TW201042782A - Manufacturing method for a flip-chip GaN LED - Google Patents

Manufacturing method for a flip-chip GaN LED Download PDF

Info

Publication number
TW201042782A
TW201042782A TW98116609A TW98116609A TW201042782A TW 201042782 A TW201042782 A TW 201042782A TW 98116609 A TW98116609 A TW 98116609A TW 98116609 A TW98116609 A TW 98116609A TW 201042782 A TW201042782 A TW 201042782A
Authority
TW
Taiwan
Prior art keywords
layer
light
flip
emitting diode
gallium nitride
Prior art date
Application number
TW98116609A
Other languages
Chinese (zh)
Other versions
TWI423482B (en
Inventor
Lien-Shine Lu
Original Assignee
Lien-Shine Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lien-Shine Lu filed Critical Lien-Shine Lu
Priority to TW98116609A priority Critical patent/TWI423482B/en
Publication of TW201042782A publication Critical patent/TW201042782A/en
Application granted granted Critical
Publication of TWI423482B publication Critical patent/TWI423482B/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

This invention is a manufacturing method for a flip-chip gallium GaN LED. A first trench is formed by etching at a pre-determined location of a epitaxial layer which causes part of the baseboard to expose. Moreover, etching at another pre-determined location of the epitaxial layer is to form a second trench by exposing part of a N-type GaN-ohmic contact layer. On the surface of a P-type GaN-ohmic contact layer of one side of the first trench, in the following order, formed are a translucent conducting layer, N-type electrode pad, a first insulated protection layer, a metal reflective layer, and a second insulated protection layer. On the other surface of a N-type GaN-ohmic contact layer of the other side of the first trench, in the following order, formed are a translucent conducting layer, N-type electrode pad, a first insulated protection layer, and a second insulated protection layer. The aforementioned arrangement not only allows the P-type and N-type electrode pads to align flatly and connect electrically to a circuit board, but also effectively avoid an inappropriate rise in forward voltage due to non-participation in conductivity of the metal reflective layer. Hence, power consumption and heat generation are both reduced and the lighting efficiency of the LED is effectively increased.

Description

201042782 六、發明說明: . 【發明所屬之技術領域】 本發月為種覆晶式氮化鎵發光二極體之製造方法,特 另J疋曰種將覆晶發光二極體固設於大散熱面積之導熱基板上 ’ ^提供-種具有高發光神及高信紐之氮化鎵紐光二 極體晶粒。 【先前技術】 ^ 按’ -般發光裝置的型式與種類相當繁多,就次世代綠 色節能的趨勢下,發光二極體(L丨g h t201042782 VI. Description of the invention: [Technical field of invention] This month is a manufacturing method of a flip-chip GaN light-emitting diode, and a special type of flip-chip light-emitting diode is fixed to a large size. On the heat-conducting substrate of the heat-dissipating area, '^ provides a kind of gallium nitride luminaire diode with high luminescence and high-intensity. [Prior Art] ^ There are quite a lot of types and types of light-emitting devices, and the next generation of green energy-saving trends, light-emitting diodes (L丨g h t

Emitting DiQde’LED)為具有更加省電 以及體積小之優勢,制是白光發光二極體目前已廣泛性 地被應用於手賴、指絲板、#_触縣液晶面板的 背光源等用it ’然而目前以氮化鎵系列材料所製作之發光二 ,/ 極體較受到重視。 〕 目前朗化之自絲絲置主要侧肖可發$藍色光之 氮化鎵系發光二極體並配合可發出黃、綠色或紅色光波段之 螢光粉混合而成,但有鑑於藍寶石基板本身之熱傳導特性不 佳之缺失,故造成使用壽命及可靠度受到溫度的影響甚巨, 若以目前一般的發光效率而言,約有5 〇%〜6 會轉換 成熱旎,另外,再加上螢光粉係與環氧樹酯或矽膠之膠體材 料以一定比例相混合並覆蓋於發光二極體晶粒之周圍,如此 使得熱量易囤積於内部以致使發光裝置的發光效率降低、使 3 201042782 用壽命縮短’容易因過鑛燒毀等缺失發生,所以,如何將 發光裝置所囤積之熱量有效及快速導引、排散至外部冷卻、 降温’對發光裝㈣發光效率及信雛具有極決定性之影響 ,目前許多商品多湘高散熱性的金屬基板加上熱管或轉片 等方式來作為發光裝置的散熱元件,但此亦往往會降低發光 二極體的微小化,輕量化等優勢。 請參閱第十-圖,可由圖中清楚看出,其係包含藍寶石 基板A1、N型氮化鎵歐姆接觸層A2、發光層入3、卩型 ll化鎵_接觸層A 4、㈣分散電流錢升發光效率之透 光導電層A5,以及分別於透光導電層A5*N型氮化錄歐 姆接觸層A 2之上形成P型電極襯墊a6、N型電極概塾A 7 ’之後利用藍寶;5基板A 1無i晶層之—側m缘膠或導 電膝固定於支架A8之上,再經由金屬線材A9,如金線或 轉電性連結至外部接齡! Q,喊光__分佈於覆 蓋膝體中’該發光層A 3所發出的光線部份必須由p型電極 概塾A6之-側經由穿過透光導電層a5而射向螢光粉及覆 蓋膠體,然而,其P型電極襯塾A 6本身會遮蔽部分發光面 ,進而降低該發光二極體的發光效率。Emitting DiQde'LED) has the advantages of more power saving and small size. The white light emitting diode has been widely used in the backlight of the hand-laid, fingerboard, #_Touch County LCD panel, etc. 'However, the current luminescence of the gallium nitride series materials, / polar body is more important. 〕 At present, the main side of the wire can be made of blue light gallium nitride light-emitting diodes and mixed with fluorescent powder that can emit yellow, green or red light bands, but in view of the sapphire substrate The lack of good thermal conductivity characteristics, so the service life and reliability are greatly affected by temperature. If the current general luminous efficiency, about 5 〇%~6 will be converted into enthusiasm, in addition, plus The phosphor powder is mixed with the epoxy resin or the colloidal material of the silicone resin in a certain ratio and covered around the crystal grains of the light emitting diode, so that heat is easily accumulated inside, so that the luminous efficiency of the light emitting device is lowered, so that 3 201042782 The shortened service life is easy to occur due to defects such as overburning. Therefore, how to effectively and quickly guide and dissipate the heat accumulated by the illuminating device to external cooling and cooling is extremely decisive for the luminous efficiency of the illuminating device (4). Affected by the fact that many products have many heat-dissipating metal substrates plus heat pipes or rotors as the heat-dissipating components of the light-emitting device, but this also tends to reduce the light. The advantages of miniaturization and light weight of the diode. Please refer to the tenth-figure, which can be clearly seen from the figure, which comprises a sapphire substrate A1, an N-type gallium nitride ohmic contact layer A2, a light-emitting layer in 3, a germanium-type gallium nitride-contact layer A 4, and (4) a dispersion current. The light-transmitting conductive layer A5 of the light-emitting efficiency and the P-type electrode pad a6 and the N-type electrode profile A 7 ' are formed on the light-transmitting conductive layer A5*N-type nitrided ohmic contact layer A 2 , respectively. Sapphire; 5 substrate A 1 no i crystal layer - side m edge glue or conductive knee fixed on the bracket A8, and then through the metal wire A9, such as gold wire or electrical connection to the external age! Q, shouting __distributed in the covering body of the knee. The portion of the light emitted by the illuminating layer A3 must be directed to the phosphor by the side of the p-type electrode A6 through the transparent conductive layer a5. The colloid is covered, however, the P-type electrode lining A 6 itself shields part of the light-emitting surface, thereby reducing the luminous efficiency of the light-emitting diode.

為了解決因電極襯塾遮蔽而導致發光效率降低之缺點, 請參閱第十二圖所示,可由圖中清楚看出,美國專利之專利 號第5 5 5 7 1 1 5號,其主要係利用覆晶方式以增加其有 效發光面積’其中該氮化鎵系發光二極體為於藍寶石基板B 201042782 1上依序形成有緩衝層B 2、N型氮化鎵歐姆接觸層β 3, 並於中央形成有發光勒4及P型氮化鎵歐姆接觸層B5, 該P型氮化鎵歐姆接觸層B 5為透過p型電極襯㈣與外 縣熱基板相連接且該發光層B 4之兩侧邊為形成有N型電 極B7其巾N型電極b7並透過n型電極襯塾B8與外 部_基板相連接,雖然主要出光面B 1工並無遮蔽光線之 缺點,然’該結構為利用金屬結構的p型電極概塾B 6及N > 型電極襯塾B 8來反射,因為該雜襯塾本身之金屬特性易 使順向電壓升高,進而發光效率不彰的情況。 再請參閱第十三騎示’可由圖中清楚看出,美國專利 號第6514782號,其係於發光二極體晶粒c工與電路 板C 2之焊點C11、C 21間透過散熱塊c 3,如金球或 金錫凸塊製程相互電性連接,藉由金球或金錫凸塊製程可有 效達到熱傳之成效,然而§亥製程卻具有成本較高之缺失,另 丨方面,傳統覆晶式發光二極體之電極襯塾為同時具有電路 板電性連接之功能及使發光層的光線反射至藍寶石基板方向 發光之反射功能,然而因為該電極襯墊本身之金屬特性容易 使順向電壓升高,發光效率不彰的情況,雖該專利揭露電路 板上為可形成有金屬反射層,然此種結構卻會造成發光層與 金屬反射層因距離較遠而產生較多的光衰。 再請参考第十四圖,可由圖中清楚看出,其係中華民國 專利公告第5 7 3 3 3 0號’其係包括有藍寶石基板d工、 201042782 N型氮化鎵歐姆接觸層d2、發光層D3、P型氮化鎵歐姆 接觸層D4、透光導電層D 5及導電金屬反騎D6,且N 型氮化鎵歐姆接觸層D 2及透光導電層d 5分別透過電極D 7及導電金屬反射層D6連接於電路板D8,其中為了避免 電極D 7及導電金屬反射層d 6產生電性導通,並降低導電 金屬反射層D6可能產生的漏電流情形,並進一步加入聚醯 亞胺(Ρ ο 1 y i m i d e )絕緣層£) 9於凹槽中,然,若 在要將聚酿亞胺絕緣層D 9精確地加入於凹槽中,且不影響 電極D 7及導電金屬反射層D 6之表面相對高度,實為困難 ,當此水平高度之誤差過大,將造成發光二極體與電路板間 的電性連接不良致使良率降低等情況。 再明参閱第十五® ’其係巾華關專利_證書號第Μ 3 5 0 8 2 4號所揭*之覆晶錢化_發光二極體結構, 其藉由於蠢晶層上侧有第一蟲晶層Ε1及第二蠢晶層Ε2 ’藉此❹型電極襯塾Ε 3及Ν型電極襯墊Ε 4表面具相近 之水平高度’但為了降低Ν型電極襯塾Ε4與第二蠢晶層Ε 2之接觸阻抗’故該Ν型電極襯塾Ε 4製作成延伸式以 利與Ν型氛化鎵歐姆接觸層Ε 21形成歐姆接觸,雖然此技 2為/、有使Ρ型電極轉Ε 3αν型電極襯塾Ε 4為呈相同 X便利,、電路板間的連接,雖其揭露有金屬反射層Ε $ 会然而’該金屬反射層以為位於導電層ε_,因此仍 多與導電,如此仍無法解決上述順向電壓升高之缺失,另, 201042782 亦無揭示如何進一步絕緣保護晶粒之溝槽邊緣表面之製程技 術’故仍有其不足之處β 上述之結構所皆會使發光二極體容易因耗電量高產生熱 能囤積,致使降低發光效率之情況,且習用透過聚醯亞胺絕 緣層來降錄光二極體耗t量的升高,健有賴效果不佳 之缺失,甚至亦有可能使P型電極襯墊及N型電極襯墊產生 高低落差,而無法有效與電路板電性連接的情況,如此便會 〇 造成良率降低等問題。 因此,如何針對上述習知技術之問題與缺失而提出一種 新穎覆晶式發光二極體結構與方法,長久以來一直是本發明 人念兹在兹者’而本發明人基於多年從事於發光二極體相關 產扣之研究’乃思及改良之意念,經多方研究及設計,終於 研九出其製造改良之方法,可解決上述之問題。 【發明内容】 Ο 故’發明人有鑑於上述缺失,乃荒集相關資料,經由多 方雜及考量’並以從事於此行業累積之多年經驗,經由不 斷試作及修改,始設計出此種覆晶式氮化鎵發光二極體之製 造方法的發明專利者。 本發明之第—目的乃在於解賴、録具反概導電功能 =金屬反射層谷易因為其金鱗性,_造紐光二極體提 问项向電壓:而產生耗電量、增加熱能,並使發光效率減弱 、月其係於透光導電層相對於p型氣化錄歐姆接觸層之 7 201042782 1而域有第-絕緣保護層,並於第―、魏保護層上 依序加工而形成有麵反射層及第二絕緣保,之後再利 用P型電極姆及N型雜她t過焊點與賴細目接, 此覆晶式發光二極_製造方式為可使金屬反機不參與導 電便可降低該發光二極體的順向電壓,減少高耗電量,而 可有效避免熱能提升,降低油積所產生的光賴情況,且 該金屬反射層為直接形成於發光二極體内,該金屬反射層與 發光層間距離較短亦可達到有效提高發光效率之功效。 本發月之帛一目的乃在於第二溝槽内側依序加工而形成 有第-絕緣賴層和第二絕緣賴層 使 槽二側之“層間為有具穩定之絕祕護功能,藉以 光二極體於覆晶製程所容紐生漏電短路之信賴性缺失。 本發明之第三目的乃在於發光二極體為透過具大面積的 高導熱之料频與導絲板機合的方法,補具有較低 製造成本,亦可在較高生產財的考量上加速散熱,而可有 效提升發光二極體之發光效率、增進其工作壽命。 【實施方式】 為達成上述目的及功效,本發明所採用之技術手段及其 構造’断職本發狀雛實施解加綱其概與功能 如下,俾利完全瞭解。 請參閱第-圖所示,係為本發明之覆晶式氮化鎵系發光 二極體之製造流程: 201042782 (1 0 0 )提供-氣化勒發光二極黯晶層2之晶圓。 (1 0 1)於該磊晶層2預設位置姓刻形成有致使基^ ◦ 0露出部分之第一溝槽1〇1。 (10 2)於第一溝槽10 i鄰近與外侧分別蝕刻形成有致 使N型氮倾__層i i部分如之複數第 二溝槽10 2,該第二溝槽10 2之二側分別具 有蟲晶層2 A、2 B。 Q 3)於蟲晶^2Α、2B表面加1而形成有透光導電 層1 4。 (10 4)於部分透光導電層14表面分別加工而形成p型 ( 電極襯墊15及N型電極襯墊16。 〇 5)於P型電極襯塾工5、N型電極襯塾工6、第一 溝槽101及第二溝槽1 〇 2力σ工而形成有第一 Ο ^ 絕緣保護層17。 1〇 6)鄰近ρ型電極襯墊丄5且相對透光導電層14之 ( 一侧表面加工而形成有金屬反射層18。 10 7)於第-絕緣保護層i 7及金屬反射層工8表面加 工而形成有第二絕緣保護層19。In order to solve the shortcomings of the decrease in luminous efficiency due to the shielding of the electrode lining, please refer to the twelfth figure, which can be clearly seen from the figure, U.S. Patent No. 5 5 5 7 1 1 5, which mainly utilizes a flip-chip method to increase an effective light-emitting area thereof, wherein the gallium nitride-based light-emitting diode is sequentially formed with a buffer layer B 2 and an N-type gallium nitride ohmic contact layer β 3 on the sapphire substrate B 201042782 1 An illuminating 4 and a P-type GaN ohmic contact layer B5 are formed in the center, and the P-type GaN ohmic contact layer B 5 is connected to the external thermal substrate through the p-type electrode lining (4) and the luminescent layer B 4 is The side is formed with an N-type electrode B7, and the N-type electrode b7 of the towel is connected to the external_substrate through the n-type electrode pad B8. Although the main light-emitting surface B1 does not have the disadvantage of shielding the light, the structure is utilized. The p-type electrode of the metal structure is generally reflected by the B 6 and N > type electrode lining B 8 because the metal characteristic of the hybrid lining itself tends to increase the forward voltage, and the luminous efficiency is not good. Please refer to the thirteenth riding show, as can be clearly seen from the figure, U.S. Patent No. 6,574,782, which is passed through the heat dissipating block between the LEDs of the LED and the solder joints C11 and C21 of the circuit board C 2 . c 3, such as gold ball or gold tin bump process electrically connected to each other, through the gold ball or gold tin bump process can effectively achieve the effect of heat transfer, but the § hai process has a high cost of missing, another aspect The electrode lining of the conventional flip-chip light-emitting diode has the function of electrically connecting the circuit board and reflecting the light of the luminescent layer to the sapphire substrate, but the metal characteristic of the electrode pad itself is easy. In the case where the forward voltage is raised and the luminous efficiency is not good, although the patent discloses that a metal reflective layer can be formed on the circuit board, such a structure causes the light-emitting layer and the metal reflective layer to be generated due to a long distance. Light decay. Please refer to the fourteenth figure, which can be clearly seen from the figure. It is the Republic of China Patent Notice No. 5 7 3 3 3 0' which includes the sapphire substrate d, 201042782 N-type gallium nitride ohmic contact layer d2 The light emitting layer D3, the P-type gallium nitride ohmic contact layer D4, the light-transmitting conductive layer D 5 and the conductive metal anti-riding D6, and the N-type gallium nitride ohmic contact layer D 2 and the light-transmitting conductive layer d 5 respectively pass through the electrode D 7 And the conductive metal reflective layer D6 is connected to the circuit board D8, wherein in order to avoid electrical conduction of the electrode D7 and the conductive metal reflective layer d6, and reducing the leakage current that may occur in the conductive metal reflective layer D6, further adding the polysilicon The amine (Ρ ο 1 yimide ) insulating layer is in the groove, however, if the polyimide insulating layer D 9 is to be accurately added to the groove, and does not affect the electrode D 7 and the conductive metal reflective layer The relative height of the surface of D 6 is very difficult. When the error of this level is too large, the electrical connection between the light-emitting diode and the circuit board may result in a decrease in yield. Please refer to the fifteenth® 'Cleaning Wafer Huaguan Patent_Certificate No. 5 3 5 0 8 2 4* for the crystallization of the illuminating diode structure, which is based on the upper side of the stupid layer There is a first insect layer Ε1 and a second stray layer Ε2' by the 电极-type electrode lining 3 and the Ν-type electrode pad Ε 4 surface have similar horizontal heights 'but in order to reduce the Ν-type electrode lining 4 and the first The contact impedance of the second stray layer Ε 2 is so that the 电极-type electrode lining 4 is formed into an extended type to form an ohmic contact with the yttrium-type galvanic contact layer Ε 21, although this technique is /, Type electrode switch α 3αν type electrode lining 4 is the same X convenience, the connection between the boards, although it reveals a metal reflective layer 会 $ However, the metal reflective layer is considered to be located in the conductive layer ε_, so still more Conductive, so still can not solve the above-mentioned lack of forward voltage rise, in addition, 201042782 also does not reveal how to further insulate the process technology of protecting the groove edge surface of the die, so there are still some shortcomings. It is easy for the light-emitting diode to generate heat energy due to high power consumption, resulting in reduced luminous efficiency. In the case of the use of polyimine insulation to reduce the increase in the amount of light consumed by the diode, the lack of good performance depends on the poor performance of the P-type electrode pad and the N-type electrode pad. If there is a drop and it is not possible to effectively connect to the board, this will cause problems such as a decrease in yield. Therefore, how to propose a novel flip-chip type light-emitting diode structure and method for the above problems and lack of the prior art has long been the inventor's singularity and the inventor has been engaged in the light-emitting two for many years. The research on the polar body related production and deduction, the idea of thinking and improvement, has been researched and designed by many parties, and finally researched the method of manufacturing improvement to solve the above problems. [Summary of the Invention] ' Therefore, the inventor has designed the flip-chip in view of the above-mentioned shortcomings, which is based on a variety of experiences and has accumulated many years of experience in the industry. Inventor of the method for manufacturing a gallium nitride light-emitting diode. The first object of the present invention is to solve the problem, the reverse electrical conductivity of the recording tool = the metal reflective layer, the valley is easy to generate electricity, and the heat energy is increased due to its golden scale. The light-emitting efficiency is weakened, and the light-transmissive conductive layer is formed on the first and second protective layers with respect to the p-type vaporized recording ohmic contact layer 7 201042782 1 and sequentially processed on the first and Wei protective layers. There is a surface reflection layer and a second insulation guarantee, and then the P-type electrode and the N-type impurity are used to connect the solder joint to the solder joint, and the flip-chip light-emitting diode is manufactured in such a manner that the metal reverse machine does not participate in the conductive The forward voltage of the light-emitting diode can be reduced, the power consumption can be reduced, the heat energy can be effectively avoided, the light ray generated by the oil accumulation can be reduced, and the metal reflective layer is directly formed in the light-emitting diode. The shorter distance between the metal reflective layer and the light-emitting layer can also achieve the effect of effectively improving the luminous efficiency. The purpose of this month is that the inner side of the second groove is sequentially processed to form the first insulating layer and the second insulating layer, so that the two sides of the groove have a stable secret function, and the light is used. The third object of the invention is that the light-emitting diode is a method for combining the material frequency with a large area of high thermal conductivity and the wire guide plate to complement the light-emitting diode. The invention has the advantages of lower manufacturing cost and can accelerate heat dissipation in consideration of higher production cost, and can effectively improve the luminous efficiency of the light-emitting diode and improve the working life thereof. [Embodiment] In order to achieve the above object and effect, the present invention The technical means and its structure adopted by the company are described below, and the functions are as follows. Please refer to the figure-picture, which is the flip-chip GaN-based light-emitting diode of the present invention. The manufacturing process of the body: 201042782 (1 0 0 ) provides a wafer of gas-emitting diode bipolar twin layer 2. (1 0 1) at the preset position of the epitaxial layer 2, a surname is formed to form a caustic base ◦ 0 Exposed part of the first groove 1〇1. (10 2) in the first The trenches 10 i are respectively etched adjacent to the outside and are formed such that the N-type nitrogen tilting layer ii portion is, for example, the plurality of second trenches 10 2 , and the two sides of the second trenches 10 2 respectively have the crystal layer 2 A, 2 B. Q 3) The light-transmitting conductive layer 14 is formed by adding 1 to the surface of the insect crystals 2 and 2B. (10 4) The surface of the partially transparent conductive layer 14 is separately processed to form a p-type (electrode pads 15 and N). Type electrode pad 16. 〇5) The first Ο ^ insulation is formed by the P-type electrode lining 5, the N-type electrode lining 6 , the first trench 101 and the second trench 1 〇 2 The protective layer 17. 1〇6) is adjacent to the p-type electrode pad 丄5 and is opposite to the light-transmitting conductive layer 14 (the one surface is processed to form the metal reflective layer 18. 10 7) on the first insulating protective layer i 7 and the metal The reflective layer 8 is surface-processed to form a second insulating protective layer 19.

(1 〇 O N 0〕研磨、舰、崩裂及晶粒光電雛篩選產生各自 ( 獨立之氮化鎵系發光二極體1晶粒。 0 9)將分離獨立之氮化鎵系發光二極體i晶粒覆晶於 具導電膠體4之導熱基板3。 9 201042782 請參閱第二至八圖所示,係為配合第一圖各流程之結構 示意圖’可_中清楚看出,其係於基板i⑽上依序形成 有N型氮化鎵歐姆接觸層U、贱層12及?型氮化嫁歐 姆接觸層13,並提供-預定位置處設計之光罩,經由曝光 及顯影技術,使得欲形成第-賴i Q i之位置處無光阻覆 蓋,並以侧方式賴無光阻覆蓋處之遙晶層2晶圓結構移 除致使露出部分基板100而形成之第一溝槽1〇1,再提 供另-預定位置歧狀鮮,經由曝光及歸彡技術,使得 欲形成第二賴1 Q 2德置處無絲覆蓋,並以侧方式 將該無光阻覆蓋處之蟲晶層2晶圓結構移除致使露出部分N 型氮化鎵歐姆接觸層11而形成第二溝槽i 〇 2。 之後’於P型氮化鎵歐姆接觸層i 3表面蒸鍍或賤鍍形 成透光導電層14,並經由曝光、顯影及金屬剝離( 1 i i t - 〇 f f)技術於透光導電層丨切分表面分別形 成P型電極_1 5及N·極襯墊! 6,再於該透光導電 層14、P型電極襯塾15、N型電極襯塾丄6、第一溝槽 101及第-溝槽1Q 2表面形成有第—絕緣保護層, 並經由曝光、顯影及侧技術露出p型電極缝丨5及_ 電極襯塾1 6表面’再次經由曝光、顯影及金制離技術於 該第-絕緣保護層17相對於透光導電層丄4之—側表面妒 成有金屬反射層i 8,再於P型電極概塾i 5、_電= 墊1 6、金屬反射層i 8及第-絕緣保護層丄7之表面_ 10 201042782 成有第二縣賴層i 9,並涵曝光、崎彡及侧技術而 露出P型電極襯墊1 5及N型電極襯墊6之表面,上述流 程完成後’便將基板1 〇 Q研磨至小於丄〇 〇請之厚度, 並以雷射舰及崩職雜每個晶糊立分開即域發光二 極體晶粒之製程。 另請參考第九圖’可由圖中清楚得知,該發光二極體丄 為可透過覆晶方式與導絲板3電性連接,該導熱基板3可 為一導熱效果佳的鋁、銅或陶瓷類等材質所製成,並於該導 熱基板3上製做具有電氣隔離之正極焊塾31及負極焊塾3 2之印刷電路,之後,將導電膠體4,如銀膠、錫球或錫膏 4類之材質,以點膠或沾膠方式分別形成於正極焊墊31及 負極焊墊3 2上表面,並將該發光二極體丄之卩型電極襯墊 15及N型電極襯墊16透過導電膠體4分別與導熱基板3 之正極焊墊31及負極焊墊3 2相連接,最後,固化該導電 膠體4,即完成覆晶式發光二極體發光裝置,上述發光二極 體1為可利用具有較大散熱面積之導電膠體4如銀膠或錫膏 類及導熱基板3直接散熱,故可解決習知使用金線或金屬凸 塊之傳導面積過小,致使散熱不佳等缺失,上述的作法亦可 減少製造工序及縮短製造時間。(1 〇ON 0) Grinding, ship, cracking, and grain optoelectronic screening are produced separately (independent gallium nitride-based light-emitting diodes 1 grain. 0 9) will separate independent gallium nitride-based light-emitting diodes i The crystal grain is crystallized on the heat conductive substrate 3 with the conductive paste 4. 9 201042782 Please refer to the second to eighth figures, which is clearly shown in the schematic diagram of the process of the first figure, which is attached to the substrate i(10) Forming an N-type gallium nitride ohmic contact layer U, a germanium layer 12 and a ?-type nitrided ohmic contact layer 13 in sequence, and providing a mask for designing at a predetermined position, through exposure and development techniques, to form a first - the surface of the ray i Q i is not photoresist-receiving, and the wafer structure of the remote layer 2 where the photoresist is not disposed is removed in a side manner, so that the first trench 1 〇1 formed by exposing part of the substrate 100 is provided, and another - the predetermined position is ambiguous, through the exposure and blaming technique, so that the second ray 1 Q 2 is not covered with silk coverage, and the wafer structure of the worm layer 2 without the photoresist is removed in a side manner In addition to causing a portion of the N-type gallium nitride ohmic contact layer 11 to be exposed, a second trench i 〇2 is formed. The surface of the P-type gallium nitride ohmic contact layer i 3 is vapor-deposited or plated to form the light-transmitting conductive layer 14 and is respectively exposed to the surface of the transparent conductive layer by exposure, development and metal stripping (1 iit - 〇ff) techniques. Forming a P-type electrode _1 5 and an N-pole pad! 6, and then the light-transmitting conductive layer 14, the P-type electrode pad 15, the N-type electrode pad 6, the first trench 101, and the first trench A first insulating protective layer is formed on the surface of 1Q 2, and the p-type electrode slit 5 and the surface of the electrode lining 16 are exposed through exposure, development and side techniques. Again, the first insulating layer is exposed, developed and gold-dissected. The protective layer 17 is formed with a metal reflective layer i8 with respect to the side surface of the light-transmitting conductive layer 丄4, and then with a P-type electrode, i5, _electricity = pad 16, metal reflective layer i8, and first-insulation The surface of the protective layer _ 7 _ 10 201042782 has a second county layer i 9, and exposes the surface of the P-type electrode pad 15 and the N-type electrode pad 6 by exposure, ruggedness and side technology, and the above process is completed. After 'will grind the substrate 1 〇Q to less than the thickness of the ,, and separate the laser with the laser and the disintegration of each crystal paste. The process of the body grain. Please refer to the ninth figure. It can be clearly seen from the figure that the light-emitting diode is electrically connected to the wire guide 3 through the flip chip, and the heat-conducting substrate 3 can be a heat-conducting effect. A good aluminum, copper or ceramic material is used, and a printed circuit having an electrically isolated positive electrode tab 31 and a negative electrode tab 3 2 is formed on the heat conductive substrate 3, and then the conductive paste 4, such as silver, is formed. The material of the rubber, the solder ball or the solder paste is formed on the upper surface of the positive electrode pad 31 and the negative electrode pad 3 2 by means of dispensing or adhesive, and the electrode pad 15 of the light-emitting diode is formed. And the N-type electrode pad 16 is connected to the positive electrode pad 31 and the negative electrode pad 3 2 of the heat conductive substrate 3 through the conductive paste 4, and finally, the conductive paste 4 is cured, thereby completing the flip-chip light-emitting diode light-emitting device. The light-emitting diode 1 can directly dissipate heat by using a conductive paste 4 having a large heat-dissipating area, such as silver paste or solder paste, and the heat-conductive substrate 3, so that the conduction area of the conventional gold wire or metal bump is too small, so that the conductive area is too small. The lack of heat dissipation, etc., the above method can also reduce manufacturing Sequence and shorten the manufacturing time.

上述’該基板10 0可為透光的藍寶石、碳化矽(S i c)、氧化鋅(ZN/0)、氧化鎂(Mg〇)、氧化鎵( G a 2 0 3)、氮化鋁(A 1G a N)、氧化鐘鎵(G a L 11 201042782 !〇)、氧化娜(Alli0)或尖晶石(spinei )基板,而該透光導電層14可為氧化銦(in2〇3)、 氧化錫(Sn〇2)、氧化銦_(IndiumThe above substrate 10 may be light-transmitting sapphire, samarium carbide (Sicic acid), zinc oxide (ZN/0), magnesium oxide (Mg〇), gallium oxide (G a 2 O 3 ), aluminum nitride (A). 1G a N), oxidized clock gallium (G a L 11 201042782 !〇), oxidized Na (Alli0) or spinel (spinei) substrate, and the light-transmissive conductive layer 14 may be indium oxide (in2〇3), oxidized Tin (Sn〇2), indium oxide _ (Indium

Molybdenum 〇 γ ,· ·, 、 υχ 1 ci e s,ΙΜ〇)、氧化鋅 (zn〇)、氧化銦鋅(IZ〇)、氧化銦鈽(cein2 〇3)、氧化麵(Indium Tin 〇以心5 ίΤΟ) ’鎳(n)、金(Au)雙層結構,·翻(口㈠ '金雙層㈣;鈹(Be)、金雙層結構,且該金屬反射層 18可為銀(Ag)、銘(A1)統(Rh)金屬之材質 之一或者與H鈹、鈦(Ti)及鉻(Cr)i中之一 组合而成,另-方面,第-絕緣保護層17及第二絕緣保護 層19可為氧财(Si〇2)、氮切(Si3N4)、 液態玻璃、鐵氟龍(Tef 1〇n)、聚_胺( P〇1Hmide’PI)、氧化紹(A12〇3)、氧 化鈦(Ti-0)、氧她(Ta2〇5)、氧化妃⑺ 2 )或鑽石薄膜其中之—或其組合而成,而該卩型電極概 墊15及N型電極襯塾16可為鈦、金;鈦、銘;絡、金或 2銘其巾之—或該合喊,上述僅林㈣之較佳實施 凡運L各層的材料翻騎侷限本發明之翻範圍,故舉 變化,灼Γ月說明書及圖式内容所為之簡易修飾及等效結構 句應同理包含於本發明之專利範圍内。 另請參考第九、十圖,可_中清楚得知,第—溝射 12 201042782 01、第二溝槽1〇 2為可蝕刻成U型或V型,舞, ▲、 、上述·溝 槽的型態僅為本發明之實施例說明,非因此即侷限本發明之 專利範圍,故舉凡運用本發明說明書及圖式内容所為之簡易 修飾及等效結構變化,均應同理包含於本發明之專利範圍内 〇 綜上所述,本發明上述覆晶式氮化鎵發光二極體之製造 方法,為具有下列之優點: (一) 本發明於金屬反射層18之二側表面分別形成有第一 絕緣保護層17及第二絕緣保護層19,使透光導電 層14與金屬反射層18不產生導電效果,俾可有效 防止金屬反射層18因參與導電所造成發光二極體工 提高其順向電壓、耗電量增高,致使發光二極體丄之 發光效率不彰等情形,且金屬反射層丄8為直接設置 於發光二極體1内,此方式為可直接反射發光層丄2 之光線,避免設置位置過遠而產生的光損失。 (二) 本發明之轰晶層2於預設位置處蝕刻致使基板1〇 〇 部分露出形成第一溝槽1〇1,之後再於另預設位置 蝕刻有第二溝槽1〇2,並產生具有共同水平高度的 磊晶層2 A、2 B,此舉便能使之後形成的p型電極 襯墊15和N型電極襯墊16具有相同高度,可穩定 發光二極體1與導熱基板3間的電性連接,提升發光 二極體裝置之良率。 13 201042782Molybdenum 〇γ , · ·, , υχ 1 ci es, ΙΜ〇), zinc oxide (zn〇), indium zinc oxide (IZ〇), indium oxide 钸 (cein2 〇3), oxidation surface (Indium Tin 〇 heart 5 ΤΟ ΤΟ) 'nickel (n), gold (Au) double layer structure, · turn (mouth (a) 'gold double layer (four); 铍 (Be), gold double layer structure, and the metal reflective layer 18 can be silver (Ag), One of the materials of the (A1) Rh (Rh) metal or one of H铍, Titanium (Ti) and Chromium (Cr) i, and the other, the first insulating protective layer 17 and the second insulating protection The layer 19 can be an oxygen (Si〇2), a nitrogen cut (Si3N4), a liquid glass, a Teflon (Tef 1〇n), a poly-amine (P〇1Hmide'PI), an Oxide (A12〇3), Titanium oxide (Ti-0), oxygen (Ta2〇5), yttrium oxide (7) 2 ) or a diamond film thereof, or a combination thereof, and the 卩-type electrode pad 15 and the N-type electrode lining 16 may be Titanium, gold, titanium, Ming; collateral, gold or 2 Ming's towel - or the shouting, the above-mentioned only forest (four) preferred implementation of the material of each layer of the L is limited to the scope of the invention, so change, Simplified repair of the burning bulletin and graphic content The same and equivalent structures sentence should be included within the scope of the present invention. Please also refer to the ninth and tenth figures. It can be clearly seen that the first groove 12 201042782 01 and the second groove 1〇2 can be etched into U-shape or V-shape, dance, ▲, and above. The present invention is intended to be illustrative of the embodiments of the present invention, and is not intended to limit the scope of the present invention. Therefore, all modifications and equivalent structural changes are intended to be included in the present invention. As described above, the method for manufacturing the above-described flip-chip gallium nitride light-emitting diode of the present invention has the following advantages: (1) The present invention is formed on the two side surfaces of the metal reflective layer 18, respectively. The first insulating protective layer 17 and the second insulating protective layer 19 prevent the light-transmitting conductive layer 14 and the metal reflective layer 18 from producing a conductive effect, and the metal reflective layer 18 can effectively prevent the metal reflective layer 18 from being electrically conductive. The forward voltage and the power consumption are increased, so that the luminous efficiency of the light-emitting diode is not good, and the metal reflective layer 8 is directly disposed in the light-emitting diode 1 in such a manner that the light-emitting layer can be directly reflected. Light, avoid setting Too Far generated light loss. (2) the crystallized layer 2 of the present invention is etched at a predetermined position to expose a portion of the substrate 1 to form a first trench 1〇1, and then a second trench 1〇2 is etched at another predetermined position, and The epitaxial layers 2 A, 2 B having a common level of height are produced, so that the p-type electrode pad 15 and the N-type electrode pad 16 formed later have the same height, and the light-emitting diode 1 and the heat-conductive substrate can be stabilized. 3 electrical connections to improve the yield of the LED device. 13 201042782

三)本發明為於第二溝槽i 〇 2二側之㈣層2 A、2 B 形成有第一絕緣保護層17和第二絕緣保護層i 9, 便可使該二屋晶層2 A、2 B間具_定絕緣之保護 、’有效避免發光二極體1㈣晶製程中所容易發生之 漏電短路的信賴性缺失。The present invention is such that the first insulating protective layer 17 and the second insulating protective layer i 9 are formed on the (four) layers 2 A, 2 B on the two sides of the second trench i 〇 2 to form the second oxide layer 2 A Between 2 and B, the protection of _determined insulation, 'effectively avoids the loss of reliability of the leakage short circuit that is likely to occur in the crystal manufacturing process of the diode (4).

四)本發明之發光二極體1係透過具大面積的高導熱材質 之導電膠體4與導熱基板3電性連接,為可在具有較 低製造成本條件下加速散熱,進而可有效提升發光二 極體1之發光效率’且該發光二極體i可透過導電膠 體4使熱囤積有效快速散出,增進其工作壽命。 綜上所述,本發明之覆晶式氮化鎵發光二極體之製造方 法於使科具錢著之功效增進’崎合_糊之申請要 件,爰依法提出申請,盼料早日賜准本案,以保障發明 人之辛古發明’倘若鈞局有任何稽疑,請不吝來函指示, 發明人定當竭力配合,實感德便。The light-emitting diode 1 of the present invention is electrically connected to the heat-conducting substrate 3 through the conductive paste 4 having a large area of high thermal conductivity material, so as to accelerate heat dissipation at a lower manufacturing cost, thereby effectively improving the light-emitting diode 2 The luminous efficiency of the polar body 1 'and the light-emitting diode i can pass through the conductive colloid 4 to effectively and efficiently dissipate the heat accumulation, thereby improving the working life thereof. In summary, the method for manufacturing the flip-chip gallium nitride light-emitting diode of the present invention enhances the application of the economy and the application of the product, and submits an application according to law, and hopes to grant the case as soon as possible. In order to protect the inventor's Xin Gu invention 'If there is any doubt in the bureau, please do not hesitate to give instructions, the inventor will try his best to cooperate, and feel really good.

14 201042782 【圖式簡單說.明】 第一圖係為本發明發光二極體晶粒之製造流程圖。 第二圖係為本發明發光二極體晶粒之磊晶層示意圖。 第三圖係為本發明磊晶層蝕刻出第一溝槽之示意圖。 第四圖係為本發明磊晶層蝕刻出第二溝槽之示意圖。 第五圖係為本發明於蟲晶層表面形成透光導電層、p型電極襯 墊及N型電極襯墊之示意圖。 〇帛六®係為本發明於透光導電層表面形成第一絕緣保護層及金 屬反射層之示意圖》 第七圖係為本發明形成第二絕緣保護層之示意圖。 第八圖係為本發明發光二極體切割成型之示意圖。 第九圖係為本發明發光二極體與導電基板電性連接之示意圖。 第十圖係為本發明發光二極體具有V型第一溝槽之示意圖。 第十一圖係為習知氮化鎵發光二極體結構示意圖。 €)第十二圖係為習知覆晶式氮化鎵發光二極體之結構示意圓。 第十二圖係為另一習知覆晶式氮化鎵發光二極體之結構示意圖 〇 第十四圖係為再-習知覆晶式氮化鎵發光二極體之結構示意圖 0 第十五圖係為又一習知覆晶式氮化鎵發光二極體之結構示意圖 15 201042782 【主要元件符號說明】 1、發光二極體 10 0、基板 14 101、第一溝槽 15 10 2、第二溝槽 16 1 1、N型氮化鎵歐姆接觸層 17 12、發光層 18 13、P型氮化鎵歐姆接觸層 19 2、磊晶層 3、導熱基板 31、正極焊墊 3 2 4、導電膠體 A 1、藍寶石基板 A2、N型氮化鎵歐姆接觸層 A7 A 3、發光層 A8 A4、P型氮化鎵歐姆接觸層 A9 A 5、透光導電層 A1 0 負極焊墊 、N型電極襯墊 、支架 、金屬線材 、外部接腳 A 6、P型電極襯墊 透光導電層 P型電極襯墊 N型電極襯墊 第一絕緣保護層 金屬反射層 第二絕緣保護層 16 201042782 B1、藍寶石基板14 201042782 [Simplified diagram. Ming] The first figure is a manufacturing flow chart of the light-emitting diode die of the present invention. The second figure is a schematic view of the epitaxial layer of the light-emitting diode grains of the present invention. The third figure is a schematic view of etching the first trench by the epitaxial layer of the present invention. The fourth figure is a schematic view of etching the second trench by the epitaxial layer of the present invention. The fifth figure is a schematic view showing the formation of a light-transmitting conductive layer, a p-type electrode pad and an N-type electrode pad on the surface of the insect layer. The sixth embodiment is a schematic view of forming a first insulating protective layer and a metal reflective layer on the surface of the light-transmitting conductive layer according to the present invention. The seventh drawing is a schematic view of forming a second insulating protective layer according to the present invention. The eighth figure is a schematic view of the cutting of the light-emitting diode of the present invention. The ninth figure is a schematic diagram of the electrical connection between the light-emitting diode and the conductive substrate of the present invention. The tenth figure is a schematic view of the light-emitting diode of the present invention having a V-shaped first trench. The eleventh figure is a schematic view of the structure of a conventional gallium nitride light-emitting diode. The twelfth figure is a schematic circle of the conventional flip-chip GaN light-emitting diode. The twelfth figure is a schematic structural view of another conventional flip-chip GaN light-emitting diode. The fourteenth figure is a schematic diagram of a re-fabricated flip-chip GaN light-emitting diode. Figure 5 is a schematic view of another conventional flip-chip gallium nitride light-emitting diode. 15 201042782 [Explanation of main components] 1. Light-emitting diode 10 0, substrate 14 101, first trench 15 10 2 Second trench 16 1 1 , N-type gallium nitride ohmic contact layer 17 12 , light-emitting layer 18 13 , P-type gallium nitride ohmic contact layer 19 2, epitaxial layer 3 , thermally conductive substrate 31 , positive electrode pad 3 2 4 Conductive colloid A 1, sapphire substrate A2, N-type gallium nitride ohmic contact layer A7 A 3, light-emitting layer A8 A4, P-type gallium nitride ohmic contact layer A9 A 5, light-transmitting conductive layer A1 0 negative electrode pad, N Type electrode pad, bracket, metal wire, external pin A 6, P-type electrode pad light-transmitting conductive layer P-type electrode pad N-type electrode pad first insulating protective layer metal reflective layer second insulating protective layer 16 201042782 B1, sapphire substrate

B1 1、出光面 BB1 1. Light surface B

B 2、緩衝層 BB 2. Buffer layer B

B 3、N型氮化鎵歐姆接觸層 B B 4、發光層 B C1、發光二極體晶粒 〇 C1 1、焊點 c C 2、電路板 D1、藍寶石基板 D 2、N型氮化鎵歐姆接觸層 D 3、發光層 D4、P型氮化鎵歐姆接觸層 O D5、透光導電層 E1、第一磊晶層 E 2、第二磊晶層 E 21、N型氮化鎵歐姆接觸層 E 3、P型電極襯墊 5、 P型氮化鎵歐姆接觸層 6、 P型電極襯墊 7、 N型電極 8、 N型電極襯墊 2 1、焊點 C 3、散熱塊 D 6、導電金屬反射層 D 7、電極 D 8、電路板 D 9、聚醯亞胺絕緣層 E 4、N型電極襯墊 E 5、金屬反射層 E6、導電層 17B 3, N-type gallium nitride ohmic contact layer BB 4, light-emitting layer B C1, light-emitting diode chip 〇 C1 1, solder joint c C 2, circuit board D1, sapphire substrate D 2, N-type gallium nitride ohmic Contact layer D 3 , light-emitting layer D4 , P-type gallium nitride ohmic contact layer O D5 , light-transmitting conductive layer E1 , first epitaxial layer E 2 , second epitaxial layer E 21 , N-type gallium nitride ohmic contact layer E 3 , P-type electrode pad 5 , P-type gallium nitride ohmic contact layer 6 , P-type electrode pad 7 , N-type electrode 8 , N-type electrode pad 2 1 , solder joint C 3 , heat sink block D 6 , Conductive metal reflective layer D 7 , electrode D 8 , circuit board D 9 , polyimide conductive layer E 4 , N-type electrode pad E 5 , metal reflective layer E6 , conductive layer 17

Claims (1)

201042782 七、申請專利範圍: 1、-種覆晶式氮化紐光二極體之製造方法,其製造步驟包括 有: ⑷提供-氮化鎵系發光二極體蟲晶層之晶圓; (B )於為層預雜置蝴形成有致使基板露出部分之第 一溝槽; (C )於第-賴鄰近與相分職卿成有致額型氮化 鎵歐姆接觸層部分露出之複數第二溝槽; (D) 於磊晶層表面形成有透光導電層,· (E) 於部分透光導電層表面分別加工而形成p型電極概塾 及N型電極襯墊; (F) 於p型電極襯墊、N型電極襯墊、第一溝槽及第二溝 槽加工而形成有第一絕緣保護層; (G) 鄰近p型電極襯墊且相對透光導電層之一側表面加工 而形成有金屬反射層; (H) 於第一絕緣保護層及金屬反射層表面加工而形成有第 二絕緣保護層。 2、 如申請專利範圍第1項所述之覆晶式氮化鎵發光二極體之製 造方法,其中該第二絕緣保護層形成後便透過研磨、劃線、 朋裂及晶粒光電特性_選形成分離獨立之氮化鎵系發光二極 體晶粒。 3、 如申請專利範圍第2項所述之覆晶式氮化鎵發光二極體之製 18 201042782 以方法’其中該分離獨立之氮化鎵紐光二極體為覆晶於具 導電膠體之導熱基板。 " 4 =申請專利範圍第3項所述之覆晶式氮化錄發光二極體之製 以方法,其中該覆晶發光二極體之P型電極健及N型電極 概塾,係透料電膠_設於導熱基板上之正極焊塾和負極 焊墊。 5、 如申請專利範圍第3項所述之覆晶式氮化鎵發光二極體之製 ° 造方法’其中該導電膠體之材料可為銀膠、錫球或錫膏。 6、 =申請專利範圍第工項所述之覆晶式氮化鎵發光二極體之製 造方法,其中該形成第—溝槽及第二溝槽之方式可為乾式餘 刻或濕式餘刻技術。 7如申明專利範圍帛工項所述之覆晶式氮化鎵發光二極體之製 造方法,其中該氮化鎵發光二極體蟲晶層晶圓為包括有_ 氮化鎵歐姆接觸層、發光層及p型氣化嫁歐姆接觸層。 〇 8、如申請專利範圍第丄項所述之覆晶植化錄發光二極體之製 造方法,其中該第一溝槽可為U或又型。 9、 如申請專利範圍第!項所述之覆晶式氮化鎵發光二極體之製 造方法,其中該第二溝槽可為口或卩型。 10、 如申請專利範圍第1項所述之覆晶式氮化鎵發光二極體之 製造方法’其中該第-溝槽之侧深度大於第二溝槽之餘 刻深度。 11、 如申請專利範圍第i項所述之覆晶式氮化鎵發光二極體之 19 201042782 製造方法’其巾該N型電極襯墊係可延伸至N魏化鎵歐 姆接觸層表面。 1 2、如申請專利_S1項所述之覆晶錢化鎵發光二極體之 製造方法’其中該第一絕緣保護層將第一溝槽及第二溝槽 之内侧邊完全包覆。 13、如中明專利範圍第1項所述之覆晶式氮化鎵發光二極體之 製造方法,其中該金屬反射層之材料可為銀、鋁或铑。 1 4、如中請專利範圍第丨項所述之覆晶錢化鎵發光二極體之 製造方法,其中該金屬反射層之材料可為銀、鋁或铑與鎳 、鉑、鈹、鈦或鉻之一相互組合而成。 15、 如中請專利範圍第η所述之覆晶式氮化鎵發光二極體之 製造方法,其中該透光導電層之材料可為鎳、金雙層結構 ’在白、金雙層結構;鈹、金雙層、结構;氧化銦、氧化錫、 氧化銦鉬、氧化辞、氧化銦鋅、氧化銦飾或氧化錮錫其中 之—或其組合而成。 16、 如申請專利顧第1項所述之覆晶式氮化鎵發光二極體之 製造方法,其中該第一絕緣保護層及第二絕緣保護層之材 料可為氧化石夕類、氮化石夕類、液態玻璃、鐵氟龍、聚酿亞 胺、氧化紹、氧化鈦、氧化组、氧化纪或鑽石薄膜其中之 一或其組合。 17、 如/請專利範圍第W所述之覆晶式氮化鎵發光二極體之 製造方法,其中該Ρ型電極襯墊及Ν型電極襯墊之材料可 20 201042782 為鈦、金;鈦、鋁;鉻、金;鉻、鋁其中之一或其組合。 Ο201042782 VII. Patent application scope: 1. A method for manufacturing a flip-chip nitrided photodiode, the manufacturing steps thereof include: (4) providing a wafer of a gallium nitride-based light-emitting diode crystal layer; (B) Forming a first trench causing the exposed portion of the substrate for the layer pre-mixed butterfly; (C) forming a plurality of second trenches partially exposed by the galvanic contact layer of the gallium nitride adjacent to the first and second portions (D) a light-transmissive conductive layer is formed on the surface of the epitaxial layer, (E) is processed on the surface of the partially transparent conductive layer to form a p-type electrode profile and an N-type electrode pad; (F) is p-type The electrode pad, the N-type electrode pad, the first trench and the second trench are processed to form a first insulating protective layer; (G) adjacent to the p-type electrode pad and processed on one side surface of the transparent conductive layer A metal reflective layer is formed; (H) a second insulating protective layer is formed by processing the surface of the first insulating protective layer and the metal reflective layer. 2. The method for manufacturing a flip-chip gallium nitride light-emitting diode according to claim 1, wherein the second insulating protective layer is formed by grinding, scribing, splitting, and grain photoelectric characteristics. The separation of the independent gallium nitride-based light-emitting diode crystal grains is selected. 3. The method of applying the flip-chip gallium nitride light-emitting diode according to claim 2 of the patent scope 18 201042782 by the method 'where the separated independent gallium nitride neopolar diode is coated with a heat conductive with a conductive colloid Substrate. " 4 = A method for manufacturing a flip-chip nitride photodiode according to claim 3, wherein the P-type electrode of the flip-chip diode and the N-type electrode are Electro-adhesive_positive and negative electrode pads on a thermally conductive substrate. 5. The method for fabricating a flip-chip gallium nitride light-emitting diode according to claim 3, wherein the conductive colloid material is silver paste, solder ball or solder paste. 6. The method for manufacturing a flip-chip gallium nitride light-emitting diode according to the application of the patent scope, wherein the method of forming the first trench and the second trench may be a dry or wet residual technology. [7] The method for fabricating a flip-chip gallium nitride light-emitting diode according to the above-mentioned patent scope, wherein the gallium nitride light-emitting diode wafer layer comprises a GaN contact layer, The luminescent layer and the p-type vaporized ohmic contact layer. The method of manufacturing a flip-chip physicochemical recording light-emitting diode according to the above-mentioned claim, wherein the first trench may be U or a re-type. 9, such as the scope of application for patents! The method for manufacturing a flip-chip gallium nitride light-emitting diode according to the invention, wherein the second trench is of a port or a sigma type. 10. The method of fabricating a flip-chip gallium nitride light-emitting diode according to claim 1, wherein the side depth of the first trench is greater than the depth of the second trench. 11. The flip-chip gallium nitride light-emitting diode according to claim i of the invention, wherein the N-type electrode pad can extend to the surface of the N-Wide-Aluminum contact layer. 1. The method of manufacturing a flip-chip gallium luminescent diode according to the above-mentioned application, wherein the first insulating protective layer completely covers the inner sides of the first trench and the second trench. The method of manufacturing a flip-chip gallium nitride light-emitting diode according to the first aspect of the invention, wherein the metal reflective layer is made of silver, aluminum or tantalum. The method for manufacturing a flip-chip galvanic light-emitting diode according to the above-mentioned patent scope, wherein the metal reflective layer is made of silver, aluminum or tantalum with nickel, platinum, rhodium, titanium or One of the chromium is combined with each other. 15. The method for fabricating a flip-chip gallium nitride light-emitting diode according to the above-mentioned patent range η, wherein the material of the light-transmitting conductive layer may be a nickel or gold double-layer structure in a white and gold double-layer structure. ; bismuth, gold double layer, structure; indium oxide, tin oxide, indium molybdenum oxide, oxidized words, indium zinc oxide, indium oxide or yttrium tin oxide - or a combination thereof. The method for manufacturing a flip-chip gallium nitride light-emitting diode according to the first aspect of the invention, wherein the material of the first insulating protective layer and the second insulating protective layer may be oxidized stone and nitride. One or a combination of ceram, liquid glass, Teflon, poly-imine, oxidized, titanium oxide, oxidized, oxidized or diamond film. 17. The method of manufacturing a flip-chip gallium nitride light-emitting diode according to the above-mentioned patent scope, wherein the material of the germanium electrode pad and the germanium electrode pad can be 20 201042782 for titanium or gold; , aluminum; chromium, gold; one of chromium or aluminum or a combination thereof. Ο 21twenty one
TW98116609A 2009-05-19 2009-05-19 Fabrication method of cladding gallium nitride light emitting diodes TWI423482B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98116609A TWI423482B (en) 2009-05-19 2009-05-19 Fabrication method of cladding gallium nitride light emitting diodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98116609A TWI423482B (en) 2009-05-19 2009-05-19 Fabrication method of cladding gallium nitride light emitting diodes

Publications (2)

Publication Number Publication Date
TW201042782A true TW201042782A (en) 2010-12-01
TWI423482B TWI423482B (en) 2014-01-11

Family

ID=45000697

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98116609A TWI423482B (en) 2009-05-19 2009-05-19 Fabrication method of cladding gallium nitride light emitting diodes

Country Status (1)

Country Link
TW (1) TWI423482B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952991A (en) * 2014-03-25 2015-09-30 茂邦电子有限公司 Flip-chip light emitting diode, manufacture method thereof and flip-chip package structure of flip-chip light emitting diode
CN114583554A (en) * 2020-12-01 2022-06-03 常州纵慧芯光半导体科技有限公司 Vertical cavity surface emitting laser and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550909B (en) 2014-03-21 2016-09-21 A flip chip type light emitting diode and a method for manufacturing the same, and a flip chip type structure thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119372B2 (en) * 2003-10-24 2006-10-10 Gelcore, Llc Flip-chip light emitting diode
EP2192625B1 (en) * 2005-04-04 2012-02-15 Tohoku Techno Arch Co., Ltd. Method for growth of GaN single crystal, method for preparation of GaN substrate, process for producing GaN-based element, and GaN-based element
US20070045638A1 (en) * 2005-08-24 2007-03-01 Lumileds Lighting U.S., Llc III-nitride light emitting device with double heterostructure light emitting region
TWI440210B (en) * 2007-01-22 2014-06-01 Cree Inc Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952991A (en) * 2014-03-25 2015-09-30 茂邦电子有限公司 Flip-chip light emitting diode, manufacture method thereof and flip-chip package structure of flip-chip light emitting diode
CN114583554A (en) * 2020-12-01 2022-06-03 常州纵慧芯光半导体科技有限公司 Vertical cavity surface emitting laser and manufacturing method thereof

Also Published As

Publication number Publication date
TWI423482B (en) 2014-01-11

Similar Documents

Publication Publication Date Title
US8211722B2 (en) Flip-chip GaN LED fabrication method
TWI535077B (en) Light emitting?apparatus and light emitting module thereof
TWI569479B (en) Light emitting device
JP5648422B2 (en) Light emitting device and manufacturing method thereof
US8946749B2 (en) Semiconductor light emitting device
TWI381564B (en) Light emitting diode
JP2012099544A (en) Manufacturing method of light-emitting apparatus
TWI641162B (en) Light emitting diode and illumination device
TW201407818A (en) Light emitting diode structure
JP5755676B2 (en) Light emitting device and light emitting device package
TWI685131B (en) Light emitting diode device and manufacturing method thereof
TW201635599A (en) Light-emitting device
JP2006278567A (en) Led unit
JP2016058689A (en) Semiconductor light-emitting device
TW201817047A (en) Light emitting device and method for forming the same
JP6171749B2 (en) Light emitting device and manufacturing method thereof
CN104953006A (en) Semiconductor light emitting device
JP4948841B2 (en) Light emitting device and lighting device
JP6936867B2 (en) Semiconductor modules, display devices, and methods for manufacturing semiconductor modules
JP2017098509A (en) Substrate for placing element and light-emitting device
TW201126753A (en) Package of semiconductor light emitting device
TW201042782A (en) Manufacturing method for a flip-chip GaN LED
TWI470836B (en) Light-emitting diode package structure
JP2015092622A (en) Light-emitting device
JP2007141961A (en) Light-emitting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees