TW201100457A - Nano-imprint resist and nanoimprinting lithography method using the same - Google Patents

Nano-imprint resist and nanoimprinting lithography method using the same Download PDF

Info

Publication number
TW201100457A
TW201100457A TW98120562A TW98120562A TW201100457A TW 201100457 A TW201100457 A TW 201100457A TW 98120562 A TW98120562 A TW 98120562A TW 98120562 A TW98120562 A TW 98120562A TW 201100457 A TW201100457 A TW 201100457A
Authority
TW
Taiwan
Prior art keywords
substrate
template
nano
resist
sacrificial layer
Prior art date
Application number
TW98120562A
Other languages
Chinese (zh)
Other versions
TWI389931B (en
Inventor
Zheng-Dong Zhu
Qun-Qing Li
li-hui Zhang
Mo Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98120562A priority Critical patent/TWI389931B/en
Publication of TW201100457A publication Critical patent/TW201100457A/en
Application granted granted Critical
Publication of TWI389931B publication Critical patent/TWI389931B/en

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The present invention provides a nano-imprint resist, the nano-imprint resist includes the following components: high branched oligomers, perfluorinated polyethylene ether, methyl methacrylate, organic free radical initiator and dilution agent. The present invention also provides a nanoimprinting lithography method using the nano-imprint resist.

Description

201100457 六、發明說明: 【發明所屬之技術領域】 [0001 ] 本發明涉及一種抗蝕劑及採用該抗蝕劑的奈米壓印方法 ,尤其涉及一種奈米壓印抗蝕劑及採用該奈米壓印抗蝕 劑的奈米壓印方法。 【先前技術】 [〇〇〇2]在先前技術中,製作各種半導體設備時,常需要製作具 有數十奈米到數百奈米的微細結構的奈米圖形。具有上 述微細結構的奈米圖形的製作方法主要有光或電子束的 ο 光刻方法:首先,使用經過掩模或者掃描聚焦的輻射線 或者電子束’輻射光致抗飯劑組合物或掩膜,上述輻射 線或電子束將會改變被曝光區域的抗蝕劑的化學結構; 然後,再通過刻蝕的方法除去被曝光區域或者被曝光區 域外的抗蝕劑,從而獲得特定的圖案。 [0003]為了適應積體電路技術的迅猛發展,在先攀的光學光刻 努力突破解析度極限的同時,下一代光刻技術在最近幾 〇 年内獲得大量的研究。先前的新型光刻系統包括反射式 光學系統和折射式光學系統,通過極紫外光刻技術採用 波長13〜I4nm的光源和精度極高的反射式光學系統有效 降低了折射系統中強烈的光吸收,但整個光刻系統造價 非常昂貴,限制了該技術的應用。 [0004] 上世紀九十年代以來,一種新的奈米圖形的製作工藝得 到 了發展(請參見 Chou S Y,Krauss P R,Renst_ P. Imprint of sub 25 nm vias and trenches in polymers. Appl. Phys. Lett., 1995, 67(21). 098120562 表單編號A〇l〇i 第3頁/共27頁 0982035022-0 201100457 3114-3116)。上述製作奈米圖形的新技術’在本領域 中被稱作奈米壓印或者奈米壓印平板印刷術。奈米壓印 係指採用緣有奈米圖形的模板將基片上的抗蝕劑(resist) 薄膜壓印奈米圖形 ,再對基片 上的奈米圖形進行處 理’如刻蝕、剝離等’最終製成具有奈米結構的圖形和 半導體器件。以奈米壓印技術形成奈米圖案的方法,通 過採用具有奈米圖形的硬性模板壓印抗蝕劑層形成奈米 圖案,而不需要依賴任何曝光形成。所以,奈米壓印技 術可以消除在常規的光刻方法中所必須祕制條件,比 如對光的波長的限制,辑及在抗蝕劑和基底内粒子的反 向政射和光干擾。因此,相對於光刻技術,奈米壓印技 術具有製作成本低、簡單易行、效轉的優點,具有廣 闊的應用前景。 ! [0005]先則的奈采壓印技術主要包括熱奈米壓印(HEm)、 紫外奈米壓印(UV-NIL)等。熱奈米壓印係採用繪有奈 米圖案的剛性模板’將經過加熱後的基底上的抗钕劑薄 膜壓印出奈米級的圖案,再通過降溫固化所述抗姓劑, 使壓印後的奈㈣案得簡存,最後,再利用常規的刻 餘、剝離等加卫方法實現奈㈣案賴板向基底轉移。 模板通常採_、二氧切、碳化H切等高硬度 、高導熱率、低膨脹係數、抗腐祕強的惰性材料製二 。所述基底為常見㈣片 '二氧化石夕片,或錢有金屬底 膜的石夕片等。熱奈米壓印的工藝比較繁雜,條件 嚴格。 _6]紫外奈錢印係採料製有奈㈣案的剛性模板,將基 098120562 表單編號A0101 第4頁/共27頁 0982035022- 201100457 片上的液態的抗蝕劑薄獏壓印出奈米級圖案,再通過紫 外光的照射使得抗蝕劑單體聚合物固化,使所述奈米級 圖案得以保存,最後再利用常規的刻蝕、剝離等加工方 法實現奈米圖案由模板向基底轉移。與熱奈米壓印相比 ,紫外奈米壓印抗蝕劑在常溫下有較好的流動性,不需 要在高温、高Μ的條件,便可以得到奈米級的圖形,且 該方法成本較低。先前技術中,紫外奈米壓印的抗蝕劑 主要有矽橡膠系列’環氧樹脂系列’丙烯酸醋系列以及 聚苯乙烯系列等。 G [0007] 〇 [0008] [0009] [0010] 098120562 然而,先前技術中的紫外奈米壓印抗蝕劑的力學穩定性 較低,與模板的粘附性強,固化速度慢r難'以脫模,得 到的奈米圖形㈣規整,解析度較低1且採用先前的 奈米壓印抗蝕劑的紫外奈米壓印方法,為了提高奈米圖 形的解析度,常常需要對模板進行預處理,如採用酸處 理模板。這種模板的預處理過程繁雜,增加了紫外奈米 壓印的工藝複雜度,以及成本。 【發明内容】 有鑒於此’提供-種固化速度快、力學穩定性好奈米壓 P抗餘劑’以及採用該奈米廢印抗*劑的奈米壓印方法 實為必要。 -種奈米壓印抗_’該奈米壓印抗_包括以下組分. :高支化低聚物,全氟基聚乙_,f基丙稀酸甲醋、自 由基引發劑以及有機稀釋劑。 一種奈《印的方法,其包括以下步驟:提供一基底, 2述基底的-個表面形成—料抗提供 表單編號删1 第5頁/共27頁 、個表 °982〇35〇22-〇 201100457 面〃有π米圖形的模板,並將該模板表面的奈米圖形複 製到所述壓印抗#層,在所述壓印抗⑽形成包括多個 凸部及多個凹槽的奈米圖形;以及將所述壓印抗蚀層上 的奈米圖形轉移至基底,在所述基底表面形成奈米圖形 〇 [0011] [0012] [0013] 098120562 -種奈米壓印的方法,其包括以下步驟:提供一基底, 在該基底的表面依次形成第一犧牲層以及第二犧牲層; 提供一表面具有奈米圖形的模板,在該模板具有奈米圖 形的表面形成所述奈米壓印抗蝕劑;將基底覆蓋於模板 ,使所述基底的第土犧牲層與所述模板形成有奈米壓印 抗姓劑的表面接觸;擠壓所述模板及基底;紫外固化所 述奈米壓印抗蝕劑;脫模’在所述基底上形成由奈米壓 印抗蝕劑組成的奈米圖形;以及通過刻餞的方法,將所 述奈米圖形轉移至基底,在所述基底形成奈米圖形。 與先前技術相比較’所述奈米壓印抗蝕劑及奈米壓印方 ... ....... .:...... . 法具有以下優點:其一,該奈米壓印抗蝕劑包含高支化 低聚物,該高支化低聚物固化產生交聯,提高了模量, 且形變較小。其二,所述奈米壓印方法,其在常溫下就 可以完成,且模板無須預處理,使得該方法工藝簡單, 成本較低。 【實施方式】 以下將結合附圖詳細說明本發明提供的奈米壓印抗蝕劑 以及採用該奈米壓印抗蝕劑的奈米壓印方法。 本發明提供一種奈米壓印抗蝕劑,該奈米壓印抗蝕劑包 括以下組分:高支化低聚物,全氟基聚乙醚,自由基引 表單編號Α0101 第6頁/共27頁 η [0014] 201100457 發劑,曱基丙烯酸甲酯以及有機稀釋劑。在所述奈米壓 印抗蝕劑中,所述高支化低聚物的質量百分比含量為 50%〜60%,全氟基聚乙醚的質量百分比含量為3%~5%,甲 基丙烯酸曱酯的質量百分比含量為5%~ 10%,所述有機稀 釋劑的質量百分比含量為25%~35%,所述自由基引發劑的 質量百分比含量為0. 1%〜2%。 [0015] 所述全氟基聚乙醚的化學結構式為: 剛 HaC Q 〇201100457 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a resist and a nanoimprint method using the same, and more particularly to a nanoimprint resist and using the same A nanoimprint method for embossing resists. [Prior Art] [In the prior art] In the prior art, when manufacturing various semiconductor devices, it is often required to produce a nano pattern having a fine structure of several tens of nanometers to several hundreds of nanometers. A nano-pattern having the above-described fine structure is mainly produced by photolithography or electron beam lithography: first, using a mask or scanning focused radiation or electron beam 'radiation photo-resistance composition or mask The radiation or electron beam described above will change the chemical structure of the resist in the exposed region; then, the exposed region or the resist outside the exposed region is removed by etching to obtain a specific pattern. [0003] In order to adapt to the rapid development of integrated circuit technology, while the first optical lithography strives to break through the resolution limit, the next generation lithography technology has gained a lot of research in recent years. Previous novel lithography systems, including reflective optical systems and refractive optical systems, have been used to reduce the intense light absorption in refractive systems by using extreme ultraviolet lithography using a source of wavelengths from 13 to 14 nm and a highly accurate reflective optical system. However, the entire lithography system is very expensive and limits the application of this technology. [0004] Since the 1990s, a new nano-patterning process has been developed (see Chou SY, Krauss PR, Renst_ P. Imprint of sub 25 nm vias and trenches in polymers. Appl. Phys. Lett ., 1995, 67(21). 098120562 Form No. A〇l〇i Page 3 of 27 Page 0992035022-0 201100457 3114-3116). The above-mentioned new technology for making nanographs is known in the art as nanoimprint or nanoimprint lithography. Nano-embossing refers to the use of a template with a nano-pattern to imprint a resist film on a substrate, and then process the nano-pattern on the substrate, such as etching, stripping, etc. A pattern and a semiconductor device having a nanostructure are fabricated. A method of forming a nano pattern by a nanoimprint technique by forming a nano pattern by using a hard template imprint resist layer having a nano pattern without relying on any exposure formation. Therefore, nanoimprint technology can eliminate the secret conditions necessary in conventional photolithographic methods, such as the limitation of the wavelength of light, and the reverse political and optical interference of particles in the resist and substrate. Therefore, compared with lithography, nanoimprint technology has the advantages of low production cost, simplicity, and efficiency, and has broad application prospects. [0005] The first-hand Nexe imprinting technology mainly includes hot nanoimprint (HEm), ultraviolet nanoimprint (UV-NIL) and the like. The thermal embossing system uses a rigid template painted with a nano pattern to imprint the anti-caries film on the heated substrate to a nano-scale pattern, and then cure the anti-surname agent by cooling to imprint After the nai (four) case can be saved, and finally, the use of conventional engraving, stripping and other methods of reinforcement to achieve the Nai (four) case to the base of the transfer. The template is usually made of inert materials such as high hardness, high thermal conductivity, low thermal expansion coefficient and strong anti-corrosion properties, such as _, dioxotomy and carbonized H-cut. The substrate is a common (four) piece of 'diazepine slab, or a stone slab of money with a metal base film. The process of hot nanoimprinting is complicated and the conditions are strict. _6] UV Nylon printing system to produce the rigid template of the Nai (4) case, the base 098120562 Form No. A0101 Page 4 / 27 pages 0982035022- 201100457 On-chip liquid resist thin embossed nano-scale pattern Then, the resist monomer polymer is cured by ultraviolet light irradiation, the nano-scale pattern is preserved, and finally, the nano pattern is transferred from the template to the substrate by a conventional etching, peeling, or the like. Compared with the thermal nanoimprint, the UV nanoimprint resist has good fluidity at normal temperature, and it is not necessary to obtain a nano-scale pattern under high temperature and high temperature conditions, and the method cost Lower. In the prior art, the ultraviolet nanoimprint resists mainly include a ruthenium rubber series 'epoxy series' acryl vinegar series and a polystyrene series. G [0007] 〇 [0008] [0009] [0010] 098120562 However, the prior art UV nanoimprint resist has low mechanical stability, strong adhesion to the template, and slow curing speed. In order to improve the resolution of the nano-pattern, it is often necessary to demolish the template by demolding, obtaining the nano pattern (4), and having a lower resolution of 1 and using the previous nanoimprint resist UV-imprinting method. Pretreatment, such as treatment of the template with acid. The pretreatment process of such a template is complicated, which increases the process complexity and cost of the UV nanoimprint. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a nanoimprint method in which a curing speed is fast, a mechanical stability is good, and a nano-pressure anti-reagent is used. - Nanoimprinting resistance _'The nanoimprinting resistance _ includes the following components. : Highly branched oligomers, perfluoropolyethyl _, f-based acrylic acid methyl vinegar, free radical initiators and organic Thinner. A method of printing, comprising the steps of: providing a substrate, forming a surface of the substrate, providing a form number, deleting a sheet, deleting a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet, a sheet 201100457 A template having a π-meter pattern is engraved, and a nano-pattern of the surface of the template is copied to the embossed anti-# layer, and a nanometer including a plurality of convex portions and a plurality of grooves is formed in the embossing resistance (10) And a method of transferring a nano pattern on the imprinted resist layer to a substrate to form a nano pattern on the surface of the substrate [0011] [0013] 098120562 - a nanoimprinting method, The method includes the steps of: providing a substrate, sequentially forming a first sacrificial layer and a second sacrificial layer on a surface of the substrate; providing a template having a surface with a nano-pattern, and forming the nano-pressure on a surface of the template having a nano-pattern Printing a resist; covering the substrate with a substrate such that the ground sacrificial layer of the substrate is in contact with the surface of the template formed with a nanoimprinting anti-surname; extruding the template and the substrate; and UV curing the naphthalene Rice embossed resist; demolded 'on the substrate Forming a nanopattern consisting of a nanoimprint resist; and transferring the nanograph to a substrate by engraving to form a nanopattern on the substrate. Compared with the prior art, the nano-imprint resist and the nano-imprinting side ..... .:...... The method has the following advantages: First, the The embossed resist contains a highly branched oligomer which cures to form a crosslink, increases the modulus, and has a small deformation. Second, the nanoimprinting method can be completed at normal temperature, and the template does not need to be pretreated, so that the method is simple in process and low in cost. [Embodiment] Hereinafter, a nanoimprint resist provided by the present invention and a nanoimprint method using the nanoimprint resist will be described in detail with reference to the accompanying drawings. The present invention provides a nanoimprint resist comprising the following components: a highly branched oligomer, a perfluoropolyether, a free radical introduction form number Α0101, page 6 of 27 Page η [0014] 201100457 Hair spray, methyl methacrylate and organic diluent. In the nanoimprint resist, the high-branched oligomer has a mass percentage of 50% to 60%, and the perfluoropolyether has a mass percentage of 3% to 5%, and methacrylic acid. 1%〜2%。 The mass percentage of the content of the free radical initiator is 0. 1% ~ 2%. [0015] The chemical structure formula of the perfluoropolyether is: Just HaC Q 〇

O 0¾ 〇^导-泛-9-丛-o-H C^-^-C-0-C2-C2-^0 -CF^ h2c/ ο [0017] 其中,m:n = 0.6〜1 [0018] 其中,所述高支化低聚物由環氧丙烯酸功能團、乙二醇 功能團和卜羥基環已基苯基甲酮功能團改性的偏苯三酸 〇 酐功能團組成。具體地,所述高支化低聚物可以經由偏 苯三酸酐、乙二硫醇與環氧丙烯酸共聚而成,還可以經 由乙二醇與環氧丙烯酸開環共聚而成。本實施例中,所 述高支化低聚物為乙二醇與環氧丙烯酸開環共聚而成。 [0019] 所述自由基引發劑為光引發劑,該光引發劑的作用為使 得所述奈米壓印抗蝕劑中高支化低聚物、全氟基聚乙醚 以及曱基丙烯酸甲酯組分在紫外光照的條件下實現交聯 固化。本實施例中,該光引發劑可以係工藝名為1173, 184,ΤΡ0等的光引發劑。以184為例,其化學結構式為 ^8120562 表單編號A0101 第7頁/共27頁 0982035022-0 201100457O 03⁄4 〇 导 - 泛 - 9 - plex - oH C^ - ^ - C - 0 - C2 - C2 - ^ 0 - CF ^ h2c / ο [0017] where m: n = 0.6~1 [0018] The hyperbranched oligomer consists of a functional group of trimellitic acid anhydride modified by an epoxy acrylate functional group, an ethylene glycol functional group, and a hydroxycyclohexyl phenyl ketone functional group. Specifically, the hyperbranched oligomer may be copolymerized with trimellitic anhydride, ethanedithiol and epoxy acrylate, or may be formed by ring-opening copolymerization of ethylene glycol and epoxy acrylate. In the present embodiment, the hyperbranched oligomer is obtained by ring-opening copolymerization of ethylene glycol and epoxy acrylic acid. [0019] the radical initiator is a photoinitiator, and the photoinitiator functions to make the high-branched oligomer, the perfluoropolyether and the methyl methacrylate group in the nanoimprint resist Cross-linking curing is achieved under ultraviolet light conditions. In this embodiment, the photoinitiator may be a photoinitiator having a process name of 1173, 184, ΤΡ0 or the like. Taking 184 as an example, its chemical structure is ^8120562 Form No. A0101 Page 7 of 27 0982035022-0 201100457

[0020] [0021] [0022] 本發明提供的奈米壓印抗蝕劑中,全氟基聚乙醚含氧功 能團產生了較低的表面能’使得該奈米壓印抗蝕劑固化 以後粘附性小,在脫模過程中避免了奈米壓印抗蝕劑與 模板枯連,從而易於脫模,保證了圓形的完整性及解析 度。甲基丙烯酸甲酯進一步調節了該奈米壓印抗敍劑的 粘滞性和流動性,使得該奈米壓印抗蝕劑在固化以後的 形變較小,從而在脫模過程中避免了奈米壓印抗蝕劑與 模板枯連,使得模板能夠比較容易地從抗餘劑中分離, :. 從而提高所得奈米圖形的解析度。所述高支化低聚物固 化產生交聯,提南了奈米壓印抗餘劑的模量,且形變較 小0 本發明的奈米壓印抗蝕劑可以採用以下方法製備:將質 量百分比含量為50%〜60%的高支化低聚物,質量百分比含 量為3%〜5%的全氟基聚乙醚,質量百分比含量為 的甲基丙烯酸甲酯’質量百分比含量為25%~35%的有機稀 释劑,以及質量百分比含量〇. 1 %〜2%的自由基引發劑充分 共混,靜置1〜3小時後’獲得一液態的聚合物混合物,採 098120562 表單編號A0101 第8頁/共27頁 0982 201100457 [0023] 用規格為〇· 2μ~〇. 25μ的過濾器過濾上述液態的聚合物混 合物’去除該液態的聚合物混合物中的其它雜質,從而 製得本發明的奈米壓印抗姓劑。 另外’本發明提供的奈米壓印抗蝕劑也可以添加質量百 分含量為5%〜10%的附著力促進劑HD,HD為矽烷偶聯劑。 HD的分子式為H C=CCH c〇〇CH CH Si(〇CH )。 Z 〇 2 2 3 3 [0024] 本發明進一步提供一種奈米壓印的方法,請參閱圖1及圖 2 ’該奈米壓印的方法第一實施例包括以下步驟: 〇 [0025] 步驟―,提供一基底10,在所述基底1〇的一個表面形成 一第一犧牲層110,一第二傲牲層12〇以及一壓印抗蝕層 130。 . [0026] 步驟—具體包括以下步驟: [0027] 首先,提供一基底10,清洗該基底1〇,在所述基底10的 一個表面形成一第一犧牲,110。 [0028] Ο 所述基底10的材料可以為凌性:材料,如拋光玻璃、矽、 一氧化矽或ιτο玻璃,所述基底10的材料也可以為柔性材 料,如PS、ρμμα或ΡΕΤ。所述第一犧牲層11〇的材料為一 聚合物,該聚合物為聚甲基丙烯酸曱酯、環氧樹脂、不 飽和聚脂切嶋料熱固性樹脂在基底10的-個表 面形成一個聚合物材料層,加熱該聚合物材料層然後 得到第—犧牲層11〇。基底ίο的一個表面形成一個聚合 物材料層的方法可以為絲網印刷法或旋塗法等β [0029] 本實把例中,所述基底丨〇的材料為梦採用超淨間標準 Λ562 第9頁/共27頁 乐 a 只/丹 U 貝 0982035022-0 201100457 工藝清洗基底10後,於基底10的一個表面旋塗聚曱基丙 烯酸甲酯,旋塗轉速為5400轉/分鐘〜7000轉/分鐘,時 間為0. 5分鐘-1. 5分鐘,然後在140°0180°C烘烤3〜5分 鐘。從而在基底10的一個表面形成一第一犧牲層110。該 第一犧牲層110的厚度為100奈米~300奈米。 [0030] 其次,形成一第二犧牲層120覆蓋所述第一犧牲層110。 [0031] 所述第二犧牲層120的材料為金屬,該金屬為鉻或鋁,可 以通過電子束蒸發的方法、濺射法或化學氣相沈積法, 在所述第一犧牲層110上形成所述第二犧牲層120。 [0032] 本實施例中,第二犧牲層120的材料為鋁,通過電子束蒸 發法在所述第一犧牲層110上形成一厚度為30奈米〜50奈 米的鋁薄膜,所述電子束蒸發的速率為0. 5埃/分鐘〜1. 5 埃/分鐘。 [0033] 最後,形成一壓印抗蝕層130覆蓋所述第二犧牲層120。 [0034] 所述壓印抗蝕層130為本發明提供的奈米壓印抗蝕劑,該 奈米壓印抗蝕劑包括高支化低聚物,全氟基聚乙醚,甲 基丙烯酸甲酯、自由基引發劑以及有機稀釋劑。該壓印 抗蝕層130可以通過絲網印刷法、旋塗法等方法形成。具 體地,將上述奈米壓印抗蝕劑採用旋塗的方式塗布於所 述第二犧牲層120,旋塗轉速為5400轉/分鐘〜7000轉/分 鐘,旋塗時間為0. 5分鐘〜2分鐘,然後,在100°C〜120°C 下烘烤2分鐘〜4分鐘,從而獲得一壓印抗蝕層130。該壓 印抗钱層130的厚度為100奈米~300奈米。 [0035] 可以理解,上述方法中,在基底10的表面形成一個第一 098120562 表單編號A0101 第10頁/共27頁 098' 201100457 犧牲層110,以及在所述第一犧牲層110上形成一第二犧 牲層120的步驟為可選步驟’也可以直接在基底1〇的一個 表面形成一壓印抗餘層130。 [0036] 步驟二’提供一個表面具有奈米圖形的模板2〇,並將該 模板20表面的奈米圖形複製到所述廢印抗钮層13〇。 [0037] 步驟二具體包括以下步驟: [0038] 首先’提供一表面具有奈米圖形的模板20。 ^ [0039] Ο 該模板20的材料為硬性透明材料,如二氧化梦、石英、 硼化玻璃等》該模板20的材料也可為柔性透明材料,如 PET、PMMA、PS等。該模板20可以通過電子束曝光製備 ,模板20的表面形成包括多個第一凸部24和多個第一凹 槽26的奈米圖形◊本實施例中,該模板2〇的材料為二氧 化石夕。 [0040] 其次,將模板20形成有奈米圖形的表面與所述基底表面 的壓印抗蝕層130貼合,擠壓所述模板2〇與基底1〇。 Ο [0041] 可以通過模板2〇向基底1〇施加壓力,,,使得所述模板2〇上 的奈米圖形轉移到壓印抗蝕層13〇。本實施例中,通過壓 印機實現該方法。具體地’將模板2〇與所述基底1〇分別 安裝到料機的兩織㈣,韻板2Q形成有奈求圖形 的表面與所述基底10表面的壓印抗飯層13〇貼合設置壓 印機的真空度為5·0χ10-3百帕⑽ar),該壓印抗姓層 130的奈米騎抗糊具有較好的流動性;施加壓力為12 方/平方央寸(Psi)~15碎/平方英寸(Psi),保持 1〇刀鐘,把模板20的第一凸部24壓到基底1〇上的壓印 表單編號A0101 % 11 Ά/^ Li ^ 0982035022-0 201100457 抗#層1 3 0中,使壓印抗餘層1 3 0的奈米壓印抗钱劑充滿 模板20的奈米圖形中的第一凹槽26。 [0042] [0043] 再次,採用紫外光固化所述壓印抗蝕層130的奈米壓印抗 蝕劑,在所述壓印抗蝕層130形成奈米圖形。 通過紫外光固化所述壓印抗蝕層1 30的奈米壓印抗蝕劑, 脫模,從而獲得固化的奈米圖形。將模板20與基底10分 離,從而該模板20表面的奈米圖形複製到所述壓印抗蝕 層130。所述壓印抗蝕層130形成的奈米圖形包括多個第 二凹槽16和第二凸部14。且該第二凹槽16與所述第一凸 部24對應,所述第二凸部14與所述第一凹槽26對應。 [0044] 由於本實施例中模板20為透明模板,可通過紫外光照射 該模板20的方式使得紫外光透過該透明模板照射到所述 奈米壓印抗蝕劑上。所述奈米壓印抗蝕劑中的自由基引 發劑為光引發劑,該光引發劑的作用為使得所述奈米壓 印抗蝕劑中高支化低聚物、全氟基聚乙醚以及甲基丙烯 酸曱酯組分在紫外光照的條件下實現交聯,從而固化該 奈米壓印抗蝕劑中的各組分,當該奈米壓印抗蝕劑完全 固化後,直接將所述模板20脫模,從而可以得到一奈米 圖形。本實施例中,所述紫外光的能流密度為10〜20毫焦 /立方厘米(mJ/cm3),照射時間為10〜30min。 [0045] [0046] [0047] 步驟三,將所述壓印抗蝕層130的奈米圖形轉移至基底10 ,在所述基底10表面形成奈米圖形。 步驟三具體包括以下步驟: .2-0 首先,去除所述壓印抗蝕層130的奈米圖形的第二凹槽16 098120562 表單編號A0101 第12頁/共27頁 09' 201100457 底部殘留的奈米壓印抗蝕劑,露出第二凹槽16底部的第 二犧牲層120。 [0048] [0049] 1 ο [0050] G [0051] [0052] 所述第一凹槽16底部殘留的奈米壓印抗餘劑可以通過電 漿刻飯的方法去除。 本實施例中,可以採用氧電漿去除第二凹槽16底部殘留 的奈米壓印抗蝕劑。具體地,將上述形成有奈米圖形的 基底10放置于微波電漿系統中,該微波電漿系統的一感 應功率源產生氧電漿,氧電漿以較低的離子能量從產生 區域擴散並漂移至所述基底1〇的第二凹槽16,此時第二 凹槽16底部殘留的奈米壓印抗蝕劑被刻蝕。氧電漿系統 的功率係40瓦〜60瓦,氧電漿的通入速率為4〇標況毫升每 分(standard-state cubic centimeter per minute,seem),形成的氣壓為2帕,採用氧電漿刻蝕時 間為5秒〜15秒。通過上述方法,第二凹槽16底部殘留的 奈米壓印抗蝕劑被去除,露出第二犧牲層丨2〇。 其次,刻蝕第二凹槽16底部的第二犧牲層丨20,露出第一 犧牲層110 〇 ' 第二犧牲層120可以採用幹法刻蝕或濕法刻蝕。 幹法刻蝕的具體步驟為:將上述第二凹槽丨6底部露出第 一犧牲層120的基底10放置在一感應耦合電漿系統中,所 述第二凹槽16底部的第二犧牲層〗20由於沒有奈米壓印抗 蝕劑的覆蓋,以氧氣和氣氣為刻蝕氣體去除第二凹槽16 底部的第二犧牲層12〇,從而露出第一犧牲層11〇。本實 施例中,電漿系統的功率係5〇瓦,氯氣的通入速率為 098120562 表單編號Α0Ι01 第13頁/共27頁 0982035022-0 201100457 [0053] [0054] [0055] [0056] [0057] 24sccm,氧氣的通入速率為24sccm,形成氣壓為2帕 〜10帕,採用氧氣和氣氣電漿刻蝕時間為40秒〜55秒。 濕法刻蝕的具體步驟為:取適量的濃度為〇· 〇6摩爾/升 〜0.25摩爾/升的鉻腐蝕液K3[Fe(CN、],將基底1〇放入 該鉻腐蝕液當中,浸潰4分鐘〜15分鐘。所述第二凹槽16 底部的第二犧牲層120由於沒有奈米壓印抗蝕劑的覆蓋, 在該鉻腐蝕液的浸潰下,第二凹槽16底部的第二犧牲層 120被去除,從而露出第一犧牲層11()。 本實施例中,當所述第二犧鶴層12()材料為鋁時,採用幹 法刻蝕;當所述第二犧牲層120材料為鉻時,採用幹法刻 姓或濕法刻钱。 再次,去除第二凹槽16底部的第一犧牲層11〇,露出基底 10。 ' 可以採用氧電漿去除第二凹槽16底部的第一犧牲層11{), 從而露出基底10。產生氧電漿的系統的功率係40瓦〜60瓦 ,氧電漿的通入速率為40sccm,形成的氣壓為2帕〜1〇帕 ,採用氧電漿刻蝕時間為3〇秒〜50秒。通過上述方法,第 —凹槽16底部的第一犧牲層11〇被去除,露出基底丨〇。 最後,刻蝕第二凹槽16底部的基底1〇,並用有機溶劑去 除殘留的有機材料,從而獲得一具有奈米圖形的基底1〇{) [0058] 098120562 具體地,將上述基底10放置在一感應耦合電漿系統中, 此時第二凹槽16底部的基底10沒有第一犧牲層11〇的保護 :以四氣化矽和氣氣為刻蝕氣體對基底第二凹槽16進行 表單編號A0101 第14頁/共27頁 0982035022-0 201100457 [0059] ❹ [0060] [0061] Ο [0062] 刻餘’第二凹槽16底部的部分基底將被去除;用丙酮洗 去殘留的有機殘留物,該第一犧牲層110為有機物,從而 被洗掉’覆蓋於第一犧牲層110上的第二犧牲層120也被 除去’從而獲得具有奈米圖形的基底1〇〇。本實施例中, 電榮·系統的功率係50瓦,氣氣的通入速率為20sccm 6〇sccro,四氣化梦的通入速率為2〇sccm〜60sccm,形 成氣壓為4帕〜15帕,刻蝕第二凹槽16底部的基底10。 可以理解,在本實施例的奈米壓印方法中,可以不形成 所述第一犧牲層110以及第二镦牲層120。直接在所述基 底10的表面形成一壓印抗蝕層130,來實施本實施中所述 奈米壓印方法。這時,直接採用等離子刻蝕的方法,刻 姓該壓印抗蝕層1 30的奈米囷形中的溝槽底部的部分基底 ’也可以得到一具有奈米圖形的基底! 〇 〇。 請參閲圖3及圖4,本發明的奈米壓印的方法的第二實施 例包括以下步驟: 1 ,| 步驟一 ’提供一基底30,在該基底30的表面依次形成第 一犧牲層310以及第二犧牲層32〇。 本實施例中’基底30的材料與第一實施中的基底10的材 料完全相同’第一犧牲層31〇及第二犧牲層32〇的製作方 法、結構、材料以及位置關係分別與第一實施例中的第 一犧牲層110及第二犧牲層120的製作方法、結構、材料 以及位置關係完全相同。 步驟二,提供一表面具有奈米圖形的模板6〇,在該模板 60具有奈米圖形的表面形成所述奈米壓印抗蝕劑330 » 098120562 表單編號A0101 第15頁/共27頁 0982035022-0 [0063] 201100457 [0064] 本實施例中,所述具有奈米圖形的模板6〇與第一實施例 中的模板20完全相同’該模板60的奈米圖形由多個第一 凹槽66以及第一凸部64構成。所述採用的奈米壓印抗蝕 劑3 3 0同第一實施例中的壓印抗蚀劑層1 3 〇完全相同。具 體地,可以取一定量的奈米壓印抗蝕劑33〇,緩慢滴在所 述模板60形成有奈米圖形的表面,於密閉的環境下靜置 1~2個小時。 [0065] 步驟三,將基底30覆蓋於模板60,使所述基底3〇的第二 犧牲層320與所述模板60覆蓋有奈米壓印抗蝕劑33〇的表 面接觸’擠壓所述模板60及基底30,通過紫外光固化所 述奈米壓印抗蝕劑330,然後脫模。 [0066] 具體地,將基底30覆蓋於模板60,使所述基底3〇的第二 犧牲層320與所述模板60覆蓋有奈米壓印抗蝕劑330的表 面接觸,放置于壓印機中;設置該壓印機的真空度為5. 〇 xl0_3mbar,使奈米壓印抗蝕劑330具有較好的流動性; 施加壓力為12Psi~15Psi,保持5〜10分鐘,使奈米壓印 抗蝕劑3 3 0充滿模板Ιί的奈米圖形中的第一凹槽66並粘附 到基底30的第二犧牲層320表面;通過紫外光固化所述奈 米抗蝕劑330,然後脫模,從而獲得固化的奈米圖形。將 模板60與基底30分離,從而在基體30的第二犧牲層320 上形成一由奈米壓印抗蝕劑330構成的奈米圖形。該由奈 米壓印抗蝕劑330構成的奈米圖形包括多個第二凹槽36以 及第二凸部34。 所述紫外光固化所述奈米壓印抗蝕劑330的方法中,由於 本實施例中模板60為透明模板,因此可以通過紫外光照 098120562 表單編號A0101 第16頁/共27頁 0982035022-0 [0067] 201100457 [0068] Ο _] [0070] [0071] [0072] ❹ [0073] [0074] 射該模板60的方式’使得紫外光透過該透明模板照射到 所述奈米壓印抗蝕劑330上’該奈米壓印抗蝕劑330中的 各組分將會發生交聯反應,從而固化,當該奈米壓印抗 蝕劑330完全固化後,直接將所述模板60脫模,從而可以 得到一奈米圖形。本實施例中,所述紫外光的能流密度 為 10~20mJ/cm3,照射時間為 10~30min。 步驟四’通過刻蝕的方法,將所述奈米圖形轉移至基底 30 ’在所述基底30表面形成奈米圖形。 首先’去除奈米壓印抗蝕劑330構成的奈米圖形凹槽36底 部殘留的奈米壓印抗蝕劑33p,露出凹槽36底部的第二犧 牲層 320。 , / ' 其次,刻蝕凹槽36底部的第二犧牲層320,露出第一犧牲 層 310 〇 再次’去除凹槽36底部的第一犧牲層31〇,露出基底3〇。 最後’刻蚀凹槽36底部的基底3〇,並用有機溶劑去除殘 留的有機材料’從而獲得一具有奈米圖形的基底3〇〇。 本實施例中’將所述奈米圖形轉移至基底3〇,在所述基 底30表面刻姓出奈米圖形的方法與第一實施中的方法相 同。 與先前技術相比較,所述奈米壓印抗蝕劑及奈米壓印方 法具有以下優點:其―,該奈米壓印抗_包含高支化 低聚物’固化產生交聯’提高了模量,且形變較小。其 二,由於該奈錄印抗㈣加人了全氟基聚乙_參與光 098120562 表單編號Αοιοι 第17 共27頁 0982035022-0 201100457 固化父聯,全氟基聚乙醚為低表面能材料,使得該奈米 壓P抗钮劑固化以後枯附性小在脫模過程中避免了奈 来壓印抗_與模板崎,從而易於脫模,保證了圖形 的完整性及解析度。其三,曱基丙稀酸甲醋及有機稀釋 劑進一步調節了該奈米壓印抗姓劑的枯滯性及流動性, 使侍該奈米壓印抗蝕劑充分填充到模板的奈米圖形中, 減少了圖形缺陷的產生,保證了奈米壓印的圖形的解析 度和保真性。其四,本發明實施例提供的奈米壓印方法 ,其在常溫下就可以完成,且模板無須預先處理,使得 該方法工藝簡單,成本較低。 [0075] 綜上所述,本發明確已符合發明專利之:要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案[0022] In the nanoimprint resist provided by the present invention, the perfluoropolyether oxygen-containing functional group generates a lower surface energy', so that the nanoimprint resist is cured. The adhesiveness is small, and the nanoimprint resist is prevented from being detached from the template during the demolding process, so that the mold is easily released, and the integrity and resolution of the circle are ensured. Methyl methacrylate further adjusts the viscosity and fluidity of the nanoimprinting anti-synthesis agent, so that the deformation of the nanoimprint resist after curing is small, thereby avoiding the nevation during the demolding process. The embossed resist is spliced with the template, so that the template can be easily separated from the anti-surplus agent: thereby improving the resolution of the resulting nano-pattern. The high-branched oligomer solidifies to produce cross-linking, and the modulus of the nano-imprinting anti-surplus agent is increased, and the deformation is small. 0 The nanoimprint resist of the present invention can be prepared by the following method: A highly branched oligomer having a percentage content of 50% to 60%, a perfluoropolyether having a mass percentage of 3% to 5%, and a methyl methacrylate content of a mass percentage of 25% by mass%~ 35% of the organic diluent, and the mass percentage content 〇. 1%~2% of the free radical initiator is fully blended, after standing for 1~3 hours, 'get a liquid polymer mixture, pick 098120562 Form No. A0101 No. 8 Page / Total 27 pages 0982 201100457 [0023] The above liquid polymer mixture is filtered by a filter having a specification of 〇·2μ~〇. 25μ to remove other impurities in the liquid polymer mixture, thereby producing the naphthalene of the present invention. Rice embossed anti-surname agent. Further, the nanoimprint resist provided by the present invention may be added with an adhesion promoter HD having a mass percentage of 5% to 10%, and HD is a decane coupling agent. The molecular formula of HD is H C=CCH c〇〇CH CH Si(〇CH ). Z 〇 2 2 3 3 [0024] The present invention further provides a method of nanoimprinting, please refer to FIG. 1 and FIG. 2 'The first embodiment of the nanoimprinting method comprises the following steps: 〇[0025] Step ― A substrate 10 is provided, and a first sacrificial layer 110, a second sacrificial layer 12A and an embossed resist layer 130 are formed on one surface of the substrate. [0026] Steps - specifically include the following steps: [0027] First, a substrate 10 is provided to clean the substrate 1 to form a first sacrificial 110 on one surface of the substrate 10. [0028] The material of the substrate 10 may be linear: a material such as polished glass, tantalum, niobium monoxide or ιτο glass, and the material of the substrate 10 may also be a flexible material such as PS, ρμμα or ΡΕΤ. The material of the first sacrificial layer 11 is a polymer which is a polymethyl methacrylate, an epoxy resin, an unsaturated polyester cut-off thermosetting resin to form a polymer on one surface of the substrate 10. The material layer is heated to obtain a first sacrificial layer 11〇. The method of forming a layer of a polymer material on one surface of the substrate ίο may be a screen printing method or a spin coating method, etc. [0029] In the present example, the material of the substrate raft is a dream using the ultra-clean standard Λ562 9 pages / total 27 pages Le a only / Dan U Bei 0982035022-0 201100457 After the process of cleaning the substrate 10, spin-coated polymethyl methacrylate on one surface of the substrate 10, spin coating speed of 5400 rev / min ~ 7000 rev / Minutes, time is 0. 5 minutes - 1. 5 minutes, then baked at 140 ° 0180 ° C for 3 to 5 minutes. Thereby, a first sacrificial layer 110 is formed on one surface of the substrate 10. The first sacrificial layer 110 has a thickness of 100 nm to 300 nm. [0030] Next, a second sacrificial layer 120 is formed to cover the first sacrificial layer 110. [0031] The material of the second sacrificial layer 120 is a metal, the metal is chromium or aluminum, and may be formed on the first sacrificial layer 110 by electron beam evaporation, sputtering or chemical vapor deposition. The second sacrificial layer 120. [0032] In this embodiment, the material of the second sacrificial layer 120 is aluminum, and an aluminum film having a thickness of 30 nm to 50 nm is formed on the first sacrificial layer 110 by electron beam evaporation. 5 埃/分钟。 The beam evaporation rate of 0. 5 Å / min ~ 1. 5 ang / min. [0033] Finally, an embossed resist layer 130 is formed to cover the second sacrificial layer 120. [0034] The embossed resist layer 130 is a nanoimprint resist provided by the invention, and the nanoimprint resist comprises a high-branched oligomer, a perfluoropolyether, a methacrylate Ester, free radical initiator and organic diluent. The embossed resist layer 130 can be formed by a method such as a screen printing method or a spin coating method. 5分钟〜 The spin-on time is 0. 5 minutes~ The spin-coating time is 0. 5 minutes~ After 2 minutes, it was baked at 100 ° C to 120 ° C for 2 minutes to 4 minutes to obtain an embossed resist layer 130. The thickness of the imprinted anti-money layer 130 is from 100 nm to 300 nm. [0035] It can be understood that, in the above method, a first 098120562 form number A0101, a 10th page, a 27th page 098'201100457 sacrificial layer 110 is formed on the surface of the substrate 10, and a first layer is formed on the first sacrificial layer 110. The step of the two sacrificial layers 120 is an optional step'. It is also possible to form an imprinted residual layer 130 directly on one surface of the substrate 1 . [0036] Step 2' provides a template 2 having a surface with a nano pattern, and copies a nano pattern on the surface of the template 20 to the scratch resistant button layer 13A. [0037] Step 2 specifically includes the following steps: [0038] First, a template 20 having a surface having a nanograph is provided. ^ [0039] 模板 The material of the template 20 is a rigid transparent material, such as dioxide dioxide, quartz, boride glass, etc. The material of the template 20 may also be a flexible transparent material such as PET, PMMA, PS, and the like. The template 20 can be prepared by electron beam exposure, and the surface of the template 20 forms a nano pattern including a plurality of first protrusions 24 and a plurality of first grooves 26. In the present embodiment, the material of the template 2 is dioxide. Shi Xi. [0040] Next, the surface of the template 20 formed with the nano pattern is bonded to the embossed resist layer 130 on the surface of the substrate, and the template 2 〇 and the substrate 1 挤压 are pressed. Ο [0041] Pressure can be applied to the substrate 1 through the template 2, so that the nano pattern on the template 2 is transferred to the imprinted resist 13A. In this embodiment, the method is implemented by a press. Specifically, the template 2〇 and the substrate 1〇 are respectively mounted to the two weaves (four) of the feeder, and the surface of the rhyme plate 2Q is formed with the surface of the substrate and the imprinted anti-rice layer 13 of the surface of the substrate 10 is disposed. The vacuum degree of the embossing machine is 5·0χ10-3 hectopascals (10) ar), and the nano-riding paste of the imprinted anti-surname layer 130 has good fluidity; the applied pressure is 12 square/square inch (Psi)~ 15 pieces per square inch (Psi), holding 1 boring clock, pressing the first convex portion 24 of the template 20 onto the substrate 1 embossed form number A0101 % 11 Ά / ^ Li ^ 0982035022-0 201100457 Anti-# layer In 1 30, the nanoimprint anti-money agent of the imprinted anti-residue layer 130 is filled with the first recess 26 in the nano pattern of the template 20. [0043] Again, the nanoimprint resist of the imprinted resist layer 130 is cured by ultraviolet light, and a nano pattern is formed on the imprinted resist layer 130. The nanoimprint resist of the imprint resist layer 130 is cured by ultraviolet light, and demolded, thereby obtaining a cured nano pattern. The template 20 is separated from the substrate 10 such that a nano pattern of the surface of the template 20 is copied to the imprinted resist layer 130. The nano pattern formed by the embossed resist layer 130 includes a plurality of second recesses 16 and second protrusions 14. And the second groove 16 corresponds to the first protrusion 24, and the second protrusion 14 corresponds to the first groove 26. [0044] Since the template 20 is a transparent template in this embodiment, the template 20 can be irradiated with ultraviolet light to cause ultraviolet light to be irradiated onto the nanoimprint resist through the transparent template. The free radical initiator in the nanoimprint resist is a photoinitiator, and the photoinitiator functions as a highly branched oligomer, a perfluoropolyether in the nanoimprint resist, and The methacrylate component is crosslinked under ultraviolet light to cure the components in the nanoimprint resist, and when the nanoimprint resist is completely cured, the The template 20 is demolded so that a nanometer pattern can be obtained. In this embodiment, the energy density of the ultraviolet light is 10 to 20 millijoules per cubic centimeter (mJ/cm 3 ), and the irradiation time is 10 to 30 minutes. [0047] Step 3, transferring the nano pattern of the embossed resist layer 130 to the substrate 10 to form a nano pattern on the surface of the substrate 10. Step 3 specifically includes the following steps: .2-0 First, the second groove of the nano pattern of the embossed resist layer 130 is removed. 098120562 Form No. A0101 Page 12/Total 27 Page 09' 201100457 The embossed resist is exposed to expose the second sacrificial layer 120 at the bottom of the second recess 16. [0049] [0050] [0052] [0052] The nanoimprinting anti-surplus remaining at the bottom of the first recess 16 can be removed by a plasma engraving method. In this embodiment, the nanoimprint resist remaining at the bottom of the second recess 16 may be removed by oxygen plasma. Specifically, the substrate 10 having the nanopattern formed thereon is placed in a microwave plasma system, an inductive power source of the microwave plasma system generates an oxygen plasma, and the oxygen plasma diffuses from the generation region with a lower ion energy. The second recess 16 is drifted to the substrate 1 while the nanoimprint resist remaining at the bottom of the second recess 16 is etched. The power of the oxygen plasma system is 40 watts to 60 watts, and the oxygen plasma is fed at a rate of 4 kPa per minute (standard-state cubic centimeter per minute, seem), and the gas pressure is 2 Pa. The slurry etching time is 5 seconds to 15 seconds. By the above method, the nanoimprint resist remaining at the bottom of the second recess 16 is removed to expose the second sacrificial layer 丨2〇. Next, the second sacrificial layer 20 at the bottom of the second recess 16 is etched to expose the first sacrificial layer 110. The second sacrificial layer 120 may be dry etched or wet etched. The specific step of the dry etching is to place the substrate 10 at the bottom of the second recess 丨6 exposed to the first sacrificial layer 120 in an inductively coupled plasma system, and the second sacrificial layer at the bottom of the second recess 16 The second sacrificial layer 12 is removed from the bottom of the second recess 16 by oxygen and gas as an etching gas, so that the first sacrificial layer 11 is exposed. In this embodiment, the power system of the plasma system is 5 watts, and the access rate of chlorine gas is 098120562. Form No. Α0Ι01 Page 13/27 pages 0992035022-0 201100457 [0053] [0055] [0056] [0057] 24sccm, oxygen gas inlet rate is 24sccm, forming a gas pressure of 2 Pa ~ 10 Pa, using oxygen and gas plasma etching time of 40 seconds ~ 55 seconds. The specific steps of the wet etching are: taking an appropriate amount of chromium etching solution K3 [Fe(CN,], which is 摩尔·〇6 mol/liter to 0.25 mol/liter, and placing the substrate 1〇 into the chromium etching solution, Immersion for 4 minutes to 15 minutes. The second sacrificial layer 120 at the bottom of the second recess 16 is covered by the nanoimprint resist, and under the impregnation of the chromium corrosive liquid, the bottom of the second recess 16 The second sacrificial layer 120 is removed to expose the first sacrificial layer 11 (). In this embodiment, when the second sacrificial layer 12 () material is aluminum, dry etching is used; When the material of the sacrificial layer 120 is chromium, the dry method is used to engrave the surname or the wet method. Again, the first sacrificial layer 11〇 at the bottom of the second recess 16 is removed to expose the substrate 10. 'Oxygen plasma can be used to remove the second The first sacrificial layer 11{) at the bottom of the recess 16 exposes the substrate 10. The system for generating oxygen plasma has a power of 40 watts to 60 watts, an oxygen plasma inlet rate of 40 sccm, a gas pressure of 2 Pa to 1 kPa, and an oxygen plasma etching time of 3 sec to 50 sec. . By the above method, the first sacrificial layer 11 of the bottom of the first groove 16 is removed to expose the substrate 丨〇. Finally, the substrate 1 底部 at the bottom of the second recess 16 is etched, and the residual organic material is removed with an organic solvent to obtain a substrate having a nano pattern. [0058] 098120562 Specifically, the substrate 10 is placed thereon. In an inductively coupled plasma system, the substrate 10 at the bottom of the second recess 16 is not protected by the first sacrificial layer 11〇: the second recess 16 of the substrate is numbered with four gasified helium and gas as an etching gas. A0101 Page 14 of 27 0982035022-0 201100457 [0059] 006 [0062] The portion of the substrate at the bottom of the second groove 16 will be removed; the residual organic residue is washed away with acetone The first sacrificial layer 110 is organic, so that the second sacrificial layer 120 overlying the first sacrificial layer 110 is also removed, thereby obtaining a substrate 1 having a nano pattern. In this embodiment, the power of the system is 50 watts, the gas gas inlet rate is 20 sccm 6 〇 sccro, and the access rate of the four gasification dreams is 2 〇sccm~60 sccm, and the gas pressure is 4 kPa to 15 kPa. The substrate 10 at the bottom of the second recess 16 is etched. It can be understood that in the nanoimprint method of the embodiment, the first sacrificial layer 110 and the second sacrificial layer 120 may not be formed. An imprint resist layer 130 is formed directly on the surface of the substrate 10 to carry out the nanoimprint method described in this embodiment. At this time, a plasma etching method is directly used, and a portion of the substrate at the bottom of the groove in the nano-shape of the embossed resist layer 130 can also be obtained as a substrate having a nano pattern! 〇 〇. Referring to FIG. 3 and FIG. 4, the second embodiment of the nanoimprinting method of the present invention comprises the following steps: 1 , | Step 1 'providing a substrate 30, and sequentially forming a first sacrificial layer on the surface of the substrate 30 310 and the second sacrificial layer 32〇. In the present embodiment, the material of the substrate 30 is completely the same as the material of the substrate 10 in the first embodiment. The manufacturing method, structure, material and positional relationship of the first sacrificial layer 31 and the second sacrificial layer 32 are respectively performed with the first implementation. The fabrication method, structure, material and positional relationship of the first sacrificial layer 110 and the second sacrificial layer 120 in the example are completely the same. Step two, providing a template 6〇 having a surface on the surface of the template 60, forming the nanoimprint resist 330 on the surface of the template 60 having a nano pattern. Form 308120562 Form No. A0101 Page 15 of 27 0982035022- [0064] In the present embodiment, the template 6〇 having a nano pattern is identical to the template 20 in the first embodiment. The nano pattern of the template 60 is composed of a plurality of first grooves 66. And the first convex portion 64 is configured. The nanoimprint resist 305 employed is identical to the imprint resist layer 13 〇 in the first embodiment. Specifically, a certain amount of the nanoimprint resist 33 can be taken, and slowly dropped on the surface of the template 60 on which the nano pattern is formed, and allowed to stand in a closed environment for 1 to 2 hours. [0065] Step 3, covering the substrate 30 with the template 60, so that the second sacrificial layer 320 of the substrate 3 is in contact with the surface of the template 60 covered with the nanoimprint resist 33A. The template 60 and the substrate 30 are cured by ultraviolet light to the nanoimprint resist 330, and then released. [0066] Specifically, the substrate 30 is covered on the template 60 such that the second sacrificial layer 320 of the substrate 3 is in contact with the surface of the template 60 covered with the nanoimprint resist 330, and placed on the stamping machine. The vacuum degree of the embossing machine is set to 5. 〇xl0_3 mbar, so that the nanoimprint resist 330 has good fluidity; the applied pressure is 12Psi~15Psi, and the embossing is carried out for 5 to 10 minutes. The resist 320 is filled with the first recess 66 in the nano pattern of the template 并 and adhered to the surface of the second sacrificial layer 320 of the substrate 30; the nano resist 330 is cured by ultraviolet light, and then demolded Thereby obtaining a cured nanograph. The template 60 is separated from the substrate 30 to form a nano pattern of nanoimprint resist 330 on the second sacrificial layer 320 of the substrate 30. The nanopattern composed of the nanoimprint resist 330 includes a plurality of second recesses 36 and second projections 34. In the method of ultraviolet curing the nanoimprint resist 330, since the template 60 is a transparent template in this embodiment, it can pass the ultraviolet light 098120562, form number A0101, page 16 / total 27 pages 0982035022-0 [ [0068] 00 _ _ _ _ _ _ 007 007 007 007 007 射 射 射 射 射 射 射 射 射 射 射 射 射 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板 模板At 330, the components in the nanoimprint resist 330 will undergo a crosslinking reaction to cure, and when the nanoimprint resist 330 is completely cured, the template 60 is directly released from the mold. Thereby a nano graphic can be obtained. In this embodiment, the energy density of the ultraviolet light is 10-20 mJ/cm3, and the irradiation time is 10-30 min. Step 4 'transfers the nano pattern to the substrate 30' to form a nano pattern on the surface of the substrate 30. First, the nanoimprint resist 33p remaining at the bottom of the nano pattern recess 36 formed by the nanoimprint resist 330 is removed to expose the second sacrificial layer 320 at the bottom of the recess 36. Next, the second sacrificial layer 320 at the bottom of the recess 36 is etched to expose the first sacrificial layer 310 再次 again to remove the first sacrificial layer 31 底部 at the bottom of the recess 36, exposing the substrate 3 〇. Finally, the substrate 3 at the bottom of the recess 36 is etched, and the residual organic material is removed with an organic solvent to obtain a substrate 3 having a nano pattern. In the present embodiment, the method of transferring the nano pattern to the substrate 3 is the same as the method of the first embodiment. Compared with the prior art, the nanoimprint resist and the nanoimprint method have the following advantages: - the nanoimprinting anti-containing high-branched oligomer 'curing to produce cross-linking' is improved Modulus, and the deformation is small. Second, due to the Nai-Nan Yin anti-(four) added a perfluoro-based poly-B-involved light 098120562 Form No. Αοιοι 17th 27 pages 0992035022-0 201100457 Curing the parent, the perfluoropolyether is a low surface energy material, making The nano-pressure P anti-buckling agent has little dryness after curing, and avoids the imprinting resistance _ and the stencil in the demolding process, thereby facilitating demolding and ensuring the integrity and resolution of the pattern. Third, mercaptopropyl methacrylate and organic diluent further adjust the stagnation and fluidity of the nanoimprinting anti-surname agent, so that the nanoimprint resist can be fully filled into the template of the nanometer. In the graphics, the generation of graphic defects is reduced, and the resolution and fidelity of the nanoimprinted graphics are guaranteed. Fourthly, the nano imprinting method provided by the embodiment of the invention can be completed at normal temperature, and the template does not need to be pre-treated, so that the method is simple in process and low in cost. [0075] In summary, the present invention has indeed met the invention patent: the requirements, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Familiar with the case

技藝之人士板依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内D 【圖式簡單說明】 [0076] 圖1係本發明提供的奈·米壓.印方法第一實施例的流程圖。 [0077] 圖2係本發明提供的奈米壓印方法第一實施例的工藝流程 示意圖。 [0078] 圖3係本發明提供的奈米壓印方法第二實施例的流程圖。 [0079] 圖4係本發明提供的奈米壓印方法第二實施例的工藝流程 示意圖。 [0080] 098120562 【主要元件符號說明】基底 10, 30 表單編號A0101 第18頁/共27頁 0982035022-0 第一犧牲層 110,310 第二犧牲層 120, 320 麼印抗蚀劑層 130 模板 20, 60 第一凸部 24, 64 第一凹槽 26, 66 第二凸部 14, 34 第二凹槽 16, 36 奈米壓印抗#劑 330 具有奈米圖形的基底 100,300 201100457 098120562 表單編號A0101Equivalent modifications or variations of the skilled person in accordance with the spirit of the present invention should be included in the scope of the following patent application. D [Simplified description of the drawings] [0076] FIG. 1 is a nanometer pressure printing method provided by the present invention. Flowchart of the first embodiment. 2 is a schematic view showing the process flow of the first embodiment of the nanoimprinting method provided by the present invention. 3 is a flow chart of a second embodiment of a nanoimprinting method provided by the present invention. 4 is a schematic view showing a process flow of a second embodiment of the nanoimprinting method provided by the present invention. 098120562 [Description of Main Component Symbols] Substrate 10, 30 Form No. A0101 Page 18/Total 27 Page 0992035022-0 First Sacrificial Layer 110, 310 Second Sacrificial Layer 120, 320 Printed Resist Layer 130 Template 20, 60 First convex portion 24, 64 first concave groove 26, 66 second convex portion 14, 34 second groove 16, 36 nano embossing anti-agent 330 substrate having nano pattern 100, 300 201100457 098120562 Form No. A0101

第19頁/共27頁 0982035022-0Page 19 of 27 0982035022-0

Claims (1)

201100457 七、申請專利範圍: 1 . 一種奈米壓印抗餘劑,其改良在於:該奈米壓印抗餘劑包 括以下組分:高支化低聚物、全氟基聚乙醚、甲基丙烯酸 曱酯、自由基引發劑以及有機稀釋劑。 2 .如申請專利範圍第1項所述的奈米壓印抗姓劑,其中,所 述高支化低聚物為經由偏苯三酸酐、乙二醇以及環氧丙烯 酸共聚而成,或者經由乙二硫醇和環氧丙烯酸開環共聚而 成。 3 .如申請專利範圍第1項所述的奈米壓印抗姓劑,其中,所 述高支化低聚物由環氧丙烯酸功能團、乙二醇功能團和卜 羥基環已基苯基苯甲酮功能團改性的偏苯三酸酐功能團組 成。 4 .如申請專利範圍第1項所述的奈米壓印抗#劑,其中,所 述有機稀釋劑為二羥基乙基二甲基乙烯。 5 .如申請專利範圍第1項所述的奈米壓印抗蝕劑,其中,所 述自由基引發劑為光引發劑。 6 .如申請專利範圍第1項所述的奈米壓印抗蝕劑,其中,所 述高支化低聚物的質量百分比含量為50%〜60%,全氟基聚 乙醚的質量百分比含量為3%〜5%,甲基丙烯酸曱酯的質量 百分比含量為5%〜10%,所述有機稀釋劑的質量百分比含 量為25%〜35%,所述自由基引發劑的質量百分比含量為 0·1%~2%。 7 .如申請專利範圍第1項所述的奈米壓印抗#劑,其中,所 述奈米壓印抗餘劑進一步包括質量百分比含量為5%〜10% 的H2C=CCH3COOCH2CH2Si(OCH3)3 。 098120562 表單編號A0101 第20頁/共27頁 0982C 201100457 種採用如申凊專利範圍第丨至7項中的任一項所述的奈米 壓印抗餘劑的奈米壓印方法,其包括以下步驟: 提供一基底,採用所述奈米壓印抗蝕劑在所述基底的一個 表面形成一壓印抗蝕層; 提供一個表面具有奈米圖形的模板,並將該模板表面的奈 米圖开> 複製到所述壓印抗银層,在所述壓印抗餘層形成包 括多個凸部及多個凹槽的奈米圖形;以及 將所述壓印抗蝕層上的奈米圖形轉移至基底,在所述基底 表面形成奈米圖形。 Ο 〇 ίο 如申請專利範圍第8項聲述的奈米壓印的方法,其中,所 述提供一個表面具有奈米圖形的模板,將模板表面的奈米 圖形複製到所述壓印抗蝕層的方法具體包括以下步驟: 提供一表面具有奈米圖形的模板,所述模板的奈米圖形包 括多個凸部及多個凹槽;以及 將模板形成有奈米圖形的表面與所述基底表面的壓印抗姓 層貼合,擠壓所述模板及基底後s,採用紫外光固化所述壓 印抗蝕層的奈米壓印抗蝕劑,然後脫模。 .…淑 « 如申請專利範圍第9項所述的奈米壓印的方法,其中,所 述擠壓所述模板及基底後’採用紫外光固化所述墨印抗钱 層的奈米壓印抗蝕劑,然後脫模的方法包括以下步驟: 提供一壓印機,將模板形成有奈米圖形的表面與所述基底 表面的壓印抗蝕層貼合,將所述模板及基底放入壓印機中 ,設定壓印機的真空度為5. 〇xl〇_3mbr ; 施加壓力為12Psi~15Psi,保持5分鐘~1〇分鐘; 通過紫外光照射所述壓印抗蝕層的奈米壓印抗蝕劑; 將模板與基底分離’從而將該模板表面的奈米圖形複製到 098120562 表單編號A010I 第21頁/共27頁 0982035022-0 201100457 所述壓印抗蝕層。 11 .如申請專利範圍第8項所述的奈米壓印方法,其中,所述 提供一基底,採用所述奈米壓印抗餘劑在所述基底的一個 表面形成一壓印抗蝕層的方法具體包括以下步驟·· 在所述基底的一個表面形成一第一犧牲層; 形成一第二犧牲層覆蓋所述第一犧牲層;以及 形成一壓印抗蝕層覆蓋所述第二犧牲層。 12 .如申請專利範圍第11項所述的奈米壓印的方法,其中,所 述第一犧牲層的材料為聚甲基丙烯酸甲酯、環氧樹脂、不 Π 飽和聚脂或碎鍵樹脂。 13 .如申請專利範圍第11項所述的奈米壓印的方法,其中,所 述第二犧牲層的材料為鋁或者鉻。 14 .如申請專利範圍第11項所述的奈米壓印方法,其中,所述 將所述奈米圖形轉移至基底,在所述基底表面形成奈米圖 形的方法具體包括以下步驟: 刻蝕殘留在所述奈米抗蝕層的凹槽底部的奈米壓印抗蝕劑 ,露出凹槽底部的第二犧牲層; .^ ^ J 刻蝕凹槽底部的第二犧牲層,露出第一犧牲層; s 刻蝕凹槽底部的第一犧牲層,露出基底;以及 刻蝕凹槽底部的基底,並用有機溶劑去除殘留的有機材料 ,從而獲得一具有奈米圖形的基底。 15 .如申請專利範圍第8項所述的奈米壓印方法,其中,所述 模板為透明模板。 16 . —種採用如申請專利範圍第1至7項中任一項所述的奈米壓 印抗蝕劑的奈米壓印方法,其包括以下步驟: 提供一基底,在該基底的表面依次形成第一犧牲層以及第 098120562 表單編號A0101 第22頁/共27頁 0982035022-0 201100457 二犧牲層; 提供一表面具有奈米圖形的模板,在該模板具有奈米圖形 的表面形成所述奈米壓印抗蝕劑; 將基底覆蓋於模板,使所述基底的第二犧牲層與所述模板 形成有奈米壓印抗蝕劑的表面接觸; 擠壓所述模板及基底; 紫外固化所述奈米壓印抗蝕劑; 脫模在所述基底上形成由奈米壓印抗钮劑組成的奈米圖 形;以及 Ο 通過刻钱的方法,綠所述奈米圖形轉移至基底,在所述基 底形成奈米圖形<5 ^ r ^ . Η .如申請專利範圍第16項所述的奈米齡方法,其中,所述 在該模板具有奈米圖形的表面形成所述奈米壓印抗钱劑的 方法為:將所述奈米壓印抗姓劑滴在所述模板形成有奈米 圖形的表面,於密閉的環境下靜置卜2個小時。 ί* i , I 〇 098120562 表單編號Α0101 第23頁/共27頁 0982035022-0201100457 VII. Patent application scope: 1. A nano-imprinting anti-surplus agent, the improvement is as follows: the nano-imprinting anti-surplus agent comprises the following components: hyperbranched oligomer, perfluoropolyether, methyl An decyl acrylate, a free radical initiator, and an organic diluent. 2. The nanoimprinting anti-surname agent according to claim 1, wherein the hyperbranched oligomer is copolymerized via trimellitic anhydride, ethylene glycol, and epoxy acrylate, or via ethylene disulfide. The ring-opening copolymerization of alcohol and epoxy acrylic acid. 3. The nanoimprinting anti-surname agent according to claim 1, wherein the hyperbranched oligomer comprises an epoxy acrylate functional group, an ethylene glycol functional group, and a hydroxycyclohexyl phenyl group. The benzophenone functional group modified trimellitic anhydride functional group. 4. The nanoimprinting agent according to claim 1, wherein the organic diluent is dihydroxyethyldimethylethylene. 5. The nanoimprint resist according to claim 1, wherein the radical initiator is a photoinitiator. 6. The nanoimprint resist according to claim 1, wherein the high-branched oligomer has a mass percentage of 50% to 60%, and a perfluoropolyether content by mass%. 3% to 5%, the mass percentage content of decyl methacrylate is 5% to 10%, the mass percentage of the organic diluent is 25% to 35%, and the mass percentage of the radical initiator is 0·1%~2%. 7. The nanoimprinting anti-agent according to claim 1, wherein the nanoimprinting anti-surge further comprises H2C=CCH3COOCH2CH2Si(OCH3)3 in a mass percentage of 5% to 10%. . The embossing method of the nanoimprinting anti-surplus agent according to any one of the above-mentioned claims, which includes the following, which includes the following: Step: providing a substrate, forming an embossing resist layer on one surface of the substrate by using the nanoimprint resist; providing a template having a surface pattern on the surface, and providing a nanograph of the surface of the template Copying onto the imprinted anti-silver layer, forming a nano pattern comprising a plurality of protrusions and a plurality of grooves in the imprinted barrier layer; and implanting the nano on the imprinted resist layer The pattern is transferred to the substrate to form a nanopattern on the surface of the substrate. Ο 〇ίο The method of nanoimprinting as claimed in claim 8 of the patent application, wherein the method provides a template having a surface with a nano pattern, and a nano pattern of the surface of the template is copied to the imprinted resist layer The method specifically includes the following steps: providing a template having a surface having a nano pattern, the template of the template comprising a plurality of protrusions and a plurality of grooves; and a surface on which the template is formed with a nano pattern and the surface of the substrate The embossed anti-surname layer is laminated, and after pressing the template and the substrate, the nano-imprint resist of the imprinted resist layer is cured by ultraviolet light, and then demolded. The method of nanoimprinting according to claim 9, wherein the embossing of the template and the substrate is followed by ultraviolet curing of the ink imprinted nano-imprinted layer The method of resisting and then demolding comprises the steps of: providing an embossing machine, bonding a surface of the template formed with a nano pattern to an embossed resist layer on the surface of the substrate, and placing the template and the substrate In the embossing machine, the vacuum degree of the embossing machine is set to 5. 〇xl 〇 _3mbr; the applied pressure is 12Psi~15Psi, and is maintained for 5 minutes to 1 〇 minutes; the embossed resist layer of the nanometer is irradiated by ultraviolet light. Imprinting the resist; Separating the template from the substrate' thereby copying the nanopattern of the template surface to the embossed resist layer as described in Form No. A010I Page 21 of 27,0982035022-0 201100457. The nanoimprint method according to claim 8, wherein the substrate is provided with an imprint resist layer formed on one surface of the substrate by using the nanoimprint anti-surplus agent. The method specifically includes the following steps: forming a first sacrificial layer on one surface of the substrate; forming a second sacrificial layer to cover the first sacrificial layer; and forming an imprint resist layer covering the second sacrificial layer Floor. The method of nanoimprinting according to claim 11, wherein the material of the first sacrificial layer is polymethyl methacrylate, epoxy resin, non-saturated polyester or broken key resin. . The method of nanoimprinting according to claim 11, wherein the material of the second sacrificial layer is aluminum or chromium. The nanoimprint method according to claim 11, wherein the method of transferring the nano pattern to a substrate and forming a nano pattern on the surface of the substrate specifically comprises the following steps: etching a nano-imprint resist remaining at the bottom of the recess of the nano-resist layer to expose a second sacrificial layer at the bottom of the recess; . ^ ^ J etching the second sacrificial layer at the bottom of the recess to expose the first a sacrificial layer; s etching the first sacrificial layer at the bottom of the groove to expose the substrate; and etching the substrate at the bottom of the groove, and removing the residual organic material with an organic solvent to obtain a substrate having a nano pattern. The nanoimprint method of claim 8, wherein the template is a transparent template. A nanoimprinting method using the nanoimprint resist according to any one of claims 1 to 7, which comprises the steps of: providing a substrate on the surface of the substrate in sequence Forming a first sacrificial layer and 098120562 Form No. A0101 Page 22 / Total 27 pages 0992035022-0 201100457 Two sacrificial layers; providing a template having a surface with a nano-pattern, the surface of the template having the nano-pattern forming the nano Imprinting a resist; covering the substrate with a substrate such that a second sacrificial layer of the substrate is in contact with a surface of the template on which the nanoimprint resist is formed; extruding the template and the substrate; a nanoimprint resist; a mold release forming a nano pattern composed of a nanoimprinting resist agent on the substrate; and a green transfer of the nano pattern to the substrate by the method of engraving money The nano-formation method according to claim 16, wherein the surface of the template having a nano-pattern forms the nanoimprint resist The method of money is The nanoimprinting anti-surname agent was dropped on the surface of the template on which the nanopattern was formed, and allowed to stand in a closed environment for 2 hours. ί* i , I 〇 098120562 Form number Α 0101 Page 23 / Total 27 pages 0982035022-0
TW98120562A 2009-06-19 2009-06-19 Nano-imprint resist and nanoimprinting lithography method using the same TWI389931B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98120562A TWI389931B (en) 2009-06-19 2009-06-19 Nano-imprint resist and nanoimprinting lithography method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98120562A TWI389931B (en) 2009-06-19 2009-06-19 Nano-imprint resist and nanoimprinting lithography method using the same

Publications (2)

Publication Number Publication Date
TW201100457A true TW201100457A (en) 2011-01-01
TWI389931B TWI389931B (en) 2013-03-21

Family

ID=44836602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98120562A TWI389931B (en) 2009-06-19 2009-06-19 Nano-imprint resist and nanoimprinting lithography method using the same

Country Status (1)

Country Link
TW (1) TWI389931B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466820B (en) * 2011-12-13 2015-01-01 Lg Innotek Co Ltd Nanowire grid structure and method of manufacturing nanowire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390839A1 (en) * 2021-06-03 2022-12-08 Viavi Solutions Inc. Method of replicating a microstructure pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466820B (en) * 2011-12-13 2015-01-01 Lg Innotek Co Ltd Nanowire grid structure and method of manufacturing nanowire

Also Published As

Publication number Publication date
TWI389931B (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US8344065B2 (en) Nanoimprint resist, nanoimprint mold and nanoimprint lithography
McClelland et al. Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold
TWI506364B (en) Curable composition for imprints, patterning method and pattern
CN103279009B (en) Flexible ultraviolet light imprinting composite template and preparation method thereof
TWI550339B (en) Curable composition for imprints, producing method thereof, pattern forming method, and producing apparatus for curable composition for imprints
JP5739185B2 (en) Method for producing curable composition for imprint
JP2009292150A (en) Organic mold and its production method
TWI505030B (en) Producing methods of polymerizable monomer for imprints and curable composition for imprints
KR20110090897A (en) Composition for imprints, pattern and patterning method
TW200923583A (en) Curable composition for photonano-imprinting and member for liquid crystal display device by using it
TW200933296A (en) Composition for mold sheet and method for preparing mold sheet using same
TWI565718B (en) Method for storing composition for imprint
WO2011040635A1 (en) Curable composition for imprints, patterning method and pattern
JP2010280159A (en) High-durability replica mold for nano-imprint lithography, and method for manufacturing the same
TW201100263A (en) Nano-imprint stemplate and mthod for manufacturing the same
CN102279517A (en) Nano-imprinting method
TW201100457A (en) Nano-imprint resist and nanoimprinting lithography method using the same
CN101923283B (en) Nano-imprint resist and nano-imprint method adopting same
JP5831780B1 (en) Resin composition, dry etching resist mask and pattern forming method.
TWI391418B (en) Nano-imprint resist and nanoimprinting lithography method using the same
TWI386304B (en) Nano-imprint method
Mohamed et al. A Three‐Dimensional Ultraviolet Curable Nanoimprint Lithography (3D UV‐NIL)
TWI644184B (en) Method of manufacturing pattern forming body
CN115729034A (en) Nano-imprinting demolding method
Hashimoto et al. Release agent-free low-cost double transfer nanoimprint lithography for moth-eye structure