TW201102417A - Thermal conductive adhesive agent - Google Patents

Thermal conductive adhesive agent Download PDF

Info

Publication number
TW201102417A
TW201102417A TW099111420A TW99111420A TW201102417A TW 201102417 A TW201102417 A TW 201102417A TW 099111420 A TW099111420 A TW 099111420A TW 99111420 A TW99111420 A TW 99111420A TW 201102417 A TW201102417 A TW 201102417A
Authority
TW
Taiwan
Prior art keywords
thermal conductive
conductive adhesive
formula
group
mass
Prior art date
Application number
TW099111420A
Other languages
Chinese (zh)
Other versions
TWI476261B (en
Inventor
Yoshinori Yoneda
Michihiro Sugo
Original Assignee
Shinetsu Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Chemical Co filed Critical Shinetsu Chemical Co
Publication of TW201102417A publication Critical patent/TW201102417A/en
Application granted granted Critical
Publication of TWI476261B publication Critical patent/TWI476261B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Abstract

The invention provides an electric insulation, thermal conductive adhesive agent having excellent thermal conductivity and having excellent adhesion with respect to a heating component and a heat dissipation component. The thermal conductive adhesive agent according to the invention contains: (A) 100 parts by mass of a polyimide silicone resin having a repeating unit represented by the following formula (1), in which the average molecular weight is 5,000 to 150,000, (B)100 to 10,000 parts by mass of an electric insulation, thermal conductive filler, and (C) an organic solvent. (In the formula (1), W is a tetravalent organic group, X is a bivalent organic group, Y is a bivalent polysiloxane residue represented by the following formula (2), and 0.05≰m≰0.8, 0.2≰n≰0.95, m+n=1) (In the formula (2), each R.sup.1 is respectively independent and represents a substituted or non-substituted univalent hydrocarbyl of 1 to 8 carbon atoms, R.sup.2 is a free radical polymerizing group, a and b are respectively integers of 1 to 20, and a+b is 2 to 21.)

Description

201102417 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種導熱性接著劑,特別係關 用於用以接著電子元件與散熱構件或發熱構件之 著劑。 【先前技術】 近年,伴隨電子元件例如電腦之中央運算 (CPU)及晶片組之高性能化、小型化及高密度化 件及安裝該電子元件之構件的發熱會變大起來。 子元件之冷卻在維持電子元件及安裝該電子元件 性能上成爲非常重要之技術。電子元件之散熱效 藉由使導熱性佳的物質接觸電子元件而提昇。因 優異導熱性的散熱材料(TIΜ)的需要正在增加。 散熱材料例如被放置於電子元件與冷卻另 Heat sink)之間,擔任將來自電子元件發熱之熱 導至冷卻系統的角色。散熱材料係從其形狀或使 類成薄片狀成型物及膏狀組成物。薄片狀成型物 例如彈性體(具彈性之高分子物質)型的散熱片、 型之相轉變薄片(使用隨溫度進行相變化之散熱 片)。膏狀組成物係可分類成例如非硬化型之散 塗佈時爲膏狀’同時例如藉熱處理而進行凝膠化 化之散熱凝膠或散熱性接著劑。 此等之散熱材料一般係於有機聚合物材料中 於一種適 導熱性接 處理裝置 ,電子元 因此,電 之構件的 率一般係 此,具有 ^統(例如 有效地傳 用方法分 係分類成 及熱軟化 材料的薄 熱資、及 或彈性體 高密度塡 -5- 201102417 充導熱物質之複合材料。有機聚合物材料之導熱率一般很 小’依有機聚合物材料之種類而無很大的相異。因而,散 熱材料之導熱率係非常依存於導熱物質之有機聚合物材料 中的體積塡充率。因而,有機聚合物材料中如何地塡充許 多導熱物質乃很重要。 散熱性接著劑係被要求具有高導熱性同時並在各種環 境或應力下具有接著力。於有機聚合物材料中愈高密度地 塡充導熱物質,散熱材料之散熱性愈提高。但,於有機聚 合物材料中愈高密度地塡充導熱物質,散熱材料本身會變 脆,可撓性或與被黏體之接著力變差。 散熱性接著劑之有機聚合物材料已知有環氧樹脂、聚 矽氧聚合物、聚醯亞胺等。但,環氧樹脂係接著性良好, 但耐熱、耐久性上有缺點。因此,對於導熱性物質之塗佈 性或硬化後之柔軟性或熱安定性等而言,可適宜使用聚矽 氧聚合物(例如,參照下述專利文獻1及2)。但,使用聚 矽氧聚合物之散熱材料中有時不能滿足接著性及散熱性之 兩者。 又,使用已改良耐熱性之聚醯亞胺時,聚醯亞胺樹脂 爲固體,故無法塡充導熱物質,而不得不溶解於溶劑等而 塡充。爲避免此,必須以成爲前驅體之聚醯胺酸溶液塡充 導熱物質,於其硬化一般必須加熱至3 00 °C以上,故無法 避免於周圍的熱負荷。 又,爲了半導體元件及印刷基板等之配線部分的表面 保護,已知有使用聚醢亞胺聚矽氧樹脂,相較於聚矽氧橡 6 - 201102417 膠,在高濕條件下之基材的密著性及耐久性高(例如參照 下述專利文獻3)。亦已揭示有利用含有此聚醯亞胺聚矽氧 樹脂之組成物作爲半導體的接著劑(例如參照專利文獻4) 。但,使用此等之聚醯亞胺聚矽氧樹脂的導熱性之接著劑 ,尤其要求電絕緣性之導熱性接著劑尙未被硏究。 [先前技術文獻] [專利文獻] [專利文獻1]特開2006-342200號公報 [專利文獻2]特公昭6 1 -3 670號公報 [專利文獻3]特開2002-0 1 2667號公報 [專利文獻4]特開2006-005 1 59號公報 【發明內容】 [發明之槪要] [發明欲解決之課題] 本發明之目的在於提供一種具有優異之導熱性,進一 步具有對於被接著物例如發熱構件及散熱構件優異之接著 性的電絕緣性之導熱性接著劑(亦謂散熱膏)。 [用以解決課題之手段] 本發明係下述之導熱性接著劑,其係含有: (A) 具有以下述式(1)所示之重複單元的重量平均分子 量5000〜1 5 0,000的聚醯亞胺聚矽氧樹脂100質量份 (B) 電絕緣性之導熱性塡充劑1〇〇〜1〇,〇〇〇質量份、及 201102417 (C)有機溶劑; 【化1】201102417 VI. Description of the Invention: [Technical Field] The present invention relates to a thermal conductive adhesive, particularly for use in adhering to an electronic component and a heat dissipating member or a heat generating member. [Prior Art] In recent years, high-performance, miniaturization, high-density devices, and components for mounting electronic components such as computer central processing (CPU) and chip sets have become hot. Cooling of the sub-element is a very important technique in maintaining the performance of the electronic component and mounting the electronic component. The heat dissipation effect of the electronic component is enhanced by bringing a substance having good thermal conductivity into contact with the electronic component. The demand for heat-dissipating materials (TIΜ) with excellent thermal conductivity is increasing. The heat dissipating material is placed, for example, between the electronic component and the heat sink, and serves to direct heat from the heating of the electronic component to the cooling system. The heat dissipating material is formed into a sheet-like molded product and a paste-like composition from its shape. A sheet-like molded product such as an elastic body (elastic polymer material) type heat sink, a type of phase change sheet (using a heat sink film which changes phase with temperature). The paste composition can be classified into, for example, a non-hardened type of a heat-dissipating gel or a heat-dissipating adhesive which is paste-formed at the same time as a gelation by heat treatment. Such heat dissipating materials are generally used in an organic polymer material in a suitable thermal conductivity treatment device, and the electron elements are therefore generally used in such a manner that they are classified into a system (for example, an effective method of classification and classification) Thin heat of heat-softening material, and high-density elastomer 塡-5- 201102417 Composite material of heat-conducting material. The thermal conductivity of organic polymer material is generally small 'depending on the type of organic polymer material without large phase Therefore, the thermal conductivity of the heat dissipating material is highly dependent on the volume charge rate of the organic polymer material of the heat conductive material. Therefore, it is important to how many thermal conductive materials are filled in the organic polymer material. It is required to have high thermal conductivity and have an adhesive force under various environments or stresses. The higher the density of the organic polymer material, the higher the heat dissipation of the heat dissipating material. However, the more the organic polymer material High-density filling of the heat-conducting material, the heat-dissipating material itself becomes brittle, and the flexibility or adhesion to the adherend is deteriorated. An organic polymer material is known as an epoxy resin, a polyoxymethylene polymer, a polyimine, etc. However, the epoxy resin has good adhesion, but has disadvantages in heat resistance and durability. Therefore, coating of a thermally conductive substance A polyoxymethylene polymer can be suitably used for the softness or thermal stability after the batt or the hardening (for example, refer to Patent Documents 1 and 2 below). However, among the heat dissipating materials using the polyoxyl polymer When the polyimine which has improved heat resistance is used, the polyimine resin is solid, so it cannot be filled with a heat conductive material, and it has to be dissolved in a solvent or the like. In order to avoid this, it is necessary to charge the heat-conducting substance with a poly-proline solution which is a precursor, and it is generally necessary to heat it to 300 ° C or more after hardening, so that it is impossible to avoid the surrounding heat load. For the surface protection of the wiring portion of a printed circuit board or the like, it is known to use a polyimide polyimide polyether resin, and the adhesion and durability of the substrate under high humidity conditions compared to the polyoxyethylene rubber 6 - 201102417 glue. High (for example, reference Patent Document 3), which also discloses a composition using a polyimide-containing polyoxymethylene resin as a semiconductor (for example, refer to Patent Document 4). However, the use of such a polyimide polyimide is disclosed. In the case of the adhesive of the thermal conductivity of the oxy-resin, in particular, the thermal-conductive adhesive 电 which is required to be electrically insulating is not investigated. [Prior Art Document] [Patent Document 1] [Patent Document 1] JP-A-2006-342200 (Patent Document 2) [Patent Document 3] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. No. Hei. [Problem to be Solved] An object of the present invention is to provide an electrically insulating thermal conductive adhesive (also known as a thermal grease) having excellent thermal conductivity and further excellent adhesion to an adherend such as a heat generating member and a heat dissipating member. [Means for Solving the Problem] The present invention is a thermally conductive adhesive comprising: (A) a polyfluorene having a weight average molecular weight of from 5,000 to 1,500,000 having a repeating unit represented by the following formula (1) 100 parts by mass of imine polyoxyl resin (B) electrically insulating thermal conductive agent 1〇〇~1〇, 〇〇〇 by mass, and 201102417 (C) organic solvent;

(式(1)中,w爲4價之有機基’X爲二價之有機基,γ爲 以下述式(2)所示的2價之聚矽氧殘基,且0.05SmS0.8 ' 0.2 ^ η ^ 〇·95 ' m + n=l ) 【化2】 R1 / R1\ / R1\ R1 —CH2CH2CH2—Si4〇-Si-^〇-Si-4〇-Si-CH2CH2CH2- (2) R1\R1/a\R2/b R1 (式(2)中,R1互相獨立爲碳數1〜8的取代或非取代之一 價的烴基’ R2爲自由基聚合性基,a及b分別爲1〜20之 整數,a + b爲2〜2 1) » 本發明之一實施態樣中係上述導熱性接著劑,其中進 〜步含有(D)過氧化碳酸酯0.1〜10質量份。過氧化碳酸酯 係可促進自由聚合性基的聚合硬化之硬化劑的作用。 本發明之一實施態樣中係R2爲乙烯基' 丙烯基、(甲 -8 - 201102417 基)丙烯醯氧丙基、(甲基)丙烯醯氧乙基、(甲基)丙烯醯氧 甲基、及苯乙烯基,更宜爲乙烯基。 本發明之一實施態樣中係上述導熱性接著劑,其中對 於銅板之接著強度爲3Mpa以上,更宜爲5〜l〇Mpa以上 〇 若將本發明之導熱性接著劑置於銅板之上而進行加熱 ’該導熱性接著劑會流動而於銅板之表面上潤濕展開。因 此’藉熱處理,而與銅板密著,產生良好的接著。 於被黏體施予本發明之導熱性接著劑,爲使之硬化, 若進行加熱’接著劑會流動而潤濕被黏體之表面而展開, 且溶劑會揮發,故導熱性塡充劑會露出於接著劑硬化物之 表面。因此,可得到良好的導熱性。 本發明係提供一種電子構件,其係藉由使上述之導熱 性接著劑硬化所得到之物質接著於散熱構件或發熱構件之 電子元件。 [發明之效果] 本發明之導熱性接著劑係藉由含有特定構造之聚醯亞 月安聚矽氧樹脂、導熱性塡充劑及有機溶劑,而具有優異之 導熱性,且具有對於被接著物優異之接著性。 【實施方式】 [用以實施發明之形態] 以下,更詳細說明本發明之導熱性接著劑。 -9 - 201102417 (A)聚醯亞胺聚矽氧樹脂 聚醯亞胺聚矽氧樹脂係具有以下述式(〗)所示之重複單 元。 【化3】 _ 0 II 〇 ~ II Ο 0 Π /C、 II li C\ c —N、c> <c/N-X- || —:n-y— c c II 0 II 〇 m II II 0 o 式(1 )中之W係4價之有機基。w係可選自例如均苯四甲 酸二酐、2,3,3',4'-聯苯基四羧酸二酐、3,3,,4,4,-聯苯基四 羧酸二酐、3,3’,4,4’ -二苯基醚四羧酸二酐、3,3,,4,4,-二苯 基颯四羧酸二酐、3,3’,4,4’ -二苯甲酮四羧酸二酐、乙二醇 雙偏苯三甲酸二酐、4,4'-六氟亞丙基雙酞酸二酐、2,2-雙 [4-(3,4 -苯氧基二羧酸)苯基]丙酸二酐之殘基。 式(1 )中之X爲二價之有機基。X係從可使用於例如 常用之聚醯亞胺樹脂的二胺所衍生之基。該二胺係可選自 由脂肪族二胺及芳香族二胺之1或2種以上的組合。脂肪 族二胺例如爲四亞甲基二胺、1,4-二胺基環己烷、4,4'-二 胺基二環己基甲烷。芳香族二胺例如爲苯二胺、4,4,-二胺 基二苯基醚、2,2-雙(4-胺基苯基)丙烷。X較佳係由以下述 式(3)所示之芳香族二胺所衍生之基。 -10- 201102417 【化4】(In the formula (1), w is a tetravalent organic group 'X is a divalent organic group, and γ is a divalent polyfluorene residue represented by the following formula (2), and 0.05 SmS 0.8 '0.2 ^ η ^ 〇·95 ' m + n=l ) [Chemical 2] R1 / R1\ / R1\ R1 —CH2CH2CH2—Si4〇-Si-^〇-Si-4〇-Si-CH2CH2CH2- (2) R1\ R1/a\R2/b R1 (in the formula (2), R1 is independently a carbon number of 1 to 8 substituted or unsubstituted one-valent hydrocarbon group 'R2 is a radical polymerizable group, and a and b are each 1~ An integer of 20, a + b is 2 to 2 1). In one embodiment of the invention, the above thermally conductive adhesive is used, wherein the step contains 0.1 to 10 parts by mass of (D) peroxycarbonate. Peroxycarbonate is a function of a curing agent which promotes polymerization hardening of a free polymerizable group. In one embodiment of the present invention, R2 is a vinyl 'propenyl group, (methyl-8 - 201102417) propylene oxypropyl group, (meth) propylene oxyethyl group, (meth) propylene oxymethyl group And a styryl group, more preferably a vinyl group. In one embodiment of the present invention, the thermal conductive adhesive is used, wherein the bonding strength to the copper plate is 3 Mpa or more, more preferably 5 to 1 Mpa or more, and the thermal conductive adhesive of the present invention is placed on the copper plate. Heating is performed. The thermally conductive adhesive flows to wet and spread on the surface of the copper plate. Therefore, by heat treatment, it is closely adhered to the copper plate, resulting in a good follow-up. The heat conductive adhesive of the present invention is applied to the adherend to harden it, and if it is heated, the adhesive will flow to wet the surface of the adherend, and the solvent will volatilize, so the thermal conductive agent will be heated. It is exposed on the surface of the cured product of the adhesive. Therefore, good thermal conductivity can be obtained. The present invention provides an electronic component which is obtained by adhering a substance obtained by hardening the above-mentioned thermally conductive adhesive to an electronic component of a heat dissipating member or a heat generating member. [Effects of the Invention] The thermally conductive adhesive of the present invention has excellent thermal conductivity by containing a polyfluorene resin having a specific structure, a thermal conductive chelating agent, and an organic solvent, and has an Excellent adhesion. [Embodiment] [Mode for Carrying Out the Invention] Hereinafter, the thermally conductive adhesive of the present invention will be described in more detail. -9 - 201102417 (A) Polyimine polyoxyl resin Polyimine polyoxyl resin has a repeating unit represented by the following formula (〗). [Chemical 3] _ 0 II 〇~ II Ο 0 Π /C, II li C\ c —N, c><c/NX- || —:ny— cc II 0 II 〇m II II 0 o 1) W is a tetravalent organic group. The w system may be selected, for example, from pyromellitic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,3,4,4,-biphenyltetracarboxylic dianhydride. , 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3,,4,4,-diphenylphosphonium tetracarboxylic dianhydride, 3,3',4,4' - benzophenone tetracarboxylic dianhydride, ethylene glycol trimellitic acid dianhydride, 4,4'-hexafluoropropylene bismuthic acid dianhydride, 2,2-bis[4-(3,4 Residue of -phenoxydicarboxylic acid)phenyl]propionic acid dianhydride. X in the formula (1) is a divalent organic group. X is a group derived from a diamine which can be used, for example, in a conventional polyimine resin. The diamine may be selected from a combination of one or more of an aliphatic diamine and an aromatic diamine. The aliphatic diamine is, for example, tetramethylenediamine, 1,4-diaminocyclohexane or 4,4'-diaminodicyclohexylmethane. The aromatic diamine is, for example, phenylenediamine, 4,4,-diaminodiphenyl ether or 2,2-bis(4-aminophenyl)propane. X is preferably a group derived from an aromatic diamine represented by the following formula (3). -10- 201102417 【化4】

式(3)中之B爲以下述式(4)、(5)、及(6)之任一者所示之基 【化5】 (4) 【化6】 【化7】B in the formula (3) is a group represented by any one of the following formulas (4), (5), and (6). (4) [Chem. 6] [Chem. 7]

(5)(5)

式(1)中之Y係以下述式(2)所示之二價的聚矽氧殘基。 -11 - 201102417 【化8】Y in the formula (1) is a divalent polyfluorene residue represented by the following formula (2). -11 - 201102417 【化8】

R1 -Si-CH2CH2CH2- (2) R1 —CH2CH2CH2 — 式(2)中之R1爲碳數1〜8,較佳係1〜4之取代或非 取代的一價之烴基。R 1例如爲甲基、乙基。 式(2)中之R2爲自由基聚合性基。R2爲例如乙烯基、 丙烯基、(甲基)丙烯醯氧丙基、(甲基)丙烯醯氧乙基、(甲 基)丙烯醯氧甲基、或苯乙烯基。較佳係R2爲就原料容易 取得之觀點爲乙烯基。若該自由基聚合性基爲聚醯亞胺聚 矽氧樹脂的聚矽氧部分,亦可爲例如端部及中央部之任一 者的部位。 式(2)中之a及b分別爲1〜20,宜爲3〜20之整數。 a + b之合計爲2以上且21以下。此處,a、b分別大於20 ,或a + b大於21時,對被接著體的接著力變弱。 式Π)中之m及η係爲顯現源自該重複單元之效果, 0.05S 0.8、0.2$ 0.95,宜爲 0.05$ mg 0.5、0·5<η S 0.9 5。若爲此範圍,可得到於被接著體的良好接著性。 式(1)中之m + n的合計爲1。 聚醯亞胺聚矽氧樹脂之重量平均分子量爲5,000〜 150,000’宜爲20, 〇〇〇〜150,〇〇〇。此理由係若分子量小於 上述下限’作爲樹脂之強韌性未顯現,另外若分子量大於 上述上限,很難與後述之導熱性塡充劑混合。 -12- 201102417 上述聚醯亞胺聚矽氧樹脂係可以例如下述敘述之公知 的方法製造。 最初,將用以衍生W之四羧酸二酐、用以衍生X之 一 fee及用以衍生Y之—®女基聚砂氧院饋入於溶劑中,繼而 ,以低溫例如〇〜5 0 °C反應。上述溶劑係選自例如N _甲 基-2-吡咯烷酮(NMP)、環己酮、τ_丁內酯、及N,N_二甲 基乙醯胺(DMAc)之1或2以上的組合。進一步,使於醯 亞胺化時生成之水易藉共沸除去,故可倂用芳香族烴類例 如甲苯、二甲苯。可依上述反應而製造醯亞胺樹脂之前驅 體即聚醯酸。其次,使該聚醯胺酸之溶液昇溫至宜8〇〜 2 00 °C ,尤宜140〜180 °C之溫度。以該昇溫而聚醯胺酸之 酸醯胺脫水閉環反應’可得到聚醯亞胺聚矽氧樹脂之溶液 。使該溶液投入於溶劑例如水、甲醇、乙醇或乙腈中,產 生沉澱物。乾燥該產生之沉澱物,而得到聚醯亞胺聚矽氧 樹脂。 相對於四羧酸二酐之二胺與二胺基聚矽氧烷之合計的 莫耳比率宜爲0.95〜1.05,尤宜爲0.98〜1.02的範圍。 爲調整聚醯亞胺聚矽氧樹脂之分子量亦可於上述溶液 中添加二官能性之羧酸例如酞酸酐、及一官能性之胺例如 苯胺。此等化合物之添加量分別相對於四羧酸及二胺例如 爲2莫耳%以下。 在醯亞胺化過程中添加脫水劑及醯亞胺化觸媒,依需 胃而於約5 〇°C進行加熱,亦可使之醯亞胺化。脫水劑例如 爲酸酐’例如爲醋酸酐、丙酸酐、及三氟醋酸酐。脫水劑 -13- 201102417 之使用量相對於二胺1莫耳例如爲1〜1 0莫耳。醯亞胺化 觸媒爲例如第三級胺,例如吡啶、膽鹼、二甲基吡啶、及 三乙胺。醯亞胺化觸媒之使用量相對於所使用之脫水劑i 莫耳例如爲0 _ 5〜1 0莫耳。 使用複數之二胺及/或複數之四羧酸二酐時,例如使 原料預先全部混合後共聚縮合之方法,使2種以上之二胺 或四羧酸二酐個別地反應同時並依序添加。但,反應方法 係不特別限定於此例示。 (B)電絕緣性之導熱性塡充劑 電絕緣性之導熱性塡充劑係例如金屬氧化物及陶瓷粉 體。該金屬粉體例如爲氧化鋅粉、氧化鋁粉。陶瓷粉體例 如爲碳化矽粉、氮化矽粉、氮化硼粉、氮化鋁粉。導熱性 塡充劑可適當選自安定性或成本之方面。 導熱性塡充劑之形狀無特別限定,而例如爲粒狀、樹 枝狀、片狀、及不定形狀。亦可使用具有此等形狀之導熱 性塡充劑粉末的一種或2種以上之混合物。導熱性塡充劑 之粒徑分布無特別限定,例如於〇 . 〇 5〜1 Ο Ο μηι之範圍爲 90重量%以上,宜爲95重量%以上。導熱性塡充劑之平均 粒徑無特別限定,但例如爲1〜50μπι之範圍。導熱性塡充 劑可使用例如單一分布(單峰性)者。但爲使導熱性塡充劑 高密度且均一地分散於接著劑內,組合形狀及粒徑相異之 複數的導熱性塡充劑而形成多峰性分布,較使用單一分布 之導熱性塡充劑更有效。 -14- 201102417 本發明之導熱性接著劑中的上述導熱性塡充劑之調配 量的比例係聚醯亞胺聚矽氧樹脂每1 00質量份,爲1 00〜 1 0,000質量份,宜爲200〜6,000質量份。若上述導熱性 塡充劑之調配量的比率未達上述下限,使用本發明之導熱 性接著劑時無法得到充分的導熱性。又,若上述導熱性塡 充劑之調配量的比率超過上述上限,使用本發明之導熱性 接著劑時,在與被黏體之間無法得到充分的接著強度。 (C)有機溶劑 有機溶劑係與(A)成分具有相溶性,宜不對(B)成分之 表面狀態造成影響。有機溶劑例如選自醚類、酮類、酯類 、溶纖劑類、醯胺類及芳香族烴類之1或2以上的組合。 醚類含有例如四氫呋喃、及茴香醚。酮類含有例如環己酮 、2-庚酮、甲基異丁基酮、2-庚酮、2-辛酮、及乙醯苯。 酯類含有例如醋酸丁酯、安息香酸甲酯、及r-丁內酯》 溶纖劑類含有例如丁基卡必醇乙酸酯、丁基溶纖劑乙酸酯 、及丙二醇單甲基醚乙酸酯。醯胺類含有例如Ν,Ν-二甲基 甲醯胺、Ν,Ν-二甲基乙醯胺及Ν-甲基-2-吡咯烷酮。芳香 族烴類含有例如甲苯、二甲苯。有機溶劑宜選自酮類、酯 類、溶纖劑類及醯胺類。有機溶劑尤宜爲丁基卡必醇乙酸 酯、丁內酯、丙二醇單甲基醚乙酸酯、及Ν -甲基-2-吡 咯烷酮。此等之溶劑可爲單獨使用亦可組合2種以上而使 用。 有機溶劑之量例如考量聚醯亞胺聚矽氧樹脂之溶解性 -15- 201102417 、導熱性接著劑之塗佈時之作業性或皮膜之厚度’ 一般聚 醯亞胺聚矽氧樹脂之量相對於該樹脂與溶劑之合計爲10〜 6 0重量%,宜在2 0〜5 0重量%之範圍內使用。組成物保存 時調製成比較高的濃度’使用時亦可稀釋至所希望的濃度 〇 本發明之導熱性接著劑亦可進一步含有(D)過氧化碳 酸醋作爲任意成分。在過氧化碳酸醋之存在下即使比較低 溫,聚醯亞胺聚矽氧樹脂中結合於矽原子之自由基聚合性 基迅速硬化,耐溶劑性等之性能會提昇。過氧化碳酸酯係 可舉例如第三丁基過氧化異丙基碳酸酯、第三丁基過氧化 2-乙基己基碳酸酯、第三戊基過氧化2-乙基己基碳酸酯等 之單過氧化碳酸酯;二(2-乙基己基)過氧化二碳酸酯、 1,6-雙(第三丁基過氧化羰基氧)己烷、雙(4-第三丁基環己 基)過氧化二碳酸酯、二(2·乙氧基乙基)過氧化二碳酸酯、 二(正丙基)過氧化二碳酸酯、二異丙基過氧化二碳酸酯等 。過氧化碳酸酯係從硬化性、與聚醯亞胺聚矽氧樹脂之相 溶性、及接著劑之保存安定性等而言,宜爲第三丁基過氧 化2-乙基己基碳酸酯、第三戊基過氧化2 -乙基己基碳酸酯 、1,6-雙(第三丁基過氧化羰基氧)己烷、雙(4-第三丁基環 己基)過氧化二碳酸酯。 過氧化碳酸酯之量相對於聚醯亞胺聚矽氧樹脂100質 量份,宜爲0.1〜1〇質量份,更宜爲0.5〜5質量份。若調 配量超過上述上限,本發明之導熱性接著劑的保存安定性 及硬化物的耐高溫高濕性有降低之傾向。 -16- 201102417 聚醯亞胺聚矽氧樹脂係藉熱硬化而發揮優異之耐熱性 、機械強度、耐溶劑性、對各種基材之密著性。 本發明之接著劑的硬化條件無特別限定,但爲8 0 °C以 上3 00°C以下,宜爲100°C以上200°C以下之範圍。在未達 上述下限進行硬化時,於熱硬化太耗時間,而不實用。以 未達上述下限之低溫進行硬化,選擇成分及組成時,於接 著劑之保存安定性有可能引起問題。又,本發明之導熱性 接著劑係與習知之聚醯胺酸溶液相異,爲了硬化,不須以 所謂30(TC以上之高溫且長時間之加熱,故可抑制基材之 熱劣化。 本發明之導熱性接著劑係除上述成分之外,在無損本 發明之目的及導熱性接著劑的效果之範圍亦可添加例如抗 老化劑、紫外線吸收劑' 接著性改良劑、耐燃劑、界面活 性劑、保存安定改良劑、臭氧劣化抑制劑、光安定劑、增 黏劑、可塑劑、矽烷偶合劑、抗氧化劑、熱安定劑、輻射 線遮蔽劑、核劑、滑劑、顏料、及物性調整劑所選出之1 或2以上。 本發明之導熱性接著劑在25t中宜具有0.5〜2000Pa · s ,宜爲1.0〜1000 Pa· s的黏度。 本發明之導熱性接著劑的熱傳導率(W/mK)宜爲0.5以 上,更宜爲1.0以上,尤宜爲3以上。 本發明之導熱性接著劑對銅板之接著強度(MPa)宜爲 3以上,更宜爲5以上,尤宜爲6以上。於80°C、95RH 之高溫高濕環境放置240小時後之接著強度(MPa)宜與上 -17- 201102417 述相同。 本發明之導熱性接著劑係可適宜使用於例如爲了高亮 度’發熱量大之LED晶片的接著劑 '或伴隨小型化、輕 量化之每單位面積的發熱量大之半導體元件的接著劑。 以下’藉實施例更詳細說明本發明,但本發明不限定 於此等實施例。 1.聚醯亞胺聚矽氧樹脂之合成 如示於下述合成例1〜4般,製造4種類之聚醯亞胺 聚矽氧樹脂。 合成例1 於具備攪拌機、溫度計及氮取代裝置之燒瓶內,饋入 4,4'-六氟亞丙基雙酞酸二酐8888(〇2莫耳)及正甲基_2_吡 略院酮5 0 0 g。然後’準備將以式7所示之二胺基矽氧烷 142.2g(0.10莫耳)、及2,2_雙[4_(4_胺基苯氧基)苯基]丙烷 16.4g(0.04莫耳)溶解於正甲基-2_吡咯烷酮i〇〇g之溶液中 。使該溶液滴下於上述燒瓶內。滴下之際,調節反應系之 溫度以免超過50。(:。滴下終了後,在室溫下進—步攪拌 1 〇小時。然後’於該燒瓶安裝附有水分接受器之回流冷卻 器後’加入二甲苯50g ’昇溫至150。(:,保持該溫度6小 時。其結果’得到黃褐色之溶液。 -18- (7) 201102417 【化9】R1 - Si-CH2CH2CH2-(2) R1 - CH2CH2CH2 - R1 in the formula (2) is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, preferably 1 to 4. R 1 is, for example, a methyl group or an ethyl group. R2 in the formula (2) is a radical polymerizable group. R2 is, for example, a vinyl group, a propenyl group, a (meth)acryloxypropyl group, a (meth)acryloyloxyethyl group, a (meth)acryloxymethyl group, or a styryl group. Preferably, R2 is a vinyl group from the viewpoint that the raw material is easily obtained. The radical polymerizable group may be a polyoxynitride portion of the polyimide polyimide resin, and may be, for example, a portion of either the end portion or the center portion. a and b in the formula (2) are each 1 to 20, preferably an integer of 3 to 20. The total of a + b is 2 or more and 21 or less. Here, when a and b are each larger than 20 or a + b is larger than 21, the adhesion to the adherend becomes weak. The m and η in the formula are the effects derived from the repeating unit, 0.05S 0.8, 0.2$0.95, preferably 0.05$ mg 0.5, 0·5 < η S 0.9 5 . If it is this range, good adhesion to the adherend can be obtained. The total of m + n in the formula (1) is 1. The polyamidene polyoxyl resin has a weight average molecular weight of 5,000 to 150,000', preferably 20, 〇〇〇 150, 〇〇〇. For this reason, if the molecular weight is less than the above lower limit, the strong toughness of the resin is not exhibited, and if the molecular weight is more than the above upper limit, it is difficult to mix with the thermal conductive agent to be described later. -12- 201102417 The above polyimine polyoxysiloxane resin can be produced, for example, by a known method described below. Initially, the tetracarboxylic dianhydride used to derivatize W, the one used to derivatize X, and the Y-based female polysiloxane used to derivate Y are fed into the solvent, followed by a low temperature such as 〇~5 0 °C reaction. The solvent is selected from, for example, a combination of N-methyl-2-pyrrolidone (NMP), cyclohexanone, τ-butyrolactone, and N,N-dimethylacetamide (DMAc) of 1 or more. Further, the water formed during the imidization of ruthenium is easily removed by azeotropic removal, so that aromatic hydrocarbons such as toluene and xylene can be used. The precursor of the quinone imine resin, i.e., polydecanoic acid, can be produced by the above reaction. Next, the solution of the poly-proline is heated to a temperature of preferably from 8 Torr to 2 00 ° C, particularly preferably from 140 to 180 ° C. A solution of the polyamidene polyoxyxylene resin can be obtained by the dehydration ring-closing reaction of the acid amide of the polyaminic acid at this temperature rise. This solution is poured into a solvent such as water, methanol, ethanol or acetonitrile to produce a precipitate. The resulting precipitate was dried to obtain a polyamidene polyoxymethylene resin. The molar ratio of the total of the diamine of the tetracarboxylic dianhydride to the diamine polyoxyalkylene is preferably from 0.95 to 1.05, particularly preferably from 0.98 to 1.02. To adjust the molecular weight of the polyimine polyoxyl resin, a difunctional carboxylic acid such as phthalic anhydride, and a monofunctional amine such as aniline may be added to the above solution. The amount of these compounds added is, for example, 2 mol% or less based on the tetracarboxylic acid and the diamine, respectively. In the process of hydrazine imidization, a dehydrating agent and a ruthenium-inducing catalyst are added, and the mixture is heated at about 5 〇 ° C according to the need of the stomach, and may be imidized. The dehydrating agent is, for example, an acid anhydride' such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride. The amount of the dehydrating agent -13-201102417 is, for example, 1 to 10 moles relative to the diamine 1 molar. The quinone imidization catalyst is, for example, a tertiary amine such as pyridine, choline, lutidine, and triethylamine. The amount of the ruthenium-based catalyst used is, for example, 0 _ 5 to 1 0 mol relative to the dehydrating agent used. When a plurality of diamines and/or a plurality of tetracarboxylic dianhydrides are used, for example, a raw material is mixed in advance and then copolymerized and condensed, and two or more kinds of diamines or tetracarboxylic dianhydrides are separately reacted and sequentially added. . However, the reaction method is not particularly limited to this illustration. (B) Electrically insulating thermal conductive agent The electrically insulating thermal conductive agent is, for example, a metal oxide and a ceramic powder. The metal powder is, for example, zinc oxide powder or alumina powder. The ceramic powder is, for example, tantalum carbide powder, tantalum nitride powder, boron nitride powder or aluminum nitride powder. Thermal conductivity The chelating agent can be suitably selected from the viewpoints of stability or cost. The shape of the thermal conductive agent is not particularly limited, and is, for example, a granular shape, a dendritic shape, a sheet shape, and an indefinite shape. One or a mixture of two or more kinds of thermally conductive sputum powders having such shapes may also be used. The particle size distribution of the thermal conductive agent is not particularly limited. For example, the range of 〇 5 〜 5 1 Ο μηι is 90% by weight or more, preferably 95% by weight or more. The average particle diameter of the thermal conductive agent is not particularly limited, but is, for example, in the range of 1 to 50 μm. As the thermally conductive chelating agent, for example, a single distribution (unimodality) can be used. However, in order to make the thermal conductive agent densely and uniformly dispersed in the adhesive, a plurality of thermal conductive agents having different shapes and particle diameters are combined to form a multimodal distribution, which is more than a single distribution of thermal conductivity. The agent is more effective. -14-201102417 The ratio of the amount of the above thermally conductive chelating agent in the thermally conductive adhesive of the present invention is from 100 to 10,000 parts by mass per 100 parts by mass of the polyamidene polyoxyl resin, preferably 200 to 6,000 parts by mass. When the ratio of the amount of the thermally conductive chelating agent is less than the above lower limit, sufficient thermal conductivity cannot be obtained when the thermally conductive adhesive of the present invention is used. Further, when the ratio of the amount of the thermal conductive agent to be added exceeds the above upper limit, when the thermally conductive adhesive of the present invention is used, sufficient adhesive strength cannot be obtained between the adherend and the adherend. (C) Organic solvent The organic solvent is compatible with the component (A), and it is preferred not to affect the surface state of the component (B). The organic solvent is, for example, a combination of one or more selected from the group consisting of ethers, ketones, esters, cellosolves, guanamines, and aromatic hydrocarbons. The ethers contain, for example, tetrahydrofuran, and anisole. The ketones contain, for example, cyclohexanone, 2-heptanone, methyl isobutyl ketone, 2-heptanone, 2-octanone, and acetophenone. The ester contains, for example, butyl acetate, methyl benzoate, and r-butyrolactone. The cellosolve contains, for example, butyl carbitol acetate, butyl cellosolve acetate, and propylene glycol monomethyl ether acetate. ester. The guanamines contain, for example, hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethylacetamide, and hydrazine-methyl-2-pyrrolidone. The aromatic hydrocarbons contain, for example, toluene or xylene. The organic solvent is preferably selected from the group consisting of ketones, esters, cellosolves, and guanamines. The organic solvent is particularly preferably butyl carbitol acetate, butyrolactone, propylene glycol monomethyl ether acetate, and hydrazine-methyl-2-pyrrolidone. These solvents may be used alone or in combination of two or more. The amount of the organic solvent, for example, considers the solubility of the polyamidene polyoxyl resin -15-201102417, the workability of the coating of the thermal conductive adhesive or the thickness of the film'. The amount of the general polyimine polyoxyl resin is relatively The total amount of the resin and the solvent is from 10 to 60% by weight, preferably from 20 to 50% by weight. When the composition is stored, it is prepared to a relatively high concentration. When used, it can be diluted to a desired concentration. 导热 The thermally conductive adhesive of the present invention may further contain (D) carbonic acid vinegar as an optional component. In the presence of peroxycarbonic acid vinegar, even at a relatively low temperature, the radical polymerizable group bonded to the ruthenium atom in the polyamidene polysiloxane resin is rapidly hardened, and the performance such as solvent resistance is improved. Examples of the peroxycarbonate include a single butyl peroxy isopropyl carbonate, a third butyl peroxy 2-ethylhexyl carbonate, and a third pentyl peroxide 2-ethylhexyl carbonate. Peroxycarbonate; bis(2-ethylhexyl)peroxydicarbonate, 1,6-bis(t-butylperoxycarbonyloxy)hexane, bis(4-tert-butylcyclohexyl)peroxidation Dicarbonate, di(2·ethoxyethyl)peroxydicarbonate, di(n-propyl)peroxydicarbonate, diisopropylperoxydicarbonate, and the like. The peroxycarbonate is preferably a third butyl peroxy 2-ethylhexyl carbonate, or the like, in terms of curability, compatibility with a polyamidene polyoxymethylene resin, and storage stability of an adhesive. Tripentylperoxide 2-ethylhexyl carbonate, 1,6-bis(t-butylperoxycarbonyloxy)hexane, bis(4-t-butylcyclohexyl)peroxydicarbonate. The amount of the peroxycarbonate is preferably 0.1 to 1 part by mass, more preferably 0.5 to 5 parts by mass, per 100 parts by mass of the polyamidene polyoxyl resin. When the amount exceeds the above upper limit, the storage stability of the thermally conductive adhesive of the present invention and the high temperature and high humidity resistance of the cured product tend to be lowered. -16- 201102417 Polyimine polysiloxane resin exhibits excellent heat resistance, mechanical strength, solvent resistance, and adhesion to various substrates by thermal curing. The curing conditions of the adhesive of the present invention are not particularly limited, but are preferably 80 ° C or more and 300 ° C or less, and preferably 100 ° C or more and 200 ° C or less. When hardening is not achieved by the above lower limit, it is too time consuming to use heat hardening, and it is not practical. When the temperature is hardened at a low temperature which does not reach the above lower limit, the storage stability of the carrier may cause problems when the composition and composition are selected. Further, the thermally conductive adhesive of the present invention is different from the conventional polyaminic acid solution, and it is not necessary to carry out heating at a high temperature of TC or higher for a long period of time, so that thermal deterioration of the substrate can be suppressed. The thermal conductive adhesive of the present invention may contain, in addition to the above components, an anti-aging agent, an ultraviolet absorber, a further improver, a flame retardant, and an interface activity, without impairing the object of the present invention and the effect of the thermal conductive adhesive. Agent, preservation stability improver, ozone degradation inhibitor, light stabilizer, tackifier, plasticizer, decane coupling agent, antioxidant, thermal stabilizer, radiation shielding agent, nucleating agent, lubricant, pigment, and physical property adjustment The thermally conductive adhesive of the present invention preferably has a viscosity of from 0.5 to 2000 Pa·s, preferably from 1.0 to 1000 Pa·s, in 25 t. Thermal conductivity of the thermally conductive adhesive of the present invention (W) /mK) is preferably 0.5 or more, more preferably 1.0 or more, and particularly preferably 3 or more. The thermal strength of the thermal conductive adhesive of the present invention to the copper plate is preferably 3 or more, more preferably 5 or more, and particularly preferably 6 Above. at 80 ° C, 95RH The bonding strength (MPa) after being placed in a high-temperature and high-humidity environment for 240 hours is preferably the same as that of the above-mentioned -17-201102417. The thermal conductive adhesive of the present invention can be suitably used, for example, for the high-brightness of the LED chip with high heat generation. The agent 'or an adhesive for a semiconductor element having a large amount of heat per unit area which is reduced in size and weight. Hereinafter, the present invention will be described in more detail by way of examples, but the invention is not limited to the examples. The synthesis of the imine polyoxyl resin was carried out in the following Synthesis Examples 1 to 4 to produce four types of polyamidene polyoxyl resins. Synthesis Example 1 In a flask equipped with a stirrer, a thermometer, and a nitrogen substitution device, 4,4'-hexafluoropropylene bisphosphonate dianhydride 8888 (〇 2 mol) and n-methyl 2 - pirolidol 550 g. Then 'prepared to be shown in formula 7 142.2 g (0.10 mol) of amino oxoxane and 16.4 g (0.04 mol) of 2,2-bis[4-(4-aminophenoxy)phenyl]propane were dissolved in n-methyl-2-pyrrolidone In the solution of i〇〇g, the solution was dropped into the flask. When dropping, the temperature of the reaction system was adjusted to avoid exceeding 50. (:. After the completion of the dropwise addition, the mixture was further stirred at room temperature for 1 hour, and then 'after the flask was installed with a reflux condenser equipped with a water receiver, 'addition of xylene 50 g' was heated to 150. (:, the temperature was maintained for 6 hours. The result 'gets a yellow-brown solution. -18- (7) 201102417 【化9】

ch3 ch3 ch3 CHC ch=ch2 ch3 H2N-CH2CH2CH2—Si—^〇-Sijh-(〇-Si)^〇—Si-CH2CH2CH2-NH2 CH3 ch3 使上述所得到之黃褐色的溶液冷卻至室溫(2 5 °C ),投 入於甲醇中而再沉澱。乾燥所得到之沉澱物1 9 0 g,測定其 線吸收光譜。其結果’未顯現依未反應之聚醯胺酸的吸收 (1640cm·1),而可確認於1780 cm·1及1720 cm·1依據醯亞 胺基之吸收。其次,藉由以四氫呋喃作爲溶劑的凝膠浸透 色層分析(GPC),測定重量平均分子量(聚苯乙烯換算)之 結果’爲3 3,000。稱生成物爲聚醯亞胺聚矽氧樹脂(1) ^ 合成例2 於具備攪拌機、溫度計及氮取代裝置之燒瓶內,饋入 4,4'-六氟亞丙基雙酞酸二酐88.8g(0.2莫耳)及正甲基-2-吡 咯烷酮5 00g。然後’準備將以式8所示之二胺基矽氧烷 165.3g(0.1莫耳)、及2,2-雙[4-(4-胺基苯氧基)苯基]丙烷 41.1g(0.1莫耳)溶解於正甲基-2_吡咯烷酮i〇〇g之溶液中 。使該溶液滴下於上述燒瓶內。滴下之際,調節反應系之 溫度以免超過50 °C。滴下終了後,在室溫下進一步攪拌 1 〇小時。然後,於該燒瓶安裝附有水分接受器之回流冷卻 器後’加入二甲苯50g,昇溫至1501,保持該溫度6小 -19- 201102417 時。其結果,得到黃褐色之溶液。 【化1 0】 丫 H3 ch3 ch3 ch3 H2N-CH2CH2CH2—Si—(〇—Si)^-0—Sijh-o—S1-CH2CH2CH2-NH2 ⑹ ch3 ch3 ch=ch2 ch3 使上述所得到之黃褐色的溶液冷卻至室溫(25 °c ),投 入於甲醇中而再沉殿。乾燥所得到之沉澱物240g,測定其 線吸收光譜。其結果,未顯現依未反應之聚醯胺酸的吸收 (1640cm·1),而可確認於1780 cm·1及1720 cm」依據醯亞 胺基之吸收。其次,藉由以四氫呋喃作爲溶劑的凝膠浸透 色層分析(GPC) ’測定重量平均分子量(聚苯乙烯換算)之 結果’爲3 3,000。稱生成物爲聚醯亞胺聚矽氧樹脂(2)。 合成例3(比較用) 於具備攪拌機 '溫度計及氮取代裝置之燒瓶內,饋入 4,4'-六氟亞丙基雙酞酸二酐88.8g(0.2莫耳)及正甲基-2-吡 咯烷酮500g。然後,準備將以式9所示之二胺基矽氧烷 263.1g(0.08莫耳)、及2,2-雙[4-(4-胺基苯氧基)苯基]丙烷 49.3g(0_l2莫耳)溶解於正甲基-2_吡咯烷酮i〇〇g之溶液中 。使該溶液滴下於上述燒瓶內。滴下之際,調節反應系之 溫度以免超過5 0 °C。滴下終了後,在室溫下進—步攪拌 1 〇小時。然後’於該燒瓶安裝附有水分接受器之回流冷卻 -20- 201102417 器後,加入二甲苯50g,昇溫至l5〇°C,保持該溫度6小 時。其結果,得到黃褐色之溶液。 【化1 1】 丫 H3 CH3 CH3 CH3 H2N-CH2CH2CH2—Si——Si^~^0—Si^—Ο—Si_CH2CH2CH2_NH2 (9) ch3 ch3 ch=ch2 ch3 使上述所得到之黃褐色的溶液冷卻至室溫(25 °c ),投 入於甲醇中而再沉澱。乾燥所得到之沉澱物3 3 0g,測定其 線吸收光譜。其結果,未顯現依未反應之聚醯胺酸的吸收 ( 1 640CHT1),而可確認於1 7 8 0 cm·1及1 720 cm·1依據醯亞 胺基之吸收。其次,藉由以四氫呋喃作爲溶劑的凝膠浸透 色層分析(GPC) ’測定重量平均分子量(聚苯乙烯換算)之 結果’爲3 5,000。稱生成物爲聚醯亞胺聚矽氧樹脂(3)。 合成例4(比較用) 於具備攪拌機、溫度計及氮取代裝置之燒瓶內,饋入 4,4·-六氟亞丙基雙酞酸二酐88_8g(〇.2莫耳)及正甲基-2-吡 咯院酮500g。然後,準備將以式(1〇)所示之二胺基矽氧烷 244.8g(0.08莫耳)、及2,2_雙[4_(4_胺基苯氧基)苯基]丙烷 49.3g(0.12莫耳)溶解於正甲基_2_卩比咯烷酮M〇g之溶液中 。使該溶液滴下於上述燒瓶內。滴下之際,調節反應系之 溫度以免超過5 0 °C。滴下終了後,在室溫下進—步攪拌 -21 - 201102417 1 0小時。然後’於該燒瓶安裝附有水分接受器之回流冷卻 器後,加入二甲苯5 0 g ’昇溫至1 5 0 °c,保持該溫度6小 時。其結果,得到黃褐色之溶液。 【化1 2】 ch3 | H2NOH2OH2CH2 Si (Ο— CH-,Ch3 ch3 ch3 CHC ch=ch2 ch3 H2N-CH2CH2CH2—Si—^〇-Sijh-(〇-Si)^〇—Si-CH2CH2CH2-NH2 CH3 ch3 The above-obtained yellow-brown solution was cooled to room temperature (2 5 °C), put into methanol and reprecipitate. The precipitate obtained was dried 1 to 90 g, and its absorption spectrum was measured. As a result, the absorption of the unreacted polylysine (1640 cm·1) was not observed, and it was confirmed that the absorption was based on the quinone imine group at 1780 cm·1 and 1720 cm·1. Next, the result of the weight average molecular weight (in terms of polystyrene) was determined by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent to be 33,000. The product was a polyamidene polyoxyl resin (1) ^ Synthesis Example 2 In a flask equipped with a stirrer, a thermometer and a nitrogen substitution device, 4,4'-hexafluoropropylenebisphthalic acid dianhydride 88.8 was fed. g (0.2 mol) and n-methyl-2-pyrrolidone 5 00 g. Then, '165.3 g (0.1 mol) of diamino methoxy oxane represented by Formula 8 and 41.1 g of 2,2-bis[4-(4-aminophenoxy)phenyl]propane were prepared. Mohr) is dissolved in a solution of n-methyl-2-pyrrolidone i〇〇g. This solution was dropped into the above flask. At the time of dripping, adjust the temperature of the reaction system to avoid exceeding 50 °C. After the end of the dropwise addition, the mixture was further stirred at room temperature for 1 hour. Then, after the flask was equipped with a reflux condenser equipped with a moisture receiver, 50 g of xylene was added, and the temperature was raised to 1501, and the temperature was maintained at 6 -19 - 201102417. As a result, a yellow-brown solution was obtained. [Chemical 1 0] 丫H3 ch3 ch3 ch3 H2N-CH2CH2CH2—Si—(〇—Si)^-0—Sijh-o—S1-CH2CH2CH2-NH2 (6) ch3 ch3 ch=ch2 ch3 The yellow-brown solution obtained above is obtained. Cool to room temperature (25 °c), put in methanol and sink again. 240 g of the obtained precipitate was dried, and the linear absorption spectrum was measured. As a result, the absorption of the unreacted polylysine (1640 cm·1) was not observed, and it was confirmed that the absorption was based on the quinone imine group at 1780 cm·1 and 1720 cm. Next, the result of measuring the weight average molecular weight (in terms of polystyrene) by gel permeation chromatography (GPC)' using tetrahydrofuran as a solvent was 33,000. The product is referred to as a polyamidene polyoxyl resin (2). Synthesis Example 3 (comparative use) In a flask equipped with a stirrer 'thermometer and a nitrogen substitution device, 88.8 g (0.2 mol) and n-methyl-2 were fed with 4,4'-hexafluoropropylenebisphthalic acid dianhydride. - Pyrrolidone 500 g. Then, 263.1 g (0.08 mol) of diaminocarboxane represented by Formula 9, and 49.3 g of 2,2-bis[4-(4-aminophenoxy)phenyl]propane were prepared (0_l2). Mohr) is dissolved in a solution of n-methyl-2-pyrrolidone i〇〇g. This solution was dropped into the above flask. At the time of dripping, adjust the temperature of the reaction system to avoid exceeding 50 °C. After the end of the dropwise addition, the mixture was stirred at room temperature for 1 hour. Then, after the flask was attached to a reflux condenser -20-201102417 equipped with a moisture receiver, 50 g of xylene was added, and the temperature was raised to 15 ° C, and the temperature was maintained for 6 hours. As a result, a yellow-brown solution was obtained. [1 1] 丫H3 CH3 CH3 CH3 H2N-CH2CH2CH2—Si—Si^~^0—Si^—Ο—Si_CH2CH2CH2_NH2 (9) ch3 ch3 ch=ch2 ch3 The above-obtained yellow-brown solution is cooled to the chamber. Temperature (25 °c), put into methanol and reprecipitate. The obtained precipitate was dried (3, 30 g), and the line absorption spectrum was measured. As a result, the absorption of the unreacted polylysine (1 640 CHT1) was not observed, and it was confirmed that the absorption was based on the ruthenium group at 1 7 8 0 cm·1 and 1 720 cm·1. Next, the result of measuring the weight average molecular weight (in terms of polystyrene) by gel permeation chromatography (GPC) of tetrahydrofuran as a solvent was 35,000. The product is referred to as a polyamidene polyoxyl resin (3). Synthesis Example 4 (comparative) In a flask equipped with a stirrer, a thermometer, and a nitrogen substitution device, 4,4·-hexafluoropropylene bisphosphonate dianhydride 88_8 g (〇.2 mol) and n-methyl group were fed. 2-pyrrolidone 500g. Then, 244.8 g (0.08 mol) of diaminocarboxane represented by formula (1〇) and 49.3 g of 2,2-bis[4-(4-aminophenoxy)phenyl]propane were prepared. (0.12 mol) was dissolved in a solution of n-methyl-2-indolepyrrolidone M?g. This solution was dropped into the above flask. At the time of dripping, adjust the temperature of the reaction system to avoid exceeding 50 °C. After the end of the drip, stir at room temperature -21 - 201102417 1 0 hours. Then, after the flask was equipped with a reflux condenser equipped with a moisture receiver, xylene 50 g was added to raise the temperature to 150 ° C, and the temperature was maintained for 6 hours. As a result, a yellow-brown solution was obtained. [Chemical 1 2] ch3 | H2NOH2OH2CH2 Si (Ο-CH-,

CH3 I 0-Si-CH2CH2CH2-NH2 CH3 (10) 使上述所得到之黃褐色的溶液冷卻至室溫(2 5 °C ),投 入於甲醇中而再沉澱。乾燥所得到之沉澱物3 4 0 g,測定其 線吸收光譜。其結果,未顯現依未反應之聚醢胺酸的吸收 (1 640CHT1),而可確認於1 780 cnT1及1 720 cm·1依據醯亞 胺基之吸收。其次,藉由以四氫呋喃作爲溶劑的凝膠浸透 色層分析(GPC),測定重量平均分子量(聚苯乙烯換算)之 結果,爲3 5,000。稱生成物爲聚醯亞胺聚矽氧樹脂(4)。 2.接著劑之製作 使用下述之原料。 (A)聚醯亞胺聚矽氧樹脂:使用於上述合成例1〜4所 得到之聚醯亞胺聚矽氧樹脂(1)、(2)、(3)、或(4)。 (B )電絕緣性之導熱性塡充劑: (B1)導熱性塡充劑A :平均粒徑ΙΟμηι之氧化鋁(比重 3.98) -22- 201102417 (B2)導熱性塡充劑b :平均粒徑1μιη之氧化鋁(比重 3.98) (C) 有機溶劑:丁基卡必醇乙酸酯(BCA) (D) 過氧化碳酸酯:第三丁基過氧化-2-乙基己基碳酸酯 [實施例1〜4及比較例1〜2 ] (Α)聚醯亞胺聚矽氧樹脂(1)〜(4)分別使(Β)電絕緣性 之導熱性塡充劑(Β1及Β2)、(C)有機溶劑、及(D)過氧化 碳酸酯以表1所示之質量比例饋入於自轉公轉混合機中, 攪拌成爲均一,繼而,進行脫泡而得到接著劑。 -23- 201102417 【一撇〕 (〇) 過氧化碳酸酯硬化劑 (質量%) T—Η (C) 有機溶劑 BCA (質量%) I___ —. __ 300 300 300 200 300 300 (B) 電絕緣性之導熱性塡充劑 (質量%) CN CQ 160 160 Η § r· _ § S 640 640 〇 ν〇 320 640丨 640 (A) 聚醯亞胺聚矽氧樹脂 (質量%) > Ο ο H-H 〇 Ο 100 H-H 〇 ψ 100 實施例1 實施例2 實施例3 實施例4 比較例1 比較例2 -24- 201102417 3 · s平估試驗 有關實施例1〜4、以及比較例1〜2所得到的接著劑 ’依下述方法進行黏度、導熱率及接著強度之評估試驗。 又’有關加熱硬化性一液型之聚矽氧橡膠C(市售品)及D( 市售品),以與上述相同之順序進行評估試驗(分別爲比較 例3及比較例4)。 結果表示於表2中。 (1)黏度 各接著劑之黏度係使用B Η型旋轉黏度計而以2 5 °c測 定。 (2)導熱率 將各接著劑流入於鐵氟龍(商標)(杜邦公司製)板之溝 ,以8 0 °C乾燥3 0分鐘’繼而,以1 5 〇乞加熱該接著劑! 小時,製成1 〇mm φ X 1 mm之試驗片。使用雷射快閃法熱常 數測定裝置(LFA 447(NETZSCH公司製)),測定該試驗片 的熱擴散率及比熱容量,求出導熱率。 (3)接著強度 使各接著劑於銅板(100mmx25mmxlmm)以塗佈面積 20mmx20mm進行塗佈,與相同大小的另一個銅板貼合。 將該貼合之銅板以8 0 °C乾燥3 0分鐘,繼而,在4 Μ P a之壓 力下、以150 °C進一步乾燥2分鐘,繼而,以1501加熱1 -25- 201102417 小時’得到試驗片。使用Autograph(STR〇GRAPH V10-D(東 洋精機/λ司®ε))以5mm /分之速度測定試驗片之剪切接著強 度。 又,與上述相同做法得到之試驗片於8{rc/95%RH曝 露2 4 0小時(闻溫闻濕試驗)、與上述相同做法測定剪切接 著強度(高溫高濕試驗後)。 [表2] 黏度 (Pa-s) 熱傳導率 (W/mK) 接著強度 iMPa^ 高溫高濕試驗 實施例1 (接著例I) 50 3.0 7 7 實施例2 (接著例II) 45 3.1 7 6 實施例3 (接著例III) 55 3.0 6 5 實施例4 (接著例IV) 30 1.1 11 10 比較例1 (接著例C-I) 50 3.0 1.5 0.2 比較例1 (接著例C-II) 45 3.0 0.2 0.2 比較例3 (市售品) 60 2.5 2.0 0.2 比較例4 (市售品 20 0.6 15 3 從上述結果’接著劑1〜4係具有適當的黏度,導熱 率良好爲1.1〜3.1W/mK’接著強度良好爲6〜11 MPa,在 高溫高濕試驗前後之接著強度的降低幾乎看不到。 -26-CH3 I 0-Si-CH2CH2CH2-NH2 CH3 (10) The above-obtained yellow-brown solution was cooled to room temperature (25 ° C), and poured into methanol to reprecipitate. The precipitate obtained was dried, 300 g, and its absorption spectrum was measured. As a result, absorption of unreacted polylysine (1 640 CHT1) was not observed, and absorption by 1 780 cnT1 and 1 720 cm·1 was confirmed depending on the quinone imine group. Next, the result of measuring the weight average molecular weight (in terms of polystyrene) by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent was 35,000. The product is referred to as a polyamidene polyoxyl resin (4). 2. Preparation of an adhesive The following raw materials were used. (A) Polyimine polyoxyl resin: The polyamidene polyoxyl resin (1), (2), (3), or (4) obtained in the above Synthesis Examples 1 to 4. (B) Electrically insulating thermal conductive agent: (B1) Thermally conductive agent A: Alumina having an average particle diameter of ημηι (specific gravity 3.98) -22- 201102417 (B2) Thermal conductivity agent b: average particle Alumina having a diameter of 1 μm (specific gravity 3.98) (C) Organic solvent: butyl carbitol acetate (BCA) (D) Peroxycarbonate: tert-butylperoxy-2-ethylhexyl carbonate [implementation Examples 1 to 4 and Comparative Examples 1 to 2] (Α) Polyimine polyoxyloxy resins (1) to (4) each of which is an electrically insulating thermal conductive agent (Β1 and Β2), C) The organic solvent and (D) peroxycarbonate were fed into the autorotation mixer at a mass ratio shown in Table 1, stirred to be uniform, and then defoamed to obtain an adhesive. -23- 201102417 【一撇】 (〇) Peroxycarbonate hardener (% by mass) T—Η (C) Organic solvent BCA (% by mass) I___ —. __ 300 300 300 200 300 300 (B) Electrical insulation Thermal conductive agent (% by mass) CN CQ 160 160 Η § r· _ § S 640 640 〇ν〇320 640丨640 (A) Polyimine polyoxyl resin (% by mass) > Ο ο HH 〇Ο 100 HH 〇ψ 100 Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 -24-201102417 3 · s evaluation test Related to Examples 1 to 4 and Comparative Examples 1 to 2 The adhesive's evaluation test of viscosity, thermal conductivity and subsequent strength was carried out as follows. Further, the polyoxygen rubber C (commercial product) and D (commercial product) of the heat-curable one-liquid type were subjected to evaluation tests in the same order as above (Comparative Example 3 and Comparative Example 4, respectively). The results are shown in Table 2. (1) Viscosity The viscosity of each of the adhesives was measured at 25 ° C using a B-type rotary viscometer. (2) Thermal conductivity Each of the adhesives was poured into a groove of Teflon (trademark) (manufactured by DuPont), and dried at 80 ° C for 30 minutes. Then, the adhesive was heated at 15 Torr! In the hour, a test piece of 1 〇mm φ X 1 mm was produced. The thermal diffusivity and the specific heat capacity of the test piece were measured using a laser flash thermal constant measuring apparatus (LFA 447 (manufactured by NETZSCH)) to determine the thermal conductivity. (3) Adhesive strength Each of the adhesives was applied to a copper plate (100 mm x 25 mm x 1 mm) at a coating area of 20 mm x 20 mm, and bonded to another copper plate of the same size. The bonded copper plate was dried at 80 ° C for 30 minutes, and then further dried at 150 ° C for 2 minutes under a pressure of 4 Μ P a , and then heated at 150 1 for 1 -25 to 201102417 hours to obtain a test. sheet. The shear strength of the test piece was measured at a speed of 5 mm/min using Autograph (STR〇GRAPH V10-D (East Seiki/λ Division® ε)). Further, the test piece obtained in the same manner as above was subjected to exposure at 8 {rc/95% RH for 240 hours (smell temperature test), and the shear strength was measured in the same manner as above (after the high temperature and high humidity test). [Table 2] Viscosity (Pa-s) Thermal Conductivity (W/mK) Next Strength iMPa^ High Temperature and High Humidity Test Example 1 (Continued Example I) 50 3.0 7 7 Example 2 (Next Example II) 45 3.1 7 6 Implementation Example 3 (Continued Example III) 55 3.0 6 5 Example 4 (Continued Example IV) 30 1.1 11 10 Comparative Example 1 (Continued Example CI) 50 3.0 1.5 0.2 Comparative Example 1 (Next Example C-II) 45 3.0 0.2 0.2 Comparison Example 3 (commercial product) 60 2.5 2.0 0.2 Comparative Example 4 (commercial product 20 0.6 15 3 From the above results, the adhesives 1 to 4 have an appropriate viscosity, and the thermal conductivity is preferably 1.1 to 3.1 W/mK'. The good value is 6 to 11 MPa, and the decrease in the strength of the joint before and after the high temperature and high humidity test is hardly seen.

Claims (1)

201102417 七、申請專利範圍: 1.一種導熱性接著劑,其係含有: (A) 具有以下述式(1)所示之重複單元的重量平均分子 量5000〜150000的聚醯亞胺聚矽氧樹脂1〇〇質量份 (B) 電絕緣性之導熱性塡充劑10〇〜1〇,〇〇〇質量份、及 (C) 有機溶劑; 【化1】201102417 VII. Patent application scope: 1. A thermal conductive adhesive comprising: (A) a polyamidene polyoxyl resin having a weight average molecular weight of 5,000 to 150,000 with a repeating unit represented by the following formula (1) 1〇〇 parts by mass (B) electrically insulating thermal conductive agent 10〇~1〇, 〇〇〇 parts by mass, and (C) organic solvent; ONC/ \CHO N N OHC、/c=o ⑴ (式(1)中,W爲4價之有機基’ X爲二價之有機基,γ爲 以卞述式(2)所不的2價之聚矽氧殘基,且0.〇5$mS〇.8 、0.2$ “ 0.95、m + n=l) 【化2】 R1 R1 R1 -CH2CH2CH2—SH〇-Si^O-Si-4〇-Si-CH2CH2CH2- (2) R1 \ R1/a \ R2/b R1 (式(2)中,Rl互相獨立爲碳數1〜8的取代或非取代之— 傻的烴基’ R2爲自由基聚合性基’ a及b分別爲卜2〇之 韃數,a + b爲2〜21)。 -27- 201102417 2 .如申請專利範圍第1項之導熱性接著劑’其中 選自由乙烯基、丙稀基 '(甲基)丙嫌醯氧丙基 '(甲3 烯醯氧乙基、(甲基)丙嫌醯氧甲基 '及苯乙燦基所構 群中。 3 .如申請專利範圍第1或2項之導熱性接著劑, 進一步含有(D)過氧化碳酸酯0.1〜10質量份。 4.如申請專利範圍第1或2項之導熱性接著劑, 對於銅片之接著強度爲3MPa以上。 5 · —種電子構件,其係藉由使申請專利範圍第 項中任一項之導熱性接著劑硬化所得到之物質接著於 構件或發熱構件之電子元件所構成。 R2爲 S)丙 成之 其中 其中 1〜4 散熱 -28- 201102417 四 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 五、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無ONC/ \CHO NN OHC, /c=o (1) (In the formula (1), W is a tetravalent organic group 'X is a divalent organic group, and γ is a two-valent one which is not described by the formula (2) Polyanthracene residue, and 0.〇5$mS〇.8, 0.2$“0.95, m + n=l) [Chemical 2] R1 R1 R1 -CH2CH2CH2—SH〇-Si^O-Si-4〇- Si-CH2CH2CH2-(2) R1 \ R1/a \ R2/b R1 (in the formula (2), R1 is independently substituted or unsubstituted with a carbon number of 1 to 8 - silly hydrocarbon group 'R2 is a radical polymerizable property The base 'a and b are respectively the number of turns of 〇2〇, a + b is 2~21). -27- 201102417 2. The thermal conductive adhesive of the first item of claim 1 is selected from the group consisting of vinyl and propylene The base '(methyl)-propyl oxime oxypropyl' (methyl 3- ethene oxyethyl, (methyl) propyl oxime oxymethyl) and phenethyl ketone group. 3. As claimed in the patent scope The thermally conductive adhesive of 1 or 2 further contains (D) a peroxycarbonate in an amount of 0.1 to 10 parts by mass. 4. The thermal conductive adhesive according to claim 1 or 2, the bonding strength to the copper sheet is 3 MPa. Above. 5 · An electronic component by making any of the scope of the patent application The material obtained by hardening the thermal conductive adhesive is then composed of the electronic components of the component or the heat generating component. R2 is S), and among them, 1 to 4, heat dissipation -28- 201102417 Four designated representatives: (1) Representative representative figure of the case For: No (2) Simple description of the symbol of the representative figure: No. 5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none
TW099111420A 2009-04-14 2010-04-13 Thermal follower TWI476261B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098418A JP5489261B2 (en) 2009-04-14 2009-04-14 Thermally conductive adhesive

Publications (2)

Publication Number Publication Date
TW201102417A true TW201102417A (en) 2011-01-16
TWI476261B TWI476261B (en) 2015-03-11

Family

ID=42956203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099111420A TWI476261B (en) 2009-04-14 2010-04-13 Thermal follower

Country Status (4)

Country Link
JP (1) JP5489261B2 (en)
KR (1) KR101625688B1 (en)
CN (1) CN101864269B (en)
TW (1) TWI476261B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562574B2 (en) * 2009-04-14 2014-07-30 信越化学工業株式会社 Thermally conductive adhesive
CN103074029B (en) * 2011-10-25 2016-06-08 上海本诺电子材料有限公司 organosilicon polyimide conductive adhesive for LED
FR3060601B1 (en) * 2016-12-20 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives ADHESIVE COMPOSITION AND ITS USE IN ELECTRONICS
JP6810677B2 (en) * 2017-12-05 2021-01-06 信越化学工業株式会社 New tetracarboxylic dianhydride, polyimide resin and its manufacturing method, photosensitive resin composition, pattern forming method and cured film forming method, interlayer insulating film, surface protective film, electronic parts
JP2019172894A (en) * 2018-03-29 2019-10-10 信越化学工業株式会社 Silicone-modified polyimide resin composition

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042168A (en) * 1988-09-26 1990-05-16 M&T化学有限公司 Polyimide film die attach adhesives
JPH04222889A (en) * 1990-12-25 1992-08-12 Sumitomo Bakelite Co Ltd Electrically conductive resin paste
JPH04345682A (en) * 1991-05-21 1992-12-01 Sumitomo Bakelite Co Ltd Adhesive for hermetic sealing
JP2716611B2 (en) * 1991-10-29 1998-02-18 住友ベークライト株式会社 High thermal conductive film adhesive that can be thermocompressed
JPH05335354A (en) * 1992-06-02 1993-12-17 Sumitomo Bakelite Co Ltd Semiconductor device with adhesive
US6218496B1 (en) * 1994-03-31 2001-04-17 Occidental Chemical Corporation Polyimidesiloxane adhesive
JPH08283692A (en) * 1995-04-17 1996-10-29 Kanegafuchi Chem Ind Co Ltd Electronic module
US5773561A (en) * 1996-08-02 1998-06-30 International Business Machines Corporation Polymer sealants/adhesives and use thereof in electronic package assembly
JP2000212518A (en) * 1999-01-26 2000-08-02 Nitto Denko Corp Heat bonding sheet
JP2003138241A (en) * 2001-08-21 2003-05-14 Hitachi Chem Co Ltd Heat-resistant adhesive and laminate using the same adhesive-applied heatsink and adhesive-applied metallic foil
JP2004137411A (en) * 2002-10-18 2004-05-13 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, semiconductor device and method for producing semiconductor device
JP4535245B2 (en) 2004-05-21 2010-09-01 信越化学工業株式会社 Partially-blocked polyimide-polysiloxane copolymer, process for producing the same, and resin composition containing the copolymer
WO2008026786A1 (en) * 2006-08-31 2008-03-06 Nippon Shokubai Co., Ltd. Salt for near infrared ray absorbing composition and near infrared ray absorbing pressure sensitive adhesive composition
JP2008308618A (en) * 2007-06-15 2008-12-25 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
JP4590443B2 (en) * 2007-09-05 2010-12-01 信越化学工業株式会社 Thermosetting polyimide silicone resin composition

Also Published As

Publication number Publication date
KR101625688B1 (en) 2016-05-30
JP2010248348A (en) 2010-11-04
JP5489261B2 (en) 2014-05-14
CN101864269A (en) 2010-10-20
CN101864269B (en) 2014-05-21
KR20100113985A (en) 2010-10-22
TWI476261B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5562574B2 (en) Thermally conductive adhesive
JP6299607B2 (en) Adhesive composition, adhesive sheet, and cured product and semiconductor device using the same
CN106574163B (en) Temporary bond adhesive, adhesive phase, chip processome and using its semiconductor devices manufacturing method, polyimide copolymer, polyimides hybrid resin and resin combination
WO2011089922A1 (en) Polyimide resin composition, adhesive agent and laminate each comprising same, and device
TWI460249B (en) Adhesive composition, adhesive film, and method of producing semiconductor device
JP4548855B2 (en) Thermosetting polyimide silicone resin composition and cured film thereof
JP2009062429A (en) Thermosetting polyimide silicone resin composition
JP4748292B2 (en) Film adhesive for electronic parts and electronic parts
JP2012255107A (en) Thermoplastic polyimide composition, adhesive comprising the polyimide composition, laminate, and device
TW201102417A (en) Thermal conductive adhesive agent
JP2008248114A (en) Adhesive composition
JP5643536B2 (en) Thermally conductive adhesive resin composition, laminate comprising the same, and semiconductor device
JP5648617B2 (en) Thermally conductive adhesive composition, adhesive sheet and thermal conductive dicing die attach film using the same
JP2011187613A (en) Insulating film for semiconductor elements
JP4235808B2 (en) Adhesive composition and adhesive film
JP5183076B2 (en) Manufacturing method of semiconductor device
JP5541613B2 (en) Thermally conductive adhesive composition, adhesive sheet, and thermally conductive dicing die attach film
JP2018119023A (en) Electrically conductive composition and semiconductor device
JP6624445B2 (en) Semiconductor device
JP4530126B2 (en) Adhesive composition and adhesive film
JP2009132830A (en) Adhesive composition and dicing die attach film
JP6706818B2 (en) Semiconductor device
JP2009114295A (en) Adhesive composition
JP4272468B2 (en) Manufacturing method of polyimide resin and polyimide resin obtained by the manufacturing method
JP2005325147A (en) Method for producing polyamic acid-silica composite fine particle, method for producing polyimide-silica composite fine particle, composite fine particle and electroconductive fine particle

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees