TW201043533A - Short-circuit current detection device for ship - Google Patents

Short-circuit current detection device for ship Download PDF

Info

Publication number
TW201043533A
TW201043533A TW98118545A TW98118545A TW201043533A TW 201043533 A TW201043533 A TW 201043533A TW 98118545 A TW98118545 A TW 98118545A TW 98118545 A TW98118545 A TW 98118545A TW 201043533 A TW201043533 A TW 201043533A
Authority
TW
Taiwan
Prior art keywords
short
motor
circuit current
transient
generator
Prior art date
Application number
TW98118545A
Other languages
Chinese (zh)
Other versions
TWI370083B (en
Inventor
jing-cheng Li
Shan-Chang Zhao
Xing-Ren Sun
Cheng Wu
Yao-Qun Zhong
Jun-Lian Su
jun-yu Lin
zhao-hong Xu
Original Assignee
Csbc Corp Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Csbc Corp Taiwan filed Critical Csbc Corp Taiwan
Priority to TW98118545A priority Critical patent/TW201043533A/en
Publication of TW201043533A publication Critical patent/TW201043533A/en
Application granted granted Critical
Publication of TWI370083B publication Critical patent/TWI370083B/zh

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

A short-circuit current detection device for a ship comprises a power equipment impedance calculation module, a synthesis impedance calculation module, a generator and motor parameter correction module, and a short circuit current calculation module. The power equipment impedance calculation module performs a first calculation with an input data group to generate a first calculation result. The synthesis impedance calculation module receives the first calculation result and executes a second calculation to generate a second calculation result. The generator and motor parameter correction module receives the second calculation result and performs a third calculation to generate a third calculation result. The short circuit current calculation module receives the third calculation result and performs a fourth calculation to produce an output result group.

Description

201043533 六、發明說明: 【發明所屬之技術領域】 纟發明是有關於-種電流檢測裝置,特別是指一種船 - 舶短路電流檢測裝置。 【先前技術】 在船舶電力系統實際運轉中,短路故障難以避免,絕 緣的自然老化、機械損壞與不當操作等都可能造成短路的 發生。當船舶電力系統中的主匯流排附近發生短路時,將 ❹ 出現比正常值大許多的短路電流,加上短路故障時,系統 的總阻抗很小,而往往會造成最嚴重的短路情況—金屬性短 路0 再者,系統短路阻抗與短路點的位置亦極度相關,短 路點距離電源越近,則系統總阻抗就越小,相對地,短路 電流值也就越大,即使短路發生的時間很短,強大的短路 電流所產生的機械應力和熱效應將對發電機或其他相關設 備造成嚴重破壞。除此之外,短路電流還會使電網電壓大 〇 幅度降低,影響設備的運作,以致於使得正在運轉的電動 機停止運轉等後續的連帶破壞影響。 因此,歸納言之,短路電流對於電氣設佛所造成的損 害計有以下狀況: (一) 引起電氣設備發熱及耗損。 (二) 造成大電壓降,而引起電動機轉速下降,甚至停止 運轉。 (三) 產生大機械應力,引起電氣設備載流部件變形損壞 3 201043533 (四) 單相對地短路時,產生不平衡電流及磁場影響通 訊與相關設備之控制。 (五) 如短路電流發生於電源附近,將導致發電機或其他 設備之失步、解聯而影響系統運轉。 由上述可知,短路電流對於電氣設備運轉有著極大的 影響,目前短路電流的問題可透過相關保護裝置,以迅速 第將故障設備的線路切離,以阻止故障電流繼續流通,而 使損害範圍降至最小。 在船舶電力系統中,常用的保護裝置,如熔絲(fuse)或 斷路器(circuit breaker,CB)等。此外,在啟斷故障電流時 往往會產生電弧,因此,前述之保護裝置還必須具有消弧 能力’才能安全地啟斷故障電流。再者,除利用啟斷故障 電流的方式來處理短路電流問題外,相關的配電設備,如 電纜、電線、匯流排、分段開關、變壓器等,須能承受瞬 間故障電流所產生之熱效應及機械應力,也就是須有較大 的設備短路強度。因此,設計船舶供電系統時,須先計算 系統各處故障電流之大小,才能選擇適當的保護設備,以 確保供電之安全可靠。 現今,一般所採用之船舶短路電流計算基準是以舊式 國際標準 IEC 60363 Short circuit current evaluation with special regard to rated short-circuit capacity of circuit-breakers in ships” 為主 要内容’利用歐姆法對系統所有電器設備的阻抗進行轉換 201043533 ,簡化故障點等校阻抗,計算短路故障電流。然而,於目 則實務之應用上,仍發現此船舶短路電流計算基準存在有 以下缺點: (一) 忽略故障前發電機負荷效應。 (二) 忽略交流成分的暫態衰減。 (二)忽略馬達能量轉換效率。 (四) 忽略軸發電系統饋送的短路電流。 (五) 忽略電纜工作溫度的影響。 〇 因此,相關領域之產、官、學界急欲開發出一套用來 汁算船舶電力系統内不同位置發生短路事故產生之故障電 流的大小的裝置,以於進行船舶電力配置規劃時,能夠更 完善地預先選擇足夠之啟斷容量的保護設備’而迅速地將 . 故障之設備或線路切離供電源,並使得因短路而致的停電 區域範圍及所引起的相關電器毀損憾事減至最低。 【發明内容】 當什算短路電流時,了解由個別設備所提的短路電流 〇 狀況及系統中多個電力設備串接對短路電流的影響是相當 重要的。在一個完整的船舶電力系統,系統中的被動元件 ,如電纜、變壓器等對短路電流的影響很大,除會改變斷 路電流計算結果的穩態數值外,代表暫態過程的特徵數據 也會受影響。 因此,本發明之目的,即在提供一種船舶短路電流檢 測裝置’以得到精確的短路電流計算結果。 於是,本發明船舶短路電流檢測裝置,包含_電力設 5 201043533 2抗汁异模組、-合成阻抗計算模組、—發電機及電動 機參數修正模組及一短路電流計算模組。 ,該電力設備阻抗計算模組對—輸人資料群組進行一第 :運算m運算結果。該合成阻抗計算模組接收 该第-運算結果並進行一第二運算,產生_第二運算结果 。該發電機及電動機參數修正模組接收該第二運算結果並 進行-第三運算,產生一第三運算結果。該短路電流計算 模組接收該第三運算結果並進行一第四運算,產生一輸出 結果群組。 ▲本發明之功效在於,藉由該電力設備阻抗計算模組、 該合成阻抗計算模組、該發電機及電動機參數修正模組, 及該短路電流計算模組,來對記載有船舶電力系統相關的 各式輸人資料群組進行分析及運算,進而求出船舶之短路 電流,以降低各項相關電氣設備因短路所造成之故障,甚 至是損壞的風險。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中將可 清楚的呈現。 參閱圖1,本發明船舶短路電流檢測裝置之較佳實施例 包含一人機介面11、一電力設備阻抗計算模組12、一合成 阻抗計算模組13、一發電機及電動機參數修正模組14,及 一短路電流計算模組15。 該人機介面11接收一使用者3的輸入,產生一輸入資 201043533 料群組21,並傳送至該電力設備阻抗計算模組12。在本較 佳貝施例中,此人機介面η是以微軟(Micr〇s〇ft)之Excei 軟體所開發,其首頁介面呈現如圖2所示,且該人機介面 11更包括複數輸入分頁:一發電機參數輸入分頁(參見圖3) 、一變壓器參數輸入分頁(參見圖4)、一馬達參數輸入分頁( 參見圖5)、一匯流排電壓輸入分頁(參見圖6)、一線路阻抗 輸入分頁(參見圖7)、一變壓器線路參數輸入分頁(參見圖8) 、一故障點線路參數輸入分頁(參見圖9),及一電纜阻抗參 q 數輸入分頁(參見圖10)。 值知一提的是,在本較佳實施例中,該電力設備阻抗 計算模組12運算所需的輸入資料群組21包括一組分別由 該發電機參數輸入分頁、變壓器參數輸入分頁、馬達參數 輸入分頁、匯流排電壓輸入分頁與線路阻抗輸入分頁所整 合鍵入的設備基本資料、一組經由該變壓器線路參數輸入 为頁所鍵入之變壓器線路參數、一組經由該故障點線路參 數輸入分頁所鍵入之故障點線路參數,及一組經由該電纜 Q 阻抗參數輸入分頁所鍵入之線路基本參數。 在此’再針對上述輸入資料群組21中之各項資料内容 ’進行更進一步的說明: (一)該组設備基本資料包括:一發電機視在功率(^昆, 單位為kVA)、一發電機額定電壓(vg,單位為v)、一發電 機次暫態電抗(X”d,單位為%)、一發電機暫態電抗(x,d, 單位為%)、一發電機電抗(Xd單位為%)、一發電機次暫態 時間常數(T”d,單位為sec)、一發電機暫態時間常數(T,d, 7 201043533 单位為sec)、一發電機直流時間常數(Tdc,單位為sec)、一 發電機定子電阻(Rs,單位為%)、一發電機頻率(f,單位為 Hz)、一發電機額定電流比值(KKd,單位為%)、一發電機功 率因數(PF)、一變壓器視在功率(str ’單位為kVA)、一變壓 器一次測電壓(Vpri,單位為V)、一變壓器二次測電壓(Vsec ,單位為V)、一變壓器内部電阻(Rtr,單位為%)、一變壓 器内部電抗(Xtr,單位為%)、一馬達運作狀態值、一馬達總 功率(單位為kW)、一馬達視在功率(Sim ,單位為kVA)、一 馬達額定電流(Iim,單位為A)、一馬達短路電流交流成分 (IaClm,單位為A)、一馬達短路電流值流成分(Idcim,單位 為A)、一馬達短路電流峰值(Ipeakim,單位為A)、一匯流 排電壓組(含 MSB Pri、MSB Sec、eSB Pri、ESB Sec 與 F WD,單位皆為v),及一線路阻抗值組(含Rc與Xc,單位 為電阻值/m)。 (二)該組變壓器線路參數包括:一變壓器一次測線路口 徑(單位為mm2)、一變壓器二次測線路口徑(單位為mm2)、 — MU線路併聯數量’及—變壓器線路長度(單位為爪)。 (一)該組故障點線路參數包括一故障點線路口徑(單位 為mm )故障點線路併聯數量,及一故障點線路長度(單 位為m)。 (四)該組線路基本參數包括一線路電阻參數(RC,單位 為電阻值〜)及—線路電抗值(Xe,單位為電抗值/m)e 卜於實務上,本發明船舶短路電流檢測裝置除了 主要用來檢測發電機及變壓器之故障電流狀況外,也可以 201043533 如述所提之輸入資料群201043533 VI. Description of the invention: [Technical field to which the invention pertains] The invention relates to a current detecting device, and more particularly to a ship-to-ship short-circuit current detecting device. [Prior Art] In the actual operation of the ship's power system, short-circuit faults are difficult to avoid, and natural aging, mechanical damage, and improper operation of the insulation may cause a short circuit. When a short circuit occurs near the main busbar in the ship's power system, a short-circuit current that is much larger than the normal value will occur. In addition, when the short-circuit fault occurs, the total impedance of the system is small, which often causes the most serious short-circuit condition—metal Slight short circuit 0 Furthermore, the short-circuit impedance of the system is also extremely related to the position of the short-circuit point. The closer the short-circuit point is to the power supply, the smaller the total impedance of the system, and the shorter the value of the short-circuit current, even if the short-circuit occurs. The mechanical stress and thermal effects of short, powerful short-circuit currents can cause severe damage to generators or other related equipment. In addition, the short-circuit current will cause the grid voltage to drop to a large extent, affecting the operation of the equipment, so that the subsequent operation of the motor is stopped and other subsequent damages. Therefore, in summary, the short-circuit current has the following conditions for the damage caused by the electrical installation: (1) causing heat and loss of electrical equipment. (2) Cause a large voltage drop, causing the motor speed to drop or even stop running. (3) Large mechanical stress is generated, causing deformation and damage of current-carrying parts of electrical equipment. 3 201043533 (4) When a single short circuit is short-circuited, unbalanced current and magnetic field are generated to affect the communication and related equipment control. (5) If the short-circuit current occurs near the power supply, it will cause the generator or other equipment to lose synchronization and disassociation and affect the operation of the system. It can be seen from the above that the short-circuit current has a great influence on the operation of electrical equipment. At present, the problem of short-circuit current can be transmitted through the relevant protection device to quickly cut off the line of the faulty device to prevent the fault current from continuing to flow, thereby reducing the damage range. The smallest. In ship power systems, commonly used protection devices, such as fuses or circuit breakers (CB). In addition, an arc is often generated when the fault current is turned off, and therefore, the aforementioned protection device must also have an arc extinguishing capability 'to safely turn off the fault current. Furthermore, in addition to using the method of breaking the fault current to deal with the short-circuit current problem, the relevant power distribution equipment, such as cables, wires, bus bars, sectional switches, transformers, etc., must be able to withstand the thermal effects and mechanical effects of instantaneous fault currents. Stress, that is, a large equipment short-circuit strength. Therefore, when designing the ship's power supply system, the fault currents in the system must be calculated before the appropriate protection equipment can be selected to ensure the safety and reliability of the power supply. Nowadays, the ship short-circuit current calculation standard is generally based on the old international standard IEC 60363 Short circuit current evaluation with special regard to rated short-circuit capacity of circuit-breakers in ships". The impedance is converted to 201043533, which simplifies the impedance of the fault point and calculates the short-circuit fault current. However, in the application of the objective, it is still found that the short-circuit current calculation reference has the following disadvantages: (1) Ignore the generator load before the fault (2) Ignore the transient decay of the AC component. (2) Ignore the motor energy conversion efficiency. (4) Ignore the short-circuit current fed by the shaft power generation system. (5) Ignore the influence of the cable operating temperature. The production, government, and academic circles are eager to develop a device for calculating the fault current generated by a short-circuit accident at different locations in the ship's power system, so as to better pre-select enough for the ship's power allocation planning. Broken capacity protection device' quickly Cut off the faulty equipment or line away from the power supply, and minimize the scope of the power outage area caused by the short circuit and the related electrical appliance damage caused by the short circuit. [Summary of the invention] When calculating the short-circuit current, understand the individual equipment The short-circuit current 〇 condition and the influence of multiple power devices connected in series on the short-circuit current are very important. In a complete ship power system, the passive components in the system, such as cables and transformers, have a great influence on the short-circuit current. Large, in addition to changing the steady-state value of the calculation result of the open circuit current, the characteristic data representing the transient process will also be affected. Therefore, the object of the present invention is to provide a ship short-circuit current detecting device 'to obtain accurate short-circuit current The calculation result is as follows. The ship short-circuit current detecting device of the present invention comprises: a power device 5 201043533 2 anti-slim module, a synthetic impedance calculation module, a generator and a motor parameter correction module, and a short-circuit current calculation module. The power device impedance calculation module performs a first: operation m operation result on the input data group. The impedance calculation module receives the first operation result and performs a second operation to generate a second operation result. The generator and the motor parameter correction module receive the second operation result and perform a third operation to generate a first The third operation result, the short-circuit current calculation module receives the third operation result and performs a fourth operation to generate an output result group. ▲ The effect of the invention is that the power device impedance calculation module and the composite impedance The calculation module, the generator and the motor parameter correction module, and the short-circuit current calculation module analyze and calculate various types of input data groups related to the ship power system, thereby obtaining a short-circuit current of the ship. In order to reduce the risk of failure or even damage caused by short circuit of various related electrical equipment. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to FIG. 1 , a preferred embodiment of the ship short-circuit current detecting device of the present invention comprises a human-machine interface 11 , an electrical equipment impedance calculation module 12 , a synthetic impedance calculation module 13 , a generator and a motor parameter correction module 14 . And a short circuit current calculation module 15. The human interface 11 receives an input from the user 3, generates an input resource 201043533, and transmits it to the power device impedance calculation module 12. In the preferred embodiment, the human interface η is developed by Microsoft (Micr〇s〇ft) Excei software, and its home interface is shown in FIG. 2, and the human interface 11 further includes a plurality of inputs. Pagination: a generator parameter input page (see Figure 3), a transformer parameter input page (see Figure 4), a motor parameter input page (see Figure 5), a bus voltage input page (see Figure 6), a line The impedance input page (see Figure 7), a transformer line parameter input page (see Figure 8), a fault point line parameter input page (see Figure 9), and a cable impedance parameter number input page (see Figure 10). It is to be noted that, in the preferred embodiment, the input data group 21 required for the calculation of the power device impedance calculation module 12 includes a set of paging parameters input by the generator parameters, a parameter input of the transformer, and a motor. Parameter input page, bus voltage input page and line impedance input page are integrated into the device basic data, a set of transformer line parameters entered via the transformer line parameter input page, and a set of page entry via the fault point line parameter input. Type the fault point line parameter and a set of line basic parameters typed via the cable Q impedance parameter input tab. Here, 'further descriptions are made for each data content in the input data group 21': (1) The basic information of the group of devices includes: a generator apparent power (^ Kun, unit is kVA), one Generator rated voltage (vg, unit is v), one generator secondary transient reactance (X"d, unit is %), one generator transient reactance (x, d, unit is %), one generator reactance ( Xd unit is %), one generator secondary transient time constant (T"d, unit is sec), one generator transient time constant (T, d, 7 201043533 unit is sec), a generator DC time constant ( Tdc, unit is sec), one generator stator resistance (Rs, unit is %), one generator frequency (f, unit is Hz), one generator rated current ratio (KKd, in %), one generator power Factor (PF), apparent power of a transformer (str 'unit is kVA), one transformer once measured voltage (Vpri, unit is V), one transformer secondary voltage (Vsec, unit is V), one transformer internal resistance ( Rtr, in %), a transformer internal reactance (Xtr, in %) A motor operating state value, a total motor power (in kW), a motor apparent power (Sim, in kVA), a motor rated current (Iim, in A), a motor short-circuit current AC component (IaClm, The unit is A), a motor short-circuit current value component (Idcim, unit is A), a motor short-circuit current peak (Ipeakim (unit: A), a bus voltage group (including MSB Pri, MSB Sec, eSB Pri, ESB) Sec and F WD, the unit is v), and a line impedance value group (including Rc and Xc, the unit is the resistance value / m). (2) The parameters of the transformer line include: a transformer once measured line diameter (unit is mm2), a transformer secondary test line diameter (unit is mm2), - MU line parallel number ' and - transformer line length (unit is claw ). (1) The line parameters of the fault point of the group include a fault point line diameter (in mm), the number of fault point line parallels, and the length of a fault point line (unit is m). (4) The basic parameters of the line include a line resistance parameter (RC, the unit is the resistance value ~) and - the line reactance value (Xe, the unit is the reactance value / m) e. In practice, the ship short-circuit current detecting device of the present invention In addition to mainly detecting fault current conditions of generators and transformers, it can also be used as input data group as mentioned in 201043533.

用來檢測馬達之故障電流,因此, 組還可包括如下列·--圖11)所鍵入之一 、一馬達頻率(單4 電阻(單位為%)、 電抗(單位為%)、 抗(單位為%)、一 長度(單位為m)、一 ,! 〇 單位為歐姆),及一馬達線路電抗(單位為歐姆)。 再者’若要再更精確地計墓.1» ·;去ΛΑ ΠΛ· a iIt is used to detect the fault current of the motor. Therefore, the group can also include one of the following types, ie, Figure 11), a motor frequency (single 4 resistance (in %), reactance (in %), resistance (unit) For %), one length (in m), one, ! 〇 in ohms, and one motor line reactance (in ohms). Furthermore, if you want to count the grave more accurately.1» ·; go to ΠΛ ΠΛ · a i

料,以進行更精確的運算。 然而,此檢測功能為彈性且具有選擇性的,因此,本 發明所提供之應用,也可以適用於搭配如緊急發電機、緊 急馬達、其他的習知技術領域或未來相關的電氣設備檢驗 上,因此類狀況並非本發明所探討重點,故在此不再贅述 該電力設備阻抗計算模組12對該輸入資料群組21進 行一第一運算,產生一第一運算結果22。在本較佳實施例 中,該電力設備阻抗計算模組12於開始進行該第一運算前 ’先判斷所欲計算之一馬達的總功率是否大於100千瓦: 若疋’則判定該馬達為大型馬達,並進行以下設定 9 201043533 z M~〇 l6p.u. ' T'M = 〇A5p.u. ' 心=0.034/?.w.、々=0_021;?.w.,及 及M =及s + 及r = 0·055pM, o 若否’則判定該馬達為小型馬達,並設定Zlw=r02/7W、 尤 m-〇.188/».w.、&=0043;?„、q=〇〇27p,及…=u+)=〇〇7〇p ’而Z”M為非同步電動機次暫態阻抗、X,,M為次暫態、Rr 為非同步電動機轉子電阻、Rs為非同步電動機定子電阻、 Rm為馬達電阻。 然而,前述之第一運算包括:首先,將線路電阻乘上 線路長度再除以線路併聯數量再除以〗000,接著再將線 路電,乘上線路長度再除以線路併聯數量再除以刪,並 计算以下運算式、 ’且Z”e與Z’e分別表示發電機的次暫態阻抗及暫態阻抗、 =為非同步電動機次暫態阻抗、R為發電機至主匯流排間 ==、Ra為同步電動機的定子電阻、rR為非同步 電阻、Rs為非同步電動機定子電阻、X為發電 機至主匯流排間之線路的電抗、 X” , * Xd4發電機之暫態電抗、 d為發電機之::人暫態電抗、χ &為非同步電動機定子電抗。㈣步電動機轉子電抗、 該合成阻抗計算模組丨3 ^ ^ ^ 接收该第一運算結果22並進 第一運算,產生一第二運 該第二運算包括以下計算式子。:。本較佳實施例 行 中 % U0 V3/,' * SiMaterial for more precise calculations. However, the detection function is flexible and selective, and therefore, the application provided by the present invention can also be applied to the inspection of electrical equipment such as emergency generators, emergency motors, other conventional technical fields or future related electrical equipment. Therefore, the state of the present invention is not the focus of the present invention. Therefore, the power device impedance calculation module 12 performs a first operation on the input data group 21 to generate a first operation result 22. In the preferred embodiment, the power device impedance calculation module 12 first determines whether the total power of one of the motors to be calculated is greater than 100 kW before starting the first operation: if 疋', the motor is determined to be large Motor and make the following settings 9 201043533 z M~〇l6p.u. ' T'M = 〇A5p.u. ' Heart=0.034/?.w., 々=0_021;?.w., and M = and s + and r = 0·055pM, o If no, the motor is determined to be a small motor, and Zlw=r02/7W, especially m-〇.188/».w., &=0043;?„,q =〇〇27p, and...=u+)=〇〇7〇p ' and Z”M is the subtransient impedance of the non-synchronous motor, X, M is the subtransient, Rr is the rotor resistance of the non-synchronous motor, and Rs is non- Synchronous motor stator resistance, Rm is motor resistance. However, the first operation described above includes: first, multiplying the line resistance by the line length and dividing by the number of line parallels and dividing by 〗 〖000, and then charging the line, multiplying the line length, dividing by the number of line parallels, and dividing by And calculate the following expression, 'and Z' e and Z'e respectively represent the secondary transient impedance and transient impedance of the generator, = is the secondary transient impedance of the asynchronous motor, and R is the generator to the main busbar = =, Ra is the stator resistance of the synchronous motor, rR is the non-synchronous resistance, Rs is the stator resistance of the asynchronous motor, X is the reactance of the line between the generator and the main bus, X", * the transient reactance of the Xd4 generator, d is the generator:: human transient reactance, χ & is the stator reactance of the non-synchronous motor. (4) The step motor rotor reactance, the combined impedance calculation module 丨3 ^ ^ ^ receives the first operation result 22 and proceeds to the first operation to generate a second operation. The second operation includes the following calculation formula. :. The preferred embodiment is in the line % U0 V3/, ' * Si

i ----- _ 机* + xl· χ:=拉H、=^r^T x: z: X: ’且前述Z,,*與Z,*分 10 201043533 別為等效發電機的次暫態阻抗與暫態阻抗、ζ*為等效發電機 阻抗、uQ為故障前之線電壓、f為發電機之頻率、q為等效 -人暫態電抗之計算常數、I*為等效發電機電流、广與丨,*分 別為等效發電機的次暫態短路電流與暫態短路電流、R*為 等效發電機電阻、Tdc*為非週期分量時間常數、X*為等效發 電機電抗、X”*與X’*分別為等效發電機的次暫態電抗與暫 態電抗。 Οi ----- _ machine* + xl· χ:= pull H, =^r^T x: z: X: 'and the aforementioned Z,, * and Z, * minutes 10 201043533 Don't be equivalent generator The transient impedance and transient impedance, ζ* is the equivalent generator impedance, uQ is the line voltage before the fault, f is the frequency of the generator, q is the equivalent - the calculation constant of the human transient reactance, I* is, etc. Effective generator current, wide and 丨, * are the secondary transient short-circuit current and transient short-circuit current of the equivalent generator, R* is the equivalent generator resistance, Tdc* is the non-periodic component time constant, X* is, etc. The effective generator reactance, X"* and X'* are the sub-transient reactance and transient reactance of the equivalent generator respectively.

該發電機及電動機參數修正模組14接收該第二運算結 果23並進行一第三運算’產生一第三運算結果24。在本較 佳實施例中,該第三運算包括以下計算式子:The generator and motor parameter correction module 14 receives the second operation result 23 and performs a third operation 'generates a third operation result 24. In the preferred embodiment, the third operation includes the following calculation formula:

Iac = IacG' +1acG2 'r^acGn +^acMx -----*" ^acMm 'Iac = IacG' +1acG2 'r^acGn +^acMx -----*" ^acMm '

Jp =IpGl +IpG2 +"' + IpG„ +ΙρΜλ +IpM2 +-- + IpMm ' lac^MGi =1ac~IacGi ,對於Z·為1至Π、— ,對於z•為1至m、 ^acG (〇TO = ΣIacG (0 + ΣIacM (0 、 IdcG (〇TO = Σ IdcG (Ο + Σ ^dcM )、Jp =IpGl +IpG2 +"' + IpG„ +ΙρΜλ +IpM2 +-- + IpMm ' lac^MGi =1ac~IacGi , for Z· is 1 to Π, —, for z• is 1 to m, ^acG (〇TO = ΣIacG (0 + ΣIacM (0 , IdcG (〇TO = Σ IdcG (Ο + Σ ^dcM ),

IacG(t)*=(I*-I*)e-t/T^ +(Ii-Ik*)e~t/T^ +Ik*、IdcG = ^IZe^'、 IacG(0* =M*e~t/Td* +N*e~tlT,d* +Ik*、Μ*=Γ*-Ι\ > N*=r*-Ik* ' /*= If' h^YTilm ' K(t) = M*e-t,T^+h ' Κ\ί) = (ϊ^-Ϊ^~ί/Τα* +Ikd* 、 Κ"(ί)*=Σ?Κ"(ί) + ΣΤΐΜ^/Τ;ίί 、 ^dcG^fx^* ^dcM^x)j Z* =R* + 、X* = -\JZ* — R*、 lacGQx、* =M*e tx 丨+N*e txlTh +Ik*、X,=z^jz* -R*、 ^acG (^)* = ^?^acG(fx)i + ^J^acM (fx)j ' = Kp +^+ RcsIacG(t)*=(I*-I*)et/T^ +(Ii-Ik*)e~t/T^ +Ik*, IdcG = ^IZe^', IacG(0* =M*e~ t/Td* +N*e~tlT,d* +Ik*,Μ*=Γ*-Ι\ > N*=r*-Ik* ' /*= If' h^YTilm ' K(t) = M*et,T^+h ' Κ\ί) = (ϊ^-Ϊ^~ί/Τα* +Ikd*, Κ"(ί)*=Σ?Κ"(ί) + ΣΤΐΜ^/Τ; ίί , ^dcG^fx^* ^dcM^x)j Z* =R* + , X* = -\JZ* — R*, lacGQx, * =M*e tx 丨+N*e txlTh +Ik*,X ,=z^jz* -R*, ^acG (^)* = ^?^acG(fx)i + ^J^acM (fx)j ' = Kp +^+ Rcs

Up V37; Z;Up V37; Z;

" ,工 rJ1 ^ X Q ❽= ln「n)二/Wm*1 d,~HldcG(tx)J^2r\] *—~W:" , worker rJ1 ^ X Q ❽ = ln "n) two / Wm * 1 d, ~ HldcG (tx) J ^ 2r \] * - ~ W:

T d* -、c3 2^d,T d* -, c3 2^d,

及cs =及cs X 11 201043533 χ: X~J^'Rcs ^us xΦ2'<s = x(jr)2' ^ = z/ ’且:述Ia。為主匯流排故障點之對稱短路電 同步電動機之短路電流的交流成分、丨 〇G1- 4 之對稱短路電流、Ip a〜4㈣步電動機 & 之最大非對稱短路電 =ΓΓ 電動機非對稱短路電流成分、為非同 故:動機非對稱短路電流成分、Ia,與Ip_分別為任一 障:對稱與最大非對稱短路電流、IdcG為發電機饋送的短 電抓非週期性成分、IacM與IdcM分別為等效電動機饋送之 對稱與非週期性短路電流、工'與八分別為等效發電機的次暫 態短路電流與暫態短路電流、〜與T,d•分別為等效發電機 之次暫態時間常數與暫態時間常數、為次暫態與暫態電流 差值、N4暫態電流與穩態電流差值、b為同步發電機穩態 電流總和、Ikd為同步電動機初始短路電流、Z”^與分別 為同V電動機之_欠暫g初始短路電流與暫態初始短路電流' Γ’Μ為非同纟電動機之次暫態短路電流、κ,,為等效發電機次 暫態時間參數之計算常數、2,,*與ζ、分別為等效發電機的次 暫態阻抗與暫態阻抗、Ζ*為等效發電機阻抗、υ〇為故障前之 線電壓、f為發電機之頻率、q為等效次暫態電抗之計算常 數、R*為等效發電機電阻、Tde*為非週期分量時間常數、X* 為等效發電機電抗、X”*與X,*分別為等效發電機的次暫態電 抗與暫態電抗、RCP與r,cs分別為一次測及轉換至一次測之 12 201043533 Ο 二:測線路電阻、…匯流排與故 阻代數和、RtA総廒璲命 电刀叹備電 電力讯備雷:h D *"且、々為主匯流排與故障點間所有 罨力叹備電抗代數和、又蛊 令 次 cp/、/刀別為一次測及轉換至— / J之一-人測線路電抗、χ為 變龎哭kt乃變I器電抗、UP與us分別為 之4/ 人測及二次測電壓、t為短路開始期間、1為所定義 丑路開始期間、1S為變壓器二次側電流。 該短路電流計算模組15接收該第三運算結果24並進 ώ第四運算’產生一輸出結果群組25。在本較佳實施例 中,該第四運算包括以下計算式子: J^a + ^)2 + (Z",+Z)2]z', rr i^+WH^d+x)(x'd+x)^;' 4=E;lz:Ujz’e、 Γ"And cs = and cs X 11 201043533 χ: X~J^'Rcs ^us xΦ2'<s = x(jr)2' ^ = z/ ' and: Ia. The AC component of the short-circuit current of the symmetrical short-circuit electric synchronous motor at the fault point of the main busbar, the symmetrical short-circuit current of 丨〇G1 - 4, the maximum asymmetric short-circuit of the Ip a~4 (four) step motor & = the asymmetric short-circuit current of the motor The composition is non-same: the asymmetric short-circuit current component of the motive, Ia, and Ip_ are either obstacles: symmetric and maximum asymmetric short-circuit current, Idcc is the short-current non-periodic component fed by the generator, IacM and IdcM The symmetrical and aperiodic short-circuit currents respectively fed by the equivalent motor, the secondary transient short-circuit current and the transient short-circuit current of the equivalent generator, respectively, and T, d· are respectively equivalent generators. Transient time constant and transient time constant, difference between subtransient and transient current, difference between N4 transient current and steady state current, b is the sum of steady state current of synchronous generator, and Ikd is the initial short circuit current of synchronous motor , Z"^ and the same V motor's _ under temporary g initial short-circuit current and transient initial short-circuit current ' Γ' Μ is the non-synchronous motor's secondary transient short-circuit current, κ, is the equivalent generator secondary State The calculation constants of the parameters, 2, * and ζ, respectively, the secondary transient impedance and transient impedance of the equivalent generator, Ζ* is the equivalent generator impedance, υ〇 is the line voltage before the fault, and f is the generator The frequency, q is the calculation constant of the equivalent sub-transient reactance, R* is the equivalent generator resistance, Tde* is the non-periodic component time constant, X* is the equivalent generator reactance, X”* and X,* respectively For the equivalent generator, the sub-transient reactance and transient reactance, RCP and r, cs are respectively measured and converted to one test. 12 201043533 Ο II: Measure line resistance, ... bus bar and fault block algebra sum, RtA総Desperate electric knife sighs the electric power to prepare the mine: h D * " and, 々 between the main bus and the fault point, all the sighs of the reactance algebra and 蛊 cp /, / knife is once Measure and switch to - / J one - human measurement line reactance, χ change 厐 kt kt is change I device reactance, UP and us respectively 4 / human measurement and secondary measurement voltage, t is short circuit start period, 1 For the defined ugly road start period, 1S is the transformer secondary side current. The short-circuit current calculation module 15 receives the third operation result 24 and proceeds to a fourth operation to generate an output result group 25. In the preferred embodiment, the fourth operation includes the following calculation formula: J^a + ^) 2 + (Z", +Z) 2] z', rr i^+WH^d+x) (x 'd+x)^;' 4=E;lz:Ujz'e, Γ"

ΧΜ <〇rRRΧΜ <〇rRR

T, ^Τ^+(Χ/2π/^) Χ\+χ Ce 1 + (Λ/Λα) ~^f(Ra+R)' 7Ρ〇(0 = ν2/Λε(0 + /^(/> TdcK (及s+R) 〇T, ^Τ^+(Χ/2π/^) Χ\+χ Ce 1 + (Λ/Λα) ~^f(Ra+R)' 7Ρ〇(0 = ν2/Λε(0 + /^(/&gt ; TdcK (and s+R) 〇

IacG^ = ^kd-I'kd)e~tlT e+(,1^-1 kd)e~tlT,e +1kd ' IacM(.t) = Inm ^~tlT"M !(ίαΜ(ί) = ^(ΓΜ -IrM sin^M)e~t/TdcM ' 1 pM (f) = ^acM (*) + IdcM (11) ' Γ'μ = 5 /,IacG^ = ^kd-I'kd)e~tlT e+(,1^-1 kd)e~tlT,e +1kd ' IacM(.t) = Inm ^~tlT"M !(ίαΜ(ί) = ^ (ΓΜ -IrM sin^M)e~t/TdcM ' 1 pM (f) = ^acM (*) + IdcM (11) ' Γ'μ = 5 /,

^rM ' ^acM =3-2 Ir^ Λ IpU =8 IrU £;〇-^rM ' ^acM =3-2 Ir^ Λ IpU =8 IrU £;〇-

E 9〇 |^^rC〇s《。+(i?a+7?)/。+ jsin 多。+(X:+X)J0 〔戈 cos#。+(尤 +Λ)/。j +〔戈 sin#。+(X: +X)/0 U〇 、2. / 1/2 1/2 1/2 uE 9〇 |^^rC〇s". +(i?a+7?)/. + jsin more. +(X:+X)J0 〔戈 cos#. + (especially +Λ)/. j +[戈 sin#. +(X: +X)/0 U〇 , 2. / 1/2 1/2 1/2 u

rM svr eos^ —/?M/rM svr eos^ —/?M/

rM cos φΜ —rM cos φΜ —

rMrM

UU

rM 4ϊ smφM -XnulrM 4ϊ smφM -Xnul

rM 〜sin mu s 1/2 13 201043533 τ_Ε„ ’且前述r為發電機至主匯流排間之線路的電阻、Ra為同 步電動機的定子電卩且、γ X為發電機至主匯流排間之線路的 電抗、x’d為發電機之暫態電抗、x,,d為發電機之次暫態電 抗、Xd為發電機電抗、f為發電機之頻率、u0為故障前之 線電麼、〜與rkd分別為同步電動機之次暫態初始短路電 ::與暫態初始短路電流、z'與z,e分別表示發電機的次暫 抗及暫I阻k、iaeG為同步電動機饋送的對稱短路電流 為發電機饋送的短路電流非週期性成分、IPG為 同2動機非對稱短路電流成分、t為短路開始期間丄為 主匯々丨L排故障點之對稱短 ώ „ . 電仇、Idc為主匯流排故障點之 短料流、Rr為非同步電動機轉子電阻、Rs為非同 乂電動機疋子電阻'U為 動機額定電流、… 定電麼〜為等效電 非週期性矩路Μ ^ ㈣朗較對稱及 E,八,% m ‘、,最大非對稱短路電流、E”m鱼 二刀別為短路瞬間馬達之次暫態與暫初、 始對稱短路電流、τ,’m為次暫態時間常 勢 常數、X”…V分別為次暫態” d:為直“間 電動機電抗、rm為馬達電阻、Erf'、XM為非同步 暫態與暫態的q軸内電勢、0。二與/广刀別為發電機次 〜皆為馬達功率因數、z,,非\ ά 、SIN〜與cos 、為,為同步電動機之次暫態阻抗 〃“、T’d分別為同步電動機之次暫態與暫態 14 201043533 的時間常數、T’’e與T’e分別為包括非主動元件之同步電動 機的次暫態與暫態時間常數、為包括非主動元件之同步 電動機之直流時間常數。 此外,在本較佳實施例中,上述之短路電流計算模組 於運算後所產生的輸出結果群組25包括··一組設備對稱短 路電流、一紐設備峰值短路電流、一組故障點對稱短路電 流’及一組故障點峰值短路電流。 須再補述的是’本發明船舶短路電流檢測裝置於上述 0 較佳實施例中,僅以對一部發電機、一部變壓器設備或一 部馬達進行短路電流檢測為例,然而,於實際操作上,亦 可同時對複數部發電機、變壓器設備或馬達進行檢測,此 檢測之數量是具有相關背景者所易於思及而變化運用’故 不應受該較佳實施例之特定範例為限。 ψrM ~sin mu s 1/2 13 201043533 τ_Ε„ ' and the aforementioned r is the resistance of the line between the generator and the main bus, Ra is the stator of the synchronous motor, and γ X is between the generator and the main bus The reactance of the line, x'd is the transient reactance of the generator, x, d is the secondary transient reactance of the generator, Xd is the generator reactance, f is the frequency of the generator, and u0 is the line power before the fault, ~ and rkd are the secondary transient initial short-circuit of the synchronous motor:: and the transient initial short-circuit current, z' and z, e respectively indicate the secondary reactance of the generator and the temporary I resistance k, iaeG is the symmetry of the synchronous motor feed The short-circuit current is the non-periodic component of the short-circuit current fed by the generator, the IPG is the asymmetric short-circuit current component of the same 2 engine, and t is the symmetrical short-term 丄 of the fault point of the main row of the short-circuit during the short-circuit start period. „ . The short flow of the fault point of the main busbar, Rr is the rotor resistance of the non-synchronous motor, Rs is the non-synchronous motor, the electric resistance of the rotor is 'U is the rated current of the motor, ... is the fixed electric power~ is the equivalent electric non-periodic moment pathΜ ^ (4) Lang is more symmetrical and E, eight, % m ',, the largest asymmetry Short-circuit current, E"m fish two-knife is the secondary transient and initial, short-circuit current, τ, 'm is the secondary transient constant constant, X"...V is the secondary transient respectively d: is the direct "internal motor reactance, rm is the motor resistance, Erf', XM is the non-synchronous transient and transient q-axis internal potential, 0. The second and / knives are not generators ~ all are motor power factor, z,, non- ά, SIN ~ and cos, for, the secondary transient impedance of the synchronous motor 〃 ", T'd respectively for the synchronous motor The time constants, T''e and T'e of the subtransient and transient 14 201043533 are the subtransient and transient time constants of the synchronous motor including the inactive components, respectively, and the DC time of the synchronous motor including the inactive components. In addition, in the preferred embodiment, the output group 25 generated by the short-circuit current calculation module after the operation includes: a set of device symmetrical short-circuit current, a device peak short-circuit current, and a set of faults. Point symmetrical short-circuit current 'and a set of fault point peak short-circuit current. It is necessary to add that 'the ship short-circuit current detecting device of the present invention is in the above preferred embodiment, only for one generator, one transformer device or A motor performs short-circuit current detection as an example. However, in actual operation, multiple generators, transformer devices, or motors can be detected at the same time. The number of such detections has an associated back. It is not limited to the specific examples of the preferred embodiment.

在此’為了更進一步地說明本發明之功效,以下將針 對包括一發電機、一緊急發電機、一變壓器設備、一馬達 群,並設置多組故障點(編號為MG、MEG、MA、MB、MC 〇 、MD、ME、MF、ΜΗ、MI、MJ 及 MK)為例,來透過本 發明船舶短路電流檢測裝置,以進行實際的檢測分析,其 上述之相關輸入資料如圖12至17及圖18a至18h所示,且 相關的輸出結果群組則如圖l9a至圖19d所示。 最後’將前述之輸出結果群組與現行系統所計算出的 相關數據相比較’可得出以下本發明之優勢: )考慮了忽略故障前發電機負荷效應、交流成分的暫 態衰減、馬達能量轉換效率、軸發電系統饋送的短路電流 15 201043533 及電窥工作溫度的影響等因t,而得出較為精確 短路電流大小。 τ ()斤十算出的短路電流結果較大,如此較保守的估算 ’對於船舶電力系統的設計上產生較大的短路負載能力, 而降低短路電流所衍生之毀損風險。 ^ (三)提昇了系統電壓,對於降低短路電流有極顯著的助 益,如此一來,可減少船舶相關保護開關設備之體積與重 量,進而有助於船舶電力保護設備之規劃與設計。 綜上所述,本發明船舶短路電流檢測裝置確實能達成 本發明之目的。 惟以上所述者,僅為本發明之一較佳實施例而已,當 不能以此限定本發明實施之範圍,即大凡依本發明申請專 利範圍及發明說明内容所作之簡單的等效變化與修飾,皆 仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1疋一方塊圖,說明本發明船舶短路電流檢測装置 之較佳實施例中,各元件之配置及其運作態樣; 圖2是一示意圖,說明本較佳實施例中,一人機介面 的輸入首頁; 圖3疋一示意圖,說明本較佳實施例中,一發電機參 數輸入分頁; 圖4是一不意圖,說明本較佳實施例中,一變壓器參 數輸入分頁; 圖5是一示意圖,說明本較佳實施例中,一馬達參數 16 201043533 輸入分頁; 圖6是一示意圖,說明本較佳實施例中,一匯流排電 壓輸入分頁; 圖7是一示意圖,說明本較佳實施例中,一線路阻抗 輸入分頁; 圖8是一示意圖,說明本較佳實施例中,一變壓器線 路參數輸入分頁; 圖9是一示意圖,說明本較佳實施例中,一故障點線 &路參數輸入分頁;Herein, in order to further illustrate the effects of the present invention, the following will be directed to including a generator, an emergency generator, a transformer device, a motor group, and setting multiple sets of fault points (numbered MG, MEG, MA, MB). For example, MC 〇, MD, ME, MF, ΜΗ, MI, MJ, and MK) are used to perform actual detection and analysis by the ship short-circuit current detecting device of the present invention, and the related input data are as shown in FIGS. 12 to 17 and Figures 18a through 18h, and the associated output result groups are shown in Figures 19a through 19d. Finally, 'comparing the aforementioned output result group with the relevant data calculated by the current system' can give the following advantages of the present invention:) Considering the pre-fault generator load effect, the transient attenuation of the AC component, and the motor energy The conversion efficiency, the short-circuit current fed by the shaft power generation system 15 201043533, and the influence of the electroosmotic operating temperature are determined by t, resulting in a relatively accurate short-circuit current. The short-circuit current calculated by τ () jin 10 has a large result, so the more conservative estimation 'has a large short-circuit load capacity for the design of the ship power system, and reduces the damage risk caused by the short-circuit current. ^ (3) The system voltage is increased, which is extremely beneficial for reducing the short-circuit current. As a result, the volume and weight of the ship-related protection switchgear can be reduced, which in turn contributes to the planning and design of the ship's power protection equipment. In summary, the ship short-circuit current detecting device of the present invention can achieve the object of the present invention. However, the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the present invention and the description of the invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the arrangement of components and their operational aspects in a preferred embodiment of the ship short-circuit current detecting device of the present invention; FIG. 2 is a schematic view showing the preferred embodiment In the preferred embodiment, a generator parameter input page is shown in FIG. 3; FIG. 4 is a schematic diagram showing a transformer parameter input page in the preferred embodiment. FIG. 5 is a schematic diagram showing a motor parameter 16 201043533 input page in the preferred embodiment; FIG. 6 is a schematic diagram showing a bus voltage input page in the preferred embodiment; FIG. 7 is a schematic diagram. In the preferred embodiment, a line impedance input page is shown; FIG. 8 is a schematic diagram showing a transformer line parameter input page in the preferred embodiment; FIG. 9 is a schematic diagram showing the preferred embodiment. Fault dotted line & road parameter input paging;

D 圖10是一示意圖,說明本較佳實施例中,一電纜阻抗 參數輸入分頁; 圖11是一示意圖,說明本較佳實施例中,一馬達基本 參數輸入分頁; ’ 圖12〜17及圖18a〜18h是示意圖,說明本較佳實施例 中,於進行本發明船舶短路電流檢測裝置之實際檢測時, 所鍵入的各項相關輸入資料,及 q 圖19a至圖19d是示意圖,說明本較佳實施例中,於進 行本發明船舶短路電流檢測裝置之實際檢測時,所計算出 的一輸出結果群組。 17 201043533 【主要元件符號說明】 11........ •人機介面 21 ·_··. 輸入貝料群組 12........ •電力設備阻抗計 22..... •…第一運算結果 算模組 23 ..... •…第二運算結果 13........ •合成阻抗Η*异模 24 •…第三運算結果 組 25 •…· …· ·輸出結果群組 14........ •發電機及電動機 3…… …·使用者 參數修正模組 15.........短路電流計算模 組 18FIG. 10 is a schematic diagram showing a cable impedance parameter input page in the preferred embodiment; FIG. 11 is a schematic diagram showing a basic parameter input page of the motor in the preferred embodiment; FIG. 12 to FIG. 18a to 18h are schematic diagrams showing the relevant input data entered in the actual detection of the ship short-circuit current detecting device of the present invention in the preferred embodiment, and FIG. 19a to FIG. 19d are schematic diagrams illustrating the comparison. In a preferred embodiment, a group of output results is calculated when performing the actual detection of the ship short-circuit current detecting device of the present invention. 17 201043533 [Description of main component symbols] 11........ • Human machine interface 21 ·_··. Input beaker group 12........ • Power equipment impedance meter 22... .. •...The first operation result calculation module 23 ..... •...The second operation result 13........ •Synthetic impedance Η*Different mode 24 •...The third operation result group 25 •... · ...· · Output result group 14........ • Generator and motor 3... User parameter correction module 15... Short-circuit current calculation module 18

Claims (1)

201043533 七、申請專利範圍: 1. 一種船舶短路電流檢測裝置,包含: 一電力設備阻抗計算模組,對―輪人資料群組進行 一第一運算,產生一第一運算結果; -合=阻抗計算模組’接收該第—運算結果並進行 一第二運算,產生一第二運算結果; 一發電機及電動機參數修正独,接收該第二運算 結果並進行一第三運算,產生一第三運算結果·,及 〇 —短路電流計算模包,接收該第三運算結果並進行 一第四運算,產生一輸出結果群組。 2. 依據申請專利範圍第i項所述之船舶短路電流檢測裝置 ’其中,該電力設備阻抗計算模組運算所需的輸入資料 群組包括—組設備基本資料、-組變壓器線路參數、— 組故障點線路參數,及一組線路基本參數。 3_依據巾請專利範圍第2項所述之船舶短路電流檢測裂置 ,其中,該輸入資料群組中的該組設備基本資料包括— 〇 發電機視在功率、一發電機額定電壓、一發電機次暫態 電抗、一發電機暫態電抗、一發電機電抗、一發電機次 暫態時間常數、一發電機暫態時間常數、一發電機直流 時間常數、一發電機定子電阻、一發電機頻率、一發電 機額定電流比值、一發電機功率因數、一變壓器視在功 率、一變壓器一次測電壓、一變壓器二次測電壓、—變 壓器内部電阻、一變壓器内部電抗、一馬達運作狀態值 、一馬達總功率、一馬達視在功率、一馬達額定電流、 19 201043533 馬達紐路電流交流成分、一馬達短路電流值流成分、 一馬達短路電流峰值、一匯流排電壓組,及一線路阻抗 值組。 4.依據申請專利範圍帛2項所述之船舶短路電流檢測裝置 ,其中,該輸入資料群組中的該組變壓器線路參數包括 -變壓器一次測線路口徑、一變壓器二次測線路口徑、 一變壓器線路併聯數量,及一變壓器線路長度。 5·依據中請專利範圍第2項所述之船舶短路電流檢測裝置 ’其中’該輸入資料群组中的該組故障點線路參數:括 -故障點線路口彳^輯點線路併聯數量 點線路長度。 故障 6·依據巾請專利_第2項所述之船舶短路電流檢測裝置 ’其中’該輸人資料群組中的該組線路基本參數 線路電阻值及一線路電抗值。 7·依::請專利範圍第2項所述之船舶短路電流檢测裳置 链其中’該電力設備阻抗計算模組運算所需的 群組還包括一組馬達泉數 科 參數,而該組馬達參數且右— 額定電壓、一馬達頻 八 馬達 電阻、一,達定:: 羊一馬達功率因數、一馬達轉子 雷尸 m “ 馬達轉子電抗、一馬達定子 電抗、一馬達總電抗、— 久十 庚、__ a、去# , 、'、 住、—馬達線路县 度、一馬達線路併聯數| 長 W聊數量、一馬達線路電阻 線路電抗。 ^ 馬達 8·依據申請專利範圍第7 .^ ^ 嗦所述之船舶短路電流檢測麩里 ,其中,該組馬達參數還 J裝置 定具有一馬達變壓器電阻、— ~* 馬 20 201043533 達變壓器電抗、一馬達變壓器一次測額定電壓,及一馬 達變壓器二次測額定電壓。 9. 依據U利範圍第i或2項所述之船舶短路電流檢測 裝置,丨中,該短路電流計算模組於運算後所產生之輸 出結果群組包括-組設備對稱短路電流、—組設備聲值 短路電流、—組故障點對稱短路電流,及-組故障點峰 值短路電流。 10. 依據中請專利範圍第2至9項中之任—項所述之船舶短 〇 路電抓檢測裝置’其中’該電力設備阻抗計算模組對該 輸入資料群組所進行之第—運算包括H將線路電 阻乘上線路長度再除以線路併聯數量再除以10⑽接著 再將線路電抗乘上線路長度再除以線路併聯數量再除 , 以1000,並計算以下運算式心队w+m+x)2]"2、 Ze-[(Ra+R) +(^+^)2]172 . =[(RR+Rs+Rf+^XR+Xs+x)j2^/2 ,且z’’e與Z’e分別表示發電機的次暫態阻抗及暫態阻抗 、Z”M為非同步電動機次暫態阻抗、r為發電機至主匯 Ο 流排間之線路的電阻、Ra為同步電動機的定子電阻、Rr 為非同步電動機轉子電阻、Rs為非同步電動機定子電阻 、X為發電機至主匯流排間之線路的電抗、x,d為發電機 之暫態電抗、x’’d為發電機之次暫態電抗、Xr為非同步 電動機轉子電抗、Xs為非同步電動機定子電抗。 11 _依據申叫專利靶圍第丨〇項所述之船舶短路電流檢測襞置 ,其中,該合成阻抗計算模組對該第一運算結果所進行 之第二運算包括以下計算式子: 21 201043533201043533 VII. Patent application scope: 1. A ship short-circuit current detecting device, comprising: a power equipment impedance calculation module, performing a first operation on a wheel-person data group to generate a first operation result; - combining = impedance The computing module 'receives the first operation result and performs a second operation to generate a second operation result; a generator and motor parameter correction is exclusive, receiving the second operation result and performing a third operation to generate a third The operation result·, and the 〇-short-circuit current calculation module, receives the third operation result and performs a fourth operation to generate an output result group. 2. According to the ship short-circuit current detecting device described in the scope of claim patent item i, wherein the input data group required for the calculation of the impedance calculation module of the power device comprises: group device basic data, - group transformer line parameter, - group Fault point line parameters, and a set of line basic parameters. 3_ According to the invention, the short-circuit current detection splitting of the ship according to item 2 of the patent scope, wherein the basic data of the set of equipment in the input data group includes: 视 generator apparent power, a generator rated voltage, one Generator secondary transient reactance, one generator transient reactance, one generator reactance, one generator secondary transient time constant, one generator transient time constant, one generator DC time constant, one generator stator resistance, one Generator frequency, a generator rated current ratio, a generator power factor, a transformer apparent power, a transformer primary measurement voltage, a transformer secondary measurement voltage, - transformer internal resistance, a transformer internal reactance, a motor operating state Value, total motor power, motor apparent power, motor rated current, 19 201043533 motor circuit current AC component, a motor short circuit current value component, a motor short circuit current peak, a bus voltage group, and a line Impedance value group. 4. The ship short-circuit current detecting device according to claim 2, wherein the set of transformer line parameters in the input data group comprises: a transformer primary measuring line diameter, a transformer secondary measuring line diameter, a transformer The number of lines connected in parallel, and the length of a transformer line. 5. According to the ship short-circuit current detecting device described in item 2 of the patent scope, in the 'input data group, the set of fault point line parameters: including - fault point line port 彳 ^ series point line parallel number point line length. Fault 6· According to the invention, the ship short-circuit current detecting device described in the second paragraph of the invention has the line resistance parameter and the line reactance value of the group of the line data in the input data group. 7.·According to:: Please refer to the ship short-circuit current detection in the second paragraph of the patent scope. The group required for the calculation of the impedance calculation module of the power equipment also includes a set of motor spring number parameters, and the group Motor parameters and right - rated voltage, a motor frequency eight motor resistance, one, reach:: a motor power factor, a motor rotor corpse m "motor rotor reactance, a motor stator reactance, a motor total reactance, - long Ten Geng, __ a, go #, , ', live, - motor line county, a motor line parallel number | long W chat number, a motor line resistance line reactance. ^ Motor 8 · according to the scope of patent application 7 . ^ 嗦 The ship short-circuit current detection bran, wherein the set of motor parameters also has a motor transformer resistance, - ~ * Ma 20 201043533 up to transformer reactance, a motor transformer once rated voltage, and a motor transformer The rated voltage is measured twice. 9. According to the ship short-circuit current detecting device described in item i or 2 of the U-profit range, in the middle, the short-circuit current calculation module is generated after the calculation. The output result group includes - group device symmetrical short-circuit current, - group device sound value short-circuit current, - group fault point symmetrical short-circuit current, and - group fault point peak short-circuit current. 10. According to the patent scope of items 2 to 9 The ship short circuit electric power detecting device described in the above--the 'the power device impedance calculation module performs the first operation on the input data group, including H multiplying the line resistance by the line length and dividing by The number of parallel lines is divided by 10 (10) and then the line reactance is multiplied by the line length and then divided by the number of lines connected to divide by 1000, and the following computational core team w+m+x)2]"2, Ze-[ (Ra+R) +(^+^)2]172 . =[(RR+Rs+Rf+^XR+Xs+x)j2^/2 , and z''e and Z'e represent the number of generators respectively Transient impedance and transient impedance, Z"M is the sub-transient impedance of the asynchronous motor, r is the resistance of the line between the generator and the main bus, Ra is the stator resistance of the synchronous motor, and Rr is the rotor of the asynchronous motor Resistance, Rs is the stator resistance of the non-synchronous motor, X is the reactance of the line between the generator and the main bus, x, d is the hair The anti-transient motor, x''d subtransient reactance is the generator, Xr asynchronous motor rotor reactance, Xs asynchronous motor stator reactance. 11 _ According to the ship short-circuit current detecting device described in the patent application scope, wherein the second operation performed by the synthetic impedance calculation module on the first operation result includes the following calculation formula: 21 201043533 阻抗與暫態阻 為非週期分量時間常數、 X *分別為等效發電機的次暫態電抗與暫態電抗。 電機阻抗、Uq為故障前之線電壓、f為 C3為等效次暫態電抗之計算常數、1+為 1 *與r *分別為等效發電機的次暫態 短路電流、R*為等效發電機電阻、Tdc* 間㊉數、X*為等效發電機電抗、X,,*與 12_依據申凊專利範圍第u項所述之船舶短路電流檢測裝置 ’其中’該發電機及電動機參數修正模組對該第二運算 結果所進行之第三運算包括以下計算式子: lac^lacGx +IacG2 +-" + 1〇〇0„ +I〇cMx +IacM2 +- + IacMm ' Ip +IP〇2 +"' + IpGn +IpMl +IpM2 +'" + IpMm ' Iac_MGi=Iac~'IacGi ,對於ί為1至n、/p_MGi = /p_/成,對於為1至m、 ^acG(0ΤΟ ^acG(〇 + Σ^acM (0 、 IdcG^TO ~T.^dcG(〇 + ^^dcM(〇 、 JacG{t)*=(I*-l*)e'tird* +(/i-Ik*)e~t/Td* +/^ 、 ldcG=4ine-^IT^ 、 叫 +N*e_叫 +Ik* ' Μ*=Ι\-Γ* ' N*=l\-Ik* ' ' Ι^=Σ?Ϊμ ' Ik*=ZPkdi ' K(t) = M.e-t,T^+h 、κ\ί) = {ίΜ-ϊΜ)β-ίΙτ^ +/ω* ' /τ(〇*=ΣΓ 尤〃 W + ΣΓ1心’巧、 W(^x)* =If^cG(^)i+S7W(^)j ' Z*“R?+X^、X’*=扣2-0、 JacGitx)* =M*e'txlT5* +N*e~txlT,d* +Ik* ' Z* =^zf^ ' ^acG(?jc)* = Xf-^acG(^)/+Σ7^«<;Μ(^)7 ' Re = Rcp + R, + Ks ' 22 201043533 rrtft Jd*Impedance and transient resistance are the non-periodic component time constants, and X * are the sub-transient reactance and transient reactance of the equivalent generator, respectively. The motor impedance, Uq is the line voltage before the fault, f is C3 is the calculation constant of the equivalent sub-transient reactance, 1+ is 1 * and r * is the sub-transient short-circuit current of the equivalent generator, R* is equal, etc. Effective generator resistance, Tdc* between ten, X* is the equivalent generator reactance, X,, * and 12_ according to the ship short-circuit current detecting device of the application scope of the application, the 'generator and The third operation performed by the motor parameter correction module on the second operation result includes the following calculation formula: lac^lacGx + IacG2 +-" + 1〇〇0„ +I〇cMx +IacM2 +- + IacMm ' Ip +IP〇2 +"' + IpGn +IpMl +IpM2 +'" + IpMm ' Iac_MGi=Iac~'IacGi , for ί is 1 to n, /p_MGi = /p_/, for 1 to m, ^ acG(0ΤΟ ^acG(〇+ Σ^acM (0 , IdcG^TO ~T.^dcG(〇+ ^^dcM(〇, JacG{t)*=(I*-l*)e'tird* +( /i-Ik*)e~t/Td* +/^ , ldcG=4ine-^IT^ , called +N*e_called +Ik* ' Μ*=Ι\-Γ* ' N*=l\- Ik* ' ' Ι^=Σ?Ϊμ ' Ik*=ZPkdi ' K(t) = Me-t,T^+h , κ\ί) = {ίΜ-ϊΜ)β-ίΙτ^ +/ω* ' / τ(〇*=ΣΓ 尤〃 W + ΣΓ1心'巧, W(^x)* =If^cG(^)i +S7W(^)j ' Z*"R?+X^,X'*=Buck 2-0, JacGitx)* =M*e'txlT5* +N*e~txlT,d* +Ik* ' Z* =^zf^ ' ^acG(?jc)* = Xf-^acG(^)/+Σ7^«<;Μ(^)7 ' Re = Rcp + R, + Ks ' 22 201043533 rrtft Jd* Ζ, =-"0—、2 一 "〇 U. υ :(—^-)2' χ' U } V . (—^y u ) Ο Ο ζ*Ί,~~ύ:κ ' Xt=^cp+Xl+X'cs> !S=I ,且1“為主匯流排故障點之對稱短路電流、〗An 伟'雷命》地a a·- a acGl〜η為同 ,電動機之短路電流的交流成 機之對稱短路電流、Ip A aeM1〜m為非同步電動 短路電法τ 為主匯〜排故障點之最大非對稱 ㈨PG1〜n為同步電動機非對稱短路電流成分、 TPM,~m為非同步電動機非對稱短路電流成分、IaeM⑴與 P—MGi分別為任一故障點對稱與最大非對稱短路電流、 1㈣為發電機績送的短路電流非週期性成分u u 分別為等效電動機饋送之對稱與非週期性短路電流、 2 I*分別為等效發電機的次暫態短路電流與暫態短路電 /J,L T d*與T’d*分別為等效發電機之次暫態時間常數與 暫態時間常數、為次暫態與暫態電流差值、N*為暫態 電流與穩態電流差值、1]^為同步發電機穩態電流總和、 Ikd為同步電動機初始短路電流、I”kd與I,kd分別為同步 電動機之次暫態初始短路電流與暫態初始短路電流、Γμ 為非同步電動機之次暫態短路電流、κ”為等效發電機次 暫態時間參數之計算常數、Ζ”*與Ζ’*分別為等效發電機 的次暫態阻抗與暫態阻抗、Ζ*為等效發電機阻抗、Uo為 23 201043533 故障則之線電壓、f Φ4 fcx: + f為發電機之頻率、c3為等效次暫熊 電抗之計算常數' R*為等效發電機電阻、Tdc*為非週期 分量時間常數、X*為等效發電機電抗、χ'與χ,*分別為 等效發電機的次暫態電抗與暫態電抗、RCP肖R,cs分別 為人測及轉換至一次測之二次測線路電阻、^為主匯 流排與故障點間所有電力設備電阻代數和、&為變麼器 電阻、力為主匯流排與故障點間所有電力設備電抗代數 和、Xcp與X,cs分別為一次測及轉換至一次測之二次測 線路電抗、Xt為變壓器電抗、Up與Us分別為變麼器— 次測及二次測電壓、t為短路開始期間、G為所定義之短 路開始期間、Is為變壓器二次側電流。 13·依據申請專利範圍第12項所述之船舶短路電流檢測裝置 ,其中,該短路電流計算模組對該第三運算結果所進行 之第四運算包括以下計算式子: R)2+{Χ\+Χ){Χ'Ζ, =-"0—, 2 一"〇U. υ :(—^-)2' χ' U } V . (—^yu ) Ο Ο ζ*Ί,~~ύ:κ ' Xt= ^cp+Xl+X'cs> !S=I , and 1 "symmetric short-circuit current of the main bus fault point, 〗 〖An Wei's thunder" aa·- a acGl~η is the same, short circuit current of the motor The symmetrical short-circuit current of the AC machine, Ip A aeM1~m is the non-synchronous electric short circuit method τ The maximum asymmetry of the main sink to the fault point (9) PG1~n is the synchronous motor short-circuit current component, TPM, ~m The asynchronous short-circuit current component of the asynchronous motor, IaeM(1) and P-MGi are respectively the fault point symmetry and the maximum asymmetric short-circuit current, and 1(4) is the short-circuit current non-periodic component uu of the generator. The symmetry of the equivalent motor feed is respectively With the non-periodic short-circuit current, 2 I* is the equivalent transient short-circuit current and transient short-circuit current / J, LT d * and T'd * are respectively the secondary transient time constant of the equivalent generator Transient time constant, difference between subtransient and transient current, N* is the difference between transient current and steady state current, 1]^ is the synchronous generator steady state The sum of the flow, Ikd is the initial short-circuit current of the synchronous motor, I"kd and I, kd are the secondary transient initial short-circuit current and the transient initial short-circuit current of the synchronous motor, respectively, Γμ is the secondary transient short-circuit current of the asynchronous motor, κ" The calculation constant for the equivalent generator secondary transient time parameter, Ζ"* and Ζ'* are the secondary transient impedance and transient impedance of the equivalent generator, Ζ* is the equivalent generator impedance, Uo is 23 201043533 Fault line voltage, f Φ4 fcx: + f is the frequency of the generator, c3 is the calculation constant of the equivalent temporary bear reactance ' R * is the equivalent generator resistance, Tdc * is the non-periodic component time constant, X * For the equivalent generator reactance, χ' and χ, * are the equivalent transient reactance and transient reactance of the equivalent generator, RCP Xiao R, cs are respectively measured and converted to the secondary measurement line resistance of one measurement, ^All electrical equipment resistance algebra sum between the main bus and the fault point, & the resistance of the transformer, the force of the main bus and the fault point between all the power equipment reactance algebra sum, Xcp and X, cs are one test and Switch to the secondary measurement line reactance, Xt Reactance transformers, Up and Us are changed it is - and the secondary side voltage measurement time, t is the short circuit period starts, G is defined as the period of the short circuit starts, Is a secondary side current of the transformer. 13. The ship short-circuit current detecting device according to claim 12, wherein the fourth operation performed by the short-circuit current calculation module on the third operation result comprises the following calculation formula: R)2+{Χ \+Χ){Χ' τ\ ^kd = ~ E'^jZ^ ' Τ'M --- G>rRR = . l(^g + ^)2 + (jr, +x)2 krf rd 厂 e ~ + RY + (Td+x)(xd + U =伽 L-h&S-、 T _T<ic+(XI2KfR„) 厂 x ⑽一 =^7^、.机(,)+4 W、“= ^cGiO^^kd-I'kd)^11 e/T,e+Ikd ' JacM(t) = r,M e~t/T^ ' I dcM=芯(Jh -1 rM M、〆丨T姻、I pM (f) = yfil acM (f) + I dcM (t)、 Γ,Μ^5 lrM ' IacM =3·2 lrM ' = 8 IrM ' (UQ V frr 、2. -^C〇s^0 +(i?fl +/?)/〇 1(^+/?)2+(χ",+χ)2 |λγ· 1/2 E' rsin4+(^+Z)/〇 24 201043533 Ε: E' I'm cos A+(Ra+R)10 + ^|sin^〇 +^)/, QOS φΜ-ΚΜΙκ U. s ύηφΜ-Χ”Μΐτ U. S cos φΜ-ΚΜΙκ K [fi?, +Rs + Rf + (XR + ^ + X)2 ]= Ζζ 1/2 1/2 f U ▽ -^^Φμ-ΧμΚμ K 1/2 Ο Ο ’且R為發電機至主匯流排間之線路的電阻、Ra為同牛 電動機的定子電阻、X為發電機至主匯流排間之線路的 電抗、X’d為發電機之暫態電抗、X,,d為發電機之次暫熊 電抗、Xd為發電機電抗、f為發電機之頻率、為故障 前之線電壓、I,,kd與I,kd分別為同步電動機之次暫態初 始短路電流與暫態初始短路電流、z,,e與z,e分別表示發 電機的次暫態阻抗及暫態阻抗、IacG為同步電動機=送 的對稱短路電流成分、IdeG為發電機饋送的短路電=非 週期性成分、IPG為同步電動機非對稱短路電流成分、t 為短路開始期間、Iae為主匯流排故障點之對稱短路刀電流t 、Ide為主匯流排故障點之非週期短路電流、~為非同步 電動機轉子電阻、RS為非同步電動機定子電?且、 電動機額定電壓、IrM為等效電動機額定電流、la μ與 ^分別為等效電動機饋送之對稱及非週期性短二I: 門I二為最大非對稱短路電流、E”…,M分別為短路: 4馬達之次暫態與暫態内電勢、rm為初始對稱短路電汽 25 201043533 、τ’’Μ為次暫態時間常數、τ dcM為直流時間常數、χ,,Μ 與X’M分別為次暫態與暫態電抗、 电机為非同步電動機之 電抗、RM為馬達電阻、E,’q0與Ε,八w从 興t qG分別為發電機次暫態 與暫態的q軸内電勢、為相位角 证鸬SIN^A/與COS⑦从 皆為馬達功率因數、Z”M為非同步電動機之次暫態阻抗 、叫為2",丁〜與T’d分別為同步電動機之次暫態與暫 態的時間常數、T,,e與T’e分別A# e刀別為包括非主動元件之同步 電動機的次暫態與暫態時間常數、 *數Tdce為包括非主動元 件之同步電動機之直流時間常數。 14 -依據申請專利範圍第13項所械夕立L ^ A 視所述之船舶短路電流檢測裝置 ,其中’该電力設備阻抗計算模組於開始進行該第一運 算前,先騎輯計算之-4達㈣功率^大於ι〇〇 千瓦’若是,則判定該馬達為大型馬彡,並進行以下設 定^^ = 0.16料、1,从=0,5糾、%=〇〇34阿、心=〇朋料及 及Μ =心+½ =0·〇55ρ. ’若否,則判定該馬達為小型馬達, 並設定Z,V=0_2㈣、Ζ"Μ =議仰 ' 咖㈣、^=〇〇27科 ,及W =¾ +4 =〇.〇7〇P_ ’而z”M為非同步電動機次暫態阻 抗X m為-人暫態、Rr為非同步電動機轉子電阻、rs為 非同步電動機定子電阻、rm為馬達電阻。 15_依據申请專利範圍第14項所述之船舶短路電流檢測裝置 更包含一人機介面’接收一使用者的輸入,產生該輸 資料群組並傳送至該電力設備阻抗計算模組。 入 26τ\ ^kd = ~ E'^jZ^ ' Τ'M --- G>rRR = . l(^g + ^)2 + (jr, +x)2 krf rd Factory e ~ + RY + (Td+ x)(xd + U = gamma L-h&S-, T _T<ic+(XI2KfR„) factory x (10) one = ^7^, . machine (,) +4 W, "= ^cGiO^^kd-I 'kd)^11 e/T,e+Ikd ' JacM(t) = r,M e~t/T^ ' I dcM=core (Jh -1 rM M, 〆丨T marriage, I pM (f) = Yfil acM (f) + I dcM (t), Γ, Μ^5 lrM ' IacM =3·2 lrM ' = 8 IrM ' (UQ V frr , 2. -^C〇s^0 +(i?fl + /?)/〇1(^+/?)2+(χ",+χ)2 |λγ· 1/2 E' rsin4+(^+Z)/〇24 201043533 Ε: E' I'm cos A+( Ra+R)10 + ^|sin^〇+^)/, QOS φΜ-ΚΜΙκ U. s ύηφΜ-Χ”Μΐτ U. S cos φΜ-ΚΜΙκ K [fi?, +Rs + Rf + (XR + ^ + X)2 ]= Ζζ 1/2 1/2 f U ▽ -^^Φμ-ΧμΚμ K 1/2 Ο Ο 'and R is the resistance of the line between the generator and the main bus, and Ra is the stator of the same motor Resistance, X is the reactance of the line between the generator and the main busbar, X'd is the transient reactance of the generator, X, d is the secondary bear reactance of the generator, Xd is the generator reactance, and f is the generator Frequency, the line voltage before the fault I, kd and I, kd are the secondary transient initial short-circuit current and transient initial short-circuit current, z, e and z, respectively, of the synchronous motor. The e represents the secondary transient impedance and transient impedance of the generator, and IacG is Synchronous motor = symmetrical short-circuit current component sent, IdeG is the short-circuit current fed by the generator = aperiodic component, IPG is the asynchronous motor short-circuit current component, t is the short-circuit start period, Iae is the symmetrical short circuit of the main bus fault point The knife currents t and Ide are the non-periodic short-circuit currents of the main bus fault point, ~ is the non-synchronous motor rotor resistance, RS is the non-synchronous motor stator electric power, and the motor rated voltage, IrM is the equivalent motor rated current, la μ and ^The symmetrical and aperiodic short two I of the equivalent motor feed are respectively: the gate I is the maximum asymmetric short-circuit current, E"..., M is the short circuit respectively: 4 the secondary transient and the transient internal potential of the motor, rm is Initial symmetric short-circuited electric steam 25 201043533, τ''Μ is the sub-transient time constant, τ dcM is the DC time constant, χ, Μ and X'M are the sub-transient and transient reactance respectively, and the motor is non-synchronous The reactance of the machine, RM is the motor resistance, E, 'q0 and Ε, and the eight w from Xing t qG are the q-axis internal potential of the generator transient and transient, respectively, and the phase angle is SIN^A/ and COS7 Both are motor power factor, Z"M is the secondary transient impedance of the non-synchronous motor, called 2", D and T'd are the time constants of the transient and transient of the synchronous motor, respectively, T, e and T'e respectively is the secondary transient and transient time constant of the synchronous motor including the inactive component, and the number Tdce is the DC time constant of the synchronous motor including the inactive component. 14 - The ship short-circuit current detecting device according to the scope of claim 13 of the patent application, wherein the electric power device impedance calculation module calculates the first calculation before starting the first operation (4) Power ^ is greater than ι〇〇 kW' If yes, determine that the motor is a large stable, and make the following settings ^^ = 0.16 material, 1, from = 0, 5 correction, % = 〇〇 34 A, heart = 〇 Friends and Μ = heart +1⁄2 =0·〇55ρ. 'If no, then the motor is determined to be a small motor, and set Z, V = 0_2 (four), Ζ " Μ = 仰 仰 咖 咖 ( ( ( ( ( ( ( ( ( , and W =3⁄4 +4 =〇.〇7〇P_ 'and z”M is the non-synchronous motor subtransient impedance X m is - human transient, Rr is non-synchronous motor rotor resistance, rs is non-synchronous motor stator resistance Rm is the motor resistance. 15_ The ship short-circuit current detecting device according to claim 14 further includes a human-machine interface 'receiving a user's input, generating the data group and transmitting to the power device impedance calculation Module. Into 26
TW98118545A 2009-06-04 2009-06-04 Short-circuit current detection device for ship TW201043533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98118545A TW201043533A (en) 2009-06-04 2009-06-04 Short-circuit current detection device for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98118545A TW201043533A (en) 2009-06-04 2009-06-04 Short-circuit current detection device for ship

Publications (2)

Publication Number Publication Date
TW201043533A true TW201043533A (en) 2010-12-16
TWI370083B TWI370083B (en) 2012-08-11

Family

ID=45000979

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98118545A TW201043533A (en) 2009-06-04 2009-06-04 Short-circuit current detection device for ship

Country Status (1)

Country Link
TW (1) TW201043533A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656351B (en) * 2017-09-26 2019-04-11 國立高雄科技大學 Ship power system loss estimation system
TWI693529B (en) * 2018-10-23 2020-05-11 國立高雄科技大學 Demagnetization analysis system for ship cable installation
TWI693489B (en) * 2019-06-24 2020-05-11 國立高雄科技大學 Design method of DC ship micro-grid protection device
TWI723437B (en) * 2019-06-24 2021-04-01 國立高雄科技大學 Design system of DC marine micro-grid protection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656351B (en) * 2017-09-26 2019-04-11 國立高雄科技大學 Ship power system loss estimation system
TWI693529B (en) * 2018-10-23 2020-05-11 國立高雄科技大學 Demagnetization analysis system for ship cable installation
TWI693489B (en) * 2019-06-24 2020-05-11 國立高雄科技大學 Design method of DC ship micro-grid protection device
TWI723437B (en) * 2019-06-24 2021-04-01 國立高雄科技大學 Design system of DC marine micro-grid protection device

Also Published As

Publication number Publication date
TWI370083B (en) 2012-08-11

Similar Documents

Publication Publication Date Title
Keller et al. Understanding fault characteristics of inverter-based distributed energy resources
Emhemed et al. Analysis of transient stability enhancement of LV-connected induction microgenerators by using resistive-type fault current limiters
Saleh et al. Impacts of grounding configurations on responses of ground protective devices for DFIG-Based WECSs—Part II: High-impedance ground faults
Mansouri et al. Internal electrical protection of wind turbine with doubly fed induction generator
Kamel Effect of wind generation system types on Micro-Grid (MG) fault performance during both standalone and grid connected modes
Zhang et al. Novel dual-FCL connection for adding distributed generation to a power distribution utility
TW201043533A (en) Short-circuit current detection device for ship
Saleh et al. On the experimental performance of a coordinated antiislanding protection for systems with multiple DGUs
TW201043532A (en) Short-circuit current detection method for ship
Aaqib et al. Protection schemes for low voltage DC networks
CN107785883A (en) A kind of more level active compensation devices of three-phase four-arm and control method
CN206992714U (en) The wiring construction and wiring system of small steam turbine generator access high-voltage Auxiliary electric system
Chen et al. Time–frequency characteristics analysis and diagnosis of rotating rectifier faults in multiphase annular brushless system
CN109888732A (en) A kind of generator stator ground load inverse time-lag protection method based on earth-fault current
Li et al. Analysis of directional pilot protection on transmission line with wind farm integration
CN106383311B (en) A kind of online judgment method of generator excitation limiting performance
Sarkar et al. Distance relay performance in future converter dominated power systems
Holder et al. Investigation of transmission line protection performance in an electric grid with electronically coupled generation
Pannell et al. DFIG control performance under fault conditions for offshore wind applications
WO2021206911A1 (en) Controlling an inverter to emulate synchronous generator under fault conditions
Jiawu Analysis of and reflection on the short‐circuit fault of a large hydraulic generator
Mathebula Application of bus transfer schemes to stabilise power supply in a coal fired power plant unit auxiliary reticulation.
CN208143180U (en) A kind of photovoltaic generating system
Leonov et al. Short-Circuit Currents from Wind Turbine Generators Study in Laboratory Workshop
Yongjun et al. Study on the Impact of differential protection for Transformer in Power Systems With Renewable Energy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees