TW201105241A - Bactericide composition comprising a phage - Google Patents

Bactericide composition comprising a phage Download PDF

Info

Publication number
TW201105241A
TW201105241A TW098127069A TW98127069A TW201105241A TW 201105241 A TW201105241 A TW 201105241A TW 098127069 A TW098127069 A TW 098127069A TW 98127069 A TW98127069 A TW 98127069A TW 201105241 A TW201105241 A TW 201105241A
Authority
TW
Taiwan
Prior art keywords
phage
composition
bacteria
surfactant
acinetobacter baumannii
Prior art date
Application number
TW098127069A
Other languages
Chinese (zh)
Other versions
TWI380777B (en
Inventor
Li-Kuang Chen
Nien-Tsung Lin
Original Assignee
Tzu Chi Buddhist General Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to TW098127069A priority Critical patent/TWI380777B/en
Application filed by Tzu Chi Buddhist General Hospital filed Critical Tzu Chi Buddhist General Hospital
Priority to US12/854,814 priority patent/US8273564B2/en
Priority to US12/854,542 priority patent/US20120276612A1/en
Priority to AU2010212270A priority patent/AU2010212270B2/en
Priority to AU2010212280A priority patent/AU2010212280B2/en
Priority to EP10172708.9A priority patent/EP2292740B1/en
Priority to EP10172706A priority patent/EP2292245A1/en
Priority to JP2010180903A priority patent/JP5464664B2/en
Priority to JP2010180902A priority patent/JP5651407B2/en
Publication of TW201105241A publication Critical patent/TW201105241A/en
Application granted granted Critical
Publication of TWI380777B publication Critical patent/TWI380777B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

This invention provides a composition for killing bacteria in vitro comprising a phage for infecting Acinetobacter baumannii and a carrier. This invention also provides a method for decontamination of medical institution or medical-related research institution, which comprises applying effective amount of phage for infecting Acinetobacter baumannii to the medical institution or medical-related research institution to reduce amount of Acinetobacter baumannii existed in the medical institution or medical-related research institution.

Description

201105241 - 六、發明說明: .【發明所屬之技術領域】 本發明係關於一種殺菌組成物及應用該殺菌組成物 之殺菌方法’尤係關於一種包括嗟菌體及载劑之殺菌組成 物及應用該殺菌組成物之殺菌方法。 【先前技術】 院内感染(nosocomial infection)是醫院最棘手的難 題’據統計,醫院的院内感染率·般約為+3%至5%。院内 •感染的細菌通常為飼機性病原菌(〇pp0rtunistic pathogen),亦即,對於免疫力正常的宿主而言,該等細菌 為無害的,有些細菌甚至是人體表面的正常菌叢(normal flora);但在宿主免疫力下降時,該等細菌就容易引起感 染,造成疾病。 常見院内感染的細菌包括,例如,葡萄球菌 、假單胞菌(ΡπΜί/omo⑽?)、不動桿菌 φ (Jc/zzeioiflcier)、腸球菌、腸桿菌科 (Enterobacteriaceae)、 非發酵革蘭陰性桿菌 (Non-fermentative gram-negative bacilli)、退伍軍人病菌屬 、梭菌屬(C/c^irWz'wm)、分枝桿菌屬 {Mycobacterium) # 〇 目前,最常見的院内感染細菌包括綠膿桿菌 (Pseudomonas aeruginosa )、金黃色葡萄球菌 (flwrews )以及飽氏不動桿菌( baumannii)等0 3 111057 201105241 院内感染細菌可能生存於聽診器、病歷、止血帶、手 套、針頭、呼吸器、潮濕瓶、家具、地板、通風口、監視 器等設備;或存在於水、土壤及食物(水果、蔬菜中)和 下水道污物中;或存在於人體,如皮膚、腋下、結膜、口 腔、上呼吸道、鼻咽及腸胃道等處。 院内感染的發生,以加護病房為例,由於病患多為重 症患者,人體免疫力較差,且常需要接受侵入性治療,例 如插管、血管裝置等,大幅提高院内感染的可能,據統計, 加護病房之感染率約為千分之20至30左右。 一般細菌感染之治療方法即為使用抗生素。然而,由 於抗生素的濫用,細菌會被篩選而演化出更多的抗藥性, 目前院内感染已出現越來越多對抗生素具有抗藥性之細 菌。要治療感染此種細菌的病患,則必須使用昂貴的新型 抗生素,且若細菌的抗藥性繼續發展,將會致使無有效抗 生素可供應用。有鑑於此,研發降低及/或預防院内感染的 替代方法係有其必要性。 嗟菌體(phage、bacteriophage)為病毒的一種,特徵在 於噬菌體的宿主為細菌,必須在細菌體内才能夠生長與複 製。嗟菌體可分為溶裂型(lytic )和溶原型(lysogenic ), 溶裂型噬菌體會感染宿主細菌,在宿主内複製完成後,噬 菌體會將細菌溶裂而釋出,細菌則破裂死亡。溶原型嗟菌 體是較溫和的噬菌體,可以進行溶裂型或溶原型的生活 史,在溶原型的路徑中,會與宿主共存。 已有利用噬菌體進行治療細菌性疾病之前案,例如可 4 111057 201105241 '見美國專利案第5,688,501號、第5,997,862號等、第 6,248,324號、第6,485,902號’分別揭露利用包括噬菌體 之醫藥組成物治療細菌性疾病、A型鏈球菌(5^印化⑶aw A)、造成皮膚感染之細菌、大腸桿菌〇157菌株等丨美國 專利案第6,m,036號揭露包括一種以上的嗟菌體的醫華 組成物;美國專利案第6,_,701號揭露利用沙門氏桿= (Mm⑽_ 特異性噬菌體進行食品包裝的方 法^系㈣嗟菌體塗佈至包裝材料上,再以包裝材料包覆 食品(如疏果)。 ,上=目前已知㈣體之應用,尚未提供針對院内 感乐之、·.田囷有效的預防或治療的方法,特 ^安 皆未揭露鮑氏不動桿菌 、則木 咸毕细菌之㈣^ 亦未揭露針對減少院内 α木,,,田囷之鮑氏不動桿菌之數量之方法。 【發明内容】 ° 為克服上述及其他問題, 菌組成物,包括至+一# 毛月仏犍供一種活體外殺 如臟_)之嗟菌體:氏不動桿菌( 劑,其中,該嗟菌體二 樣中’該嗟菌體係包含至少二氏不動:菌。於-態 於本發明W獅,該菌體。 性。於-態樣中,該喔:具核耐受性及驗耐受 件下係保有嗟菌體之生;^咖以上至_以下之條 於一態樣中,誃- 嗟菌體之生物活性Γ国谨菌體可於界面活性劑令保有 111057 5 201105241 ’嗟菌體之生物活性』意指該嗟菌體於環境中 ::宿主鲍氏不動桿菌之感染力,能夠感染宿= 伯、田^内增殖、及/或將宿主細胞溶裂之能力。 鮑氏中:本發明之刪為溶裂型嗟菌體,感染 干囷亚於細菌細胞㈣殖完成後,能夠溶裂絶 二=桿_細胞壁而釋出增殖之繼,鮑氏不動桿菌 夕抑|9此’本發明之㈣體可用於抑制鮑氏不動桿菌 /十、或減少鮑氏不動桿菌之數量。 於本發明組成物中,並未特職制該載劑,只要該載 你AB菌嗟菌體為可相容性―p_e)以令該喔菌體 可於載劑中保有生物活性’即可用於該殺菌組成物中。 於一態樣中,該载劑為溶液、懸浮液、粉末、噴霧劑、 ^軟膏之型式,但不限於此^於實施财,該載劑係^自 :、油、界面活性劑(如清潔劑、肥皂)、蛋白腺(卿㈣ 寺:亦可為兩種以上之組合,其中,以水及/或界面活性劑 為車父佳。 於較佳貫施例中,該界面活性劑係為至少一種選自由 陰離子性界面活性劑、陽離子性界㈣性劑、^性離子性 界面活性劑及非離子性界面活性劑所組成之群組之界面活 性劑。 於實施例中,該陰離子性界面活性劑係為,舉例但非 限制,月桂酯硫酸銨、月桂醇聚醚磺基琥鉑酸酯二鈉、辛 基磺醯基琥珀酸酯二鈉、軟性十二烷基苯磺酸、十二烷基 磷酸酯(MAP)、次級烷基磷酸鹽(SAS)、椰油醯羥基乙 ]]]〇57 6 201105241 、 基續酸鈉(SCID)、月桂醇聚越硫酸酯鈉(SLES)、月桂酸肌 ·· 胺酸鈉、月桂醯醚硫酸鈉(SLS)、曱基椰油醯基牛磺酸鈉等。 於貫把例中,該陽離子性界面活性劑係為,舉例但非 限制,十六烷基(Cetyl)三甲基氧化銨、二椰油基二甲基氯 化銨、二癸基二甲基氯化銨、雙酯季銨鹽、烷基苄基二甲 基乳化敍、牛油烧基二曱基氯化錄(DTDMAC)、°米β坐嚇_季 銨鹽等。 於實施例中,該兩性離子性界面活性劑係為,舉例但 非跟制’挪油基σ米α坐琳甜采驗(c〇c〇yi imidaz〇liniuni betaine)、椰油醯胺丙基羥基磺基甜菜鹼、椰油醯胺丙基二 甲基甜菜鹼、椰油酰兩性基二丙酸二納、月桂醯胺丙基二 甲基甜采驗、烧基兩性基丙酸納(sodium alkylamphopropionate)、牛脂基二羥乙基甜菜鹼等。 於實施例中,該非離子性界面活性劑係為,舉例但非 限制’烧基聚葡甸糖普(APG)、挪子酸胺(cocoamide DEA)、 • 月桂基胺氧化物、月桂基醚羧酸酯、TritonX(如TX-100、 TX-405 等)、PEG-150 di-stearate、Tween (如 Tween-40、 Tween-80 等)、Span (如 Span-20、Span-80 等)等。 於較佳實施例中’該界面活性劑可為市售產品,特別 是清潔劑產品。 本發明之組成物視需要復包括第二噬菌體,其中,該 第二噬菌體係為院内感染細菌之噬菌體。 於一態樣中’該院内感染細菌係選自由不動桿菌 r)、葡萄球菌⑽)、腸球菌 7 111057 1 201105241 (£>Uerococcz·)、腸桿菌科(Enterobacteriaceae )、非發酵革 蘭陰性桿菌(Non-fermentative gram-negative bacilli)、退伍 軍人病屬(/^/⑽己//^)、梭菌屬、分枝桿菌 屬(Afycc)Z?acieWwm)以及假單胞菌屬所組成 之群組中之一者或多者。 於實施例中,該不動桿菌係選自由鲍氏不動桿菌(左 baumannii) ' A. calcoaceticus ' A. haemolyticus ' A. junii ' i 以及乂. 所組成之群組中之一者或多者。 於實施例中’該葡萄球菌係選自由iS.ep/cfermzWz’s, S.hemolyticus, S. auricularis -S.capitis, S.caprae, S. hominis, S. pasteuri ' S.simulans, S. warneri, S.cohnii, S.sciuri, 以及*所組成之群組中之一者或多 者。 於實施例中,該腸桿菌科係選自由大腸桿菌 (£^c/zerzc/n<2),肺炎克雷柏氏菌()、 變形桿菌、腸桿菌(jEViiaohacie/")、檸檬酸桿菌 ()、摩干氏菌(Morgime//fl)、沙門氏桿菌 、沙雷氏菌()、志贺桿菌() 以及耶耳辛氏菌所組成之群組中之一者或多 者。 於實施例中,該假單胞菌屬係為綠膿桿菌 (Pseudomonas aeruginosa ) ° 本發明組成物所含之第二噬菌體係為溶裂型噬菌 體,可感染宿主(細菌),並於細菌細胞内增殖完成後,能 8 111057 201105241 '夠溶裂宿主的細胞壁而釋出增殖之噬菌體,宿主則死亡, 藉此,本發明之第二噬菌體可用於抑制其宿主之活性、或 減少宿主之數量。 於一態樣中,該第二噬菌體可於界面活性劑中保有噬 菌體之生物活性。 於一態樣中,該鮑氏不動桿菌噬菌體於該組成物中的 初始濃度為lxl〇7PFU/ml至lxl09PFU/m卜藉此,可依使 用者之需求,以AB菌噬菌體與其他細菌之噬菌體之组成 ® 而製備本發明組成物,藉此,可達到同時減少多種細菌之 效果。 於另一面向中,本發明係提供一種用於醫療機構或與 醫療相關之研究機構之活體外殺菌方法,係包括:將包括 鮑氏不動桿菌之噬.菌體及載劑之殺菌組成物施用於該醫療 機構或與醫療相關之研究機構,以減少該醫.療機構或與醫 療相關之研究機構中的細菌數量。於一態樣中,本發明之 φ 方法特別是針對減少鮑氏不動桿菌之數量。 其中,該鮑氏不動桿菌之噬菌體及該載劑係如上述所 定義。視需要,該殺菌組成物復包括第二噬菌體,該第二 噬菌體係如上述所定義。藉此,可依使用者之需求,以AB 菌噬菌體單獨或與其他細菌之噬菌體之組合而製備本發明 組成物,藉此,可達到減少鮑氏不動桿菌之數量、或同時 減少多種細菌之數量之效果。 於一態樣中,係將該殺菌組成物施用於醫療機構或與 醫療相關之研究機構,例如.,醫院或療養院。於一實施例201105241 - VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a bactericidal composition and a sterilizing method using the sterilizing composition, in particular to a bactericidal composition comprising a bacteriophage and a carrier, and an application thereof The sterilization method of the sterilization composition. [Prior Art] Nosocomial infection is the most difficult problem in hospitals. According to statistics, the hospital's in-hospital infection rate is about +3% to 5%. In-hospital • Infected bacteria are usually 饲pp0rtunistic pathogens, that is, for normal immune hosts, these bacteria are harmless, and some bacteria are even normal flora on the surface of the human body. However, when the host's immunity declines, the bacteria are prone to cause infection and cause disease. Common nosocomial infections include, for example, Staphylococcus, Pseudomonas (ΡπΜί/omo(10)?), Acinetobacter φ (Jc/zzeioiflcier), Enterococcus, Enterobacteriaceae, Non-fermenting Gram-negative bacilli (Non -fermentative gram-negative bacilli), Legionella genus, Clostridium (C/c^irWz'wm), Mycobacterium {Mycobacterium) # 〇 Currently, the most common nosocomial infections include Pseudomonas aeruginosa ), Staphylococcus aureus (flwrews) and Acinetobacter baumannii (baumannii), etc. 0 3 111057 201105241 Nosocomial infections may survive in stethoscopes, medical records, tourniquets, gloves, needles, respirators, moist bottles, furniture, flooring, ventilation Equipment such as mouth, monitor, etc.; or in water, soil and food (fruits, vegetables) and sewers; or in the human body, such as the skin, underarms, conjunctiva, mouth, upper respiratory tract, nasopharynx and gastrointestinal tract Wait. The incidence of nosocomial infections, in the case of intensive care units, because the patients are mostly critically ill patients, the human body immunity is poor, and often need to accept invasive treatment, such as intubation, vascular devices, etc., greatly improve the possibility of nosocomial infection, according to statistics, The infection rate in the intensive care unit is about 20 to 30 per 1,000. The treatment of common bacterial infections is the use of antibiotics. However, due to the abuse of antibiotics, bacteria are screened to evolve more resistance. Currently, there are more and more bacteria resistant to antibiotics in nosocomial infections. To treat patients infected with this bacterium, expensive new antibiotics must be used, and if the resistance of the bacteria continues to develop, no effective antibiotics will be available. In view of this, it is necessary to develop alternative methods for reducing and/or preventing nosocomial infections. The phage (bacteriophage) is a kind of virus characterized in that the host of the phage is a bacterium and must be grown and replicated in the bacterium. The bacillus can be divided into a lytic type and a lysogenic type. The lytic phage will infect the host bacteria. After the replication in the host is completed, the phage will lyse and release the bacteria, and the bacteria will rupture and die. Protoplasts are milder phage that can undergo a lytic or solvate life history and coexist with the host in the path of the protoplast. The use of bacteriophage for the treatment of bacterial diseases has been previously described, for example, in U.S. Patent Nos. 5,688,501, 5,997,862, et al., 6,248,324, 6, 485, 902, respectively, to disclose the use of medicinal compositions comprising bacteriophage to treat bacteria. Sexual diseases, Streptococcus type A (5^印 (3) aw A), bacteria causing skin infection, Escherichia coli 〇157 strain, etc. U.S. Patent No. 6,m,036 discloses a medical treatment comprising more than one type of bacillus Compositions; U.S. Patent No. 6, _, 701 discloses the use of Salmonella rods = (Mm (10) _ specific phage for food packaging methods ^ (4) sputum bacteria coated onto packaging materials, and then coated with packaging materials ( Such as sparse fruit.), above = the current known (four) body application, has not provided a method for the prevention or treatment of the hospital's feelings, Tian Hao, effective prevention, treatment, no disclosure of Acinetobacter baumannii, then salty The bacteria (4)^ also did not disclose the method for reducing the number of Acinetobacter baumannii in the hospital. [Invention content] ° To overcome the above and other problems, the composition of the bacteria , including to + one #毛月仏犍 for an in vitro killing such as dirty _) 嗟 体: Acinetobacter baumannii (agent, wherein the sputum bacteria in the two 'the sputum system contains at least two does not move: In the state of the invention, the lion, the bacterial body. In the - state, the sputum: with nuclear tolerance and tolerance to the underlying parts of the bacterium to keep the bacteria; ^ coffee above to _ In the following article, the biological activity of 誃-嗟 体 谨 谨 可 可 可 可 111 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 057 : the infectivity of the host Acinetobacter baumannii, capable of infecting the growth of the sputum, the cytoplasm, and/or the ability to lyse the host cells. Bowen: The lysate-type bacterium of the present invention is infected After the bacterial cell (4) is completed, it can be lysed to eliminate the second cell of the rod and release the proliferation, and the A. baumannii is inhibited. 9 This invention can be used to inhibit Acinetobacter baumannii/ten Or reducing the amount of Acinetobacter baumannii. In the composition of the present invention, the carrier is not specially prepared, as long as it contains you AB bacteria To be compatible -p_e) Oh enabling the cells to be retained in the carrier the biologically active agent 'was used in the sterilizing composition. In one aspect, the carrier is in the form of a solution, a suspension, a powder, a spray, or an ointment, but is not limited to the implementation of the carrier, the carrier is: oil, surfactant (such as cleaning) Agent, soap), protein gland (Qing (4) Temple: can also be a combination of two or more, of which water and / or surfactant is the best car. In a preferred embodiment, the surfactant is At least one surfactant selected from the group consisting of an anionic surfactant, a cationic boundary agent, an ionic surfactant, and a nonionic surfactant. In an embodiment, the anionic interface The active agent is, by way of example and not limitation, ammonium lauryl sulfate, disodium laureth sulfosuccinate, disodium octylsulfonyl succinate, soft dodecylbenzene sulfonic acid, twelve Alkyl phosphate (MAP), secondary alkyl phosphate (SAS), cocoyl hydroxyethyl]]] 〇 57 6 201105241, sodium citrate (SCID), sodium lauryl sulfate (SLES), Lauric acid muscle · sodium amide, sodium lauryl ether sulfate (SLS), sodium sulfonate In the above examples, the cationic surfactant is, by way of example and not limitation, Cetyl trimethyl ammonium oxide, dicocoyl dimethyl ammonium chloride, dimercapto dimethyl Ammonium chloride, diester quaternary ammonium salt, alkylbenzyl dimethyl emulsifier, tallow alkyl dimercapto chloride (DTDMAC), ° m beta sedentary quaternary ammonium salt, etc. In the examples , the zwitterionic surfactant is, for example, but not the same as the 'or oil-based σ m α sitting on the sweet test (c〇c〇yi imidaz〇liniuni betaine), cocoamphetamine hydroxy sulfobeet Alkali, cocoamidopropyl dimethyl betaine, cocoamphodipropionate di-nano, lauryl propyl dimethyl sweetness test, sodium alkylamphopropionate, tallow Dihydroxyethyl betaines, etc. In the examples, the nonionic surfactant is, for example, but not limited to, 'APG, agglomerate (cocoamide DEA), • Laurel Amine oxides, lauryl ether carboxylates, TritonX (eg TX-100, TX-405, etc.), PEG-150 di-stearate, Tween (eg Tween-40, T Ween-80, etc.), Span (such as Span-20, Span-80, etc.), etc. In the preferred embodiment, the surfactant may be a commercially available product, particularly a detergent product. The composition of the present invention is as needed. The second phage is included, wherein the second phage system is a phage which infects bacteria in the hospital. In one aspect, the hospital infection virus is selected from the group consisting of Acinetobacter sp. r, Staphylococcus (10), Enterococcus 7 111057 1 201105241 ( £>Uerococcz·), Enterobacteriaceae, Non-fermentative gram-negative bacilli, Legionnaires' disease (/^/(10)hex//^), Clostridium, points One or more of the group consisting of Mycobacterium (Afycc) Z?acieWwm) and Pseudomonas. In an embodiment, the Acinetobacter is selected from one or more of the group consisting of A. calcoaceticus 'A. haemolyticus ' A. junii ' i and 乂. of Acinetobacter baumannii (left baumannii). In the examples 'the staphylococcus strain is selected from iS.ep/cfermzWz's, S. hemolyticus, S. auricularis - S. capitis, S. caprae, S. hominis, S. pasteuri ' S. simulans, S. warneri, S One or more of the groups consisting of .cohnii, S.sciuri, and *. In an embodiment, the Enterobacteriaceae is selected from the group consisting of Escherichia coli (£^c/zerzc/n<2), Klebsiella pneumoniae (), Proteus, Enterobacter (jEViiaohacie/", Citrobacter ( One or more of the group consisting of Morgime//fl, Salmonella, Serratia (), Shigella (), and Yersinia. In the embodiment, the Pseudomonas is Pseudomonas aeruginosa. The second phage system contained in the composition of the present invention is a lytic phage which infects a host (bacteria) and is in a bacterial cell. After the completion of the proliferation, the phage which releases the proliferating phage can be lysed by the cell wall of the host, and the host dies, whereby the second phage of the present invention can be used to inhibit the activity of the host or reduce the number of the host. In one aspect, the second phage retains the biological activity of the phage in the surfactant. In one aspect, the initial concentration of the Acinetobacter baumannii phage in the composition is lxl〇7PFU/ml to lxl09PFU/m, thereby allowing the bacteriophage of the AB phage and other bacteria according to the needs of the user. The composition of the present invention is used to prepare the composition of the present invention, whereby the effect of simultaneously reducing a plurality of bacteria can be attained. In another aspect, the present invention provides an in vitro sterilization method for a medical institution or a medical related research institution, comprising: applying a bactericidal composition comprising a bacillus of Acinetobacter baumannii and a carrier; The medical institution or medical research institution to reduce the number of bacteria in the medical institution or medical research institution. In one aspect, the φ method of the present invention is particularly directed to reducing the amount of Acinetobacter baumannii. Wherein the phage of Acinetobacter baumannii and the carrier are as defined above. The bactericidal composition further comprises a second phage as defined above, as desired. Thereby, the composition of the present invention can be prepared by the combination of AB bacteria phage alone or with other bacterial phage according to the needs of the user, thereby reducing the number of Acinetobacter baumannii or simultaneously reducing the number of various bacteria. The effect. In one aspect, the bactericidal composition is applied to a medical facility or a medical-related research institution, such as a hospital or a nursing home. In an embodiment

9 111057 L 201105241 中,係將該殺菌組成物施用於該醫院或療養院之環境中, 例如,舉例但非限制,加護病房、手術室、恢復室、診療 室、會客室等;或於該醫院或療養院之設備,例如,舉例 但非限制,插管、血管裝置、聽診器、病歷、止血帶、手 套、呼吸器、潮濕瓶、家具、地板、通風口、監視器等的 表面。該施用的方法為,視施用的標的物而選擇,直接喷 灑、間接喷灑、浸泡或塗抹。 本發明之殺菌組成物及殺菌方法可藉由噬菌體與宿 主間的專一性而有效降低標的細菌之數量或抑制標的細菌 之活性,故可解決因細菌產生抗生素抗藥性而無法使用抗 生素殺菌之困擾,且利用本發明之殺菌組成物亦不會造成 標的細菌產生進一步的抗藥性。本發明之殺菌組成物可與 市售清潔劑搭配使用,在商業化上具有優勢。另外,本發 明之殺菌方法步驟簡單、效果良好,且無化學殺菌劑毒性 殘留、無細菌之抗藥性產生之疑慮,因此可有效解決院内 感染的問題。 【實施方式】 以下係藉由特定的具體實施例說明本發明之實施方 式,熟習此技藝之人士可由本說明書所揭示之内容暸解本 發明之其他優點與功效。 實施例1 噬菌體之製備:自花蓮慈濟醫院收集之導管洗液、排 水糸統之廢水 '未經處理之污水等樣本’將樣本分別於4 °C以5,000x g離心10分鐘,將上清液以0.45-/zm孔徑之 10 111057 201105241 ·- 膜過濾'’接著進行溶菌斑測試。 - 將10 #1之樣本濾液滴至覆於一般LB瓊脂培養基上 之AB菌之細菌層(bacterial iawns)(於〇 7%之LB瓊脂培養 基中)’樣本濾液中若含有嗟菌體,會於細菌層上產生清除 區(clear zone) ’將其挑出並浸於lb培養基,進行過濾以 去除AB菌,即可得到高濃度之嗤菌體。再將嗟菌聽稀釋 後,平塗於培養基上形成溶菌斑。進行至少兩次之單一溶 菌斑單離步驟以得噬菌體純株。9 111057 L 201105241, the bactericidal composition is applied to the environment of the hospital or nursing home, for example, but not limited to, an intensive care unit, an operating room, a recovery room, a treatment room, a reception room, etc.; or in the hospital or The equipment of the nursing home, for example, but not limited to, the surface of the cannula, vascular device, stethoscope, medical record, tourniquet, gloves, respirator, moist bottle, furniture, floor, vent, monitor, and the like. The method of administration is selected depending on the subject matter to be administered, by direct spraying, indirect spraying, soaking or smearing. The bactericidal composition and the sterilizing method of the invention can effectively reduce the number of the target bacteria or inhibit the activity of the target bacteria by utilizing the specificity between the phage and the host, thereby solving the problem that the antibiotic resistance can not be used due to the antibiotic resistance of the bacteria. Moreover, the use of the bactericidal composition of the present invention does not cause further resistance of the target bacteria. The bactericidal composition of the present invention can be used in combination with a commercially available detergent, and has an advantage in commercialization. In addition, the sterilization method of the present invention has simple steps and good effects, and has no doubt that the chemical germicide is toxic and has no bacterial resistance, so that the problem of nosocomial infection can be effectively solved. [Embodiment] The embodiments of the present invention are described by way of specific examples, and those skilled in the art can understand the other advantages and effects of the present invention from the disclosure of the present disclosure. Example 1 Preparation of phage: Pipette washing liquid collected from Hualien Tzu Chi Hospital, wastewater of untreated sewage, etc. Samples were centrifuged at 5,000 x g for 10 minutes at 4 ° C, and the supernatant was centrifuged. The plaque test was followed by a 0.45-/zm pore size of 10 111057 201105241 ·- Membrane filtration ''. - Drop the sample of 10 #1 to the bacterial iawns of AB bacteria (used in 7% LB agar medium) on the general LB agar medium. If the sample filtrate contains bacteriophage, it will A clear zone is created on the bacterial layer. 'Pick it out and immerse it in lb medium, and filter to remove AB bacteria to obtain a high concentration of sputum cells. The sputum was diluted and applied to the medium to form plaque. A single plaque detachment step is performed at least twice to obtain a phage pure strain.

參 自樣本所單離之AB菌噬菌體經鑑定後共得到5株AB 囷嚷囷體’各株皆可感染AB菌,且各自對AB菌之不同 菌株(strain)之感染力略有差異。 實施例2 為測試本發明殺菌組成物之宿主專一性,選用如表1 所示之囟種’其中’鮑氏不動桿菌( 6⑽mawm’z·,本說明書中有時簡稱AB菌)來源:35株係自 春花蓮慈濟醫院收集’ 2株來自ATCC( American Type Culture Collection ) 〇 將細菌培養於 LB 培養基(Difco Laboratories,Detroit, MI,USA ),37°C,並以混濁度監測細菌生長,於600 nm(OD600)測定吸光值,OD為1.時表示細菌濃度為3xl08 細胞/毫升。並於一般LB瓊脂培養基上覆蓋一層含有宿主 細菌(例如表1中之菌株)之0.7%之LB瓊脂培養基,藉此 製備宿主細菌層(bacterial lawns)。 將10# 1之噬菌體(純株或混合物)培養液(噬菌體濃 11 111057 1 201105241 度為101GPFU/ml)滴至細菌層,將培養基平盤於無菌層流 操作台中乾燥10分鐘,於37°C培養18至20小時,並觀 察溶菌斑產生與否。 表1 細菌學名 特徵 _ 來源 菌株_A total of 5 AB steroids were obtained after identification of the AB phage phage isolated from the sample, and each strain was infected with AB bacteria, and the infectivity of each strain of AB strain was slightly different. Example 2 In order to test the host specificity of the bactericidal composition of the present invention, the scorpion species as shown in Table 1 was selected, wherein 'Acinetobacter baumannii (6(10) mawm'z·, sometimes referred to as AB bacteria in the present specification). Source: 35 strains Collected from the Chunhualian Tzu Chi Hospital's 2 strains from the ATCC (American Type Culture Collection), cultured the bacteria in LB medium (Difco Laboratories, Detroit, MI, USA) at 37 ° C, and monitored the growth of bacteria by turbidity. The absorbance was measured at 600 nm (OD600), and the OD was 1. The bacterial concentration was 3 x 1008 cells/ml. The host LB agar medium was covered with a layer of 0.7% LB agar medium containing host bacteria (e.g., the strain in Table 1), thereby preparing host bacterial lawns. The 10# 1 phage (pure strain or mixture) culture solution (phage rich 11 111057 1 201105241 degrees 101 GPFU / ml) was dropped into the bacterial layer, and the culture plate was dried in a sterile laminar flow table for 10 minutes at 37 ° C. Incubate for 18 to 20 hours and observe whether plaque is produced or not. Table 1 Bacterial name Characteristics _ Source Strain _

Acinetobacter baumanniiAcinetobacter baumannii

19606,17987 ATCC 標準菌株 ATCC 花蓮慈濟醫院 M495, Ml094, M2472, 臨床菌株,MDRAB M2477, M2641, M2835, M3069, M3237, M3739, M3982, M4666, M5473, M67329, M67649, M67777, M68092, M68282, M68316, M68630, M68651, M68653, M68661, 45530, 46709, 47538, 47543, 48393, 48465, 48829, 49575, 50064, 50068, 50913, 51360 M2383 臨床菌株19606,17987 ATCC Standard strain ATCC Hualien Tzu Chi Hospital M495, Ml094, M2472, clinical strain, MDRAB M2477, M2641, M2835, M3069, M3237, M3739, M3982, M4666, M5473, M67329, M67649, M67777, M68092, M68282, M68316 , M68630, M68651, M68653, M68661, 45530, 46709, 47538, 47543, 48393, 48465, 48829, 49575, 50064, 50068, 50913, 51360 M2383 Clinical strain

Abl-Ab9Abl-Ab9

Imir Merr Ampr 花蓮慈濟醫院 吳,等人(2007)Imir Merr Ampr Hualien Tzu Chi Hospital Wu, et al. (2007)

Acinetobacter cal coaceticusAcinetobacter cal coaceticus

ATCC 33305 ATCC標準菌株 12 111057 201105241ATCC 33305 ATCC Standard Strain 12 111057 201105241

Escherichia coli DH5a endAl hsdRl 7 (rk- wk-l·) supE44 thi-1 recAl gyrA Γθ1Α1ψ80ά lacZAM15A (lacZYA-argF)U169 Hanahan D. (1983) G0003, G0004, G0008, G0010,G0012, G0070, GOOTi, G0072,G0081 臨床菌株 花蓮慈濟醫院 Klebsiella pneumoniae Kp2, Kp50, Kp53, Kp90? Kpl20, Kpl21 臨床菌株 吳,等人(2007) Pseudomonas aeruginosa Pa79, Pa81, Pa86 臨床菌株 吳,等人(2007) MDRAB:多重抗藥性之AB菌,對健達黴素(gentamicin),安黴素 (amikacin),達比黴素(piperaci 11 in/tazobactam),特泯菌 (ticarcillin/clavulanate),頭孢他啶(ceftazidime),頭孢吡 肟(cefepime),頭孢匹羅(cefpirome),胺曲南(aztreonam),亞 安培南(imipenem),美羅培南(meropenem),環丙沙星 (ciprofloxacin),及左氧氟沙星(ievofloxacin)具有抗藥性。Escherichia coli DH5a endAl hsdRl 7 (rk-wk-l·) supE44 thi-1 recAl gyrA Γθ1Α1ψ80ά lacZAM15A (lacZYA-argF)U169 Hanahan D. (1983) G0003, G0004, G0008, G0010, G0012, G0070, GOOTi, G0072, G0081 Clinical strain Klebsiella pneumoniae Kp2, Kp50, Kp53, Kp90? Kpl20, Kpl21 Clinical strain Wu, et al. (2007) Pseudomonas aeruginosa Pa79, Pa81, Pa86 Clinical strain Wu, et al. (2007) MDRAB: Multidrug resistance AB bacteria, for gentamicin, amikacin, piperaci 11 in/tazobactam, ticarcillin/clavulanate, ceftazidime, cefepime Cefepime), cefpirome, aztreonam, imipenem, meropenem, ciprofloxacin, and levofloxacin are resistant.

Amp :安比西林(ampicillin); Imi :亞安培南(imipenem); Mer : 美羅培南(meropenem); r :抗藥性;s :敏感性。 結果顯示,依實施例1之方法所製備之AB菌噬菌體 (純株或疋斤匕合物)於10.株儿cfl/coacei/cws、_£"· co/ζ·之菌 株、.6 株尺.之囷株 '及 3 株 ρ· 之 囷株之細囷層上皆未產生溶菌斑’且皆僅於AB菌之細菌 層上產生溶菌斑,顯示本發明之殺菌組成物確實對於AB 菌具有宿主專一性。 13 111057 201105241 另外,依實施例1之方法所製備之AB菌嗤菌體(純株 或是混合物),除了對於ATCC之兩個標準菌株具有感染 力,亦對於臨床分離之多重抗藥性AB菌具備感染力,確 實可以解決院内感染與多重抗藥性AB菌感染之問題。 實施例3 當宿主細菌濃度達〇D600為0.6 U時,將AB菌噬菌 體(純株或是混合物)以0.0005之MOI(Multiplicity Of Infection)值添加至宿主細菌培養液中,於室溫下培養。於 培養0、1、2、3、4、5、10、20、30分鐘之時間點取樣 100/z 1,並以0.9 mL之冷LB稀釋,以12,000x g離心5 分鐘,取上清液,測定未吸附至宿主細菌之噬菌體的量。 結果如第1圖所示。 觀察添加噬菌體之宿主細菌培養液,發現培養液於 100分鐘内自混濁轉為澄清,顯示噬菌體將宿主細菌完全 溶裂掉,證實本發明之殺菌組成物確實可達到殺菌效果。 由第1圖可知,約75%之噬菌體顆粒於2分鐘内吸附 至宿主細菌,約95%之噬菌體顆粒於4分鐘内吸附至宿主 細菌,於10分鐘時達到100%之吸附。 另夕卜,以一步生長曲線(one-step growth curve)測定嗟 菌體複製曲線,將〇D6〇o為〇·8 U之宿主細菌離心後收取 細胞,再以0.8 ml之LB培養基重新溶散,使濃度為109 CFU/ml。將AB菌噬菌體以0.0001之MOI值添加至宿主 細菌培養液中,置於4°C下30分鐘,俾使噬菌體吸附至宿 主細菌。將混合物以12,000x g離心10分鐘,再將包含受 14 111057 201105241 ' 感染細菌之沈澱物以20 ml之LB培養基重新溶散,於37 -. C下培養’每隔5分鐘取樣’並將樣本立刻稀釋及定ϊ。 結果如第2圖所示。 潛伏期之定義為自吸附(不包含預處理之10分鐘) 至第一次爆發(burst,噇菌體溶裂細菌而釋出)開始,如 第2圖所示潛伏期為15分鐘。以最終噬菌體顆粒量與受感 染細菌初始量之比例,計算得到平均爆發量約為200 PFU/ 細胞。 ® 因此,本實施例證實本發明之殺菌組成物之殺菌效果 迅速、需時短、效果良好;且能在溶裂宿主細菌後釋出更 多量的嗟菌體至環境中,可使殺菌效果持續存在。 實施例4 以界面活性劑TWEEN 20、TWEEN 80以及Triton X-100 (購自 Sigma-Aldrich Biotechnology, USA)與自實施 例1單離出之AB菌噬菌體(純株或是混合物)製備本發明 鲁殺菌組成物。 習知界面活性劑之常用濃度多落在0.1〜1 wt%之間, 因此,製備本發明殺菌組成物時,係包括0.1〜1 wt%之界 面活性劑,以及起始濃度為5xl07PFU/ml之噬菌體,將兩 者混合後置於室溫,每隔24小時採樣測定噬菌體濃度,如 下式計算嗟菌體存活率(survival fraction): 噬菌體存活率=取樣之噬菌體濃度/噬菌體原始濃度 以測定界面活性劑之影響,當界面活性劑為1 wt%之 結果如第3圖所示。 15 111057 201105241 經測定,包含0.1〜1 wt%之界面活性劑,皆不會對AB 菌噬菌體之活性造成影響。另外,由第3圖可知,AB菌 嗟菌體於Triton X-100中最穩定,TWEEN 20次之;而在 TWEEN 80中雖然AB菌嗟菌體之存活率變化較大,但仍 然可維持足夠感染宿主細菌的活性。且隨著時間進展,噬 菌體濃度下降的趨勢則趨於緩和,再逐漸升高。以變異係 數(coefficient of variation)評估,三種界面活性劑的CV值 均低於20%,因此,證實噬菌體於此三種界面活性劑中皆 非常穩定。表示本發明殺菌組成物係為安定。 實施例5 在不同環境條件下測定本發明殺菌組成物之穩定性。 (1 )溫度 將噬菌體以無菌水稀釋至1〇8 PFU/ml後,置於不同 的溫度條件下,分別為4°C、25°C、37°C、42°C、-20°C以 及-80°C。在4°C、25°C及37°C的實驗中,於培養24小時 内每3小時採樣測定噬菌體濃度,而後每星期持續追蹤至 12週,結果如第4A圖所示。在-20°C及-80°C的實驗則各 分為兩組,第一組是重複冷凍解凍,追蹤時間為12週, 第二組只解凍一次,追蹤時間為5週,結果如第4B圖所 示。 (2)酸鹼度 將噬菌體以酸性(pH值為4)及鹼性(pH值為11) 水溶液稀釋到噬菌體濃度為1〇8 PFU/ml後,在pH值為 4.7、7、11的實驗中24小時内每3小時測定濃度,而後 16 111057 201105241 每週固定追蹤一次,連續追蹤12週,結果如第5圖所示。 (3) 化學物質 將噬菌體加入氯仿溶液(0.5%及2%)稀釋濃度到 108 PFU/ml後,在24小時内每3小時測定濃度,而後在 0.5%之氯仿溶液的實驗中,每週固定追蹤一次,連續追蹤 3週;2%之氯仿溶液的實驗則是追蹤6週,結果如第6 圖所示。 (4) 乾燥處理 將1010 PFU/ml的噬菌體分為A、B兩組,A組以蛋 白腺(peptone),B組以無菌水分別將嗟菌體濃度稀釋10 倍之後再以真空離心乾燥系統(speed vac)乾燥處理,乾燥 後的A、B兩組再分別復溶於0.5 ml之蛋白脒及0.5 ml之 無菌水,觀察噬菌體在乾燥前後的濃度變化,結果如表2 所示。 表2 噬菌體乾燥後之平 噬菌體原始濃 復溶後嗤囷 均濃度(PFU/ml) 度(PFU/ml) 體存活率 A 組 2.18xl09 1.02χ1010 21.3% Β 組 2.30χ109 1.02xl010 33.4% 由上述測試結果發現,本發明殺菌組成物在低溫(-20 °C、-80°C、4°C)條件下,噬菌體至少可存活8週以上且 存活率達5%以上。在環境温度(25°C以及37°C )條件下, 噬菌體可存活11週以上且存活率達14.9%以上。而在高 17 111057 201105241 溫環境(42°C )下追蹤2週,噬菌體存活率仍達到14.8 %。 本發明殺菌組成物在鹼性(pH=ll)環境下,約11週後 噬菌體的存活率可維持約30%,而在酸性(pH=4)環境下, 至第11週仍可測得存活之噬菌體。另,於真空乾燥及復溶 後所測得之AB菌噬菌體存活率高達20%以上。再者,本 發明殺菌組成物在0.5%及2%之氣仿溶液中,噬菌體可存 活3週以上且存活率達30%。 综上述,對於環境之溫度、乾濕度、酸鹼值及化學物 質皆噬菌體可維持存活率,證實本發明殺菌組成物之安定 性。 實施例6 殺菌測試條件:於相同規格之容器中置入相同濃度之 細菌(107 CFU/ml),將包括107 PFU/ml之噬菌體之本發明 殺菌組成物噴灑至容器中,於不同時間點取樣,依標準程 序分別測量細菌及噬菌體濃度,藉由細菌減少量以測定殺 菌效果。 本發明殺菌組成物之成分可包括如下所示之成分: (1) AB菌噬菌體及無菌水 (2) AB菌噬菌體及界面活性劑 (3) AB菌嗟菌體、無菌水、及界面活性劑 (4) AB菌嗟菌體、第二噬菌體(葡萄球菌 ()嗟菌體)、及無菌水 (5) AB 菌嗟菌體、第二噬菌體(葡萄球菌 18 Π1057 201105241 , ()嗟菌體)、及界面活性劑 (6) AB菌噬菌體、第二噬菌體(葡萄球菌 (嗟菌體)、無菌水、及界面活性劑 另外,以噴灑無菌水作為對照組。 觀察發現容器内之混合物會自混濁轉為澄清,顯示噬 菌體將宿主細菌完全溶裂掉,並可有效降低細菌量達數個 對數值(logs),證實本發明之殺菌組成物確實可達到殺菌效 果。 * 上述實施例僅例示性說明本發明之組成物與製備方 法,而非用於限制本發明。任何熟習此項技藝之人士均可 在不違背本發明之精神及範疇下,對上述實施例進行修飾 與改變。因此,本發明之權利保護範圍如後述申請專利範 圍所載。 【圖式簡單說明】 第1圖係為鮑氏不動桿菌噬菌體對於宿主細菌之吸附 • 率, 第2圖係為鮑氏不動桿菌嗟菌體之一步生長曲線; 第3圖係為在界面活性劑中,鮑氏不動桿菌噬菌體之 活性; 第4A圖係說明在不同溫度條件下,本發明殺菌組成 物之穩定性; 第4B圖係說明在不同溫度及解凍條件下,本發明殺 菌組成物之穩定性; 第5圖係說明在不同酸鹼度條件下,本發明殺菌組成 19 Π1057 201105241 物之穩定性;以及 第6圖係說明在化學物質存在下,本發明殺菌組成物 之穩定性。 【主要元件符號說明】 〇 20 111057Amp: ampicillin; Imi: imipenem; Mer: meropenem; r: drug resistance; s: sensitivity. The results showed that the AB bacteriophage (pure strain or scorpion conjugate) prepared according to the method of Example 1 was used in 10. strain cfl/coacei/cws, _£"· co/ζ·, strain, .6 The plaques were not produced on the bacterial layer of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains of the strains The bacteria have host specificity. 13 111057 201105241 In addition, the AB bacillus (pure strain or mixture) prepared according to the method of Example 1 has the infectivity in addition to the two standard strains of ATCC, and is also provided for the clinically isolated multi-drug resistant strain AB. Infectivity can indeed solve the problem of nosocomial infection and multi-drug resistant AB infection. Example 3 When the host bacterial concentration reached 〇D600 of 0.6 U, the AB bacteriophage (pure strain or mixture) was added to the host bacterial culture solution at a MOI (Multiplicity Of Infection) value of 0.0005, and cultured at room temperature. Sample 100/z 1 at 0, 1, 2, 3, 4, 5, 10, 20, 30 minutes of culture and dilute with 0.9 mL of cold LB, centrifuge at 12,000 xg for 5 minutes, and take the supernatant. The amount of phage that was not adsorbed to the host bacteria was determined. The result is shown in Figure 1. The host bacterial culture solution to which the phage was added was observed, and it was found that the culture solution was changed from turbidity to clarification within 100 minutes, indicating that the phage completely lysed the host bacteria, and it was confirmed that the bactericidal composition of the present invention can achieve the bactericidal effect. As can be seen from Fig. 1, about 75% of the phage particles were adsorbed to the host bacteria in 2 minutes, and about 95% of the phage particles were adsorbed to the host bacteria in 4 minutes, and reached 100% adsorption at 10 minutes. In addition, the replication curve of the bacillus was determined by a one-step growth curve, and the host bacteria of 〇D6〇o was 〇·8 U were centrifuged, and the cells were harvested, and then re-dissolved in 0.8 ml of LB medium. The concentration was 109 CFU/ml. The AB bacteriophage was added to the host bacterial culture solution at an MOI value of 0.0001, and placed at 4 ° C for 30 minutes to allow the phage to adsorb to the host bacteria. The mixture was centrifuged at 12,000 x g for 10 minutes, and the pellet containing the infected bacteria of 14 111057 201105241 ' was re-dissolved in 20 ml of LB medium, and cultured at 37 ° C. 'Sampling every 5 minutes' and the sample was immediately Dilute and fix. The result is shown in Figure 2. The incubation period is defined as self-adsorption (10 minutes without pretreatment) and the first burst (burst, release of bacteria-dissolving bacteria), as shown in Figure 2 with an incubation period of 15 minutes. The average burst was calculated to be approximately 200 PFU/cell in proportion to the ratio of the final phage particle size to the initial amount of infected bacteria. ® Therefore, the present embodiment demonstrates that the bactericidal composition of the present invention has a rapid bactericidal effect, is short in time, and has good effects; and can release a larger amount of sputum bacteria to the environment after lysing the host bacteria, so that the bactericidal effect can be continued. presence. Example 4 The invention was prepared with the surfactants TWEEN 20, TWEEN 80 and Triton X-100 (purchased from Sigma-Aldrich Biotechnology, USA) and the AB bacteriophage (pure strain or mixture) isolated from Example 1. Sterilizing composition. The conventional concentration of the conventional surfactant is mostly between 0.1 and 1 wt%. Therefore, when preparing the bactericidal composition of the present invention, 0.1 to 1 wt% of the surfactant is included, and the initial concentration is 5 x 107 PFU/ml. The phage was mixed and placed at room temperature. The phage concentration was sampled every 24 hours, and the survival fraction was calculated as follows: Phage survival rate = sampled phage concentration / phage original concentration to determine interfacial activity The effect of the agent, when the surfactant was 1 wt%, is shown in Figure 3. 15 111057 201105241 It has been determined that 0.1% to 1% by weight of surfactant is not affected by the activity of AB bacteriophage. In addition, as can be seen from Fig. 3, the AB strain is most stable in Triton X-100, TWEEN 20 times; while in TWEEN 80, although the survival rate of AB bacteria is large, it can still maintain enough. Infecting host bacteria for activity. And as time progresses, the trend of decreased phage concentration tends to moderate and gradually increase. The CV values of the three surfactants were all less than 20% as assessed by the coefficient of variation. Therefore, it was confirmed that the phage was very stable among the three surfactants. It is shown that the bactericidal composition of the present invention is diazepam. Example 5 The stability of the bactericidal composition of the present invention was determined under different environmental conditions. (1) Temperature The phage is diluted to 1〇8 PFU/ml with sterile water and placed under different temperature conditions, 4°C, 25°C, 37°C, 42°C, -20°C, and -80 ° C. At 4 ° C, 25 ° C and 37 ° C, the phage concentration was sampled every 3 hours for 24 hours, and then continued until 12 weeks per week. The results are shown in Fig. 4A. The experiments at -20 °C and -80 °C were divided into two groups. The first group was repeated freeze-thaw, the tracking time was 12 weeks, the second group was only thawed once, and the tracking time was 5 weeks. The result was 4B. The figure shows. (2) pH: The phage was diluted with an acidic (pH 4) and alkaline (pH 11) aqueous solution to a phage concentration of 1〇8 PFU/ml, and in experiments with pH values of 4.7, 7, and 11 The concentration was measured every 3 hours during the hour, and then 16 111057 201105241 was tracked once a week for 12 weeks. The results are shown in Figure 5. (3) Chemical substance The phage was added to a chloroform solution (0.5% and 2%) to a concentration of 108 PFU/ml, and the concentration was measured every 3 hours for 24 hours, and then fixed in a 0.5% chloroform solution per week. Track once, continuously for 3 weeks; 2% of the chloroform solution was followed for 6 weeks, and the results are shown in Figure 6. (4) Drying treatment The 1010 PFU/ml phage were divided into two groups, A and B groups. Group A was treated with peptone. Group B was diluted 10 times with sterile water to separate the sputum concentration by vacuum centrifugal drying system. (speed vac) drying treatment, the dried A and B groups were re-dissolved in 0.5 ml of peptone and 0.5 ml of sterile water respectively, and the concentration changes of the phage before and after drying were observed. The results are shown in Table 2. Table 2 After phage drying, the total concentration of phage after concentrated reconstitution (PFU/ml) degree (PFU/ml) body viability A group 2.18xl09 1.02χ1010 21.3% Β group 2.30χ109 1.02xl010 33.4% by the above test As a result, it was found that the bacteriophage of the present invention can survive for at least 8 weeks at a low temperature (-20 ° C, -80 ° C, 4 ° C) and the survival rate is over 5%. At ambient temperature (25 ° C and 37 ° C), the phage can survive for more than 11 weeks and the survival rate is above 14.9%. While tracking for 2 weeks at a high temperature of 17 111057 201105241 (42 ° C), the phage survival rate still reached 14.8%. In the alkaline (pH=11) environment of the bactericidal composition of the present invention, the survival rate of the phage can be maintained by about 30% after about 11 weeks, while in the acidic (pH=4) environment, the survival can still be measured until the 11th week. Phage. In addition, the AB bacteriophage survival rate measured after vacuum drying and reconstitution was as high as 20% or more. Further, in the bactericidal composition of the present invention, in 0.5% and 2% of the simulated solution, the phage can survive for more than 3 weeks and the survival rate is 30%. In summary, the phage can maintain the survival rate for the ambient temperature, dry humidity, pH value and chemical substance, and the stability of the bactericidal composition of the present invention is confirmed. Example 6 Sterilization test conditions: bacteria of the same concentration (107 CFU/ml) were placed in a container of the same specification, and the bactericidal composition of the present invention comprising 107 PFU/ml of phage was sprayed into a container, and samples were taken at different time points. The bacterial and phage concentrations were separately measured according to standard procedures, and the bactericidal effect was determined by the amount of bacterial reduction. The components of the bactericidal composition of the present invention may include the following components: (1) AB bacteriophage and sterile water (2) AB bacteriophage and surfactant (3) AB bacillus, sterile water, and surfactant (4) AB bacillus, second phage (staphylococcus), and sterile water (5) AB bacillus, second phage (Staphylococcus 18 Π1057 201105241, () sputum) And surfactants (6) AB bacteriophage, second phage (staphylococcus (bacteria), sterile water, and surfactants. In addition, spray sterile water as a control group. It was observed that the mixture in the container would be turbid. Turning to clarification, it is shown that the phage completely lyse the host bacteria, and can effectively reduce the amount of bacteria up to several logs, confirming that the bactericidal composition of the present invention can achieve the bactericidal effect. * The above examples are merely illustrative. The composition and the preparation method of the present invention are not intended to limit the present invention, and those skilled in the art can modify and modify the above embodiments without departing from the spirit and scope of the present invention. The scope of protection of the invention is as set forth in the scope of the patent application described below. [Simplified description of the drawings] Fig. 1 is the adsorption rate of Acinetobacter baumannii phage to host bacteria, and Fig. 2 is the Acinetobacter baumannii bacillus One-step growth curve; Figure 3 is the activity of Acinetobacter baumannii phage in the surfactant; Figure 4A shows the stability of the bactericidal composition of the present invention under different temperature conditions; Figure 4B shows the difference The stability of the bactericidal composition of the present invention under temperature and thawing conditions; Figure 5 illustrates the stability of the bactericidal composition 19 Π 1057 201105241 of the present invention under different pH conditions; and Figure 6 illustrates the presence of a chemical substance in the presence of a chemical substance. The stability of the bactericidal composition of the invention [Description of main component symbols] 〇20 111057

Claims (1)

201105241 七、申請專利範圍: 1· 一種活體外殺菌組成物,係包括: 氏不動杯菌(肋//)嗟菌體 及 岐, 載劑; 其中,該噬菌體與該載劑間具可相容性,以令誃 鮑氏不動桿菌噬菌體保有生物活性。 7 ^ 2·=請專利範圍第!項之組成物,其中,錢氏 3才干囷°巫囷體包含至少一種純系鮑氏不動桿菌嗟菌體。 •請專利範圍第1項之組成物,其中,該鮑氏不動 $才 于菌。巫菌體係專一性感染鮑氏不動桿菌。 4 t請專利範圍第1項之組成物,其中,韻氏不動 ,桿菌噬菌體係為溶裂型噬菌體。 \如中請相範圍第丨項之組成物,其巾,該鮑氏不動 桿菌嗟菌體於pH 4至U之條件下保有鮑氏不動 嗟菌體之生物活性。 )·如申請專利範圍第!項之組成物,其中,該載體為溶 ,/夜懸浮液、粉末、喷霧劑或軟膏之型式。 .如申請專利範圍第1項之組成物,其中,該載劑係為 水、油、界面活性劑、蛋白腺或上述之组合。 ;.如申請專利範㈣7項之組成物,其中,。該界面活性 劑係為至少一種選自由陰離子性界面活性劑、陽離子 性界面活性劑、兩性離子性界面活性劑及非離子性界 面活性劑所組成之群組之界面活性劑。 ⑴057 201105241 9. 如申請專利範圍第7項之組成物,其中,該界面活性 劑係為非離子性界面活性劑。 10. 如申請專利範圍第1項之組成物,復包括第二噬菌體, 其中,該第二噬菌體係為院内感染細菌之噬菌體。 11. 如申請專利範圍第10項之組成物,其中,該院内感染 細菌係選自由不動桿菌(dcheiokcier )、葡萄球菌 ()、腸球菌(hierococc/)、腸桿菌科 (Enterobacteriaceae )、非發酵革蘭陰性桿菌 (Non-fermentative gram-negative bacilli)、退伍軍人病 菌屬(Legionella)、後菌屬(Clostridiwn)、分枝桿菌屦 (M少以及假單胞菌屬所組成 之群組中之一者或多者。 12. 如申請專利範圍第1項之組成物,其中該鮑氏不動桿 菌噬菌體於該組成物中的初始濃度為lxl〇7PFU/ml至 lxlO9 PFU/m卜 13. —種用於醫療機構或與醫療相關之研究機構之活體外 殺菌方法,係包括將有效量之如申請專利範圍第1至 11項中任一項之殺菌組成物施用於該醫療機構或與醫 療相關之研究機構,以減少該醫療機構或與醫療相關 之研究機構中細菌的數量。 14. 如申請專利範圍第13項之方法,其中,該施用的方式 為直接噴麗、間接喷灑、浸泡或塗抹。 ]]]〇57201105241 VII. Scope of application for patents: 1. An in vitro bactericidal composition, comprising: Campylobacter sinensis (ribs//) sputum bacteria and sputum, carrier; wherein the phage is compatible with the carrier Sexually, to maintain the biological activity of Acinetobacter baumannii phage. 7 ^ 2·=Please patent scope! The composition of the item, wherein the Qianshi 3 is dry and the scorpion body contains at least one pure Acinetobacter baumannii bacillus. • Please refer to the composition of item 1 of the patent scope, in which the Bauer does not move to the bacteria. The witchworm system is specifically infected with Acinetobacter baumannii. 4 t Please consult the composition of the first item of the patent scope, in which the rhyme does not move, and the bacteriophage phage system is a lytic phage. \If the composition of the third item of the phase range, the towel, the Acinetobacter baumannii bacterium retains the biological activity of the bacillus in the condition of pH 4 to U. )·If you apply for a patent scope! The composition of the item, wherein the carrier is in the form of a solution, a night suspension, a powder, a spray or an ointment. The composition of claim 1, wherein the carrier is water, oil, a surfactant, a protein gland or a combination thereof. ;. For example, the composition of the patent (4) 7 items, among them. The surfactant is at least one surfactant selected from the group consisting of an anionic surfactant, a cationic surfactant, a zwitterionic surfactant, and a nonionic surfactant. (1) 057 201105241 9. The composition of claim 7, wherein the surfactant is a nonionic surfactant. 10. The composition according to claim 1, wherein the second phage is a bacteriophage which infects bacteria in the hospital. 11. The composition of claim 10, wherein the infective bacteria in the hospital are selected from the group consisting of acinetobacter (dcheiokcier), staphylococcus (), enterococci (hierococc/), Enterobacteriaceae (Enterobacteriaceae), non-fermented leather One of a group consisting of Non-fermentative gram-negative bacilli, Legionella, Clostridiwn, Mycobacterium genus (M less, and Pseudomonas) Or more. 12. The composition of claim 1 wherein the initial concentration of the Acinetobacter baumannii phage in the composition is from 1 x 10 〇 7 PFU/ml to 1 x 10 9 PFU/m b. An in vitro sterilization method of a medical institution or a medical research institution, comprising administering an effective amount of the bactericidal composition according to any one of claims 1 to 11 to the medical institution or a medical research institution To reduce the number of bacteria in the medical institution or the medical research institution. 14. The method of claim 13, wherein the application method is direct spray, indirect spray , Soaking or painting.]]] 〇57
TW098127069A 2009-08-12 2009-08-12 Bactericide composition comprising a phage TWI380777B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
TW098127069A TWI380777B (en) 2009-08-12 2009-08-12 Bactericide composition comprising a phage
US12/854,542 US20120276612A1 (en) 2009-08-12 2010-08-11 Phage of acinetobacter baumannii
AU2010212270A AU2010212270B2 (en) 2009-08-12 2010-08-11 Disinfectant composition comprising phage
AU2010212280A AU2010212280B2 (en) 2009-08-12 2010-08-11 Phage of acinetobacter Baumannii
US12/854,814 US8273564B2 (en) 2009-08-12 2010-08-11 Disinfectant composition comprising phage of Acinetobacter baumannii
EP10172708.9A EP2292740B1 (en) 2009-08-12 2010-08-12 Phage of Acinetobacter baumannii
EP10172706A EP2292245A1 (en) 2009-08-12 2010-08-12 Disinfectant composition comprising phage
JP2010180903A JP5464664B2 (en) 2009-08-12 2010-08-12 In vitro bactericidal composition containing phage
JP2010180902A JP5651407B2 (en) 2009-08-12 2010-08-12 Acinetobacter baumannii phage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098127069A TWI380777B (en) 2009-08-12 2009-08-12 Bactericide composition comprising a phage

Publications (2)

Publication Number Publication Date
TW201105241A true TW201105241A (en) 2011-02-16
TWI380777B TWI380777B (en) 2013-01-01

Family

ID=44813950

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127069A TWI380777B (en) 2009-08-12 2009-08-12 Bactericide composition comprising a phage

Country Status (1)

Country Link
TW (1) TWI380777B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106701690A (en) * 2016-12-13 2017-05-24 上海交通大学医学院 Acinetobacter baumannii bacteriophage SH-Ab15519 and application thereof
CN110747177A (en) * 2019-12-01 2020-02-04 吉林大学第一医院 Acinetobacter baumannii phage and medical application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1250143A2 (en) * 2000-01-11 2002-10-23 Intralytix Inc. Reduction in bacterial colonization by administering bacteriophage compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106701690A (en) * 2016-12-13 2017-05-24 上海交通大学医学院 Acinetobacter baumannii bacteriophage SH-Ab15519 and application thereof
CN110747177A (en) * 2019-12-01 2020-02-04 吉林大学第一医院 Acinetobacter baumannii phage and medical application thereof

Also Published As

Publication number Publication date
TWI380777B (en) 2013-01-01

Similar Documents

Publication Publication Date Title
JP5464664B2 (en) In vitro bactericidal composition containing phage
KR101770902B1 (en) Method of producing partially purified extracellular metabolite products from bacillus coagulans and biological applications thereof
Maszewska et al. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter‐associated urinary tract infections
US20040247569A1 (en) Reduction in bacterial colonization by administering bacteriophage compositions
WO2005000324A2 (en) Colloidal silver composition having antimicrobial properties
WO2016003307A1 (en) Bacteriophage strains, compositions and related methods
EP2881113B1 (en) New application of pogostone
US20100291041A1 (en) Bacteriophage preparation and use
JP2018512976A (en) Products for cleaning, purification and sanitization
WO2019144830A1 (en) Broad lysis spectrum pseudomonas aeruginosa phage and disinfecting application thereof
JP6736476B6 (en) Treatment of local and systemic bacterial infections
CN113995744B (en) Composition and antibacterial application thereof
US10435671B2 (en) Bacteriophage strains against proteus mirabilis and use thereof
TW201105241A (en) Bactericide composition comprising a phage
CN102344911A (en) Phage of Acinetobacter baumannii
JP3886547B2 (en) Spices having antibacterial activity and antibacterial agents made from the same
CN102342298B (en) Bactericide composition comprising phage
JPH0820510A (en) Spice having antimicrobial activity and antimicrobial agent prepared by using the same
CN106754751B (en) Enterohemorrhagic escherichia coli bacteriophage and application thereof
KR20210142679A (en) High Temperature Tolerant Salmonella Phage with Wide Dissolution Spectrum and Combinations thereof
TWI376418B (en) Phage of acinetobacter baumannii
RU2616257C9 (en) Biological method of selective disinfection using bacteriophages
Rahimzadeh et al. Efficacy of bacteriophage in removal of Pseudomonas aeruginosa from infectious surfaces
Çetinkaya et al. Evaluation of the effectiveness of two different methods for the prevention of microbial colonization in nebulizers: Randomised controlled trial
Khalid Isolation and characterization of bacteriophages as potential therapeutic agent against Pseudomonas aeruginosa

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees