TW201042528A - Pointing method and device - Google Patents

Pointing method and device Download PDF

Info

Publication number
TW201042528A
TW201042528A TW98117888A TW98117888A TW201042528A TW 201042528 A TW201042528 A TW 201042528A TW 98117888 A TW98117888 A TW 98117888A TW 98117888 A TW98117888 A TW 98117888A TW 201042528 A TW201042528 A TW 201042528A
Authority
TW
Taiwan
Prior art keywords
magnet
pointing
movement
moving
origin
Prior art date
Application number
TW98117888A
Other languages
Chinese (zh)
Inventor
Yan-Mb Yang
Jen-Chieh Yu
Original Assignee
Yuan Mao Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuan Mao Technology Co Ltd filed Critical Yuan Mao Technology Co Ltd
Priority to TW98117888A priority Critical patent/TW201042528A/en
Priority to US12/787,233 priority patent/US8289278B2/en
Publication of TW201042528A publication Critical patent/TW201042528A/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present invention provides a pointing method for converting electronic signals into pointing control signals, in which the electronic signals are generated when a magneto-electric converter senses the magnetic field intensity of a magnet. The method includes the following steps: (a) using an analog/digital converter to convert the electronic signals into position data representative of where the magnet is disposed; (b) monitoring the difference of the position data in time and defining a movement amount representative of the position movement degree of the magnet in a time interval <DELTA>t; (c) if the movement amount is larger than a movement threshold THmove, converting a relative position into the pointing control signal, otherwise defining it as a stationary period; and (d) if the stationary period continues to thus form a stationary cycle Tstatic and the continuing time <DELTA> of the stationary cycle is larger than a resetting time, determining a floating origin from the position data in the stationary cycle Tstatic, wherein the relative position represents the difference between the position of the magnet and the floating origin.

Description

201042528 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種應用於磁感應指向襄置之指向方法, 尤指-種不需定義磁感應指向裝置的絕對原點,並可令磁感靡 指向裝置的良率提升、減少誤動作、增進靈敏度以及延長裝置 使用壽命之指向方法者。 &lt; 【先前技術】 Ο 按’習知之磁感應指向裝置係指—種仙磁電轉換器來偵 測磁鐵位置之指向裝置。由於上述磁—電轉換輯於所通過的 磁通量會產生反應並轉換為電子訊號輸出,因此,藉由分析該 電子訊號的強弱便可判斷該磁一電轉換器與該磁鐵間相對距離 的遠近。 磁電轉換器感應磁場的方式係利用電力線在磁場中會偏 〇 折的原理,*電場通過磁場存在之區域時,電力線會沿著該磁 力線垂直的方向偏折,改變原有的電場結構。因此,一般的檢 測方法,即是在該磁一電轉換器上流通一固定電流,然後量測 該電流方向或是該電流垂直方向之電壓差,當量測到電壓變強 就表不該磁鐵輯該磁_電轉換^越近;反之,若是量測電壓 變弱則表不該磁鐵距離該磁-電轉換器越遠。 由上述可知’當一對磁_電轉換器分佈於磁鐵的兩端且該兩 磁-電轉換器彼此間電壓值一樣時,就應代表該磁鐵當下應位 3 201042528 於該對磁-電轉換器的中間位置。而在該磁鐵往該對磁—電轉換 器其中之一偏移時,從該對磁—電轉換器間的電壓差便可推出 該磁鐵偏移中心的位置。 因此,傳統二維指向的磁感應指向裝置如第丨圖所示,其 係以兩對磁''電轉換器來偵測磁鐵在X軸與γ軸上的位置,其 中包括:沿著X轴兩端佈置之磁-電轉換器21、22 ;以及沿著 Y軸兩端佈置之磁-電轉換器23、24。並透過一個X軸差動放 大器25比較該X軸兩端之磁-電轉換器21、22上的電壓差; 以及透過個γ軸差動放大器26比較該γ軸兩端之磁-電轉換 器23、24上的電壓差。如此’再透過一類比/數位轉換單元 31與一公式轉換單元32將該X軸差動放大器25與該Y轴差 動放大器26的輸出電壓,轉換為磁鐵偏離—原點◦之X軸與 Y轴上的分量。其中’上述原點〇為該X軸差動放大器25輸 出值為零’且該γ軸差動放大器26輸出值亦輸出為零之處。 由上述操作原理可知,若傳統磁感應指向裝置要正確的轉 換磁鐵移動4為指向移输做號,·須符合以下條件: 1) 每個磁-電轉換器的磁—電相依關係必須相同; 2) 每對磁-電轉換器上施加電流的方向應與該磁鐵磁偶極 的方向呈對稱關係; 3) 每對磁-電轉換器賴對稱等距設立;以及最重要的, 4) 在未施力於磁鐵時’該磁鐵巾錄置應位於該兩對磁— 電轉換器的中心也就是該原點〇上。 201042528 為了正蜂轉換出磁鐵位置,該兩對磁—電轉換器的位置中心 都應該要在該原點G上’如此,該x軸差動放大器25以及該 Y軸差動放大器26所輸㈣減’才能分賊表賴所在位 置的X軸分量以及Y軸分量。然而,在安裝過程中,這些磁_ 電轉換器或有-些無法預測的安插角度,又或有—些位置佈置 上的偏差,而結果就如第1圖所示之插圖2〇,χ軸的原點〇χ 與Υ軸的原‘點Oy為不同點。很明_,如果χ轴與γ抽的原 點並不是祕所設定的職〇時,該χ軸絲放大器25以及 該Υ軸差動放大H 26所輸出的訊號便無法正常代表該磁鐵所 在位置的分量。啊’還會在該磁鐵未受力的情形下持續送出 代表磁鐵偏離原點〇之指向控制訊號。 上述不正常錄置可在統麟時被狀,_,即使是 出薇時正常狀態的磁感應指向裝置,在經過一段時間的使用 後,卻還是會發生磁鐵在無施力的狀態下並無法回歸到原點 〇 ’令磁錢指向裝置紐再被正確朗。這是目為,磁感應 指向裝置多是採用磁鐵外側包覆一彈性體來提供施力後的彈 f生回復力’而這些彈性體的彈性結構會隨著使用時間的長短、 知作的次數、陽光轉曬錢溫差的變減產生雜疲乏或是 結構脆裂。一旦該彈性體彈性疲乏或是結構脆裂後,便無法再 提供傳統細裝置巾最重要触復力,連帶的使磁錢指向裝 置只要在開機狀態下,就會—直送出代表偏離原點Q的錯誤訊 號’迫使該韻應指向裝置所朗的電子產品提早結束產品壽 5 201042528 命。 因此,在揭露於美國專利證號7,187, 360的-種指向裝置 (pointing device)中,便不再以單一原點來判斷磁鐵是否# 心移動,而是以-定半徑之圓來界定磁鐵是否偏心移動。如第 2圖之先則技術圖上的非偵測區(⑽此妨論&amp;咖迦即為 磁鐵原點的棚11域,也就是說只要磁_細位置在該非偵 測區内,控制電路就不會送出指向控制訊號,避免在組裝過程 中的各種中心位置偏差降低產品的良率。 然而’上述美國專利證號7,187, 360中僅是以犧牲產品靈 敏度來降恤裝過財產生的誤差,#以半徑設定該義測區 的範圍、產品良率提升的同時,該指向裝置也失去了小範圍的 指向靈敏度。社,奴顧的半徑也僅歧裝置絲施力的 情形下不會產生指向移動峨’並沒有徹底解決原點偏心所造 成的真正問題。 以第3圖舉例,若磁鐵在未受力的情形下實際的中心位置 位於標示〇’,與該磁-f轉換n的位置巾心原點G間具有一偏 心位移B00’ ;則當該磁鐵受力往正西方移動到ι,時(向量 M0,)’該磁感應指向裝置會輸出—個以該原點q為起始點之錯 誤方向,也就是往西北方之移動(向量M〇)。很明顯的實^ 動方向(向量M0,)與輸出方向(向量刖)在移動距離很長時不 會有太大差異;不過,在作小範圍移動時,實際的移動與輸出 結果就有很大的差別, 所以傳統的磁歧指向裝置並無法應用 201042528 於小範圍的指向輸入。 由上可知,即使是朗上述的_聽方式,犧牲小範圍指 向的移動靈敏度以提升磁感應指向裝置的產品良率,卻也只是 抑制未施力下錯誤訊號的發生,對於嚴重的方向判定問題也只 能一樣選擇放棄(請參考第3圖)。這也是為什麼,大部分磁感 應才曰向裝置多只適用於方向性不敏感的系統中,避開舊有磁感 〇 應指向方法本質上的方向判定誤差。讓本來具有低耗電量以及 小體積優勢的磁感應指向裝置,因為放棄了方向與距離靈敏度 而喪失了在二維鍊指姑置中的競爭力與市場優勢。 因此’如何能在不犧牲磁感應指向裝置的靈敏度下減少誤 動作的產生並根本解決原點偏心的問題,又,得以提高產品良 2降低_成本、延長裝置使用壽命同時亦達到環保與優勢 競爭力之結果’係為本發明人致力達成之目標。 【發明内容】 〇 本發月之主要目的’係以浮動原點概念徹底解決傳統上絕 對原點偏心造成的種種問題。故,本發明提出一種指向方法, 可監麟磁鐵位置隨時間的變動,以決定該磁鐵靜止時的位置 為該洋動原點,同時,於该測到該磁鐵位置發生變化時,轉換 該磁鐵位置相對於該浮動原點之相對位置為指向控制訊號輸 出。 因此’本發明之指向方法係包括以下步驟⑻轉換磁-電轉 、’感應磁鐵所產生之電子訊號為代表上述磁鐵所在之位 7 201042528 置資料;(b)監控該位置資料在時間上之差異,並定義出一移 動量代表上述磁鐵在-時間區間Λί内之位置移動程度⑹若 該移動量大於-移動醜值Tiw_換—贿 指向控制訊號,反之,軸為靜止期;以及(輪靜止: 持續發生並形成-靜止週期Tstatk,且該靜止週期持續時間 大於-歸零時間時’則由該靜▲週期内之該位置 資料換算出-雜賴,射,該鱗位聽代表上述磁鐵所 在位置與該浮動原點之差異。 本發明之再-目的,係輸出該磁鐵隨時間的運動執跡以提 供傳統絕對座標下無法做到的方向與距離靈敏度,其係包括以 下步驟:⑻轉換磁_電轉換_應—磁鐵所產生之電子訊號為 代表上述磁鐵所在之位置資料;(b)監控該位置資料在時間上 之差異,並疋義出一移動量代表上述磁鐵在一時間區間内 之位置移練度;以及⑹若郷動量大於-移動門檻值 THmove ’則轉換一位移資料為上述指向控制訊號,其中,該位 移資料代表上述磁鐵在一時間區間处内之位移 (displacement) ° 除此之外,本發明亦提出一種應用上述指向方法之指向裝 置其係包括.具有開口區之殼體(housing)、一滑動單元、 一感應單元、一控制單元以及一類比/數位轉換器連接該感應 單兀與雜制單元’其巾,上述各單元及轉換器皆裝置於該殼 體内。同時’該控制單元具有—變動債測器、一相對座標轉換 201042528 -=:狀11機、—原點計算器、以及—輪人/輪出元件。而該 ’月動早70為—操作相及—套附在雜作件外側之彈性件,此 外,該操作件的上端為受力端朝向該殼體之開口區,下端則是 永久磁鐵端朝向該感應單元。如此,該控制單元便可透過該感 應單几所姻到的磁-電訊號得知該永久磁鐵端的位置,並轉 換該永久磁鐵端相騎—浮動原點之相對位置為指向控制訊 ❹ 號輸出。與傳統輸出相對於-絕對原點之細裝置不同,該浮 動原點係由靜止狀態下的該永久磁鐵端位置得出的而該靜止 狀態的判斷則是由該狀態機根據該變動_器所偵測到的該 永久磁鐵端隨時間的變化量得知。 為使本發明之步驟、結構紐職有更清楚日膽之圖像, 以下提供最佳實施顺相顧式詳細說明。 【實施方式】 〇 如上所述’本發明為浮動原點概念,與傳統上直接輸出磁 鐵與絕對原點間的相對位置不同,故,該磁-電轉換器擺放的 位置只要能感應出磁鐵所在即可,並不限於一定要如第i圖所 示之傳統X軸與γ軸對稱排列方式。 為T監控該位置資料Dg(t)在時間上之差異,可從該位置資 料Dg(t)在-時間區間&amp;内之變化程度來定義出 一移動量201042528 VI. Description of the Invention: [Technical Field] The present invention relates to a pointing method for a magnetic induction pointing device, in particular, an absolute origin of a magnetic sensing pointing device, and a magnetic sense The method of pointing the device to increase the yield, reduce the malfunction, improve the sensitivity, and extend the life of the device. &lt;Prior Art Ο The conventional magnetic induction pointing device refers to a pointing device that detects the position of a magnet. Since the magnetic-electric conversion is generated by the magnetic flux passing through and converted into an electronic signal output, the distance between the magnetic-electrical converter and the magnet can be determined by analyzing the strength of the electronic signal. The way in which the magnetoelectric converter senses the magnetic field is based on the principle that the power line is deflected in the magnetic field. When the electric field passes through the region where the magnetic field exists, the power line will be deflected in the direction perpendicular to the magnetic line to change the original electric field structure. Therefore, the general detection method is to circulate a fixed current on the magnetic-to-electrical converter, and then measure the current direction or the voltage difference in the vertical direction of the current, and the equivalent voltage is strong to indicate the magnet. The closer the magnetic_electrical conversion ^ is; otherwise, if the measuring voltage is weak, the farther the magnet is from the magneto-electrical converter. It can be seen from the above that when a pair of magnetic-electrical converters are distributed at both ends of the magnet and the voltage values of the two magneto-electrical converters are the same, they should represent the magnets at the moment 3 201042528 in the pair of magneto-electrical conversions. The middle position of the device. When the magnet is shifted to one of the pair of magneto-electric converters, the position of the center of the magnet offset can be derived from the voltage difference between the pair of magneto-electric converters. Therefore, the conventional two-dimensional pointing magnetic induction pointing device is shown in the second figure, which uses two pairs of magnetic '' electric converters to detect the position of the magnet on the X-axis and the γ-axis, including: two along the X-axis The magnetic-electrical converters 21, 22 arranged at the ends; and the magneto-electrical converters 23, 24 arranged along both ends of the Y-axis. And comparing the voltage difference between the magnetic-to-electrical converters 21, 22 at both ends of the X-axis through an X-axis differential amplifier 25; and comparing the magnetic-to-electrical converters at both ends of the γ-axis through a γ-axis differential amplifier 26 The voltage difference between 23 and 24. Thus, the output voltage of the X-axis differential amplifier 25 and the Y-axis differential amplifier 26 is converted into a magnet deviation - the X-axis and the Y of the origin 透过 through a type of ratio/digital conversion unit 31 and a formula conversion unit 32. The component on the axis. Wherein the above-mentioned origin 〇 is that the output value of the X-axis differential amplifier 25 is zero and the output value of the γ-axis differential amplifier 26 is also output to zero. It can be known from the above operation principle that if the conventional magnetic induction pointing device is to correctly convert the magnet movement 4 into a pointing transfer number, the following conditions must be met: 1) The magnetic-electrical dependence relationship of each magnetic-electrical converter must be the same; The direction of current applied to each pair of magneto-electric converters shall be symmetric with the direction of the magnetic dipole of the magnet; 3) each pair of magneto-electric converters shall be symmetrically equidistant; and most importantly, 4) When the magnet is applied to the magnet, the magnet tissue should be placed at the center of the two pairs of magneto-electric converters, that is, the origin. 201042528 In order to convert the position of the magnet, the center of the position of the two pairs of magneto-electric converters should be at the origin G. Thus, the x-axis differential amplifier 25 and the Y-axis differential amplifier 26 are input (4). The minus 'can' divide the X-axis component and the Y-axis component of the position where the thief is located. However, during the installation process, these magnetic-to-electrical converters may have some unpredictable insertion angles, or some deviations in positional arrangement, and the result is as shown in Fig. 1 The origin 〇χ is different from the original 'point Oy' of the Υ axis. It is clear that if the origin of the χ axis and γ pumping is not the job set by the secret, the signal output by the χ axis amplifier 25 and the 差 axis differential amplification H 26 cannot normally represent the position of the magnet. The weight of the. Ah, the pointing control signal representing the magnet deviating from the origin will continue to be sent without the magnet being stressed. The above abnormal recording can be used in the case of Tonglin, _, even in the normal state of the magnetic induction pointing device, after a period of use, the magnet will not return to the state without force. Go to the origin 〇 'Let the magnetic money point to the device and then be correctly. The purpose is that the magnetic induction pointing device mostly uses an outer side of the magnet to cover an elastic body to provide the spring recovery force after the force is applied, and the elastic structure of the elastic body will vary with the length of use, the number of times of knowing, The change in the temperature difference between the sun and the sun produces a lot of fatigue or structural fragility. Once the elastic body is fatigued or the structure is brittle, the most important contact force of the traditional fine device towel can no longer be provided, and the magnetic money pointing device can be directly sent out to represent the deviation from the origin Q. The error signal 'forcing the rhyme should point to the device's electronic product early termination of the product life 5 201042528 life. Therefore, in the pointing device disclosed in U.S. Patent No. 7,187,360, it is no longer necessary to determine whether the magnet moves by a single origin, but whether the magnet is defined by a circle of a constant radius. Eccentric movement. As shown in Figure 2, the non-detection area on the technical map ((10) This is the shed 11 field of the magnet origin, that is, as long as the magnetic_fine position is in the non-detection area, control The circuit will not send a pointing control signal to avoid various center position deviations during the assembly process to reduce the yield of the product. However, the above-mentioned US Patent No. 7,187, 360 only relies on the sensitivity of the product to reduce the risk of the product. Error, #The radius is used to set the range of the test area, and the product yield is improved. At the same time, the pointing device also loses a small range of pointing sensitivity. The radius of the social and slave is also only in the case of the force applied by the device. The generation of the pointing movement 峨' does not completely solve the real problem caused by the origin eccentricity. Taking the example of Fig. 3, if the magnet is in the unstressed condition, the actual center position is located at the mark ,', and the magnetic-f conversion n The position of the origin of the towel has an eccentric displacement B00'; when the magnet is forced to move to the west, the time (vector M0,) 'the magnetic sensing pointing device outputs - the starting point q Wrong direction That is, the movement to the northwest (vector M〇). It is obvious that the real direction (vector M0,) and the output direction (vector 刖) do not differ much when the moving distance is long; however, it is small When the range is moved, the actual movement and the output result are very different, so the traditional magnetic discrimination pointing device cannot apply the pointing input of the 201042528 to the small range. From the above, even if it is the above-mentioned _ listening mode, the sacrifice is small. The range-oriented movement sensitivity is to improve the product yield of the magnetic induction pointing device, but it only suppresses the occurrence of the error signal under the unapplied force. For serious direction determination problems, it can only be abandoned (refer to Figure 3). Why, most of the magnetic induction devices are only suitable for directional insensitive systems, avoiding the old magnetic sensation, pointing to the direction judgment error in the essence of the method. Let the original low power consumption and small volume advantage The magnetic induction pointing device loses its competitiveness and market advantage in the two-dimensional chain index because it gives up the direction and distance sensitivity. So how can Without sacrificing the sensitivity of the magnetic induction pointing device, the occurrence of malfunction is reduced and the problem of origin eccentricity is fundamentally solved, and the product 2 is reduced, the cost is extended, the service life of the device is extended, and the result of environmental protection and superior competitiveness is also achieved. The inventor is striving to achieve the goal. [Summary of the Invention] The main purpose of this month is to completely solve the problems caused by the traditional absolute origin eccentricity with the floating origin concept. Therefore, the present invention proposes a pointing method, which can be used for supervision. The position of the magnet changes with time to determine the position of the magnet when it is stationary, and the relative position of the magnet position relative to the floating origin is pointed when the position of the magnet is changed. Control signal output. Therefore, the pointing method of the present invention includes the following steps: (8) converting the magnetic-electrical turn, the electronic signal generated by the 'inductive magnet is the position of the magnet 7: 201042528; (b) monitoring the position data at the time The difference, and define a movement amount to represent the position of the above magnet in the -time interval Λί Degree of movement (6) if the amount of movement is greater than - the movement ugly value Tiw_ exchanges the bribe to the control signal, and conversely, the axis is the stationary period; and (the wheel is stationary: continues to occur and forms - the stationary period Tstatk, and the duration of the stationary period is greater than - When returning to zero time, the data from the position in the static ▲ period is converted into a miscellaneous ray, which is the difference between the position of the magnet and the floating origin. A further object of the present invention is to output the movement of the magnet over time to provide direction and distance sensitivity that cannot be achieved under conventional absolute coordinates, which comprises the following steps: (8) converting magnetic_electrical conversion_should-magnet generated The electronic signal is the position data representing the magnet; (b) monitoring the difference in time of the position data, and deducing a movement amount representing the positional relocation of the magnet in a time interval; and (6) if the amount of movement The greater than - the moving threshold THmove ' converts a displacement data to the above-mentioned pointing control signal, wherein the displacement data represents a displacement of the magnet in a time interval. In addition, the present invention also proposes an application of the above The pointing device of the pointing method includes: a housing having an open area, a sliding unit, a sensing unit, a control unit, and an analog/digital converter connecting the sensing unit and the miscellaneous unit. Each of the above units and converters are housed in the housing. At the same time, the control unit has a variable debt detector, a relative coordinate conversion 201042528 -=: 11 machine, - origin calculator, and - wheel person / wheel out component. The 'moon movement early 70 is the operation phase and the sleeve is attached to the elastic member outside the miscellaneous piece. In addition, the upper end of the operation member is the force end facing the opening area of the housing, and the lower end is the permanent magnet end orientation. The sensing unit. In this way, the control unit can know the position of the permanent magnet end through the magneto-electric signal of the sensing, and convert the relative position of the permanent magnet end riding-floating origin to the control signal output. . Unlike the conventional output with respect to the fine device of the absolute origin, the floating origin is derived from the position of the permanent magnet end in the stationary state, and the judgment of the stationary state is determined by the state machine according to the The amount of change in the permanent magnet end detected over time is known. In order to make the steps and structure of the present invention have a clearer image of the sun, the following is a detailed description of the best implementation. [Embodiment] As described above, the present invention is a floating origin concept, and the relative position between the conventional direct output magnet and the absolute origin is different. Therefore, the position of the magneto-electric converter can be sensed as long as it can sense the magnet. It can be, and is not limited to, the traditional X-axis and γ-axis symmetric arrangement as shown in Figure i. For T to monitor the difference in time of the position data Dg(t), a movement amount can be defined from the degree of change of the position information Dg(t) in the -time interval &amp;

Sh(t),例如·代表上述磁鐵在以時間内的移動距離(sh⑴三 |Dg(t)-Dg_)|r)、該距離在X軸上的分量_)三 |Dg(t)-Dg(t-At)|x)、或該距離在γ軸上的分量(sh(t) e 9 201042528 |Dg⑴-Dg(t-At)|y)或上述各量之組合等等。 隨著不同的該移動量定義,判斷上述磁鐵是否移動有關之 移動門檻值THmwe也料麵㈣:冑該雜量為卿)三 |Dg(t)-Dg(t-At)|r) ^ Sh(t〇)=THmove 到時間tG係從該浮動原點移_半徑_範圍;#該移動量為Sh(t), for example, represents the moving distance of the above magnet in time (sh(1) three | Dg(t) - Dg_) | r), the component of the distance on the X axis _) three | Dg(t) - Dg (t-At)|x), or a component of the distance on the γ-axis (sh(t) e 9 201042528 |Dg(1)-Dg(t-At)|y) or a combination of the above amounts, and the like. With the different definition of the movement amount, it is judged whether the moving magnet threshold value THmwe is related to the movement of the magnet (4): 胄 the impurity amount is qing) three|Dg(t)-Dg(t-At)|r) ^ Sh (t〇)=THmove to time tG is shifted from the floating origin _radius_range; #the amount of movement is

Sh0E_&gt;Dg_|x,_)=ΤΗ_可代表上述磁鐵從時間 (=-△__。的娜在X軸上的分量為Li遠;#該移動量%Sh0E_&gt;Dg_|x,_)=ΤΗ_ can represent the above magnet from time (=-△__. The component of Na on the X axis is Li far; #% of movement %

= Pg(t)-Dg(t-At)|y » Sh(t〇)=THmove T 到時間t〇的位移在γ軸上的分量為L2遠。 若該移動量S_TH_時,則定義該時間區間义内為靜 止期,也就是第4A圖所示Sh·在工區_期間,當該靜止 期係連續發生並形成-靜止週期I*,且其連續維持的時間 △T献大於-歸科_ ’勒該段靜止獅内之該位 ^料鮮I_點,伽在該飾量_观_時轉 、相對位置代表上述磁鐵所在位置與該浮動原點之差異 指向控制訊號。 、馬 第从圖中標線S1(灰色虛線)為本發明之第一實施例,當 Sh_TH_e(I區)’此時磁鐵狀態定義為靜止態 ShOTiWn、m區)’此時磁鐵狀態定義為移動㈣。在 ^動態的時間内’該相對位置會被轉換為上述指向控制訊號輪 :該_、點即由該靜止態所維持之靜止周期内的磁鐵位 叶异出來,例如:該浮動原點=〈磁鐵 A ctatip 201042528 第4A圖中標線S2(黑色實線)為本發明之第二實施例,所應 用之指向裝置另有一按壓開關,當該按壓開關被按下時,標線 B(t)為按壓(d〇wn)電位訊號,當該按壓開關未被按下時,標線 B(t)則為未按壓(up)電位訊號。由於,當使用者在按下該按壓 開關時,上述磁鐵有可能會有些微變動,為了避免對移動態的 誤判以及影響靜止週期内的浮動原點運算,此時既不當作移動 態41亦不為靜止態4〇,而是一個按壓態42,代表按壓動作的 產生。 第4A圖中標線S3(灰色實線)為本發明之第三實施例,對於 該移動量的大小分縣加人—高速門檻值取_將_的變 化劃分成三區(I、n、m區):當Shw^TH_e(I區}, 鐵狀態絲為靜止態40 ; # THspeedgShw&gt;TH_e(II區},&amp; 時磁鐵狀態定義為移動態化以及當Sh(t)&gt;THspeed(m區),此 時磁鐵狀態定義為高速移動態43。而且,該相對位置仏與上 述指向控制訊號sig之轉換係符合一預設公式Sig=a*f(d^, 其中A為單位尺度、F為該相對位置^之函數。當上述磁鐵 被判定為機態41時,Sig = A*F⑽,Α=Αι ;若為高速移動 態43時’該單位尺度a會被放大成Αι的倍數&amp;,此時% &gt; A*F(Dr) ’ A=AH。如此’當使用者以較快的速度移動上述磁織 時’就可以得聰大雜跨狀指向控制喊,錢使用者作 快速劉覽或是大量移動視窗的指向動作。 除了以該高速門檻值^叩^作為該相對位置轉換尺度之匈 201042528 斷外,亦可以直接以正比於該移動量之數值轉換該相對位置, 例如Sig - A*K(Dr,Sh)。也就是說,當使用者以較快的速度 移動磁鐵時,自齡放大其指向的喊紐,獲得較大的移動 跨距’而無需要移動速度達職—健度才有調整移動跨距的 功能。 第4B圖中標線S4(黑色虛線)為本發明之第四實施例,與前 二項實施例;ΐ;同岐’對於移祕的騎係觀_斷,也就 是不只根據to時的該移動量還會參考(VAt)時的該移動量來做 判斷’以增加移__可性度,戦偶發料誤判。如第 4B圖中所示的S_)以及Sh⑴分別代表前後期發生的該移 動量’當Sh(t)、Sh_皆落於η區’此時磁鐵才會被定義為 移動態41,其他則為靜止態40。 本發明之指向方法可麵在—妓駐作視窗的游標50移 動上’以第5Α圖所示之磁鐵27移動舉例,該磁鐵27的中心 位置停留於ρ點超過該歸零時間後,該浮動原點則可認定等同 於圖中之Ρ點。當該磁鐵27從中心位置ρ點直線往上移動到 Q點,再由Q點直接往右直線移動到R點時以本發明之第 五實施例舉例,電麟標5〇的移動方向係等同於該磁鐵相對 於#動原點(此時為P點位置)之位移方向也就是說,ρ點 到Q點的磁鐵移動過程呈贴電腦游標移動上,即如第诏 t所示之往上方直線移動標H @ q _ 程呈現在電腦游標移動上,即 .,的移動過 丨如弟犯圖中所示之往右上方直 201042528 - 線移動標線L52。 很明顯的在第五施實例巾,電腦上實際呈現的游標移動方 向與真正磁鐵的移動方向並不相同,尤其是標線L52為一斜向 右上方之移動,與磁鐵從Q點到R點之直線往右明顯不同。= Pg(t)-Dg(t-At)|y » Sh(t〇)=THmove T The displacement of the displacement to time t〇 on the γ-axis is far from L2. If the movement amount S_TH_ is defined, the time interval is defined as a stationary period, that is, the Sh·in the work area_ shown in FIG. 4A, when the stationary period occurs continuously and a stationary period I* is formed, and The continuous maintenance time △T is greater than - 归科 _ 'Lee this part of the static lion inside the material fresh I_ point, gamma in the decoration _ _ _ turn, the relative position represents the location of the magnet and the The difference in floating origin points to the control signal. The horse is shown in the figure as the first embodiment of the present invention. When the Sh_TH_e (I zone) is defined as the stationary state ShOTiWn, the m zone), the magnet state is defined as the movement. (4). In the dynamic time, the relative position is converted into the above-mentioned pointing control signal wheel: the _, the point is the magnet position in the stationary period maintained by the stationary state, for example: the floating origin = 〈 Magnet A ctatip 201042528 The marking line S2 (black solid line) in Fig. 4A is a second embodiment of the present invention, and the pointing device applied has a push switch, when the push switch is pressed, the marking line B(t) In order to press (d〇wn) the potential signal, when the push switch is not pressed, the marked line B(t) is an unpressed potential signal. Therefore, when the user presses the push switch, the magnet may slightly change. In order to avoid misjudgment of the moving state and affect the floating origin operation in the stationary period, neither the moving state 41 nor the moving state is used. It is a static state of 4 〇, but a pressed state 42 representing the generation of a pressing action. The marking line S3 (grey solid line) in Fig. 4A is the third embodiment of the present invention, and the change of the amount of the moving amount is divided into three areas (I, n, and the change of the high speed threshold value _ _ m zone): When Shw^TH_e (I zone}, the iron state wire is in a stationary state 40; #THspeedgShw&gt;TH_e (II zone}, & the magnet state is defined as the mobility state and when Sh(t)&gt;THspeed( In the m region), the state of the magnet is defined as the high-speed moving state 43. Moreover, the conversion between the relative position 仏 and the pointing control signal sig conforms to a preset formula Sig=a*f(d^, where A is a unit scale, F is a function of the relative position ^. When the above magnet is judged to be in the state 41, Sig = A*F(10), Α = Αι; if it is in the high-speed moving state 43, the unit scale a is enlarged to a multiple of Αι &;, at this time % &gt; A * F (Dr) ' A = AH. So 'when the user moves the above-mentioned magnetic woven fabric at a faster speed', you can get the Congda multi-span pointing control call, the money user Quick view or a large number of moving window pointing actions. In addition to the high-speed threshold value ^叩^ as the relative position conversion scale of the Hungarian 201042528 break, The relative position can be directly converted by a value proportional to the amount of movement, such as Sig - A*K (Dr, Sh). That is, when the user moves the magnet at a faster speed, the self-aged magnifies the pointing New, to obtain a larger moving span' without the need to move speed up to the job - the degree of fitness has the function of adjusting the moving span. The marking line S4 (black dotted line) in Fig. 4B is the fourth embodiment of the present invention, The first two embodiments; ΐ; 岐 岐 ' 对于 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移 移_ability, 戦 发 发 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 It will be defined as the moving state 41, and the rest will be the stationary state 40. The pointing method of the present invention can be applied to the movement of the cursor 50 of the window, as shown by the movement of the magnet 27 shown in Fig. 5, the magnet 27 After the center position stays at the point ρ and exceeds the zero return time, the floating origin can be regarded as equivalent to the map. When the magnet 27 moves straight from the center position ρ point upward to the Q point, and then moves straight from the Q point to the right to the R point, the fifth embodiment of the present invention is exemplified, and the moving direction of the electric lining 5 〇 Equivalent to the displacement direction of the magnet relative to the #-origin (in this case, the P-point position), that is, the movement of the magnet from ρ to Q is applied to the movement of the computer cursor, that is, as shown in FIG. The upper linear movement mark H @ q _ is presented on the movement of the computer cursor, that is, the movement of the line is as shown in the figure to the upper right of the line 201042528 - the line moves the line L52. Obviously, in the fifth embodiment towel, the moving direction of the cursor actually displayed on the computer is not the same as the moving direction of the real magnet, especially the moving line L52 is a diagonally upward rightward movement, and the magnet is from the Q point to the R point. The line is obviously different to the right.

因此,在本發明之第六實施例中,除了可呈現如上述第5B 圖之電腦游標移動外,磁鐵的移動軌跡也同樣可以被真實的呈 現出來。也就是說在移動態下,除了轉換出上述磁鐵相對於該 D 浮動原點的相對位置外,上述磁鐵從時間(t〇_At2)到時間^的位 移(displacement)資料也會被轉換成指向控制訊號,而該位移資 料將可代表上述磁鐵的移動軌跡的分段資料,也就是說每一個 時間t〇所輸出之移動向量並不是以該浮動原點為準,而是以時 間(t0-At2)之磁鐵位置為準。如此,第5A圖中移動的磁鐵軌跡 便能真實的被轉換為第5C圖中所示之標線L53以及標線 ) L54’而Q點到R點的直線往右磁鐵運動就不致於呈現出如第 5B圖所示的往右上方偏移的標線L52。在第六實施例中,磁 感應指向裝置將顛覆舊有磁感應指向裝置的應用產品,並得以 擴展至各種精密之指向系統中,例如:圖形描繪系統、地圖導 航系統等等,滿足一般磁感應指向裝置所無法達到的軌跡移動 功能。 本發明指向方法實施時,該移動門檻值並不限定為固定數 值,亦可隨著上述靜止態或移動態作變動,以配合實際操作時 可能發生之狀況。例如:當該磁鐵已在移動態時,該移動門檻 13 201042528 值THmove可從在靜止態時的第一預設值調到數值略低之第二 預设值,用以在移動態時提供較高之靈敏度;亦可以當該磁鐵 移動到較外圍或是特定區域時,改變該移動門植值的設定,以 配合該區域附近之磁_電轉換器之磁_電相依性、或是磁感應指 向裝置的硬體條件(例如:彈性體的彈性係數等等)。 本發明之指向裝置係應用上述指向方法之磁感應指向裝 置’以第6A圖所示之第七實施例,該指向裝置係包括:一殼 體(housmg)lO ;以及設置於該殼體1〇内之一滑動單元η、一 ^ 感應單it 14控制單元丨5以及連接該感應單元μ與該控 制單元15之一類比/數位轉換器〖Η。 其中’該殼體10具有一開口區101以及一支樓部I2設置 於該開口區1G1的下方’而該滑動單元11係設置於該支撐部 12上。該滑動單元係由一操作件ιη(如第6八圖所示之粗框線 内之區域)以及-套附於該操作件ln外侧之彈性件112所組 成,且該操作件m之上端為受力端肋朝向該開口區⑻,t 其下端為永久磁鐵端lllb朝向該感應單it 14,同時,該操作 件111係透過外側之該彈性件112設置於該支擇部^上。 β當該受力端llla受到移動推力時,該彈性件112可支職 操作件111跟著作動’並在該力道消失時提供彈性回復力使气 操作件m大致回復到施力前的位置。本發明之指向裝置之= 點在於:即使在作件lu在力道、;_賴_施力前之 ^置寺仍然可以正常運作不會輪出誤動作之訊號,也不會有 14 201042528 . 原點偏心導致的方向誤判。 為了债測鋪作件U1的義,於賴動單元n的下方為 該感應單元14,其至少包括有:兩個磁_電轉換器14卜142, 並设置於該永久磁鐵端lllb的下方附近。該磁電轉換器⑷、 142可產生所通過的磁通量大小之對應電子訊號,並透過該類 比/數位轉換器151將類比式該電子訊號轉換為數位資料交由 〇 該控鮮元15進行資料分析。崎控制單元15係包括:-變 動制器152、一相對座標轉換器153、-狀態機155、-原 點計算器156、及一輸入輸出元件154。 其中’该變動偵測器152係偵測該數位資料隨時間的變動, 該相對座標轉換器I53係計算出該永久磁鐵端⑽與一浮動 原點的相齡置’而該狀賴155可根_變社小決定該操 作件m的操作狀態。若為移動態,該控制單元15便藉由該 〇 輸人輸出元件154輸出該相雜置_之指向㈣訊號;若為 靜止態,該原點計算器156則會根據靜止態的維持時間重新定 義該浮動原點。 故本發明與傳統使用絕對原點不同,該原點計算器156 會隨時根雜止_航魏該浮,取岐該操作件 U1在力道消失後並未回到未施力前的原始位置,輸出的指向 控制訊號也不會有原點偏心與方向誤判的情形出現。 除此之外,該按壓開關16可置於該滑動單元u的下方, 接收該操作件m向下移動之觸發並與該控制單元15電性連 15 201042528 接’以提供除了移動操作之外的按壓輸入選擇。本發明之指向 裝置還可再包括:—軌跡計算器(未顯示於圖中),接收該數位 資料用以4鼻出_位移資料代表該永久磁鐵端mb在一時 間區間处内之位移(displaeement),並觸發該輸入/輸出元件⑼ 以轉換該位移資料為指向控制訊號。 而该感應單元14、該類比/數位轉換器15卜以及該控制單 一 實把時,至少其一可以作在同一塊印刷電路板上、或是 更可以做在同-顆IC中或單—晶圓陶上,感應單元Μ中 的该磁·電轉換n 14卜142可以是㈣元件(Hallde_t)、或 是霍爾元件再包含若干放大如及差動放大H特,該控制單 元15也可以包括:一微控制器(MCU)、或是一中央處理器(cpu) 以及其韌體。而該類比/數位轉換器151可獨立製作、可與該 控制單元15作在同—顆1C或單—晶圓上、亦可與該感應單元 14作在同一顆ic或單一晶圓上使類比訊號的線路不會穿越數 位邏輯的電路,避免線路噪音的干擾。 上述實施例與圖式為應用本發明構想之舉例,並不因此侷 限本發明之專職圍’任何依本發明構想延伸_或修錦改 變,在不脫離本發明之等效作用下,均應包含在本發明之權力 範圍内,合予陳明。 【圖式簡單說明】 第1圖係為傳統磁感應指向裝置感應磁鐵位置之電路說明圖。 第2圖係為傳統磁感應指向裝置設定一原點範圍說明圖。 16 201042528 帛3 _為原點偏移造成的方向誤判示意圖。 第4A圖係為本發明之第一 第、第二、第三實施例之狀態結果圖。 第4B圖係為本發明之第四實施例之狀態結果圖。 第5A圖係為本發明之磁鐵在p、q、r點的移動示意圖。 第犯圖係為第5A圖的移動在第五實施例中游標移動之示意 圖。 。 帛5C祕為帛5A騎飾在帛六實侧巾雜移動之 ’圖。 第6A圖係為本發明之第七實施例結構示意圖。 第6B圖係為第6A圖中感應單元與控制單元之示意圖。 【主要元件符號說明】 20 :第1圖上原點之插圖說明 21 · X軸一端之磁-電轉換器 &gt; 22: X軸另一端之磁-電轉換器 23 : γ軸一端之磁_電轉換器 24 : γ軸另一端之磁_電轉換器 25 · X軸差動放大器 26 : Y軸差動放大器 31 :類比/數位轉換單元31 32 :公式轉換單元32 0:裝置設定之原點 0x : X軸磁-電轉換器的中央原點 17 201042528 0y : Y軸磁-電轉換器的中央原點 201 :非偵測區 0’ :磁鐵在未受力的中心位置’ Β00’ :裝置設定之原點與實際原點之間的位移 Γ:磁鐵受力移動後的位置 M0 :相對於裝置設定原點之位移 M0’ :相對於未受力狀態下原點之位移 40:靜止態 41:移動態 42:按壓態 43 :高速移動態 51 :第一實施例之狀態演變 52 :第二實施例之狀態演變 53 :第三實施例之狀態演變 54 :第四實施例之狀態演變 Tstatic :靜止週期 t :時間軸 I :移動量STHmQve II : THspeed2 移動量&gt;THm()ve III :移動量〉THspeed Sh(t):移動量 THm()ve :移動門楹值 THspeed :高速門檻值 B⑴:按壓訊號 18 201042528 . Up :未按壓之電位Therefore, in the sixth embodiment of the present invention, in addition to the movement of the computer cursor as shown in the above 5B, the movement trajectory of the magnet can also be realistically presented. That is to say, in the moving state, in addition to converting the relative position of the magnet relative to the D floating origin, the displacement data of the magnet from time (t〇_At2) to time ^ is also converted into a pointing. Controlling the signal, and the displacement data will represent the segmentation data of the moving track of the magnet, that is, the motion vector outputted at each time t〇 is not based on the floating origin, but in time (t0- The magnet position of At2) shall prevail. Thus, the moving magnet track in Fig. 5A can be truly converted into the reticle L53 and the reticle L54' shown in Fig. 5C, and the straight line moving from the Q point to the R point to the right magnet does not appear. A line L52 offset to the upper right as shown in Fig. 5B. In the sixth embodiment, the magnetic induction pointing device will subvert the application product of the old magnetic induction pointing device, and can be extended to various precise pointing systems, such as a graphic drawing system, a map navigation system, etc., to satisfy the general magnetic induction pointing device. Unreachable track movement function. When the pointing method of the present invention is implemented, the value of the moving threshold is not limited to a fixed value, and may also be changed according to the static state or the moving state to match the situation that may occur during actual operation. For example, when the magnet is in the moving state, the moving threshold 13 201042528 value THmove can be adjusted from the first preset value in the stationary state to the second preset value whose value is slightly lower, to provide a comparison in the moving state. High sensitivity; when the magnet moves to a relatively peripheral or specific area, the setting of the moving gate value is changed to match the magnetic-electrical dependence of the magnetic-electrical converter near the area, or the magnetic induction pointing The hardware condition of the device (for example: the elastic modulus of the elastomer, etc.). The pointing device of the present invention is a magnetic induction pointing device using the above pointing method. The seventh embodiment shown in FIG. 6A includes: a housing (housmg) 10; and is disposed in the housing 1 One sliding unit η, one sensing single unit 14 control unit 丨5, and an analog/digital converter connecting the sensing unit μ and the control unit 15 Η. The housing 10 has an open area 101 and a floor portion I2 disposed below the open area 1G1, and the sliding unit 11 is disposed on the support portion 12. The sliding unit is composed of an operating member (such as an area in the thick frame line shown in FIG. 8) and an elastic member 112 attached to the outer side of the operating member ln, and the upper end of the operating member m is The receiving end rib faces the opening area (8), and the lower end thereof has a permanent magnet end 11lb facing the sensing unit 14 and the elastic member 112 of the operating member 111 is disposed on the receiving portion. When the force receiving end 111a is subjected to the moving thrust, the elastic member 112 can support the operating member 111 and actuate 'and provide an elastic restoring force when the force path disappears to substantially return the air operating member m to the position before the force application. The point of the pointing device of the present invention is that even if the working piece is in the force road, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The direction caused by eccentricity is misjudged. In order to measure the meaning of the U1, the sensing unit 14 is disposed below the sensing unit n, and includes at least two magnetic-electrical converters 14 142 disposed adjacent to the lower end of the permanent magnet end 11lb. . The magnetoelectric converters (4) and 142 can generate corresponding electronic signals of the magnitude of the magnetic flux passed, and convert the analog electronic signals into digital data through the analog/digital converter 151 for data analysis by the control unit 15. The control unit 15 includes: - a changer 152, a counter coordinate converter 153, a state machine 155, an origin calculator 156, and an input and output element 154. Wherein the change detector 152 detects the change of the digital data over time, and the relative coordinate converter I53 calculates the phase of the permanent magnet end (10) and a floating origin. _Change the small to determine the operating state of the operating member m. If it is in the mobile state, the control unit 15 outputs the pointing (four) signal of the phase miscellaneous_ by the input device 154; if it is in the stationary state, the origin calculator 156 re-establishes the time according to the stationary state. Define the floating origin. Therefore, the present invention is different from the conventional use of the absolute origin, and the origin calculator 156 will stop at any time. The navigation device U1 does not return to the original position before the force is applied after the force path disappears. The output pointing control signal does not appear in the case of origin eccentricity and misjudgment of direction. In addition, the push switch 16 can be placed under the sliding unit u to receive the trigger of the downward movement of the operating member m and electrically connected to the control unit 15 to provide a function other than the moving operation. Press the input selection. The pointing device of the present invention may further comprise: a trajectory calculator (not shown in the figure), and receiving the digital data for 4 nose out _ displacement data representing the displacement of the permanent magnet end mb in a time interval (displaeement And triggering the input/output component (9) to convert the displacement data to point to the control signal. When the sensing unit 14, the analog/digital converter 15 and the single control unit are controlled, at least one of them can be used on the same printed circuit board, or can be made in the same IC or single crystal. On the dome, the magnetic/electrical conversion n 14 142 in the sensing unit 可以 may be a (four) component (Hallde_t), or the Hall element may further include a plurality of amplifications and differential amplifications H, and the control unit 15 may also include : A microcontroller (MCU), or a central processing unit (CPU) and its firmware. The analog/digital converter 151 can be independently fabricated, can be compared with the control unit 15 on the same 1C or single-wafer, or can be analogized with the sensing unit 14 on the same ic or single wafer. The signal line does not traverse the digital logic circuit to avoid line noise interference. The above embodiments and the drawings are examples of the application of the present invention, and are not intended to limit the scope of the present invention. Any changes or modifications of the present invention should be included without departing from the equivalents of the present invention. Within the scope of the present invention, Chen Ming is incorporated. [Simple description of the drawing] Fig. 1 is a circuit diagram showing the position of the induction magnet of the conventional magnetic induction pointing device. Fig. 2 is an explanatory diagram of setting an origin range for a conventional magnetic induction pointing device. 16 201042528 帛3 _ is a schematic diagram of the direction misjudgment caused by the origin offset. Fig. 4A is a view showing the state of the first, second, and third embodiments of the present invention. Fig. 4B is a view showing the state of the fourth embodiment of the present invention. Fig. 5A is a schematic view showing the movement of the magnet of the present invention at points p, q, and r. The first map is a schematic diagram of the movement of the cursor in the fifth embodiment in the movement of Fig. 5A. .帛 5C secret is 帛 5A riding in the 帛 six real side towel movement ‘ map. Fig. 6A is a schematic structural view of a seventh embodiment of the present invention. Figure 6B is a schematic diagram of the sensing unit and the control unit in Figure 6A. [Explanation of main component symbols] 20: Illustration of the origin on the first diagram 21 • Magnetic-electric converter at one end of the X-axis > 22: Magneto-electric converter at the other end of the X-axis 23: Magnetic _ at the end of the γ-axis Converter 24: Magnetic-to-electrical converter 25 at the other end of the γ-axis; X-axis differential amplifier 26: Y-axis differential amplifier 31: Analog/digital conversion unit 31 32: Formula conversion unit 32 0: Origin of device setting 0x : Center origin of X-axis magneto-electric converter 17 201042528 0y : Center origin of Y-axis magneto-electric converter 201: Non-detection area 0': Magnet at unstressed center position ' Β00' : Device setting The displacement between the origin and the actual origin Γ: the position of the magnet after the force is moved M0: the displacement M0' relative to the origin of the device: the displacement of the origin relative to the unstressed state 40: the stationary state 41: Moving state 42: Pressed state 43: High speed moving state 51: State evolution of the first embodiment 52: State evolution of the second embodiment 53: State evolution of the third embodiment 54: State evolution of the fourth embodiment Tstatic: Still Period t: Time axis I: Movement amount STHmQve II : THspeed2 Movement amount> THm()ve III : Movement Quantity>THspeed Sh(t): movement amount THm()ve: movement threshold THspeed: high-speed threshold B(1): pressing signal 18 201042528 . Up : unpressed potential

Down :按壓之電位 P:磁鐵從靜止開始移動之起始點 Q:磁鐵向上又向右之轉折點 R:磁鐵往右之終點 L51 :第五實施例中的游標路線 L52 :第五實施例中的游標路線 〇 L53 :第六實施例中的游標路線 L54 :第六實施例中的游標路線 50:游標 10:殼體 101:開口區 11 :滑動單元 111:操作件 111a:受力端 111b:永久磁鐵端 112 :彈性件 12 :支撐體 Amplifier :放大器 ® 14 :感應單元 141 :磁-電轉換器142 :磁-電轉換器 15:控制單元 16:按壓開關 151: A/D轉換器 152 :變動偵測器 153 :相對座標轉換器154 : I/O元件 155 :狀態機 156 :原點計算器 19Down: the potential P of the pressing: the starting point of the movement of the magnet from the stationary position Q: the turning point of the magnet upward and the rightward R: the end point of the magnet to the right L51: the cursor path L52 in the fifth embodiment: in the fifth embodiment Cursor route 〇L53: vernier route L54 in the sixth embodiment: vernier route 50 in the sixth embodiment: vernier 10: housing 101: open area 11: sliding unit 111: operating member 111a: force end 111b: permanent Magnet end 112: Elastic member 12: Support body Amplifier: Amplifier® 14: Induction unit 141: Magneto-electric converter 142: Magneto-electric converter 15: Control unit 16: Press switch 151: A/D converter 152: Change Detector 153: Relative coordinate converter 154: I/O component 155: State machine 156: Origin calculator 19

Claims (1)

201042528 七、申請專利範圍: i 一種指向方法’用以將磁-電轉換器感應一磁鐵磁場強度所產 生之電子訊號轉換為指向控制訊號,其係包括以下步驊: (a)透過一類比/數位轉換器,轉換該電子訊號為代表上述磁鐵 所在之位置資料; (b)監控該位置資料在時間上之差異,並定義出一移動量%以 代表上述磁鐵在一時間區間At内之位置移動程度; (0若該移動量Sh大於-移動門檻值ΤΗ_,則轉換一相對位 置Dr為上述指向控制訊號sig,反之,則定義該時間區間以為 靜止期;以及 ⑼若該靜止親輕生並縣—靜止職w,且該靜止週 期所維持的時間ΔΤ驗大於一歸零時間時,則由該靜止週期 内的該位置資料換算出—浮動原點,其中,該相對位置 Dr係代表上述磁鐵所在位置與該浮動原點之差異。 2.如申請專利第丨項所述之指向方法,其中,該移動門捏值 THmove係參考上述磁鐵受力經過該時間區_後與該 點間的距離。 、 :·如申請專利第1項所述之指向方法,其中,該移動門檻值 職係參考上賴齡力、__間 點間的距離在m⑽心。 剩 4·如申請專利第3項所述之指向方法 ΤΗ ^ Λ 食具中,该移動門檻值 糸又參考該距離在—第二方向上之位移分h,且該第 20 201042528 . 二方向係垂直於該第一方向。 5. 如申請專利第1項所述之指向方法,其步驟(C)中,係指該移 動量Sh持續大於該移動門檻值THmwe。 6. 如申請專利第1項所述之指向方法,其中,該相對位置Dr 與上述指向控制訊號Sig之轉換係符合一預毁公式沿呂 A*F(Dr),且A為單位尺度、F為該相對位置以之函數。 ❹ 7.如申請專 1項所述之指向方法,其中,該相對位置Dr 與上述指向控制訊號Sig之轉換係符合一預設公式別窑二 A*K(Dr’ Sh) ’且A為單位尺度、κ為該姉位置w及該移動 量Sh之函數。 8’如申μ專利第6項所述之指向方法,包括以下步驟:若該移 動! Sh大於-高速門檻值ΤΗ_,則放大該預設公式中單位尺 度Α的倍數,且THspeed&gt;TH_e。 〇 9.如申請專利第1項所述之指向方法,其中,該移動門檻值並 非為固定值,喊隨著獨社述磁麵餘置做調整。 10. 如申請專利第9項所述之指向方法,包括以下步驟:若為 靜止期,則令該移動門檻值為一第一預設值,反之,則令該移 動門檻值為一第二預設值。 11. -種指向方法’用以將磁-電轉換器感應一磁鐵磁場強度所 產生之電子訊號轉換為指向控觀號,其係包括以下步驟: (a)透過-類比/數位轉換器,轉換該電子訊號為代表上述磁鐵 所在之位置資料; 21 201042528 ⑼監控該位置資料在時間上之差異,並定義出—移動量幼以 代表上述磁鐵在一時間區間却内之位置移動程度;以及 ⑹若該移動量大於-移動門触m_e,則轉換一位移資料 為上述指向_訊號,其f,触移m代表上述磁鐵在一時 間區間处内之位移(displacement)。 12. 一種指向裝置,其係包括: 殼體(h_ig) ’具有—開口區以及—支撐部設置於 的下方; 一滑動單元’具有-操作件以及—彈性件套附於該操作件外 側,其中,該操作件的上端為受力端朝向該開口區以及下端 為水久磁鐵端’而且該操作件係以該彈性件設置於該支撐部 -感應單it ’設置於該滑動單摘下方的殼體内,具有至少 兩個磁-電轉換器用以感應該永久磁鐵端發射出的磁場,以產 生相應之類比式電子訊號; 一類比/數位轉換器,設置於該滑動單_下方的殼體内,並 魏該感鱗元產生之鶴喊電子峨_換輸出為數位 資料;以及 控制單兀’设置於該滑動單元的下方的殼體内,具有一變 動偵測器_該數位資料在時間上的變動、一相對座標轉換 輯算該永久磁鐵端相對於—浮動原點的相對位置、一狀態 機至少根據該數位資料的變動以辨識該永久磁鐵端的狀態、 22 201042528 一原點計算器接收該狀態機觸發以計算該浮動顧、及—輸 入/輪出元件接收該織機觸發以轉換該相對位置為—指向^ 制訊號。 &amp; 如申請專利第12項所述之指向裝置,又包括:—按麗開關, 設置於該滑鮮元的下方,並與該控鄉元電性連接。201042528 VII. Patent application scope: i A pointing method 'converts the electronic signal generated by the magneto-electric transducer to the magnetic field strength of a magnet to a control signal, which includes the following steps: (a) through an analogy/ a digital converter that converts the electronic signal to represent the position data of the magnet; (b) monitors the difference in time of the position data, and defines a movement amount % to represent the positional movement of the magnet in a time interval At Degree; (0 if the movement amount Sh is greater than - the movement threshold ΤΗ _, then the conversion of a relative position Dr is the above-mentioned pointing control signal sig, otherwise, the time interval is defined as a stationary period; and (9) if the stationary pro-light is a county - When the stationary position w, and the time Δ maintained by the stationary period is greater than a return-to-zero time, the floating position is converted from the position data in the stationary period, wherein the relative position Dr represents the position of the magnet. 2. The difference from the floating origin. 2. The pointing method according to the above application, wherein the moving door pinch THmove is referenced The distance between the magnet and the point after the time zone _, and the pointing method according to the first aspect of the patent application, wherein the mobile threshold value is based on the relationship between Lai Lingli and __ The distance is in the heart of m (10). Remaining 4 · The pointing method as described in claim 3 ΤΗ ^ 食 In the utensil, the moving threshold value refers to the distance in the second direction, the displacement is h, and the 20 201042528. The two directions are perpendicular to the first direction. 5. The pointing method according to claim 1, wherein in the step (C), the moving amount Sh is continuously greater than the moving threshold THmwe. The pointing method of claim 1, wherein the conversion between the relative position Dr and the pointing control signal Sig conforms to a pre-destruction formula along the line A*F(Dr), and A is a unit scale, and F is the The relative position is a function of the method. ❹ 7. The pointing method according to the application item 1, wherein the relative position Dr and the conversion of the pointing control signal Sig are in accordance with a preset formula: kiln two A*K (Dr' Sh ) 'and A is the unit scale, κ is the 姊 position w and the movement amount Sh 8' The pointing method according to claim 6, comprising the steps of: if the moving! Sh is greater than - the high speed threshold ΤΗ _, then multiplying the multiple of the unit scale Α in the preset formula, and THspeed > TH_e. 〇9. The pointing method according to claim 1, wherein the moving threshold is not a fixed value, and the adjustment is made according to the remaining information of the magnetic surface. 10. The pointing method includes the following steps: if it is a stationary period, the moving threshold value is a first preset value, and conversely, the moving threshold value is a second preset value. 11. A kind of pointing method is used to convert an electronic signal generated by a magnetic-to-electrical converter to induce a magnetic field strength of a magnet into a pointing point, which comprises the following steps: (a) trans- analog/digital converter, conversion The electronic signal is representative of the position of the magnet; 21 201042528 (9) monitor the difference in time of the position data, and define - the amount of movement to represent the position of the magnet in a time interval; and (6) if If the amount of movement is greater than - moving the door contact m_e, then converting a displacement data to the above-mentioned pointing_signal, f, the shifting m represents a displacement of the magnet in a time interval. 12. A pointing device, comprising: a housing (h_ig) having an opening area and a support portion disposed below; a sliding unit having an operating member and an elastic member sleeve attached to the outside of the operating member, wherein The upper end of the operating member has a force receiving end facing the opening area and the lower end is a water long magnet end 'and the operating member is disposed on the supporting portion with the elastic member - the sensing unit is disposed under the sliding single pick In the body, there are at least two magneto-electric converters for sensing a magnetic field emitted from the permanent magnet end to generate a corresponding analog electronic signal; a analog/digital converter disposed in the housing below the sliding single_ And Wei Wei feels that the crane generated by the scales is called the electronic 峨 _ exchange output for digital data; and the control unit 兀 is placed in the housing below the sliding unit, with a change detector _ the digital data in time The change, a relative coordinate conversion calculates the relative position of the permanent magnet end relative to the floating origin, and a state machine recognizes the state of the permanent magnet end based at least on the change of the digital data 22 201042528 An origin calculator receives the state machine trigger to calculate the floating gate, and the input/rounding component receives the loom trigger to convert the relative position to a pointing signal. &lt; The pointing device according to claim 12, further comprising: - pressing the switch, disposed under the sliding element, and electrically connecting with the control unit. 14. 如申請專利第12項所述之指向裝置又包括:一執跡計算 器接收該數位·,用以計算出—位移資料代表該永久磁鐵端 在一時間區間处内之位移(displacement),以及觸發該輪入/輸出 元件以轉換該位移資料為一指向控制訊號。 15. 如申請專利帛12項所述之指向裝置,其中,該感應單元、 該類比/數位轉換器以及該控制單元中,至少其二係整合在同一 片晶圓(die)上。 16. 如申請專利第12項所述之指向裝置,其中,該控制單元係 包括:一微控制器(MCU)。 17. 如申請專利第12項所述之指向裝置,其中,該控制單元係 包括:一微處理器(CPU)。 2314. The pointing device of claim 12, further comprising: a tracking calculator receiving the digit, for calculating that the displacement data represents a displacement of the permanent magnet end within a time interval, And triggering the wheel input/output component to convert the displacement data into a pointing control signal. 15. The pointing device of claim 12, wherein at least two of the sensing unit, the analog/digital converter, and the control unit are integrated on a same die. 16. The pointing device of claim 12, wherein the control unit comprises: a microcontroller (MCU). 17. The pointing device of claim 12, wherein the control unit comprises: a microprocessor (CPU). twenty three
TW98117888A 2009-05-27 2009-05-27 Pointing method and device TW201042528A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW98117888A TW201042528A (en) 2009-05-27 2009-05-27 Pointing method and device
US12/787,233 US8289278B2 (en) 2009-05-27 2010-05-25 Pointing device and method of enabling a pointing device to generate a control signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98117888A TW201042528A (en) 2009-05-27 2009-05-27 Pointing method and device

Publications (1)

Publication Number Publication Date
TW201042528A true TW201042528A (en) 2010-12-01

Family

ID=45000586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98117888A TW201042528A (en) 2009-05-27 2009-05-27 Pointing method and device

Country Status (1)

Country Link
TW (1) TW201042528A (en)

Similar Documents

Publication Publication Date Title
CN203149513U (en) Touch screen panel
Cheng et al. Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers
JP2012518833A5 (en)
US10508897B2 (en) Magnet device and position sensing system
CN206862277U (en) A kind of Novel Non-Contact Type Hall Displacement Sensor
WO2010146580A1 (en) Finger-operated input device
CN102652300A (en) System and method for measuring individual force in multi-object sensing
KR101484916B1 (en) A digitizer improving the accuracy in positioning
CN101226449A (en) Capacitive sensing and absolute position mapping in displacement type pointing devices
TWI493308B (en) Position detector and position detection method
US20060290665A1 (en) Slide pad notebook pointing device with sealed spring system
JP2013008314A (en) Operation terminal
CN114593668B (en) Motion data detection circuit, detection device and detection system
CN104081162B (en) Control device and method for operating a control device
TW201042528A (en) Pointing method and device
CN114148840A (en) Elevator air key implementation method and system based on 3D sensor
CN113710997B (en) Magnetic sensing system, detection device and magnetic interference biasing method
JP2012098190A (en) Rectilinear displacement detector
CN207487695U (en) Sliding sense touch sensor
CN116610211A (en) Finger state sensing glove based on magneto-sensitive sensor
CN207571719U (en) touch panel, device and terminal
JP6719756B2 (en) Body part contact force sensor
CN115265605A (en) Sensor circuit and motion data detection device
CN103534948A (en) Capacitive sensor and method for detecting a number of objects
JP2009204331A (en) Position detection magnetic sensor