TW201043707A - Device and method for producing high purity metals - Google Patents

Device and method for producing high purity metals Download PDF

Info

Publication number
TW201043707A
TW201043707A TW098118312A TW98118312A TW201043707A TW 201043707 A TW201043707 A TW 201043707A TW 098118312 A TW098118312 A TW 098118312A TW 98118312 A TW98118312 A TW 98118312A TW 201043707 A TW201043707 A TW 201043707A
Authority
TW
Taiwan
Prior art keywords
metal
liquid
purity
salt
gas
Prior art date
Application number
TW098118312A
Other languages
Chinese (zh)
Inventor
chao-zong Jiang
Lu-Kun Kang
ming-kui Chen
Original Assignee
Hi Bound Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hi Bound Technology Co Ltd filed Critical Hi Bound Technology Co Ltd
Priority to TW098118312A priority Critical patent/TW201043707A/en
Publication of TW201043707A publication Critical patent/TW201043707A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention relates to a device and method for producing high purity metals applying separation and purification techniques. The device includes a mixing feeder, a heating melting reactor, a liquid-liquid phase separation device and a liquid-gas phase separation device, wherein the mixing feeder and the heating melting reactor mix high purity metal powder with metal halide salts. By removing gaseous impurities, heating to melt the mixture is heated and melted into liquid phase. By utilizing the liquid-liquid separation device, the two phases are initially purified and separated, and the liquid-gas phase separation device then is utilized to perform a gas-liquid purification and separation process for metals and metal halide slats in the pressure reduction and temperature rising manners to obtain high purity metal products that is greater than grade 6N.

Description

201043707 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種分離技術生產高純度金屬之裝置及方法, 特別是一種將金屬粉末與齒化鹽類的混合物,以液液相及液氣相 ' 分離純化以產生高純度金屬之裝置及方法。 【先前技術】 近年來因太陽能產業興起,生產太陽能級或電子級高純度矽 的須求日增,工業界量產高純度石夕的方式,主要使用西門子氣體 /儿積法,然而,此習知西門子法之方式為高耗能低經濟效率的生 產方式’每公斤矽生成需耗電能超過100千瓦小時(kwh),改良式 的西門子法採用流體化床方式,雖可降低能耗,但仍有1〇一2〇% 粒徑小於微米的矽粉,該粉末因表面積過大易氧化而不易熔融。 為解決上述習知西門子法之矽粉應用問題,有許多提純技術 以獲得尚純度矽塊方式的先前專利前案被提出申請,例如:美國 發明專利第4 ’ 388 ’ 286號「Siliconpurification」案,揭露添加鹼 金族齒化鹽與矽粉末混合,經由攝氏141〇〇c以上高溫使混合物熔 融,經由靜置使齒化鹽與矽分離,經由冷確後獲得高純度矽,但 因單純使用重力條件做液液兩相分離須長時間靜置,並不適用於 〇 工業化量產。 美國發明專利第 4,612, Π9 號「Process forpuriflcation〇fs〇lid silicc^」案,其使用粒徑小於1毫米(mm)的半導體體級石夕粉與超 純的氟化鈉(NaF)混合,在低於梦熔融溫度攝氏13⑻—141(Γ(:下, 藉由氟化鈉熔鹽帶走矽粉末表面的不純物,降溫後再以酸水清洗 方式,除去氟化鈉而獲得矽,此種方法因矽粉粒未熔融,故無法 使粒徑增大,且以酸水清洗方式不易回收丨毫米粒徑之石夕粉。 除此之外’美國發明專利公開案第2〇〇7/〇266826號「地加也 for producing consolidated materials」案’其使用半導體級的石夕粉末 及鹵化金屬鹽,將其混合,加熱至攝氏14〇〇—i8〇〇°c,硬與氟化 3 201043707 納混合物以液液(liquid-liquid)相存在’利用兩者比重不同特性, 使矽與氟化鈉分離成兩相,將其冷確至室溫,再將兩固相分離, 此種方法仍屬於單純利用重力分離之方法,須長時間靜置,方能 減少兩相混和界面,仍存有不適用於工業化量產的問題與缺點。 【發明内容】 習知之西門子法或流體化床法純化高純度金屬等設備及方 法,因單純使用重力條件做液液兩相分離須長時間靜置,並不適 用於工業化量產,或以酸水清洗方式,除去鹵化金屬鹽而獲得金 屬之方式,無法使粒徑增大,且以酸水清洗方式不易回收i毫米 © 粒徑之金屬粉,而不具有產業利用價值。 緣此,本發明之目的’係在於提供一種高純度金屬分離純化 裝置與方法,使高純度金屬粉末,例如:矽粉,與鹵化金屬鹽混 合熔融後’兩相界面加速分離,達到工業化量產高純度矽之效果, 且利用氣液分離,可將1毫米粒徑之金屬粉予以完全回收純化。 本發明之生產高純度金屬之裝置,係包括: 一混合進料器,提供高純度金屬粉末與齒化金屬鹽進料混合 成固態混合物; 加熱炼融反應器,連結混合進料器,將該混合進料器之固 0 態高純度金屬粉末與自化金屬鹽混合物置於該反應器中,利用反 覆,真空與充填如氬(Ar)之惰性氣體方式除去反應器艙體中之不 純氣體與水氣,並利用加熱器將混合物加熱至熔融; —液液相分離裝置,連結加鱗融反應n,將雜熔融反應 器中之熔融混合液中之金屬與金屬自化鹽兩相進行初步純化分 ,,使不純物隨著金屬齒化鹽液排出,以獲得高濃度之金屬與少 量之南化鹽混合液;及 〃 y液氣相分離裝置,連結液液相分離裝置,將該液液相分離 裝置初步純化之高濃度之金屬與少量之i化航合液,利用減壓 加熱的氣液分離,使齒化鹽與不純物自金屬熔液中揮發,加速分 離兩相混合界面以獲得你級高純度金屬。 4 201043707 上述本發明之裝置,其中,該混合進料器内之高純度金屬粉 末與齒化金屬鹽之固態混合物,可以來自高純度齒化金屬與鹼金 族金屬反應獲得。 上述本發明之裝置,其中,該混合進料器内之高純度金屬粉 末與齒化金屬鹽之固態混合物,可以來自高純度鹵化金屬與鹼土 族金屬反應獲得。 上述本發明之裝置,其中,該混合進料器内之高純度金屬粉 末與齒化金屬鹽之固態混合物,可以由半導體級矽粉與高純度鹵 化金屬鹽混合組成。 Ο201043707 VI. Description of the Invention: [Technical Field] The present invention relates to a device and a method for producing high-purity metal by a separation technique, in particular, a mixture of metal powder and toothed salt, liquid liquid and liquid gas A device and method for separating and purifying to produce high purity metals. [Prior Art] In recent years, due to the rise of the solar energy industry, the demand for the production of solar grade or electronic grade high purity germanium has increased. The method of mass production of high purity Shixi in the industrial sector mainly uses the Siemens gas/child method. However, this practice Knowing the Siemens method is a high-energy, low-efficiency production method that generates more than 100 kilowatt-hours of electricity per kilogram (kwh). The improved Siemens method uses a fluidized bed method, which reduces energy consumption. There are still 1〇2〇% of tantalum powder with a particle size smaller than micrometer. The powder is too oxidized due to excessive surface area and is not easily melted. In order to solve the above-mentioned problem of the application of the conventional method of the Siemens method, there are many prior patents for purifying the technology to obtain the purity of the block, for example, the US invention patent No. 4 '388 '286 "Siliconpurification" case, It is disclosed that the alkali gold-doped toothed salt is mixed with the cerium powder, and the mixture is melted by a high temperature of 141 〇〇 C or higher, and the toothed salt is separated from the hydrazine by standing, and high purity hydrazine is obtained by coldness, but gravity is simply used. Conditions for liquid-liquid two-phase separation must be allowed to stand for a long time, and is not suitable for industrial production. U.S. Patent No. 4,612, Π9, "Process for puriflcation 〇fs〇lid silicc^", which uses a semiconductor body grade stone powder having a particle size of less than 1 mm (mm) mixed with ultrapure sodium fluoride (NaF). Below the dream melting temperature of 13 (8) - 141 (Γ (:, by the sodium fluoride molten salt to remove the impurities on the surface of the powder, after cooling, then acid water cleaning method, remove sodium fluoride to obtain bismuth, this method Since the granules are not melted, the particle size cannot be increased, and it is difficult to recover the 夕 粒径 粒径 粒径 粒径 。 。 。 。 。 。 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' No. "Ground plus for producing consolidated materials", which uses a semiconductor grade of Shixi powder and a halogenated metal salt, which is mixed and heated to 14 摄-i8 〇〇 ° C, hard and fluorinated 3 201043707 nanomixture In the presence of a liquid-liquid phase, the separation of ruthenium and sodium fluoride into two phases is carried out by using the different specific gravity of the two liquids, and the two solid phases are separated by cooling to room temperature. Using gravity separation method, it must be left standing for a long time In order to reduce the two-phase mixing interface, there are still problems and shortcomings that are not suitable for industrial mass production. [Summary of the Invention] The conventional method or method for purifying high-purity metal by the Siemens method or the fluidized bed method is simply performed by using gravity conditions. The liquid-liquid two-phase separation must be allowed to stand for a long time, and is not suitable for industrial mass production, or the method of removing the metal halide salt by acid water cleaning to obtain the metal, the particle size cannot be increased, and the acid water cleaning method is difficult to recover. The metal powder of i mm © particle size, without industrial use value. Therefore, the object of the present invention is to provide a high-purity metal separation and purification apparatus and method for high-purity metal powder, such as strontium powder, and halogenation. After the metal salt is mixed and melted, the two-phase interface is accelerated to achieve the effect of industrially producing high-purity yttrium, and the gas powder can be completely recovered and purified by using the gas-liquid separation. The high-purity metal of the present invention can be produced. The apparatus comprises: a mixing feeder for supplying a high-purity metal powder and a toothed metal salt feed to form a solid mixture; heating The smelting reactor is connected to the mixing feeder, and the mixed zero-purity high-purity metal powder of the mixed feeder and the self-chemical metal salt mixture are placed in the reactor, and the vacuum is filled with argon (Ar) The inert gas is used to remove the impure gas and the water gas in the reactor cabin, and the mixture is heated to melt by a heater; the liquid phase separation device is connected to the squaring reaction n, and the molten mixture in the hetero-melt reactor is mixed The primary phase of the metal and the metal self-salting salt is subjected to preliminary purification, so that the impurities are discharged along with the metal toothed salt liquid to obtain a mixture of a high concentration of metal and a small amount of a salt of a southern salt; and a gas phase separation device of the y liquid , connecting the liquid phase separation device, preliminarily purifying the high concentration metal with a small amount of the liquid chemical separation liquid, and separating the gas and liquid by heating under reduced pressure to make the toothed salt and the impurity from the molten metal Volatile, accelerate separation of the two-phase mixed interface to obtain your grade high purity metal. 4 201043707 The apparatus of the present invention described above, wherein the solid mixture of the high purity metal powder and the toothed metal salt in the mixing feeder can be obtained by reacting a high purity toothed metal with an alkali metal. The above apparatus of the present invention, wherein a solid mixture of the high-purity metal powder and the toothed metal salt in the mixed feeder can be obtained by reacting a high-purity metal halide with an alkaline earth metal. The above apparatus of the present invention, wherein the solid mixture of the high-purity metal powder and the toothed metal salt in the mixing feeder may be composed of a mixture of a semiconductor grade niobium powder and a high-purity halogenated metal salt. Ο

上述本發明之裝置’其中’該液氣相分離裝置分離而得之金 屬為矽液,可直接導至長晶、定向凝固或相關之多晶矽之應甩領 域。 本發明之生產高純度金屬之方法,其步驟係包括: a·形成高純度金屬粉末與鹵化金屬鹽之固態混合物,混合添加高純 度金屬粉與金屬齒化鹽至混合進料器中,形成高純度金屬粉末與 鹵化金屬鹽之固態混合物; ' b.抽真空及除去不純氣體與水氣,將步驟a之高純度金屬粉末與鹵 化金屬鹽之固態混合物放入加熱熔融反應器中,反覆抽真空(小於 5 Par)與充填惰性氣體方式除去反應器中之不純氣體與水氣;、 .加熱溶融’利用加熱熔融反應器將步驟b之金屬粉與金屬齒化鹽 混合物加熱至熔融成混合液; d. 金屬與金屬自化舰肋綠,將倾g之齡練人液液相分 該液液相分離裝置將销金屬ώ化鹽初步分離形成高 / 辰度金屬與少量之自化鹽混合液; e. 金屬與金屬齒化鹽液氣相分離’將步驟d之高濃度之金屬與少量 :幽=混合液導入氣液相分離器,再利用減壓加熱的氣液分離 ^化動作’將氣鹽與不純物氣態揮發·及形成純化液相金 5 201043707 f·提取高純度金屬,由步驟 高純度液相金屬。 e之液氣相分離器底部提取獲得 6N級 上述本發明之方法,該步驟a 鹽之固態混合物,可由高純度献金屬屬 上述本發明之方法,該步驟a之高 麗應獲侍。 本發明之產生高純度金屬之裝置 =應獲侍 金屬嶋可有效的純化金屬粉表面之不純物;氧化:=The apparatus of the present invention described above in which the liquid vapor phase separation apparatus is separated is a sputum liquid which can be directly guided to the field of crystal growth, directional solidification or related polysilicon. The method for producing high-purity metal of the present invention comprises the steps of: a) forming a solid mixture of a high-purity metal powder and a metal halide; mixing and adding a high-purity metal powder and a metal toothed salt to the mixed feeder to form a high a solid mixture of a purity metal powder and a metal halide; ' b. evacuating and removing impure gas and moisture, placing a solid mixture of the high purity metal powder of step a and the metal halide salt in a heated melt reactor, repeatedly vacuuming (less than 5 Par) and impure gas to remove the impure gas and water gas in the reactor; heating and melting 'heating the mixture of the metal powder of step b and the metal toothed salt mixture to a molten mixture; d. Metal and metal self-chemical ribbed green, will pour the age of the human body liquid phase liquid separation liquid separation device to separate the pin metal bismuth salt to form a high / long metal and a small amount of self-chemical salt mixture e. Gas-phase separation of metal and metal toothed salt liquid 'Introducing the high concentration of metal in step d with a small amount: 幽 = mixture into the gas-liquid separator, and then using the gas-liquid separation heated under reduced pressure ^ Operation of 'the salt with a gas-volatile gaseous impurities and form a purified liquid metal 5 201043707 f · extraction of high purity metal, high purity liquid metal by the step. The bottom of the liquid gas phase separator of e is extracted to obtain the 6N-stage method of the present invention. The solid mixture of the salt of the step a can be obtained by the high-purity metal. The method of the present invention is as described above. The device for producing high-purity metal of the invention has the advantage that the metal ruthenium can effectively purify the impurities on the surface of the metal powder; oxidation:=

=兩不純物及齒化鹽與液態金屬分離達到初步純化 作用,再糊祕加熱之相錄器,使如—氧化碳 化矽=0)、自化奴含磷π純物晚_雜除純化,並改盖 皁純靠重力靜置村形成驗兩相分義缺點 到^業化量產的目的’並且’本發明之裝置及方法的最終導出物 為向純度液態金>1 ’例如:液财’可直接制在高科技電子業 或太陽能產業_糊產品製程,崎料麻關態料能耗 與成本。 【實施方式】= two impurities and toothed salt separated from the liquid metal to achieve preliminary purification, and then paste the heated album, so that the oxidized carbonized 矽 = 0), self-made slave phosphorus π pure matter late _ impurity purification, and The change of the soap is purely by gravity, and the village is formed to test the two-phase disambiguation to the purpose of mass production. And the final derivative of the apparatus and method of the present invention is pure liquid gold > 1 ' 'Can be directly produced in the high-tech electronics industry or the solar energy industry _ paste product process, the raw material energy consumption and cost. [Embodiment]

首先,請參閱第一圖所示,本發明之生產高純度金屬之襞置 100 ’係包括一混合進料器10 ,該混合進料器1〇更包含有至少一 進料容器11及進料控制闊12,該進料容器u供高純度金屬粉末 與鹵化金屬鹽進料混合成一固態混合物200,該固態混合物2⑽的 形成亦可由高純度鹵化金屬與鹼金族金屬反應獲得,或由高純度 鹵化矽與鹼土族金屬反應獲得,該進料控制閥12連結於進料容器 Π下方’以藉由該進料控制閥12控制該進料容器11内之固態混 合物200的輪出。 一加熱熔融反應器20 ’連結混合進料器1〇,該加熱熔融反應 器2〇更包括一熔融容器21、熔融加熱裝置22及一熔融容器出料 控制閥23 ’其中,該熔融容器21可採用石墨或碳化矽(SiC)材質, 或用其它耐高溫材質内襯構成,該熔融容器21頂端設有至少一入 6 201043707 料口 211、真空抽氣口 212及惰性氣體入口 213 結混合進料器10之進料. μ入科口 211連 將進料容零η心透過進料控制閥12控制, 將祕在器11内之兩純度金屬粉末_ 輸入雜融容器21内,該真空抽氣口 212供以物 二,融篇21内部進行減空健,該惰性氣體人口 ^入如^之雜氣妓雜融舞21 _,魏器 哭:輸^口214 ’熔融容器21之外表’包覆-層熔融容 滅層215 ’以防止熔融容器2ί之熱散失,該熔融容器絕 Ο 〇 =4^1溶融Ϊ器冷卻外層216’以提雜融容器21 或油。衣7部之該溶融容器冷卻外層216的冷卻劑可以為水 器裝置22設於雜祕器21崎,峨供熔融容 m抽熱操作,該溶融加熱裝置μ之型態不限,在本發明 峰系歹丨牛電熱器為例’其他等效之加熱裝置,當不脫本發明之範 溶融加熱裝置22提供該經由入料口211輪入高純度金屬粉 末與鹵化金屬鹽的_混合物遍加齡融成混合液。 該炫融容器出料控制閥23,連結於炫融容器21底端之輸出口 14 ’以控制該經炼融加熱裝置22减炼融固態混合物細所形 成之混合液輸出控制之用。 八一液液相分離裴置30,連結該加熱熔融反應 器20,該液液相 二裝置30之型式不限,在本發明中係列舉採用重力分離的分離 1為例’該分離器可採用不同型式,在此僅敘述其功能,為加強 液液分離,亦可以等效之多隔板式之分離器來取代之。 八該液液相分離裝置3〇更包括至少一液液相分離容器3卜液液 =刀離各态加熱裝置32、金屬鹵化鹽排出控制閥 33及液液相分離 谷器出料控制閥34 ’其中,該液液相分離容器31可採用石墨或碳 化石夕材質’或用其它耐高溫材質内襯構成,該液液相分離容器31 ,,設有—入料口 311,該入料口 與加熱熔融反應器2〇的熔 融谷器出料控制閥23連結,以輸入固態混合物200熔融所形成之 7 201043707 混合液。 312 3_並設有至少-金屬鹵化鹽液輸出口 離純⑽口313,雜液相分離容器出料 Ο Ο 出口 312及㈣;輪出口 312下端’使該金屬鹵化鹽液輸 *器31的校融租il* 士容器出料口 313分別提供輸入液液相分離 ί排出,兮口八齡— 之金屬鹵化鹽液與初步純化金屬液210分 ㈣目、Λ、Μ 31外部並包覆—層液液相分離容器絕 :埶爲^π/:止液液相分離容器31熱散失,該液液相分離容器 分…、曰夕。再包覆一層液液相分離容器冷卻外層315 ,以提供 31、和_冷狀肖,絲油鎌容器冷卻 外層315的冷卻劑可為水或油。 該液液相分離容器加熱裝置32,設於液液相分離容器31内 部’以提健熔祕合財之初步純化金綠训與金屬南化鹽 之加絲作’使雛液相分離容旨Μ内之 熔融混合雜加麵倾,料化驗分離於金屬液21〇之 液面之上,使金屬献鹽液對應該金制化鹽液輸出口 312排出, 該初步純化之金屬液210對應液液相分離容器出料口 313輪出, 該液液相分離容器加熱裝置32型態不限,在本發明中係以電熱器 為例。 該金屬齒化鹽排出控制閥33及液液相分離容器出料控制閥 34,分別與液液相分離容器31的金屬鹵化鹽液輪出口 312 ^至少 -液液相分離容器出料π 313相連結,以分別提供該金屬幽化^ 液排出與初,純化金屬液210輸出。 ι 一液氣相分離裝置40 ’連結液液相分離裝置3〇,該液氣相分 離裝置40更包括一液氣相分離容器41、液氣相分離容器加熱裝置 42、冷卻器43、減壓裝置44及液氣相分離容器出料控制閱, 其中,該液氣相分離容器41可採用石墨或碳化矽材質,或用其— 耐高温材質内襯構成,該液氣相分離容器41頂端設有_入^ = 411,該入料口 411與液液相分離裝置30的液液相分離容器出料 8 201043707 口 313連結’以輸入經液液相分離裝置3〇初步純化後之金屬液2ι〇 至該液氣相分離容器41内部。 該液氣相分離容器41頂端並設有至少一金屬鹵化鹽氣體排出 口 412,供金屬鹵化鹽氣體自該金屬鹵化鹽氣體排出口 412排出, 該液氣相分離容器41底端設有至少一液氣相分離容器出料口 413 ’以提供最終純化之雨純度液相金屬輸出該液氣相分離容器 41—外部並包覆一層液氣相分離容器絕熱層4Μ,以防止液氣相分 離容器41熱散失,該液氣相分離容器絕熱層414外部再包覆一層 Ο Ο 液氣相分離容器冷卻外層仍’以提供該液氣相分離容器Μ外部 離容器絕熱層414冷卻冷卻之用。 該液氣相分離容器加熱裝置42,設於液氣相分離容器41内 部’以提供該液氣相分離容器^内部之初步純化金屬液21〇作液 氣兩相分離加熱操作之用,讓該初步純化之金屬液210中之金屬 鹵化鹽_點較低而變成金屬自化職體經液氣相分離容器Μ頂 端之金屬齒化鹽氣體排出口 412排出,該純化後之高純度金屬液 可自液氣相分離容㈣料口413輸出,該液氣相分離容器 加…裝置42鶴不限,在本發财係以電熱器為例。 該冷卻器43連結該金屬鹵化鹽氣體排出口仍,以使該經金 罢排出口412輸出之金屬自化鹽氣體冷卻,該減壓裝 L 1143 ’以再對該金屬•化鹽氣體進行減壓,該減壓 靴’在本發日种似抽真较備為例’其他等效 後則排:金屬ί:本發明之範鳴’該金制化鹽氣體進行減壓 離容料料控制閥45連結該液氣相分離容器出料 讀氣相㈣控綱45開、_j,而將 離^ 41⑽化後之高純度金屬液2H)輸出。 二配口第一圖所不,為本發明之 第一實施例,該步驟包括: 和刀凌的 (3〇〇)形成高純度金胁末與減金屬鹽之瞻_,混合添加 9 201043707 面純度金屬粉與金屬鹵化鹽至混合進料器10中,形成高純 度金屬粉末與自化金屬鹽之固態混合物200 ; (310)抽真空及除去不純氣體與水氣’將步驟3〇〇之高純度金屬粉 末與自化金屬鹽之固態混合物200,經由混合進料器1〇輸入 加熱熔融反應器20中,加溫到攝氏100—%〇。(:,並經反覆 抽真空至小於5 Par ’並充填惰性氣體至加熱熔融反應器2〇 中之方式除去加熱熔融反應器20中之不純氣體與水氣; (320)加熱熔融’持續利用加熱熔融反應器2〇將步驟31()之金屬粉 與金屬自化鹽混合物加熱至熔融成混合液輸出; 〇 (330)金屬與金屬鹵化鹽液液相分離,將步驟320之混合液輸入液 液相分離裝置30 ’以該液液相分離裝置30將金屬與金屬鹵化 鹽初步分離形成高濃度金屬與少量之鹵化鹽混合液; (340)金屬與金屬卣化鹽液氣相分離’將步驟33〇之高濃度之金屬 與少量之鹵化鹽混合液導入氣液相分離器40,再利用減壓加 熱的氣液分離純化動作,將南化鹽與不純物氣態揮發排出及 形成高純度純化之液相金屬; (350)提取高純度金屬’由步驟35〇之液氣相分離器4〇底部提取獲 得6N級高純度液相金屬。 〇 請再參閱第三圖所示’為本發明之生產高純度金屬之方法的 第二實施例,其中,顯示應用於半導體矽的純化實施例,該步驟 包括: (400)以高純度_化金屬與鹼金族金屬反應獲得高純度金屬粉末與 齒化金屬鹽之固態混合物,將如液態鈉之鹼金族金屬,與如 四氟化石夕(SiF4)氣體的鹵化發化合物,於混合進料器1〇之進料 谷器11中反應產生高純度石夕與氳化納之由化金屬鹽粉末的固 態混合物 200’ 其反應式為 siF4(g) + 4Na(l卜Si(s) + 4NaF(s), 或者’以固態的六氧石夕酸納(s〇dium fluorosiiieate,Na2SiF6)與 液態鈉之鹼金屬於混合進料器10之進料容器U中反應產生 高純度矽與氟化鈉之南化金屬鹽粉末的固態混合物2〇〇,其反 201043707 應式為Na2SiF0(s)+4Na (1卜Si(s)+6NaF(s),該固態的六氟矽 酸鈉的取得方式不限,如以四氟化矽氣體的自化矽化合物與 固態氟化鈉反應而得’其反應式為SiF4(g) + 2 NaF(s)— Na2SiF6(s) 〇 (410)抽真空及除去不純氣體與水氣,將步驟4〇〇之高純度矽粉末 與鹵化金屬鹽之固態混合物200,經由混合進料器1〇輸入加 熱熔融反應器20中,加溫到攝氏loo—9〇〇°c,並經反覆抽真 空至小於5 Par,再充填氬氣之惰性氣體至加熱熔融反應器2〇 中’反覆進行達到純化氣體、水氣及易揮發之不純物; (420)加熱熔融’持續利用加熱熔融反應器2〇將步驟41〇之固態混 合物200加熱,持續升溫至兩混合物皆液化,以氟化鈉與矽 為例,加熱溫度可於攝氏1400—155(TC,溫升速率可以攝5 —15°C/min.(度/分鐘),直至熔融成混合液輸出; (430)金屬與金屬齒化鹽液液相分離,將步驟42〇之氟化鈉與矽熔 融混合液藉由該熔融容器出料控制闊23開啟而輸入液液相分 離裝置30之液液相分離容器31内,以該液液相分離裝置3〇 將石夕與氟化鈉初步分離形成高濃度矽液與少量之氟化鈉混合 液’該自化鹽及液態不純物可經由金屬自化鹽排出控制闊33 開啟控制排出; (440)金屬與金屬齒化鹽液氣相分離’將步驟430之高濃度之高濃 度矽液與少量之氟化鈉混合液以液液相分離容器出料控制閥 34開啟而導入氣液相分離器40之液氣相分離容器41,由該 液氣相分離容器41配合液氣相分離容器加熱裝置42,採取減 壓加熱方式,使諸如氟化鈉沸點低之液態物質先揮發分離, 而達到純化矽液分離不純物質之效果,該冷卻器43、減壓裝 置44可避免氟化鈉高溫蒸氣直接排出。 (45〇)提取高純度金屬,由步驟450之液氣相分離器4〇底部之液氣 相分離容器出料控制閥45開啟控制而獲得6N級高純度之碎First, referring to the first figure, the apparatus 100' for producing high-purity metal of the present invention comprises a mixing feeder 10, which further comprises at least one feeding container 11 and a feed. Controlling the width 12, the feed container u is used to mix the high-purity metal powder with the halogenated metal salt feed to form a solid mixture 200. The formation of the solid mixture 2 (10) can also be obtained by reacting a high-purity metal halide with an alkali metal group metal, or by high purity. The bismuth halide is reacted with an alkaline earth metal, and the feed control valve 12 is coupled to the lower side of the feed vessel ' to control the rotation of the solid mixture 200 in the feed vessel 11 by the feed control valve 12. A heating and melting reactor 20' is connected to the mixing feeder 1A, and the heating and melting reactor 2 further comprises a melting vessel 21, a melting heating device 22 and a melting vessel discharge control valve 23', wherein the melting vessel 21 can It is made of graphite or tantalum carbide (SiC) or other high temperature resistant material. The top of the melting vessel 21 is provided with at least one inlet 6 201043707, 211, vacuum suction port 212 and inert gas inlet 213. The feed of 10. The μ inlet port 211 is controlled by the feed control valve 12, and the two purity metal powders _ in the secretor 11 are input into the ablation container 21, and the vacuum suction port 212 is provided. For the second thing, the internal part of the fusion article 21 is to reduce the air, the inert gas population ^ into the like, the gas, the mixed dance 21 _, the Wei device cry: the mouth 214 'the outside of the melting container 21' coated - The layer melts the containment layer 215' to prevent heat loss from the molten container 2, which melts the outer layer 216' to extract the container 21 or oil. The coolant of the outer layer 216 of the melting container of the clothes 7 may be provided in the water device 22, and the heat storage operation is performed on the melting device, and the type of the melting heating device μ is not limited. The peak yak electric heater is taken as an example of 'other equivalent heating device, and the fused mixture of the high-purity metal powder and the metal halide salt is supplied through the inlet port 211 without departing from the invention. Aged mixture. The slewing container discharge control valve 23 is coupled to the output port 14' at the bottom end of the smelting container 21 to control the output control of the mixture formed by the smelting heating device 22 to reduce the thickness of the solid mixture. The liquid phase separation device 30 of the Bayi liquid is connected to the heating and melting reactor 20, and the type of the liquid phase two device 30 is not limited. In the present invention, the separation 1 using gravity separation is taken as an example. Different types, only the functions of which are described herein, can be replaced by an equivalent multi-separator type separator for enhanced liquid-liquid separation. The liquid phase separation device 3 further comprises at least one liquid phase separation container 3, a liquid liquid, a knife-off state heating device 32, a metal halide salt discharge control valve 33, and a liquid-liquid phase separation grain discharge control valve 34. 'The liquid phase separation container 31 may be made of graphite or carbon carbide material or may be formed of other high temperature resistant material lining. The liquid phase separation container 31 is provided with a feed port 311, the inlet port The melted grain discharge control valve 23 of the heating and melting reactor 2 is coupled to the solid mixture 200 to melt the formed 7 201043707 mixture. 312 3_ is provided with at least a metal halide salt liquid outlet from the pure (10) port 313, a hetero-liquid phase separation vessel discharge Ο 出口 outlet 312 and (4); a lower end of the wheel outlet 312 'to make the metal halide salt liquid feeder 31 The school rents the il*s container discharge port 313 to provide the input liquid phase separation ί discharge, the mouth of the eight-year-old metal halide salt and the preliminary purification of the metal liquid 210 points (four) M, Λ, Μ 31 external and coated - The liquid-liquid phase separation container is absolutely: 埶 is ^π/: the liquid-liquid phase separation container 31 is heat-dissipated, and the liquid-liquid phase separation container is divided into... A layer of liquid phase separation vessel is further coated to cool the outer layer 315 to provide 31, and _ cold, and the coolant of the outer layer 315 may be water or oil. The liquid-liquid phase separation container heating device 32 is disposed in the liquid-liquid phase separation container 31 to improve the initial purification of the golden green training and the metal Nanhua salt for the purpose of the separation of the liquid phase separation container. The melt mixed mixed surface is poured, and the material is separated from the liquid surface of the molten metal 21 ,, so that the metal salt solution is discharged corresponding to the gold salt solution outlet 312, and the preliminary purified metal liquid 210 corresponds to the liquid liquid. The phase separation vessel discharge port 313 is rotated, and the liquid phase separation vessel heating device 32 is not limited in type. In the present invention, an electric heater is taken as an example. The metal toothed salt discharge control valve 33 and the liquid phase separation container discharge control valve 34 are respectively connected to the metal halide salt liquid wheel outlet 312 of the liquid phase separation container 31, at least - the liquid phase separation container discharge π 313 phase Linking to provide the metal clearing liquid discharge and the initial, purified metal liquid 210 output. The ι-liquid gas separation device 40' is connected to the liquid phase separation device 3, and the liquid phase separation device 40 further includes a liquid vapor separation vessel 41, a liquid-vapor separation vessel heating device 42, a cooler 43, and a reduced pressure. The device 44 and the liquid-vapor separation container discharge control device, wherein the liquid vapor separation container 41 can be made of graphite or tantalum carbide or by using a high-temperature resistant material liner, and the liquid vapor separation container 41 is provided at the top end. _入^=411, the feed port 411 is connected with the liquid-liquid phase separation container discharge 8 of the liquid-liquid separation device 30, 201043707, port 313, to input the liquid liquid separation device 3, the preliminary purification of the molten metal 2ι The liquid is separated into the inside of the liquid phase separation vessel 41. The liquid vapor phase separation vessel 41 is provided at the top end and is provided with at least one metal halide salt gas discharge port 412 for discharging the metal halide salt gas from the metal halide salt gas discharge port 412. The bottom portion of the liquid vapor phase separation container 41 is provided with at least one The liquid phase separation container discharge port 413' is provided to provide the final purified rain purity liquid phase metal output to the liquid vapor separation container 41 - externally and coated with a liquid phase separation container insulation layer 4 Μ to prevent the liquid phase separation container 41 heat loss, the liquid gas phase separation vessel insulation layer 414 is further coated with a layer of ruthenium liquid gas phase separation vessel to cool the outer layer to provide the liquid gas phase separation vessel Μ externally from the vessel insulation layer 414 for cooling and cooling. The liquid phase separation vessel heating device 42 is disposed inside the liquid-vapor separation container 41 to provide a liquid-gas two-phase separation heating operation for providing the liquid-gas two-phase separation heating operation inside the liquid vapor separation container. The metal halide salt in the initially purified metal liquid 210 is discharged to the metal toothed salt gas discharge port 412 at the top of the liquid vapor phase separation container by the metal halide body, and the purified high-purity metal liquid can be discharged. The liquid phase separation container (4) is outputted from the liquid port 413, and the liquid gas phase separation container is provided with a device 42. The crane is not limited. In the present invention, an electric heater is taken as an example. The cooler 43 is connected to the metal halide salt gas discharge port to cool the metal-salted salt gas outputted from the gold strike-out port 412, and the pressure-reducing device L 1143' is further reduced by the metal salt gas. Pressure, the decompression boot 'is similar to the sample on the date of the present invention. 'Other equivalents are arranged: metal ί: the fan of the invention'. The gold salt gas is controlled under reduced pressure and the material is controlled. The valve 45 is connected to the liquid-phase separation container to discharge the read gas phase (4) control 45 open, _j, and the high-purity molten metal 2H) after the 41 (10) is output. The first embodiment of the second dispensing port is not the first embodiment of the present invention, and the steps include: forming a high-purity gold threat and metal salt reduction with the knife (3〇〇), mixing and adding 9 201043707 Purifying the metal powder and the metal halide salt into the mixed feeder 10 to form a solid mixture 200 of the high-purity metal powder and the self-chemical metal salt; (310) evacuating and removing the impurity gas and the water gas' A solid mixture 200 of the purity metal powder and the self-chemical metal salt is introduced into the heating and melting reactor 20 via the mixing feeder 1 and heated to 100-100 Torr. (:, and repeatedly vacuuming to less than 5 Par ' and filling the inert gas into the heating melt reactor 2〇 to remove the impure gas and water gas in the heating and melting reactor 20; (320) heating and melting 'continuous use of heating Melt reactor 2 加热 heating the metal powder of step 31 () and the metal salt mixture to melt to form a mixed liquid output; 〇 (330) metal is separated from the metal halide salt liquid phase, and the mixture of step 320 is input into the liquid liquid. The phase separation device 30' preliminarily separates the metal from the metal halide salt by the liquid phase separation device 30 to form a mixed solution of a high concentration metal and a small amount of a halogenated salt; (340) Gas phase separation of the metal and the metal halide salt solution. The high concentration metal and a small amount of the halogenated salt mixture are introduced into the gas phase separator 40, and then the gas-liquid separation and purification operation by the reduced pressure heating is performed to volatilize the gaseous salt of the southern salt and the impurity to form a high purity purified liquid phase. (350) Extraction of high-purity metal 'The 6N-grade high-purity liquid phase metal is extracted from the bottom of the liquid phase separator 4 of step 35. 〇Please refer to the third figure as the life of the invention. A second embodiment of the method of high purity metal, wherein a purification embodiment for use in a semiconductor crucible is shown, the step comprising: (400) reacting a high purity metal with an alkali gold metal to obtain a high purity metal powder and a toothing a solid mixture of metal salts, such as an alkali metal group of liquid sodium, and a halogenated compound such as a silicon tetrafluoride (SiF4) gas, which is reacted in a feed feeder 11 of a mixed feeder to produce a high-purity stone. The solid mixture of the metal salt powder of the sulphate and the sulphate is 200', and its reaction formula is siF4(g) + 4Na(lBu(s) + 4NaF(s), or 'solid sulphur hexahydrate (s〇dium fluorosiiieate, Na2SiF6) is reacted with the alkali metal of liquid sodium in the feed vessel U of the mixing feeder 10 to produce a solid mixture of high purity cerium and sodium fluoride southing metal salt powder, which is reversed. 201043707 The formula is Na2SiF0(s)+4Na (1SiSi(s)+6NaF(s), and the solid state of sodium hexafluoroantimonate is not limited, such as a ruthenium compound with ruthenium tetrafluoride gas and The reaction of solid sodium fluoride gives 'the reaction formula is SiF4(g) + 2 NaF(s) - Na2SiF6(s) 〇(410) Vacuum and remove the impure gas and moisture, and the solid mixture 200 of the high-purity cerium powder and the metal halide salt of step 4 is fed into the heating and melting reactor 20 via the mixing feeder 1 and heated to Celsius loo-9. 〇〇°c, and repeatedly vacuuming to less than 5 Par, and then filling the inert gas of argon gas into the heating and melting reactor 2〇 to repeatedly carry out the purification gas, water vapor and volatile impurities; (420) heating and melting 'Continuously use the heating and melting reactor 2〇 to heat the solid mixture 200 of step 41〇, and continue to heat up until both mixtures are liquefied, taking sodium fluoride and cesium as an example, the heating temperature can be 1400-155 degrees Celsius (TC, temperature rise rate Can take 5-15 ° C / min. (degrees / minute) until molten into a mixture output; (430) metal and metal toothed salt liquid phase separation, step 42 〇 sodium fluoride and strontium melt mixture The molten liquid container discharge control opening 23 is turned into the liquid phase separation container 31 of the liquid phase separation device 30, and the liquid phase separation device 3 is used to initially separate the stone and the sodium fluoride to form a high concentration 矽. Mix with a small amount of sodium fluoride The liquid 'the self-chemical salt and the liquid impurity can be controlled to be discharged through the metal self-salt salt discharge control 33; (440) the metal and the metal toothed salt liquid gas phase separation 'the high concentration of the high concentration of the step 430 sputum and a small amount The sodium fluoride mixed liquid is introduced into the liquid vapor phase separation vessel 41 of the gas phase separator 40 by the liquid phase separation container discharge control valve 34, and the liquid vapor phase separation vessel 41 is combined with the liquid vapor phase separation vessel heating device. 42, using a reduced-pressure heating method, so that a liquid substance such as a low boiling point of sodium fluoride is first volatilized and separated, and the effect of purifying the sputum liquid to separate the impurity is achieved, and the cooler 43 and the pressure reducing device 44 can avoid the high-temperature steam of the sodium fluoride directly. discharge. (45〇) extracting high-purity metal, and the liquid-gas phase separation container discharge control valve 45 at the bottom of the liquid phase separator 4 of step 450 is opened and controlled to obtain a 6N-class high-purity

II 201043707 液,可直接供應長晶或定向凝固之用或太陽能產業多晶矽原 料利用。 上述步驟400中之固態混合物200可使用粒徑小於1毫米之 半導體級矽粉與高純度鹼金族或鹼土族齒化物粉末混合成反應物 組成,經由上述步驟400〜450的純化步驟,可使粒徑小於丨毫米 的矽粉粉粒完全被回收純化。 以下茲再列舉若干操作例,以進一步說明本發明之操作條件 及技術内涵,其中: (操作例一) 〇 將半導體級石夕粉與氟化鈉粉末以1 : 1-1 : 4比例混合加入加 熱熔融反應器20中,抽真空至1〇 Par以下,充填氬氣至} bar,液 液相分離裝置30加溫至攝氏1400—16〇〇。(:,液氣相分離裝置加溫 至攝氏1450 — 160(TC,該減壓裝置44產生1 —lOOKpa真空。 (操作例二) 利用氟化矽與鈉反應產生的矽與氟化鈉粉末,將該矽與氟化 鈉粉末混合組成之固態混合物200加入加熱熔融反應器20中,其 餘分離純化程序與條件,與操作例一相同。 將兩操作例所純化得到的高純度之矽液產品以ICP 〇 MaM^UCTIVELY COUPLED PLASMA-MASS,感應耦合電漿 質譜分析)進行檢驗,結果如下砉所无: 項目\操作例 例一 (ppb) 例二(ppb) Li7 <1 <1 Na23 9.468 74.216 Mg24 1.322 4.812 A127 2.502 6.986 Ga71 <1 <1 Ini 15 <1 <1 Bal38 <1 <1 12 201043707II 201043707 Liquid, which can be directly supplied to the use of long crystal or directional solidification or solar industry polycrystalline raw materials. The solid mixture 200 in the above step 400 can be mixed with a high-purity alkali metal or alkaline earth-like tooth powder by using a semiconductor-grade niobium powder having a particle diameter of less than 1 mm to form a reactant composition, and the purification step of the above steps 400 to 450 can be used. The tantalum powder particles having a particle size of less than 丨 mm are completely recovered and purified. Hereinafter, a number of operation examples will be further enumerated to further explain the operating conditions and technical connotations of the present invention, wherein: (Operation Example 1) 半导体 Add semiconductor grade Shishi powder and sodium fluoride powder in a ratio of 1:1-1:4. The melt reactor 20 is heated, evacuated to below 1 〇Par, filled with argon to } bar, and liquid-liquid separation device 30 is heated to 1400-16 Torr. (:, the liquid-gas phase separation device is heated to a temperature of 1450 - 160 ° C (TC, the decompression device 44 produces 1 - lOOKpa vacuum. (Operation 2) 矽 and sodium fluoride powder produced by the reaction of cesium fluoride with sodium, The solid mixture 200 in which the hydrazine is mixed with the sodium fluoride powder is added to the heating and melting reactor 20, and the remaining separation and purification procedures and conditions are the same as in the operation example 1. The high-purity mash products purified by the two operation examples are ICP 〇MaM^UCTIVELY COUPLED PLASMA-MASS, inductively coupled plasma mass spectrometry), the results are as follows: Item \ Operation Example 1 (ppb) Example 2 (ppb) Li7 <1 <1 Na23 9.468 74.216 Mg24 1.322 4.812 A127 2.502 6.986 Ga71 <1 <1 Ini 15 <1 <1 Bal38 <1 <1 12 201043707

由上表析得知’以本發明之裝置及方法進行純化而得之 Ο Ο 同純度石夕確可達到產業等級利用的6N級高純度石夕產品 X上第圖第二圖所示之本發明之生產高純度金屬之裝置 及方法’其巾_示之®式與制,係本發明雜佳實施例之揭 露’並不祕_本㈣之射,當然,熟知本躺的技術 可以針對本發明所麵之技細容及方法赌錄修飾及等效變 更,仍不脫離本發明的精神和範圍。此些範圍之界定將由以 申請專利範圍來界定之。 之 【圖式簡單說明】 第一圖為本發明之生產高純度金屬之裝置的結構示意圖; 13 201043707From the above analysis, it is found that the product obtained by the purification of the device and method of the present invention has the same purity as that of the 6N-grade high-purity Shixi product X which can be used in the industrial grade. The invention discloses a device and a method for producing high-purity metal, and the invention is a method for producing a high-purity metal, which is a disclosure of a hybrid embodiment of the present invention, which is not a secret (this). The technical features and methods of the invention are subject to modification and equivalent modifications without departing from the spirit and scope of the invention. The definition of these ranges will be defined by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic view of the structure of a device for producing high-purity metal according to the present invention; 13 201043707

第二圖為本發明之生產高純度金屬 之方法第—實施例之流程 之方法第二實施例之流程 圖。第三圖為本發明之生產高純度金屬The second figure is a flow chart of the second embodiment of the method of the first embodiment of the method for producing high purity metal of the present invention. The third figure shows the production of high purity metal according to the invention.

Ο 100 11 20 211 213 215 22 30 311 313 315 33 40 411 413 415 43 45 300 【主要元件符號說明】 裝置 進料容器 加熱熔融反應器 入料口 惰性氣體入口 熔融容器絕熱層 溶融加熱裝置 液液相分離裝置 入料口 液液相分離容器出料口 液液相分離容器冷卻外層 金屬齒化鹽排出控制閥 液氣相分離裝置 入料口 液氣相分離容器出料口 液氣相分離容器冷卻外層 冷卻器 液氣相分離容器出料控制閥 形成高純度金屬粉束與南化金屬鹽 之固態混合物 10 混合進料器 12 進料控制閥 21 熔融容器 212真空抽氣口 214輸出口 216層熔融容器冷卻外層 23炼融容器出料控制閥 31 液液相分離容器 312金屬鹵化鹽液輪出口 314液液相分離容器絕熱層 32 液液相分離容器加熱裝置 34 液液相分離容器出料控制閥 41 液氣相分離容器 412金屬鹵化鹽氣體排出口 414液氣相分離容器絕熱層 42 液氣相分離容器加熱裝置 44 減壓裝置 200 固態混合物 310抽真空及除去不純氣體與水氣 320 340 400 金屬與金屬齒化鹽液液相分離 提取高純度金屬 抽真空及除去不純氣體與水氣 加熱熔融 33() 金屬與金屬鹵化鹽液氣相分離 35〇 以高純度函化金屬與驗金族金屬反410 應獲得高純度金屬粉末與_化金屬 鹽之固態混合物 201043707 420 加熱炼融 430金屬與金屬齒化鹽液液相分離 440 金屬與金屬Α化鹽液氣相分離 450提取高純度金屬 210 金屬液 ❹ 〇 15Ο 100 11 20 211 213 215 22 30 311 313 315 33 40 411 413 415 43 45 300 [Main component symbol description] Device feed container heating melt reactor inlet inlet inert gas inlet melting vessel insulation layer melting heating device liquid phase Separation device inlet liquid liquid phase separation container discharge port liquid phase separation container cooling outer layer metal toothed salt discharge control valve liquid gas separation device inlet port liquid phase separation container discharge port liquid phase separation container cooling outer layer Coolant liquid vapor phase separation vessel discharge control valve forms a solid mixture of high purity metal powder bundle and nanochemical metal salt 10 Mixing feeder 12 Feed control valve 21 Melting vessel 212 Vacuum suction port 214 Output port 216 layer melting vessel cooling Outer layer 23 smelting vessel discharge control valve 31 liquid phase separation vessel 312 metal halide salt liquid wheel outlet 314 liquid phase separation vessel insulation layer 32 liquid phase separation vessel heating device 34 liquid phase separation vessel discharge control valve 41 liquid Gas phase separation vessel 412 metal halide salt gas discharge port 414 liquid gas phase separation vessel heat insulation layer 42 liquid gas phase separation vessel heating device 44 Pressing device 200 solid mixture 310 vacuuming and removing impure gas and water gas 320 340 400 metal and metal toothed salt liquid liquid phase separation extracting high purity metal vacuuming and removing impure gas and water gas heating melting 33 () metal and metal halogenation Gas phase separation of salt solution 35 〇 high-purity functionalized metal and gold-receiving metal anti-410 should obtain high-purity metal powder and _ metal salt solid mixture 201043707 420 heated smelting 430 metal and metal toothed salt liquid phase separation 440 Metal and Metal Deuterated Salt Liquid Phase Separation 450 Extraction of High Purity Metal 210 Metal Liquid ❹ 〇15

Claims (1)

201043707 七、申請專利範圍: 1‘一種生產高純度金屬之裝置,係包括: 一混合進料器,提供高純度金屬粉末與齒化金屬鹽進料混合成固 態混合物; 一加熱炼融反應器,連結混合進料器,將該混合進料器之固態高純 度金屬粉末與齒化金屬鹽混合物置於該反應器中,利用反覆抽 f空與充填惰性氣體方式除去反應器艙體中之不純氣體與水 氣’並利用加熱器將混合物加熱至熔融; 一液液相分離裝置,連結加熱熔融反應器,將該熱熔融反應器中之 〇 熔融混合液中之金屬與金屬齒化鹽兩相進行初步純化分離,使不 純物隨著金屬自化鹽液排出,以獲得高濃度之金屬與少量之鹵 化鹽混合液;及 一液氣相分離裝置,連結液液相分離裝置,將該液液相分離裝置初 步純化之高濃度之金屬與少量之齒化鹽混合液,利用減壓加熱 的氣液分離,使鹵化鹽與不純物自金屬熔液中揮發,加速分離 兩相混合界面以獲得6N級高純度金屬。 2.如申請專利範圍第1項所述之生產高純度金屬之裝置,其中, 該混合進料器中之固態混合物由高純度豳化金屬與驗金族金屬反 〇 應獲得。 3·如申請專利範圍第2項所述之生產高純度金屬之裝置,其中, 該高純度鹵化金屬與鹼金族金屬為高純度四氟化矽與鈉。 4. 如申請專利範圍第丨項所述之生產高純度金屬之裝置,其中, 該混合進料器中之固態混合物由高純度豳化金屬與驗土族金屬反 應獲得。 5. 如申請專利範圍第1項所述之生產高純度金屬之裝置,其中, 該高純度粉末為矽。 / 6. 如申請專利範圍第1項所述之生產高純度金屬之裝置,其中, 該混合進料器係包含: ' 至少一進料容器’供高純度金屬粉末與齒化金屬鹽進料混合成 16 201043707 固態混合物;及 -進料控綱,連結於進料容器下方,J^由 該進料容器内之固態混合物的輸出。 他糊控制 7.如申請專利範圍第1項所述之生產高純度金屬之 該加熱,熔融反應器係包含: /、干’ -溶融容器,連結混合進觸,⑽高純度金屬粉末料化 的固態混合物輸入,該熔融容器之底部則設有一輪出口;201043707 VII. Patent application scope: 1 'A device for producing high-purity metal, comprising: a mixing feeder for supplying a high-purity metal powder and a toothed metal salt feed to form a solid mixture; a heating and smelting reactor, Connecting the mixed feeder, placing the solid high-purity metal powder of the mixed feeder and the toothed metal salt mixture in the reactor, and removing the impurity gas in the reactor cabin by repeatedly pumping and filling the inert gas And the water gas 'and use a heater to heat the mixture to melt; a liquid phase liquid separation device, which is connected to the heating and melting reactor, and the metal in the molten molten liquid in the hot melt reactor and the metal toothed salt are subjected to two phases. Preliminary purification and separation, so that impurities are discharged with the metal self-chemical salt solution to obtain a mixture of a high concentration of metal and a small amount of a halogenated salt; and a liquid phase gas separation device, which is connected to a liquid phase separation device to separate the liquid phase a preliminary mixture of a high concentration of metal and a small amount of a mixture of toothed salts, using gas-liquid separation under reduced pressure to make halogenated salts and impurities Volatile molten metal, to accelerate the separation to obtain a two-phase interfacial mixing 6N grade high purity metal. 2. The apparatus for producing high purity metal according to claim 1, wherein the solid mixture in the mixing feeder is obtained from a high purity deuterated metal and a gold metal. 3. The apparatus for producing high-purity metal according to claim 2, wherein the high-purity metal halide and the alkali metal group are high-purity antimony tetrafluoride and sodium. 4. The apparatus for producing high purity metal according to the scope of the invention, wherein the solid mixture in the mixing feeder is obtained by reacting a high purity deuterated metal with a soil of a soil test group. 5. The apparatus for producing high-purity metal according to claim 1, wherein the high-purity powder is ruthenium. / 6. The apparatus for producing high-purity metal according to claim 1, wherein the mixed feeder comprises: 'at least one feed container' for mixing high-purity metal powder with a toothed metal salt feed In 16 201043707 solid mixture; and - feed control, linked below the feed container, J ^ from the output of the solid mixture in the feed container. He paste control 7. The heating for producing high-purity metal as described in claim 1, the melt reactor comprises: /, a dry '-melting vessel, a joint mixing contact, and (10) a high-purity metal powder. a solid mixture is input, and a bottom of the melting vessel is provided with a round of outlets; 一熔融加絲置,設於雜祕肋部,啸絲 操作’炫融加熱裝置提供該輸入溶融容器内之高純度金 鹵化金屬鹽的固態混合物加熱炼融成混合液; /、 -熔融容器出料控侧’連結於炼融容器底端之輪$ 口,以控制該 經溶融加熱裝置加熱·固態混合物所形成之混合液輸出^制= 8. 如申請專利範圍第7項所述之生產高純度金屬之裝置,其中, 該溶融容器之頂端設有一入料口,該入料口連結該混合進料器。 9. 如申請專概㈣7項所狀生產高純度金屬之裝置’其中 之頂端設有—真空抽氣口 ’該真空抽氣Π提供炼融容器 内部抽真空操作。 10.如申請專利範圍第7項所述之生產高純度金屬之裝置,其中, 該熔融容器之頂端設有一惰性氣體入口,以輸入惰性氣體。,、 U·如申請專利範圍第1項所述之生產高純度金屬之裝置,其中, 該輸入加熱熔融反應器之惰性氣體為氬氣。 /、 12. 如申請專利範圍第7項所述之生產高純度金屬之裝置,盆 該輪入炼融容器之惰性氣體為氬氣。 八 13. 如申請專利範圍第7項所述之生產高純度金屬之裝置,其中, 1炼融容科部包覆—層熔融容魏熱層,以防姆融容^熱散 14. 如申請專利範圍第13項所述之生產高純度金屬之裝置,其中, 17 201043707 該溶融容器絕熱層外部包覆—層熔融容器 15.如申請專利範圍第14項所述之生產高曰 該熔融容器冷卻外層的冷卻劑為水。X 之裝置,其中’ 申請,利範圍第14項所述之生產高純度 该熔融容器冷卻外層的冷卻劑為油。 装置八中, 17. 如申請專利範圍第7項所述之生產高純 該熔融加熱裝置為電熱器。 裝置,其中, 18. 如申請專利翻第丨項所述之生產高純度 ο 該液液相分離裝置係包含: 、裝置,其中, 至=液液Γ離容器,該液液相分離容器頂端與加孰熔融反庫器 連結’以輸入固態混合物熔融所形成 一合屬南仆魄、十认山| I少战之此合液,側邊並設有至少 相分離容器出料口位於金屬齒化鹽液輸出口下端出:屬U ==液液相分離容器出料口分別提供輸入液二= 器·如σ液中之金屬鹵化鹽液與初她匕金屬液分離排出; ο U相絲綠加録置,餅相錄容肋部,以提料 3混合液巾之初步純化金屬液與金㈣化驗之驗兩相二 =之加熱操作’使該液液相分離容訊之細混合液經加執操 作後’讓金屬鹵化鹽液分離於金屬液之液面之上;及 … -金屬自储翻控侧及驗相分離容旨㈣控侧,分別與 液相分離容器的金屬齒化鹽液輸出口及液液相分離容器出料口相 連結,以分別提供該金屬由化鹽液排出與初步純化金屬液輪 19. 如申請專利範圍第18項所述之生產高純度金屬之裝置,其 =液液相分離容器頂端設有—人料口,該人料口連結加錄融反應 20. 如申明專利範圍第18項所述之生產高純度金屬之裝置其 該液液相分離容器外部包覆一層液液相分離容器絕熱詹, 液相分離容器之熱散失。 氣 18 201043707 21. 如申請專利範圍第20項所述之生產高純度金屬之裝置,其中, 該液液相分離容器絕熱層外部包覆一層液液相分離容器冷卻外層。 22. 如申請專利範圍第21項所述之生產高純度金屬之裝置,其中, 該液液相分離容器冷卻外層的冷卻劑為水。 23. 如申請專利範圍第21項所述之生產高純度金屬之裝置,其中’ 該液液相分離容器冷卻外層的冷卻劑為油。 24. 如申請專利範圍第18項所述之生產高純度金屬之裝置,其中, 該液液相分離容器加熱裝置為電熱器。 25. 如申請專利範圍第1項所述之生產高純度金屬之裝置,其中, ^ 該液氣相分離裝置係包括: 一液氣相分離容器,頂端與液液相分離裝置連結,以輸入經液液相 分離裝置初步純化後之金屬液,液氣相分離容器頂端並設有至少 一金屬鹵化鹽氣體排出口,供金屬_化鹽氣體排出,該液氣相分 離容器底端設有至少一液氣相分離容器出料口,以提供最終純化 之高純度液相金屬輸出; 一液氣相分離谷器加熱裝置’設於液氣相分離容器内部,以提供該 ❹ 液氣相分離容器内部之初步純化金屬液作液氣兩相分離加熱操 作之用; ’以使該經金屬鹵化鹽氣 鹵化鹽氣體進行減壓後排 一冷卻器’連結該金屬函化鹽氣體排出口 體排出口輸出之金屬_化鹽氣體冷卻; 一減壓裝置,連結冷卻器,以再對該令屬 出金屬齒化鹽;及 -液亂如離^出枓控侧,連結概氣相分 藉由液氣相分離容器出料控制閥開盗出枓口以 容器内純化後之高純度金屬崎出。^轉該液氣相分離 26.如申請專利範圍第2S項所述之生產高純度 餘氣相分離容器頂端設有―人料口 19 201043707 裝置。 27. 如申請專利範圍第25項所述之生產高純度金屬之裝置,其中, 該液氣相分離容器外部包覆一層液氣相分離容器絕熱層,以防止 氣相分離容器之熱散失。 28. 如申請專利範圍第25項所述之生產高純度金屬之裝置,其中, 該液氣相分離容器絕熱層外部包覆一層液氣相分離容器冷卻外層。 29. 如申請專利範圍第28項所述之生產高純度金屬之襞置,其中, 該液氣相分離容器冷卻外層的冷卻劑為水。 30. 如申請專利範圍第28項所述之生產高純度金屬之裝置,其中, 〇 該液虱相分離谷器冷卻外層的冷卻劑為油。 31. 如申請專利範圍第25項所述之生產高純度金屬之裝置,其中, 該液氣相分離容器加熱裝置為電熱器。 ^ 32. 如申請專利範圍第25項所述之生產高純度金屬之裝置,其中, 該減壓裝置為抽真空設備。 33. —種生產高純度金屬之方法,其步驟係包括: (A) 形成高純度金屬粉末與齒化金屬鹽之固態混合物,混合添加高純 度金屬粉與金屬齒化鹽至一混合進料器中,形成高純度金屬粉末 與鹵化金屬鹽之固態混合物; (B) 抽真空及除去不純氣體與水氣,將步驟人之高純度金屬粉末與鹵 化金屬鹽之固態混合物,經由混合進料器輸入一加熱熔融反應器 中,由該加熱熔融反應器加熱,並經反覆抽真空,再充填惰性氣 體至加熱熔融反應器中,以除去加熱熔融反應器中之不純氣體與 水氣; (C) 加熱熔融’持續利用加熱熔融反應器將步驟b之金屬粉與金屬鹵 化鹽混合物加熱至熔融成混合液輸出; (D) 金屬與金屬由化鹽液液相分離,將步驟c之混合液輸入一液液 相分離裝置,以該液液相分離裝置將金屬與金屬鹵化鹽初步分離 20 201043707 形成高濃度金屬與少量之齒化鹽混合液; (E) 金屬與金屬函化鹽液氣相分離,將步驟D之高濃度之金屬與少 量之鹵化鹽混合液導入一氣液相分離裝置,再利用減壓加熱的氣 液分離純化動作,將i化鹽與不純物氣態揮發排出及形成高純度 純化之液相金屬;及 又 (F) 提取高純度金屬’由步驟E之液氣相分離器之底部提取獲得6N 級1¾純度液相金屬。 34. 如申請專利範圍第33項所述之生產高純度金屬之方法,其中, 〇 該步驟A之高純度金屬粉與金屬鹵化鹽為發與氟化鈉。 35. 如申請專利範圍第33項所述之生產高純度金屬之方法,其中, 該步驟B之加熱熔融反應器加熱溫度為攝氏1〇〇 — 9〇〇°c 〇 36. 如申請專利範圍第33項所述之生產高純度金屬之方法,其中, 該步驟B之加熱熔融反應器反覆抽真空至5 par。 37·如申請專利範圍第33項所述之生產兩純度金屬之方法,其中, 該步驟E之液氣相分離器底部提取獲得6N級高純度液相金屬為 矽液。 38.—種生產高純度金屬之方法’其步驟係包括·· 〇 (A1)以高純度鹵化金屬與鹼金族金屬反應獲得高純度金屬粉末與齒 化金屬鹽之固態混合物,以南純度豳化金屬與驗金族金屬反應 形成高純度金屬粉末與自化金屬鹽之固態混合物添加至一混合 進料器中; σ (Β1)抽真空及除去不純氣體與水氣’將步驟之高純度金屬粉末與 齒化金屬鹽之固態混合物,經由混合進料器輸入一加熱熔融反 應器中’由該加熱熔融反應器加熱’並經反覆抽真空,再充填 惰性氣體至加熱溶融反應器中,以除去加熱熔融反應器中之不 純氣體與水氣; (C1)加熱溶融,持續利用加熱熔融反應器將步驟之金屬粉與金屬 21 201043707 鹵化鹽混合物加熱至熔融成混合液輸出; (D1)金屬與金屬由化鹽液液相分離,將步驟C1之混合液輸入一液 液相分離裝置,以該液液相分離裝置將金屬與金屬齒化鹽初步 分離形成高濃度金屬與少量之鹵化鹽混合液; (E1)金屬與金屬齒化鹽液氣相分離,將步驟D1之高濃度之金屬與 少量之齒化鹽混合液導入一氣液相分離裝置,再利用減壓加熱 的氣液分離純化動作,將鹵化鹽與不純物氣態揮發排出及形成 高純度純化之液相金屬;及 O (F1)提取高純度金屬,由步驟E1之液氣相分離器之底部提取獲得 6N級高純度液相金屬。 39.如申請專利範圍第38項所述之生產高純度金屬之方法,其中, 該步驟A1之高純度_化金屬與驗金族金屬為四氟化石夕與納。 40·如申請專利範圍第38項所述之生產高純度金屬之方法,其中, 該步驟A1之高純度鹵化金屬與鹼金族金屬為六氟矽酸納與鈉。 41. 如申請專利範圍第40項所述之生產高純度金屬之方法,其中, 該六氟矽酸鈉係以四氟化矽與氟化鈉反應組成。 42. 如申請專利範圍第38項所述之生產高純度金屬之方法,其中, 〇 該步驟B1之加熱熔融反應器加熱溫度為攝氏1〇〇—9〇〇。〇。 43. 如申請專利範圍第38項所述之生產高純度金屬之方法,其中, 該步驟B1之加熱熔融反應器反覆抽真空至5Par。 44. 如申請專利範圍第38項所述之生產高純度金屬之方法,其中, 該步驟E1之液氣相分離器底部提取獲得61^級高純度液相金屬為 矽液。 45·—種生產高純度金屬之方法,其步驟係包括: (A2)以高純度函化金屬與鹼土族金屬反應獲得高純度金屬粉末與鹵 化金屬鹽之固態混合物,以高純度画化金屬與鹼土族金屬反應 形成高純度金屬粉末與齒化金屬鹽之固態混合物添加至一混合 22 201043707 進料器中; (B2)抽真空及除去不純氣體與水氣,將步驟A2之高純度金屬粉末與 鹵化金屬鹽之固悲混合物,經由混合進料器輸入一加熱溶融反 應器中,由該加熱熔融反應器加熱,並經反覆抽真空,再充填 -惰性氣體至加熱熔融反應器中,以除去加熱熔融反應器中之不 純氣體與水氣; (C2)加熱熔融’持續利用加熱,熔融反應器將步驟B2之金屬粉與金屬 鹵化鹽混合物加熱至熔融成混合液輪出; 〇 (D2)金屬與金屬齒化鹽液液相分離,將步驟匚2之混合液輸入一液 液相分離裝置’以該液液相分離裝置將金屬與金屬鹵化鹽初步 分離形成高濃度金屬與少量之齒化鹽混合液; (E2)金屬與金屬自化鹽液氣相分離,將步驟之高濃度之金屬與 少量之鹵化鹽混合液導入一氣液相分離裝置,再利用減壓加熱 的氣液分離純化動作,將鹵化鹽與不純物氣態揮發排出及形成 高純度純化之液相金屬;及 (F2)提取高純度金屬,由步驟E2之液氣相分離器之底部提取獲得 g 6N級高純度液相金屬。 46. 如申請專利範圍第45項所述之生產高純度金屬之方法,其中, 該步驟B2之加熱熔融反應器加熱溫度為攝氏100— 900°C。 47. 如申請專利範圍第45項所述之生產高純度金屬之方法,其中, 該步驟B2之加熱熔融反應器反覆抽真空至5 Par。 48. 如申請專利範圍第45項所述之生產高純度金屬之方法,其中, 該步驟E2之液氣相分離器底部提取獲得6N級高純度液相金屬為 矽液。 23a molten wire is disposed on the miscellaneous rib, and the squeaking operation 'slow-heating device provides a solid mixture of the high-purity gold halide metal salt in the input molten vessel to be heated and smelted into a mixed liquid; /, - the molten container is discharged The material control side 'connects to the bottom of the smelting vessel to control the output of the mixture formed by the heating and solid mixture of the molten heating device = 8. The production is high as described in claim 7 A device for purifying metal, wherein a top of the molten container is provided with a feed port that connects the mixed feeder. 9. If you apply for a high-purity metal device in the form of a special item (4), the top of the device is provided with a vacuum evacuation port. The vacuum pumping port provides a vacuuming operation inside the refining vessel. 10. The apparatus for producing high-purity metal according to claim 7, wherein the top of the melting vessel is provided with an inert gas inlet for inputting an inert gas. The apparatus for producing high-purity metal according to the first aspect of the invention, wherein the inert gas input to the heating and melting reactor is argon. /, 12. For the apparatus for producing high-purity metal according to item 7 of the patent application, the inert gas of the pot into the smelting vessel is argon. VIII. 13. For the production of high-purity metal equipment as described in item 7 of the patent scope, in which 1 the Rongrong Rongke Department is coated with a layer of molten Rongwei heat layer to prevent the Rongrong Rong from dissipating heat. The apparatus for producing high-purity metal according to the thirteenth aspect of the invention, wherein: 17 201043707 the outer covering layer of the molten container insulation layer-layer melting container 15. The sorghum production of the sorghum container as described in claim 14 The coolant of the outer layer is water. The apparatus of X, wherein the application of the high-purity coolant of the molten container described in the item 14 of the scope is oil. In the eighth device, 17. The high-purity production device described in claim 7 is an electric heater. The apparatus, wherein, the production of the high purity as described in the patent application, the liquid phase separation apparatus comprises: , a device, wherein, the liquid liquid is separated from the container, and the liquid liquid phase separation container is at the top of the liquid Twisting and melting anti-depot connection "to form a mixture of the solid mixture to form a genus Nan servant, Shizhaoshan | I Shaozhan this liquid, side and at least the phase separation container outlet is located in the metal toothing The lower end of the salt liquid outlet is: U == liquid phase separation container outlet port provides input liquid respectively = device · such as σ liquid metal halide salt liquid and the first her metal liquid separation and discharge; ο U phase silk green Adding the recording, the phase of the ribs of the cake phase, the preliminary purification of the metal liquid and the gold (4) test of the mixture of the liquid mixture and the gold (4) test, two phases of the two = heating operation 'to make the liquid phase separation of the fine mixture of the message After the operation, the metal halide salt solution is separated from the liquid surface of the molten metal; and... the metal self-reserving side and the phase separation are separated (4) the control side, respectively, and the metal toothed salt of the liquid phase separation container The liquid outlet and the liquid phase separation container outlet are connected to provide separately The metal is discharged from the salt liquid and the preliminary purification of the metal liquid wheel. 19. The device for producing high-purity metal according to claim 18 of the patent application, wherein the liquid liquid phase separation container is provided with a human mouth, the person material Oral connection plus recording and thawing reaction 20. The device for producing high-purity metal according to claim 18 of the patent scope, the liquid-liquid phase separation container is coated with a liquid-liquid phase separation container, and the heat of the liquid phase separation container is lost. . The apparatus for producing high-purity metal according to claim 20, wherein the liquid-phase separation container insulation layer is externally coated with a liquid-liquid phase separation container to cool the outer layer. 22. The apparatus for producing high-purity metal according to claim 21, wherein the coolant for cooling the outer layer of the liquid phase separation container is water. 23. The apparatus for producing high purity metal according to claim 21, wherein the coolant for cooling the outer layer of the liquid phase separation container is oil. 24. The apparatus for producing high purity metal according to claim 18, wherein the liquid phase separation vessel heating device is an electric heater. 25. The apparatus for producing high-purity metal according to claim 1, wherein the liquid vapor separation apparatus comprises: a liquid-phase gas separation container, and the top end is connected to the liquid-liquid separation device to input the The liquid liquid of the liquid phase separation device is initially purified, and the liquid vapor phase separation container is provided at the top of the container and is provided with at least one metal halide salt gas discharge port for discharging the metal_salt gas, and at least one bottom end of the liquid gas phase separation container is provided. The liquid gas phase separation container discharge port is provided to provide a final purified high purity liquid phase metal output; a liquid phase gas separation barn heating device is disposed inside the liquid phase gas separation container to provide the inside of the liquid phase gas separation container The preliminary purification of the metal liquid is used for the liquid-phase two-phase separation heating operation; 'to make the metal halide salt gas halogenated salt gas decompress and then discharge a cooler' to connect the metallized salt gas discharge port body discharge port output The metal_salt gas is cooled; a decompression device is connected to the cooler to regenerate the metal toothed salt; and the liquid is disordered from the control side, and the connection is exhausted. Vapor liquid separation vessel discharge control valve Pirates Tu port in the high purity metal in the vessel after the purification Kawasaki out. ^The liquid phase separation of the liquid 26. The high-purity residual gas phase separation vessel described in the scope of claim 2S is provided with a "manual port 19 201043707 device". 27. The apparatus for producing high-purity metal according to claim 25, wherein the liquid vapor phase separation vessel is externally coated with a heat insulating layer of the liquid phase gas separation container to prevent heat loss of the gas phase separation vessel. 28. The apparatus for producing high-purity metal according to claim 25, wherein the liquid phase separation container insulation layer is externally coated with a liquid vapor phase separation container to cool the outer layer. 29. The apparatus for producing a high-purity metal according to claim 28, wherein the coolant for cooling the outer layer of the liquid phase separation container is water. 30. The apparatus for producing high-purity metal according to claim 28, wherein the coolant of the liquid-phase phase separation trough cooling outer layer is oil. 31. The apparatus for producing high-purity metal according to claim 25, wherein the liquid phase separation vessel heating device is an electric heater. The device for producing high-purity metal according to claim 25, wherein the pressure reducing device is a vacuuming device. 33. A method for producing high purity metal, the steps comprising: (A) forming a solid mixture of a high purity metal powder and a toothed metal salt, mixing and adding a high purity metal powder and a metal toothed salt to a mixed feeder Forming a solid mixture of a high-purity metal powder and a metal halide; (B) evacuating and removing the impure gas and moisture, and placing a solid mixture of the human high-purity metal powder and the metal halide salt through the mixed feeder a heating and melting reactor, heated by the heating and melting reactor, and repeatedly vacuumed, and then filled with an inert gas to the heating and melting reactor to remove the impure gas and water gas in the heating and melting reactor; (C) heating Melting 'continuously using a heated melt reactor to heat the metal powder of step b and the metal halide salt mixture to melt to a mixed liquid output; (D) metal and metal are separated from the liquid phase by a salt liquid, and the mixture of step c is input into a liquid a liquid phase separation device for separating a metal from a metal halide salt by the liquid phase separation device 20 201043707 forming a high concentration metal and a small amount of toothing (E) metal-metallized salt liquid gas phase separation, the high concentration of the metal of step D and a small amount of halogenated salt mixture is introduced into a gas-liquid phase separation device, and then separated and purified by gas-liquid separation under reduced pressure. Action, the i-salt and impurities are volatilized and discharged to form a high-purity purified liquid phase metal; and (F) extracting a high-purity metal' is extracted from the bottom of the liquid phase separator of step E to obtain a 6N-grade 13⁄4 purity liquid phase. metal. 34. The method for producing a high-purity metal according to claim 33, wherein the high purity metal powder and the metal halide salt of the step A are hair and sodium fluoride. 35. The method for producing high-purity metal according to claim 33, wherein the heating and melting reactor of the step B is heated at a temperature of 1 〇〇 - 9 〇〇 ° c 〇 36. The method of producing high purity metal according to item 33, wherein the heating and melting reactor of the step B is repeatedly evacuated to 5 par. 37. The method for producing a two-purity metal according to claim 33, wherein the liquid phase separator of the step E is extracted at the bottom to obtain a 6N-grade high-purity liquid phase metal as a mash. 38. A method for producing high-purity metal's steps comprising: · 〇 (A1) to obtain a solid mixture of a high-purity metal powder and a toothed metal salt by reacting a high-purity metal halide with an alkali metal group, to a purity of 豳The metal reacts with the metallurgical group metal to form a solid mixture of the high-purity metal powder and the self-chemical metal salt, and is added to a mixed feeder; σ (Β1) is vacuumed and the impure gas and water gas are removed. a solid mixture of the powder and the toothed metal salt is fed into a heated melt reactor via a mixing feeder and heated by the heated melt reactor and vacuumed repeatedly, and then filled with an inert gas to the heated melt reactor to remove Heating the impure gas and water gas in the melt reactor; (C1) heating and melting, continuously heating the metal powder of the step with the metal 21 201043707 halogenated salt mixture to melt into a mixed liquid output by using a heating melt reactor; (D1) metal and metal The liquid phase separation of the salt liquid is carried out, and the mixed liquid of the step C1 is input into a liquid phase liquid separation device, and the liquid and metal teeth are separated by the liquid phase separation device. The salt is initially separated to form a mixture of a high concentration metal and a small amount of a halogenated salt; (E1) the metal is separated from the metal toothed salt liquid by gas phase, and the high concentration metal of step D1 and a small amount of the toothed salt mixture are introduced into a gas phase separation. The device uses the gas-liquid separation and purification operation of the reduced pressure heating to volatilize the halogenated salt and the impurity to form a high-purity purified liquid phase metal; and O (F1) extracts the high-purity metal, and is separated from the liquid phase of the step E1. A 6N grade high purity liquid phase metal is obtained by extracting the bottom of the apparatus. 39. The method of producing a high-purity metal according to claim 38, wherein the high-purity metal of the step A1 and the metal of the gold-receiving group are tetrafluoride. 40. The method for producing a high-purity metal according to claim 38, wherein the high-purity metal halide and the alkali metal group in the step A1 are sodium and sodium hexafluoroantimonate. The method for producing a high-purity metal according to claim 40, wherein the sodium hexafluoroantimonate is composed of ruthenium tetrafluoride and sodium fluoride. 42. The method for producing a high-purity metal according to claim 38, wherein the heating and melting reactor of the step B1 is heated at a temperature of 1 to 9 Torr. Hey. 43. The method of producing high purity metal according to claim 38, wherein the heating and melting reactor of step B1 is repeatedly evacuated to 5Par. 44. The method for producing a high-purity metal according to claim 38, wherein the liquid phase separator of the step E1 is bottom-extracted to obtain a 61-grade high-purity liquid phase metal as a mash. 45. A method for producing a high-purity metal, the steps comprising: (A2) reacting a high-purity functionalized metal with an alkaline earth metal to obtain a solid mixture of a high-purity metal powder and a metal halide, and drawing the metal with high purity The alkaline earth metal reacts to form a solid mixture of the high-purity metal powder and the toothed metal salt, and is added to a mixed 22 201043707 feeder; (B2) vacuuming and removing the impurity gas and moisture, and the high-purity metal powder of step A2 is a solid mixture of a halogenated metal salt is fed into a heated melt reactor via a mixing feeder, heated by the heated melt reactor, and vacuumed repeatedly, and then filled with an inert gas to the heated melt reactor to remove the heat. Impure gas and water gas in the melt reactor; (C2) heating and melting 'continuous use of heating, the melt reactor heats the metal powder of step B2 and the metal halide salt mixture to melt into a mixture liquid; 〇(D2) metal and Liquid phase separation of the metal toothed salt liquid, the liquid of the step 匚2 is input into a liquid phase separation device, and the liquid phase separation device is used to transfer the metal to the gold The halogenated salt is initially separated to form a mixture of a high concentration metal and a small amount of the toothed salt; (E2) the metal is separated from the metal self-chemical salt liquid, and the high concentration metal and a small amount of the halogenated salt mixture are introduced into the gas phase. Separating device, using gas-liquid separation and purification operation under reduced pressure, volatilizing halogenated salt and impurities to form high-purity purified liquid metal; and (F2) extracting high-purity metal, separating from liquid phase in step E2 The bottom of the apparatus is extracted to obtain a g 6N grade high purity liquid phase metal. 46. The method for producing a high-purity metal according to claim 45, wherein the heating and melting reactor of the step B2 is heated at a temperature of 100 to 900 ° C. 47. The method of producing high purity metal according to claim 45, wherein the heating and melting reactor of step B2 is repeatedly evacuated to 5 Par. 48. The method for producing a high-purity metal according to claim 45, wherein the liquid phase separator of the step E2 is extracted at the bottom to obtain a 6N-grade high-purity liquid phase metal as a mash. twenty three
TW098118312A 2009-06-03 2009-06-03 Device and method for producing high purity metals TW201043707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098118312A TW201043707A (en) 2009-06-03 2009-06-03 Device and method for producing high purity metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098118312A TW201043707A (en) 2009-06-03 2009-06-03 Device and method for producing high purity metals

Publications (1)

Publication Number Publication Date
TW201043707A true TW201043707A (en) 2010-12-16

Family

ID=45001023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118312A TW201043707A (en) 2009-06-03 2009-06-03 Device and method for producing high purity metals

Country Status (1)

Country Link
TW (1) TW201043707A (en)

Similar Documents

Publication Publication Date Title
TWI778941B (en) Silica to high purity silicon production apparatus and rocess
CN108698837B (en) Reduction of metal/semimetal oxides
JPS6330062B2 (en)
JP5768714B2 (en) Method for producing silicon
CN104203816B (en) The manufacture method of porous carbon materials
TW201008874A (en) Method of manufacturing silicon with high purity
US20100064852A1 (en) Method for purification of metal based alloy and intermetallic powders
JP4436904B2 (en) Si manufacturing method
EP3554998B1 (en) Process for the production of commercial grade silicon
CN102211771A (en) Method and system for manufacturing silicon and silicon carbide
US11242252B2 (en) Refining process for producing solar silicon, silicon carbide, high-purity graphite and hollow silica microspheres
Rui et al. Preparation of high purity vanadium nitride by magnesiothermic reduction of V2O3 followed by nitriding in N2 atmosphere
KR101494340B1 (en) method of preparing titanium carbide powder
US20150239740A1 (en) Method for fabricating porous carbon material
TW201231392A (en) Manufacturing method and apparatus of silicon, silicon wafer, and panel for solar cell
Li et al. An approach to prepare high-purity TiSi 2 for clean utilization of Ti-bearing blast furnace slag
TW201043707A (en) Device and method for producing high purity metals
JP2005047739A (en) TiC-BASED NANOCOMPOSITE POWDER BY METAL THERMAL REDUCTION METHOD, AND METHOD FOR SYNTHESIS OF THE SAME
CA2733647A1 (en) Method for purifying material containing metalloid element or metal element as main component
EP3565782A1 (en) Refining process for producing solar silicon, silicon carbide, high-purity graphite and hollow silica microspheres
TW201840476A (en) Method for the Production of Elementary Silicon
CN114538448B (en) Silicon disulfide and preparation method thereof
JPH02289422A (en) Production of fine particles of rare earth metal fluoride and production of ceramic sintered body using the same particles
JP2702954B2 (en) Method for producing high-purity tantalum or high-purity niobium fine particles
Liu et al. Upgrade silicon powder prepared by SHS with acid leaching treatment