membrane 401. The insert 4〇5 essentially has any number of turns that are compatible with the design of the fourth or second to second device. It is believed that the insert 405 acts in conjunction with the Coriolis effect to increase the centrifugal force and/or velocity of the influent stream through the inner surface of the membrane 401. The fifth figure shows another embodiment of the filter cartridge. The feed port 111 is directly connected to the inflow receiving chamber 501 of the filter cartridge. The receiving chamber 501 is coupled to a plurality of porous filters 502 and is isolated from the permeate collection chamber 5〇3. The filters 502 are arranged in a concentric arrangement of one or more cylindrical shapes along the length of the permeate collection chamber 503, or are strung together in a substantially parallel (but somewhat irregular) arrangement. This arrangement causes the influent to flow from the receiving chamber 501 into the porous filter 502' and the permeate flows through the porous buffer 502 into the permeate collection chamber 503. The end of the porous filter 502 is coupled to a concentrate collection chamber 504, and the concentrate in the porous filter 502 can be collected by the concentrate collection chamber 504 during the passage of the crucible. In order to reduce the pore size of the outlet in the porous filter 502 and increase the fluid pressure, the porous filter 502 can have a pinched, narrowed or drawn-down end. (The same technique can be applied to the exemplary filter cartridge of Figure 4A). The concentrate collection chamber 504 receives the concentrate 'from each of the filters 502' and discharges or delivers the concentrate to an external location (eg, using a pump or other means of feeding back to the Influent benefit 102; see first to second) concentrate outlet 112 is connected. The filter, the outer wall of the cartridge (e.g., 402 or 505) contains a rigid substance, 15 201105403. The rigid material can withstand the high speed rotation of the centrifugal filter device and does not substantially react with the permeate. The outer wall comprises a rigid polymeric, glass fiber or metal (e.g., stainless steel) housing. The porous filter 401 or 502 comprises a porous filter membrane having a pore diameter of from about 0.0005 to about 0.1 μm, from about 0.01 to about 1 μm, from 0.1 to about 50 μm, from about 1 to 500 μm, or any other range of values therein. . The porous filter membrane may also have a pore distribution of from about 10 to about 10,000,000 pores/cm2, from about 100 to about 1 Torr, 〇〇〇 pores/cm2 or any other range of values therein. The porous filter can be made from any material suitable for microfiltration or ultrafiltration applications. For example, the porous filter membrane comprises a fibrous, polymeric material and/or a natural hydrophobic material such as: polyphenol (PS), polyethersulfone (PES), polypropylene (PP, It is suitable for use in helium gas) or polyvinylidene fluoride (PVDF). For example, a double-walled hollow fiber ultrafiltration membrane (or other membrane comprising hollow fibers) can be made from a highly polymeric material, such as described herein. These materials provide a robust (near-walled hollow fiber membrane that is less susceptible to damage), a virtually defect-free double-walled fiber membrane with a high pore distribution (eg, 5 to 2000 holes/cm2) and will not Damage to the throughput of the film. Alternatively, the filter membrane may also comprise a conventional nanotube material (for example, a nanometer carbon nanotube having a pore size of 2 nm or less; see Holt et al., Science, vol. 312, May 19). , 2006, p. 1034; the relevant parts of which are incorporated herein by reference. A sixth embodiment A shows another exemplary embodiment of a porous filter 620 that is contained within a filter cartridge. The porous filter comprises a wall structure 621 acting as a support layer having a plurality of holes 622 through which the permeate passes through the porous membrane layer 625 after filtration. A plurality of fasteners 624 (e.g., bolts) are used to secure the porous membrane layer 625 to a wall 201105403 having a body 623 (selectively having a metal mesh screen 626) disposed between the bolt 624 and the wall structure 621. on. Alternatively, and/or the film layers can be secured to one another using conventional adhesives. The porous membrane layer 625 can be a sheet that completely covers all of the wall structure 621. Alternatively, the porous membrane layer 625 can comprise a plurality of porous materials (e.g., metals) that are affixed to different portions of the wall structure 621. The porous membrane layer 625 can comprise a porous metal. The porous metal has a uniform porosity. The base material for the porous metal comprises: nickel, titanium, molybdenum, chromium, cobalt, iron, copper, manganese, zirconium, aluminum, lanthanum, manganese, carbon, - lanthanum, tungsten or alloys thereof. For example, the porous metal system may comprise stainless steel, an alloy mainly comprising nickel and molybdenum, and optionally one or more other metals (eg, HASTELLOY corrosion resistant metal alloy; available from Haynes International), or It mainly comprises nickel and chromium, niobium and an alloy of one or more other metals as described above (for example: INC〇NEL metal alloy; commercially available from Special Metals Corp.). . The porous metal layer of the porous membrane layer 625 can be made by some techniques. For example, the powder of one or more of the above-listed gold powders may be pressed to form a cylinder, followed by sintering to obtain a rigid structure. The latter, Sa is made by a traditional method of metal (metal 0Γ _ this /, then ^ heat and bent or forged into a cylinder. The pore size in the porous filter is from submicron to hundreds of microns (for example: about 0.1 Up to 500 μηι or any other range of values stated in this application. However, the minimum pore size is generally determined by compaction and sintering. However, the pore size of the porous metal is Further reduced by the means as follows: As shown in Figure 6B, the porous metal layer 625 can have a thin layer 602 deposited thereon. The thin layer 602 can be physically vapor deposited (p The 〇D) method (selectively performed in a vacuum), such as high temperature vacuum evaporation (8) non-temperature vacuum evaporation or plasma-assisted sputter deposition, is deposited onto the porous metal layer 625. In an exemplary embodiment, the thin layer 6〇2 comprises the same metal used to form 17 201105403 porous metal layer 625. In another embodiment, different metals may be used, such as: nickel, titanium, molybdenum, chromium, indium, iron, copper, fierce, ruthenium, methane, crane, or combinations thereof. The thin layer 602 is deposited to a thickness that does not cover the holes 604 in the porous metal layer 625. Because of the shadowing effect of the deposition process, a small number of films 602 can easily deposit inside the holes 604 in the porous metal layer 625. Therefore, the thin metal layer 602 is gradually built up along the opening 604 of each of the holes during the deposition process to further narrow the opening 604 without narrowing the inside of the hole. The ultra-thin layer 602 can reduce the pore size of the filter to the lower limit of the sintered porous metal layer (for example, from about 〇1 to 5 μηι) to a pore size of about 0.01 to Ιμηι′ and does not substantially reduce The flow of the holes, because in addition to the opening 604, the aperture remains substantially unchanged. A sixth embodiment C shows another embodiment in which a layer of metal particles is deposited on the porous metal layer rather than deposited on the ultra-thin layer 602. In this embodiment, the metal particles 603 are deposited onto the porous metal layer 625 by cathodic arc deposition. The metal particles may comprise the same metal used to form the porous metal layer 625. Alternatively, different metals may be used as previously described. The size of the granule may be from 〇·〇5 to 〇 5 μηι compared to the size of the hole. However, the particles are unable to cover the hole 'but adhere to the horizontal plane of the porous metal layer 625, narrowing the hole opening 604 near the surface. Alternatively, a thin metal mesh screen may be attached to the porous metal layer. A plurality of fine mesh layers may be incorporated or added together to form a thin metal mesh filter and attached to the inner side of the porous metal layer. The filter membranes described herein (for example, the structures of the sixth to sixth panels c) provide a filter having a large strength and a usefulness, and the filter can filter very fine particles without There will be a significant pressure drop after passing through the filter membrane. In addition, the particles in the 201105403 influent through the narrowed opening 604 will become m

604變窄的沉積製㈣问難在孔洞内阻塞,因為於開Q 部的吉^ It 間,該孔洞的内部實質上仍保有其内 率。二 ,減少清洗的停機時間,並改善過濾的故 、-』Ϊ縮:勿出口 112(參看例如:第-圖至第二圖A)係與 、,⑶ Η中的一個連結。該離心過濾裝置係 —進料管⑽戶斤進料的全部過遽筒109係 119連結。因此,各㈣狀輸送管 ’、4接丨二—單一濃縮物收集管119連結,如第一圖 第二圖A所示。各濃縮物收集管119在其排出的末端包 3關斷閥120 ’以控制該濃縮物的流向。將關賴12 分地關閉會對通過賴t⑽的流人物引起或產生背壓, 進而增加回收作為滲透物之流入物的數量或比例。 ,複數個濃縮物收集管119之排放端係置於圓形濃縮 ,擋器116内,如第一圖所示。該濃縮物擋器116環繞著該 旋轉構件106,進而在該旋轉構件1〇6於過濾程序進行期間 旋轉時,使自濃縮物收集管i 19流出之濃縮物能連續地流入 該濃縮物擋器116。或者,該濃縮物收集管119係可向内彎 曲(朝該圓筒106下方)至濃縮物擋器116,使其更能夠以同 心之方式位於該圓筒106下而更容易收集濃縮物。該濃縮 物係可被分離、收集在專用的濃縮物收集器或收集槽(未顯 示)内,並使用作為本文中所述的。或者或另外,該濃縮物 係可再循環回到流入物擋器102進一步過濾,再重新得到 經純化之流體或氣體。 該滲透物出口 113係與複數個滲透物收集管ι18中的— 個連結。該離心過濾裝置係可安裝成,能夠使以單一進料 管105進料的全部過濾筒109與單一滲透物收集管118連 結。因此,各放射狀輸送管102A係可間接地與單一渗透物 201105403 收集管118連結(其間具有一多孔過濾膜62〇)。各滲透物收 集管包含一關斷閥114 ’其係位在該滲透物收集管us的排 放端’以控制該滲透物的流向。該滲透物收集管118的排敌 端係置於圓形滲透物捕集器115内,如第一圖所示。該滲透 物捕集器115係環繞著該旋轉構件106,因而使該旋轉構件 106於進行過濾期間旋轉時,自滲透物收集管118流出之渗 透物能夠連續流入該滲透物捕集器U5中。該滲透物收集管 118係可向内彎曲(朝該圓筒1〇6下方)至滲透物捕集器 115 ’使其更能夠以同心之方式位於該圓筒1〇6下而更容易 收集渗透物。該滲透物係可收集於專用的滲透物收集器或 收集槽(未顯示)内’並使用作為本文中所述的。或者,該滲 透物係可再循環回流入物擋器102内,供本文中所述之清 潔程序中使用。 前述離心過濾裝置之全部組件(除了滲透物捕集器115 及濃縮物擋器116外)接係直接抑或間接固定在旋轉構件 106上’或直接抑或間接與旋轉構件ι〇6連結,因此該些組 件係安裝成能隨著該旋轉構件106旋轉。應了解前面所述 之該流體過濾系統的實施態樣並非用來將其限定於所述之 組件及配置。不牴觸的變化係可與相關領域中已知的技術 相混合、相配合及相結合。 該過濾系統係可進一步包含一監測器,其係安装成用 來測定該滲透物及/或濃縮物的流速及/或流通量(選擇性作 為,轉速率或速度的函數)。該過濾系統係可進一步包含第 一现測器,其係安裝成用來測定滲透物中之粒徑分布,選 擇性作為旋轉速率或速度及/或該流入物化學特性的函數。 第八圖顯示本發明過濾系統之另一實施例,其中其内 實質上與第一圖中對應的結構及/或特徵相同之結構及特徵 係具有相同的元件符號,並且其内與第一圖中對應的結構 20 201105403 及/或特徵相似之結構及特徵’於元件符號中係具有相同的 最後兩個數字(不包含元件符號中之任何最終字母)。接下來 將說明第一圖及第八圖之系統之間的差異。 第八圖的過濾系統包含第一、第二及第三過濾器 809a、809b及809c,其分別具有第一、第二及第三膜,而 該些膜分別具有第一、第二及第三孔徑。於/種實施例中, 該第一孔徑係比該第二孔徑大,而該第二孔徑係比該第三 孔徑大。雖然係顯示這樣的3種過遽階段,但任何比1大 之階段數皆可以同樣之方式安裝。 進料口 811a係提供進料流體或氣體至第一過濾器 809a。第一滲透物收集管813a係將來自該第一過濾器809a 之滲透物傳送至該第二過濾器809b的進料口 811b,而該第 二滲透物收集管813b則係將來自第二過濾器809b之滲透 物輸送至該第三過濾器809c的進料口 811c。滲透物收集管 113的輸出係可以閥114控制,而收集於滲透物捕集器ι15 内之滲透物之流速、粒徑及/或固含量係可以一個或多個監 測器822監測。 該第一、第二及第三過濾器809a、809b及809c係分 別具有配備有濃縮物收集管819a、819b及819c之濃縮物出 口 812a、812b及812c。該對應過濾膜内部内的濃縮物流速 及/或壓力係可以閥820a、820b及820c控制。相似地,收 集於濃縮物擋器816a、816b及116中的濃縮物的流速、粒 徑及/或固含量係可以一個或多個監測器821a、821b及821c 監測。係可將自監測器821a、821b、821c及822而來之資 訊提供予控制器或微處理器(未顯示出)’然後其係可從接收 到之資料來打開、關閉或調整閥103、114、820a、820b及/ 或820c (以及流入物進入流入物入口 1 〇 1之流向)中的任___ 個閥來透過裝置内的各種零件及/或位置來控制氣體或流體 21 201105403 之流向。 上述之過濾、系統提供了-種利用該旋轉構— 該中央線爾(如第-圖及H中所示)旋轉 06 = 心力來將液體或氣體中之顆粒過濾出之方法。之離 滤筒之設計及配置考慮到該科氏效應會引起該:物;: 實質上與各過滤統内個料濾器之中心校直的二 流。該過濾器内流入物之螺旋橫向流動(如科氏效應^结#果疋 會使流入物進一步施加壓力在該多孔過濾臈之内^上二 而更有效率地對該流入物進行過濾,並且該流 橫向流動實質上會沖走於過濾程序進行期間堵住 膜之任何固體或其他阻塞其孔洞之任何固體,進而增加該 過濾筒的使用時間。 a μ 例示性的製造流體過濾系統之方法 根據本發明的實施態樣,一種製造過濾裝置之方法係 包含將複數個圓柱狀過濾器中的每一個以環狀方式與對麻 之複數個輸送管連接’其中該複數個輸送管係自中心體内 之中心接收管放射狀延伸出,各個該過濾器係具有一適合 讓濃縮物通過之末端及一個或多個孔徑約0.1至500μηι之 多孔膜;沿著一個或多個該過濾器之周圍放置一個或多個 外部腔室’各外部腔室係安裝成用來收集通過該圓柱狀過 濾器之滲透物;將一出口管與各個該外部腔室連接,各個 出口管係安裝成用來將自該過濾裝置之該滲透物傳送出(例 如:到儲存槽(holding tank));及操作上將驅動機構或電動 機與該中心體結合,該驅動機構或電動機係安裝成用來旋 轉該中心體。以該方法形成之離心過濾裝置係用來移除流 體或氣體中之微粒物質,並特別適合一些過濾及純化流體 (諸如:水)之應用。舉例來說,該裝置係被利用於城市或其 22 201105403 他區域之廢水處理、家用水純化'工業溶劑回收、藥品及 血液製品純化、工業廢氣洗滌、純化特殊氣體、食品工業 的水純化、以及前述用途之其他過濾應用方面。 該旋轉構件106(其係可為圓柱形、圓環形或其他適合 轉動的形狀,並立其直徑舉例來說係在50至200公分)係被 架設在或被連結在該旋轉軸上,或被該旋轉軸108支 撐。該旋轉軸108係架設在一電動機107上,該電動機107 係以能夠使該旋轉軸108轉動或旋轉之方式安裝。該電動 機107能夠以0炱約3000 rpm (或如本文中所述的其他速 度)旋轉該旋轉軸108。係可選擇或設計該旋轉構件106的 尺寸以適合該離心’取嗯衣罝的應用.伏向双久, 減少能耗之系統。該電動機107主要是習知的,因此,於 一個步驟内,製造本過濾裝置之方法係包含裝設該中心旋 轉構件108至該電動機中的配件内’或組裝該中心旋 轉構件108及該電動機1〇7 ’以使該電動機ι〇7能夠在低 速或高速(如本文中所述的)下旋轉或轉動構件^〇6。 該流入物入口 1〇1係與該旋轉構件106及該旋轉軸1〇8 之中心校直。該流入物入口 101係可與帶有待過濾之流入 物流體(例如:廢水)源頭及用於反沖洗程序之清潔用流體 (例如:過雜的水)源頭之管連接,或係可與容納有待^慮 之流入物流體(例如:廢水)源頭及用於反沖洗程序之 ^ 流體(例如:减後的水)_之容器連接。於—例示性^ =樣中,該流人物入口 1G1係蚊的,因此其 = 106: Γ?旋轉構件106自由轉動。然而, 可直·於該流人_1()2上或直 架設在該旋轉構件106上的昝芬讲凉哭4 β 109 0 ^^^ 23 201105403 構件106的最上面表面連結,以致使該流入物擋器102與 該主體106、旋轉軸108及/或流入物入口 1〇1之中心校直 (例如:同心校直)。此外,該流入物擋器102之直徑係比 該流入物入口 101之直徑寬,而該流入物入口 101係套疊 在流入物擋器102内,使該流入物擋器102實質上是收集 自流入物入口 101流入的全部流入物。 該流入物擋器102係與複數個放射狀輸送管102A連 結’如本文中其他處所述◊該放射狀輸送管102A係以對稱 形式’自該流入物擋器102之末端實質上沿著水平面放射 出’使其沿著該流入物檔器102周圍均勻分布。接著各放 射狀輸送管102A係與閥103連結,該閥103係安裝在一反 沖洗或清潔管104及流入物歧管1〇5上,該流入物歧管105 係以能夠將流入物輸送複數個過濾筒1〇9中之方式安裝。 閥103係與放射狀輸送管i〇2A、該進料管1〇5及該反 沖洗管104連結《該三向閥1〇3係位於輸送管102A與進料 ,105及反沖洗管1〇4之匯合處,如第一圖所示。該進料 管105包含在其末端用來供應該流入物至過濾筒1〇9中之 進料口 111。該進料管105的進料口 m係穿過或固定在圓 柱^旋轉構件1〇6之外壁,使各進料口 1U能通過該外壁。 接著各進料口 ill係利用習知的公-母型(male_femaletype) 連接物或配件與單一過濾筒1〇9的入口連結。 、,反沖洗管104包含在其末端之用於將反沖洗液排放 進入该過濾筒109的反沖洗入口 11〇。該反沖洗管1〇4之反 冲洗入口 110係使用相似於該進料口 111所用的公-母型連 接物或配件與該過濾筒109之外部腔室連結。 各個過遽筒109係與該圓柱狀旋轉構件1〇6之外部連 ,(一般係藉由可分開的連接機構連接,來促使該過濾筒109 清潔的更完全並更纟易更換),使該圓柱狀過遽筒之中心軸 24 201105403 自該旋,構件106延伸。各進料σ Uh系與過滤筒1〇9連 結’而4進料口及與其連結之該過濾筒⑽係以校直方式 連結(例如:同心校直)。該進料口 lu係以流體可直接流通 的方式與A過遽筒1〇9之内部腔室相連結,該内部腔室係 以多孔過濾器(例如:405或5〇2)來定義出的。 各滲透物出口 113 (其係與該過濾筒1〇9的外部腔室連 結)係與^复數個滲透物傳送管U8中的一個連結。該過濾系 統係可安裝成,能夠使以單一進料管或歧管1〇5進料的全 部過遽筒109與單-的渗透物收集管或歧管118連結。因 此,各放射狀輸送管102A與單一滲透物收集管118並非直 接的流體相通(其中有-個或多個以平行方式排列之多孔過 濾膜620)。係可將關斷閥114嵌在各滲透物收集管的 排放端來控制該滲透物的流向。各個滲透物傳送管或歧管 118係使用習知的公-母型連接物或配件來與對應的滲透物 出口 113連結。於該滲透物傳送管或歧管118及該滲透物出 口 113之間的該連結物或配件較佳係可容易分開的(例如: 其包含可快速鬆開之配件或環形配件)。 二於例示性的實施態樣中,各滲透物管或歧管118係與 s亥滲透物捕集器115垂直地校直,以使該滲透物有效率的流 動並被收集。該複數個滲透物收集管之排放端118係置於圓 形滲透物捕集器115内,如第一圖所示。該滲透物捕集器 115係圍繞著該旋轉構件1〇6,因而使旋轉構件1〇6於進行 過濾期間旋轉時,自滲透物收集管118流出之滲透物可連續 流進該滲透物捕集器115内。該滲透物捕集器115 (其並非 過濾裝置之必要零件)一般係與具有足夠體積去儲存至少一 天(例如:幾天)的產物或滲透物之滲透物儲存容器或室以流 體相連的方式連結。该儲存容益或室亦可裝設有傳送咬分 發收集後之滲透物至其他目的地(例如:包含流入物入口 25 201105403 或用於清洗之擋器102)之幫浦。 在該過濾筒内之多孔過濾器末端(例如:401或502)係 連結在或架設在濃縮物出口 112上,其中自該多孔過濾器之 内部流出之濃縮物係可被排放出及/或被收集。該濃縮物出 口 112係以相似於本文中所述之連結機構來與複數個濃縮 物收集管119中的一個連結。該流體過濾系統係可安裝成, 以單一進料管或歧管1〇5進料之全部過濾筒109能夠與單 一濃縮物收集管或歧管119連結。因此’各輸送管102A係 與單一濃縮物收集管119以流體間接相連的方式連結,如第 一圖及第二圖A所示。係可將關斷閥120嵌在各濃縮物管 或歧管119内來控制該濃縮物之流向。於例示性的實施態樣 中,濃縮物管119係與濃縮物擋器116垂直校直,使該濃縮 物有效率的流動而被收集。該濃縮物擋器116係圍繞著該旋 轉構件106,因而使旋轉構件106於進行過濾期間旋轉時, 自濃縮物收集管119流出之濃縮物可連續流進該濃縮物檔 器116内。該濃縮物擋器n6 (其並非過濾裝置之必要零件) 一般係與濃縮物儲存或傳送器/室以流體相連之方式連結。 該濃縮物容器或室係可裝設有用來再循環、傳送或分發收 集後之濃縮物至其他目的地之幫浦。舉例來說,該收集後 之濃縮物係可再循環至流入物入口 1 〇 1,於此情形下,該收 集室或器係可安裝成,能使通過該過濾器109之微粒物質 >儿澱於§亥收集室或器中,再以習知技術將之移除。 仏时除了流入物入口 10卜該滲透物捕集器115及該濃縮物 擋器116外,上述流體過濾系統之全部零件係直接抑或間接 固定旋轉構件106上’因此,其係被安裝成,當該旋轉構 件、1〇6轉動或旋轉時,即會跟著轉動或旋轉。應了解前面 所述=製造該流體過⑽、統之方法的實施態樣並非用來將 其限定於本文明確所述之組件及配置,與所述之實施態樣 26 201105403 不牴觸的更動係可與本文中所述之其他技術或相關技術領 域中已知的技術相混合、相配合及相結合。 例示性的過濾方法 根據本發明之實施態樣,一種過濾流入物(例如:流體 或氣體)之方法係包含輸送一流入物進入一個或多個離心過 濾裝置,該過濾裝置内具有中心體及一分配單元,該分配 單元係用來將該流入物輸送至複數個自該中心體放射狀延 伸出之複數個圓柱狀過濾器,複數個圓柱狀過濾器中的每 一個係具有濃縮物通過之末端以及一個或多個孔徑約 0,1〜500μπι之多孔膜;以一足以透過該一個或多個多孔膜過 濾該流入物之速度旋轉該中心體;及收集於一個或多個環 繞該圓柱狀過濾器之外部腔室中通過該多孔膜的滲透物。 一般而言’本發明之過濾方法係適合用來將流體或氣體中 之微粒物質移除’並且特別適合用來一些過濾及純化流體 之應用。舉例而言,該方法係可使用在廢水處理、家用水 純化、工業溶劑回收、藥品及血液製品純化、工業廢氣洗 滌、及食品工業的水純化、在其中的其他流體過濾應用。 參考第一圖’該例示性之過濾系統係使用來過濾流入 物,其係可為包含微粒物質或溶質(諸如:酸、鹼、鹽、礦 物、有機物質、有機物質、微生物[梨形鞭毛蟲⑻訂㈣、蕩 ,、細®、病毒等等]、其他生物物質[内毒素(endGt〇xins)、 ri(de)ntus)、毛髮糞等等]、熱原等等)的水。於示例性 ^態樣,該流人物包含以—個或多個上述之汗染 物汙染之廢水。 步驟 操,第-圖至第二圖人所示之該連續過航件100的 之例不性順序係列出如後: 1.打開發動機1〇7以提供動力使該旋轉構件綱旋轉。 27 201105403 2. ^該旋轉構件1〇6旋轉時,將流入物導入流入物擋 器102中(例如:藉由重力)。 3. §主體1〇6旋轉時’該流入物因旋轉構件1〇6之旋 轉所引起的離心力而橫向地依序流入該輸送管 102A、進料管1〇5及進料口 内。 4·该流入物自該進料口 lu進入該圓柱狀的過濾筒 内’於其中該流入物中小於多孔過濾膜之孔徑的流 體或其他物質(例如:氣體)會通過該過濾膜,而被收 集成為滲透物收集室中之滲透物。該旋轉構件106 方疋轉所產生之離心力會藉由該圓柱狀過渡器内之科 氏效應造成在該過濾筒中之過濾膜的内表面上產生 流體壓力(亦即引起流入物沿著該圓柱狀過濾器之 軸旋轉的力量,而導致額外力量迫使該液體或氣體 穿過該膜),這些力量會提供合適的壓力來使該多孔 過濾膜有效過濾該液體或氣體滲透物。 5. 經過濾之滲透物會從該滲透物收集室透過該滲透物 出口 113排出或收集而進入滲透物管U3A,該滲透 物管113A會將該滲透物排出而使之進入滲透物捕 集器115内。之後,係可以本文所述之方式進一步 處理收集到之該滲透物。 6. 於過濾處理期間,該流入物之濃縮物(包含大量通過 該多孔過濾膜之物質)仍存在於該多孔過濾膜中,接 著其會透過濃縮物出口 112退出過濾筒而進入濃縮 物管119,接著該濃縮物會透過該濃縮物管119輸 出而進入濃縮物擋器116内,之後,收集到之濃縮 物係可被進一步處理。 7. 於操作一段特定之期間後(其係可藉由系統監測), 該系統排程進行反清洗或清洗程序來移除該過濾筒 28 201105403 中所累積之垃圾。 藉由旋轉該膜1〇6(於一種例示中,其係圓柱狀圓筒)來 產生用於過濾程序進行之壓力’該轉動會產生離心力去迫 使該流入物在高壓下去接觸多孔過濾膜。由於於多孔過濾 膜内,該流入物會沿著該多孔過濾膜周圍旋轉,而創造出 額外之壓力。該膜106係與該中心旋轉轴1〇8連接,並藉 由該安裝成用來旋轉該旋轉軸108之電動機1〇7驅動而旋 轉。 將流入物透過入口 1〇1導入至該過濾系統中,該流入 物係可以約1至10,000公升/分或本文中其他處所述之流速 導入。該流入物藉由該入口 101輸送至該中心流入物擋器 102内。該入口 101係與該流入物擋器102校直,但並不相 連結,以使該旋轉構件106於該流入物透過該入口 101輸 送進來時能旋轉。 藉由該旋轉構件106轉動所創造出之離心力來迫使該 流入物自中心流入物擋器102送出,而進入與該中心流入 物擋器102連結之輸送管l〇2A。流入物自該輸送管102A 進入該進料管105之流向係可以閥1〇3來控制。於進行過 濾程序期間,該閥103係處於能讓該流入物自由且連續地 自該輸送管102A進入該進料管1〇5内之狀態。該旋轉構件 旋轉所創造出之離心力會產生讓該流入物移動進入至該進 料管105内,接著進入該過濾器109内之壓力。該閥103 亦能使清潔之及/或過濾後之滲透物或其他流體/氣體流去 進行清洗於該過濾筒109内之多孔膜。 該流入物自進料管105流進至一個或多個係安裝成用 來將流入物輸送至該過濾筒109内之進料口 1U,該進料口 111係直接與該多孔過濾膜401之内部403連結,接著該流 入物自進料口 111直接輸送至該内部403内。 29 201105403 於另一實施態樣中,該過濾筒109包含複數個多孔過 濾膜502,如第五圖所示。於這樣的實施態樣中,該流入物 係自該進料口 111被輸送進入至對應的複數個流入物接收 室501内。各流入物接收室係與對應多孔過濾膜5〇2之内 部連結,而該流入物則自該流入物接收室501被輸送至該 多孔過濾膜502内,接著無法通過該多孔過濾膜5〇2之濃 縮物則繼續留在該多孔過濾膜502的内部内,再從該膜5〇2 透過出口 112排出。 ' 本揭露亦進一步包含過濾膜之配置方式,諸如:上述 之套疊之過濾膜,其係可以剛才所述之任一實施態樣取 代。另外,於相同裝置或系統中,該過濾系統係可包含多 種其内具有不同過濾膜配置(諸如:前面所述的)之過渡筒。 舉例來說,如第二圖B所示,該裝置的過濾器部分包 含2個以上不同的、連續連結的過濾器,其中該第一過濾 器209a係具有孔徑為第一孔徑(例如:從約〇1到約卩^*) 之第一多孔膜’而該第二過濾器209b係具有孔涧兔筮-了, 徑(例如:從約0.001到約〇·1 μιη)之第二多孔膜:與該^一 過濾器209a連接之濃縮物收集管/歧管2l2a係將該^ 一濃 縮物傳送至第一收集室或器,而與該第二過廣写 桩 之第二漢縮物收集管/歧管213b係將該第二^透物傳^ 第二收集室或器。該第一濃縮物相較於該第二濃縮物一般 而言會具有比較大比例之微粒物質及/或固體,而於第一^ 縮物中之微粒物質及/或固體之顆粒大小一般而言會比於第 二濃縮物中之微粒物質及/或固體要大。因此,該第一及第 二濃縮物可再循環至不同之入口(例如:該第二濃縮物係可 使用作為於反沖洗清潔程序中清潔該第一過濾器之清潔用 流體)或再回收利用(例如:該第一濃縮物係可用於生質燃料 方面,而該第二濃縮物係可用於景觀美化或某些工業程序)。 201105403 或者’係可對遠離該裝置中心軸之第二過濾器施加一 更高之離心力。於這樣之實施態樣中,如第二圖c所示’ 入口 211e供給相同的物料至第一及第二過濾器(209a及 209b)。如第二圖6實施態樣一樣,於第二圖c中,於第二 過濾器209b中的膜之孔徑係比於第一過濾2〇9a中的膜要 小’但是於其他實施態樣中’該第一及第二過濾器(2〇9a及 209b)的膜的孔徑係可相同。與該第一過濾器2〇9&連接之該 渗透物及濃縮物收集管/歧管213a及212a係分別將該第一 滲透物及該第一濃縮物傳送至第一收集室或器,而與該第 二過;慮連接之第二滲透物及濃縮物收集管/歧管2131)及 212 b係分別將該第二滲透物及該第二濃縮物傳送至第二收 集室或器。各第一及第二滲透物係可用在不同應用上。於 第一圖B至第二圖C中之該反沖洗入口 210a及210b係可 供給相同或不同的清潔用氣體或流體。 舉例來說,請參考第四圖A,當該流入物通過該多孔過 濾膜401時,夠小而能通過該多孔過濾膜4〇1之液體或氣 體會產生一收集於該滲透物收集室4〇4之滲透物。過粗而 無法通過該多孔過濾膜404 (或膜503,如第五圖中所示)之 物質則會殘留在該多孔過濾膜之内部,然後流進濃縮物出 口 112内。於使用如第五圖所示之過濾筒的實施態樣中,誃 濃縮物在通過該濃縮物出口 112前會先流進該濃縮物收^ 至504,然後§亥濃縮物再流進濃縮物管119,其係注入至_^ 縮物擋器116内。之後’所收集到之濃縮物再進一步進^ 理。舉例來說’於濃縮物中所收集到之物質係可使 = 肥料或使用於生質燃料或肥料製造程序方面。 两 該過據流入物之方法係可進一步包含藉由部分地 位於該濃縮物管或歧管119内之關斷閥120來控制濃縮物才 流向或增加該多孔過韻内之壓力。係可_該關斷閱^ 31 201105403 段時間’使其足以讓該多孔過濾膜内部之壓力增加至所想 要的或所預定的壓力。這樣的增加係可藉由滲透物之流速 來間接決定(例如:該滲透物之流速隨著該過濾膜的内部壓 力增加而增加)。於周期性或單一操作時,藉由打開該關斷 閥120來使濃縮物之流速增加’接著會使於該膜内之壓力 減少。該關斷閥120係以重複進行關閉及打開之循環的方 式或以自動回應位於可實施管内適當位置上之滲透物流動 監測器或壓力監測器之方式來實施。舉例來說,該閥係可 連續進行地一下處於1至60秒的關閉狀態,一下處於1至 20秒的打開狀態。或者’可部份地關閉該關斷閥來使閥12〇 或該濃縮物管119截面積以預定的百分比受到阻塞而增加 該多孔過濾膜内的壓力。舉例而言,該關斷閥12〇係設定 在阻斷該閥120或濃縮物管119約1至90%之截面積。 參看第四圖至第五圖,通過該多孔過濾膜401或502 之渗透物係被收集在滲透物收集室404或503内。由該渗 透物收集室404或503來的滲透物會因於該過濾筒1〇9内 之離心力、重力及/或流體壓力而流進滲透物出口 113内。 於一種實施態樣中’該外部腔室或過濾筒109 (第一圖至第 一圖)會稍微地傾斜而促使液體滲透物往出口 113之方向流 動’接著該滲透物會流進滲透物管(或歧管)118内,接著流 至滲透物捕集器115内。之後,所收集到之滲透物再進一步 進行處理。關斷閥114、與其相似之閥或閥120係可位在各 個滲透物管118内,以控制該滲透物之流向。於反沖洗期 間’係可將該些閥關閉來增加該滲透物收集室503内之流 體壓力。 生該閥103亦可控制該過濾筒109内用於清洗多孔膜之 ^清洗流體之流向。於進行反沖洗期間,該103係處於讓 來自該輪送管(distribution pipes)102A之流入物(在這種情 32 201105403 況下’可為一乾淨及/或過濾過之氣體或流體)可流進該反沖 洗管104内之狀態,如第一圖及第二圖所示。接著,該流 入物自該反沖洗入口 110流進該過濾筒1〇9的滲透物收集室 404或503 (參看第四圖及第五圖)。相對慢的轉速(例如: 10-200 RPM)係足以最小化該過濾筒i〇9的外部腔室内科氏 效應,但其係足以使該流入物自外部腔室穿過該多孔膜而 進入該多孔膜内部,再通過該濃縮物出口 112,進而使任何 已經收集於该多孔膜之孔洞或表面上内之微粒物質载 將其解塊(unblocking)。 ' A 一 雖然本發明已以較佳實施態樣來描述,但應了解這樣 的揭露並不能使用作為限制條件。各種更動及修飾將會被 視為所屬技術領域具有通常知識者於閱讀上述 行的。因此,意圖以後附之申請專利範圍來涵;;= 明真實精神及範圍内之更動及修飾。 結論/總結 本發明係關於-種氣體或流體過遽系統,其 例如:水)以將微粒物質移 矛、之裝置本發月亦關於—種製造該裝置之方法,以 用該裝置韻氣體或流體之方法。更特別地 ,篆係關於使用離心力及/或科氏效應來使待過 化特定量氣體或流體所需明減少了純 所純化的氣體或流體量。係母單位能量 用、多單位住宅、商業、工^將模化,以適合家 水處理)之應用。 〜及大i民用(例如:城市污 目的說明及形容之 赞月限制至所揭露之具體形式,並 33 201105403 且鑒於上述之教示,很多明顯的修飾及改變皆是有可能 的。選擇及描述該實施態樣係為了最有效地解釋說明本發 明之原理及其實際應用,進而使所屬技術領域具有通常知 識者,能夠最有效使用本發明及各種適合實際使用所作之 修飾的實施態樣,其意圖以後附之申請專利範圍及其均等 物來定義本發明之範圍。 、 【囷式簡單說明】 第一圖係離心過濾裝置之例示性實施態樣的剖面示意 圖。 第一圖A係第一圖之離心過滤裝置例示性實施態樣的 橫切面俯視圖。 〜7 第二圖B係顯示雙過濾器配置方式之另一實施態樣, 其中該過濾筒係以連續方式結合。 第二圖C係顯示雙過濾器配置方式之另一實施態樣, 其中該過濾筒係以平行方式結合。 “ 第二圖係顯示於離心過濾裝置的一種例示性實施態樣 中圓柱狀過濾、筒沿旋轉圓筒外壁配置之方式。 第四圖A係顯示圓柱狀過濾筒的一種例示性實施態樣 的剖面示意圖’其中該過濾、筒包含單—管狀過濾膜或複數 個同中心的管狀過濾膜。 第四圖B係顯示圓柱狀過濾筒的另一種 樣的剖面示意圖,其中該過膽含配置於過== 旋狀或渦旋狀的插入物。 第五圖係顯示圓柱狀過濾筒的另一種例示性實施態樣 的剖面示意圖,其中該過濾筒包含多個管狀過濾膜。 第六圖A係顯示多孔過濾膜的一種例示性實施態樣的 剖面示意圖。 〜 34 201105403 第六圖B係顯示於多孔金屬過濾膜的一種例示性實施 態樣中之多孔金屬層的剖面示意圖,該金屬層係具有沉積 於其上的薄金屬層。 第六圖C係顯示於多孔金屬過濾膜的另一種例示性實 施態樣中之多孔金屬層的剖面示意圖,該金屬層係具有沉 積於其上的小金屬顆粒。 第七圖係顯示膜過濾器孔徑及各種基於該過濾器孔徑 所能移除的微粒物質之範圍圖譜。 第八圖係離心過濾裝置之另一實施態樣的剖面示意 圖。 【主要元件符號說明】 100 中心或中央線 101 流入物入口 102 流入物擔器 102 A 輸送管 103 分區閥 104 反沖洗管 105 進料管 106 旋轉構件 107 發動機 108 中心旋轉軸 109 過濾筒 110 反沖洗入口 111 進料口 112 濃縮物出口 113 渗透物出口 114 關斷閥 35 201105403 115 滲透物捕集器 116 濃縮物擋器 118 渗透物收集管 119 濃縮物收集管 120 關斷閥 209a 第一過濾器 209b 第二過濾器 210a 反沖洗入口 210b 反沖洗入口 211c 入口 212a 濃縮物收集管 212b 濃縮物收集管 213a 渗透物收集管 213b 第二滲透物收集管 401 多孔過濾器 402 外壁 403 多孔過濾器之内部 404 滲透物收集室 405 插入物 501 流入物接收室 502 多孔過濾膜 503 渗透物收集室 504 濃縮物收集室 505 外壁 602 薄層 603 金屬顆粒 604 開口 620 多孔過濾器 36 201105403 621 牆構造體 622 孔洞 623 絕緣體 624 扣件 625 多孔膜層 626 金屬網師 809a 第一過濾器 809b 第二過濾器 809c 第三過濾器 811a 進料口 811b 進料口 811c 進料口 812a 濃縮物出口 812b 濃縮物出口 812c 濃縮物出口 813a 第一滲透物收集管 813b 第二滲透物收集管 816a 濃縮物擋器 816b 濃縮物擋器 819a 濃縮物收集管 820a 閥 820b 閥 820c 閥 821a 監測器 821b 監測器 821c 監測器 37The 604 narrowed deposition system (4) is difficult to block in the hole because the inside of the hole is substantially retained by the inside of the Q part. Second, reduce the downtime of cleaning, and improve the filtration, - "collapse: Do not export 112 (see for example: Figure - Figure 2 to Figure A) is linked to one of (3). The centrifugal filter device is connected to all of the feed cylinders 109 of the feed pipe (10). Therefore, each (four)-shaped conveying pipe ', 4 is connected to the second-single concentrate collecting pipe 119, as shown in the second figure A. Each concentrate collection tube 119 is closed at its end 3 to close the valve 120' to control the flow of the concentrate. Turning off the 12 points will cause or create back pressure on the flow person passing through Lai (10), thereby increasing the amount or proportion of inflows recovered as permeate. The discharge ends of the plurality of concentrate collection tubes 119 are placed in a circular concentration, stopper 116, as shown in the first figure. The concentrate blocker 116 surrounds the rotating member 106, so that when the rotating member 1 is rotated during the filtering process, the concentrate flowing out of the concentrate collecting pipe i 19 can continuously flow into the concentrated object blocker. 116. Alternatively, the concentrate collection tube 119 can be bent inwardly (below the cylinder 106) to the concentrate stopper 116 to more conveniently lie beneath the cylinder 106 in a concentric manner to more easily collect concentrate. The concentrate can be separated, collected in a dedicated concentrate collector or collection tank (not shown), and used as described herein. Alternatively or additionally, the concentrate can be recycled back to the influent blocker 102 for further filtration to recover the purified fluid or gas. The permeate outlet 113 is connected to one of a plurality of permeate collection tubes ι18. The centrifugal filtration unit can be mounted such that all of the filter cartridges 109 fed from a single feed tube 105 can be coupled to a single permeate collection tube 118. Thus, each radial delivery tube 102A can be indirectly coupled to a single permeate 201105403 collection tube 118 (with a porous filtration membrane 62〇 therebetween). Each permeate collection tube includes a shut-off valve 114' that is positioned at the discharge end of the permeate collection tube us to control the flow of the permeate. The venting end of the permeate collection tube 118 is placed in a circular permeate trap 115 as shown in the first figure. The permeate trap 115 surrounds the rotating member 106, so that the permeate flowing out of the permeate collection pipe 118 can continuously flow into the permeate trap U5 when the rotating member 106 is rotated during filtration. The permeate collection tube 118 is bendable inwardly (below the cylinder 1〇6) to the permeate trap 115' to be more concentrically located under the cylinder 1〇6 for easier collection of infiltration Things. The permeate can be collected in a dedicated permeate collector or collection tank (not shown) and used as described herein. Alternatively, the permeate can be recycled back into the blocker 102 for use in the cleaning procedures described herein. All of the components of the centrifugal filter device (except the permeate trap 115 and the concentrate stopper 116) are directly or indirectly fixed to the rotating member 106' or directly or indirectly connected to the rotating member ι6, so The assembly is mounted to rotate with the rotating member 106. It should be understood that the embodiments of the fluid filtration system described above are not intended to be limited to the components and configurations described. The changes that are not touched can be mixed, matched and combined with techniques known in the related art. The filtration system can further include a monitor that is configured to determine the flow rate and/or flux of the permeate and/or concentrate (selectively as a function of rate of rotation or velocity). The filtration system can further comprise a first detector installed to determine the particle size distribution in the permeate, selected as a function of rotational rate or velocity and/or chemical characteristics of the influent. The eighth embodiment shows another embodiment of the filter system of the present invention, wherein the structures and features substantially identical to the corresponding structures and/or features in the first figure have the same component symbols, and the first figure therein The corresponding structure 20 201105403 and/or the similarly structured structure and features 'have the same last two digits in the component symbol (excluding any final letter in the component symbol). Next, the differences between the systems of the first and eighth figures will be explained. The filtration system of the eighth embodiment includes first, second, and third filters 809a, 809b, and 809c having first, second, and third membranes, respectively, and the membranes have first, second, and third, respectively Aperture. In one embodiment, the first aperture is larger than the second aperture and the second aperture is larger than the third aperture. Although these three types of over-the-counter stages are shown, any number of stages larger than one can be installed in the same manner. Feed port 811a provides a feed fluid or gas to first filter 809a. The first permeate collection tube 813a delivers permeate from the first filter 809a to the feed port 811b of the second filter 809b, and the second permeate collection tube 813b is from the second filter The permeate of 809b is delivered to the feed port 811c of the third filter 809c. The output of the permeate collection tube 113 can be controlled by a valve 114, and the flow rate, particle size and/or solids content of the permeate collected in the permeate trap ι 15 can be monitored by one or more monitors 822. The first, second and third filters 809a, 809b and 809c respectively have concentrate outlets 812a, 812b and 812c equipped with concentrate collection tubes 819a, 819b and 819c. The concentrate flow rate and/or pressure within the corresponding filter membrane can be controlled by valves 820a, 820b, and 820c. Similarly, the flow rate, particle size, and/or solids concentration of the concentrate collected in concentrate blocks 816a, 816b, and 116 can be monitored by one or more monitors 821a, 821b, and 821c. Information from monitors 821a, 821b, 821c, and 822 can be provided to a controller or microprocessor (not shown) and then can be opened, closed, or adjusted from the received data to valves 103, 114. Any of the valves 820a, 820b, and/or 820c (and the flow of influent into the influent inlet 1 〇 1) are used to control the flow of gas or fluid 21 201105403 through various components and/or locations within the apparatus. The above-described filtration, system provides a method of using the rotating structure - the central line (as shown in Figures -H and H) to rotate 06 = heart to filter out particles in a liquid or gas. The design and configuration of the filter cartridge takes into account that the Coriolis effect causes the object: a two-stream that is substantially aligned with the center of the individual filter in each filter system. The helical lateral flow of the influent in the filter (e.g., the Coriolis effect) causes the influent to further apply pressure within the porous filter bowl to more efficiently filter the influent, and The lateral flow of the flow essentially rushes away from any solids that block the membrane during the filtration process or any other solid that blocks its pores, thereby increasing the time of use of the filter cartridge. a μ An exemplary method of manufacturing a fluid filtration system is based on In an embodiment of the invention, a method of manufacturing a filtration device includes connecting each of a plurality of cylindrical filters in an annular manner to a plurality of conduits for a plurality of conduits, wherein the plurality of conduits are self-centering The central receiving tube is radially extended, and each of the filters has a suitable end for passing the concentrate and one or more apertures of about 0. a porous membrane of 1 to 500 μη; placing one or more external chambers around one or more of the filters' each external chamber is mounted for collecting permeate through the cylindrical filter; an outlet a tube is coupled to each of the outer chambers, each outlet tube being mounted for transporting the permeate from the filtration device (eg, to a holding tank); and operatively driving the drive mechanism or motor The center body is coupled and the drive mechanism or motor is mounted for rotating the center body. The centrifugal filtration device formed by this method is used to remove particulate matter from a fluid or gas and is particularly suitable for applications in which filtration and purification fluids such as water are used. For example, the device is utilized in municipal or its 22 201105403 other areas of wastewater treatment, domestic water purification 'industrial solvent recovery, pharmaceutical and blood product purification, industrial waste gas washing, purification of special gases, water purification of the food industry, and Other filtration applications for the aforementioned uses. The rotating member 106 (which may be cylindrical, circular or other suitable shape for rotation, and having a diameter of, for example, 50 to 200 cm) is erected or attached to the rotating shaft, or The rotating shaft 108 is supported. The rotating shaft 108 is mounted on a motor 107 that is mounted to rotate or rotate the rotating shaft 108. The motor 107 is capable of rotating the rotating shaft 108 at about 3000 rpm (or other speed as described herein). The size of the rotating member 106 can be selected or designed to suit the application of the centrifuge. A system that reduces energy consumption for a long time. The motor 107 is generally known, and therefore, in one step, the method of manufacturing the present filtering device includes mounting the central rotating member 108 into the fitting in the motor 'or assembling the central rotating member 108 and the motor 1 〇7' to enable the motor 〇7 to rotate or rotate the member 6 at low speed or high speed (as described herein). The inflow inlet 1〇1 is aligned with the center of the rotating member 106 and the rotating shaft 1〇8. The influent inlet 101 can be connected to a tube with a source of influent fluid (eg, wastewater) to be filtered and a source of cleaning fluid (eg, excessively mixed water) for a backwashing procedure, or can be accommodated Consider the source of the influent fluid (eg, wastewater) and the container for the backflushing process (eg, reduced water). In the exemplary ^= sample, the stream character enters 1G1 mosquitoes, so it = 106: Γ? The rotating member 106 is free to rotate. However, the uppermost surface of the member 106 may be directly connected to the flow person _1() 2 or directly on the rotating member 106 to cause the upper surface of the member 106 to be The inflow blocker 102 is aligned with the center of the body 106, the rotating shaft 108, and/or the inflow inlet 1〇1 (eg, concentrically aligned). In addition, the diameter of the inflow block 102 is wider than the diameter of the influent inlet 101, and the inflow inlet 101 is nested within the inflow block 102 such that the inflow block 102 is substantially collected from All influent flowing into the inflow inlet 101. The inflow block 102 is coupled to a plurality of radial delivery tubes 102A as described elsewhere herein. The radial delivery tube 102A is in a symmetrical form 'from the end of the inflow block 102 substantially along a horizontal plane It emits 'evening it evenly distributed around the inflow stopper 102. The radial transfer tubes 102A are then coupled to a valve 103 that is mounted on a backwash or clean tube 104 and an influent manifold 1〇5 that is capable of transporting influent material into a plurality of Installed in the way of the filter cartridges 1〇9. The valve 103 is connected to the radial conveying pipe i〇2A, the feeding pipe 1〇5 and the backwashing pipe 104. The three-way valve 1〇3 is located in the conveying pipe 102A and the feeding, 105 and the backwashing pipe 1〇. The confluence of 4, as shown in the first figure. The feed pipe 105 contains a feed port 111 at its end for supplying the influent to the filter cartridge 1〇9. The feed port m of the feed pipe 105 is passed through or fixed to the outer wall of the cylindrical member rotating member 1〇6 so that each of the feed ports 1U can pass through the outer wall. Each feed port ill is then joined to the inlet of a single filter cartridge 1〇9 using a conventional male-female type connector or fitting. The backwash tube 104 includes a backwash inlet 11 在 at its end for discharging the backwash liquid into the filter cartridge 109. The backwash inlet 110 of the backwash tube 1 is coupled to the outer chamber of the filter cartridge 109 using a male-female connector or fitting similar to that used for the feed port 111. Each of the over-cylinders 109 is connected to the outside of the cylindrical rotating member 1〇6 (generally connected by a separable connecting mechanism to facilitate the cleaning of the filter cartridge 109 more completely and more easily). The central axis of the cylindrical overtube 24 201105403 from which the member 106 extends. Each feed σ Uh is connected to the filter cartridge 1 ’ 9 and the 4 feed port and the filter cartridge (10) connected thereto are connected in a straight manner (for example, concentrically aligned). The inlet port is connected to the internal chamber of the A-passing cylinder 1〇9 by means of a fluid flowable directly, and the internal chamber is defined by a porous filter (for example, 405 or 5〇2). . Each permeate outlet 113 (which is coupled to the outer chamber of the filter cartridge 1〇9) is coupled to one of the plurality of permeate transfer tubes U8. The filtration system can be mounted such that all of the vias 109 fed from a single feed tube or manifold 1〇5 are coupled to a single permeate collection tube or manifold 118. Thus, each of the radial delivery tubes 102A is not in direct fluid communication with the single permeate collection tube 118 (with one or more porous filtration membranes 620 arranged in a parallel manner). A shut-off valve 114 can be embedded in the discharge end of each permeate collection tube to control the flow of the permeate. Each permeate delivery tube or manifold 118 is coupled to a corresponding permeate outlet 113 using conventional male-female connectors or fittings. The attachment or fitting between the permeate delivery tube or manifold 118 and the permeate outlet 113 is preferably easily separable (e.g., it includes a quick release fitting or ring fitting). In an exemplary embodiment, each permeate tube or manifold 118 is vertically aligned with the shale permeate trap 115 to allow the permeate to flow efficiently and be collected. The discharge end 118 of the plurality of permeate collection tubes is placed in a circular permeate trap 115 as shown in the first figure. The permeate trap 115 surrounds the rotating member 1〇6, so that when the rotating member 1〇6 is rotated during filtration, the permeate flowing out of the permeate collection pipe 118 can continuously flow into the permeate trapping. Inside the device 115. The permeate trap 115 (which is not a necessary component of the filtration device) is typically fluidly coupled to a permeate storage container or chamber having a sufficient volume to store product or permeate for at least one day (eg, several days). . The storage capacity or chamber may also be provided with a pump that delivers the permeate collected by the bite distribution to other destinations (e.g., containing the influent inlet 25 201105403 or the blocker 102 for cleaning). The end of the porous filter (e.g., 401 or 502) in the filter cartridge is attached or erected on the concentrate outlet 112, wherein the concentrate flowing from the interior of the porous filter can be discharged and/or collect. The concentrate outlet 112 is coupled to one of the plurality of concentrate collection tubes 119 in a similar manner to the attachment mechanism described herein. The fluid filtration system can be mounted such that all of the filter cartridges 109 fed as a single feed tube or manifold 1 can be coupled to a single concentrate collection tube or manifold 119. Thus, each of the transfer tubes 102A is coupled to the single concentrate collection tube 119 in a fluidly indirect manner, as shown in the first and second panels A. The shut-off valve 120 can be embedded in each concentrate tube or manifold 119 to control the flow of the concentrate. In an exemplary embodiment, concentrate tube 119 is vertically aligned with concentrate blocker 116 to allow efficient flow of the concentrate to be collected. The concentrate blocker 116 surrounds the rotating member 106 such that when the rotating member 106 is rotated during filtration, the concentrate flowing from the concentrate collection tube 119 can continuously flow into the concentrate stopper 116. The concentrate blocker n6 (which is not a necessary part of the filter unit) is typically connected in fluid connection with the concentrate reservoir or the conveyor/chamber. The concentrate container or chamber may be provided with a pump for recycling, transporting or distributing the collected concentrate to other destinations. For example, the collected concentrate can be recycled to the influent inlet 1 ,1, in which case the collection chamber or system can be mounted to enable particulate matter through the filter 109> It is deposited in a §Hai collection chamber or device and removed by conventional techniques. In addition to the influent inlet 10 and the concentrate blocker 116, all of the components of the fluid filtration system are directly or indirectly fixed to the rotating member 106. Therefore, the system is installed. When the rotating member rotates or rotates, the rotating member rotates or rotates. It should be understood that the foregoing embodiment of the method for manufacturing the fluid (10) is not intended to limit it to the components and configurations explicitly described herein, and the embodiment of the embodiment 26 201105403 Mix, match, and combine with other techniques described in this document or those known in the related art. Illustrative Filtration Method According to an embodiment of the present invention, a method of filtering an influent (eg, a fluid or a gas) includes delivering an influent into one or more centrifugal filtration devices having a center body and a a dispensing unit for conveying the influent to a plurality of cylindrical filters radially extending from the central body, each of the plurality of cylindrical filters having a end of the concentrate passing through And one or more porous membranes having a pore size of from about 0,1 to 500 μm; rotating the centrosome at a rate sufficient to filter the influent through the one or more porous membranes; and collecting one or more surrounding the cylindrical filtration Permeate through the porous membrane in the outer chamber of the device. In general, the filtration process of the present invention is suitable for use in the removal of particulate matter from a fluid or gas and is particularly suitable for use in some filtration and purification fluid applications. For example, the method can be used in wastewater treatment, domestic water purification, industrial solvent recovery, pharmaceutical and blood product purification, industrial waste gas scrubbing, and water purification in the food industry, among other fluid filtration applications. Referring to the first figure, the exemplary filtration system is used to filter influent, which may be comprised of particulate matter or solutes (such as acids, bases, salts, minerals, organic matter, organic matter, microorganisms [Pear-shaped flagellate] (8) order (four), sway, fine ®, virus, etc.], other biological substances [endotoxin (endGt〇xins), ri (de) ntus), hair manure, etc.], pyrogens, etc.). In an exemplary embodiment, the flow character comprises wastewater contaminated with one or more of the above-described sweat stains. Steps, the example of the sequence of the consecutive passages 100 shown in the first to second figures is as follows: 1. The engine 1〇7 is turned on to provide power to rotate the rotating member. 27 201105403 2.  When the rotating member 1 is rotated, the inflow is introduced into the inflow stopper 102 (for example, by gravity). 3.  § When the main body 1〇6 rotates, the inflow material flows laterally into the conveying pipe 102A, the feeding pipe 1〇5, and the feed port by the centrifugal force caused by the rotation of the rotating member 1〇6. 4. The influent enters the cylindrical filter cartridge from the feed port lu' in which a fluid or other substance (eg, gas) smaller than the pore size of the porous filter membrane passes through the filter membrane. The permeate is collected into a permeate collection chamber. The centrifugal force generated by the rotation of the rotating member 106 causes fluid pressure on the inner surface of the filter membrane in the filter cartridge by the Coriolis effect in the cylindrical transition vessel (ie, causing the inflow to follow the cylindrical shape The force of rotation of the shaft of the filter causes additional force to force the liquid or gas through the membrane) which provides the appropriate pressure to effectively filter the liquid or gas permeate. 5.  The filtered permeate will be discharged or collected from the permeate collection chamber through the permeate outlet 113 into the permeate tube U3A, which will discharge the permeate into the permeate trap 115. . Thereafter, the permeate collected can be further processed in the manner described herein. 6.  During the filtration process, the concentrate concentrate (containing a substantial amount of material passing through the porous filter membrane) is still present in the porous filter membrane, which then exits the filter cartridge through the concentrate outlet 112 and enters the concentrate tube 119, followed by The concentrate is output through the concentrate tube 119 into the concentrate block 116, after which the collected concentrate can be further processed. 7.  After a certain period of operation (which can be monitored by the system), the system schedules a backwash or cleaning procedure to remove the trash accumulated in the filter cartridge 28 201105403. By rotating the membrane 1 6 (in an illustration, it is a cylindrical cylinder) to generate a pressure for the filtration process, the rotation produces a centrifugal force to force the influent to contact the porous filtration membrane at a high pressure. Due to the rotation in the porous membrane, the influent will rotate around the porous membrane to create additional pressure. The film 106 is coupled to the center rotating shaft 1〇8 and rotated by the motor 1〇7 mounted to rotate the rotating shaft 108. The influent is introduced into the filtration system through inlet 1〇1, and the influent system can be introduced at a flow rate of from about 1 to 10,000 liters per minute or elsewhere herein. The influent is delivered to the central inflow blocker 102 by the inlet 101. The inlet 101 is aligned with the inflow block 102 but is not coupled so that the rotating member 106 can rotate as the inflow passes through the inlet 101. The centrifugal force generated by the rotation of the rotating member 106 forces the inflow to be sent out from the center inflow blocker 102, and enters the duct l2A connected to the center inflow blocker 102. The flow of the influent from the delivery pipe 102A into the feed pipe 105 can be controlled by the valve 1〇3. During the filtration process, the valve 103 is in a state in which the inflow is allowed to enter the feed pipe 1〇5 freely and continuously from the transfer pipe 102A. The centrifugal force created by the rotation of the rotating member creates a pressure that causes the influent to move into the feed tube 105 and then into the filter 109. The valve 103 also enables cleaned and/or filtered permeate or other fluid/gas streams to be purged into the porous membrane within the filter cartridge 109. The influent flows from the feed tube 105 into one or more feed ports 1U for transporting the influent into the filter cartridge 109, the feed port 111 being directly associated with the porous filter membrane 401 The interior 403 is joined and the influent is then delivered directly from the feed port 111 into the interior 403. 29 201105403 In another embodiment, the filter cartridge 109 includes a plurality of porous filter membranes 502, as shown in the fifth diagram. In such an embodiment, the influent is delivered from the feed port 111 into a corresponding plurality of influent receiving chambers 501. Each of the influent receiving chambers is connected to the inside of the corresponding porous filter membrane 5〇2, and the influent is transported from the influent receiving chamber 501 into the porous filter membrane 502, and then cannot pass through the porous filter membrane 5〇2 The concentrate remains in the interior of the porous filter membrane 502 and is discharged from the membrane 5〇2 through the outlet 112. The present disclosure also further includes a configuration of the filter membrane, such as the above-described jacketed filter membrane, which may be replaced by any of the embodiments described just now. Additionally, in the same apparatus or system, the filtration system can comprise a plurality of transition cartridges having different filter membrane configurations therein (such as: previously described). For example, as shown in Figure B, the filter portion of the device includes more than two different, continuously connected filters, wherein the first filter 209a has a first aperture (e.g., from about 〇1 to about 卩^*) of the first porous film' and the second filter 209b has a hole-shaped, diameter (for example: from about 0. a second porous membrane of 001 to about 〇·1 μιη): the concentrate collection tube/manifold 2l2a connected to the filter 209a transfers the concentrate to the first collection chamber or device, and The second escaping collection tube/manifold 213b of the second over-written pile is the second collection chamber or the second collection chamber. The first concentrate generally has a relatively large proportion of particulate matter and/or solids compared to the second concentrate, and the particulate matter and/or solid particle size in the first condensation is generally It will be larger than the particulate matter and/or solids in the second concentrate. Thus, the first and second concentrates can be recycled to different inlets (eg, the second concentrate can be used as a cleaning fluid to clean the first filter in a backwash cleaning procedure) or recycled (For example: the first concentrate can be used for biofuels and the second concentrate can be used for landscaping or certain industrial processes). 201105403 or 'The system can apply a higher centrifugal force to the second filter away from the central axis of the device. In such an embodiment, the inlet 211e as shown in the second diagram c supplies the same material to the first and second filters (209a and 209b). As in the second embodiment of FIG. 6, in the second diagram c, the aperture of the membrane in the second filter 209b is smaller than that of the membrane in the first filter 2〇9a, but in other embodiments. The membranes of the first and second filters (2〇9a and 209b) may have the same pore size. The permeate and concentrate collection tubes/manifolds 213a and 212a coupled to the first filter 2〇9& respectively deliver the first permeate and the first concentrate to the first collection chamber or device, and The second permeate and concentrate collection tubes/manifolds 2131) and 212b are coupled to the second collection chamber or the respective second concentrate and the second concentrate, respectively. Each of the first and second permeate systems can be used in different applications. The backwash inlets 210a and 210b in the first to second panels C can supply the same or different cleaning gases or fluids. For example, referring to FIG. 4A, when the influent passes through the porous filter membrane 401, a liquid or gas that can pass through the porous filter membrane 4〇1 is collected in the permeate collection chamber 4 Permeate of 〇4. Substances that are too thick to pass through the porous filtration membrane 404 (or membrane 503, as shown in the fifth figure) remain inside the porous filtration membrane and then flow into the concentrate outlet 112. In an embodiment using a filter cartridge as shown in Figure 5, the cerium concentrate will flow into the concentrate before passing through the concentrate outlet 112 to 504, and then the condensate will be re-flowed into the concentrate. A tube 119 is injected into the deflation stopper 116. After that, the collected concentrate is further processed. For example, the substances collected in the concentrate can be used as fertilizer or in the production process of biofuels or fertilizers. The method of passing the influent may further comprise controlling the concentrate to flow or increase the pressure within the porous passage by a shut-off valve 120 located partially within the concentrate tube or manifold 119. This may be sufficient to increase the pressure inside the porous filter membrane to the desired or predetermined pressure. Such an increase can be indirectly determined by the flow rate of the permeate (e.g., the flow rate of the permeate increases as the internal pressure of the filter membrane increases). Increasing the flow rate of the concentrate by opening the shut-off valve 120 during periodic or single operation' then reduces the pressure within the membrane. The shut-off valve 120 is implemented in a manner that repeats the cycle of closing and opening or in a manner that automatically responds to a permeate flow monitor or pressure monitor located in position within the implementable tube. For example, the valve system can be continuously closed for 1 to 60 seconds, and once for 1 to 20 seconds. Alternatively, the shut-off valve may be partially closed to cause the valve 12 or the cross-sectional area of the concentrate tube 119 to be blocked by a predetermined percentage to increase the pressure within the porous filter membrane. For example, the shut-off valve 12 is configured to block about one to ninety percent of the cross-sectional area of the valve 120 or concentrate tube 119. Referring to Figures 4 through 5, the permeate through the porous filter membrane 401 or 502 is collected in the permeate collection chamber 404 or 503. The permeate from the permeate collection chamber 404 or 503 flows into the permeate outlet 113 due to centrifugal force, gravity and/or fluid pressure within the filter cartridge 1〇9. In one embodiment, the outer chamber or filter cartridge 109 (first to first) will be slightly inclined to cause liquid permeate to flow in the direction of the outlet 113. The permeate will then flow into the permeate tube. Within (or manifold) 118, it then flows into permeate trap 115. Thereafter, the collected permeate is further processed. A shut-off valve 114, a valve or valve 120 similar thereto, can be positioned within each of the permeate tubes 118 to control the flow of the permeate. The valves may be closed during backwashing to increase the fluid pressure within the permeate collection chamber 503. The valve 103 can also control the flow of the cleaning fluid in the filter cartridge 109 for cleaning the porous membrane. During the backwashing, the 103 series is in a flow that allows the influent from the distribution pipe 102A (in this case 32 201105403 'can be a clean and/or filtered gas or fluid) The state of entering the backwash tube 104 is as shown in the first and second figures. Next, the influent flows from the backwash inlet 110 into the permeate collection chamber 404 or 503 of the filter cartridge 1〇9 (see fourth and fifth figures). A relatively slow rotational speed (eg, 10-200 RPM) is sufficient to minimize the external chamber Coriolis effect of the filter cartridge i〇9, but is sufficient to allow the influent to pass from the outer chamber through the porous membrane into the Inside the porous membrane, the concentrate outlet 112 is passed through, and any particulate matter that has been collected in the pores or surface of the porous membrane is unblocked. 'A' Although the invention has been described in terms of preferred embodiments, it should be understood that such disclosure is not to be construed as a limitation. Various changes and modifications will be considered as those of ordinary skill in the art to read the above. Therefore, it is intended to be attached to the scope of the patent application;; = the true spirit and scope of the changes and modifications. Conclusion/Summary The present invention relates to a gas or fluid passing system, such as water, for removing particulate matter from a device, and the method of manufacturing the device is also known to use the device gas or The method of fluid. More particularly, the tethering system uses centrifugal force and/or Coriolis effect to reduce the amount of purely purified gas or fluid required to pass a particular amount of gas or fluid. The unit unit energy, multi-unit residential, commercial, and industrial molds, suitable for home water treatment) applications. ~ and large i civilian use (for example: urban pollution description and description of the month of the limit to the specific form disclosed, and 33 201105403 and in view of the above teachings, many obvious modifications and changes are possible. Select and describe the The present invention is intended to best explain the principles of the invention and its practical application, and thus the embodiments of the invention, The scope of the present invention is defined by the scope of the patent application and its equivalents. The following is a schematic cross-sectional view of an exemplary embodiment of a centrifugal filter device. The first figure A is the first figure. A cross-sectional plan view of an exemplary embodiment of a centrifugal filter device. 〜7 Figure 2B shows another embodiment of a dual filter arrangement in which the filter cartridges are combined in a continuous manner. Another embodiment of the filter arrangement wherein the filter cartridges are combined in a parallel manner. "The second image is shown in a centrifugal filter. In an exemplary embodiment, the cylindrical filter and the barrel are disposed along the outer wall of the rotating cylinder. FIG. 4A is a schematic cross-sectional view showing an exemplary embodiment of a cylindrical filter cartridge, wherein the filter and the cartridge contain Single-tubular filter membrane or a plurality of concentric tubular filter membranes. Figure 4B is a schematic cross-sectional view showing another example of a cylindrical filter cartridge, wherein the pericardium is disposed in a ===spin or vortex The fifth figure is a schematic cross-sectional view showing another exemplary embodiment of a cylindrical filter cartridge, wherein the filter cartridge comprises a plurality of tubular filter membranes. Fig. 6A shows an exemplary embodiment of a porous filter membrane. A schematic cross-sectional view. 〜 34 201105403 Figure 6B is a schematic cross-sectional view showing a porous metal layer in an exemplary embodiment of a porous metal filtration membrane having a thin metal layer deposited thereon. Figure VI is a schematic cross-sectional view showing a porous metal layer in another exemplary embodiment of a porous metal filtration membrane having a small deposit thereon The seventh figure shows the membrane filter pore size and various ranges of particulate matter that can be removed based on the pore size of the filter. The eighth figure is a schematic cross-sectional view of another embodiment of the centrifugal filter device. DESCRIPTION OF SYMBOLS 100 Center or Center Line 101 Inflow inlet 102 Inflow loader 102 A Delivery pipe 103 Partition valve 104 Backwash pipe 105 Feed pipe 106 Rotating member 107 Engine 108 Center rotary shaft 109 Filter drum 110 Backwash inlet 111 Feed port 112 concentrate outlet 113 permeate outlet 114 shut-off valve 35 201105403 115 permeate trap 116 concentrate blocker 118 permeate collection tube 119 concentrate collection tube 120 shut-off valve 209a first filter 209b second filter 210a backwash inlet 210b backwash inlet 211c inlet 212a concentrate collection tube 212b concentrate collection tube 213a permeate collection tube 213b second permeate collection tube 401 porous filter 402 outer wall 403 porous filter interior 404 permeate collection chamber 405 insert 501 influent receiving chamber 502 porous filtration 503 Permeate collection chamber 504 Concentrate collection chamber 505 Outer wall 602 Thin layer 603 Metal particles 604 Opening 620 Porous filter 36 201105403 621 Wall structure 622 Hole 623 Insulator 624 Fastener 625 Porous film layer 626 Metal mesh 809a First filter 809b second filter 809c third filter 811a feed port 811b feed port 811c feed port 812a concentrate outlet 812b concentrate outlet 812c concentrate outlet 813a first permeate collection pipe 813b second permeate collection pipe 816a Object blocker 816b concentrate blocker 819a concentrate collection tube 820a valve 820b valve 820c valve 821a monitor 821b monitor 821c monitor 37

Claims (1)

201105403 七、申請專利範圍: 1. 一種具有一個或多個裝置之過濾系統,該裝置係包含: 一入口,其係適合用來接收待過濾之流入物; ^ 一旋轉中心體,其内係具有—流入物分配單元,其 中該流入物分配單元係具有適合用來接收該流入物之一 中心接收管,以及複數個自該中心接收管放射狀延伸出 之輸送管; 複數個過濾器,其係配置成以環狀方式圍繞著該旋 轉中心體’各個該過濾器係與該複數個輸送管中的一個 連接’並且各個該過爐、器係具有一安裝成用來接收自該 複數個輸送管中的一個而來之流入物的入口、一供濃縮 物通過之末端、及一個或多個孔徑高達約500 μιη之管狀 多孔膜; 一個或多個外部腔室,各個該外部腔室係環繞著該 過濾器中的一個或多個,並係安裝成用來收集通過該過 濾、器之渗透物; 複數個滲透物收集管,各個該滲透物收集管係與該 外部腔室中的一個連接,並係安裝成用來使滲透物自該 外部腔室傳送出; 複數個濃縮物收集管,各個該濃縮物收集管係與該 過戚器中的一個抑或該外部腔室中的/個之末端連接, 並係安裝成用來使濃縮物自該過濾器傳送出;及 一驅動機構或電動機,其係安裝成用來旋轉該旋轉 中心體及該過濾器。 2·如申請專利範圍第1項所述之過濾系統,其中該複數個 輸送管係以均勻分佈排列之方式自中心接收管放射狀延 伸出。 3·如申請專利範圍第1項所述之過濾系統,其中該複數個 201105403 過濾器各自的縱軸係與該複數個輸送管中的一個校直。 4·如申請專利範圍第1項所述之過濾系統,其中該複數個 過濾器中的每一個係進一步包含一於管狀多孔膜内之螺 旋狀或渦旋狀的插入物。 5. 如申請專利範圍第1項所述之過濾系統,其中該膜包, 一具有孔洞之外部支撐層以讓該滲透物流入該一個或多 個外部腔室内,其中該一個或多個多孔膜係與該外部支 樓層連接。 6. 如申請專利範圍第5項所述之過濾系統,其中該一個或 多個多孔膜之孔徑係約0.1〜l〇pm。 7_如申請專利範圍第5項所述之過濾系統,其中該一個或 多個多孔膜之孔徑係約0.01〜〇.1μηι。 8. 如申請專利範圍第5項所述之過濾系統,其係進一步包 含一於各金屬過濾器上之薄金屬層,其係用來使其内孔 洞的開口變窄。 9. 如申請專利範圍第1項所述之過濾系統,其中各個該外 部腔室包含一滲透物收集室,該滲透物收集室係安裝成 用來收集來自過濾器之滲透物。 10. 如申請專利範圍第〗項所述之過濾系統,各個該外部腔 至係包含一濃縮物出口管,該濃縮物出口管係安裝成用 來排,或移除來自圓柱狀過濾器之濃縮物。 如ΐ請專利範圍第1項所述之過濾系統,其中各個該過 濾器,末端係與在其所對應之外部腔室内之端室連結。 12·如申明專利範圍第1項所述之過濾系統,其中該入物包 含水。 13·如申請專圍第1項所狀過濾祕,其包含複數個 該裝置’其中該入口各自接收來自常見來源的流入物, 各個該裝置包含-安裝成絲㈣來自該複數個出口管 39 201105403 的滲透物之滲透物收集室,真該系統進一步包含一接收 來自各個該滲透物收集室的滲透物之收集管。 14. 一種過濾流入物之方法’該方法包含· 輸送一流入物進入一個或多個過滤單元’該過濾單 元内具有一中心體及一分配單元,該分配單元係安裝成 用來將該流入物輸送至複數個自該中心體放射狀延伸出 之過濾器,該複數個過濾器係各自具有供濃縮物通過之 末端,以及一個或多個孔徑高達約500μηι之多孔管狀膜; 以一足以透過該一個或多個多孔膜過滤、該流入物之 速度旋轉該中心體;及 收集於一個或多個環繞該圓枉狀過濾器之外部腔室 中之滲透物。 15. 如申請專利範圍第14項所述之方法,其中該中心體旋轉 之速度係足以使各個該複數個過濾器内之流入物圍繞著 該過遽之縱轴旋轉或轉動。 16. 如申請專利範圍第14項所述之方法,其中該一個或多個 多孔管狀膜之孔徑係約0.1〜1 〇μπι。 17. 如申請專利範圍第14項所述之方法,其中該中心體之轉 速係約100〜3000 RPM。 18. 如申請專利範圍第μ項所述之方法,其中該流入物包含 水。 19. 如申請專利範圍第14項所述之方法,其進一步包含清潔 該複數個過濾器之步驟。 2 〇.如申請f利範圍第19項所述之方法,其中該清潔該複數 個器之步驟係包含自各個圓柱狀過濾器之外部通入 一清亦用之流入物至各個圓柱狀過濾器之内部。 21.—種製造過濾裴置之方法,其包含: 將複數個過濾器中的每一個以環狀方式與對應之複 201105403 數個輸送管連接,其中該複數個輸送管係自中心體内之 中心接收管放射狀延伸出,各個該過濾器係具有一適合 讓濃縮物通過之末端及一個或多個孔徑高達約500μηι之 多孔管狀膜; 沿著一個或多個該過濾器之周圍放置一個或多個外 部腔室,各外部腔室係安裝成用來收集通過該過濾器之 滲透物; 將第一出口管與各個該外部腔室連接,該第一出口 管係適合用來收集該滲透物; 將第二出口管與該過濾器之末端抑或是該外部腔室 之末端連接,該第二出口管係適合用來收集該濃縮物; 及 操作上將驅動機構或電動機與該中心體結合,該驅 動機構或電動機係安裝成用來旋轉該旋轉中心體。 41201105403 VII. Patent application scope: 1. A filtration system with one or more devices, comprising: an inlet adapted to receive an influent to be filtered; ^ a rotating central body having an internal An inflow distribution unit, wherein the inflow distribution unit has a central receiving tube adapted to receive the inflow, and a plurality of delivery tubes extending radially from the central receiving tube; a plurality of filters Arranged to surround the rotating center body 'individually, the filter system is connected to one of the plurality of ducts' in an annular manner and each of the furnaces, the system has an installation for receiving from the plurality of ducts One of the inlets of the influent, one end for the passage of the concentrate, and one or more tubular porous membranes having a pore size of up to about 500 μm; one or more external chambers, each of which surrounds the outer chamber One or more of the filters, and are installed to collect permeate through the filter; a plurality of permeate collection tubes, each of which a permeate collection tube is coupled to one of the outer chambers and is mounted for transporting permeate from the outer chamber; a plurality of concentrate collection tubes, each of the concentrate collection tubes and the crucible One of the devices or the end of the external chamber is connected and mounted for transferring the concentrate from the filter; and a drive mechanism or motor is mounted for rotating the center of rotation Body and the filter. 2. The filtration system of claim 1, wherein the plurality of delivery tubes are radially extended from the central receiving tube in a uniformly distributed arrangement. 3. The filtration system of claim 1, wherein the respective longitudinal axes of the plurality of 201105403 filters are aligned with one of the plurality of delivery tubes. 4. The filtration system of claim 1, wherein each of the plurality of filters further comprises a spiral or vortex insert in the tubular porous membrane. 5. The filtration system of claim 1, wherein the membrane package has an outer support layer having a hole for allowing the permeate to flow into the one or more external chambers, wherein the one or more porous membranes It is connected to the external support floor. 6. The filtration system of claim 5, wherein the one or more porous membranes have a pore size of about 0.1 to 1 pm. The filtration system of claim 5, wherein the one or more porous membranes have a pore size of about 0.01 to 0.1 μm. 8. The filtration system of claim 5, further comprising a thin metal layer on each of the metal filters for narrowing the opening of the inner bore. 9. The filtration system of claim 1, wherein each of the outer chambers comprises a permeate collection chamber that is configured to collect permeate from the filter. 10. The filtration system of claim 1, wherein each of the external chambers comprises a concentrate outlet tube that is installed for drainage or for removal of concentration from a cylindrical filter. Things. The filter system of claim 1, wherein each of the filters has a terminal end coupled to an end chamber in the corresponding outer chamber. 12. The filtration system of claim 1, wherein the inclusion material contains water. 13. If the application is specifically for the filtering of the first item, it comprises a plurality of the devices 'where the inlets each receive influx from a common source, each of the devices comprising - being installed into a wire (four) from the plurality of outlet tubes 39 201105403 The permeate collection chamber of the permeate, the system further comprising a collection tube for receiving permeate from each of the permeate collection chambers. 14. A method of filtering an influent', the method comprising: delivering an influent into the one or more filtration units, the filtration unit having a center body and a distribution unit, the distribution unit being installed to serve the influent Delivered to a plurality of filters extending radially from the central body, the plurality of filters each having a terminal for the passage of the concentrate, and one or more porous tubular membranes having a pore size of up to about 500 μm; One or more porous membranes are filtered, the velocity of the influent is rotated by the central body; and the permeate is collected in one or more external chambers surrounding the circular filter. 15. The method of claim 14, wherein the center body is rotated at a speed sufficient to cause the inflow of each of the plurality of filters to rotate or rotate about the longitudinal axis of the pass. 16. The method of claim 14, wherein the one or more porous tubular membranes have a pore size of about 0.1 to 1 〇μπι. 17. The method of claim 14, wherein the center body has a speed of about 100 to 3000 RPM. 18. The method of claim 5, wherein the influent comprises water. 19. The method of claim 14, further comprising the step of cleaning the plurality of filters. The method of claim 19, wherein the step of cleaning the plurality of devices comprises introducing an influent from the outside of each of the cylindrical filters to each of the cylindrical filters. Internal. 21. A method of making a filter device, comprising: connecting each of a plurality of filters in an annular manner to a plurality of corresponding delivery tubes 201105403, wherein the plurality of delivery tubes are from a central body The central receiving tube extends radially, each filter having a porous tubular membrane adapted to pass the concentrate through the end and one or more apertures up to about 500 μη; placing one or along one or more of the filters a plurality of external chambers, each external chamber being mounted for collecting permeate through the filter; connecting a first outlet tube to each of the external chambers, the first outlet tube being adapted to collect the permeate Causing a second outlet tube to the end of the filter or to the end of the outer chamber, the second outlet tube being adapted to collect the concentrate; and operatively combining the drive mechanism or motor with the center body The drive mechanism or motor is mounted for rotating the rotating center body. 41
TW99101921A 2009-08-10 2010-01-25 Dynamic filtration device using centrifugal force TW201105403A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/538,825 US8048307B2 (en) 2008-08-14 2009-08-10 Dynamic filtration device using centrifugal force

Publications (1)

Publication Number Publication Date
TW201105403A true TW201105403A (en) 2011-02-16

Family

ID=44816967

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101921A TW201105403A (en) 2009-08-10 2010-01-25 Dynamic filtration device using centrifugal force

Country Status (1)

Country Link
TW (1) TW201105403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731159A (en) * 2017-01-23 2017-05-31 浙江腾荣环保科技有限公司 A kind of inertial filter
CN106731155A (en) * 2017-01-23 2017-05-31 浙江腾荣环保科技有限公司 One kind turns over box filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731159A (en) * 2017-01-23 2017-05-31 浙江腾荣环保科技有限公司 A kind of inertial filter
CN106731155A (en) * 2017-01-23 2017-05-31 浙江腾荣环保科技有限公司 One kind turns over box filter

Similar Documents

Publication Publication Date Title
US8048307B2 (en) Dynamic filtration device using centrifugal force
CN103813843B (en) Filter
US20070289917A1 (en) Separation system and method of operating
WO2007004262A1 (en) Filtration device
CN105934270B (en) High speed cross-current Dynamic membrane filter
JPH03154620A (en) Membrane separating device
WO2018223137A1 (en) Method and apparatus for treating commercial and industrial laundry wastewater
CN1161007A (en) Apparatus for processing fluid and method for producing separated fluid
KR20070095226A (en) Membrane module and water treatment system
WO1999047233A1 (en) Improvements to solid-liquid separating equipment in particular for biological purification of waste water
TW201105403A (en) Dynamic filtration device using centrifugal force
JP2007007618A (en) Method and apparatus for cleaning highly polluted water
CN107224877A (en) A kind of packaging type super-filter purifying device
AU2015249750B2 (en) System for reducing product losses, product dilution, chemical dilution and water consumption in a crossflow membrane separation system
Abdel-Fatah et al. Industrial wastewater treatment by membrane process
CN207076349U (en) A kind of packaging type super-filter purifying device
CN115138136A (en) Coprecipitation reaction system and filtering and concentrating device thereof
CN106809973A (en) A kind of inorganic hollow earthenware slab membrane cartridge drinking water apparatus
US9034179B2 (en) Method and device for the purification of an aqueous fluid
Majekodunmi et al. Review of some recent advances on filtration in pharmaceutical industry
CN206778193U (en) A kind of automatic backwash formula ceramic membrane filter device
KR100646309B1 (en) Apparatus for filtering sludge from water for purification
CN202139119U (en) Processing system capable of reducing solid content of reverse osmosis water
CN218089142U (en) Two-stage water purifying device
CN2600152Y (en) Compound high-precision filter