TW201043099A - Modulation of RF returning straps for uniformity control - Google Patents

Modulation of RF returning straps for uniformity control Download PDF

Info

Publication number
TW201043099A
TW201043099A TW098141242A TW98141242A TW201043099A TW 201043099 A TW201043099 A TW 201043099A TW 098141242 A TW098141242 A TW 098141242A TW 98141242 A TW98141242 A TW 98141242A TW 201043099 A TW201043099 A TW 201043099A
Authority
TW
Taiwan
Prior art keywords
return
substrate
substrate support
impedance
plasma
Prior art date
Application number
TW098141242A
Other languages
Chinese (zh)
Inventor
Alan Tso
Daniel J Hoffman
Tsutomu Tanaka
William N Taylor Jr
Rongping Wang
John M White
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201043099A publication Critical patent/TW201043099A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

Embodiments of the present invention generally relates to a method and apparatus for processing substrates using plasma. More particularly, embodiments of the present invention provide a plasma processing chamber having an electrode coupled to a plurality of RF returning straps, wherein impedance of the RF returning straps are set and/or adjusted to tune the plasma distribution during processing. In one embodiment, impedance of RF returning straps varies by changing length of the RF returning straps, by changing width of the RF returning straps, by changing spacing of the RF returning straps, by changing location of the RF returning straps, by adding a capacitor to the RF returning straps, or by combinations thereof.

Description

201043099 六、發明說明: 【發明所屬之技術領域】 本發明之實施例一般係關於使用電漿處理諸如太陽能 板基材、平面板基材或半導體基材等基材的方法與設 備。更特定而言,本發明之實施例係關於用於電漿處理 腔室的射頻(RF)電流返回路徑。 0 【先前技術】 電漿增強化學氣相沈積(PECVD ) —般用以沈積薄膜 於基材上,諸如半導體基材、太陽能板基材以及液晶顯 示器(LCD )基材。電漿增強化學氣相沈積一般是藉由 導入前驅氣體進至具有配置在基材支撐件上的基材之真 工腔至而元成。刖驅氣體通常被導引通過位於靠近真空 腔室頂部的分佈板。真空腔室中的前驅氣體經賦能(例 如’激發)成為電漿’其係藉由從一或多個搞接至腔室 的RF源施加RF功率至腔室。激發的氣體反應而於基材 表面上形成一層材料,其中該基材位在溫度受控制的基201043099 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION Embodiments of the present invention generally relate to methods and apparatus for treating substrates such as solar panel substrates, planar sheet substrates, or semiconductor substrates using plasma. More particularly, embodiments of the invention relate to radio frequency (RF) current return paths for plasma processing chambers. 0 [Prior Art] Plasma enhanced chemical vapor deposition (PECVD) is generally used to deposit thin films on substrates such as semiconductor substrates, solar panel substrates, and liquid crystal display (LCD) substrates. Plasma enhanced chemical vapor deposition is typically carried out by introducing a precursor gas into a working chamber having a substrate disposed on a substrate support. The helium gas is typically directed through a distribution plate located near the top of the vacuum chamber. The precursor gas in the vacuum chamber is energized (e.g., 'excited) into a plasma' by applying RF power to the chamber from one or more RF sources that are coupled to the chamber. The excited gas reacts to form a layer of material on the surface of the substrate, wherein the substrate is at a temperature-controlled basis

在使用PECVD製程所沈積的薄膜中,均勻性通常是受 期望的。舉例而言, 而言,非晶形^ (諸如微晶梦膜或多Uniformity is generally desirable in films deposited using PECVD processes. For example, in terms of amorphous ^ (such as microcrystalline dream film or more

’該平面板係用 p-n接面。非晶 4 201043099 形石夕膜或多晶形㈣的品f和均勻性在商業性操作上是 重要的。因此’需要有改善均勻性的pECVD腔室。 【發明内容】 本發明之實施例一般關於用於電漿處理基材的方法及 設備。更特定而言,本發明的實施例提供具有RF返回帶 的電漿處理腔室,其設置以改善均勻度。 Ο 本發明的一實施例提供一種使用電漿處理一基材的方 法,其包含:提供界定一處理容積的一製程腔室,其中 基材支揮件配置在該處理容積内,與一射頻(RF )功 率源連接的一氣體分佈板配置在該基材支撐件之上,且 該基材支撐件的周邊透過複數個RF返回帶與該RF功率 源連接;使一個或多個處理氣體通過該分佈板流至該處 理谷積,以及施加一射頻功率至該氣體分佈板以從該處 理容積内的一個或多個處理氣體產生一電漿’其中一個 〇 或多個RF返回帶的阻抗已經變更以調整該氣體分佈板 和該基材之間的局部電漿分佈。 本發明之另一實施例提供一種用於處理一基材的設 備,其包含:一腔室主體,其界定一處理容積,其中該 腔室主體具有一狹缝閥開口,該狹縫閥開口經設置以容 許基材通過,一基材支撑件,其配置在該處理容積内, 其中該基材支撐件經設置以在處理期間在一支撐表面上 接收一基材且支撐該基材;一氣體分佈板,其配置在該 5 201043099 處理容積内及該基材支撐件之上,其中該氣體分佈板經 設置以傳送一個或多個處理氣體;一射頻功率源,其與 該氣體分佈板連接;以及複數個RF返回帶,其連接在該 基材支揮件之-周邊及該RF功率源之間,其中該複數個 RF返回帶經配置以致該基材支撐件及該RF功率源之間 的阻抗沿該基材支撐件的該周邊變化。 尚有另本發明之實施例提供一種用於處理一基材的 〇 備其匕3.腔至主體,其界定一處理容積;一第 -電極’其配置在該處理容積内;一第二電&,其配置 在該處理容積内’其中該第二電極相對於該第—電極且 該第-及第二電極在其之間形成一電漿容積;一射頻功 率源,耦接至該第一電極;以及複數個RF返回帶,於一 預疋的電位下叙接於该第二電極及一主體之間,其中該 複數個RF返回帶輕接至該第二電極的一周邊,而該複數 個RF返回帶的阻抗沿著該第二電極的該周 ❹ 【實施方式】 本發明之實施例一般係關於用於使用電漿處理基材的 方法及叹備。更特定而言’本發明之實施例提供一電漿 處理腔至’該腔室具有耦接至複數個RF返回帶的電極, 其中RF返回帶的阻抗經設定及/或調整以於製程期間調 控電漿刀佈。一實施例中,RF返回帶的阻抗可藉由改變 返回帶的長度、藉由改變RF返回帶的寛度、藉由改 6 201043099 變RF返回帶的間隔、藉由改變RF返回帶的位置、藉由 增加RF返回帶的可變電容或藉由以上之組合而變化。 本發明之實施例一般係利用於處理矩形基材,諸如用 於液晶顯示器或平面板之基材以及用於太陽能板之基 材。其他適合的基材可為圓形,諸如半導體基材。本發 明可利用於處理任何尺寸及形狀之基材。但是,由於增 加RF返回需要更大的感受器,本發明提供特別的優點於 尺寸 15K (約 15,600 cm2)、25K (約 27,75 0 cm2)及以 〇 上,更佳是40K (約41,140 cm2)及以上,例如50K、 55K 及 60K。 縱使已於大面積基材處理系統内繪示性描述、顯示及 實行本發明,本發明可在其他電漿處理系統中具有利用 性,包含來自其他製造商的系統,其期望確保一個或多 個RF返回路徑於助益於系統内可接收的處理之層級下 維持功效。其他本發明可實行的示範性處理系統包含: Q CENTURA ULTIMA HDP-CVD™ 系統、PRODUCER APF PECVD™ 系統、PRODUCER BLACK DIAMONDtm 系 統、PRODUCER BLOK PECVDtm 系統、PRODUCER DARC PECVD™ 系統、PRODUCER HARPTM 系統、 PRODUCER PECVD™ 系統、PRODUCER STRESS NITRIDE PECVD™ 系統、PRODUCER TEOS FSG PECVDTM系統,該等系統全可購自美國加州Santa Clara 的 Applied Materials,Inc. 可使用本發明之實施例以形成許多不同類型的膜,該 201043099 等膜可用於形成薄膜太陽能電池,諸如顯示於第9圖的 不範性矽系薄膜光伏打(pV )太陽能電池9〇〇的橫剖面 視圖。矽系薄膜PV太陽能電池9〇〇通常可包含一形成 於基材940上的透明導電氧化物(TC〇)層9〇2、形成於 透明導電氧化物層902上的光電轉換單元914以及形成 於光電轉換單元914上的背側電極916。背側電極916 可由堆疊膜形成,該堆疊膜包含透明導電氧化物(Tc〇) 0 層910以及導電層912。 操作上,由環境提供的入射光922 (例如太陽光或其 他光子)供給至PV太陽能電池9〇〇4V太陽能電池9〇〇 中的光電轉換單元914吸收光能並且在形成於光電轉換 單元914中的p_i_n接面將光能轉換成電能,因而產生電 或能量A者,PV太陽能電池9〇〇可順序颠倒地製造或 積或可包3 —個或多個堆疊在一起並由透明導電氧 化物層分隔的光電轉換單元。 0 除了其他合適的材料外,基材940可為金屬、塑膠、 有機材料、矽 '玻璃、石英或聚合物之薄片。基材_ ° 有大於約1平方公尺的表面積,諸如大於約2平方 公尺。視情況任選的介電層(未圖示)可配置於基材94〇 及透明導電氧化物(TC0)層902之間…實施例中, 視情況任選的介電層可為SiON或氧化石夕(Si〇2)層。 透明導電氧化物(TC0)層902、91〇可包含(但不限 於)至》-種氧化物層’其選自由以下物質所組成之群 組:氧化錫(Sn〇2)、氧化銦錫(IT〇)、氧化鋅(Zn〇) 201043099 或其組合物。TCO層902可由CVD製程、PVD製程或 其他適合的沈積製程所沈積。 導電層912可包含(但不限於)金屬層,其選自由以 下物質所構成之群组:鈦、鉻、鋁、銀、金、鋼、鉑或 其組合物之合金。 — 光電轉換單元914包含p型半導體層9〇4、n型半導體 層908以及本質型(i型)半導體層9〇6〇i型半導體層 〇 906也已知為大量層’其功效為作為由入射光能量產生 電洞對的光電轉換層。本質型半導體藉由在外質型半導 體中添加摻質原子而有別於外質型半導體。外質型半導 體層(諸如p型半導體層904以及n型半導體層9〇8) 用於收集由太陽能電池内的本質型半導體所產生 或電洞。 本質型半導體層可藉由提供包含待形成的半導體材料 源之氣體混合物形成。舉例而言,本質型矽層可藉由提 €)供包含钱和氫氣之氣體混合物至處理腔室而形成。由 氣體混合物形成㈣和其他半導體可視製程參數而定以 具有多變的結晶程度。 在原子基本上不具有排列清楚的圖案或結晶度的材料 是指非晶形。完整結晶的材料是指結晶、多晶或單晶材 料。多晶矽材料是形成為許多由晶粒邊界分隔的晶粒的 結晶材料。單晶材料是單一晶體的材料。 具有砵份結晶度的半導體固體(即,結晶比例在約5〇/〇 至95 /。之間)是指奈米晶或者微晶,其通常是指懸置在 9 201043099 非晶形相中的晶粒尺寸。 奈米晶石夕(常常稱為微晶石夕)是亞晶,其具有短範圍 或中範圍的排列,並且由兩相混合物構成—嵌在非晶形 基質中的小晶粒。奈米晶及微晶有時是藉由晶粒(或離 晶’ crystallite )而區別。然而’多數具有伸入微米範圍 之晶粒的亞晶實際上是有微粒的多晶梦,其在晶體之間 不具有無晶形基質’所以「奈米晶j 一詞在指兩相亞晶 矽時,被認為是比「微晶j更佳的遣詞。 另一個源於1990年代晚期的解決之道是類似地將微 晶矽定義為具有兩相’即在非晶形基質中的晶粒,但限 至於小於20 nm特徵尺寸的晶粒。相反地,多晶石夕定義 為單相的結晶材料’在結晶之間不具有無晶形基質,且 最小的結晶尺寸大於20 nm 〇 應注意到「結晶石夕/半導體」一詞可指任何形式的具有 晶體相的矽/半導體,包含微晶和奈米晶矽/半導體。 本質型半導體層的結晶度影響本質型半導體層的光吸 收特徵。舉例而言,非晶形半導體層一般可由具有不同 結晶度(諸如微晶矽)的本質層吸收不同波長的光。因 為此理由,多數太陽能電池使用非晶形及微晶/奈米晶層 兩者以生產最廣泛的可能的光吸收特徵結構。本質型半 導體層可藉由沈積多重微晶半導體層而形成,以達成期 望的公稱晶體比例、具有分級的結晶比例之膜、或者於 層各處變化的結晶比例。 P型及η型半導體層904、908可為由選自第三族或第 10 201043099 五族元素所摻雜的矽系材料 摻雜的矽膜稱為p型矽 摻雜的矽骐稱為n型矽臈。 _可為磷摻雜矽膜而p、型 膜。 。以第三族元素(例如硼) 而以第五族元素(例如磷) 一實施例中,η型半導體層 半導體層904可為硼摻雜矽 摻:的矽膜可為非晶形矽膜(a_s。、多晶膜。。ly_s。 或微日日膜(叫叫,具有通常在約5 nm及約50 nm之間The flat panel is a p-n junction. Amorphous 4 201043099 The shape and uniformity of the shape or polymorph (4) is important in commercial operation. Therefore, there is a need for a pECVD chamber that improves uniformity. SUMMARY OF THE INVENTION Embodiments of the present invention generally relate to methods and apparatus for plasma treating substrates. More particularly, embodiments of the present invention provide a plasma processing chamber having an RF return strip that is configured to improve uniformity. An embodiment of the invention provides a method of treating a substrate using plasma, comprising: providing a process chamber defining a processing volume, wherein the substrate support is disposed within the processing volume, and a radio frequency ( a gas distribution plate connected to the RF source is disposed on the substrate support, and a periphery of the substrate support is coupled to the RF power source through a plurality of RF return bands; passing one or more process gases through the A distribution plate flows to the processing valley and applies a RF power to the gas distribution plate to generate a plasma from one or more process gases within the processing volume. The impedance of one or more of the RF return bands has changed. To adjust the local plasma distribution between the gas distribution plate and the substrate. Another embodiment of the present invention provides an apparatus for processing a substrate, comprising: a chamber body defining a processing volume, wherein the chamber body has a slit valve opening, the slit valve opening Arranged to allow passage of the substrate, a substrate support disposed within the processing volume, wherein the substrate support is configured to receive a substrate and support the substrate on a support surface during processing; a gas a distribution plate disposed within the processing space of the 5 201043099 and the substrate support, wherein the gas distribution plate is configured to deliver one or more process gases; a source of RF power coupled to the gas distribution plate; And a plurality of RF return straps coupled between the perimeter of the substrate support and the RF power source, wherein the plurality of RF return straps are configured such that the substrate support and the RF power source are between The impedance varies along the perimeter of the substrate support. Still another embodiment of the present invention provides a device for processing a substrate, a cavity to a body defining a processing volume, a first electrode disposed in the processing volume, and a second battery & configured in the processing volume 'where the second electrode is formed with a plasma volume relative to the first electrode and the first and second electrodes; a radio frequency power source coupled to the first An electrode; and a plurality of RF return strips are connected between the second electrode and a body at a predetermined potential, wherein the plurality of RF return strips are lightly connected to a periphery of the second electrode, and the The impedance of the plurality of RF return strips is along the circumference of the second electrode. [Embodiment] Embodiments of the present invention generally relate to methods and sighs for treating substrates using plasma. More particularly, embodiments of the present invention provide a plasma processing chamber to 'the chamber having electrodes coupled to a plurality of RF return strips, wherein the impedance of the RF return strip is set and/or adjusted for regulation during processing Plasma knife cloth. In one embodiment, the impedance of the RF return band can be changed by changing the length of the return band, by changing the intensity of the RF return band, by changing the interval of the RF return band by 201043099, by changing the position of the RF return band, It varies by increasing the variable capacitance of the RF return band or by a combination of the above. Embodiments of the present invention are generally utilized for processing rectangular substrates, such as substrates for liquid crystal displays or flat panels, and substrates for solar panels. Other suitable substrates can be circular, such as semiconductor substrates. The invention can be utilized to process substrates of any size and shape. However, the present invention provides particular advantages in terms of size 15K (about 15,600 cm2), 25K (about 27,75 0 cm2), and above, more preferably 40K (about 41,140 cm2), due to the need for larger susceptors for increased RF return. And above, such as 50K, 55K and 60K. Even though the invention has been depicted, shown, and practiced within a large area substrate processing system, the present invention may be utilized in other plasma processing systems, including systems from other manufacturers, which are expected to ensure one or more The RF return path maintains efficiency at a level that facilitates processing that is acceptable within the system. Other exemplary processing systems embodyable by the present invention include: Q CENTURA ULTIMA HDP-CVDTM system, PRODUCER APF PECVDTM system, PRODUCER BLACK DIAMONDtm system, PRODUCER BLOK PECVDtm system, PRODUCER DARC PECVDTM system, PRODUCER HARPTM system, PRODUCER PECVDTM System, PRODUCER STRESS NITRIDE PECVDTM system, PRODUCER TEOS FSG PECVDTM system, all of which are commercially available from Applied Materials, Inc. of Santa Clara, California, USA. Embodiments of the invention can be used to form many different types of films, 201043099 et al. The film can be used to form a thin film solar cell, such as a cross-sectional view of a non-standard bismuth thin film photovoltaic (pV) solar cell 9 显示 shown in FIG. The lanthanide thin film PV solar cell 9 〇〇 can generally comprise a transparent conductive oxide (TC 〇) layer 9 形成 2 formed on the substrate 940, a photoelectric conversion unit 914 formed on the transparent conductive oxide layer 902, and formed on The back side electrode 916 on the photoelectric conversion unit 914. The backside electrode 916 may be formed of a stacked film including a transparent conductive oxide (Tc〇) 0 layer 910 and a conductive layer 912. Operationally, the incident light 922 (for example, sunlight or other photons) supplied from the environment is supplied to the PV solar cell 9 〇〇 4V. The photoelectric conversion unit 914 in the solar cell 9 吸收 absorbs light energy and is formed in the photoelectric conversion unit 914. The p_i_n junction converts light energy into electrical energy, thereby producing electricity or energy. The PV solar cell 9 can be fabricated in reverse order or can be stacked or stacked one by one and composed of transparent conductive oxide. Layer-separated photoelectric conversion unit. 0 In addition to other suitable materials, substrate 940 can be a sheet of metal, plastic, organic material, 矽 glass, quartz, or polymer. The substrate _ has a surface area greater than about 1 square meter, such as greater than about 2 square meters. Optionally, a dielectric layer (not shown) may be disposed between the substrate 94 and the transparent conductive oxide (TC0) layer 902. In an embodiment, optionally the dielectric layer may be SiON or oxidized. Shi Xi (Si〇2) layer. The transparent conductive oxide (TC0) layers 902, 91 can include, but are not limited to, an oxide layer that is selected from the group consisting of tin oxide (Sn〇2), indium tin oxide ( IT〇), zinc oxide (Zn〇) 201043099 or a combination thereof. The TCO layer 902 can be deposited by a CVD process, a PVD process, or other suitable deposition process. Conductive layer 912 can include, but is not limited to, a metal layer selected from the group consisting of titanium, chromium, aluminum, silver, gold, steel, platinum, or alloys thereof. — The photoelectric conversion unit 914 includes a p-type semiconductor layer 9〇4, an n-type semiconductor layer 908, and an intrinsic (i-type) semiconductor layer 9〇6〇i type semiconductor layer 〇 906 is also known as a large number of layers The incident light energy produces a photoelectric conversion layer of the pair of holes. Intrinsic semiconductors differ from exogenous semiconductors by the addition of dopant atoms to the exogenous semiconductor. Exogenous semiconductor layers, such as p-type semiconductor layer 904 and n-type semiconductor layer 9〇8, are used to collect or create holes generated by intrinsic semiconductors within the solar cell. The intrinsic semiconductor layer can be formed by providing a gas mixture comprising a source of semiconductor material to be formed. For example, an intrinsic layer can be formed by providing a gas mixture comprising money and hydrogen to a processing chamber. It is determined by the gas mixture (4) and other semiconductor visual process parameters to have varying degrees of crystallization. A material which does not substantially have a well-arranged pattern or crystallinity in an atom means amorphous. A fully crystalline material refers to a crystalline, polycrystalline or single crystal material. The polycrystalline germanium material is a crystalline material formed into a plurality of crystal grains separated by grain boundaries. The single crystal material is a single crystal material. A semiconductor solid having a degree of crystallinity (i.e., a crystallization ratio of between about 5 Å/〇 and 95 Å) means a nanocrystal or a crystallite, which generally means a crystal suspended in an amorphous phase of 9 201043099 Grain size. Nanocrystalline spar (often referred to as microcrystalline spar) is a sub-crystal having a short or medium range arrangement and consisting of a two phase mixture - small grains embedded in an amorphous matrix. Nanocrystals and crystallites are sometimes distinguished by grains (or crystallites). However, most of the subgrains with grains extending into the micrometer range are actually polycrystalline dreams with particles, which do not have an amorphous matrix between the crystals. 'So the term nanocrystal j refers to two-phase subgrains. At the time, it is considered to be a better word than "microcrystalline j. Another solution from the late 1990s is to similarly define microcrystalline germanium as a crystal with two phases, ie in an amorphous matrix, but It is limited to grains with a feature size of less than 20 nm. Conversely, polycrystalline stone is defined as a single-phase crystalline material 'without an amorphous matrix between crystals, and the smallest crystal size is larger than 20 nm. The term "Shi Xi / Semiconductor" can refer to any form of germanium/semiconductor having a crystalline phase, including microcrystals and nanocrystalline germanium/semiconductor. The crystallinity of the intrinsic semiconductor layer affects the light absorbing characteristics of the intrinsic semiconductor layer. For example, an amorphous semiconductor layer can generally absorb light of different wavelengths by an intrinsic layer having a different degree of crystallinity, such as microcrystalline germanium. For this reason, most solar cells use both amorphous and microcrystalline/nanocrystalline layers to produce the widest possible range of possible light absorbing features. The intrinsic semiconductor layer can be formed by depositing multiple microcrystalline semiconductor layers to achieve a desired nominal crystal ratio, a film having a graded crystal ratio, or a crystal ratio varying throughout the layer. The P-type and n-type semiconductor layers 904, 908 may be a ruthenium film doped with a lanthanide material doped from a Group III or 10th 201043099 Group 5 element, referred to as a p-type yttrium doped yt called n Type 矽臈. _ can be a phosphorus-doped ruthenium film and a p-type film. . In the embodiment of the third group element (for example, boron) and the fifth group element (for example, phosphorus), the n-type semiconductor layer semiconductor layer 904 may be boron-doped germanium: the germanium film may be an amorphous germanium film (a_s) Polycrystalline film ly_s. or micro-day film (called, usually between about 5 nm and about 50 nm)

、厚又或者’在半導體層9〇4、9〇8中的摻雜元素可經 選擇乂符° PV太陽能電池900的裝置需求。n型和p型 半導體層908、9〇4可根據本發明之實施例使用處理腔室 沈積。 第1A圖概要繪示根據本發明之實施例用kPECVD之 電漿處理系統1〇〇之RF返回帶。電漿處理系统1〇〇經設 置以使用電漿處理大面積基# 1〇1以形成大面積基材上 的結構及裝置,該大面積基材係用於製造液晶顯示器 (LCD )、平面顯示器、有機發光二極體(〇led )或用 於太陽能電池陣列的光伏打電池。結構可為複數個後通 道蝕刻型之反轉堆疊(inverted staggered )(底閘極)薄 膜電晶體,其包含複數個依序沈積及遮蔽步驟。其他結 構可包含p-n接面以形成用於光伏打電池之二極體。 電漿處理系統100可經設置以處理多種材料於大面積 基材101上,包含(但不限於)介電材料(例如si〇2、 SiOxNy、其衍生物或其組合物)、半導體材料(例如,石夕 及其摻質)、阻隔材料(例如’ SiNx、SiOxNy或其衍生物 201043099 藉由電漿處理系統100形成或沈積於大面積基材上的介 電材料及半導體材料的特定例子可包含磊晶矽、多晶 矽、非晶形矽、微晶矽、矽鍺、鍺、二氧化矽、氮氧化 矽、氮化矽、其摻質(例如硼、磷或砷)、其衍生物或其 組合物。電漿處理系統100也可經設置以接收諸如氬、 氫、氮、氦或其組合物之氣體,以用於當作淨化氣體或 載氣(例如氬、氫、氮、氦、其衍生物或其組合物)^使 Q 用系統100沈積矽薄膜於大面積基材101的一個範例可 藉由使用矽烷當作氫載氣中的前驅氣體而完成。 夕種使用系統100沈積薄膜於大面積基材上的裝置和 方法可得於美國專利申請號li/021,416,其於2005年11 月17曰提出申請’並早期公開為US 2005-0255257,標 題為「控制PECVD沈積薄膜之薄膜性質的方法j Meth〇d Of Controlling The Film Properties Of PECVD-Deposited Thin Films);以及美國專利申請號11/173,21〇,於2〇〇5 D 年7月1曰提出申請,早期公開為us 2006-0228496,標 題為「藉由氣體擴散器曲線控制電漿均勻性」(PlasmaThe doping elements in the semiconductor layers 9〇4, 9〇8 may be selected to meet the device requirements of the PV solar cell 900. The n-type and p-type semiconductor layers 908, 9〇4 can be deposited using processing chambers in accordance with embodiments of the present invention. Figure 1A schematically illustrates an RF return strip of a plasma processing system 1 using kPECVD in accordance with an embodiment of the present invention. The plasma processing system 1 is configured to process a large area base #1〇1 using a plasma to form a structure and apparatus on a large area substrate for use in the manufacture of liquid crystal displays (LCDs), flat panel displays , organic light-emitting diodes (〇led) or photovoltaic cells for solar cell arrays. The structure can be a plurality of post-channel etched inverted staggered (bottom gate) thin film transistors comprising a plurality of sequential deposition and masking steps. Other structures may include p-n junctions to form diodes for photovoltaic cells. The plasma processing system 100 can be configured to process a variety of materials on a large area substrate 101, including but not limited to dielectric materials (eg, si〇2, SiOxNy, derivatives thereof, or combinations thereof), semiconductor materials (eg, Specific examples of dielectric materials and semiconductor materials formed by or deposited on a large-area substrate by the plasma processing system 100 may be included, for example, 'SiNx, SiOxNy or a derivative thereof 201043099 Epitaxial germanium, polycrystalline germanium, amorphous germanium, microcrystalline germanium, germanium, antimony, germanium dioxide, antimony oxynitride, tantalum nitride, dopants thereof (eg, boron, phosphorus or arsenic), derivatives thereof, or combinations thereof The plasma processing system 100 can also be configured to receive a gas such as argon, hydrogen, nitrogen, helium or combinations thereof for use as a purge gas or carrier gas (eg, argon, hydrogen, nitrogen, helium, derivatives thereof). Or an example of the deposition of a tantalum film on the large area substrate 101 by the Q system 100 can be accomplished by using decane as the precursor gas in the hydrogen carrier gas. The system 100 is used to deposit a thin film over a large area. Device on the substrate and The method is available in U.S. Patent Application Serial No. 021,416, filed on Nov. 17, 2005, the disclosure of which is hereby incorporated by reference in its entirety in The Film Properties Of PECVD-Deposited Thin Films); and U.S. Patent Application Serial No. 11/173,21, filed on July 1, 2005, the first disclosure of which is US 2006-0228496, entitled "by Gas diffuser curve controls plasma uniformity" (Plasma

Uniformity Control By Gas Diffuser Curvature),兩者皆 在此併入本文作為參考’該等申請案與本說明書無不一 致。使用系統100而形成的多種裝置之其他範例可得於 美國專利申請號11/8 89,683,於2004年7月12曰提出 申請,早期公開為US 2005-0251990,標題為「藉由氣體 擴散器孔洞設計控制電漿均勻性」(Plasrna Uniformity Control By Gas Diffuser Hole Design) « ;以及美國專利 12 201043099 號7,125,758 ’於2006年10月24曰公告,標題為「藉 由控制膜形成前驅物控制氮化矽膜的性質與均勻度」 (Controlling the Properties and Uniformity of a Silicon Nitride Film by Controlling the Film Forming Precursors )’兩者皆在此併入本文作為參考,該等申請 案與本說明書無不一致。 如第1圖所示’電漿處理系統100通常包含界定處理 ❹ 容積110的腔室主體102。基材支撐件1〇4配置在處理 容積110内。基材支撐件104經設置以於處理期間在頂 部表面104a上支撐基材1〇1。基材支撐件ι〇4也經設置 以在處理期間垂直移動以調整基材1 〇 i及喷淋頭組件 103之間的距離,喷淋頭組件丨〇3是經設置以從處理氣 體源107供給處理氣體至處理容積11〇。電漿處理系統 100也包含排氣系統111,其設置以將處理容積11〇抽真 空。喷淋頭組件103通常以平行方式相對於基材支撐件 〇 104配置。 一實施例中,喷淋頭組件103包含氣體分佈板13 1和 阻擋板132。氣體容積133形成於氣體分佈板131及阻 擋板132之間。氣體源107透過氣體供給導管134連接 至氣體容積133。 氣體分佈板131、阻擋板丨32以及氣體供應導管134 通常由導電性材料形成,且相互電性連通。腔室主鱧1〇2 也是由導電性材料所形成。腔室主體1〇2通常與喷淋頭 、、且件103電性絕緣。—實施例中,喷淋頭組件丨〇3透過 13 201043099 絕緣體135架置在腔室主體1〇2上。 一實施例中,基材支擇件1Q4也是導電的,且基材支 _⑽及喷淋頭組件1G3是設置相對於歸在其間生 成電漿的電極。 RF功率源1 〇5通常用以在噴淋頭組件【及基材支撐 件104之間生成電漿。一實施例中,rf功率源⑻透過 阻抗匹配電路106的第一輸出1〇“耦接至喷淋頭1〇3。 0 阻抗匹配電路1〇6的第二輸出106b電性連接至腔室主體 102 ° 實施例中,複數個RF返回帶1 〇9電性連接於基材支 撐件104及腔室主體102之間。複數個RF返回帶ι〇9 經設置以在處理期間縮短RF電流之路徑,並且以調整靠 近基材支撐件104的邊緣地區的電漿均勻性。 RF電流之路徑在第1A圖中以箭頭概略繪示eRF電流 通常從RF功率源105的第一輸出1〇5&行進至阻抗匹配 〇 電路106的第一輸出106a,然後沿著氣體供給導管134 的外表面行進至阻擔板132的背表面,然後行進至氣體 分佈板131的前表面。從氣體分佈板13ι的前表面, 電流通過電漿108前進並且抵達基材或者基材支樓 件104的頂表面’然後通過複數個rf返回帶1 〇9至腔室 主體102的内表面1 〇2a »從内表面1 〇2a,RF電流透過 阻抗匹配電路106的第二輸出l〇6a返回到rf功率源1 〇5 的第二輸出105b。 第1B圖是電漿處理系統1〇〇的概要頂視圖。第iB圖 201043099 概要纷示相關於基材支揮件1〇4的複數個返回帶 之佈置。複數個RF返回帶1〇9沿基材支揮件1〇4的邊緣 刀佈。每- RF返回帶1〇9可包含一寬撓曲物其具有一 端電性連接至基材支㈣刚的表面,而另—端電性連 Μ腔體1〇2°複數個RF返回帶1()9容許基材支撲 件104及腔室主體1〇2間的相對運動。每一灯返回帶 109可具有不同的電性質,纟經調整適於灯返回帶1〇9 ΟUniformity Control By Gas Diffuser Curvature, both of which are incorporated herein by reference. Other examples of a variety of devices formed using the system 100 are available in U.S. Patent Application Serial No. 11/8,89,683, filed on July 12, 2004, the disclosure of which is incorporated herein by "Plasrna Uniformity Control By Gas Diffuser Hole Design" (; and US Patent 12 201043099, 7,125, 758 ' issued on October 24, 2006, titled "Controlling Membrane by Precursor Forming Nitrogen (Controlling the Properties and Uniformity of a Silicon Nitride Film by Controlling the Film Forming Precursors), both of which are incorporated herein by reference. As shown in Figure 1, the plasma processing system 100 generally includes a chamber body 102 that defines a process volume 110. The substrate support 1〇4 is disposed within the processing volume 110. The substrate support 104 is configured to support the substrate 1〇1 on the top surface 104a during processing. The substrate support ι 4 is also arranged to move vertically during processing to adjust the distance between the substrate 1 〇i and the showerhead assembly 103, the showerhead assembly 丨〇3 being configured to be from the process gas source 107 The process gas was supplied to a treatment volume of 11 Torr. The plasma processing system 100 also includes an exhaust system 111 that is configured to evacuate the process volume 11 to the vacuum. The showerhead assembly 103 is generally disposed in a parallel manner relative to the substrate support 〇 104. In one embodiment, the showerhead assembly 103 includes a gas distribution plate 13 1 and a barrier plate 132. A gas volume 133 is formed between the gas distribution plate 131 and the baffle plate 132. Gas source 107 is coupled to gas volume 133 through gas supply conduit 134. The gas distribution plate 131, the barrier plate 32, and the gas supply conduit 134 are generally formed of a conductive material and are electrically connected to each other. The chamber main 鳢1〇2 is also formed of a conductive material. The chamber body 1〇2 is typically electrically insulated from the showerhead and the member 103. In the embodiment, the showerhead assembly 丨〇3 is mounted on the chamber body 1〇2 through the insulators 135 of 201043099. In one embodiment, the substrate support 1Q4 is also electrically conductive, and the substrate support (10) and the showerhead assembly 1G3 are disposed relative to the electrode from which the plasma is generated. The RF power source 1 〇 5 is typically used to generate plasma between the showerhead assembly [and the substrate support 104. In one embodiment, the rf power source (8) is coupled to the shower head 1〇3 through the first output 1〇 of the impedance matching circuit 106. The second output 106b of the impedance matching circuit 1〇6 is electrically connected to the chamber body. In the embodiment, a plurality of RF return strips 1 〇 9 are electrically connected between the substrate support 104 and the chamber body 102. The plurality of RF return strips ι 9 are arranged to shorten the path of the RF current during processing. And to adjust the plasma uniformity near the edge region of the substrate support 104. The path of the RF current is schematically illustrated by arrows in Figure 1A. The eRF current is typically traveled from the first output 1〇5& of the RF power source 105. The first output 106a to the impedance matching 〇 circuit 106 then travels along the outer surface of the gas supply conduit 134 to the back surface of the resistive plate 132 and then to the front surface of the gas distribution plate 131. From the front of the gas distribution plate 13ι The surface, current travels through the plasma 108 and reaches the top surface of the substrate or substrate support member 104' and then passes through a plurality of rf return strips 1 〇9 to the inner surface of the chamber body 102 1 〇 2a » from the inner surface 1 〇 2a, RF current through impedance matching The second output 106a of 106 returns to the second output 105b of the rf power source 1 〇 5. Fig. 1B is a schematic top view of the plasma processing system 1 。. iB diagram 201043099 summary related to the substrate support The arrangement of the plurality of return strips of the plurality of RF return strips 1 〇 9 along the edge of the substrate support member 1 〇 4. Each of the RF return strips 1 〇 9 may comprise a wide flexure The one end is electrically connected to the surface of the substrate branch (four), and the other end is electrically connected to the cavity 1 〇 2°, and the plurality of RF return strips 1 () 9 allow the substrate blister member 104 and the chamber body 1 The relative motion between the two turns. Each of the lamp return belts 109 can have different electrical properties and is adjusted for the lamp return belt 1〇9 Ο

的位置。-實施例中’ RF返回冑1〇9的阻抗經調整以協 調局部電漿分佈》 〇 1A圖,在處理期間,一個或多個處理氣體 通過喷淋頭1〇3從氣體源1〇7流至處理容積11〇。灯功 率施加於喷淋帛1()3及基材支撐件1〇4之間,生成電衆 ⑽以用於處理基材1〇卜電漿分佈的均勾性通常是處理 期=所期望的°然而’電漿⑽的分佈是由各項因子所 決疋諸如處理氣體的分佈、處理容積11〇的幾何形狀、 電極之間的距離以及RF返回帶i 〇9的電性質。 本發明的一實施例中,處理容積ιι〇内的電聚分佈可 藉由調整-或多個RF返回帶1〇9的一項或多項性質而調 整。-實施例中,RF返回㈣的性質可藉由調整灯 返口帶109的位置、調整RF返回冑1〇9的寬度、調整 RF返回帶109的長度、調整相鄰的RF返回帶1()9之間 的間隔、添加可變的或固定的電容、或其組合而調整: 〜第2A圖概要綠不根據本發明之實施例之電衆處理腔 至200的剖面側視圖。 15 201043099 電漿處理腔室200包含腔室底部2〇1、側壁2〇2以及 蓋組件203。腔室底部201、側壁202及蓋組件203界定 處理容積206。基材支撐件組件2〇4配置在處理容積2〇6 内。開口 207穿過側壁2〇2的一側而形成。設置開口 2〇7 以合許基材208通過。狹縫閥2〇5耦接至側壁2〇2且經 設置以於處理期間關閉開口 207。 蓋組件203由侧壁202支撐且能被移除以維護電漿處 ◎ 理腔室200的内部。蓋組件203包含外蓋242、蓋遮板 243、阻擋板209、分佈板210、氣體導管241以及絕緣 體 213。 阻擒板209以及分佈板210實質上彼此平行配置而在 其間形成氣體分佈容積214。阻擋板209及分佈板210 經設置以使處理氣體分佈至處理容積2〇6。阻擋板209 及分佈板210 —般由鋁所製造。絕緣體213配置在側壁 202上並且經設置以將侧壁202電性隔離分佈板210及 〇 阻檔板209。蓋遮板243由外蓋242支撐,且電性連接 至側壁202。 開口 212穿過阻擋板209形成並且經設置以透過氣體 導管241將氣體分佈容積214連接至氣體源(未圖示)。 分佈板210在靠近中心區段處具有穿孔的區域。複數個 孔洞211透過分佈板210形成並且提供氣體分佈容積214 及處理容積206之間的流體連通。分佈板210的穿孔區 域經設置以提供穿過分佈板210進至處理容積206的氣 體的均勻分佈。 16 201043099 基材支撐件組件204於處理容積2〇6内配置於中心且 在處理期間支撐基材208。基材支撐件組件2〇4通常包 含導電的支撐件主體217,其由延伸穿過腔室底部2〇1 的軸桿218支樓。支撐件主體217通常在形狀上是多邊 形,並且至少在支撐基材208的支撐件主體217的一部 分之上以電性絕緣的塗層覆蓋。絕緣塗層也可覆蓋支樓 件主體217的其他部份。一實施例中,基材支撐件組件 〇 204在正常情況下至少於處理期間是耦接到地面電位。 支撐件主體217可由金屬或其他類似的導電材料(例 如鋁)所製成。絕緣塗層可為介電材料,排除其他之外, 諸如氧化物、氮切、二氧切、二氧化銘、五氧化二 钽、碳化矽或聚亞醯胺,該等材料可由多種沈積或塗覆 製程所施加,例如(但不限於)火焰喷塗、電漿喷塗、 回能塗層、化學氣相沈積、喷塗、黏附膜、濺鍍及包覆。 —實施例中,支樓件主體217包覆至少—個傲入的加 Ο 熱元件219 ’該元件設置以在處理期間加熱基材208<> 一 實&例中支撐件主體217也包含熱耦以用於溫度控 制 實施例中,支撐件主體217可包含一個或多個僵 元件其包含金屬、陶瓷或其他嵌於其中的僵化材料。 「元件219 (諸如電極或電阻式元件)耦接至電源 220並且可控制地加熱定位於其上的支推組件204以及 基材208至田ώ 1 谓疋 >里度。一般而言,加熱元件219將基材 在處理期間維持於約15(TC到至少約46(TC的一致的 溫度 〇 力劫 一 …、元件219相對於支撐件主體217電性浮置。 17 201043099 軸桿218從支撐件主體217穿過腔室底部加延伸並 且將基材支撐件組件204耦接至舉升系統22ι。舉升系 統221將基材支撐件組件2〇4於升高的處理位置(如第 2A圖所示)與助於傳送基材的降低的位置之間移動。s position. - In the embodiment, the 'RF return 胄1〇9 impedance is adjusted to coordinate the local plasma distribution 》1A, during which one or more process gases flow from the gas source 1〇7 through the shower head 1〇3 To the processing volume of 11 〇. The lamp power is applied between the spray raft 1 () 3 and the substrate support 1 〇 4 to generate electricity (10) for processing the substrate 1 〇 电 电 电 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常° However, the distribution of the plasma (10) is determined by various factors such as the distribution of the process gas, the geometry of the treatment volume 11 、, the distance between the electrodes, and the electrical properties of the RF return band i 〇 9. In one embodiment of the invention, the electropolymer distribution within the processing volume ιι can be adjusted by adjusting one or more properties of the plurality of RF return bands 1〇9. In an embodiment, the nature of the RF return (4) can be adjusted by adjusting the position of the lamp return strip 109, adjusting the width of the RF return 胄1〇9, adjusting the length of the RF return strip 109, and adjusting the adjacent RF return strip 1 () The spacing between nines, the addition of a variable or fixed capacitance, or a combination thereof is adjusted: ~ Figure 2A is a cross-sectional side view of a population processing chamber to 200 not according to an embodiment of the present invention. 15 201043099 The plasma processing chamber 200 includes a chamber bottom 2〇1, a side wall 2〇2, and a lid assembly 203. The chamber bottom 201, side walls 202, and lid assembly 203 define a processing volume 206. The substrate support assembly 2〇4 is disposed within the processing volume 2〇6. The opening 207 is formed through one side of the side wall 2〇2. The opening 2〇7 is provided to allow the substrate 208 to pass. The slit valve 2〇5 is coupled to the side wall 2〇2 and is configured to close the opening 207 during processing. The lid assembly 203 is supported by the side wall 202 and can be removed to maintain the interior of the plasma chamber 200. The cover assembly 203 includes an outer cover 242, a cover shutter 243, a blocking plate 209, a distribution plate 210, a gas conduit 241, and an insulator 213. The baffle plate 209 and the distribution plate 210 are disposed substantially parallel to each other to form a gas distribution volume 214 therebetween. The barrier plate 209 and the distribution plate 210 are arranged to distribute the process gas to the treatment volume 2〇6. The barrier plate 209 and the distribution plate 210 are generally made of aluminum. The insulator 213 is disposed on the sidewall 202 and is configured to electrically isolate the sidewall 202 from the distribution plate 210 and the barrier 209. The cover shutter 243 is supported by the outer cover 242 and electrically connected to the side wall 202. Opening 212 is formed through barrier plate 209 and is configured to connect gas distribution volume 214 to a gas source (not shown) through gas conduit 241. The distribution plate 210 has a perforated area near the central section. A plurality of holes 211 are formed through the distribution plate 210 and provide fluid communication between the gas distribution volume 214 and the process volume 206. The perforated areas of the distribution plate 210 are configured to provide a uniform distribution of gas that passes through the distribution plate 210 into the processing volume 206. 16 201043099 The substrate support assembly 204 is disposed centrally within the processing volume 2〇6 and supports the substrate 208 during processing. The substrate support assembly 2〇4 typically includes an electrically conductive support body 217 that is supported by a shaft 218 that extends through the bottom 2' of the chamber. The support body 217 is generally polygonal in shape and is covered with an electrically insulating coating at least over a portion of the support body 217 of the support substrate 208. The insulating coating may also cover other portions of the main body 217 of the support. In one embodiment, the substrate support assembly 〇 204 is normally coupled to ground potential during processing at least. The support body 217 can be made of metal or other similar electrically conductive material such as aluminum. The insulating coating may be a dielectric material, excluding others, such as oxides, nitrogen cuts, dioxins, dioxins, tantalum pentoxide, tantalum carbide or polyamidones, which may be deposited or coated by various materials. Applied by the coating process, such as, but not limited to, flame spraying, plasma spraying, energy repellent coating, chemical vapor deposition, spraying, adhesion film, sputtering, and coating. In the embodiment, the slab body 217 encloses at least one of the entangled heating elements 219 'this element is arranged to heat the substrate 208 during processing>> Thermally coupled for use in a temperature control embodiment, the support body 217 can include one or more stiff elements that contain metal, ceramic, or other rigid material embedded therein. "A component 219 (such as an electrode or a resistive component) is coupled to the power source 220 and controllably heats the push assembly 204 and the substrate 208 positioned thereon to the field 1. In general, heating Element 219 maintains the substrate at a temperature of about 15 (TC to at least about 46 during processing) (consistent temperature of TC ..., element 219 is electrically floating relative to support body 217. 17 201043099 shaft 218 from support The body 217 extends through the bottom of the chamber and couples the substrate support assembly 204 to the lift system 22i. The lift system 221 lifts the substrate support assembly 2 to the elevated processing position (eg, Figure 2A) Shown) moves between a lowered position that assists in transporting the substrate.

❹ -實施例中,基材支撐件組件2G4包含環繞陰影框架 222。環繞陰影框架222經設置以於製程期間防止基材 208及支撐件主體217之邊緣上的沈積或其他處理。當 基材支撐件組件204處於升高的處理位置時(如第2A 圖所示),環繞陰影框架222安置在基材2〇8及支撐件主 體217上。當基材支樓件組# 2〇4處於供傳送基材的降 低的位置時,環繞陰影框架222安置於基材支撐件組件 204之上,該基材支撐件組件位於形成於側壁2〇2上的 階狀物223上。 一實施例中,支撐件主體217具有複數個銷支架225, 該等銷支架穿過支撐件主體配置,且其設置以引導複數 個舉升銷224。每一銷支架225具有穿透孔洞226形成 於其中。穿透孔洞226開啟至支撐件主體217的上部表 面。每一銷支架225經設置以從穿透孔洞226的下部開 口接收一個舉升銷224。每一舉升銷224從形成於腔室 底部201内的凹部227向上延伸。當支撐件主體217與 複數個銷支架225降低時,複數個舉升銷224戳透穿透 孔洞226拾起基材208。基材208隨後從支撐件主體217 分離’容許基材處理器將基材2〇8傳送出電漿處理腔室 200 〇 18 201043099 複數個舉升銷224 —般包含陶瓷或陽極處理鋁。一實 施例中,複數個舉升銷224可具有多樣長度, 以致他們 得以在不同時間接觸基材208。舉例而言,在基材208 的外邊緣周圍間隔放置的舉升銷224高於從外邊緣朝基 材224中心向内間隔放置的舉升銷224,其容許基材2〇8 從其外邊緣相對於其中心先被舉升。 RF功率源215用於在處理容積2〇6中生成電漿。一實 0 施例中,阻抗匹配電路216耦接置RF功率源215。阻抗 匹配電路216的第一輸出216a連接氣體分佈板210,而 阻抗匹配電路216的第二輸出216b連接基材支撐件組件 2〇4因此在氣體分佈板2丨〇及基材支撐件組件之間 的處理氣體間施加RF功率,並且生成及保持用於處理基 材支撐件組件204上的基材208之電漿。 一實施例中,阻抗匹配電路216的第一輸出216a透過 氣體導管241及阻擋板209連接分佈板21(^一實施例 ◎ 中,第二輸出216b耦接至腔室主體(例如侧壁2〇2)或 蓋遮板243。 一實施例中,複數個RF返回帶228連接於基材支撐件 組件204的支撐件主體217與腔室底部2〇1之間,腔室 底部201連接至阻抗匹配電路216的第二輸出2l6b。複 數個RF返回帶228在支撐件主體217和腔室底部2〇1 之間提供RF電流返回路徑。 一實施例中,複數個RF返回帶228不均等地沿支撐件 主體217的每一邊緣分佈,該等RF返回帶在相鄰的 201043099 嫌之間具變化的間隔…實施例中,複數個RF 口 π 228非對稱地分佈以反應腔室幾何形狀的非對 特徵及/或氣流分佈的非對稱特徵。一實施例中,無耵 返回帶228配置於靠近支撐件主體217的轉角處。 另一實施例中,複數個RF返回帶228的每一個視每— RF返回帶的位置而定具有不同的電性質。一實施例中, 複數個RF返回帶228的至少一個RF返回帶具有可調整 Ο #電性f ° —實施例中’可調整的電性質為RF返回帶 228的阻抗。 第2C圖概要繪示RF返回帶228的一實施例。rf返 回帶228通常是平坦柔軟的導電帶,其具可撓性且在彎 折時不會施加強大的恢復力^ 一實施例中,RF返回帶228 包含可撓、低阻抗的導電材料,其抗處理及清潔的化學 物質。一實施例中,RF返回帶228由銘組成。或者,rf 返回帶228可包含鈦、不鏽鋼、皱鋼、或塗覆導電性金 ^ 屬塗層的可撓材料。 一實施例中,RF返回帶228具有第一端Mg以及第二 端239第一端238具有架置溝槽233,而第二端239具 有架置溝槽234。一實施例中,RF返回帶228具有中央 溝槽237 ’其設置以增加rf返回帶228的可撓性。 第2B圖概要繪示用於電漿處理腔室2〇〇中的rf返回 帶連接^ RF返回帶228的第一端238透過連接組件23〇 電性耦接置支撐件主體217。一實施例中,連接組件23〇 連接至支撐件主體217的下側240。第二端239藉由連 20 201043099 接組件229電性耗接至腔室底部201。RF返回帶228可 透過其他方式輪接至支撲件主體217及腔室底部2〇1, 該等方式例如緊固件、夾箝或其他能在支撐件主體217、 RF返回帶228以及腔室底部2〇1之間維持電性連接的方 法。如第2B圖所示,連接組件23〇包含塑型的炎箱 及一個或多個螺絲235。連接組件229包含塑型的失籍 231及一個或多個螺絲236。 Ο 連接組件229、230各包含低阻抗低阻抗的導電材料, 其抗處理及清潔化學物質。_實施例中,連接組件229、 230包含或者,材料可包含鈦、不轴、皱銅或任 何可以導電金屬塗層塗覆的材料。另一實施例中,連接 組件229包含第一導電材料而連接組件23〇包含第二導 電材料,其中第一導電材料及第二導電材料為不同的材 料。 不同的RF返回帶之實施例可得於美國專利申請號 〇 11/775,359 (代理人案號12004),於2007年7月10曰 提出申請,標題為「矩形感受器之非對稱接地」 (Asymmetric Grounding 〇f Rectangular Suscept〇r),公 開為US 2008/0274297,其在此併入作為參考。 一實施例中,RF返回帶228的電性質可經調整以調控 局部電漿分佈。一實施例中,RF返回帶的電性質可經調 整以改善分佈板210及支撐件主體204之間形成的電漿 之均勻性。 一實施例中,每一 RF返回帶228的阻抗可改變以調整 21 201043099 局部電漿分佈。一實施例中, 噔八德霏近RF返回帶處的局部電 佈可藉由減少RF返回帶228的阻抗而增 RF返回帶228處的 靠近 咖的阻抗而減少。刀佈可藉由增加RF返回帶 二Γ二中’電漿處理腔室200中的電漿分佈可藉 由:整複數個以返回帶228的位置及/或間隔而調整。❹ In an embodiment, the substrate support assembly 2G4 includes a surrounding shadow frame 222. The surrounding shadow frame 222 is configured to prevent deposition or other processing on the edges of the substrate 208 and the support body 217 during processing. When the substrate support assembly 204 is in the raised processing position (as shown in Figure 2A), the surrounding shadow frame 222 is disposed on the substrate 2〇8 and the support body 217. When the substrate support member set #2〇4 is in the lowered position for the transfer substrate, the surrounding shadow frame 222 is disposed over the substrate support assembly 204, which is formed on the side wall 2〇2 On the upper step 223. In one embodiment, the support body 217 has a plurality of pin brackets 225 that are disposed through the support body and that are configured to guide a plurality of lift pins 224. Each pin bracket 225 has a through hole 226 formed therein. The penetration hole 226 is opened to the upper surface of the support body 217. Each pin bracket 225 is configured to receive a lift pin 224 from a lower opening of the penetration hole 226. Each lift pin 224 extends upwardly from a recess 227 formed in the bottom 201 of the chamber. When the support body 217 is lowered with the plurality of pin brackets 225, a plurality of lift pins 224 poke through the through holes 226 to pick up the substrate 208. The substrate 208 is then separated from the support body 217 'allowing the substrate processor to transport the substrate 2〇8 out of the plasma processing chamber 200 〇 18 201043099 The plurality of lift pins 224 typically comprise ceramic or anodized aluminum. In one embodiment, the plurality of lift pins 224 can be of various lengths such that they can contact the substrate 208 at different times. For example, lift pins 224 spaced around the outer edge of substrate 208 are higher than lift pins 224 spaced inwardly from the outer edge toward the center of substrate 224, which allows substrate 2〇8 from its outer edge It is lifted first relative to its center. The RF power source 215 is used to generate plasma in the processing volume 2〇6. In an embodiment, the impedance matching circuit 216 is coupled to the RF power source 215. The first output 216a of the impedance matching circuit 216 is coupled to the gas distribution plate 210, and the second output 216b of the impedance matching circuit 216 is coupled to the substrate support assembly 2〇4 thus between the gas distribution plate 2 and the substrate support assembly RF power is applied between the process gases and plasma is generated and maintained for processing the substrate 208 on the substrate support assembly 204. In one embodiment, the first output 216a of the impedance matching circuit 216 is coupled to the distribution plate 21 through the gas conduit 241 and the blocking plate 209. In the embodiment ◎, the second output 216b is coupled to the chamber body (eg, the sidewall 2〇). 2) or cover shutter 243. In one embodiment, a plurality of RF return straps 228 are coupled between the support body 217 of the substrate support assembly 204 and the chamber bottom 2〇1, and the chamber bottom 201 is connected to impedance matching. A second output 216b of circuit 216. A plurality of RF return straps 228 provide an RF current return path between the support body 217 and the chamber bottom 2〇1. In one embodiment, the plurality of RF return straps 228 are unevenly supported along the support. Each edge of the body 217 is distributed, and the RF return bands are spaced apart between adjacent 201043099. In an embodiment, the plurality of RF ports π 228 are asymmetrically distributed to reflect the non-pair of chamber geometry. An asymmetrical feature of the feature and/or airflow distribution. In one embodiment, the innocent return strap 228 is disposed adjacent the corner of the support body 217. In another embodiment, each of the plurality of RF return straps 228 is - RF returns the position of the belt Different electrical properties. In one embodiment, at least one of the RF return straps of the plurality of RF return straps 228 has an adjustable Ο#electricity f°—in the embodiment, the adjustable electrical property is the impedance of the RF return strap 228. 2C schematically illustrates an embodiment of an RF return strap 228. The rf return strap 228 is typically a flat, flexible conductive strip that is flexible and does not exert a strong restoring force when bent. In one embodiment, RF The return strip 228 comprises a flexible, low impedance conductive material that is resistant to handling and cleaning. In one embodiment, the RF return strip 228 is comprised of or. The rf return strip 228 may comprise titanium, stainless steel, corrugated steel, Or a flexible material coated with a conductive gold coating. In one embodiment, the RF return strip 228 has a first end Mg and the first end 238 of the second end 239 has a mounting trench 233 and the second end 239 There is a mounting groove 234. In one embodiment, the RF return band 228 has a central groove 237' that is configured to increase the flexibility of the rf return band 228. Figure 2B is schematically illustrated for a plasma processing chamber 2〇 The rf return band in the ^ is connected to the first end 238 of the RF return band 228 through the connection The member 23 is electrically coupled to the support body 217. In one embodiment, the connection assembly 23 is coupled to the lower side 240 of the support body 217. The second end 239 is electrically coupled to the assembly 229 by the connection 20 201043099 The chamber bottom 201. The RF return strap 228 can be otherwise routed to the baffle body 217 and the chamber bottom 2〇1, such as fasteners, clamps or the like, in the support body 217, RF return strip 228 and a method of maintaining an electrical connection between the bottoms of the chambers 2〇1. As shown in Fig. 2B, the attachment assembly 23 includes a molded cartridge and one or more screws 235. Connection assembly 229 includes a molded lost 231 and one or more screws 236. The connection components 229, 230 each comprise a low impedance, low impedance conductive material that is resistant to handling and cleaning chemicals. In an embodiment, the joining components 229, 230 comprise or the material may comprise titanium, non-axial, wrinkled copper or any material that may be coated with a conductive metal coating. In another embodiment, the connection assembly 229 includes a first electrically conductive material and the connection assembly 23a includes a second electrically conductive material, wherein the first electrically conductive material and the second electrically conductive material are different materials. Examples of different RF return zones are available in U.S. Patent Application Serial No. 11/775,359 (Attorney Docket No. 12004), filed on July 10, 2007, entitled "Asymmetric Grounding of Rectangular Sensors" (Asymmetric Grounding) 〇f Rectangular Suscept〇r), published as US 2008/0274297, which is incorporated herein by reference. In one embodiment, the electrical properties of the RF return strip 228 can be adjusted to regulate the local plasma distribution. In one embodiment, the electrical properties of the RF return strip can be adjusted to improve the uniformity of the plasma formed between the distribution plate 210 and the support body 204. In one embodiment, the impedance of each RF return strip 228 can be varied to adjust 21 201043099 local plasma distribution. In one embodiment, the local electrical distribution at the near-RF return band of the 噔Budtz can be reduced by reducing the impedance of the RF return band 228 and increasing the impedance of the RF return band 228 near the coffee. The knife cloth can be adjusted by increasing the RF return band in the plasma processing chamber 200 in the plasma processing chamber 200 by adjusting the number and/or spacing of the return strips 228.

一 RF返回帶228的電性質可藉由改變灯返回帶的 度、藉由改變RF返回帶的寬度、藉由將可變電容並聯 或串聯連接至RF返回帶、藉由改變相鄰的rf返回帶: 間隔或藉由以上之組合而調整。 第3圖至第7圖概要繪示根據本發明之實施例改善電 漿均勻性的RF返回帶佈置。 。 第3圖概要繪示RF返回帶328沿矩形基材支撐件主體 31<7的一側的一種佈置,其類似第2A圖的支撐件主體 217。複數個RF返回帶328均等地沿支撐件主體317之 一側分佈。此佈置沿支撐件主體317的一側增加電漿均 勻度。相鄰的RF返回帶之間的間隔341實質上是相同 的,每一 RF返回帶328的寬度實質上相同,而每一返回 帶328的長度沿該側變化。一實施例中,RF返回帶 的長度在靠近該側的末端處較長,且逐漸朝該侧的中心 減少。雖然只顯示基材支撐件主體317的一側,基材支 撐件317的其餘側也可連接至複數個rf返回帶。類似 RF返回帶佈置或不同的RF返回帶佈置可應用至未圖示 的剩餘側。 22 201043099 第4圖概要繪示RF返回帶428沿矩形基材支撐件主體 417的一側的一種佈置’其類似第2A圖的支撐件主體 217。複數個rf返回帶428均等地沿支撐件主體417之 一側分佈。此佈置沿支撐件主體4丨7的一侧增加電漿均 勻度。每一 RF返回帶428的寬度實質上相同,每一返回 帶428的長度也是實質上相同,而相鄰的RF返回帶之間 的間隔441沿該側變化。一實施例中,相鄰的RF返回帶 0 428的間隔441在靠近該侧的末端處較大,且逐漸朝該 側的中心減少。雖然只顯示基材支撐件主體417的一 側’基材支樓件417的其餘側也可連接至複數個Rjp返回 帶。類似RF返回帶佈置或不同的rf返回帶佈置可應用 至未圖示的剩餘側。 第5圖概要繪示RF返回帶528沿矩形基材支撐件主體 517的一側的一種佈置’其類似第2A圖的支撐件主體 217。複數個RF返回帶528均等地沿支撐件主體517之 〇 側分佈。此佈置沿支樓件主體5 1 7的一側增加電漿均 勻度。每一 RF返回帶528的長度實質上相同,相鄰的 RF返回帶之間的間隔541實質上是相同的,而每一返回 帶528的寬度沿該側變化。一實施例中,rf返回帶528 的寬度在靠近該側的末端處較小,且逐漸朝該侧的中心 增加。雖然只顯示基材支撐件主體5 17的一側,基材支 撐件517的其餘側也可連接至複數個RF返回帶。類似 RF返回帶佈置或不同的RF返回帶佈置可應用至未圖示 的剩餘側》 23 201043099 第6圖概要繪示RF返回帶628沿矩形基材支撐件主體 617的一側的一種佈置,其類似第2圖的支撐件主體 217 »複數個RF返回帶628均等地沿支撐件主體617之 一側为佈。每一 RF返回帶包含在其中串聯連接的可變電 容642。RF返回帶628的長度、寬度及間隔實質上相同。 每一 RF返回帶628的可變電容642可個別調整。因此, 每一 RF返回帶628的阻抗可根據RF返回帶628的位置 0 調整以改善沿該側的均勻度。雖然只顯示基材支撐件主 體617的一側,基材支撐件617的其餘侧也可連接至複 數個RF返回帶。類似灯返回帶佈置或不同的RF返回 帶佈置可應用至未圖示的剩餘側。 第3圖至第6圖的佈置可單獨或結合使用。一實施例 中,相同的佈置可用在基材支撐件的所有側中。另一實 施例中,不同的佈置可用在基材支撐件的各側中。另一 實施例中,不同的佈置可結合沿基材支撐件的一側使用。 〇 如第7圖所示’沿基材支撐件717之一側的RF返回帶 可藉由變化長度和變化電容而佈置。複數個RF返回帶 728沿基材支撐件717的一側均等分佈。相鄰的rf返回 帶之間的間隔741實質上相同,每一 rf返回帶728的寬 度實質上相同,而每一 RF返回帶728的長度沿該側變 化。一實施例中,RF返回帶728的長度在靠近該侧的末 端處較長’且逐漸朝該側的中心減少。但是,一個或多 個具有可變電容742的RF返回帶728配置在靠近該側的 中心處。可變電容742容許RF返回帶743相等於更短長 24 201043099 度的RF返回帶。此佈置於減少RF返回帶的長度會限制 基材支撐件717的運動範圍時特別有用。 材支樓件主請的一側,基材支擇件m的其= 可連接至複數個RF返回帶。類似RF返回帶佈置或不同 的RF返回帶佈置可應用至未圖示的剩餘側。 第8圖概要繪示根據本發明之實施例之補償腔室不對 稱性的RF返回帶佈置。如第8圖所示,複數個灯返回 〇 帶828沿矩形基材支撐件主體817的四側分佈,類似第 2A圖的支撐件主體217。RF返回帶828的佈置為非對 稱。特別而言,耦接至侧844的RF返回帶不同於耦接至 側845 (該側相對於侧844 )的RF返回帶。此佈置可用 於校正由定位在靠近側845處的狹缝閥所造成的腔室不 對稱的腔室幾何形狀。 前述係關於本發明之實施例,其他及更進一步的實施 例可不背離本發明之範嘴而設計,且本發明之範嘴由後 〇 述的申請專利範圍決定。 【圖式簡單說明】 參考具有某些繪製在附圖的實施例,可得到之前簡短 總結的本發明之更特別描述,如此,可詳細瞭解之前陳 述的本發明的特色。但要考慮的是,附圖只繪示本發明 的典型實施例,因本發明允許其他同等有效的實施例, 故不視為其範圍限制。 25 201043099 圖概要繪不根據本發明之實施例用於PEC VD之 電漿處理系統2RF返回帶。 圖為第1A圖之該電漿處理系統之概要頂視圖。 +第2A圖概要_不根據本發明之實施例之電聚處理腔 室的剖面側視圖。 第2B圖概要綠不根據本發明之實施例t RF返回帶連 接。 Ο 第2C圖概要緣示根據本發明之實施例之RF返回帶。 第3圖至第7圖概要繪示根據本發明之實施例之RF 返回帶佈置。 第8圖概要繪示根據本發明之實施例之補償腔室不對 稱性的RF返回帶佈置。 第9圖概要繪示示範性矽系薄膜光伏打(PV)太陽能 電池的剖面視圖。 為有利瞭解,如可能,同一元件符號可用以標示各 ^ ^用的同一元件。應認知到在一實施例中揭露的元件可 不經特別引述而用於其他實施例。 【主要元件符號說明】 103喷淋頭組件 104基材支撐件 105 RF功率源 105a第一輸出 1 〇〇電漿處理系統 101基材 102腔室主體 l〇2a内表面 26 201043099 105b第二輪出 106阻抗匹配電路 107氣體源 108電漿 109 RF返回帶 110處理容積 111排氣系統 ^ 131氣體分佈板 132阻擋板 133氣體容積 134氣體供給導管 135絕緣體 200電漿處理腔室 201腔室底部 202側壁 〇 203蓋組件 204基材支撐件組件 205狹缝閥 206處理容積 207 開口 208基材 209阻擋板 210 (氣體)分佈板 211孔洞 212 開口 213絕緣體 214氣體分佈容積 215 RF功率源 2 1 6阻抗匹配電路 216a第一輸出 216b第二輸出 217支撐主體 218轴桿 219加熱元件 220功率源 221舉升系統 222陰影框架 223階狀物 224舉升銷 225銷支架 226孔洞 227凹部 228 RF返回帶 229、230連接組件 231、232塑型夾箝 233第二端 234架置狹縫 235 ' 236 螺絲 27 201043099 237中央溝槽 238第一端 239第二端 240下側 241氣體導管 242外蓋 317 、 417 ' 517 、 617 ' 717基材支撐件 328 ' 428 、 528 、 628 、 728 、 743 、 828 RF 返 回帶 341 ' 441 ' 541 > 741 間 隔 642、742可變電容 844 、 845 側 900 PV太陽能電池 902透明導電物氧化 層 904 ' 906、908 半導體 層 910透明導電氧化物 層 912導電層 914光電轉換單元 916背側電極 922入射光 940基材The electrical properties of an RF return band 228 can be varied by varying the return band of the lamp, by varying the width of the RF return band, by connecting the variable capacitors in parallel or in series to the RF return band, by changing the adjacent rf return. Band: Interval or adjusted by the combination of the above. Figures 3 through 7 schematically illustrate an RF return strip arrangement that improves plasma uniformity in accordance with an embodiment of the present invention. . Figure 3 schematically illustrates an arrangement of the RF return strip 328 along one side of the rectangular substrate support body 31 <7, which is similar to the support body 217 of Figure 2A. A plurality of RF return strips 328 are equally distributed along one side of the support body 317. This arrangement increases the plasma uniformity along one side of the support body 317. The spacing 341 between adjacent RF return strips is substantially the same, the width of each RF return strip 328 is substantially the same, and the length of each return strip 328 varies along that side. In one embodiment, the length of the RF return strip is longer at the end near the side and gradually decreases toward the center of the side. Although only one side of the substrate support body 317 is shown, the remaining sides of the substrate support 317 can be joined to a plurality of rf return bands. A similar RF return strip arrangement or a different RF return strip arrangement can be applied to the remaining sides not shown. 22 201043099 Figure 4 schematically illustrates an arrangement of the RF return strip 428 along one side of the rectangular substrate support body 417 'which is similar to the support body 217 of Figure 2A. A plurality of rf return strips 428 are equally distributed along one side of the support body 417. This arrangement increases the plasma uniformity along one side of the support body 4丨7. The width of each RF return strip 428 is substantially the same, the length of each return strip 428 is also substantially the same, and the spacing 441 between adjacent RF return strips varies along that side. In one embodiment, the spacing 441 of adjacent RF return strips 0 428 is larger at the end near the side and gradually decreases toward the center of the side. Although only one side of the substrate support body 417 is shown, the remaining sides of the substrate support member 417 can be joined to a plurality of Rjp return tapes. A similar RF return belt arrangement or a different rf return belt arrangement can be applied to the remaining sides not shown. Figure 5 schematically illustrates an arrangement of the RF return strip 528 along one side of the rectangular substrate support body 517 'which is similar to the support body 217 of Figure 2A. A plurality of RF return bands 528 are equally distributed along the 〇 side of the support body 517. This arrangement increases the uniformity of the plasma along one side of the main body 5 17 of the building. The length of each RF return strip 528 is substantially the same, the spacing 541 between adjacent RF return strips is substantially the same, and the width of each return strip 528 varies along that side. In one embodiment, the width of the rf return strip 528 is smaller at the end near the side and gradually increases toward the center of the side. Although only one side of the substrate support body 517 is shown, the remaining sides of the substrate support 517 can also be connected to a plurality of RF return strips. A similar RF return strip arrangement or a different RF return strip arrangement can be applied to the remaining side not shown. 23 201043099 FIG. 6 schematically illustrates an arrangement of the RF return strip 628 along one side of the rectangular substrate support body 617, The support body 217, like FIG. 2, has a plurality of RF return bands 628 equally spaced along one side of the support body 617. Each RF return strip contains a variable capacitor 642 connected in series therein. The length, width, and spacing of the RF return straps 628 are substantially the same. The variable capacitance 642 of each RF return strap 628 can be individually adjusted. Thus, the impedance of each RF return strip 628 can be adjusted according to position 0 of the RF return strip 628 to improve uniformity along that side. While only one side of the substrate support body 617 is shown, the remaining sides of the substrate support 617 can also be connected to a plurality of RF return strips. A similar lamp return belt arrangement or a different RF return belt arrangement can be applied to the remaining sides not shown. The arrangement of Figures 3 to 6 can be used alone or in combination. In one embodiment, the same arrangement can be used in all sides of the substrate support. In another embodiment, different arrangements can be used in each side of the substrate support. In another embodiment, different arrangements can be used in conjunction with one side of the substrate support. RF As shown in Fig. 7, the RF return strip along one side of the substrate support 717 can be arranged by varying the length and varying the capacitance. A plurality of RF return strips 728 are equally distributed along one side of the substrate support 717. The spacing 741 between adjacent rf return strips is substantially the same, the width of each rf return strip 728 is substantially the same, and the length of each RF return strip 728 varies along that side. In one embodiment, the length of the RF return strip 728 is longer ' near the end of the side and gradually decreases toward the center of the side. However, one or more RF return straps 728 having variable capacitance 742 are disposed near the center of the side. The variable capacitor 742 allows the RF return band 743 to be equal to the RF return band of a shorter length of 24 201043099 degrees. This arrangement is particularly useful when reducing the length of the RF return strip, which limits the range of motion of the substrate support 717. On the side of the main part of the material support, the base material selection piece m can be connected to a plurality of RF return belts. A similar RF return strip arrangement or a different RF return strip arrangement can be applied to the remaining sides not shown. Figure 8 is a schematic illustration of an RF return band arrangement for compensating chamber asymmetry in accordance with an embodiment of the present invention. As shown in Fig. 8, a plurality of lamp return 〇 belts 828 are distributed along the four sides of the rectangular substrate support body 817, similar to the support body 217 of Fig. 2A. The arrangement of the RF return band 828 is asymmetrical. In particular, the RF return strap coupled to side 844 is different than the RF return strap coupled to side 845 (which is opposite side 844). This arrangement can be used to correct chamber geometry that is asymmetrical by the slit valve positioned near side 845. The foregoing is an embodiment of the present invention, and other and further embodiments may be devised without departing from the scope of the invention, and the scope of the invention is determined by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS A more particular description of the present invention, which has been briefly summarized in the foregoing, can be obtained by reference to the embodiments illustrated in the drawings. It is to be understood that the drawings are intended to be illustrative of the exemplary embodiments 25 201043099 The diagram outlines a 2RF return zone for a plasma processing system for a PEC VD in accordance with an embodiment of the present invention. The figure is a schematic top view of the plasma processing system of Figure 1A. + 2A is a cross-sectional side view of an electropolymerization processing chamber not according to an embodiment of the present invention. Figure 2B shows that green is not according to an embodiment of the invention t RF return band connection. Ο FIG. 2C is a schematic diagram showing an RF return band according to an embodiment of the present invention. Figures 3 through 7 schematically illustrate an RF return band arrangement in accordance with an embodiment of the present invention. Figure 8 is a schematic illustration of an RF return band arrangement for compensating chamber asymmetry in accordance with an embodiment of the present invention. Figure 9 is a schematic cross-sectional view of an exemplary lanthanide thin film photovoltaic (PV) solar cell. For the sake of understanding, the same component symbols may be used to indicate the same component used for each ^^ where possible. It will be appreciated that elements disclosed in one embodiment may be used in other embodiments without particular reference. [Main component symbol description] 103 shower head assembly 104 substrate support member 105 RF power source 105a first output 1 〇〇 plasma processing system 101 substrate 102 chamber body l 〇 2a inner surface 26 201043099 105b second round out 106 impedance matching circuit 107 gas source 108 plasma 109 RF return belt 110 processing volume 111 exhaust system ^ 131 gas distribution plate 132 blocking plate 133 gas volume 134 gas supply conduit 135 insulator 200 plasma processing chamber 201 chamber bottom 202 sidewall 〇203 lid assembly 204 substrate support assembly 205 slit valve 206 treatment volume 207 opening 208 substrate 209 barrier plate 210 (gas) distribution plate 211 hole 212 opening 213 insulator 214 gas distribution volume 215 RF power source 2 1 6 impedance matching Circuit 216a first output 216b second output 217 support body 218 shaft 219 heating element 220 power source 221 lift system 222 shadow frame 223 step 224 lift pin 225 pin bracket 226 hole 227 recess 228 RF return belt 229, 230 Connection assembly 231, 232 plastic clamp 233 second end 234 mounting slit 235 '236 screw 27 201043099 237 central groove 238 first end 239 second end 240 241 gas conduit 242 outer cover 317, 417 '517, 617 ' 717 substrate support 328 ' 428 , 528 , 628 , 728 , 743 , 828 RF return strip 341 ' 441 ' 541 > 741 spacing 642, 742 variable capacitance 844, 845 side 900 PV solar cell 902 transparent conductive oxide layer 904 '906, 908 semiconductor layer 910 transparent conductive oxide layer 912 conductive layer 914 photoelectric conversion unit 916 back side electrode 922 incident light 940 substrate

2828

Claims (1)

201043099 七 1. G 、申請專利範圍: 一種用於使用電漿處理一基材的方法,其包含以下步 驟: 提供界定一處理容積的一製程腔室,其中一基材支 擇件配置在該處理容積内,與一射頻(RF)功率源連 接的一氣體分佈板配置在該基材支撑件之上,且該基 材支樓件的-周邊透過複數個RF返回帶與該⑽功 率源連接; 使一個或多個處理氣體通過該分佈板流至該處理 容積;以及 施加一射頻功率至該氣體分佈板以從該處理容積 内的一個或多個處理氣體產生一電漿, 其中-個或多個灯返回帶的阻抗已經被變更以調 整該氣體分佈板和該基材之間的局部電漿分佈。 〇 2. 如申請專利範圍第丨項所述之方法 其中該等 回帶的阻抗已被變更以增加局部電漿分佈。 RF返 π T請專利範 _ 〜〜々故.六丁竣寻一個 :個以返回帶的阻抗已藉由調整該請返回帶的位 置、調整該等RF返回㈣長度、調㈣ 之間的間隔、調整該等RF$回帶的寬度、增加 返回帶的可變電容或其組合而變更。 29 201043099 專利範圍第3項所述之方法’其中阻抗係藉由 將該等RF返回帶移動遠離該基材支撐件的任何轉角 而變更。 之方法,其中阻抗係藉由 轉角附近的該等RF返回 5.如申請專利範圍第3項所述 增長配置在該基材支撐件之201043099 VII. G. Patent Application Range: A method for treating a substrate using plasma, comprising the steps of: providing a process chamber defining a processing volume, wherein a substrate support member is disposed in the process a gas distribution plate connected to a radio frequency (RF) power source is disposed on the substrate support member, and a periphery of the substrate support member is connected to the (10) power source through a plurality of RF return bands; Passing one or more process gases through the distribution plate to the processing volume; and applying a radio frequency power to the gas distribution plate to produce a plasma from the one or more process gases within the process volume, wherein one or more The impedance of the lamp return strip has been altered to adjust the local plasma distribution between the gas distribution plate and the substrate. 〇 2. The method of claim 2, wherein the impedance of the strips has been altered to increase the local plasma distribution. RF return π T please patent _ ~ ~ 々 .. Six 竣 竣 一个 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六 六Change the width of the RF$ backband, increase the variable capacitance of the return band, or a combination thereof. 29 201043099 The method of claim 3, wherein the impedance is altered by moving the RF return strip away from any corner of the substrate support. The method wherein the impedance is returned by the RF near the corner of the corner 5. The growth is disposed on the substrate support as described in claim 3 帶而變更。 6.如申請專利範圍第3項所述之方法’其中調整阻抗包 含以下步驟: 增寬配置在遠離該基材支撐件的轉角的該等RF返 回帶。 7 ·如申請專利範圍第3項所述之方法,其中阻抗係藉由 增加配置在該基材支#件之轉角附近的該等返回 帶之間的間隔而變更。 8·如申請專利範圍第2項所述之方法,其中該等一個咬 多個RF返回帶的阻抗係藉由調整該等複數個rf返回 帶的位置而變更。 9. 一種用於處理一基材的設備’其包含: 一腔室主體,其界疋一處理谷積’其中該腔室主體 30 201043099 具有一狭縫閥開口,該狹縫閥開口經設置以容許基材 通過; 一基材支撐件,其配置在該處理容積内,其中該基 材支撐件經設置以在處理期間在一支撐表面上接收 一基材且支撐該基材; 一氣體分佈板,其配置在該處理容積内及該基材支 撐件之上,其中該氣體分佈板經設置以傳送一個或多 個處理氣體; 一射頻功率源,其與該氣體分佈板連接;以及 複數個RF返回帶,其連接在該基材支撐件之一周 邊及該RF功率源之間’其中該複數個RF返回帶經 配置以致該基材支料及該R F功率源之間的阻抗沿 該基材支撐件的該周邊變化。 10.如申請專利範圍第9 jf ## μ #丄 犯闽矛y項所述之設備,其中該基材支 撲件為多邊形,且盖R F '13 Γ-1 A *、,' RF返回帶連接至該基材支撐 件之轉角。 如中請專利㈣第1G項所述之設備,其中在該基 材支撐件及該射頻功率源之間的阻抗係藉由改變 該等RF返回帶的長度、改變該等Rp心㈣& 度、改變該等RF返回帶的間隔、增加該等RF返 回帶的可變電容或其組合而變化。 31 201043099 12 13. Η.Ο 15. 16. Ο .如甲請專利範圍第Η項所述之設傷,其甲該等RF 返回帶的長度沿該基材支撐件的一侧變化。 如申請專利範圍第u項所述之設備,其令該等rf 返回帶的寬度沿該基材支撐件的—側變化。 如申請專利範圍第η項所述之設備,其令該等μ 返回帶之間的間隔沿該基材支撐件的一側變化。 如申請專利範圍第1G項所述之設備,其中該等複 數個RF返回帶的至少一個返回帶包含一電容。 種用於處理一基材的設備,其包含: 一腔室主體,其界定一處理容積; 一第一電極,其配置在該處理容積内; 第一電極,其配置在該處理容積内其中該第 二電極相對於該第一電極且該第一及第二電極在 其之間形成一電漿容積; 一射頻功率源,其耦接至該第一電極;以及 :複數個RF返回帶’其於一預定的電位下耦接於 該第二電極及-主體之間,纟中該等複數個灯返 回帶耦接至該第二電極的一周邊,而該等複數個 RF返回帶的阻抗沿著該第三電極&該周邊變化。 32 201043099 17. 如申請專利範圍第1 6項 數個RF返回帶在長度、 化。 所述之設備,其中該等複 寬度、間隔或其組合上變 18. 如申請專利範圍第17 蜗所述之权備’其中該等複 數個RF返回帶的至少 ▼扪至> 一個RF返回帶包含一電容。 〇 19. 如申請專利範圍第17 回配置遠離該第二電極的任何轉角。 2〇.如申請專利範圍第19項所述之設備,其中 近該狹縫閱開口的該等-返回帶具有小於遠離該 狹缝閥開口的該等RF返回帶之阻抗。Change with the belt. 6. The method of claim 3, wherein adjusting the impedance comprises the step of: widening the RF return strips disposed at a corner away from the substrate support. 7. The method of claim 3, wherein the impedance is changed by increasing an interval between the return zones disposed near a corner of the substrate support member. 8. The method of claim 2, wherein the impedance of the one of the plurality of RF return bands is changed by adjusting the positions of the plurality of rf return bands. 9. An apparatus for processing a substrate comprising: a chamber body having a process of treating a valley therein wherein the chamber body 30 201043099 has a slit valve opening, the slit valve opening being configured to Allowing the substrate to pass; a substrate support disposed within the processing volume, wherein the substrate support is configured to receive a substrate and support the substrate on a support surface during processing; a gas distribution plate Arranging within the processing volume and above the substrate support, wherein the gas distribution plate is configured to deliver one or more process gases; an RF power source coupled to the gas distribution plate; and a plurality of RF a return strip coupled between a perimeter of the substrate support and the RF power source 'where the plurality of RF return strips are configured such that an impedance between the substrate charge and the RF power source is supported along the substrate This peripheral variation of the piece. 10. The device of claim 9th, wherein the substrate is a polygon, and the cover RF '13 Γ-1 A *,, 'RF return band Connected to the corner of the substrate support. The apparatus of claim 1 , wherein the impedance between the substrate support and the RF power source changes the length of the RF return bands, and changes the Rp heart (4) & The spacing of the RF return bands is varied, the variable capacitance of the RF return bands is increased, or a combination thereof changes. 31 201043099 12 13. Η.Ο 15. 16. Ο In the case of the injury described in the scope of the patent, the length of the RF return tape varies along the side of the substrate support. The apparatus of claim 5, wherein the width of the rf return strip varies along the side of the substrate support. The apparatus of claim n, wherein the spacing between the μ return strips varies along a side of the substrate support. The apparatus of claim 1G, wherein the at least one return strip of the plurality of RF return strips comprises a capacitor. An apparatus for processing a substrate, comprising: a chamber body defining a processing volume; a first electrode disposed within the processing volume; a first electrode disposed within the processing volume a second electrode is opposite to the first electrode and the first and second electrodes form a plasma volume therebetween; an RF power source coupled to the first electrode; and: a plurality of RF return bands And coupled to the second electrode and the body at a predetermined potential, wherein the plurality of lamp return bands are coupled to a periphery of the second electrode, and the impedance edges of the plurality of RF return bands The third electrode & the peripheral change. 32 201043099 17. If the patent application range is 16th, several RF return bands are lengthened. The apparatus, wherein the complex widths, intervals, or a combination thereof are changed. 18. The weighting of the plurality of RF return bands is at least 扪 to > an RF return. The tape contains a capacitor. 〇 19. Configure any corners away from the second electrode as in the 17th application. The apparatus of claim 19, wherein the -return strips of the slit reading opening have an impedance that is less than the RF returning strips away from the slit valve opening. 3333
TW098141242A 2008-12-03 2009-12-02 Modulation of RF returning straps for uniformity control TW201043099A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11960708P 2008-12-03 2008-12-03

Publications (1)

Publication Number Publication Date
TW201043099A true TW201043099A (en) 2010-12-01

Family

ID=42233804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098141242A TW201043099A (en) 2008-12-03 2009-12-02 Modulation of RF returning straps for uniformity control

Country Status (5)

Country Link
JP (1) JP2012510727A (en)
KR (1) KR20110099122A (en)
CN (1) CN102239542A (en)
TW (1) TW201043099A (en)
WO (1) WO2010065474A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083182B2 (en) 2011-11-21 2015-07-14 Lam Research Corporation Bypass capacitors for high voltage bias power in the mid frequency RF range
TWI512781B (en) * 2011-11-24 2015-12-11 Lam Res Corp Plasma processing chamber with flexible symmetric rf return strap
US9263240B2 (en) 2011-11-22 2016-02-16 Lam Research Corporation Dual zone temperature control of upper electrodes
US9396908B2 (en) 2011-11-22 2016-07-19 Lam Research Corporation Systems and methods for controlling a plasma edge region
TWI582824B (en) * 2011-02-09 2017-05-11 應用材料股份有限公司 Processing chamber and method for processing substrate
TWI587749B (en) * 2012-03-19 2017-06-11 蘭姆研究公司 Methods and apparatus for correcting for non-uniformity in a plasma processing system
US10586686B2 (en) 2011-11-22 2020-03-10 Law Research Corporation Peripheral RF feed and symmetric RF return for symmetric RF delivery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911588B2 (en) * 2012-03-19 2014-12-16 Lam Research Corporation Methods and apparatus for selectively modifying RF current paths in a plasma processing system
US9404176B2 (en) 2012-06-05 2016-08-02 Applied Materials, Inc. Substrate support with radio frequency (RF) return path
US9337000B2 (en) * 2013-10-01 2016-05-10 Lam Research Corporation Control of impedance of RF return path
KR102219570B1 (en) * 2015-08-13 2021-02-26 세메스 주식회사 Ring member, substrate treatment apparatus and method for adjusting plasma uniformity utilizing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652713B2 (en) * 2001-08-09 2003-11-25 Applied Materials, Inc. Pedestal with integral shield
US8381677B2 (en) * 2006-12-20 2013-02-26 Applied Materials, Inc. Prevention of film deposition on PECVD process chamber wall
US7972470B2 (en) * 2007-05-03 2011-07-05 Applied Materials, Inc. Asymmetric grounding of rectangular susceptor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582824B (en) * 2011-02-09 2017-05-11 應用材料股份有限公司 Processing chamber and method for processing substrate
US9083182B2 (en) 2011-11-21 2015-07-14 Lam Research Corporation Bypass capacitors for high voltage bias power in the mid frequency RF range
US9263240B2 (en) 2011-11-22 2016-02-16 Lam Research Corporation Dual zone temperature control of upper electrodes
US9396908B2 (en) 2011-11-22 2016-07-19 Lam Research Corporation Systems and methods for controlling a plasma edge region
US10586686B2 (en) 2011-11-22 2020-03-10 Law Research Corporation Peripheral RF feed and symmetric RF return for symmetric RF delivery
US10622195B2 (en) 2011-11-22 2020-04-14 Lam Research Corporation Multi zone gas injection upper electrode system
US11127571B2 (en) 2011-11-22 2021-09-21 Lam Research Corporation Peripheral RF feed and symmetric RF return for symmetric RF delivery
TWI512781B (en) * 2011-11-24 2015-12-11 Lam Res Corp Plasma processing chamber with flexible symmetric rf return strap
TWI587749B (en) * 2012-03-19 2017-06-11 蘭姆研究公司 Methods and apparatus for correcting for non-uniformity in a plasma processing system

Also Published As

Publication number Publication date
WO2010065474A2 (en) 2010-06-10
KR20110099122A (en) 2011-09-06
JP2012510727A (en) 2012-05-10
CN102239542A (en) 2011-11-09
WO2010065474A3 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
TW201043099A (en) Modulation of RF returning straps for uniformity control
US20100136261A1 (en) Modulation of rf returning straps for uniformity control
US8728918B2 (en) Method and apparatus for fabricating silicon heterojunction solar cells
TWI449121B (en) Substrate support regulating temperature of substrate and uses thereof
US5248621A (en) Method for producing solar cell devices of crystalline material
KR20090031492A (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US20100144122A1 (en) Hybrid chemical vapor deposition process combining hot-wire cvd and plasma-enhanced cvd
WO2008137005A1 (en) Method of forming thin film solar cells
KR19980064243A (en) Non-single-crystal semiconductor thin film forming apparatus, its formation method and manufacturing method of photovoltaic device
WO2004032196A2 (en) Method of fabricating semiconductor by nitrogen doping of silicon film
US6812499B2 (en) Silicon-based film and photovoltaic element
US9960287B2 (en) Solar cells and methods of fabrication thereof
JPH0992860A (en) Photovoltaic element
US7687300B2 (en) Method of dynamic temperature control during microcrystalline SI growth
Iwaniczko et al. Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD
WO2008010205A2 (en) Thin-film photovoltaic conversion device and method of manufacturing the same
Nasuno et al. Microcrystalline silicon thin-film solar cells prepared at low temperature
JP2000004036A (en) Forming method of fine crystal semiconductor layer and photovoltaic element
KR102182519B1 (en) SnS Film Manufacturing Method, SnS Film, and Photovoltaic Device Using It
JP4510242B2 (en) Thin film formation method
JP2002175983A (en) Thin-film polycrystalline silicon, method of manufacturing the same and silicon photoelectric conversion element
JPH09191119A (en) Manufacture of photovolataic element