TW201044909A - Dispersion-type electroluminescence device - Google Patents

Dispersion-type electroluminescence device Download PDF

Info

Publication number
TW201044909A
TW201044909A TW99109784A TW99109784A TW201044909A TW 201044909 A TW201044909 A TW 201044909A TW 99109784 A TW99109784 A TW 99109784A TW 99109784 A TW99109784 A TW 99109784A TW 201044909 A TW201044909 A TW 201044909A
Authority
TW
Taiwan
Prior art keywords
layer
electroluminescent device
light
wavelength range
red
Prior art date
Application number
TW99109784A
Other languages
Chinese (zh)
Inventor
Masashi Shirata
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201044909A publication Critical patent/TW201044909A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

A dispersion-type electroluminescence device is provided, the dispersion-type electroluminescence device including; a light emitting layer containing ZnS phosphor particles, wherein the dispersion-type electroluminescence device has at least one emission peak in each of a short wavelength range of 450 to 514 nm, an intermediate wavelength range of 515 to 569 nm, and a long wavelength range of 570 to 650 nm, the intensities of the peaks descending in the order of the short wavelength range, the long wavelength range, and the intermediate wavelength range.

Description

201044909 六、發明說明: 【發明所屬之技術領域】 本發明係關於一分散型電致發光裝置(dispersion-type electroluminescence(EL) device),其展現了 高亮度以及優 ' 異的演色性。 【先前技術】 電致發光裝置的磷光體是電壓激發型的磷光體,已知 其可利用於分散型電致發光裝置,其中磷光粉體是被一對 〇 電極所夾住而形成一發光元件或是薄膜型的電致發光裝 置。分散型的電致發光裝置通常具有包含兩個電極的結 構,其中至少一個電極爲透明的,且於高介電常數的黏合 劑中磷光粉體之分散體被夾在兩電極之間。當在電極間施 以交流電場時即發射出光。使用磷光粉體的電致發光裝置 具有許多優點,例如面發光、厚度薄(數毫米或甚至更薄)、 減少熱生成量,以及良好的發光效率。因此,可被應用於 道路號誌、室內及室外燈具、平面顯示器(如液晶顯示器) 〇 的光源、大面積廣告的光源,以及類似之應用。 截至目前爲止,可發射白光的分散型電致發光裝置具 有至少兩個具高度發射強度的發射區域,藍-綠區域以及橘 -紅區域。舉例而言,白色發光電致發光裝置在其發光層中 含有玫瑰紅化合物已在許多專利中被揭露,包括日本特開 ' 平第60-25 1 95A號公報,特開平第60-1 70 1 94A號以及特開 平第2-78188A號專利公報。 日本特開第 2005-302693A號公報揭露了一種具有至 201044909 少兩個發射峰的分散型電致發光裝置’其一在波長45〇至 53 0 nm間,另一在605 nm或更長的波長。 日本特開第2000-230172A號公報說明了具有特定吸 收波長及特定發光波長的磷光體元件,其與藍色發光二極 ' 體結合而提供了具有三個波峰的白色發光。 美國專利US 6806642揭露了提供具有三個發射峰的白 色發光的電致發光燈。 更進一步地,如日本專利第A-2〇02-235080號公報以 〇 及第A-2004-265 8 66號公報所建議者,已知使用小顆粒磷 光體粒子可以增加發光亮度。在製造電致發光裝置時,使 用小顆粒磷光體粒子增加了磷光體粒子在發光層中單位體 . 積內的數目,因此亮度獲得改善。 於日本特開平第 60-25195A、60-170194A以及第 2-7 8 1 8 8A號等公報中所描述之電致發光裝置,皆係將—發 射出在約58〇nm光的材料,其與一發射藍綠光的摻雜銅、 氯的硫化鋅磷光體(以下以「ZnS:Cu,Cl」表示之)相結合。 〇 基於此理由’當一透明介質,例如透明正像藉由電致發光 裝置觀看時’顏色重現會明顯不如由傳統的表面光源(例如 蕾光燈管)觀察所得。舉例而言,在日本特開平第 . 6()_25 1 95Α、60·17〇194Α 及 2-7 8 1 8 8A 號等公報中,藉由使 用玫瑰紅明染料作爲紅色發光,使獲致的白光在透明介質 (例如透明正像)置於其上時,其無法重現紅色而爲橙色發 光。 如日本特開第2005_302693α號公報的電致發光裝 201044909 置,其發出之白光來自兩波長範圍中的發光’因而在綠色 範圍中顯示了不佳的顏色重現,因此在演色性上仍有改善 的空間。 曰本特開2000-230172A號公報以及美國專利US 6806642所揭露之技術,由於在發光強度上的不當缺點’ 導致無法提供充分的演色性。 日本特開 2002-235080A 號公報以及特開 2004-265866A號公報中所揭露之技術,其缺點在於小顆粒 〇 的磷光體粒子的發射波長是難以控制的。因此,無法以小 顆粒的磷光體粒子來獲得具有高度顏色重現及良好演色性 的白色發光的電致發光裝置。 . 【發明內容】 ^ 本發明的目的在於提供具有優異演色性的分散型電致 發光裝置。 根據廣泛的調查結果,本案發明人已發現包含硫化綷 磷光體的分散型電致發光裝置,其具有來自於平衡良好的 ^ 藍、綠、紅色發光而獲得的高度演色性,其係藉由將發射 光譜設計爲在強度上至少三個波長範圍中各具有至少一個 峰値,其隨特定順序遞減。本發明已根據此發現而完成。 (1)分散型電致發光裝置,其包含: 含有硫化鋅磷光體粒子的發光層, 其中分散型電致發光裝置在450至514 nm的短波長範 圍、515至569nm的中間波長範圍,以及570至650nm的 長波長範圍間各至少有一發射峰,峰値強度隨短波長範 201044909 塵i '長波長範圍以及中間波長範圍的順序而降低。 (2) 如第(1)項所述之分散型電致發光裝置, 、 其中隣光體粒子的平均粒徑爲1 μιη或更大而小於20 μ m ’且粒徑的變異係數爲3 %或更大而小於4 〇 %。 (3) 如第(1)項或第(2)項所述之分散型電致發光裝置, 其進一步包含: 紅色轉換材料。 (4) 如第(3)項所述之分散型電致發光裝置,其進一步包 〇 含: 一背面電極,其中紅色轉換材料出現於發光層與背面 電極之間的層。 - (5)如第(1)項或第(2)項所述之分散型電致發光裝置, 其進一步包含: 曹 紅色發光磷光體粒子。 (6) 如第(5)項所述之分散型電致發光裝置, 其中紅色發光磷光體粒子的平均粒徑爲Ιμιη或更大而 〇 小於20 μιη,且粒徑的變異係數爲3 %或更大而小於40%。 (7) 如第(1)項所述之分散型電致發光裝置,由阻氣性積 層薄膜加以密封, 其中阻氣性積層薄膜包含至少一無機層及至少一有基 層於基膜之表面上或其上方,有機層包含單體組成物的聚 合產物’該單體組成物至少含有一具有磷酸酯基的丙烯酸 酯。 201044909 【實施方式】 本發明將詳細說明如下° 本發明中之電致發光裝置被設計爲提供白色發光。白 光發射光譜至少具有三個峰値’其強度隨短波長範圍、長 ' 波長範圍以及中間波長範圍依序遞減。 較理想的白色光源在可見光範圍內的各個波長均具有 均勻的光強度,在此情形下,可獲得最高度的演色性。然 而,在分散型電致發光裝置,白光係以混合形式而產生, Ο 例如兩個大型發光波段,其一來自硫化鋅磷光體粒子的電 致發光(藍綠光),另一則是來自透過如日本特開 20 0 5- 3 0269 3 A號公報之例所述之已吸收部分電致發光的波 . 長轉換材料,而發射出的較長波長的光(橙光至紅光)。 因此,令人關切的是發光在藍色、綠色及紅色的波長的鄰 近區域是如何地分布,才會使人的眼睛最易於感知。換言 之,在大約波長 450 nm、530nm及610nm之間,發射光 譜平衡良好的程度大幅地影響了演色性。 Ο 本發明的設計是透過如日本特開第2005-302693A號 公報前段中所建議者,於藍綠光(4 5 0到5 3 0 nm )和橙紅 光(605 nm或更長)的發射峰中,加入一於波長515 nm 到569 nm的範圍內的額外峰値,而改善最易於感知的顏 色,即綠色的重現。發明人以至少在450至514 nm的短 波長範圍有一峰値,至少在515至569 nm的中間波長範 圍有一峰値,以及至少在570至650nm的長波長範圍有一 峰値爲基礎,成功地提供良好平衡的白光。 201044909 在短波長範圍的峰値較佳者爲自460至5 10nm的範圍 內,更佳者爲自470至505nm。在中間波長範圍的峰値較 佳者爲自520至565 nm的範圍內,更佳者爲自525至560 nm。在長波長範圍的峰値較佳者爲自5 7 5至63 0 nm的範 圍內,更佳者爲自580至610nm。具有峰値在這些波長範 圍內的白光可展現良好的演色性。此處所指之「發射峰」 或簡稱「峰値」是指在發射光譜中顯著地顯示一最大發射 強度的量變曲線。發射峰之發射強度高於在波長之峰値波 ^ 長兩側1 0 nm外之波長的發射強度。發射峰的波長被指定 爲「發射峰値波長」或簡稱爲「峰値波長」。 發射峰的強度依短波長發射峰、長波長發射峰以及中 - 間波長發射峰的順序遞減。短波長的峰値強度爲1 00,中 . 間波長的峰値強度爲30至54,較佳者爲35至52,更佳者 爲40至50,至於長波長的峰値強度則爲55至90,較佳者 爲59至85,更佳者爲60至80。 本發明中,具有分散於高介電常數的黏合劑中的硫化 ^ 鋅的磷光體粒子的分散型電致發光裝置(無機電致發光裝 置)將詳細說明如下。 本發明的電致發光裝置包含至少一個於面對的兩個電 _ 極間含有硫化鋅磷光體粒子的發光層、透明電極,以及背 面電極。該電致發光裝置最好包含在發光層與各電極間的 介電層,例如絕緣層或阻隔層,以避免電致發光裝置發生 故障,且於發光層中集中一穩定的電場。於最長波長範圍 中用以發光的材料可以出現於電極間的任何位置,但較佳 201044909 者爲在絕緣層中,更佳者爲在絕緣層的中段靠近發光層的 位置。 硫化鋅磷光體粒子較佳者爲含有金屬離子,例如鉻離 子’以及稀土元素,例如:鈽、銪、釤,或铽做爲磷光活 ' 化體。如有需要,可加入鹵素作爲共活化劑,例如氯、溴 以及碘,鋁、鎵及絪。 硫化鋅磷光體粒子的發射波長可藉由活化體及共活化 劑加以調整。在短波長區域具有一發射峰的硫化鋅磷光體 〇 粒子較佳者爲由銅及氯所活化者,以下稱爲「ZnS:Cu,Cl 磷光體粒子」。ZnS:Cu,Cl磷光體粒子中的銅含量較佳者爲 每一莫耳的ZnS中含ΙχΙΟ·4至ΙχΙΟ·2莫耳,更佳者爲5X10·4 至5χ10_3莫耳。ZnS:Cu,Cl磷光體粒子中的氯含量較佳者 爲每一莫耳的 ZnS中含 ΙχΙΟ·3至 1χ1〇2莫耳,更佳者爲 lxl(T2至lx10i莫耳。藉由此等活化,在大約46〇Iim及5〇〇 nm的發射峰彼此重疊而產生藍綠色的電致發光,例如在由 4 60到510 nm的範圍內有一峰値的發光。電致發光裝置的 〇 發光顏色亦可較佳地藉由結合藍綠發光磷光體與藍色電致 發光磷光體’例如ZnS:Cu,Br或ZnS:Cu,I,或綠色電致發 光磷光體,例如ZnS: Cu,Al,或混合藍色電致發光磷光體與 . 綠色電致發光磷光體而加以調整。 上述的發光材料宜與色彩轉換材料相結合,該色彩轉 換材料吸收自藍綠發光磷光體粒子所發射的光,並將藍綠 光轉換爲在570至650nm間有一發射峰的紅光(以下稱爲 「紅色轉換材料」),因而獲致白色發光。亦可結合使用 201044909 將藍綠光轉換爲在515至569 nm間有一發射峰的綠光的色 彩轉換材料(以下稱爲「綠色轉換材料」)。在某些案例 中’當藍綠色電致發光磷光體僅與紅色轉換材料結合時, 出現了三個發射峰,在這些例子中之所以傾向僅使用紅色 轉換材料結合的理由,是基於降低成本的觀點。 由於紅色轉換材料吸收了來自硫化鋅磷光體材料的發 光而發射出紅光,所有發射光譜的峰値都是減去紅色發光 材料從藍綠發光硫化鋅磷光體材料所吸收的發光,及藉由 〇 色彩轉換材料重疊藍綠發光的剩餘峰値與紅色發光的峰値 而加以決定。由於紅色發光材料的吸收會隨波長而異,例 如顯示最大値與最小値,因此在結合系統中會在發射光譜 . 中出現額外的峰値,藉此而獲得高度演色性的白色發光。 紅色發光磷光材料(紅色電致發光材料)以及綠色發 光磷光材料(綠色電致發光材料)可用以取代或附加於紅 色轉換材料以及綠色轉換材料。當使用紅色或綠色發光磷 光材料時,最好將其加入發光層。綠色發光磷光材料的例 Ο 子但不局限於:ZnS: Cu,Al以及ZnS: Cu,Ga。紅色發光磷 光材料的例子,但不局限於:ZnS: Cu,In以及CaS: Eu,Ce。 不考慮發光的顔色,包括藍綠色發光的硫化鋅磷光 體、紅色發光的磷光體,以及綠色發光的磷光體的磷光材 料並不限定其平均粒徑與粒徑的變異係數。然而,較佳之 平均粒徑爲1 或更大而小於20 ,更佳者爲2 |^111或 更大而小於19 μιη’且其粒徑之變異係數較佳者爲3 %或更 大而小於40%。 -10- 201044909 本發明所使用之硫化鋅磷光體可藉由廣泛使用與電致 發光的顏色無關之技術的烘烤(固相製程)方式而加以製 備。首先,粒徑爲1〇到50 nm的硫化鋅粉末(粗粉末)於 液相中製備,其作爲主體材料,即主要粒子。硫化鋅在高 * 溫下呈現安定的六方晶相,而在低溫下則呈現安定的立方 相,此二者之任一者或其混合物均可利用。稱爲活化體或 共活化劑的不純物以及助熔劑被混入主體材料中,接著該 混合物於坩堝中於900°C至1 3 00°C的高溫下烘烤30分鐘 〇 到1 〇小時(第一次烘烤)以獲得磷光體的前驅粉末。爲了 獲得具有如前所述之平均粒徑以及低變異係數之粒徑的磷 光體粒子,第一次烘烤最好在950°c至1250°C下進行,在 • 1 000°C至1 200°C則更佳,烘烤時間以0.5到6小時較佳, 1到4小時則更佳。加入助熔劑之量,以質量百分比爲20% 或其以上者較佳,更佳者爲30%或其以上,40%或其以上尤 佳。此處之助熔劑的比例如下:助熔劑的比例(質量百分 比)=助熔劑之質量/ (原料磷光體之主要粒子的質量+助 ^ 熔劑的質量)。在活化體已事先加入粗粉末的情形,例如 在製造發射藍綠光的銅活化硫化鋅磷光體粒子的情形,作 爲活化體的銅與磷光體的原始粉末彼此被視爲整體,因此 _ 銅的質量被包含於磷光體原料的質量之中。 助熔劑之質量會隨著室溫及烘烤溫度而改變。例如: 氯化鋇於室溫下以BaCl2_2H20的形式存在,但在烘烤溫度 下失去水合作用的水而成爲氯化鋇。本說明書所指之「助 熔劑的量」是指助熔劑於室溫安定狀態下的質量。 -11- 201044909 烘烤所得之前驅粉末較佳者爲以離子交換水洗滌,以 除去剩餘的活化劑、共活化劑以及助熔劑。 . 經由第一次烘烤所得的前驅粉末具有自然生成的平面 疊差(雙晶構造)。疊差密度可藉由在特定範圍增加撞擊力 而在不破壞粒子的情形下大幅增加。撞擊力的實施之例, 如透過將前驅粉末粒子彼此直接接觸、將前驅粉末以如球 磨的氧化鋁的球形珠粒混合,或將加速的前驅粉末粒子彼 此碰撞。在硫化鋅的情形,特別的是其具有兩個結晶系, 〇 分別爲立方晶系與六方晶系。前者是由三層((111)平面) 密集晶格以ABC ABC方式排列的晶格結構,而後者則是由 重複間隔的密集晶格以ABAB方式垂直於C軸呈現的晶格 - 結構。在對如球磨中的硫化鋅結晶施以撞擊力時,立方晶 _ 體的密集晶格彼此滑動(邊緣位錯),因此局部形成失去 C層的六角形結構(ABAB )。亦有可能發生A層與B層彼 此取代現象,而形成孿晶。由於在晶體中,不純物通常會 集中於晶格缺陷中,當具有疊差的硫化鋅被加熱以使活化 ^ 體(如硫化銅)擴散時,活化體沉澱於疊差中。在沉澱的 活化體與主體材料的接觸面中,硫化鋅是作爲發光中心。 基於此理由,增加疊差密度可以有效地改善亮度。 前驅粉末接著經第二次烘烤。第二次烘烤係在一個低 於第一次烘烤溫度的5 00°C至8 00°C的溫度範圍內,以較 短的時間,以3 0分鐘至3個小時完成退火。活化體因而得 以集中地沉澱於疊差中。 接著,磷光體前驅粒子以酸(如氫氯酸)進行蝕刻處 -12- 201044909 理,以除去任何表面上的金屬氧化物,並以如氰化鉀溶液 洗滌以除去表面上的硫化銅,接著加以烘乾而獲得電致發 光磷光體粒子。因此獲得平均粒徑爲1 μιη或更大,而低於 2 0 μιη,粒徑之變異係數爲3%或更大,而低於4〇%的磷光 ' 體粒子。 其他可採用的製備磷光體粒子方法包括:氣相方法, 如雷射蒸鍍法、化學氣相沉積法(CVD)、電漿輔助法、 灘鑛法’以及結合使用電阻加熱法(resistance heating) 〇 或電子束輻射法與流化油膜真空蒸鍍法;液相方法,如雙 重分解法、前驅物熱解法、還原微顆粒法,結合高溫烘烤, 冷凍乾燥與上述任何液相方法的方法;尿素熔解法;以及 - 噴霧熱解法》 _ 磷光體粒子的平均粒徑及粒徑的變異係數可藉由雷射 散射法加以測定’例如,可使用日本堀場製作所(Horiba Ltd.)出品之LA-920雷射繞射/散射粒徑分析儀。本說明 書中所指之「平均粒徑」,指的是中位直徑。 〇 使用於本發明的電致發光中的磷光材料,至少有一種 需包含硫化鋅作爲其主體材料。其他磷光材料較佳者亦包 含硫化鋅作爲其主體材料。較佳者爲各磷光材料都包含至 少一個屬於第二列過渡系中第6至10族的金屬元素,特別 是至少爲鉬、鉑、銥三者其中之一。這些金屬元素在硫化 鋅中的濃度較佳者爲每一莫耳的硫化鋅中含有1X10·7至 ΙχΙΟ·3莫耳,更佳者爲lxl〇-6至5xl〇-4莫耳。金屬元素與 硫化鋅粒子結合的方式,較佳者爲徹底地於去離子水中將 -13- 201044909 硫化鋅粉末及預定量的硫酸銅一同加以硏磨形成漿體,然 後將漿體乾燥’再將乾燥的粉末與共活化劑及助溶劑加以 烘烤。另一個較佳的將金屬與硫化鋅粒子結合的方式,是 藉由將含有金屬的錯合物的粉末與助熔劑或共活化劑予以 摻合後,將硫化鋅粉末與摻合物一同烘烤。在上述兩種情 形中’雖然任何含有被結合金屬元素的化合物均可作爲金 屬的來源’較佳者爲使用含有與金屬或金屬離子配位的氧 或氮的金屬錯合物。錯合物的配位體可以爲有機化合物, 〇 亦可爲無機化合物。藉由金屬元素的加入,亮度與壽命獲 得進一步的改善。 如日本特開2005-283911A公報,[0028]至[0033]所 - 示’磷光體粒子可以在其表面具有不發光層。 發光層 發光層之形成是藉由將上述的磷光體粒子分散於有機 液體介質’並將所得的分散液塗佈於基體上。液體介質之 例’包括有機聚合物及高沸點的有機溶劑。有機黏合劑主 ❹ 合物構成者爲較佳。有機黏合劑較佳者爲具有 «胃數•尤其是,至少部分的有機黏合劑較佳者爲選 合物’例如具有氟乙烯單元或氯三氟乙烯單元之 • 聚合物、具有氰乙化羥基的多醣,例如氰乙基支鏈澱粉及 , 氣乙基纖維素;或聚乙烯醇,例如氰乙化聚乙烯醇、酚樹 脂、聚乙嫌、聚丙烯、聚苯乙烯樹脂、矽氧樹脂、環氧樹 脂 '聚偏二氟乙烯等。黏合劑的介電常數可藉由適當地在 黏合劑中混入高介電常數物質,如BaTi03、SrTi03的微粒 -14- 201044909 子,而加以調整。 磷光體粒子是藉由均質機、行星式攪拌器、滾軸式攪 拌器、超音波分散器等設備而分散於黏合劑中。 較佳之黏合劑使用量爲所提供的磷光體含量佔發光層 ' 總固體含量之30質量%至90質量%,以60質量%至85質 量%爲更佳。以本說明書所述之磷光體含量,可確保發光 層表面的平滑。此處所謂之「磷光體含量」是指全部使用 之磷光體粒子的總含量。 〇 特別較佳的黏合劑系統爲具有氰乙化羥基聚合物的質 量至少佔使用於發光層中的有機液體介質的總質量的20 質量%,5 0質量%或更大的黏合劑系統。 - 發光層的厚度較佳者爲至少爲20 μιη而小於80 μιη, 更佳者爲至少25 μιη而小於75 μπι。發光層的厚度爲20 μπι 或高於此厚度時,可形成具有平滑表面的發光層。低於80 μιη時,可有效地施加電場於磷光體粒子。如有本說明書以 下所述之阻隔層時,建議將以下所述之絕緣層厚度降低, 〇 ^ 並增加發光層的厚度,以補償爲了確保足夠的耐久性而降 低的起始亮度。爲進一步確保良好的起始亮度,發光層的 厚度最好不要超過70 μχη。 阻隔層 本發明中的電致發光裝置可在透明電極與發光層之間 提供一阻隔層。關於阻隔層的詳細說明,可參照如日本特 開第2007- 1 2466Α號公報,[0013]至[0020]之說明。 絕緣層 -15- 201044909 本發明中之電致發光裝置的絕緣層可爲任何具有高介 電常數、高絕緣性,以及高介電崩潰的材料。此等介電材 料之例包括金屬氧化物及金屬氮化物,例如BaTi03、 KNb03、LiNb03、LiTa〇3、Ta2〇3、BaTa2〇6、γ2〇3、Ah〇3 以及A10N。絕緣層可以形成如均勻層或含有有機黏合劑的 顆粒層。例如依Mat. Res. Bull·,Vol. 36,第1〇65頁的說 明,可使用由鈦酸鋇粒子形成的薄膜及鈦酸鋇溶液。 絕緣層的厚度較佳者爲1〇 μηι或更大而小於35 μιη, Ο 更佳者爲12 μιη或更大而小於33 μιη,以15 μιη或更大而 小於31 μπι者最佳。若太薄會使絕緣層易於遭受介電崩 潰。絕緣層太薄會減少施於發光層的電壓,而導致發光效 . 率的實質減損。 使用於絕緣層的有機黏合劑的例子,包括具有相當高 介電常數的聚合物,例如氰乙基支鏈澱粉、氰乙化聚乙烯 醇,以及氰乙基纖維素樹脂及其他樹脂,例如聚乙烯、聚 丙烯、聚苯乙烯樹脂、矽氧樹脂、環氧樹脂,以及聚偏二 〇 ^ 氟乙烯。介電常數可藉由適當地於樹脂中混入高介電常數 物質,如鈦酸鋇、鈦酸緦的微粒子而加以調整。絕緣粒子 可藉由均質機、行星式攪拌器、滾軸式攪拌器、超音波分 配器等予以分散。 紅色材料 如前所述,本發明的電致發光裝置除藍綠發光硫彳匕鋅 磷光體粒子外,可包含至少一紅色轉換材料,綠色轉換材 料,紅色電致發光磷光體,以及綠色電致發光磷光體。紅 -16- 201044909 色或綠色轉換材料是一 紅光或綠光的有機材料 則爲無機材料。最好使 換材料。有機螢光染料 ' 且可位於發光層及透明 間的相反側。紅色或綠 體粒子一倂加入發光層 作爲獨立於藍綠發光層 層。 從本發明的電致發 5 90至6 5 0 nm的紅色部 - 光波長,可於發光層中 料置於發光層與透明電 的相反側,但以加入絕 的所有絕緣層中均含有 裝置中具有兩個或兩個 〇 w 個以上的絕緣層中含有 的層最好位於無紅色轉 一較佳例子爲將含有紅 _ 料的絕緣層之間的中間 在含有紅色轉換材 緣層與發光層之間的情 最好爲1至20 μιη,3 3 轉換材料的濃度最好爲 種吸收硫化鋅的發光而將之轉換爲 ,然而紅色或綠色電致發光磷光體 用有機螢光染料或色素作爲色彩轉 或色素可被分散於發光層或絕緣層 電極之間,或在發光層至透明電極 色電致發光磷光體可與藍綠光磷光 ,或置於透明電極與絕緣層之間, 之外的紅色或綠色電致發光磷光體 光裝置發射的白光最好含有波長在 分。爲了獲得在上述範圍的紅色發 加入紅色轉換材料或將紅色轉換材 極間,或置於發光層至透明電極間 緣層中爲最佳。最好電致發光裝置 色彩轉換材料。更佳者爲在電致發 以上分離的絕緣層,其中一個或多 色彩轉換材料。含有色彩轉換材料 換材料的絕緣層與發光層之間。另 色轉換材料的層作爲無紅色轉換材 夾層。 料的層係位於無紅色轉換材料的絕 形,含有紅色轉換材料的層的厚度 ξ 1 7 μ m則更佳。在絕緣層中的紅色 佔介電材料(以鈦酸鋇爲代表例) -17- 201044909 之1質量%至20質量%,以3質量%至1 5質量%更佳。在 含有紅色轉換材料的層是被夾於無紅色轉換材料的絕緣層 .之間的情形,紅色轉換材料的厚度最好爲1至20 μιη,3至 1 0 μπι則更佳。在絕緣層中的紅色轉換材料的濃度最好爲 ’ 佔介電材料之1質量%至30質量%,3質量%至20質量% 更佳。在含有紅色轉換材料的層是被夾於無紅色轉換材料 的絕緣層之間的情形,含紅色轉換材料的層並未含有介電 材料,且僅由一高介電常數的黏合劑與紅色轉換材料所構 〇 成,亦爲一較佳實施例。 以下就有機物質詳細說明。如前所述,最好以有機螢 光染料或色素爲作爲紅色轉換材料。較佳的構成螢光色素 . 或染料的發光中心的化合物實施例,包括含有以玫瑰紅、 內酯、二苯并哌喃、喹啉、苯并噻唑、三乙基吲哚啉、茈、 聯伸三苯或二腈甲烯作爲其骨架的化合物。花青染料、偶 氮染料、聚對苯乙烯聚合物、二矽烷寡聚噻吩聚合物、釕 錯合物、銪錯合物、餌錯合物亦爲較佳之實施例。這些化 ο 合物可以單獨地或以二或多種的混合物的方式加以使用。 色彩轉換材料可利用如散佈於聚合物內的方式而使用。在 如前所述的範圍中具有一峰値發射波長的螢光色素,係可 以日本Shinloihi Co.,Ltd.所產製之SEL 1 003作爲代表例。 使用之螢光色素或染料的發光峰値波長可藉由使用濾 光片,如帶通反射濾光片而調整至範圍之內。 透明電極 本發明中所使用之透明電極是藉由將一透明的、導電 -18- 201044909 的材料,如氧化銦錫(ITO )、氧化錫、鍊 摻雜氧化錫或氧化鋅,均勻地披覆於透明 體或聚對苯二甲酸乙二酯或三醋酸纖維素 並透過氣相沉積法、塗佈、印刷或其他方 ' 透明電極可爲具有被夾合於高折射率的層 多層結構。導電聚合物包括共軛聚合物, 口必咯亦使用於透明電極的製作。關於透明 說明,可參照日本 Toray Research 〇 「DENJIHA SHIELD ZAIRYO NO GENJYO 及日本特開平第9-147639A號公報。 導電性經改良之透明導電片亦屬較佳 . 述透明薄膜上製作透明導電片或由上述透 成之導電高分子,並在透明薄膜上以一網 或類似圖案中平均配置金屬及/或合金導 形成的導線結構而製得。 如結合使用細導線,較佳者爲銅、銀 ^ 上金屬之合金。視目的而定,前述透明導 用以取代金屬或合金導線。較佳者爲使用 或熱傳導性的導線材料。導線股的寬度較 μιη至1〇〇〇 μιη,但不以此爲限。導線股的 的導線股之間的距離,最好在5 0 μ m到5 lcm更佳。導線結構的高度(或厚度)最好 〇·5到5 μιη更佳。導線結構可曝露於透明 上’或爲透明導電材料所包覆。在此二種 摻雜氧化錫、鋅 基體,如玻璃基 的透明薄膜上, 法而形成薄膜。 之間的銀薄膜的 例如聚苯胺、聚 導電材料的細部 Center, Inc.之 TO SYORAI」以 ,其係藉由在上 明導電材料所形 狀、梳狀、格狀 線的細導線束所 、鎳、銘,或以 電材料之導線可 具有高度導電性 :佳者爲大約0 . 1 間距,亦即相鄰 c m,1 0 0 μ m 到 在 〇 . 1 到 1 0 μ m, 丨導電材料的表面 情形,透明導電 -19- 201044909 電極的導電表面最好有5 μηι或更低的表面粗度。從良好的 附著力的觀點,表面粗度在〇 . 0 1到5 μ m較佳,在0.0 5到 3 μ m則更佳。 本說明書所指之導電表面之「表面粗度」,是指以三 維表面粗度計,例如東京精密(股)(Tokyo Seimitsu Co., Ltd.)出品之Surfcom 575A-3DF測量,超過所測量之5 mm2 區域內的表面粗度的平均振幅。表面粗度低於表面粗度計 之解析度以下者則藉由掃描隧道顯微鏡或電子顯微鏡測定 0 之。 導線股的寬度、高度(或厚度),以及間距之間的關 係是根據目的而決定。典型地,股的寬度最好爲間距的 - 1/1 0000至1/10,股的高度最好爲寬度的1/100至寬度的 10倍。 透明電極之表面電阻係數較佳者爲0.1至ΙΟΟΩ/sq,更 佳者爲1至80Q/sq,依據JIS 691 1所定之方法測量之。 當利用金屬及/或合金的細導線結構時,最好能將光透 Θ 射的減少最小化。最好能藉由限制導線股的間距、寬度及 高度在上述範圍之內,以確保光透射度至少爲90%。使用 於本發明之透明電極最好在5 50 nm的波長具有至少70%的 光透射度,80%更佳,90%或更高者尤佳。 爲了改善亮度以及提供白色發光,透明電極較佳者爲 對於420至65 0 nm波長的光具有至少80%的光透射度,90% 或其以上更佳。爲了獲得白色發光,更佳者爲透明電極對 於380至680 nm波長的光具有80%或其以上的光透射度。 -20- 201044909 透明電極的光透射度係藉由分光光度計所測得。 背面電極 於發射光穿過時不會被萃取的背面電極可以從任何 如下的導電性材料,如金、銀、舶、銅、鐵、鋁,以及 * 石墨等,依電致發光裝置的型態、製造過程中的溫度等 類似情形所合適之情況而加以選擇。例如只要可以確保 導電性,可使用由氧化銦錫(ITO )所製成之透明電極。 對於背面電極而言,具有高度熱傳導係數是非常重要 〇 的,尤其是熱傳導係數至少爲2.0 W/(cm_ deg)者,較佳 者爲2.5 W/(cm. deg)或更高者,以提供改良之耐久性。 另一較佳者爲使用金屬片或金屬網作爲—背面電極,以 . 確保高導電性及電致發光裝置周圍有效率的散熱性亦爲 較佳者。 製造方法 本發明之電致發光裝置之製造方法並無限制。如曰本 特開第2007- 1 2466A號公報[0046]至[0049]所詳細記載之 Ο 製造方法即可被適當地採用。 封裝 在製造電致發光裝置的最後一個步驟’最好將裝置以 ^ 密封膜予以封裝,以保護裝置免於受到外界環境的濕度與 氧氣的影響。關於封裝技術的細節,可參照日本特開第 2007-12466A 號公報[0050]至[0055]的說明。 阻氣性積層薄膜是一個較佳的密封膜。以下就本發明 之各元件的敘述,在某些情形可根據本發明之代表性實施 -21- 201044909 例,在該等情形,應理解本發明並不以該特殊實施例爲限。 阻氣性積層薄膜 積層結構 較佳之作爲密封膜的阻氣性積層薄膜,其較佳者爲包 ' 含基膜,至少一無機層,以及至少一有機層。在基膜上所 形成之無機層與有機層所含的數目與順序並無限制。無機 層與有機層可在基膜上依此先後順序或相反順序形成。較 佳的積層薄膜爲在其基膜上具有交錯的有機層與無機層, Ο 例如於基膜上依序有無機層、有機層,以及無機層。無機 層與有機層疊層的層數較佳者爲各有1至10層,更佳者爲 1至5層,而以1至3層最佳。無機層與有機層可於基膜 . 上的單側或兩側疊層。 功能層可形成於基膜及無機層間、基膜與有機層間, 或於無機層與有機層間。功能層的例子,包括如抗反射層、 偏光層、濾色片、光提取效率強化層的光學功能層;如硬 化層及紆壓層的機械功能層;如抗靜電層及導電層的電子 ^ 功能層;防霧層、防污層,以及可印刷層(printable layer )。 有機層 構成阻氣性積層薄膜的有機層可以爲含有磷酸酯基的 聚合物的薄膜。具有磷酸酯基的聚合物可藉由將含有具有 至少一個磷酸酯基的可聚合單體的單體組成物加以聚合而 獲得。 具有無機層及含有磷酸酯基於基膜之一側的有機層的 積層薄膜,可在基膜的相反側有依序由無機層、有機層以 -22- 201044909 及無機層組成的阻氣性積層薄膜。具有此種阻氣性積層的 積層薄膜可以阻止來自相反側的水分子的侵入,因而控制 阻氣性積層薄膜的尺寸變化,並避免在無機層內的應力集 中或無機層的破壞,因此進一步改善其耐久性。 ' 較佳之具有磷酸酯基的單體可由以下化學式(1)表示 之。201044909 VI. Description of the Invention: [Technical Field] The present invention relates to a dispersion-type electroluminescence (EL) device which exhibits high luminance and excellent color rendering. [Prior Art] The phosphor of the electroluminescence device is a voltage-excited phosphor, which is known to be applicable to a dispersion type electroluminescence device in which a phosphor powder is sandwiched by a pair of xenon electrodes to form a light-emitting element. Or a thin film type electroluminescent device. Dispersive electroluminescent devices typically have a structure comprising two electrodes, at least one of which is transparent, and a dispersion of phosphor powder is sandwiched between the electrodes in a high dielectric constant adhesive. Light is emitted when an alternating electric field is applied between the electrodes. Electroluminescent devices using phosphorescent powders have many advantages, such as surface illumination, thin thickness (several millimeters or even thinner), reduced heat generation, and good luminous efficiency. Therefore, it can be applied to road signs, indoor and outdoor lamps, flat-panel displays (such as liquid crystal displays), light sources, large-area advertising light sources, and the like. Up to now, the dispersion type electroluminescent device which emits white light has at least two emission regions having a high emission intensity, a blue-green region and an orange-red region. For example, a white light-emitting electroluminescent device containing a rosin compound in its light-emitting layer has been disclosed in many patents, including Japanese Patent Laid-Open No. 60-25 1 95A, Japanese Patent Laid-Open No. 60-1 70 1 Patent Publication No. 94A and Japanese Patent Laid-Open No. 2-78188A. Japanese Laid-Open Patent Publication No. 2005-302693A discloses a dispersion type electroluminescent device having two emission peaks to 201044909, one of which is between 45 〇 and 530 nm, and the other is 605 nm or longer. . Japanese Laid-Open Patent Publication No. 2000-230172A describes a phosphor element having a specific absorption wavelength and a specific emission wavelength, which is combined with a blue light-emitting diode to provide white light emission having three peaks. U.S. Patent No. 6,806,642 discloses the provision of a white illuminating electroluminescent lamp having three emission peaks. Further, it is known that the use of small-particle phosphor particles can increase the luminance of light emission as proposed in Japanese Patent Publication No. A-2-02-235080. In the manufacture of an electroluminescent device, the use of small particle phosphor particles increases the number of phosphor particles in the unit of the light-emitting layer, and thus the brightness is improved. An electroluminescent device described in Japanese Laid-Open Patent Publication No. 60-25195A, No. 60-170194A, and No. 2-7 8 1 8 8A, etc., is a material that emits light at about 58 〇 nm, which is A blue-green light-doped copper- and chlorine-containing zinc sulfide phosphor (hereinafter referred to as "ZnS: Cu, Cl") is combined. 〇 For this reason 'When a transparent medium, such as a transparent positive image, is viewed by an electroluminescent device', the color reproduction is significantly less observable than by a conventional surface light source such as a ray tube. For example, in Japanese Laid-Open Patent Publication No. 6()_25 1 95Α, 60·17〇194Α, and 2-7 8 1 8 8A, the white light is obtained by using rose red dye as red light. When a transparent medium (for example, a transparent positive image) is placed thereon, it cannot reproduce red and emit orange light. For example, in the electroluminescent device 201044909 of Japanese Laid-Open Patent Publication No. 2005_302693α, the white light emitted from the light emission in the two wavelength ranges 'shows poor color reproduction in the green range, so there is still improvement in color rendering. Space. The technique disclosed in Japanese Laid-Open Patent Publication No. 2000-230172A and the U.S. Patent No. 6,806,642 cannot provide sufficient color rendering due to an undue defect in luminous intensity. The technique disclosed in Japanese Laid-Open Patent Publication No. 2002-235080A and Japanese Laid-Open Patent Publication No. 2004-265866A has a disadvantage in that the emission wavelength of the phosphor particles of the small particle 〇 is difficult to control. Therefore, it is impossible to obtain a white light-emitting electroluminescence device having high color reproduction and good color rendering with small particle phosphor particles. SUMMARY OF THE INVENTION An object of the present invention is to provide a dispersion type electroluminescent device having excellent color rendering properties. Based on extensive investigation results, the inventors of the present invention have found that a dispersion type electroluminescent device comprising a strontium sulfide phosphor has a high color rendering property obtained from a well-balanced blue, green, and red luminescence, which is The emission spectrum is designed to have at least one peak 至少 in each of at least three wavelength ranges in intensity, which decreases in a particular order. The present invention has been completed on the basis of this finding. (1) A dispersion type electroluminescence device comprising: a light-emitting layer containing zinc sulfide phosphor particles, wherein the dispersion type electroluminescence device has a short wavelength range of 450 to 514 nm, an intermediate wavelength range of 515 to 569 nm, and 570 There is at least one emission peak in the long wavelength range up to 650 nm, and the peak intensity decreases with the order of the short wavelength range of the short wavelength range of 201044909 and the intermediate wavelength range. (2) The dispersion type electroluminescent device according to item (1), wherein the average particle diameter of the adjacent light-emitting particles is 1 μm or more and less than 20 μm ' and the coefficient of variation of the particle diameter is 3% Or larger and less than 4 〇%. (3) The dispersion type electroluminescent device according to Item (1) or (2), further comprising: a red conversion material. (4) The dispersion type electroluminescent device according to Item (3), further comprising: a back surface electrode, wherein the red conversion material is present in a layer between the light emitting layer and the back surface electrode. The dispersion type electroluminescent device according to the item (1) or (2), further comprising: Cao red luminescent phosphor particles. (6) The dispersion type electroluminescence device according to Item (5), wherein the red luminescent phosphor particles have an average particle diameter of Ιμηη or more and 〇 less than 20 μηη, and the coefficient of variation of the particle diameter is 3% or Larger and less than 40%. (7) The dispersion type electroluminescence device according to (1), which is sealed by a gas barrier laminate film, wherein the gas barrier laminate film comprises at least one inorganic layer and at least one substrate layer on the surface of the base film Or above, the organic layer contains a polymerization product of a monomer composition which contains at least one acrylate having a phosphate group. 201044909 [Embodiment] The present invention will be described in detail below. The electroluminescent device of the present invention is designed to provide white light emission. The white light emission spectrum has at least three peaks 値 whose intensity decreases sequentially with the short wavelength range, the long 'wavelength range, and the intermediate wavelength range. A more desirable white light source has a uniform light intensity at each wavelength in the visible range, in which case the highest color rendering is obtained. However, in a dispersion type electroluminescent device, white light is produced in a mixed form, for example, two large-scale light-emitting bands, one from electroluminescence (blue-green light) of zinc sulfide phosphor particles, and the other from transmission. The long-wavelength light is emitted by the long-wavelength conversion material (orange light to red light) as described in the example of Japanese Patent Laid-Open Publication No. 20 0- 3 0269 3 A. Therefore, it is of concern how the vicinity of the wavelengths of blue, green and red light is distributed to make the human eye most susceptible to perception. In other words, the degree of good balance of the emission spectrum at about 450 nm, 530 nm, and 610 nm greatly affects color rendering. Ο The design of the present invention is an emission peak of blue-green light (450 to 530 nm) and orange-red light (605 nm or longer) as suggested in the preceding paragraph of Japanese Patent Laid-Open Publication No. 2005-302693A. In addition, an additional peak in the range of 515 nm to 569 nm is added to improve the most perceptible color, ie green reproduction. The inventors succeeded in providing a peak 値 at a short wavelength range of at least 450 to 514 nm, a peak 至少 at least in the intermediate wavelength range of 515 to 569 nm, and a peak 至少 based on at least a long wavelength range of 570 to 650 nm. A well-balanced white light. The peak of the short wavelength range of 201044909 is preferably in the range of 460 to 5 10 nm, more preferably from 470 to 505 nm. The peaks in the intermediate wavelength range are preferably in the range from 520 to 565 nm, and more preferably from 525 to 560 nm. The peak in the long wavelength range is preferably in the range of from 5 5 5 to 63 0 nm, more preferably from 580 to 610 nm. White light with peaks in these wavelength ranges exhibits good color rendering. The "emission peak" or simply "peak" as used herein refers to a quantitative curve showing a maximum emission intensity in the emission spectrum. The emission intensity of the emission peak is higher than the emission intensity at a wavelength other than 10 nm on both sides of the peak wavelength of the wavelength. The wavelength of the emission peak is designated as "emission peak wavelength" or simply "peak wavelength". The intensity of the emission peak decreases in the order of the short-wavelength emission peak, the long-wavelength emission peak, and the mid-interval wavelength emission peak. The short-wavelength peak intensity is 100, the mid-wavelength peak intensity is 30 to 54, preferably 35 to 52, more preferably 40 to 50, and the long-wavelength peak intensity is 55 to 90, preferably from 59 to 85, and more preferably from 60 to 80. In the present invention, a dispersion type electroluminescence device (inorganic electroluminescence device) having phosphor particles of zinc sulfide dispersed in a binder having a high dielectric constant will be described in detail below. The electroluminescent device of the present invention comprises at least one light-emitting layer containing zinc sulfide phosphor particles between the two opposing electrodes, a transparent electrode, and a back electrode. Preferably, the electroluminescent device comprises a dielectric layer, such as an insulating layer or a barrier layer, between the luminescent layer and the electrodes to avoid failure of the electroluminescent device and to concentrate a stable electric field in the luminescent layer. The material used for illuminating in the longest wavelength range may appear anywhere between the electrodes, but it is preferably in the insulating layer 201044909, more preferably in the middle of the insulating layer near the luminescent layer. The zinc sulfide phosphor particles preferably contain a metal ion such as a chromium ion and a rare earth element such as ruthenium, osmium, iridium or iridium as a phosphorescent activator. Halogen can be added as a co-activator, such as chlorine, bromine and iodine, aluminum, gallium and germanium, if desired. The emission wavelength of the zinc sulfide phosphor particles can be adjusted by the activator and the coactivator. The zinc sulfide phosphor having an emission peak in a short-wavelength region is preferably activated by copper or chlorine, and is hereinafter referred to as "ZnS: Cu, Cl phosphor particles". The content of copper in the ZnS:Cu,Cl phosphor particles is preferably from ΙχΙΟ·4 to ΙχΙΟ·2 mol per ZnS, and more preferably from 5×10·4 to 5χ10_3 mol. The content of chlorine in the ZnS:Cu,Cl phosphor particles is preferably ΙχΙΟ·3 to 1χ1〇2 mol per ZnS of the moir, and more preferably lxl (T2 to lx10i mol). Activation, emission peaks at about 46 〇Iim and 5 〇〇nm overlap each other to produce blue-green electroluminescence, for example, a luminescence with a peak in the range of 4 60 to 510 nm. The color may also preferably be by combining a blue-green luminescent phosphor with a blue electroluminescent phosphor such as ZnS:Cu, Br or ZnS:Cu, I, or a green electroluminescent phosphor, such as ZnS: Cu, Al Or adjusting the blue electroluminescent phosphor and the green electroluminescent phosphor. The above-mentioned luminescent material is preferably combined with a color conversion material that absorbs light emitted from the blue-green luminescent phosphor particles. And converting blue-green light into red light having an emission peak between 570 and 650 nm (hereinafter referred to as "red conversion material"), thereby causing white light emission. It is also possible to use 201044909 to convert blue-green light to 515 to 569. Green color conversion material with emission peak between nm Material (hereinafter referred to as "green conversion material"). In some cases, when the blue-green electroluminescent phosphor is only combined with the red conversion material, three emission peaks appear, and in these cases, the tendency is only used. The reason for the combination of red conversion materials is based on the viewpoint of cost reduction. Since the red conversion material absorbs the luminescence from the zinc sulfide phosphor material and emits red light, the peaks of all emission spectra are subtracted from the red luminescent material from blue-green. The luminescence absorbed by the luminescent zinc sulfide phosphor material is determined by overlapping the residual peaks of the blue-green luminescence and the peaks of the red luminescence by the 〇 color conversion material. Since the absorption of the red luminescent material varies with wavelength, for example, Maximum 値 and minimum 値, so in the combined system, additional peaks appear in the emission spectrum, thereby obtaining highly color-changing white luminescence. Red luminescent phosphorescent material (red electroluminescent material) and green luminescent phosphorescent material (Green electroluminescent material) can be used in place of or in addition to the red conversion material and the green conversion material. When a red or green light-emitting phosphorescent material is used, it is preferably added to the light-emitting layer. Examples of the green light-emitting phosphorescent material are not limited to: ZnS: Cu, Al, and ZnS: Cu, Ga. Examples of red light-emitting phosphorescent materials, However, it is not limited to: ZnS: Cu, In, and CaS: Eu, Ce. Phosphorescent materials including blue-green-emitting zinc sulfide phosphor, red-emitting phosphor, and green-emitting phosphor are not considered regardless of the color of light emission. The coefficient of variation of the average particle diameter and the particle diameter is limited. However, the preferred average particle diameter is 1 or more and less than 20, more preferably 2 |^111 or more and less than 19 μm, and the variation of the particle diameter thereof The coefficient is preferably 3% or more and less than 40%. -10-201044909 The zinc sulfide phosphor used in the present invention can be produced by a baking (solid phase process) method in which a technique independent of the color of electroluminescence is widely used. First, zinc sulfide powder (coarse powder) having a particle diameter of from 1 to 50 nm is prepared in a liquid phase as a host material, i.e., a main particle. Zinc sulphide exhibits a stable hexagonal phase at high temperatures and a stable cubic phase at low temperatures, either or both of which can be utilized. An impurity called an activator or a co-activator and a flux are mixed into the host material, and then the mixture is baked in a crucible at a high temperature of 900 ° C to 1 300 ° C for 30 minutes to 1 hour (first Secondary baking) to obtain a precursor powder of the phosphor. In order to obtain phosphor particles having an average particle diameter as described above and a particle size of a low coefficient of variation, the first baking is preferably carried out at 950 ° C to 1250 ° C, at a temperature of 1 000 ° C to 1 200 ° °C is more preferable, the baking time is preferably 0.5 to 6 hours, and more preferably 1 to 4 hours. The amount of the flux added is preferably 20% by mass or more, more preferably 30% or more, and 40% or more is preferable. The proportion of the flux here is as follows: the proportion of the flux (mass percentage) = the mass of the flux / (the mass of the main particles of the raw material phosphor + the mass of the flux). In the case where the activated body has been previously added with the coarse powder, for example, in the case of producing copper-activated zinc sulfide phosphor particles emitting blue-green light, the original powder of copper and phosphor as the active body is regarded as a whole with each other, thus _ copper Quality is included in the quality of the phosphor raw material. The quality of the flux changes with room temperature and baking temperature. For example: Barium chloride exists in the form of BaCl 2 2 H20 at room temperature, but loses hydration water at the baking temperature to become barium chloride. The "amount of flux" as used in this specification refers to the mass of the flux at room temperature. -11- 201044909 The pre-baked powder obtained by baking is preferably washed with ion-exchanged water to remove the remaining activator, co-activator and flux. The precursor powder obtained through the first baking has a naturally occurring plane stack (double crystal structure). The stack density can be greatly increased without damaging the particles by increasing the impact force in a specific range. Examples of the impingement force are, for example, by directly contacting the precursor powder particles with each other, mixing the precursor powder with spherical beads of alumina such as ball-milled, or colliding the accelerated precursor powder particles with each other. In the case of zinc sulfide, in particular, it has two crystal systems, and 〇 is a cubic system and a hexagonal system, respectively. The former is a lattice structure in which a three-layer ((111) plane) dense lattice is arranged in an ABC ABC manner, and the latter is a lattice-structure in which a dense lattice of repeated intervals is perpendicular to the C-axis in an ABAB manner. When an impact force is applied to zinc sulfide crystals such as ball mills, the dense crystal lattices of the cubic crystal bodies slide with each other (edge dislocations), thereby locally forming a hexagonal structure (ABAB) which loses the C layer. It is also possible that the A and B layers are replaced by each other to form twins. Since impurities are usually concentrated in the crystal lattice defects in the crystal, when the zinc sulfide having the difference is heated to diffuse the activated body (e.g., copper sulfide), the activator precipitates in the stack. In the contact surface of the precipitated activator with the host material, zinc sulfide acts as a luminescent center. For this reason, increasing the stack density can effectively improve the brightness. The precursor powder is then baked a second time. The second baking is performed in a temperature range of 500 ° C to 800 ° C lower than the first baking temperature, and annealing is completed in 30 minutes to 3 hours in a shorter time. The activator thus concentrates in the stack in a concentrated manner. Next, the phosphor precursor particles are etched with an acid (such as hydrochloric acid) at -12-201044909 to remove any metal oxide on the surface, and washed with a solution such as potassium cyanide to remove copper sulfide on the surface, and then It is dried to obtain electroluminescent phosphor particles. Therefore, a phosphorescent body particle having an average particle diameter of 1 μηη or more and less than 20 μm, a particle size coefficient of variation of 3% or more, and less than 4% by weight is obtained. Other methods of preparing phosphor particles include: gas phase methods such as laser evaporation, chemical vapor deposition (CVD), plasma assisted, beaching, and a combination of resistance heating. 〇 or electron beam irradiation method and fluidized oil film vacuum evaporation method; liquid phase method, such as double decomposition method, precursor pyrolysis method, reduction microparticle method, combined with high temperature baking, freeze drying and any liquid phase method described above; Urea melting method; and - Spray pyrolysis method _ The coefficient of variation of the average particle diameter and particle diameter of the phosphor particles can be measured by a laser scattering method. For example, LA-produced by Horiba Ltd. can be used. 920 laser diffraction / scattering particle size analyzer. The "average particle size" referred to in this specification refers to the median diameter.至少 At least one of the phosphorescent materials used in the electroluminescence of the present invention needs to contain zinc sulfide as its host material. Other phosphorescent materials preferably also contain zinc sulfide as the host material. Preferably, each of the phosphorescent materials comprises at least one metal element belonging to Groups 6 to 10 of the transition column of the second column, particularly at least one of molybdenum, platinum and rhodium. The concentration of these metal elements in the zinc sulfide is preferably from 1 x 10·7 to ΙχΙΟ·3 mol per mol of zinc sulfide, more preferably from 1 x 10 -6 to 5 x l 〇 -4 mol. The combination of the metal element and the zinc sulfide particles is preferably carried out by thoroughly honing the -13,044,909 zinc sulfide powder together with a predetermined amount of copper sulfate in deionized water to form a slurry, and then drying the slurry. The dried powder is baked with a co-activator and a co-solvent. Another preferred method of combining the metal with the zinc sulfide particles is to bake the zinc sulfide powder together with the blend by blending the powder of the metal-containing complex with the flux or co-activator. . In both cases, 'Although any compound containing a metal element to be bonded can be used as a source of metal', it is preferred to use a metal complex containing oxygen or nitrogen coordinated to a metal or metal ion. The ligand of the complex may be an organic compound, and 〇 may also be an inorganic compound. Brightness and longevity are further improved by the addition of metallic elements. As disclosed in Japanese Laid-Open Patent Publication No. 2005-283911A, [0028] to [0033], the phosphor particles may have a non-emissive layer on the surface thereof. Light Emitting Layer The light emitting layer is formed by dispersing the above-described phosphor particles in an organic liquid medium and applying the resulting dispersion onto a substrate. Examples of liquid media include organic polymers and high boiling organic solvents. It is preferred that the organic binder is a constituent of the main compound. Preferably, the organic binder has a "stomach number", in particular, at least a portion of the organic binder is preferably a compound such as a polymer having a vinyl fluoride unit or a chlorotrifluoroethylene unit, having a cyanoacetylated hydroxyl group. Polysaccharides, such as cyanoethyl amylopectin and gas ethyl cellulose; or polyvinyl alcohol, such as cyanoacetylated polyvinyl alcohol, phenolic resin, polyethylene, polypropylene, polystyrene resin, epoxy resin, Epoxy resin 'polyvinylidene fluoride and the like. The dielectric constant of the binder can be adjusted by appropriately mixing a high dielectric constant substance such as BaTi03, SrTi03 particles -14- 201044909 into the binder. The phosphor particles are dispersed in the binder by means of a homogenizer, a planetary agitator, a roller stirrer, an ultrasonic disperser, and the like. The binder is preferably used in an amount of from 30% by mass to 90% by mass based on the total solid content of the luminescent layer, and more preferably from 60% by mass to 85 % by mass. With the phosphor content described in this specification, the surface of the luminescent layer is ensured to be smooth. The term "phosphor content" as used herein refers to the total content of all the phosphor particles used. 〇 A particularly preferred binder system is an adhesive system having a cyanoacetylated hydroxyl polymer having a mass of at least 20% by mass, 50% by mass or more based on the total mass of the organic liquid medium used in the light-emitting layer. The thickness of the luminescent layer is preferably at least 20 μηη and less than 80 μηη, more preferably at least 25 μηη and less than 75 μπι. When the thickness of the light-emitting layer is 20 μm or higher, a light-emitting layer having a smooth surface can be formed. Below 80 μηη, an electric field can be effectively applied to the phosphor particles. In the case of the barrier layer described in the present specification, it is recommended to reduce the thickness of the insulating layer described below, and increase the thickness of the light-emitting layer to compensate for the initial brightness which is lowered in order to ensure sufficient durability. To further ensure a good initial brightness, the thickness of the luminescent layer is preferably not more than 70 μχη. Barrier Layer The electroluminescent device of the present invention provides a barrier layer between the transparent electrode and the luminescent layer. For a detailed description of the barrier layer, reference is made to Japanese Patent Laid-Open Publication No. 2007-1246466, the description of [0013] to [0020]. Insulating Layer -15- 201044909 The insulating layer of the electroluminescent device of the present invention may be any material having a high dielectric constant, high insulating properties, and high dielectric collapse. Examples of such dielectric materials include metal oxides and metal nitrides such as BaTi03, KNb03, LiNb03, LiTa〇3, Ta2〇3, BaTa2〇6, γ2〇3, Ah〇3, and A10N. The insulating layer may be formed as a uniform layer or a particle layer containing an organic binder. For example, according to the description of Mat. Res. Bull., Vol. 36, p. The thickness of the insulating layer is preferably 1 μm or more and less than 35 μm, more preferably 12 μm or more and less than 33 μm, and 15 μm or more and less than 31 μm. If it is too thin, the insulating layer is liable to be subjected to dielectric collapse. Too thin an insulating layer reduces the voltage applied to the luminescent layer, resulting in substantial loss of luminescence efficiency. Examples of the organic binder used for the insulating layer include polymers having a relatively high dielectric constant such as cyanoethyl amylopectin, cyanoacetylated polyvinyl alcohol, and cyanoethyl cellulose resin and other resins such as poly Ethylene, polypropylene, polystyrene resin, epoxy resin, epoxy resin, and polyvinylidene fluoride. The dielectric constant can be adjusted by appropriately mixing a high dielectric constant substance such as barium titanate or barium titanate into the resin. The insulating particles can be dispersed by a homogenizer, a planetary agitator, a roller stirrer, an ultrasonic distributor, or the like. Red Material As described above, the electroluminescent device of the present invention may comprise at least one red conversion material, green conversion material, red electroluminescent phosphor, and green electrophoresis in addition to blue-green luminescent bismuth-zinc phosphor particles. Luminescent phosphor. Red -16- 201044909 The color or green conversion material is a red or green organic material which is an inorganic material. It is best to change the material. The organic fluorescent dye ' can be located on the opposite side of the luminescent layer and the transparent layer. The red or green particles are added to the light-emitting layer as a layer independent of the blue-green light-emitting layer. From the electroluminescence of the present invention, the red portion-light wavelength of 5 90 to 65 nm can be placed on the opposite side of the light-emitting layer and the transparent electricity in the light-emitting layer, but the device is included in all the insulating layers. The layer contained in the insulating layer having two or more 〇w or more is preferably located in the absence of red. The preferred example is that the intermediate layer between the insulating layers containing the red material contains a layer of red transition material and emits light. The relationship between the layers is preferably from 1 to 20 μm, and the concentration of the 3 3 conversion material is preferably converted to luminescence of the zinc sulfide, but the organic fluorescent dye or pigment is used for the red or green electroluminescent phosphor. As the color transfer or pigment may be dispersed between the light-emitting layer or the insulating layer electrode, or in the light-emitting layer to the transparent electrode color electroluminescent phosphor may be phosphorescent with blue-green light, or placed between the transparent electrode and the insulating layer, The white light emitted by the outer red or green electroluminescent phosphor light device preferably contains wavelengths in minutes. It is preferable to obtain a red conversion material in the above range or to add a red conversion material between the red conversion materials or to place the light-emitting layer to the transparent electrode interlayer layer. Preferably electroluminescent device color conversion material. More preferably, the insulating layer is separated above the electroluminescence, one or more of which is a color conversion material. Between the insulating layer and the luminescent layer containing the color conversion material. The layer of the other color conversion material is used as a red-free conversion material interlayer. The layer of the material is in the form of a red-free conversion material, and the thickness of the layer containing the red conversion material is preferably ξ 1 7 μm. The red color in the insulating layer accounts for 1% by mass to 20% by mass of the dielectric material (represented by barium titanate) -17 to 201044909, and more preferably 3% by mass to 15% by mass. In the case where the layer containing the red conversion material is sandwiched between the insulating layers without the red conversion material, the thickness of the red conversion material is preferably from 1 to 20 μm, and more preferably from 3 to 10 μπι. The concentration of the red conversion material in the insulating layer is preferably from 1% by mass to 30% by mass, more preferably from 3% by mass to 20% by mass, based on the dielectric material. In the case where the layer containing the red conversion material is sandwiched between the insulating layers without the red conversion material, the layer containing the red conversion material does not contain the dielectric material and is only converted by a high dielectric constant binder and red. The construction of the material is also a preferred embodiment. The following is a detailed description of organic substances. As described above, it is preferable to use an organic fluorescent dye or a dye as a red conversion material. Preferred examples of compounds constituting the luminescent center of the luminescent pigment or dye include red rose, lactone, dibenzopyran, quinoline, benzothiazole, triethylporphyrin, hydrazine, hydrazine A compound in which triphenyl or dinitrile is used as its skeleton. Cyanine dyes, azo dyes, polyparaphenylene polymers, dioxane oligothiophene polymers, hydrazine complexes, hydrazine complexes, and bait complexes are also preferred embodiments. These compounds may be used singly or in the form of a mixture of two or more. The color conversion material can be used in a manner such as being dispersed in a polymer. A fluorescent pigment having a peak emission wavelength in the range as described above can be exemplified by SEL 1 003 manufactured by Shinloihi Co., Ltd., Japan. The luminescence peak wavelength of the fluorescent pigment or dye used can be adjusted to a range by using a filter such as a band pass reflection filter. Transparent Electrode The transparent electrode used in the present invention is uniformly coated by a transparent, conductive -18-201044909 material such as indium tin oxide (ITO), tin oxide, chain doped tin oxide or zinc oxide. The transparent layer or polyethylene terephthalate or cellulose triacetate can be passed through a vapor deposition method, coating, printing or other transparent electrode to have a layered multilayer structure sandwiched by a high refractive index. Conductive polymers include conjugated polymers, which are also used in the fabrication of transparent electrodes. For the transparent description, refer to "Token Research" 日本 "DENJIHA SHIELD ZAIRYO NO GENJYO" and "Japanese Laid-Open Patent Publication No. 9-147639A. It is also preferable to use a transparent conductive sheet having improved conductivity. A transparent conductive sheet is formed on the transparent film or The above-mentioned transparent conductive polymer is obtained by arranging a wire structure formed by arranging a metal and/or an alloy on a transparent film in a net or the like. If a thin wire is used in combination, copper or silver is preferable. The alloy of the upper metal. The transparent guide is used to replace the metal or alloy wire, preferably a conductive or thermally conductive wire material. The width of the wire strand is more than μηη to 1〇〇〇μηη, but not The distance between the wire strands of the wire strands is preferably from 50 μm to 5 lcm. The height (or thickness) of the wire structure is preferably 〇 5 to 5 μηη. The wire structure can be exposed. It is coated on the transparent or coated with a transparent conductive material. On the two kinds of doped tin oxide, zinc matrix, such as a glass-based transparent film, a film is formed by the method. Benzene, a conductive conductive material, Center, Inc.'s TO SYORAI", which is made of a thin wire bundle in the shape of a conductive material, a comb shape, a lattice line, a nickel, a metal, or an electrical material. The wire can be highly conductive: preferably about 0.1 pitch, ie adjacent cm, 1 0 0 μm to 〇. 1 to 10 μm, surface condition of the conductive material, transparent conductive-19- 201044909 The conductive surface of the electrode preferably has a surface roughness of 5 μηι or less. From the viewpoint of good adhesion, the surface roughness is 〇. 0 1 to 5 μ m is preferable, and 0.0 5 to 3 μ m is more preferable. The "surface roughness" of the conductive surface referred to in this specification refers to the measurement of the three-dimensional surface roughness, such as the Surfcom 575A-3DF produced by Tokyo Seimitsu Co., Ltd., which exceeds the measured value. Average amplitude of surface roughness in the 5 mm2 region. When the surface roughness is lower than the resolution of the surface roughness meter, it is measured by a scanning tunneling microscope or an electron microscope. The width, height (or thickness) of the strands, and the relationship between the pitches are determined according to the purpose. Typically, the width of the strands is preferably from -1/1 0000 to 1/10 of the pitch, and the height of the strands is preferably from 1/100 of the width to 10 times the width. The surface resistivity of the transparent electrode is preferably from 0.1 to ΙΟΟ Ω/sq, more preferably from 1 to 80 Q/sq, measured according to the method defined in JIS 691 1. When a fine wire structure of metal and/or alloy is utilized, it is preferable to minimize the reduction of light transmission. It is preferable to ensure that the light transmittance is at least 90% by limiting the pitch, width and height of the strands within the above range. The transparent electrode used in the present invention preferably has a light transmittance of at least 70% at a wavelength of 5 50 nm, more preferably 80%, and particularly preferably 90% or more. In order to improve the brightness and provide white light, the transparent electrode preferably has a light transmittance of at least 80% for light having a wavelength of 420 to 65 nm, and more preferably 90% or more. In order to obtain white light emission, it is more preferable that the transparent electrode has a light transmittance of 80% or more for light having a wavelength of 380 to 680 nm. -20- 201044909 The light transmittance of the transparent electrode is measured by a spectrophotometer. The back electrode which is not extracted when the back electrode passes through the emitted light may be from any of the following conductive materials such as gold, silver, copper, iron, aluminum, and *graphite, depending on the type of the electroluminescent device, The temperature during the manufacturing process is selected as appropriate for a similar situation. For example, a transparent electrode made of indium tin oxide (ITO) can be used as long as conductivity can be ensured. For the back electrode, it is very important to have a high thermal conductivity, especially if the thermal conductivity is at least 2.0 W/(cm_deg), preferably 2.5 W/(cm.deg) or higher. Improved durability. Another preferred method is to use a metal sheet or a metal mesh as the back electrode to ensure high conductivity and efficient heat dissipation around the electroluminescent device. Manufacturing Method There is no limitation on the method of producing the electroluminescent device of the present invention. The Ο manufacturing method described in detail in Japanese Patent Laid-Open Publication No. 2007-1-2466A [0046] to [0049] can be suitably employed. Packaging In the final step of manufacturing an electroluminescent device, the device is preferably packaged as a sealing film to protect the device from the humidity and oxygen of the external environment. For details of the packaging technique, reference is made to the description of Japanese Laid-Open Patent Publication No. 2007-12466A [0050] to [0055]. A gas barrier laminate film is a preferred sealing film. In the following, the description of the various elements of the present invention may be made in accordance with the representative embodiments of the present invention in the case of the present invention. In the case of the present invention, it should be understood that the present invention is not limited to the specific embodiment. Gas barrier laminated film The laminated structure is preferably a gas barrier laminated film as a sealing film, which preferably comprises a base film, at least one inorganic layer, and at least one organic layer. The number and order of the inorganic layer and the organic layer formed on the base film are not limited. The inorganic layer and the organic layer may be formed on the base film in this order or in reverse order. Preferably, the laminated film has a staggered organic layer and an inorganic layer on the base film, and for example, an inorganic layer, an organic layer, and an inorganic layer are sequentially provided on the base film. The number of layers of the inorganic layer and the organic layered layer is preferably from 1 to 10 layers each, more preferably from 1 to 5 layers, and most preferably from 1 to 3 layers. The inorganic layer and the organic layer may be laminated on one side or both sides of the base film. The functional layer may be formed between the base film and the inorganic layer, between the base film and the organic layer, or between the inorganic layer and the organic layer. Examples of the functional layer include an optical functional layer such as an antireflection layer, a polarizing layer, a color filter, and a light extraction efficiency enhancement layer; a mechanical functional layer such as a hardened layer and a rolled layer; an electron such as an antistatic layer and a conductive layer ^ Functional layer; anti-fog layer, anti-fouling layer, and printable layer. Organic layer The organic layer constituting the gas barrier laminate film may be a film of a polymer containing a phosphate group. The polymer having a phosphate group can be obtained by polymerizing a monomer composition containing a polymerizable monomer having at least one phosphate group. A laminated film having an inorganic layer and an organic layer containing a phosphate based on one side of the base film, and a gas barrier layer composed of an inorganic layer and an organic layer in the order of -22-201044909 and an inorganic layer on the opposite side of the base film film. The laminated film having such a gas barrier layer can prevent the intrusion of water molecules from the opposite side, thereby controlling the dimensional change of the gas barrier laminate film and avoiding stress concentration in the inorganic layer or destruction of the inorganic layer, thereby further improving Its durability. The preferred monomer having a phosphate group can be represented by the following chemical formula (1).

0 Ac1—0—X1—0—P—0-Z10 Ac1—0—X1—0—P—0—Z1

2 化學式(1) 在化學式(1)中,Z1代表Ac2-0-X2-,不具有可聚合基 團的取代基或氫原子;Z2代表Ac3-0-X3-,不具有可聚合 基團的取代基或氫原子:Ac1,Ac2以及Ac3各自獨立代表 丙烯醯基或甲基丙烯醯基;而X1,X2及X3各自獨立代表 伸烷基,伸烷氧基,伸烷基氧基羰基,伸烷基羰基氧基’ 或上述之組合物。 化學式(1)所示的單體可爲以下化學式(2)所代表的單 官能單體,以下化學式(3)所代表的雙官能單體,或以下化 學式(4)所代表的三官能單體。 〇 Λ 1 , II ,2 Chemical formula (1) In the chemical formula (1), Z1 represents Ac2-0-X2-, a substituent having no polymerizable group or a hydrogen atom; Z2 represents Ac3-0-X3-, and has no polymerizable group a substituent or a hydrogen atom: Ac1, Ac2 and Ac3 each independently represent an acryloyl group or a methacryloyl group; and X1, X2 and X3 each independently represent an alkylene group, an alkoxy group, an alkyloxycarbonyl group, and a stretching group. Alkylcarbonyloxy' or a combination of the above. The monomer represented by the chemical formula (1) may be a monofunctional monomer represented by the following chemical formula (2), a difunctional monomer represented by the following chemical formula (3), or a trifunctional monomer represented by the following chemical formula (4) . 〇 Λ 1 , II ,

Ac1一0一X1—〇一P一〇—R1 ό—R2 化學式(2) -23- 201044909 〇Ac1_0一X1—〇一一一一—R1 ό—R2 Chemical Formula (2) -23- 201044909 〇

Ac1—Ο—X1—〇一p—〇—χ2—〇一Ac2 I 9 0—R2 化學式(3 〇Ac1—Ο—X1—〇一p—〇—χ2—〇一Ac2 I 9 0—R2 Chemical Formula (3 〇

Ac】一O—X"*—〇—ρ—〇一χ2—ο一Ac2 化學式(4) Ο—X3一Ο一Ac3 0 八(;1,八(52,八(?3,又1,;^2及;^3之定義同化學式(1)。 在化學式(2)及(3)中,R1與R2各自獨立代表不具有可聚合 基團的取代基或氫原子。 在化學式(1)至(4)中,X1,X2及X3較佳者爲各含有1 至12個碳原子,1至6個碳原子更佳,1至4個碳原子最 佳。由X1,X2以及X3所代表之伸烷基氧基、伸烷基氧基 羰基、伸烷基羰基氧基的伸烷基或伸烷基部分的例子,包 括亞甲基、乙烯、丙烯、丁烯、戊二烯以及己烯。伸烷基 Q 或伸烷基部分可爲直鏈或支鏈,但以直鏈爲較佳。各個X1, X2以及X3最好爲伸烷基。 化學式(1)至(4)中不具有可聚合性基團取代基的例 子,包括烷基、烷氧基、芳基、芳氧基,以及上述之組合。 ' 不具有可聚合性基團的取代基,較佳者爲烷基或烷氧基, - 更佳者爲烷氧基。烷基較佳者爲含有1至12個碳原子,1 至9個碳原子更佳’ 1至6個碳原子爲最佳。烷基的例子’ 如甲基、乙基、丙基、丁基、戊基及己基。烷基可爲直鏈 或支鏈,但以直鏈爲較佳。烷基可爲烷氧基、芳基’以及 -24- 201044909 芳氧基等所取代。芳基較佳者爲含有6至14個碳原子,6 至丨〇個碳原子更佳。芳基的例子,如苯基、1-萘基及2-萘基。芳基可爲烷基、烷氧基及芳氧基等所取代。上述就 烷基及芳基的敘述,亦分別適用於烷氧基的烷基部分,以 ‘ 及芳氧基的芳基部分。 化學式(1)中的單體可單獨地使用或與二個或二個以 上之單體結合使用。當化學式(1)中的二個或二個以上之單 體被結合使用時,所結合之二個或二個以上之單官能單體 Ο 以化學式(2)代表之,雙官能單體以化學式(3)代表之,三官 能單體以化學式(4)代表之^ 具有磷酸酯基的可聚合單體可以合成方式製得,亦可 _ 爲市售之化合物,如日本化藥公司出品,商品名 「KAYAMER」之產品,以及 Uni-Chemical Co.,Ltd.出品, 商品名「PHOSMER」之產品。 關於較佳之用以作爲密封膜(阻氣性積層薄膜)之有 機層的磷酸酯的詳細說明,可參照日本特開第 〇 2007-290369A 號公報[0020]至[0042]的記載。 本發明中的電致發光裝置在具有高亮度需求,例如600 燭光/平方米或更高的場合的應用特別有效率,特別是當電 致發光裝置藉由在透明電及與背面電極間施以100到500 伏特的電壓時,或以800赫茲至4000千赫茲的頻率的交 流電源加以驅動時,效率尤佳。 本發明中的分散型電致發光裝置將以下列實施例說 明,但不應解釋爲以本說明書中所述者爲限。 -25- 201044909 實施例1 如下所述之第一層(絕緣層,厚度:30μηι)以及第二 層(發光層,厚度:55μΐη)是透過在一厚度70μιη的鋁電 極(背面電極)之塗佈各種以二甲基甲醯胺控制其黏性的 ' 塗料組成物,且於Η 〇°C下烘乾10個小時,而依序形成於 該鋁電極上。並製備厚度75 μιη的聚對苯二甲酸乙二酯 膜,其上有以濺鍍方式形成,厚度爲40 μιη的氧化銦錫(透 明電極)。在氮氣下,利用190° C的熱輥管將第二層(發 〇 光層)及氧化銦錫層予以壓接。 以下所述之第一層與第二層之組成分爲電致發光裝置 每平方公尺的質量。 . 第一層(絕緣層,含紅色轉換材料) 氰乙基支鏈澱粉 14.0克 氰乙化聚乙烯醇 10.0克 鈦酸鋇微粒(平均球體等效直徑:〇.〇5微米)10 0.0克 紅色轉換材料(SEL 1003,Shinloihi Co,,Ltd.) 1 .〇 克 Ο 第二層(發光層) 氰乙基支鏈澱粉 18.0克 氰乙化聚乙烯醇 12.0克 磷光體粒子Α (說明如下) 120.0克 磷光體粒子A的製備: 將150克的硫化鋅(純度:99.999%,古內化學公司) 加入水中製備漿體。漿體加入含有0.5 3 8克的CuS04· 5H20 的量,以及按鋅之莫耳數,濃度爲0.0001莫耳%的氯金酸 -26- 201044909 鈉的水性溶液,而生成摻雜銅的硫化鋅粗粉末(含銅量: 每一莫耳硫化鋅含1.4χ1(Γ3莫耳;平均粒徑:100奈米)。 所得之粗粉末25.0克與作爲助熔劑的BaCl2*2H202.1克, 氯 MgCl2,6H20 4.25 克,以及 SrCl2. 6H20 1.0 克加以混 ' 合。混合物於120〇°C的溫度下烘烤4小時以生成磷光體前 驅物。磷光輝前驅物以離子交換水沖洗10次,加以乾燥, 於球磨中硏磨,然後於700°C下退火處理4小時。所得之 磷光體粒子以1 0%氰化鉀水性溶液洗淨以除去表面上殘餘 Ο 的銅離子(硫化銅),接著再以水沖洗5次以生成磷光體 粒子A。磷光體粒子A的平均粒徑爲24 μιη,粒徑之變異 係數爲36%,以日本堀場製作所,LA-920雷射繞射/散射粒 . 徑分析儀測得。 電極端子(厚度爲60 μιη的鋁片)被接附於鋁電極及透 明電極。此結構爲一對防潮密封膜加以密封(GX film,凸 版印刷股份有限公司),其係於抽空時予以熱封合。依此 所製得之電致發光裝置編號爲101。 ^ 編號102與103號的電致發光裝置係以與編號101的 電致發光裝置相同的方法加以製造,惟將SEL 1 003分別以 紅色轉換材料 FA 001 或 FA 003 (均由 Shinloihi Co., Ltd. 出品)取代之。 編號101至103號的電致發光裝置均以頻率1〇〇〇 Hz 的交流電源施以300伏特的電壓持續運作。各個電致發光 裝置的發射光譜均被測定以觀察其是否在各特定波長範圍 內具有峰値,並在各個波長範圍內獲致峰値波長,以及其 -27- 201044909 與設爲1 00的較短波長範圍內的峰値強度的相對峰値強 度。所得結果列於表1。 表1 EL裝置 紅色轉換 峰値波長/以下波長範圍中的相對峰値強度 備註 編號 材料 450 至 514 515 至 569 570 至 650 nm nm nm 101 SEL 1003 出現 出現 出現 發明 487 nm/100 549 nm/49 598 nm/80 102 FA002 出現 出現 Μ 對照組 469 nm/100 565 nm/123 103 FA003 出現 Arr •π 出現 對照組 503 nm/100 581 nm/70Ac]一O—X"*—〇—ρ—〇一χ2—ο一Ac2 Chemical Formula (4) Ο—X3 一Ο一Ac3 0 八(;1,八(52,八(?3,又1,; ^2 and ;3 are defined as the chemical formula (1). In the chemical formulas (2) and (3), R1 and R2 each independently represent a substituent having no polymerizable group or a hydrogen atom. In the chemical formula (1) to In (4), X1, X2 and X3 preferably have 1 to 12 carbon atoms each, preferably 1 to 6 carbon atoms, and 1 to 4 carbon atoms are the best, represented by X1, X2 and X3. Examples of the alkylene or alkylene moiety of the alkyloxy group, the alkyloxycarbonyl group, the alkylcarbonyloxy group include methylene, ethylene, propylene, butylene, pentadiene and hexene. The alkylene group or the alkylene moiety may be straight or branched, but is preferably a straight chain. Each of X1, X2 and X3 is preferably an alkyl group. There is no chemical formula (1) to (4). Examples of the substituent of the polymerizable group include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, and combinations thereof. 'Substituents having no polymerizable group, preferably an alkyl group or an alkoxy group Base, - more preferably alkoxy. The radical is preferably from 1 to 12 carbon atoms, more preferably from 1 to 9 carbon atoms, preferably from 1 to 6 carbon atoms. Examples of alkyl groups such as methyl, ethyl, propyl, butyl, The pentyl group and the hexyl group may be a straight chain or a branched chain, but a linear chain is preferred. The alkyl group may be substituted with an alkoxy group, an aryl group, and an -24-201044909 aryloxy group. More preferably, it has 6 to 14 carbon atoms and 6 to 碳 carbon atoms. Examples of aryl groups are phenyl, 1-naphthyl and 2-naphthyl. The aryl group may be an alkyl group, an alkoxy group and The aryloxy group and the like are substituted. The above descriptions of the alkyl group and the aryl group are also respectively applicable to the alkyl moiety of the alkoxy group, and the aryl moiety of the 'aryloxy group. The monomer in the formula (1) can be used alone. Used in combination with two or more monomers. When two or more monomers in the formula (1) are used in combination, two or more monofunctional singles are combined. The body is represented by the chemical formula (2), the bifunctional monomer is represented by the chemical formula (3), and the trifunctional monomer is represented by the chemical formula (4). The polymerizable monomer having a phosphate group can be used. It can be obtained by a synthetic method, or it can be a commercially available compound, such as a product produced by Nippon Kayaku Co., Ltd., a product of the trade name "KAYAMER", and a product of Uni-Chemical Co., Ltd., trade name "PHOSMER". For a detailed description of the phosphate ester used as the organic layer of the sealing film (gas barrier laminated film), the description of JP-A-2007-290369A [0020] to [0042] can be referred to. The use of an electroluminescent device in applications where high brightness requirements, such as 600 candelas per square meter or more, is particularly efficient, especially when the electroluminescent device is applied between 100 and 500 volts between the transparent and the back electrodes. This is especially effective at voltages or when driven from an AC source at a frequency of 800 Hz to 4000 kHz. The dispersion type electroluminescent device of the present invention will be described by the following examples, but should not be construed as being limited to the description herein. -25- 201044909 Example 1 The first layer (insulating layer, thickness: 30 μηι) and the second layer (light-emitting layer, thickness: 55 μΐη) as described below were coated through an aluminum electrode (back surface electrode) having a thickness of 70 μm. A variety of coating compositions whose viscosities were controlled by dimethylformamide were dried at Η ° C for 10 hours and sequentially formed on the aluminum electrode. A polyethylene terephthalate film having a thickness of 75 μm was prepared, which was formed by sputtering, and indium tin oxide (transparent electrode) having a thickness of 40 μm. The second layer (the luminescent layer) and the indium tin oxide layer were pressure-bonded under a nitrogen gas using a 190 ° C hot roll tube. The composition of the first layer and the second layer described below is divided into masses per square meter of the electroluminescent device. The first layer (insulation layer, containing red conversion material) cyanoethyl amylopectin 14.0 g cyanide polyvinyl alcohol 10.0 g barium titanate particles (average sphere equivalent diameter: 〇. 〇 5 μm) 10 0.0 g red Conversion material (SEL 1003, Shinloihi Co,, Ltd.) 1. 〇 Ο Ο second layer (light-emitting layer) cyanoethyl amylopectin 18.0 g of cyanoacetylated polyvinyl alcohol 12.0 g of phosphor particles Α (described below) 120.0 Preparation of gram phosphor particle A: 150 g of zinc sulfide (purity: 99.999%, Gunne Chemical Co., Ltd.) was added to water to prepare a slurry. The slurry is added with an amount of 0.53 8 g of CuS04·5H20, and an aqueous solution of sodium chloroauric acid -26-201044909 in a molar concentration of 0.0001 mol% according to the molar number of zinc, thereby forming copper-doped zinc sulfide. Coarse powder (copper content: 1.4 χ 1 per mole of zinc sulfide (Γ 3 mol; average particle size: 100 nm). 25.0 g of the obtained crude powder and BaCl 2 * 2 H 202.1 g as a flux, chlorine MgCl 2 6H20 4.25 g, and SrCl2. 6H20 1.0 g was mixed. The mixture was baked at 120 ° C for 4 hours to form a phosphor precursor. The phosphorescent precursor was rinsed 10 times with ion-exchanged water and dried. , honed in a ball mill, and then annealed at 700 ° C for 4 hours. The obtained phosphor particles are washed with an aqueous solution of 10% potassium cyanide to remove residual copper ions (copper sulfide) on the surface, and then Rinse 5 times with water to form phosphor particles A. Phosphor particles A have an average particle size of 24 μηη and a particle size coefficient of variation of 36%, which is produced by Japan Horiba, LA-920 laser diffraction/scattering particles. The analyzer was measured. The electrode terminal (aluminum sheet with a thickness of 60 μηη) was Attached to the aluminum electrode and the transparent electrode. This structure is sealed by a pair of moisture-proof sealing films (GX film, Letterpress Printing Co., Ltd.), which is heat-sealed when evacuated. The electroluminescent device thus obtained is obtained. No. 101. ^ Electroluminescent devices No. 102 and No. 103 were manufactured in the same manner as the electroluminescent device No. 101 except that SEL 1 003 was respectively converted to red material FA 001 or FA 003 (both by Shinloihi) Replaced by Co., Ltd.. The electroluminescent devices No. 101 to 103 are continuously operated with an AC power supply of 1 Hz frequency and a voltage of 300 volts. The emission spectra of the respective electroluminescent devices are Measured to see if it has a peak in each specific wavelength range, and a peak-to-peak wavelength in each wavelength range, and a relative peak of its peak intensity in the shorter wavelength range of -27-201044909 and 100 Å値 strength. The results are shown in Table 1. Table 1 EL device red conversion peak 値 wavelength / relative peak intensity in the following wavelength range Remarks No. Material 450 to 514 515 to 569 570 to 650 nm Nm nm 101 SEL 1003 appeared invented 487 nm/100 549 nm/49 598 nm/80 102 FA002 appeared Μ control group 469 nm/100 565 nm/123 103 FA003 Arr • π appeared in the control group 503 nm/100 581 Nm/70

各個電致發光裝置以驅動電壓(約140 V)以及頻率 (約1.1 kHz)加以驅動,二者均被調整至提供5 00 cd/m2 的發光強度。測定發光的演色性指數,其結果顯示於表2。 將印有人像,包括花椰菜及蕃茄的蔬果沙拉,含有紅、黃、 綠以及藍色的花朵與植物及天空的風景等圖片之透明介質 (G-Color Print,由富士軟片產製)置於各個電致發光裝 置上,並就傳送的影像加以評估。評估結果的槪要列於表 2 ° -28- 201044909 表2 EL裝置編號 演色性指數 傳送影像的評估結果 101 82 所有人像、蔬菓以及風景的影像均顯 示與原物的精準度 102 67 影像色調普遍偏藍,因此如人的虜色 以及蕃茄的顏色均與原物顏色有明顯 差別。 103 77 影像色調普遍偏黃。特別是人的虜色 原物顏色有明顯差別。 〇 實施例2 除了分別改變助熔劑BaCl2 · 2Η20、MgCl2 · 6Η20、 SrCl2· 6Η20的量爲4.2克、11.2克、9·0克之外,磷光體 . 粒子Β以與磷光體粒子Α同樣的方式製備。磷光體粒子Β 的平均粒徑爲17 μιη,粒徑之變異係數爲31%。 除了以磷光體粒子Β取代磷光體粒子Α外,編號104 到106的電致發光裝置以與編號101到103的電致發光裝 置相同的方法加以製造。 Ο 編號104至106的電致發光裝置與編號101至103的 電致發光裝置,在發射峰型、演色性、以及G - C ο 1 〇 r評估 上有相等結果。由於磷光體粒子的粒徑縮小的關係,編號 104至106的電致發光裝置在發光強度上約爲編號101至 103的電致發光裝置的1.4倍。在G-Color評估方面,在驅 ' 動電壓約120 V時,發光強度爲500 cd/m2,大約較實施例 1所需電壓低20 V»因此證明雖然演色性並未隨著磷光體 粒子的粒徑的改變而改變,但因驅動電壓的降低而改善了 -29- 201044909 亮度。 實施例3 除了以如下之方法改變層狀結構外,編號107到109 的電致發光裝置以相同於實施例2的方法加以製造及評 ' 估。第一層與第二層的厚度均爲14 μιη。 第一層(絕緣層,不含紅色轉換材料) 氰乙基支鏈澱粉 7.0克 氰乙化聚乙烯醇 5.〇克 Ο 鈦酸鋇粒子(平均球體等效直徑:0.05μϊη) 50_0克 第二層(絕緣層,含紅色轉換材料) 氰乙基支鏈澱粉 7.0克 . 氰乙化聚乙烯醇 5.〇克 鈦酸鋇粒子(平均球體等效直徑:0·05μηι) 50.0克 紅色轉換材料 3.〇克 第三層(發光層) 氰乙基支鏈澱粉 18.0克 Ο 氰乙化聚乙烯醇 - 12.0克 憐光體粒子Β 120.0克 已可證實’透過將實施例2中的絕緣層分爲兩個次 - 層’並將紅色轉換材料加入其中一個次層,在各個電致發 光裝置中’在最長波長範圍的發射峰是向較長波長値移動 約5 nm °層狀結構的改變並未改變發光特性(如強度比 例)。與實施例1所得之結果相較,以與實施例1的同樣 方式所得之G-color評估結果列於表3,演色性指數亦列於 -30- 201044909 表3。 表3 EL裝置編號 演色性指數 傳送影像的評估結果 107 86 有較佳的紅色重現(例如: 蕃茄),故可達成清晰且明亮 的顏色重現。 108 70 藍色色調無法完全除去,因 此顏色均與原物顏色有明顯 差別》 109 78 影像不僅色調偏黃,且紅色 亦被強化,因此導致呈現不 理想的藍色重現。 實施例4 除未使用紅色轉換材料,並分別以 ZnS:Cu,Al及 ZnS:Cu,In取代重量百分比爲10%及30%的磷光體粒子外, 編號110的電致發光裝置,以與實施例2之編號104的電 致發光裝置相同的方法加以製造。除了分別加入0.70克的 A12S3 與 0.15 克的 In2S3 外,ZnS__Cu,Al 及 ZnS:Cu,In 係以 相同於實施例2說明之方法而獲得。ZnS:Cu,Al的平均粒徑 爲18μηι,粒徑之變異係數爲33%,而ZnS:Cu,In的平均粒 徑爲19 μιη,粒徑之變異係數爲37%。 所得之電致發光裝置在三個類似於實施例2中編號 1〇4的電致發光裝置的波長範圍中各有一個發射峰,並在 演色性及G-color評估的顔色重現方面顯示令人滿意的結 果。 由前述實施例的結果可知,藉由在下列三個波長範 圍:( 1 ) 45 0 至 514nm,(2)515 至 569 nm,(3) 5 70 至 650 nm, -31- 201044909 設計各至少有一峰値的發射光譜,峰値強度依(1),(3),(2) 的順序下降,可提供具有優異演色性及顔色重現的電致發 光裝置。 實施例5 ' 除GX film以聚對萘二甲酸乙二酯薄膜(帝人杜邦薄 膜公司,Teonex Q65FA)取代作爲密封膜外,編號201的 電致發光裝置以與實施例1之編號101的電致發光裝置相 同的方法加以製造。 〇 分別將下列具有磷酸酯基的丙烯酸酯化合物各1克: 如下所示之化合物A ( KAYAMER PM-21,日本化藥公司出 品),化合物B( Light Ester P-2M,共榮社化學公司出品), 及化合物C ( V#3PA,大阪有機化學工業),如下所示之 化合物D ( TOP OLEN,新中村化學工業公司出品)作爲具 有氫氧基的丙烯酸酯;如下所示之化合物E( M5 3 0 0,東亞 合成公司出品)作爲具有羧基的丙烯酸酯;如下所示之化 合物F ( AAEMA,Aldrich)作爲具有乙醯丙酮結構的丙烯 ◎ 酸酯;以及如下所示之化合物G ( Light Acrylate TMP-A, 共榮社化學)作爲三官能基可聚合丙烯酸酯,與9克之如 下所示之光可聚合化合物(Light Acrylate BEPG-A,共榮 社化學公司出品)予以混合。混合物與0.6克的光聚合起 始劑(IRGACURE 907,CibaGeigy出品)溶解於190克的 甲基乙基酮中,以製備塗佈組成物。 利用#6之製線條料將組成物塗佈於如前使用的聚對萘 二甲酸乙二酯基膜(TenoexQ65FA)的平滑面上,並於以 -32- 201044909 氮氣排淨,氧氣濃度不超過0,1%的環境下,利用160W/cm 的氣冷式鹵素燈(Eye Graphics製)以3 5 0 mW/cm2的光照 度的紫外線以提供5 00 mJ/cm2的總能量予以照射,而形成 厚度約5 00 nm的有機層。 ' 藉由濺鍍法,以鋁爲標靶,氬爲放電氣體,而以氧氣 作爲反應氣體,在有機層上形成厚度50 nm的氧化鋁 (ΑΙΟχ)無機層。 以#6之製線條料,將與上述形成有機層相同的塗佈組 〇 成物塗覆於無機層上,並於以氮氣排淨,氧氣濃度不超過 0.1 %的環境下’利用160W/cm的氣冷式_素燈(Eye Graphics製)以3 5 0 mW/cm2光照度的紫外線以提供500 mJ/cm2的總能量予以照射,而形成厚度約50〇 nm的有機 層。因而獲得於基膜上具有有機層/無機層/有機層結構的 積層薄膜。於有機層中使用化合物A、B、C、D、E、F或 G所得之積層薄膜分別編號爲202A、202B、202C、202D、 202E、202F,或 202G。 -33- 201044909 化合物A : 〇 ^COO^^〇C〇(CH^〇tHOHV5 Ί.5 化合物B :Each electroluminescent device was driven with a drive voltage (about 140 V) and a frequency (about 1.1 kHz), both of which were adjusted to provide a luminous intensity of 500 cd/m2. The color rendering index of the luminescence was measured, and the results are shown in Table 2. A fruit-and-fruit salad containing broccoli and tomatoes, a transparent medium containing red, yellow, green, and blue flowers and plants and sky scenery (G-Color Print, manufactured by Fujifilm) will be placed in each. The electroluminescent device is evaluated and the transmitted image is evaluated. The summary of the evaluation results is shown in Table 2 ° -28- 201044909 Table 2 Evaluation results of the EL device number color rendering index transmitted image 101 82 All images, fruits and vegetables and landscape images are displayed with the accuracy of the original 102 67 It is bluish, so the color of the person and the color of the tomato are significantly different from the original color. 103 77 Image tones are generally yellowish. Especially the color of the human body has obvious differences in color. 〇Example 2 In addition to changing the fluxes BaCl2 · 2Η20, MgCl2 · 6Η20, SrCl2 · 6Η20, respectively, the amount of the phosphor was 4.2 g, 11.2 g, and 9.0 g, and the phosphor particles were prepared in the same manner as the phosphor particles. . The average particle diameter of the phosphor particles 17 was 17 μm, and the coefficient of variation of the particle diameter was 31%. The electroluminescent devices Nos. 104 to 106 were fabricated in the same manner as the electroluminescent devices Nos. 101 to 103 except that the phosphor particles were replaced by phosphor particles.电 The electroluminescent devices numbered 104 to 106 and the electroluminescent devices numbered 101 to 103 have equal results in evaluation of emission peak shape, color rendering, and G - C ο 1 〇 r. The electroluminescent devices Nos. 104 to 106 have an emission intensity of about 1.4 times that of the electroluminescent devices numbered 101 to 103 due to the relationship of the particle size reduction of the phosphor particles. In terms of G-Color evaluation, the illuminance is 500 cd/m2 at a driving voltage of about 120 V, which is about 20 V lower than the voltage required in Example 1. Therefore, although color rendering does not follow the phosphor particles The change in particle size changes, but the brightness of -29-201044909 is improved due to the decrease in driving voltage. Example 3 An electroluminescent device Nos. 107 to 109 was manufactured and evaluated in the same manner as in Example 2 except that the layered structure was changed in the following manner. Both the first layer and the second layer have a thickness of 14 μm. The first layer (insulating layer, no red conversion material) cyanoethyl amylopectin 7.0 g cyanoacetylated polyvinyl alcohol 5. 〇 Ο barium titanate particles (average sphere equivalent diameter: 0.05 μϊη) 50_0 g second Layer (insulation layer, containing red conversion material) cyanoethyl amylopectin 7.0 g. Cyanide polyvinyl alcohol 5. gram barium titanate particles (average sphere equivalent diameter: 0·05 μηι) 50.0 g red conversion material 3 .3rd layer of gram (light-emitting layer) 18.0g of cyanoethyl amylopectin 氰Cyanide-acetylated polyvinyl alcohol - 12.0g of light-grain particles Β 120.0g has been confirmed by dividing the insulating layer in Example 2 Two sub-layers' and red conversion materials are added to one of the sub-layers. In each electroluminescent device, the emission peak in the longest wavelength range is a change of the layered structure of about 5 nm to the longer wavelength 并未. Change the luminescent properties (such as the intensity ratio). The G-color evaluation results obtained in the same manner as in Example 1 are shown in Table 3, and the color rendering index is also shown in Table 3 of -30-201044909. Table 3 EL device number Color rendering index Evaluation results of transmitted images 107 86 A better red reproduction (for example: tomato) is achieved, so that a clear and bright color reproduction can be achieved. 108 70 Blue tones cannot be completely removed, so the colors are significantly different from the original colors. 109 78 The image is not only yellowish in color, but also red is enhanced, resulting in an unsatisfactory blue reproduction. Example 4 Except that the red conversion material was not used, and the phosphor particles of 10% by weight and 30% by weight of ZnS:Cu, Al and ZnS:Cu,In were respectively substituted, the electroluminescent device of No. 110 was implemented. The electroluminescent device of No. 104 of Example 2 was produced in the same manner. ZnS__Cu, Al and ZnS: Cu, In were obtained in the same manner as described in Example 2, except that 0.70 g of A12S3 and 0.15 g of In2S3 were separately added. ZnS: Cu, Al has an average particle diameter of 18 μηι, a particle size coefficient of variation of 33%, and ZnS:Cu, In has an average particle diameter of 19 μηη, and a particle size coefficient of variation of 37%. The resulting electroluminescent device has an emission peak in each of the three wavelength ranges similar to the electroluminescent device numbered 1 to 4 in Example 2, and shows in terms of color rendering and color reproduction of the G-color evaluation. The result of satisfactory people. It can be seen from the results of the foregoing embodiments that at least one of the following three wavelength ranges: (1) 45 0 to 514 nm, (2) 515 to 569 nm, (3) 5 70 to 650 nm, and -31 to 201044909 The emission spectrum of the peak ,, the peak intensity decreases in the order of (1), (3), and (2), and provides an electroluminescence device having excellent color rendering and color reproduction. Example 5 'Electroluminescent device No. 201 was electroporated with the number 101 of Example 1 except that the GX film was replaced with a polyethylene terephthalate film (Teijin DuPont Film Co., Ltd., Teonex Q65FA) as a sealing film. The illuminating device is manufactured in the same manner. 1 Each of the following acrylate compounds having a phosphate group is 1 g each: Compound A (KAYAMER PM-21, manufactured by Nippon Kayaku Co., Ltd.), Compound B (Light Ester P-2M, produced by Kyoeisha Chemical Co., Ltd.) ), and Compound C (V#3PA, Osaka Organic Chemical Industry), Compound D (TOP OLEN, manufactured by Shin-Nakamura Chemical Co., Ltd.) as an acrylate having a hydroxyl group; Compound E (M5) shown below 300, produced by East Asia Synthetic Co., Ltd. as an acrylate having a carboxyl group; compound F (AAEMA, Aldrich) shown below as a propylene phthalate having an acetamidine structure; and a compound G as shown below (Light Acrylate TMP) -A, Kyoeisha Chemical Co., Ltd. as a trifunctional polymerizable acrylate, mixed with 9 g of a photopolymerizable compound (Light Acrylate BEPG-A, manufactured by Kyoeisha Chemical Co., Ltd.) shown below. The mixture was dissolved in 190 g of methyl ethyl ketone with 0.6 g of a photopolymerization initiator (IRGACURE 907, available from Ciba Geigy) to prepare a coating composition. The composition was coated on a smooth surface of a polyethylene naphthalate film (Tenoex Q65FA) as previously used, and was purged with nitrogen at -32 to 201044909, and the oxygen concentration was not exceeded. In a 0%, 1% environment, a 160W/cm air-cooled halogen lamp (made by Eye Graphics) is used to provide a total thickness of 500 mJ/cm2 with ultraviolet light of 305 mW/cm2 to form a thickness. An organic layer of approximately 50,000 nm. By sputtering, aluminum is used as a target, argon is a discharge gas, and oxygen is used as a reaction gas to form an inorganic layer of alumina having a thickness of 50 nm on the organic layer. Applying the same coating composition as the above-mentioned organic layer to the inorganic layer by the #6 line material, and using 160 W/cm in an environment where nitrogen gas is discharged and the oxygen concentration is not more than 0.1%. An air-cooled lamp (manufactured by Eye Graphics) was irradiated with ultraviolet rays of 305 mW/cm 2 to provide a total energy of 500 mJ/cm 2 to form an organic layer having a thickness of about 50 Å. Thus, a laminated film having an organic layer/inorganic layer/organic layer structure on the base film was obtained. The laminate films obtained by using the compound A, B, C, D, E, F or G in the organic layer are numbered 202A, 202B, 202C, 202D, 202E, 202F, or 202G, respectively. -33- 201044909 Compound A : 〇 ^COO^^〇C〇(CH^〇tHOHV5 Ί.5 Compound B:

OH <^COO^^°^ P/〇v-^〇CO^ oOH <^COO^^°^ P/〇v-^〇CO^ o

-34- 201044909 光可聚合性化合物: c2H5 h2c=ch-*coo-ch2-c-ch2-coo-ch=ch2 ri-C4H9 化合物D :-34- 201044909 Photopolymerizable compound: c2H5 h2c=ch-*coo-ch2-c-ch2-coo-ch=ch2 ri-C4H9 Compound D:

OH 化合物Ε : <^COO 亡、士 Η Ο 化合物F : ο ο 化合物G : -35- 201044909OH compound Ε : <^COO 死,士Η Ο compound F : ο ο Compound G : -35- 201044909

ΟΟ

除了分別使用202 A至202 G的積層薄膜作爲密封膜之 外,編號202A至202G的電致發光裝置係以與編號201的 電致發光裝置相同的方法加以製造。編號201與202 A至 202G的電致發光裝置均持續在一 40°C及相對濕度爲85% 的環境下連續運作超過2500小時。裝置在峰値波長487nm 的發射強度在一開始時(〇小時)、經24小時後,以及經 2 5 00小時後加以測量。以將編號201的電致發光裝置於0 小時的強度設爲1 〇〇,所得結果列於表4。表4中的結果證 明編號202A至202G的所有電致發光裝置均在運作24小 時後,其發射強度均僅有微幅的減損。特別是在編號202A 至202C的裝置,在經過25 00小時的連續運作後,亦僅有 微幅的減損。 -36- 201044909 表4 EL裝置 密封膜之有 連續運作後之相對亮度 備註 編號 機化合物 Oh 24h 2500h 201 Μ /\w 100 52 5 發明 202A A 104 100 90 發明 202B B 102 98 85 發明 202C C 102 98 85 發明 202D D 101 93 70 發明 202E E 101 93 70 發明 202F F 101 95 79 發明 202G G 102 97 83 發明 產業應用性 . 本發明提供一分散型電致發光裝置,其可在發光上達 成高度的演色性。 本申請案係根據3月31日所提出之日本專利申請案第 2009-088519號,其全部內容均倂入本案作爲參考,本說明 書中所提及之所有公開案亦倂入本案做爲參考。 ❹ 【圖式簡單說明】 Μ 。 【主要元件符號說明】 〇 -37-The electroluminescent devices Nos. 202A to 202G were fabricated in the same manner as the electroluminescent device No. 201 except that a laminated film of 202 A to 202 G was used as the sealing film, respectively. The electroluminescent devices of No. 201 and 202 A to 202G were continuously operated for more than 2,500 hours in an environment of 40 ° C and a relative humidity of 85%. The emission intensity of the device at the peak wavelength of 487 nm was measured at the beginning (〇 hour), after 24 hours, and after 205 hours. The intensity of the electroluminescent device No. 201 at 0 hours was set to 1 Torr, and the results are shown in Table 4. The results in Table 4 demonstrate that all of the electroluminescent devices numbered 202A through 202G have only a slight impairment in their emission intensity after 24 hours of operation. In particular, the devices numbered 202A to 202C have only a slight impairment after 25 hours of continuous operation. -36- 201044909 Table 4 Relative Brightness of EL Device Sealing Film after Continuous Operation Remarks No. Compound Compound Oh 24h 2500h 201 Μ /\w 100 52 5 Invention 202A A 104 100 90 Invention 202B B 102 98 85 Invention 202C C 102 98 85 Invention 202D D 101 93 70 Invention 202E E 101 93 70 Invention 202F F 101 95 79 Invention 202G G 102 97 83 Industrial Applicability of the Invention. The present invention provides a dispersion type electroluminescent device which achieves a high degree of color rendering on luminescence Sex. The present application is based on Japanese Patent Application No. 2009-088519, filed on March 31, the entire content of which is incorporated herein by reference. ❹ [Simple description of the diagram] Μ . [Main component symbol description] 〇 -37-

Claims (1)

201044909 七、申請專利範圍: 1. 一種分散型電致發光裝置,其包含: 含有硫化鋅磷光體粒子的發光層, • 其中分散型電致發光裝置在450至514nm的短波長 - 範圍、515至569 nm的中間波長範圍,以及570至650nm 的長波長範圍間各至少有一發射峰,峰値強度隨短波長 範圍、長波長範圍以及中間波長範圍的順序而降低。 2. 如申請專利範圍第1項之分散型電致發光裝置, 0 其中磷光體粒子的平均粒徑爲1 μηι或更大而小於 2 0 μ m,且粒徑的變異係數爲3 %或更大而小於4 0 %。 3. 如申請專利範圍第1項或2項之分散型電致發光裝置, 其進一步包含: 紅色轉換材料。 4.如申請專利範圍第3項之分散型電致發光裝置,其進一 步包含__ 背面電極, 〇 其中紅色轉換材料係出現於發光層與背面電極之間 的層。 5.如申請專利範圍第1項或第2項之分散型電致發光裝 置,其進一步包含: * 紅色發光磷光體粒子。 ' 6.如申請專利範圍第5項之分散型電致發光裝置, 其中紅色發光磷光體粒子的平均粒徑爲1 μηι或更大 而小於2 0 μ m,且粒徑的變異係數爲3 %或更大而小於 -38- 201044909 · 4 0%。 7.如申請專利範圍第1項之分散型電致發光裝置,其爲以 阻氣性積層薄膜加以密封, 其中阻氣性積層薄膜包含至少一無機層及至少一有 ' 機層於基膜表面上或其上方,有機層包含單體組成物的 聚合產物,該單體組成物至少含有一具有磷酸酯基的丙 烯酸酯。201044909 VII. Patent application scope: 1. A dispersion type electroluminescent device comprising: a light-emitting layer containing zinc sulfide phosphor particles, wherein the dispersion type electroluminescent device has a short wavelength range of 450 to 514 nm, 515 to The intermediate wavelength range of 569 nm and the long wavelength range of 570 to 650 nm each have at least one emission peak, and the peak intensity decreases with the order of the short wavelength range, the long wavelength range, and the intermediate wavelength range. 2. The dispersion type electroluminescent device according to claim 1, wherein the phosphor particles have an average particle diameter of 1 μm or more and less than 20 μm, and the coefficient of variation of the particle diameter is 3% or more. Large and less than 40%. 3. The dispersion type electroluminescent device according to claim 1 or 2, further comprising: a red conversion material. 4. The dispersion type electroluminescent device according to claim 3, further comprising __ a back electrode, wherein the red conversion material is a layer which is present between the light-emitting layer and the back electrode. 5. The dispersion type electroluminescent device of claim 1 or 2, further comprising: * red luminescent phosphor particles. 6. The dispersion type electroluminescent device according to claim 5, wherein the red luminescent phosphor particles have an average particle diameter of 1 μηι or more and less than 20 μm, and the coefficient of variation of the particle diameter is 3%. Or larger and less than -38- 201044909 · 4 0%. 7. The dispersion type electroluminescent device according to claim 1, which is sealed by a gas barrier laminated film, wherein the gas barrier laminated film comprises at least one inorganic layer and at least one having an organic layer on the surface of the base film Above or above, the organic layer contains a polymerization product of a monomer composition containing at least one acrylate having a phosphate group. 〇 -39- 201044909 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: te 。〇 -39- 201044909 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: te . 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 〇5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: 〇
TW99109784A 2009-03-31 2010-03-31 Dispersion-type electroluminescence device TW201044909A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088519A JP2010244687A (en) 2009-03-31 2009-03-31 Dispersion-type electroluminescence device

Publications (1)

Publication Number Publication Date
TW201044909A true TW201044909A (en) 2010-12-16

Family

ID=42828440

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99109784A TW201044909A (en) 2009-03-31 2010-03-31 Dispersion-type electroluminescence device

Country Status (3)

Country Link
JP (1) JP2010244687A (en)
TW (1) TW201044909A (en)
WO (1) WO2010114157A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171372A1 (en) * 2012-07-04 2015-06-18 Sharp Kabushiki Kaisha Fluorescent material, fluorescent coating material, phosphor substrate, electronic apparatus, and led package

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265866A (en) * 2003-02-14 2004-09-24 Fuji Photo Film Co Ltd Electroluminescent element
JP2005038634A (en) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Current injection light-emitting element
JP4740582B2 (en) * 2004-03-19 2011-08-03 富士フイルム株式会社 Electroluminescent device
WO2006025403A1 (en) * 2004-08-31 2006-03-09 Fujifilm Corporation Dispersion type electroluminescence element
JP2006232920A (en) * 2005-02-23 2006-09-07 Fuji Photo Film Co Ltd Method for producing core/shell particle
JP5161470B2 (en) * 2006-03-29 2013-03-13 富士フイルム株式会社 GAS BARRIER LAMINATED FILM, PROCESS FOR PRODUCING THE SAME, AND IMAGE DISPLAY ELEMENT

Also Published As

Publication number Publication date
JP2010244687A (en) 2010-10-28
WO2010114157A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4867055B2 (en) Dispersive electroluminescence device
JP2005038634A (en) Current injection light-emitting element
TW200834488A (en) Color tunable illumination source and method for controlled illumination
US20090218942A1 (en) Dispersion type electroluminescent element
JP2007299606A (en) Distributed type electroluminescence element
US8558447B2 (en) Dispersion-type electroluminescence device
TW201044909A (en) Dispersion-type electroluminescence device
EP1641056A2 (en) Dispersion type electroluminescent element
KR101588314B1 (en) Phosphor white light emitting device including phosphor and method for preparing phosphor
TW201044908A (en) Dispersion-type electroluminescence device
JP2010215787A (en) Inorganic phosphor particle and distributed electroluminescence element using the same
TWI503399B (en) Preparation of Mn - Activated Zinc - Aluminum Spinel Fluorescent Films
JP2004265866A (en) Electroluminescent element
KR20110045256A (en) Nanophosphor, light emitting device including nanophosphor and method for preparing nanophosphor
JP4330475B2 (en) Method for producing electroluminescent phosphor
JP4769627B2 (en) Inorganic dispersion type electroluminescence device
JP2009167351A (en) Inorganic phosphor
JP2010218891A (en) Distributed electroluminescent element
Miyata et al. Blue-violet phosphate phosphor thin films for EL
JP2006236924A (en) Inorganic dispersion type electroluminescent element and luminescent element system
KR101457056B1 (en) Electroluminescence panel and method for the production thereof using sintered ceramic phosphor sheet
JP2006310169A (en) Inorganic dispersion type electroluminescent element and transparent positive image system
TW201038716A (en) Inorganic phosphor material and dispersion-type electroluminescence device
JP2010251369A (en) Electroluminescent element, method of manufacturing electroluminescent element, light emitting device, and lighting device
JP2006073304A (en) Dispersed type inorganic electroluminescent element