TW201043532A - Short-circuit current detection method for ship - Google Patents

Short-circuit current detection method for ship Download PDF

Info

Publication number
TW201043532A
TW201043532A TW98118544A TW98118544A TW201043532A TW 201043532 A TW201043532 A TW 201043532A TW 98118544 A TW98118544 A TW 98118544A TW 98118544 A TW98118544 A TW 98118544A TW 201043532 A TW201043532 A TW 201043532A
Authority
TW
Taiwan
Prior art keywords
motor
short
circuit current
generator
transient
Prior art date
Application number
TW98118544A
Other languages
Chinese (zh)
Other versions
TWI370082B (en
Inventor
jing-cheng Li
Shan-Chang Zhao
Xing-Ren Sun
Cheng Wu
Yao-Qun Zhong
Jun-Lian Su
jun-yu Lin
zhao-hong Xu
Original Assignee
Csbc Corp Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Csbc Corp Taiwan filed Critical Csbc Corp Taiwan
Priority to TW98118544A priority Critical patent/TW201043532A/en
Publication of TW201043532A publication Critical patent/TW201043532A/en
Application granted granted Critical
Publication of TWI370082B publication Critical patent/TWI370082B/zh

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

A short-circuit current detection method for a ship includes the following steps: firstly, presetting and calculating a required field space, secondly determining whether or not the quantity of the power generator to be checked is less than one, if yes, an error message is displayed, if no, clearing the previous calculated input and result content. Next, an input data group is inputted, and a set of impendence values is established to calculate the current of the generator and the motor. Afterward, the synthesis parameters of the bus are calculated, and the synthesis current of the bus is calculated sequentially. Finally, an output result group is outputted. Accordingly, by inputting the relative parameters of the power system and calculating current of the generator and the motor, and the synthesis parameters and synthesis current of the bus, a more precise short circuit current is obtained to achieve the purpose of reducing the damage risk of equipments due to short circuit.

Description

201043532 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電流檢測方法,特別是指一種船 舶短路電流檢測方法。 【先前技術】 在船舶電力系統實際運轉中,短路故障難以避免,絕 緣的自然老化、機械損壞與不當操作等都可能造成短路的 發生。當船舶電力系統中的主匯流排附近發生短路時,將 Ο 出現比正常值大許多的短路電流,加上短路故障時,系統 的總阻抗很小,而往往會造成最嚴重的短路情況一金屬性短 路。 再者’系統短路阻抗與短路點的位置亦極度相關,短 路點距離電源越近,則系統總阻抗就越小,相對地,短路 . 電流值也就越大,即使短路發生的時間很短,強大的短路 電流所產生的機械應力和熱效應將對發電機或其他相關設 it造成嚴重破壞。除此之外,短路電流還會使電網電壓大 〇 籠降低,影響設備的運作,以致於使得正在運轉的電動 機停止運轉專後績的連帶破壞景彡響。 因此’歸納言之,短路電流對於電氣設備所造成的損 害計有以下狀況: (一) 引起電氣設備發熱及耗損。 (二) 造成大電壓降,而起電動機轉速下降,甚至停止 運轉。 (三)產生大機械應力 弓丨起電氣設備載流部件變形損壞 3 201043532 (四)早相對地短路時’產生不平衡電流及磁場,影響通 訊與相關設備之控制。 <(五)如短路電流發生於電源附近,將導致發電機或其他 設備之失步、解聯而影響系統運轉。 由上述可知,短路電流對於電氣設備運轉有著極大的 ㈣’目前㈣電相問題可透過㈣保護裝置,以迅速 第將故障設備的線路切離’以阻止故障電流繼續流通而 使損害範圍降至最小。 在船舶電力系統中’常用的保護裝置,如熔絲(fuse)或 斷路器(circuit breaker ’ CB)等。此外,在啟斷故障電流時 在在會產生電弧,因此,前述之保護裝置還必須具有消弧 月力,才旎安全地啟斷故障電流。再者,除利用啟斷故障 電流的方式來處理短路電流問題外,相關的配電設備,如 H電線、匯流排、分段開關、變壓器等,須能承受瞬 間故障電流所產生之熱效應及機械應力,也就是須有較大 的設備短路強度。因此,設計船舶供電系統時,須先計算 系統各處故障電流之大小,才能選擇適當的保護設備,以 確保供電之安全可靠。 現今’一般所採用之船舶短路電流計算基準是以舊式 國際標準 IEC 60363 ,,Sh〇rt circuit current evaluation with special regard to rated short-circuit capacity of Circuit_breakers in ships” 為主 要内容,利用歐姆法對系統所有電器設備的阻抗進行轉換 201043532 ’簡化故障點等校阻抗,計算短路故障電流。然而,於目 前實務之應用上,仍發現此船舶短路電流計算基準存在有 以下缺點: (-)忽略故障前發電機負荷效應。 (一)忽略交流成分的暫態衰減。 (三) 忽略馬達能量轉換效率。 (四) 忽略轴發電系統饋送的短路電流。 (五) 忽略電纜工作溫度的影響。 Ο 因此’相關領域之產、官、學界急欲開發出一套用來 計算船舶電力系統内不同位置發生短路事故產生之故障電 流的大小的方法,以於進行船舶電力配置規劃時,能夠更 完善地預先選擇足夠之啟斷容量的保護設備,而迅速地將 故障之設備或線路切離供電源,並使得因短路而致的停電 區域範圍及所引起的相關電器毀損憾事減至最低。 【發明内容】 當計算短路電流時,了解由個別設備所提的短路電流 ° 狀況及系統中多個電力設備_接對短路電流的影響是相當 重要的。在一個完整的船舶電力系統,系統中的被動元件 ’如電鏡、變壓料對短路電流㈣響很A,除會改變斷 路電流計算結果的穩態數值外,代表暫態過程的特徵數據 也會受影響。 因此,本發明之目的,即在提供一種船舶短路電流檢 測方法,以得到精確的短路電流計算結果。 於是,本發明船舶短路電流檢測方法,包含以下步驟 201043532 (a) 輸入一輸入資料群組。 (b) 建立一組阻抗值。 (c) 計算發電機及電動機電流。 (d) 計算匯流排合成參數。 (e) 計算匯流排合成電流。 (f) 輸出一輸出結果群組。 本發明之功效在於,利用船舶短路電流檢测方法對皱 輸入資料群組與所建立的阻抗值進行發電機及電動機電节 、匯流排合成參數與匯流排合成電流等計算,進而求出2 舶之短路電流,以降低各項相關電氣設備因短路所造成之 故障,甚至是損壞的風險。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中將可 清楚的呈現。 參閱圖1 ’本發明船舶短路電流檢測方法之較佳實施例 ,包含以下步驟: ^首先’如步驟11所示,預先設錢測所需之至少-編 號如此來,便於後續檢測結果判讀之便利性,以及若 計算發生錯誤時,便於進行除錯。 ,、人如步驟12所示’判斷所欲檢測之發電機數量是 否小於1 : 若是,則如步驟121 所示,顯示一錯誤訊息,並至步 201043532 驟19,結束檢測。 若否,則如步驟122所示,清除先前計算之輸入及結 果内容,並進行下一步驟。 再來,如步驟13所示,輸入一輸入資料群組。在本較 佳實施例中,該輸入資料群組的鍵入是以微軟(Micr〇s〇ft)之 Excel軟體所開發的一人機介面所提供,其首頁介面呈現如 圖2所示,且此輸入資料群組更進一步包括:一組設備基 本資料、一組變壓器線路參數、一組故障點線路參數,及 〇 一組線路基本參數。因此’該人機介面相對地提供複數輸 入分頁,計有:一發電機參數輸入分頁(參見圖3)、一變壓 器參數輸入分頁(參見圖4)、一馬達參數輸入分頁(參見圖5) 、一匯流排電壓輸入分頁(參見圖6)、一線路阻抗輸入分頁( 參見圖7)、一變壓器線路參數輸入分頁(參見圖8)、一故障 點線路參數輸入分頁(參見圖9),及一電纜阻抗參數輸入分 頁(參見圖10)。 承上所述’其中,該設備基本資料分別由該發電機參 〇 數輸入分頁、變壓器參數輸入分頁、馬達參數輸入分頁、 匯流排電壓輸入分頁與線路阻抗輸入分頁所整合構成。該 變壓器線路參數是經由該變壓器線路參數輸入分頁所鍵入 。該故障點線路參數是經由該故障點線路參數輸入分頁所 提供。而該線路基本參數是藉由該電纜阻抗參數輸入分頁 所鍵入。 在此,再針對上述輸入資料群組中之各項資料内容, 進行更進一步的說明: 7 201043532 (一)該組設備基本資料包括:一發電機視在功率(Sg, 單位為kVA)、一發電機額定電壓(Vg,單位為v)、一發電 機次暫態電抗(X”d,單位為%)、一發電機暫態電抗(x,d, 單位為%)、一發電機電抗(Xd單位為%)、一發電機次暫態 時間常數(T”d,單位為sec)、一發電機暫態時間常數(T,d, 單位為see)、一發電機直流時間常數(Tdc,單位為此幻、_ 發電機定子電阻(Rs ’單位為%)、一發電機頻率(f,單位為 Hz)、一發電機額定電流比值(KKd ’單位為%)、一發電機功 率因數(PF)、一變壓器視在功率(str,單位為kVA)、一變壓 器一次測電壓(Vpri,單位為V)、一變壓器二次測電壓(Vsec ,單位為V)、一變壓器内部電阻(Rtr,單位為%)、一變壓 器内部電抗(Xtr,單位為%)、一馬達運作狀態值、一馬達總 功率(單位為kw)、一馬達視在功率(Sim,單位為kVA)、一201043532 VI. Description of the Invention: [Technical Field] The present invention relates to a current detecting method, and more particularly to a ship short-circuit current detecting method. [Prior Art] In the actual operation of the ship's power system, short-circuit faults are difficult to avoid, and natural aging, mechanical damage, and improper operation of the insulation may cause a short circuit. When a short circuit occurs near the main busbar in the ship's power system, a short-circuit current that is much larger than the normal value will occur. In addition, when the short-circuit fault occurs, the total impedance of the system is small, and the most severe short-circuit condition is often caused by a metal. Sexual short circuit. Furthermore, the 'system short-circuit impedance is also extremely correlated with the position of the short-circuit point. The closer the short-circuit point is to the power supply, the smaller the total system impedance is. Relatively, the short-circuit. The current value is larger, even if the short-circuit occurs for a short time. The mechanical stress and thermal effects of strong short-circuit currents can cause serious damage to the generator or other related devices. In addition, the short-circuit current will also cause the grid voltage to drop, which will affect the operation of the equipment, so that the running of the motor will stop the performance of the special performance. Therefore, it is said that the short-circuit current has the following conditions for the damage caused by electrical equipment: (1) It causes heat and loss of electrical equipment. (2) Cause a large voltage drop, and the motor speed drops, or even stops running. (III) Generating large mechanical stresses Bowing and deformation of current-carrying parts of electrical equipment 3 201043532 (4) When the air is short-circuited early, the unbalanced current and magnetic field are generated, which affects the control of communication and related equipment. <(5) If a short-circuit current occurs near the power supply, it will cause the generator or other equipment to lose synchronization and disassociation and affect the operation of the system. It can be seen from the above that the short-circuit current has a great (four) 'current (four) electrical phase problem. The fourth (four) protection device can quickly cut off the line of the faulty device to prevent the fault current from continuing to flow and minimize the damage range. . A commonly used protection device in a ship's power system, such as a fuse or circuit breaker 'CB. In addition, an arc is generated when the fault current is turned off. Therefore, the aforementioned protection device must also have an arc-extinguishing force to safely turn off the fault current. Furthermore, in addition to using the method of breaking the fault current to deal with the short-circuit current problem, the relevant power distribution equipment, such as H wire, bus bar, sectional switch, transformer, etc., must be able to withstand the thermal effects and mechanical stress generated by the instantaneous fault current. That is, there must be a large equipment short-circuit strength. Therefore, when designing the ship's power supply system, the fault currents in the system must be calculated before the appropriate protection equipment can be selected to ensure the safety and reliability of the power supply. Today, the general calculation of the short-circuit current of ships is based on the old international standard IEC 60363, and the short-circuit capacity of circuit_breakers in ships is the main content. The impedance of the electrical equipment is converted. 201043532 'Simplify the fault impedance and other calibration impedance and calculate the short-circuit fault current. However, in the current practical application, it is still found that the short-circuit current calculation reference of the ship has the following disadvantages: (-) Ignore the generator before the fault Load effect: (1) Ignore the transient decay of the AC component. (3) Ignore the motor energy conversion efficiency. (4) Ignore the short-circuit current fed by the shaft power generation system. (5) Ignore the influence of the cable operating temperature. The production, official, and academic circles are eager to develop a method for calculating the magnitude of fault currents generated by short-circuit accidents at different locations in the ship's power system, so that when the ship's power allocation plan is planned, it is better to pre-select enough. Broken capacity protection device, and fast The ground equipment or line is cut off from the power supply, and the range of power failure area caused by the short circuit and the related electrical appliance damage caused by the short circuit are minimized. [Invention content] When calculating the short circuit current, it is understood by the individual equipment The short-circuit current ° condition and the influence of multiple power devices in the system on the short-circuit current is very important. In a complete ship power system, the passive components in the system, such as electron mirrors and transformers, are very short to the short-circuit current (four). A, in addition to changing the steady-state value of the calculation result of the open circuit current, the characteristic data representing the transient process is also affected. Therefore, the object of the present invention is to provide a ship short-circuit current detecting method to obtain accurate short-circuit current. The calculation result is as follows. The ship short-circuit current detecting method of the present invention comprises the following steps 201043532 (a) inputting an input data group. (b) establishing a set of impedance values. (c) calculating the generator and motor currents. (d) calculating Bus combines the parameters. (e) Calculates the bus combiner current. (f) Outputs an output result group. The ship short-circuit current detection method is used to calculate the generator and motor electric junction, the bus-synthesis parameter and the bus-synthesis current for the wrinkle input data group and the established impedance value, and then obtain the short-circuit current of 2 ships to reduce The failure of the related electrical equipment due to a short circuit, or even the risk of damage. [Embodiment] The foregoing and other technical contents, features and effects of the present invention are described in detail below with reference to a preferred embodiment of the drawings. Referring to FIG. 1 , a preferred embodiment of the ship short-circuit current detecting method of the present invention includes the following steps: ^ Firstly, as shown in step 11, the at least one required for the money measurement is pre-set. It facilitates the convenience of subsequent test results interpretation and facilitates debugging if an error occurs in the calculation. , as shown in step 12, the user determines whether the number of generators to be detected is less than 1: If yes, an error message is displayed as shown in step 121, and the detection is terminated by step 201043532. If not, then as shown in step 122, the previously calculated input and result contents are cleared and the next step is performed. Then, as shown in step 13, an input data group is input. In the preferred embodiment, the input data group is provided by a human machine interface developed by Microsoft (Micr〇s〇ft) Excel software, and the home page interface is shown in FIG. 2, and the input is performed. The data group further includes: a set of equipment basic data, a set of transformer line parameters, a set of fault point line parameters, and a set of line basic parameters. Therefore, the human-machine interface provides complex input paging relatively, including: a generator parameter input page (see Figure 3), a transformer parameter input page (see Figure 4), and a motor parameter input page (see Figure 5). A bus voltage input page (see Figure 6), a line impedance input page (see Figure 7), a transformer line parameter input page (see Figure 8), a fault point line parameter input page (see Figure 9), and a Cable impedance parameter input page (see Figure 10). According to the above, the basic data of the device is respectively composed of the generator parameter input page, the transformer parameter input page, the motor parameter input page, the bus voltage input page and the line impedance input page. The transformer line parameters are typed via the transformer line parameter input tab. The fault point line parameter is provided via the fault point line parameter input tab. The basic parameters of the line are entered by the cable impedance parameter input tab. Here, the content of each data in the input data group is further explained: 7 201043532 (1) The basic information of the equipment includes: a generator apparent power (Sg, unit is kVA), one Generator rated voltage (Vg, unit is v), one generator secondary transient reactance (X"d, unit is %), one generator transient reactance (x, d, unit is %), one generator reactance ( Xd unit is %), one generator secondary transient time constant (T"d, unit is sec), one generator transient time constant (T, d, unit is see), one generator DC time constant (Tdc, The unit is this magic, _ generator stator resistance (Rs 'unit is %), a generator frequency (f, the unit is Hz), a generator rated current ratio (KKd 'unit is %), a generator power factor ( PF), a transformer apparent power (str, the unit is kVA), a transformer once measured voltage (Vpri, the unit is V), a transformer secondary measured voltage (Vsec, the unit is V), a transformer internal resistance (Rtr, Unit is %), a transformer internal reactance (Xtr, in %), The motor operating state value, a total power of the motor (in kw), a motor apparent power (Sim, in units of kVA), a

馬達額定電流(Iim,單A) ' 一馬達短路電流交流成分 (Iacim,單位為a)、一馬達短路電流值流成分(Idcim,單位 為A)、一馬達短路電流峰值(Ipeakim,單位為句、一匯流 排電壓組(含 MSB Pri、MSB Sec、eSB Pd、ESB Sec Z fwd,單位皆為v),及一線路阻抗值組(含Rc與,單位 為電阻值/m)。 (二)該組變壓器線路參數包括:一變壓器一次測線路口 徑(單位為mm2)、一變壓器二次測線路口徑(單位為mm2)、 一變壓器線路併聯數量,及一變壓器線路長度(單位為⑺)。 (―)该組故障點線路參數包括一故障點線路口徑(單位 為ηπη2)、一故障點線路併聯數量,及一故障點線路長度(單 201043532 位為m)。 (四)該組線路基本參數 括線路電阻參數(Rc,單位 為電難/m)及一線路電抗值(xc,單位為電抗值岭 了主要用水於實務上,本發明船舶短路電流檢測方法,除 了主要用來檢測發電機 、 „ „ 艾!裔之故障電流狀況外,也可 以用來檢測馬達之故障 群講電⑻,目此,前料提之輸入資料 群組還可包括如下利Μ _ 丄 見圖ln 不’由-馬達基本參數輸入分頁(參Motor rated current (Iim, single A) 'A motor short-circuit current AC component (Iacim, unit a), a motor short-circuit current value component (Idcim, unit A), a motor short-circuit current peak (Ipeakim, the unit is a sentence , a bus voltage group (including MSB Pri, MSB Sec, eSB Pd, ESB Sec Z fwd, the unit is v), and a line impedance value group (including Rc and, the unit is the resistance value / m). The parameters of the transformer line include: the diameter of a transformer once measured (unit is mm2), the diameter of a transformer secondary measurement line (unit is mm2), the number of parallel connections of a transformer, and the length of a transformer line (unit is (7)). ―) The fault line parameters of the group include a fault point line diameter (unit: ηπη2), a fault point line parallel quantity, and a fault point line length (single 201043532 bits are m). (4) The basic parameters of the line are included The line resistance parameter (Rc, the unit is electric difficulty / m) and a line reactance value (xc, the unit is the reactance value of the main water use in practice, the ship short-circuit current detection method of the present invention, in addition to mainly used to detect power generation „ „ Ai! The fault current status of the Ai! can also be used to detect the fault group of the motor (8). For this reason, the input data group mentioned above may also include the following benefits _ 丄 see ln not - Motor basic parameter input paging (see

G ❹ 組馬達參數.一馬達額定電壓(單位為 乂)、一馬達頻率(單位蛊只、 馬 W手(早位為Hz)、-馬達功率因數、 子電阻(單位為%)、一 $達贪工帝 運轉 子雷m… (單位為%)、-馬達轉 雪m“。 ,収子電抗(皁位為%)、-馬達總 為十—馬達線路口徑(單位為mm2)、-馬達線 路長度(單位為m)、_ $这蝻攸碰碰私 ^ 馬達線路併聯數量、一馬達線路電阻 為歐姆),及—馬達線路電抗(單位為歐姆)。 再者,若要再更精確地計算出馬達的故障電流時上 列之馬達參數還可再加人_馬達變㈣電阻(單位為%)、一 :達變壓器電抗(單位為%)、一馬達變壓器一次測額定電壓( 早位為V) ’及—馬達變壓器二次測額定電壓(單位為V)等資 科’以進行更精確的運算。 然而,此檢測功能為彈性且具有選擇性的,因此,本 發明所提供之方法,也可以適用於搭配如緊急發電機、緊 急馬達、其他的習知技術領域或未來相關的電氣設備檢驗 上,因此類狀況並非本發明所探討重點,故在此不再贅述 〇 9 201043532 著力步驟14所不,建立—組阻抗值。在本較佳實 例中’該組阻抗值的建立是依照下列方式計算出:首先 將線路電阻乘上線路長度再除以線路併聯數量再除以 卿而得出電阻值’接著,再料路電抗乘上線路長度再 除以線路併聯數量,再除以1〇〇〇而得出電抗值。 接著,如步驟15所示,計算發電機及電動機電流。 值得一提的是,在本較佳實施例中,於開始進行發電 機及電動機電流之計算前,如步驟151所示,先判斷所欲 計算之一馬達的總功率是否大於1〇〇千瓦: 若是,則如步驟152所示,判定該馬達為大型馬達, 並设疋 2"M = 0.16p.M.、= 、& =0·034ρ.Μ·、Λ/?=〇〇21ρ, 及% = % + A = 0.055ρ.Μ·,進行下一步驟。 若否,則如步驟153所示,判定該馬達為小型馬達, 並 δ又疋 Z"M=〇_2_P.w·、= 0.188p.w.、以二 0.043/>·«.' ”及=0.027/?.w, 及 = rs +M = 〇·〇7〇Ρ‘μ·,進行下一步驟。 而上述二狀況之Ζ”Μ為非同步電動機次暫態阻抗、χ,,Μ 為次暫態、Rr為非同步電動機轉子電陴、Rs為非同步電動 (J 機定子電阻、Rm為馬達電阻。 此外,前述之發電機及電動機電流的計算方式如下 Z"M=\rR+Rs^R)2^R+Xs+X)2\XI2 ' ΓΜ-51^ ' IacM=^IrM idcM(t) = 42(lM si^M)e~t/T^M ' lpM=^>hu ' X、 ---— 1 CUM 奶=Γ'M e-Ά、IpM it)=芯IacM (ή +1dM 价 T'' ω. jr^r) 1m E:G ❹ Group motor parameters. One motor rated voltage (in 乂), one motor frequency (unit 蛊 only, horse W hand (early position Hz), - motor power factor, sub-resistance (unit is %), one $ up Greedy Emperor Runs Thunder m... (Unit is %), - Motor turns snow m"., Receiver reactance (soap level is %), - Motor is always ten - Motor line diameter (unit is mm2), - Motor line Length (in m), _ $ 蝻攸 碰 ^ ^ Motor circuit parallel number, one motor line resistance is ohm), and - motor line reactance (in ohms). In addition, to calculate more accurately When the fault current of the motor is out, the motor parameters listed above can be added _ motor change (four) resistance (unit is %), one: transformer reactance (unit is %), one motor transformer once rated voltage (early position V) 'and- motor transformer secondary rated voltage (in V) and other departments for more precise calculations. However, this detection function is flexible and selective, therefore, the method provided by the present invention, Can be applied to match with emergency generators, emergency horses , other conventional technical fields or future related electrical equipment inspection, so the class situation is not the focus of the present invention, so here is no longer a brief description of the 〇9 201043532 effort step 14 does not establish the group impedance value. In the good example, the establishment of the impedance value of the group is calculated according to the following method: firstly multiplying the line resistance by the line length and dividing by the number of lines connected in parallel and dividing by the value of the resistor to obtain the resistance value. Then, the circuit reactance multiplies the line. The length is divided by the number of parallel lines, and then divided by 1 〇〇〇 to obtain the reactance value. Next, as shown in step 15, the generator and motor currents are calculated. It is worth mentioning that, in the preferred embodiment, Before starting the calculation of the generator and motor current, as shown in step 151, it is first determined whether the total power of one of the motors to be calculated is greater than 1 kW: If so, as shown in step 152, the motor is determined to be large. Motor, and set &2"M = 0.16pM, =, & =0·034ρ.Μ·, Λ/?=〇〇21ρ, and % = % + A = 0.055ρ.Μ·, proceed to the next step. If no, then as in step 153 It is determined that the motor is a small motor, and δ is 疋Z"M=〇_2_P.w·, = 0.188pw, with two 0.043/>·«.' ” and=0.027/?.w, and = rs + M = 〇·〇7〇Ρ'μ·, proceed to the next step. The above two conditions are the sub-transient impedance of the non-synchronous motor, χ, Μ is the sub-transient state, Rr is the rotor motor of the non-synchronous motor, and Rs is the non-synchronous electric motor (the J stator resistance, the Rm is the motor resistance). In addition, the aforementioned generator and motor currents are calculated as follows: Z"M=\rR+Rs^R)2^R+Xs+X)2\XI2 ' ΓΜ-51^ ' IacM=^IrM idcM(t) = 42(lM si^M)e~t/T^M ' lpM=^>hu ' X, ----1 CUM milk=Γ'M e-Ά, IpM it)=core IacM (ή +1dM Price T'' ω. jr^r) 1m E:

U \2 cos φΜU \2 cos φΜ

UrMUrM

sin φΜ - ^mK :E Z V· 'tfSin φΜ - ^mK :E Z V· 'tf

U 1/2 10 201043532 Ε'μ ’且Ζ’’Μ為非同步雷以^ 萆動機次暫態阻抗、R為非 轉子電阻、RS為非同 Η㈣步電動機 匯流排間之線路的電阻電阻、R為發電機至主 電r、x減為發電機至主匯流排間之線路的 +雪Z、T” 機轉子電抗s為非同步電動機定 几m、、、 5步電動機之次暫態短路電流 效電動機饋送之對稱短路 .“Μ為寻 ΟU 1/2 10 201043532 Ε'μ ' and Ζ''Μ is a non-synchronized mine with ^ 萆 sub-transient impedance, R is non-rotor resistance, RS is the resistance resistance of the line between the four-step motor bus bars, R is the generator-to-mains r, x is reduced to the line between the generator and the main busbar + snow Z, T". The rotor reactance s is a sub-mesh of the non-synchronous motor, and the secondary short-circuit of the 5-step motor The symmetrical short circuit of the current effect motor feed.

電"a 為等效電動機額定電流 、IPM為最大非對稱短路電流、T’,M為次暫態時間常數、 TdeM為直流時間常數、Xm為非同步電動機電抗〜為 、E”4 E,M分別為短路瞬間馬達之次暫態與暫態内電勢、 SIN0M與COS0M皆為馬達功率因數、2,、為非同步電動機 之次暫態阻抗、urM為電動機額定電壓、IdeM為等效電動機 饋送之非週期性短路電流。 而後,如步驟16所示,計算匯流排合成參數。在本較 佳實施例中,該匯流排合成參數之計算方式如下·· ^ac - ^αοΟχ + ^acG2 +-' + ^acGn + ^acMx +1acM2 +--- + 1 acMm 、 IP=IpGl+IpG2+- + IpGn+IpMl+IpM2+-- + IpMm ' 1 ac _MGi = I〇〇 ~ I acG, ,對於 i=l 至 η、/p—’ 對於 i=l 至 m、Electric "a is the equivalent motor rated current, IPM is the maximum asymmetric short-circuit current, T', M is the sub-transient time constant, TdeM is the DC time constant, Xm is the non-synchronous motor reactance~, E"4 E, M is the secondary transient and transient internal potential of the short-circuit instant motor, SIN0M and COS0M are motor power factor, 2, the secondary transient impedance of the asynchronous motor, urM is the rated voltage of the motor, and IdeM is the equivalent motor feed. The non-periodic short-circuit current. Then, the bus-synthesis parameter is calculated as shown in step 16. In the preferred embodiment, the bus-synthesis parameter is calculated as follows: ^ac - ^αοΟχ + ^acG2 +- ' + ^acGn + ^acMx +1acM2 +--- + 1 acMm , IP=IpGl+IpG2+- + IpGn+IpMl+IpM2+-- + IpMm ' 1 ac _MGi = I〇〇~ I acG, , for i=l To η, /p—' for i=l to m,

JacG it)m = ΣΙα〇β (0 + Σ acM (〇 、 ^cG^TO = Z^cG(0 + Z^cA/(0 、 Z* =、x'* = ^Z?-R* 、X* = -Jz*2 ~r} 、Z* = +χ}、 = Rcp + Rt + Rcs、= Xcp + Xt + Xcs、X* =」Z*2 - Jii ' X* = -Jz* -Ri z: z:JacG it)m = ΣΙα〇β (0 + Σ acM (〇, ^cG^TO = Z^cG(0 + Z^cA/(0, Z* =, x'* = ^Z?-R*, X * = -Jz*2 ~r} , Z* = +χ}, = Rcp + Rt + Rcs, = Xcp + Xt + Xcs, X* ="Z*2 - Jii ' X* = -Jz* -Ri z : z:

UpSi: .U〇 λ/37: Z:=W'Zt=^ U〇 z; -、c3 = 2Λ* X: V^'z,=VJT'C3 27tfTdct ur z; +z: ' 11 = X:UpSi: .U〇 λ/37: Z:=W'Zt=^ U〇 z; -, c3 = 2Λ* X: V^'z,=VJT'C3 27tfTdct ur z; +z: ' 11 = X:

Res X Ks = X (jf)2' A = ^ X (¾2 s s 11 p 201043532 且u*刀別為等效發電機的次 、u0為故障前之線電壓 阻抗 離電抗之料、G3為等效次暫 十异吊數、1 *為等效發電機電流、!'與!,*分別為 ==機的次暫態短路電流與暫態短路電流、r*為等效 發電機電阻、‘為非週期分量時間常數、X*為等效發電機 電抗H與η別為等效發電機的次暫態電抗與暫態電 抗、ζ*為荨效發電機阻抗、l為主匯流排故障點之對稱短 路電-、Wn為同步電動機之短路電流的交流成分、Res X Ks = X (jf)2' A = ^ X (3⁄42 ss 11 p 201043532 and u* is the equivalent of the generator, u0 is the line voltage impedance before the fault, and the G3 is equivalent The first ten different cranes, 1 * is the equivalent generator current, !' and !, * are respectively == the machine's secondary transient short-circuit current and transient short-circuit current, r* is the equivalent generator resistance, 'for The non-periodic component time constant, X* is the equivalent generator reactance H and η are the equivalent transient reactance and transient reactance of the generator, ζ* is the effective generator impedance, and l is the main bus fault point. Symmetrical short-circuit, -Wn is the AC component of the short-circuit current of the synchronous motor,

IacM1~m為非同步電動機之對稱短路電流、1為主匯流排故障 點=最大非對稱短路電流、“η為同步電動機非對稱短路 電流成分、Wm為非同步電動機非對稱短路電流成分、 lac—MGi與IPMGi分別為任_故障點對稱與最大非對稱短路電 流、I-為發電機饋送的短路電流非週期性成分、^鱼 ^分別為等效電動機饋送之對稱與非週期性短路電流、广 ’、I為等效發電機的次暫態短路電流與暫態短路電流 、叫與us分別為變壓器一次測及二次測電麼、t為短路開 始期間Rcp與R’cs分別為一次測及轉換至一次測之二次測 線路電阻、<為主匯流排與故障點間所有電力設備電阻代數 和Rt為變屢器電阻、不為主匯流排與故障點間所有電力 又備電抗代數和、Χα^ χ,。分別為__次測及轉換至—次測 :二次測線路電抗、&為變麼器電抗、U縣器二次側電 然後’如步驟17所示’計算匯流排合成電流。在本較 <實施例中,該匯流排合成電流之計算方式如下: 12 201043532 M*=/,w,*、八七、/:=ΣΓ4ή·+Σ%、/:=ς?4*、 h* =Σ?/ωί 、 ["(,) = (ϋ)「Ά + 、/rfcG =万/>爲 、 K (t) = M*e~t/Td* +/; ' Κ\^=Σ^Κ\ί) + ΣΤΐΜ^ίΙΓκί 、IacM1~m is the symmetrical short-circuit current of the non-synchronous motor, 1 is the main bus fault point = the maximum asymmetric short-circuit current, "η is the asynchronous motor asymmetric short-circuit current component, Wm is the non-synchronous motor asymmetric short-circuit current component, lac- MGi and IPMGi are respectively _ fault point symmetry and maximum asymmetric short-circuit current, I- is the short-circuit current non-periodic component fed by the generator, ^ fish ^ is the equivalent motor feeding symmetrical and non-periodic short-circuit current, wide ', I is the secondary transient short-circuit current and transient short-circuit current of the equivalent generator, called and us are the transformer primary measurement and the secondary measurement respectively, t is the short-circuit start period Rcp and R'cs are the first measurement and Switch to the secondary measurement line resistance of one measurement, < all power equipment resistance algebra between the main bus and the fault point and Rt is the resistor resistance, not all the power between the main bus and the fault point, and the reactance algebra and Χα^ χ, respectively, __ subtest and conversion to - subtest: secondary measurement line reactance, & for the transformer reactance, U county secondary side power and then 'as shown in step 17' to calculate the convergence Row synthesis In the present embodiment, the bus current is calculated as follows: 12 201043532 M*=/,w,*, 八七, /:=ΣΓ4ή·+Σ%, /:=ς?4 *, h* =Σ?/ωί, ["(,) = (ϋ)"Ά + , /rfcG =万/>, K (t) = M*e~t/Td* +/; ' Κ\^=Σ^Κ\ί) + ΣΤΐΜ^ίΙΓκί,

Td^H[iacG(tx),+ik.))/N.f JacG(tx)*=M,e-^/Td* +Ν^'η* +4φ , 1αΑίχ)^ =YjacGitx)t +^Ιααί(ίχ)_ 、H)* =Σ;’邮(’χλ+Σ:,祕(认、 Γ^*=____ H\K\tx)*~r*)lM*} ,且M*為次暫態與暫態電流差值、N*為暫態電流與穩態電 流差值、Ik*為同步發電機穩態電流總和、I,,*與1%分別為等 效發電機的次暫態短路電流與暫態短路電流、Ikd為同步電 動機初始短路電流、r,kd與rkd分別為同步電動機之次暫熊 初始短路電流與暫態初始短路電流、〗”M為非同步電動機之 次暫態紐路電流、K”為等效發電機次暫態時間參數之計算 常數、T’’d*與T’d*分別為等效發電機之次暫態時間常數與暫 態時間常數、t S短路開始期間、tx為所定義之短路開始期 間、IacG為同步電動機饋送的對稱短路電流成分、為發 電機饋送的短路電流非週期性成分、Iac4 IdcM分別:等效 電動機饋送之對稱及非週期性短路電流。 最後,如步驟18所示’輸出一輸出結果群組,並如步 驟19所示,結束檢測。在本較佳實施例中,該輪出結果群 組包括-組設備對稱短路電流、—組設備峰值短路電济 -組故障點對稱短路電流,及—組故障點峰值㈣電^' 須再補述的是,本發明船舶短路電流檢測方法於L上述 13 201043532 較佳實施例中,僅以對一部發電機、一部變壓器設備或一 邛馬達進行紐路電流檢測為例然而,於實際操作上,亦 可同時對複數部發電機、變壓器設備或馬達進行檢測,此 檢測之數量是具有相關背景者所易於思及而變化運用,故 不應受該較佳實施例之特定範例為限。 在此,為了更進一步地說明本發明之功效,以下將針 對包括一發電機、一緊急發電機、一變壓器設備、一馬達 群並。又置多組故障點(編號為MG、MEG、MA、MB、MC MD、ME、MF、ΜΗ、MI、MJ及MK)為例,來透過本發 明船舶短路電流檢測方法,以進行實際的檢測分析,其上 述之相關輸入資料如圖12至17及圖l8a至i8h所示,且相 關的輸出結果群組則如圖19a至圖丨9d所示。 〜而。之,^我們將y述之輸出結果群組與現行系統 所計算出的相關數據進行比較時,可得出以下本發明之優 勢: ▲(一)考慮了忽略故障前發電機負荷效應、交流成分的暫 態衰減、馬達能量轉換效率、軸發電系統饋送的短路電流 及電纜工作溫度的影響等因素,而得出較為精確且實際^ 短路電流大小。 (二)所計算出的短路電流結果較大,如此較保守的估算 ,對於船舶電力系統的設計上產生較大的短路負載能力, 而降低短路電流所衍生之毀損風險。 (二)提歼了系統電壓,對於降低短路電流有極顯著的助 益,如此一來,可減少船舶相關保護開關設備之體積與重 14 201043532 量,進而有助於船舶電力保護設備之規劃與設計。 綜上所述,本發明船舶短路電流檢測方法確實能達成 本發明之目的。 惟以上所述者,僅為本發明之一較佳實施例而已,當 不能以此限定本發明實施之範圍,即大凡依本發明申請專 利範圍及發明說明内容所作之簡單的等效變化與修飾,皆 仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 〇 圖1是一流程圖’說明本發明船舶短路電流檢測方法 之較佳實施例的實施步驟; 圖2是一示意圖,說明本較佳實施例中,一人機介面 的輸入首頁; 圖3是一示意圖,說明本較佳實施例中,一發電機參 數輸入分頁; 圖4是一示意圖’說明本較佳實施例中,一變壓器參 數輸入分頁; Ο 圖5是一示意圖’說明說明本較佳實施例中,—馬達 參數輸入分頁; 圖6是一示意圖,說明本較佳實施例中,一匯流排電 壓輸入分頁; 圖7是一示意圖,說明本較佳實施例中,一線路阻抗 輸入分頁; 圖8是一示意圖,說明本較佳實施例中,一變壓器線 路參數輸入分頁; 15 201043532 故障點線 圖9是一示意圖,說明本較佳實施例中, 路參數輸入分頁· 圖10是-示意圖,說明本較佳實施, 參數輸入分頁; 電纜阻抗 圖11是—示意圖,說明本較佳實施例中,— 參數輸入分頁; T 馬達基本 中,:二:及圖18a〜18h是示意圖,說明本較佳實施例 所二 明船舶短路電流檢測方法之實際檢測時, 所鍵的各項相關輸入資料;及 1 19 a至圖19d是示意圖,說明本較佳實施例中於 仃發明船舶短路電流檢測方法之實際 出的-輪出結果群組。 “异 16 201043532 【主要元件符號說明】 11〜18····步驟 151〜153次步驟 121〜122次步驟 ❹Td^H[iacG(tx),+ik.))/Nf JacG(tx)*=M,e-^/Td* +Ν^'η* +4φ , 1αΑίχ)^ =YjacGitx)t +^Ιααί( χ χ, H) * = Σ; 'mail ('χλ+Σ:, secret (recognition, Γ^*=____ H\K\tx)*~r*)lM*}, and M* is the secondary transient The difference from the transient current, N* is the difference between the transient current and the steady-state current, Ik* is the sum of the steady-state currents of the synchronous generator, and I, *, and 1% are the sub-transient short-circuit currents of the equivalent generator, respectively. With the transient short-circuit current, Ikd is the initial short-circuit current of the synchronous motor, r, kd and rkd are the secondary initial short-circuit current and the transient initial short-circuit current of the synchronous motor respectively, 〗 〖M is the secondary transient of the asynchronous motor The current, K" is the calculation constant of the equivalent generator secondary transient time parameter, T''d* and T'd* are the secondary transient time constant and transient time constant of the equivalent generator respectively, and the t S short circuit starts. Period, tx is the defined short-circuit start period, IacG is the symmetrical short-circuit current component fed to the synchronous motor, the short-circuit current non-periodic component fed to the generator, Iac4 IdcM: symmetrical and non-periodic short-circuit current of the equivalent motor feed . Finally, an output result group is output as shown in step 18, and as shown in step 19, the detection is ended. In the preferred embodiment, the round-out result group includes: a group of device symmetrical short-circuit current, a group device peak short-circuit power-group fault point symmetrical short-circuit current, and a group fault point peak (four) power ^' must be supplemented It is noted that the ship short-circuit current detecting method of the present invention is in the above-mentioned 13 201043532 preferred embodiment, and only the current detection of a generator, a transformer device or a motor is taken as an example. However, in actual operation In the above, the plurality of generators, transformers or motors can be detected at the same time. The number of such tests is easily influenced by those having relevant backgrounds and should not be limited by the specific examples of the preferred embodiment. Here, in order to further explain the effects of the present invention, the following will include a generator, an emergency generator, a transformer device, and a motor group. Taking multiple sets of fault points (numbered MG, MEG, MA, MB, MC MD, ME, MF, ΜΗ, MI, MJ, and MK) as an example to perform actual detection through the ship short-circuit current detecting method of the present invention. Analysis, the above related input data are shown in Figures 12 to 17 and Figures 18a to i8h, and the related output result groups are as shown in Figures 19a to 9d. ~and. When we compare the output group of y with the relevant data calculated by the current system, we can get the following advantages of the invention: ▲ (1) Considering the generator load effect and AC component before ignoring the fault The transient attenuation, the motor energy conversion efficiency, the short-circuit current fed by the shaft power generation system, and the influence of the cable operating temperature, etc., result in a more accurate and actual short-circuit current. (2) The calculated short-circuit current results are large, and such a conservative estimation results in a large short-circuit load capacity for the design of the ship power system, and reduces the damage risk caused by the short-circuit current. (2) Raising the system voltage, which is very significant for reducing the short-circuit current. As a result, the volume and weight of the ship-related protection switchgear can be reduced, which will help the planning of the ship's power protection equipment. design. In summary, the ship short-circuit current detecting method of the present invention can achieve the object of the present invention. However, the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the present invention and the description of the invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart illustrating the implementation steps of a preferred embodiment of the ship short-circuit current detecting method of the present invention; FIG. 2 is a schematic diagram showing the input of a human-machine interface in the preferred embodiment. Fig. 3 is a schematic diagram showing a generator parameter input page in the preferred embodiment; Fig. 4 is a schematic view showing a transformer parameter input page in the preferred embodiment; Ο Fig. 5 is a schematic view In the preferred embodiment, the motor parameter input page is shown; FIG. 6 is a schematic view showing a bus bar voltage input page in the preferred embodiment; FIG. 7 is a schematic view showing the preferred embodiment. A line impedance input page; FIG. 8 is a schematic diagram showing a transformer line parameter input page in the preferred embodiment; 15 201043532 Fault point line diagram 9 is a schematic diagram illustrating the road parameter input page in the preferred embodiment Figure 10 is a schematic diagram showing the preferred embodiment of the parameter input page; cable impedance diagram 11 is a schematic diagram illustrating the preferred embodiment, - parameters Into the page; T motor basic, two: and Figs. 18a to 18h are schematic diagrams showing the relevant input data of the keys when the actual detection of the short-circuit current detecting method of the ship is described in the preferred embodiment; and 1 19 A to FIG. 19d are schematic diagrams showing the actual-rounding result group of the ship short-circuit current detecting method in the preferred embodiment of the present invention. “ 异 16 201043532 [Description of main component symbols] 11~18····Steps 151~153 steps 121~122 steps ❹

1717

Claims (1)

201043532 七、申請專利範圍: 1 · 一種船舶短路電流檢測方法,包含以下步驟: (a) 輸入一輸入資料群組; (b) 建立一組阻抗值; (c) 計算發電機及電動機電流; (d) 計算匯流排合成參數; (e) 計算匯流排合成電流;及 (0輸出一輸出結果群組。 2. 依據申請專利範圍第丨項所述之船舶短路電流檢測方法 ’其中’在該(a)步驟中,該輸入資料群組包括一組設備 基本資料、—組變壓器線路參數、一組故障點線路參數 ,及一組線路基本參數。 3. 依據申請專利範圍第2項所述之船舶短路電流檢測方法 ,其中,在該(a)步驟中,該輸入資料群組中的該組設備 基本資料包括一發電機視在功率、一發電機額定電壓、 一發電機次暫態電抗、一發電機暫態電抗、一發電機電 抗、一發電機次暫態時間常數、一發電機暫態時間常數 、一發電機直流時間常數、一發電機定子電阻、一發電 機頻率、一發電機額定電流比值、一發電機功率因數、 一變壓器視在功率、一變壓器一次測電壓、一變壓器二 次測電壓、一變壓器内部電阻、一變壓器内部電抗、一 馬達運作狀態值、-馬達總功率、—馬達視在功率、一 馬達額定電流、一馬達短路電流交流成分、一馬達短路 電肌值/爪成刀、一馬達短路電流峰值、一匯流排電壓組 18 201043532 ’及一線路阻抗值組β 4.依據申請專利範圍第2項所述之船舶短路電流檢測方法 ’其中,在該(a)步驟中,該輸入資料群組中的該組變壓 器線路參數包括—變壓器一次測線路口徑、一變壓器二 次測線路口徑、—變壓器線路併聯數量,及一變壓器線 路長度。 5. 依據申請專利範圍第2項所述之船舶短路電流檢測方法 ❹ 〇 ,其中,在該(a)步驟中,該輸入資料群組中的該組故障 點線路參數包括-故障點線路口徑、—故障點線路併聯 數量’及一故障點線路長度。 6. 依據中請專利範圍第2項所述之船舶短路電流檢測方法 ’其中’在該⑷步驟中,該輸人資料群組中的該組線路 基本參數包括一線路電阻值及一線路電抗值。 7. 依據中請專利範圍第2項所述之船舶短路電流檢測方法 ’其中’在該⑷步驟中,該電力設備阻抗計算模组運算 所需的輸入資料群組還包括一組馬達參數,而該組馬達 參數具有-馬達額定電壓、一馬達頻率、—馬達額定電 流、-馬達功率因數、一馬達轉子電阻、一馬達定子電 阻、-馬達轉子電抗一馬達定子電抗一馬達總電抗 ^馬達線路口經、—馬達線路長度、—馬達線路併聯 數篁、一馬達線路電阻,及一馬達線路電抗。 壓器電阻 馬達變㈣電抗、-馬達變_一次測 8. 依據申請專利範圍第7項所述之_短路電流檢測方法 ,.其中,在該⑷㈣巾,驗馬達參㈣具有-馬達變 額 19 201043532 定電壓,及一馬達變壓器二次測額定電壓。 9.依據中請專利範圍第i或2項所述之船舶短路電流檢測 方法,其中,在該(f)步驟中,該輸出結果群組包括一組 設備對稱短路電流、一組設備峰值短路電流一組故障 點對稱短路電流,及一組故障點峰值短路電流。 10·依據中請專利範圍第2至9項中之任—項所述之船舶短 路電流檢測方法,其中,在該(b)步驟中,該組阻抗值的 建立是依照下列方式計算出:首先,將線路電阻乘上線 路長度再除以線路併聯數量,再除以1〇〇〇而得出電阻值 接著’再將線路電抗乘上線路長度再除以線路併聯數 量,再除以1000而得出電抗值。 11.依據申請專利範圍第丨0項所述之船舶短路電流檢測方法 ,其中,在該(C)步驟中,發電機及電動機電流之計算方 T<kM201043532 VII. Patent application scope: 1 · A ship short-circuit current detection method, comprising the following steps: (a) inputting an input data group; (b) establishing a set of impedance values; (c) calculating a generator and a motor current; d) Calculate the bus bar synthesis parameters; (e) Calculate the bus bar synthesis current; and (0 output one output result group. 2. According to the application scope of the scope of the ship short-circuit current detection method 'where 'in the a) In the step, the input data group includes a set of basic equipment data, a set of transformer line parameters, a set of fault point line parameters, and a set of basic line parameters. 3. The ship according to item 2 of the patent application scope. The short-circuit current detecting method, wherein, in the step (a), the basic data of the group of devices in the input data group includes a generator apparent power, a generator rated voltage, a generator secondary transient reactance, and a Generator transient reactance, generator reactance, one generator transient time constant, one generator transient time constant, one generator DC time constant, one generator Stator resistance, a generator frequency, a generator rated current ratio, a generator power factor, a transformer apparent power, a transformer primary voltage, a transformer secondary voltage, a transformer internal resistance, a transformer internal reactance, A motor operating state value, - total motor power, - motor apparent power, a motor rated current, a motor short circuit current AC component, a motor short circuit muscle value / claw forming knife, a motor short circuit current peak, a bus voltage Group 18 201043532 'and a line impedance value group β 4. The ship short-circuit current detecting method according to claim 2, wherein in the step (a), the set of transformer lines in the input data group The parameters include: transformer primary measuring line diameter, one transformer secondary measuring line diameter, - transformer line parallel quantity, and one transformer line length. 5. According to the patent application scope item 2, the ship short-circuit current detecting method 〇 〇 In the step (a), the set of fault point line parameter packets in the input data group - the line diameter of the fault point, the number of parallel lines of the fault point and the length of the line of a fault point. 6. According to the method for detecting the short-circuit current of the ship according to item 2 of the patent scope of the patent, 'in the step (4), the input The basic parameters of the group of lines in the data group include a line resistance value and a line reactance value. 7. According to the ship short-circuit current detection method described in item 2 of the patent scope, wherein the power is in the step (4) The input data group required for the operation of the device impedance calculation module further includes a set of motor parameters, and the set of motor parameters has a motor rated voltage, a motor frequency, a motor rated current, a motor power factor, a motor rotor resistance, A motor stator resistance, a motor rotor reactance, a motor stator reactance, a total motor reactance, a motor line port length, a motor line length, a motor line parallel number, a motor line resistance, and a motor line reactance. Voltage changer motor change (4) reactance, - motor change _ one test 8. According to the patent application scope item 7, the short-circuit current detection method, wherein, in the (4) (four) towel, the motor reference (four) has - motor variable 19 201043532 Constant voltage, and a motor transformer secondary rated voltage. 9. The ship short-circuit current detecting method according to item ith or item 2 of the patent application, wherein in the step (f), the output result group comprises a set of device symmetrical short-circuit currents, a set of device peak short-circuit currents A set of fault point symmetrical short-circuit currents, and a set of fault point peak short-circuit currents. 10. The method for detecting short-circuit current of a ship according to any one of clauses 2 to 9 of the patent application, wherein in the step (b), the set of impedance values is calculated according to the following manner: Multiply the line resistance by the length of the line and divide by the number of lines in parallel, and then divide by 1 〇〇〇 to get the resistance value. Then multiply the line reactance by the length of the line and divide by the number of lines connected in parallel, and then divide by 1000. Output voltage value. 11. The method for detecting short-circuit current of a ship according to item 丨0 of the patent application scope, wherein in the step (C), the calculation of the generator and the motor current T<kM xM {Rs+R) ,_K_. = El[(RR+Rs+Rf+(X7+Xs+W\ AxM {Rs+R) , _K_. = El[(RR+Rs+Rf+(X7+Xs+W\ A cos Φμ ~ RmKm ' Em =Cos Φμ ~ RmKm ' Em = y Jy J jj 1/2 yT1 2 sin Φι^ M ^ rM ’且Z”M為非同步電動機次暫態阻抗、Rr為非同步電動 機轉子電阻、Rs為非同步電動機定子電阻、R為發電機 20 1 acM=^>-2IrM ' ldcM(t) = yi2(rM-irM sin^M)e~t/TdcM Λ IpM=SIrM ' 2 I〇cM{t) = r'M e~IIT^ IpM(t) = ^2IacM(t) + IdcM(ty V\ °>rRR 201043532 至主匯流制之線路的電阻、x為發電 之線路的電抗、xR為非同步電動機 匯流排間 步電動機定子電抗、1'為非同步電動機之二Xs為非同 、长τ也咏 電動機之次暫態短路電 Ο1/2 yT1 2 sin Φι^ M ^ rM 'and Z"M is the sub-transient impedance of the non-synchronous motor, Rr is the rotor resistance of the non-synchronous motor, Rs is the stator resistance of the non-synchronous motor, and R is the generator 20 1 acM=^ >-2IrM ' ldcM(t) = yi2(rM-irM sin^M)e~t/TdcM Λ IpM=SIrM ' 2 I〇cM{t) = r'M e~IIT^ IpM(t) = ^ 2IacM(t) + IdcM(ty V\ °> rRR 201043532 The resistance to the line of the main bus system, x is the reactance of the line generating the power, xR is the stator reactance of the non-synchronous motor bus bar step motor, 1' is asynchronous The second Xs of the motor is a non-identical, long τ, and the secondary transient short circuit of the motor 二二為等效電動機饋送之對稱短路電流〜為等效 電動機額定電流、1PM為最大非對稱短路電流、T,,M為次 暫態時間常數、TdeM為直流時間常數、χΜ為非同步電動 機之電抗、叫為",、^與E,M分別為短路瞬間馬達 之次暫態與暫態内電勢、SIN〜與c〇s❼皆為馬達功 率因數、z’,M為非同步電動機之次暫態阻抗、UrM為電動 機額疋電壓、IdcM為等效電動機饋送之非週期性短路電 流。 12.依據申請專利範圍第11項所述之船舶短路電流檢測方法 ,其中,在該(d)步驟中,匯流排合成參數之計算方式如 下 · ^ac =^£<7! +JacG2 +'" + IacG„ +^acMl +IacM2 +'" + IacMm 、 Ip =IpGx +IpG2 +'" + 1pGn +IpMx +IpM2 +'" + IpMm ' 1 ac_MGi =Iac ~1acGi ,對於i=l至n、’對於i=l至m ' lacG^TO =Σ^σ(〇 + Σ^αοΜ(0 、 1 dcG (〇ΓΟ = Σ ^ dcG (Ο + ΣI dcM (〇 、 Z*=-yjR*+X* 、X*=yjzl2-Ri 、X* =^Z*-Ri 、Z*^^R*+X* 、 Rg = Rcp + Rt + Res ' Xe=Xcp+Xt+^'cs ' X*=^2-R*、X* =^z}-r} 'x: =W:'z: z* =~^l' x*= 、z:The symmetrical short-circuit current fed by the equivalent motor is the equivalent motor rated current, 1PM is the maximum asymmetric short-circuit current, T, M is the sub-transient time constant, TdeM is the DC time constant, and χΜ is the non-synchronous motor. Reactance, called ",", ^ and E, M are the secondary transient and transient internal potential of the short-circuit instant motor, SIN ~ and c〇s❼ are motor power factor, z', M is the second asynchronous motor Transient impedance, UrM is the motor's front voltage, and IdcM is the non-periodic short-circuit current fed by the equivalent motor. 12. The ship short-circuit current detecting method according to claim 11, wherein in the step (d), the bus bar synthesis parameter is calculated as follows: ^ac =^£<7! +JacG2 +' " + IacG„ +^acMl +IacM2 +'" + IacMm , Ip =IpGx +IpG2 +'" + 1pGn +IpMx +IpM2 +'" + IpMm ' 1 ac_MGi =Iac ~1acGi for i=l To n, 'for i=l to m ' lacG^TO =Σ^σ(〇+ Σ^αοΜ(0 , 1 dcG (〇ΓΟ = Σ ^ dcG (Ο + ΣI dcM (〇, Z*=-yjR* +X* , X*=yjzl2-Ri , X* =^Z*-Ri , Z*^^R*+X* , Rg = Rcp + Rt + Res ' Xe=Xcp+Xt+^'cs ' X*= ^2-R*, X* =^z}-r} 'x: =W:'z: z* =~^l' x*= , z: Si* r'Z.Si* r'Z. Z: λ/Ϊ+? 兄Z: λ/Ϊ+? 、Ks=Kj^f、Xcs=xcsx(j^f、is=IpX(才、 ,且 Z’’* 與 Z’* 21 201043532 刀別為等效發電機的次暫態阻抗與暫態阻抗、u〇為故障 別之線電壓、f為發電機之頻率、e3為等效次暫態電抗 之计异常數、I*為等效發電機電流、匕與ί%分別為等效 發電機的次暫態短路電流與暫態短路電流、R*為等效發 電機電阻、Tde·為非週期分量時时數、X·為等效發電 機電抗、X'與χ’*分別為等效發電機的次暫態電抗與暫 態電抗、Z*為等效發電機阻抗、Iae為主匯流排故障點之 •十稱紐路電々,L、IacGi n為同步電動機之短路電流的交流 成刀IacM1〜m為非同步電動機之對稱短路電流、Ip為主 匯流排故障點之最大非對稱短路電流、Ιρ_為同步電動 子稱短路電流成分、IpMi m為非同步電動機非對稱 路電机成分、iae—MGi與Ip MGi分別為任一故障點對稱 /、最大非對稱紐路電流、IdeG為發電機饋送的短路電流 非週期性成分、IacM與IdeM分別為等效電動機饋送之對 稱與非週期性短路電流、n 1%分料等效發電機的次 暫態短路電流與暫態短路電流,肖US分別為變壓器 人測及_次測電M、t為短路開始期間、^與R,以分 為X測及轉換至一次測之二次測線路電阻、尽為主 匯流排與故障點間所有電力設備電阻代數和、Rt為變壓 11電阻Ί為主匯流排與故障點間所有電力設備電抗代 22 201043532 數和、Xcp與X’cs分別為一次測及轉換至一次測之二次 測線路電抗、Xt為變壓器電抗、Is為變壓器二次側電流 13.依據申請專利範圍第12項所述之船舶短路電流檢測方法 ’其中’在該(e)步驟中,匯流排合成電流之計算方式如 下 1 * I *、N* U 、I* t'Lpkdi、 h*^Ikdi ' K = ~Ikd)e~t/Td* +Ikd, ^ K'\t) = M*e~t/Td* +I:, 〇 , IacG(tx>=M^^+N^^+I^ 、/』λ=ς:ά),+ς;,』)、 、^0[;7邮1);+^(认、7挪=你e4/rrfc*、 T沪= —tx HldcG(tx)J^2rt] r<,*Tn{[/acG(i;c)( -(M.e^~rd* +Ikt)jnr}, Ks=Kj^f, Xcs=xcsx(j^f, is=IpX(才, , and Z''* and Z'* 21 201043532 The secondary transient impedance and transient impedance of the equivalent generator, U〇 is the line voltage of the fault, f is the frequency of the generator, e3 is the number of abnormalities of the equivalent sub-transient reactance, I* is the equivalent generator current, and 匕 and ί% are the equivalent generators respectively. Transient short-circuit current and transient short-circuit current, R* is equivalent generator resistance, Tde· is the number of hours of non-periodic component, X· is equivalent generator reactance, X′ and χ′* are equivalent generators respectively The secondary transient reactance and transient reactance, Z* is the equivalent generator impedance, Iae is the main bus fault point, • the ten-way Newway electric 々, L, IacGi n is the synchronous motor short-circuit current AC forming knife IacM1~ m is the symmetrical short-circuit current of the non-synchronous motor, Ip is the maximum asymmetric short-circuit current of the main bus fault point, Ιρ_ is the synchronous rotor sub-short current component, IpMi m is the non-synchronous motor asymmetric road motor component, iae— MGi and Ip MGi are respectively symmetrical for any fault point, and the maximum asymmetric bridge current, IdeG is the short circuit fed by the generator. The non-periodic components of the flow, IacM and IdeM are the symmetrical and aperiodic short-circuit currents fed by the equivalent motor, the secondary transient short-circuit current and the transient short-circuit current of the n 1%-equivalent equivalent generator, respectively. Person measurement and _ sub-measurement M, t is the short-circuit start period, ^ and R, divided into X measurement and conversion to the secondary measurement of the line resistance, all the power equipment resistance algebra between the main bus and the fault point And Rt is the transformer 11 resistor Ί the main bus and the fault point between all the power equipment reactance generation 22 201043532 number and Xcp and X'cs respectively for the first measurement and conversion to the second measurement line reactance, Xt is Transformer reactance, Is is the transformer secondary current 13. According to the patent scope of the 12th ship short-circuit current detection method 'where' in the (e) step, the bus bar synthesis current is calculated as follows 1 * I * , N* U , I* t'Lpkdi, h*^Ikdi ' K = ~Ikd)e~t/Td* +Ikd, ^ K'\t) = M*e~t/Td* +I:, 〇 , IacG(tx>=M^^+N^^+I^, /』λ=ς:ά),+ς;,』), ,^0[;7 post 1);+^(recognition, 7 = you e4/rrfc*, T Shanghai = —t x HldcG(tx)J^2rt] r<,*Tn{[/acG(i;c)( -(M.e^~rd* +Ikt)jnr} ,且M*為次暫態與暫態電流差值、N*為暫態電流與穩態 電抓差值、Ik*為同步發電機穩態電流總和、p,*與p*分 别為等效發電機的次暫態短路電流與暫態短路電流、h 為同步電動機初始短路電流、〜與〜分別為同步: 動機之次暫態初始短路電流與暫態初始短路電、流、I、為 =步電動機之次暫態短路電流、κ”為等效發電機次暫 1間參數之#异常數、rv與m別為等效發 之:人暫f時間常數與暫態時間常數、t為短路開始期間、 =:m路開始期間、1 a。。為同步電動機馈送的對 性成分:、IdeG為發電機饋送的短路電流非週期 週期性短二。_分別為等效電動機饋送之對稱及非 23 201043532 14·依據申請專利範圍第i3 ,其中,在該(c)步驟中,所述之船舶短路電流檢測方法 流之計算前,先判斷所欲^始,行發電機及電動機電 於⑽+瓦,若是,則H鼻之—馬達的總功率是否大 ZV = (U6押.、^ = 〇·ΐ5ρ 々大1馬達,並设疋 · &=_风、〜=刚興,及 -RS+尺R=〇.〇55p.u.,甚不 · 並設w·、;^則判定該馬達為小型馬達, Ά _ 88P'U' rS= ^-043p,u. > rR= 0.027p.u. ,及 rM =&+4 =〇.〇7〇取, M為非同步電動機次暫態阻 抗、χΜ為次暫態、Rr4 機轉子電阻、Rs為 非同步電動機定子電阻、〜為馬達電阻。 S為 15_依據申請專利範圍第M 斗項所述之船舶短路電流檢測方法 ,更包含-位於該⑷步驟前之(g)步驟,清除先前計算之 輸入及結果内容。 16.依據申請專利_第15項所述之船舶短路電流檢測方法 ’更包含-位於該(g)步驟前之⑻步驟,預先設定檢測所 需之至少一編號。 17.依據申凊專利範圍第丨6項所述之船舶短路電流檢測方法 ,更包含一位於該(g)步驟與該(h)步驟間之⑴步驟,判斷 所欲檢測之發電機數量是否小於i,若是,則顯示—錯 誤訊息並結束檢測,若否,則進行下一步驟。 24And M* is the difference between the secondary transient and the transient current, N* is the transient current and the steady state electric grab difference, Ik* is the sum of the steady state current of the synchronous generator, p, * and p* are respectively equivalent The secondary transient short-circuit current of the generator and the transient short-circuit current, h is the initial short-circuit current of the synchronous motor, and ~ and ~ are respectively synchronized: the secondary transient initial short-circuit current and the transient initial short-circuit current, flow, I, = The secondary transient short-circuit current of the step motor, κ" is the # abnormal number of the equivalent generator, and the rv and m are equivalent: the temporary f time constant and the transient time constant, and t is the short circuit. During the start, =:m path start period, 1 a. The synchronous component fed to the synchronous motor: IdeG is the non-periodic periodic short of the short-circuit current fed by the generator. _ respectively is the symmetrical and non-equal of the equivalent motor feed 23 201043532 14· According to the patent application scope i3, wherein in the step (c), before the calculation of the ship short-circuit current detecting method flow, first determine the desired start, and the generator and the motor are electrically connected to (10)+ Tile, if it is, then H nose - the total power of the motor is large ZV = (U6 押., ^ = 〇·ΐ5ρ 々大1 motor, and set 疋· &=_ wind, ~=刚兴, and -RS+尺R=〇.〇55p.u.,不不· and set w ·,; ^ then determine that the motor is a small motor, _ _ 88P'U' rS = ^-043p, u. > rR = 0.027pu, and rM = & +4 = 〇. 〇 7 ,, M is Sub-transient impedance of non-synchronous motor, χΜ is sub-transient, Rr4 machine rotor resistance, Rs is non-synchronous motor stator resistance, ~ is motor resistance. S is 15_ ship short-circuit current according to the application scope of the M-th bucket The detection method further comprises - step (g) before the step (4), clearing the previously calculated input and the result content. 16. The ship short-circuit current detecting method according to the patent application _15 is further included - located in the g) Step (8) before the step, pre-setting at least one number required for the test. 17. According to the method for detecting short-circuit current of the ship according to item 6 of the claim patent, further comprising a step (g) and the h) Step (1) between steps to determine whether the number of generators to be detected is less than i, and if so, display - error message and Beam detector, if not, then the next step. 24
TW98118544A 2009-06-04 2009-06-04 Short-circuit current detection method for ship TW201043532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98118544A TW201043532A (en) 2009-06-04 2009-06-04 Short-circuit current detection method for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98118544A TW201043532A (en) 2009-06-04 2009-06-04 Short-circuit current detection method for ship

Publications (2)

Publication Number Publication Date
TW201043532A true TW201043532A (en) 2010-12-16
TWI370082B TWI370082B (en) 2012-08-11

Family

ID=45000978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98118544A TW201043532A (en) 2009-06-04 2009-06-04 Short-circuit current detection method for ship

Country Status (1)

Country Link
TW (1) TW201043532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830261A (en) * 2012-08-21 2012-12-19 山东电力集团公司电力科学研究院 Calculation method for short-circuit current in two-phase or single-phase power transmission line
CN102955097A (en) * 2012-10-26 2013-03-06 京东方科技集团股份有限公司 Array substrate detection method, detection device and detection system
TWI578178B (en) * 2015-11-19 2017-04-11 Short Circuit Current Analysis System for Ship Ring Distribution Network
TWI693489B (en) * 2019-06-24 2020-05-11 國立高雄科技大學 Design method of DC ship micro-grid protection device
TWI723437B (en) * 2019-06-24 2021-04-01 國立高雄科技大學 Design system of DC marine micro-grid protection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830261A (en) * 2012-08-21 2012-12-19 山东电力集团公司电力科学研究院 Calculation method for short-circuit current in two-phase or single-phase power transmission line
CN102830261B (en) * 2012-08-21 2014-08-27 山东电力集团公司电力科学研究院 Calculation method for short-circuit current in two-phase or single-phase power transmission line
CN102955097A (en) * 2012-10-26 2013-03-06 京东方科技集团股份有限公司 Array substrate detection method, detection device and detection system
TWI578178B (en) * 2015-11-19 2017-04-11 Short Circuit Current Analysis System for Ship Ring Distribution Network
TWI693489B (en) * 2019-06-24 2020-05-11 國立高雄科技大學 Design method of DC ship micro-grid protection device
TWI723437B (en) * 2019-06-24 2021-04-01 國立高雄科技大學 Design system of DC marine micro-grid protection device

Also Published As

Publication number Publication date
TWI370082B (en) 2012-08-11

Similar Documents

Publication Publication Date Title
CN103795046B (en) The guard method of power grid for aircraft and protective device
RU2563964C2 (en) System, computer programme product and internal fault detection method for synchronous generator winding
RU2542494C2 (en) Device and method for detection of ground short-circuit
TW201043532A (en) Short-circuit current detection method for ship
Zamora et al. New method for detecting low current faults in electrical distribution systems
CN105762777B (en) A kind of longitudinal protection method that inverse distributed power power distribution network is connect containing more T
CN110021918B (en) Single-phase short-circuit protection method for resistance-grounded power distribution network based on zero-sequence current ratio
CN108646143A (en) A kind of single-core power cables fault detect structure and its fault detection method based on circulation measurement
Mahapatra et al. Analysis of symmetrical fault in IEEE 14 bus system for enhancing over current protection scheme
CN204118714U (en) The alternating current-direct current mating protection device of flexible direct current transmission converter station circuit breaker
TW201043533A (en) Short-circuit current detection device for ship
CN107783010A (en) A kind of more level active compensation devices of front-end power and control method
CN103278773A (en) Multi-gear transformer type voltage drop device
CN106207999A (en) The guard method of a kind of photovoltaic plant DC side circuit and device
Ciontea et al. Decentralized adaptive overcurrent protection for medium voltage maritime power systems
CN109888732A (en) A kind of generator stator ground load inverse time-lag protection method based on earth-fault current
CN103580005B (en) A kind of arc light protection method
CN104078953B (en) A kind of transmission line of electricity inter-phase arc voltage protection method
CN107785882A (en) A kind of more level active compensation devices of three-phase four-arm and control method
Panetta Hybrid grounding of electrical systems
JP2014185907A (en) Power conditioner, and insulation resistance measurement method for dc power supply system
CN102830327A (en) Judging method and device of single-phase grounding fault line of small-current grounding system
CN108957233A (en) A kind of mineral insulated cable fault detection method and restorative procedure
CN107991533A (en) Voltage-phase localization method based on single-phase cable
Si et al. The study on protection scheme for distribution system in presence of distributed generation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees