JP6719756B2 - Body part contact force sensor - Google Patents

Body part contact force sensor Download PDF

Info

Publication number
JP6719756B2
JP6719756B2 JP2017009422A JP2017009422A JP6719756B2 JP 6719756 B2 JP6719756 B2 JP 6719756B2 JP 2017009422 A JP2017009422 A JP 2017009422A JP 2017009422 A JP2017009422 A JP 2017009422A JP 6719756 B2 JP6719756 B2 JP 6719756B2
Authority
JP
Japan
Prior art keywords
contact
force
finger
contact force
body part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017009422A
Other languages
Japanese (ja)
Other versions
JP2018119801A (en
Inventor
アレクサンダー シュミッツ
アレクサンダー シュミッツ
ハリス クリスタント
ハリス クリスタント
ソフォン ソムロア
ソフォン ソムロア
ティト プラドノ トモ
ティト プラドノ トモ
振善 黄
振善 黄
重樹 菅野
重樹 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2017009422A priority Critical patent/JP6719756B2/en
Priority to PCT/JP2018/000726 priority patent/WO2018135416A1/en
Publication of JP2018119801A publication Critical patent/JP2018119801A/en
Application granted granted Critical
Publication of JP6719756B2 publication Critical patent/JP6719756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/169Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using magnetic means

Description

本発明は、測定対象者の指等の身体の部位が所定の物体に直接接触した状態で、当該接触部分に作用する接触力を測定する身体部位接触力センサに関する。 The present invention relates to a body part contact force sensor that measures a contact force acting on a contact part in a state where a part of the body such as a finger of a measurement target person is in direct contact with a predetermined object.

人間の手指を模したロボットハンドに対し、柔らかい物体を掴んで運ぶ動作やボトルキャップを回して開け閉めする動作等、人間の手指の動作と同様の作業をさせる場合に、ロボットハンドに人間の手指の動きを記憶させるティーチングが予め必要になる。このティーチングに際しては、例えば、物体を破壊しないように物体を把持する力加減をロボットに設定するために、人間が同様の作業を行った際の力加減を正確なデータとして取得する必要がある。更に、例えば、衣服の質感等を自動検出する機器を開発する際に、指先で衣服の表面上を動かしたとき等の人間の感覚と、衣服の質感に対応して指先に作用する接触力のデータとを対応させたデータベースを構築する必要があり、この際においても、人間の指が衣服に接触した際の接触力の正確なデータを取得する必要がある。その他、人間とロボットとの共存を考慮した様々な装置開発には、人間の指のみならず、他の身体部位が物体に接触する場合の接触力の正確な検出も必要となる。 When a robot hand imitating a human hand is used to perform the same work as a human hand, such as an operation of grasping and carrying a soft object or rotating and opening and closing a bottle cap. Teaching to memorize the movement of is required in advance. At the time of this teaching, for example, in order to set the force adjustment for grasping the object so as not to destroy the object in the robot, it is necessary to acquire the force adjustment when a human performs the same work as accurate data. Furthermore, for example, when developing a device that automatically detects the texture of clothes, etc., the human sense of moving the surface of the clothes with the fingertips and the contact force acting on the fingertips corresponding to the texture of the clothes It is necessary to construct a database in which the data and the data are associated with each other, and in this case as well, it is necessary to obtain accurate data of the contact force when the human finger touches the clothes. In addition, in order to develop various devices in consideration of the coexistence of humans and robots, it is necessary to accurately detect the contact force when not only the human finger but also other body parts contact the object.

従来、人間が物体を把持しながら所定の動作をする際に、人間の指に作用する力を測定するための力センサが種々提案されている。この力センサとしては、特許文献1で提案されている指サック型の力覚センサが挙げられる。この力覚センサは、筒状の指カバーの内部に存在する指サックに指先を挿入した状態で、当該指サックに作用した力が測定される。しかしながら、この力覚センサでは、指先の表面全面が、指カバーと指サックの2種の部材で覆われた状態となっており、使用者は、指カバー及び指サックを介して物体に接触することになり、指先を直接物体に接触させることができない。従って、指先が物体に直接接触する感覚が得られず、指先の接触面を物体に直接接触させた状態で、当該接触面に作用する接触力を測定するニーズがある場合には、使用することができない。 BACKGROUND ART Conventionally, various force sensors have been proposed for measuring a force acting on a human finger when a human performs a predetermined motion while gripping an object. An example of this force sensor is a finger sack type force sensor proposed in Patent Document 1. This force sensor measures the force acting on the finger sack with the fingertip inserted into the finger sack existing inside the tubular finger cover. However, in this force sensor, the entire surface of the fingertip is covered with two kinds of members, a finger cover and a finger sack, and the user contacts an object through the finger cover and the finger sack. As a result, the fingertip cannot directly contact the object. Therefore, if you do not get the feeling that your fingertips are in direct contact with an object and there is a need to measure the contact force acting on the contact surface with the contact surface of the fingertip in direct contact with the object, use it. I can't.

ここで、特許文献2には、指先の腹の接触面が物体と直接接触した状態で、接触面に作用する接触力を検出可能に指先に装着される接触力検出センサが開示されている。この接触力検出センサは、指先を跨ぐように装着されるアームに歪センサが取り付けられており、物体に対する指先の接触時における指先の変形に対応する歪センサの検出値に基づき、前記接触力を検出するようになっている。すなわち、この接触力検出センサでは、指で物体を押圧した際に接触面が変位すると、それに伴って指先側面が変位することを利用し、当該指先側面の幅方向の変位量を歪センサで計測することで、予め設定された当該変位量と接触力との関係から、接触面が物体に直接接触した状態で接触力を導出可能になっている。 Here, Patent Document 2 discloses a contact force detection sensor that is attached to a fingertip so that the contact force acting on the contact surface can be detected in a state where the contact surface of the ball of the fingertip is in direct contact with an object. This contact force detection sensor, a strain sensor is attached to the arm that is mounted so as to straddle the fingertip, based on the detection value of the strain sensor corresponding to the deformation of the fingertip when the fingertip touches the object, the contact force It is designed to detect. That is, in this contact force detection sensor, when the contact surface is displaced when the object is pressed by the finger, the side surface of the fingertip is displaced accordingly, and the strain sensor measures the displacement amount in the width direction of the fingertip side surface. By doing so, the contact force can be derived from the preset relationship between the displacement amount and the contact force in the state where the contact surface is in direct contact with the object.

特開2008−32511号公報JP, 2008-32511, A 特開2013−3782号公報JP, 2013-3782, A

しかしながら、前記特許文献2の接触力検出センサにあっては、物体に対する指先の接触力が、指先側面における変位量の計測から導出されるため、指先の接触面に作用する力の状態を正確に検出することができない。すなわち、接触力は、指先側面における指の幅方向の変位量から一義的に定まる訳ではなく、種々の条件を加味しなければ、正確な値を求めることができない。例えば、物体を指先で単純に押圧したときのように、接触面に対して垂直方向の反力となる接触力が作用した場合と、物体を指先で撫で回したときのように、接触面に沿う剪断力となる接触力が作用した場合との間等のように、接触力の大きさや作用方向が異なっていても、指先側面の指の幅方向の変位量が同一になることも考えられる。従って、ここでの例で言えば、どちらかの場合かを指定しなければ、接触力を正確に測定することができない。また、使用前には、予め記憶される変位量と接触力との関係のデータを使用者毎に補正するキャリブレーションが必要となり、手間がかかることになる。 However, in the contact force detection sensor of Patent Document 2, since the contact force of the fingertip on the object is derived from the measurement of the displacement amount on the side surface of the fingertip, the state of the force acting on the contact surface of the fingertip is accurately determined. Cannot be detected. That is, the contact force is not uniquely determined from the amount of displacement of the side surface of the fingertip in the width direction of the finger, and an accurate value cannot be obtained unless various conditions are taken into consideration. For example, when a contact force acting as a reaction force in the direction perpendicular to the contact surface acts, such as when the object is simply pressed with the fingertip, and when the object is stroked with the fingertip, the contact surface is touched. Even when the contact force is different in magnitude or direction, such as when a contact force acting as a shearing force is applied along the same direction, it is possible that the displacement amount of the fingertip side surface in the width direction is the same. .. Therefore, in the example here, the contact force cannot be accurately measured unless either case is specified. In addition, before use, it is necessary to perform calibration for correcting the data of the relationship between the displacement amount and the contact force, which is stored in advance, for each user, which is troublesome.

本発明は、このような課題に着目して案出されたものであり、その目的は、測定対象者の指等の身体部位が所定の物体に直接接触した状態で、その接触部分に作用する接触力を正確且つ簡単に測定することができる身体部位接触力センサを提供することにある。 The present invention has been devised by focusing on such a problem, and its purpose is to act on a contact portion of a body part such as a finger of a measurement target person in a state of being in direct contact with a predetermined object. It is an object of the present invention to provide a body part contact force sensor capable of accurately and easily measuring a contact force.

前記目的を達成するため、本発明は、主として、測定対象者の身体の部位が所定の物体に接触するときに前記部位の接触部分に作用する接触力を測定する身体部位接触力センサにおいて、前記接触力によって前記接触部分の周辺部分が変形したときの状態を検知するセンサ本体と、当該センサ本体での検知結果に基づいて前記接触力を求める処理手段とを備え、前記センサ本体は、前記周辺部分に接触可能に配置されて当該周辺部分の変形に伴い押圧される接触部材と、当該接触部材に作用する直交3軸方向の各成分それぞれの押圧力の大きさを計測するための力計測手段とを備え、前記処理手段では、前記力計測手段での計測結果から、前記接触部材に作用する各押圧力の前記各成分を用い、前記接触力の大きさを前記成分毎に演算で求める、という構成を採っている。 In order to achieve the above-mentioned object, the present invention mainly relates to a body part contact force sensor for measuring a contact force acting on a contact part of a body part of a measurement target person when the part contacts a predetermined object. The sensor body includes a sensor body that detects a state when a peripheral portion of the contact portion is deformed by the contact force, and a processing unit that obtains the contact force based on a detection result of the sensor body. A contact member that is arranged so that it can be contacted with a portion and that is pressed by the deformation of the peripheral portion, and force measuring means for measuring the magnitude of the pressing force of each component acting on the contact member in the directions of the three orthogonal axes. In the processing means, from the measurement result of the force measuring means, using each component of each pressing force acting on the contact member, the magnitude of the contact force is calculated by each component. Is adopted.

なお、本特許請求の範囲及び本明細書において、位置若しくは方向を示す際の「左」、「右」、「上」、「下」、「前」、「後」は、特に明示しない限り、図2の向きを基準とした指先の位置若しくは方向を意味する。すなわち、「左」、「右」は、指の幅方向両側となる図2中「左」、「右」を意味し、「上」、「下」は、指の厚み方向両側となる図2中の「上」、「下」を意味し、「前」、「後」は、指の長さ方向すなわち図2の紙面直交方向の両側である「前」、「後」を意味し、同図中手前側を「前」とする。 In the claims and the specification, “left”, “right”, “top”, “bottom”, “front”, and “rear” when indicating a position or direction, unless otherwise specified, It means the position or direction of the fingertip with reference to the orientation of FIG. That is, “left” and “right” mean “left” and “right” in FIG. 2, which are on both sides in the width direction of the finger, and “upper” and “bottom” are on both sides in the thickness direction of the finger. Inside means “upper” and “lower”, and “front” and “rear” mean “front” and “rear” on both sides in the finger length direction, that is, the direction orthogonal to the paper surface of FIG. The front side in the figure is referred to as "front".

本発明によれば、身体部位の接触部分を除くその周辺部分に接触可能に配置された接触部材に作用する直交3軸方向の押圧力の測定に基づいて、当該方向の各成分の力を総合して直交3軸方向の接触力の大きさを求めるため、当該接触力の大きさを正確に求めることができる。また、接触部材に作用した力から、力学的な演算のみで、直交3軸方向の接触力が求められるため、データ間の対応関係を構築するための前記特許文献2のような事前のキャリブレーションが不要になり、センサ本体を指先に装着するだけで、指先の前記接触力を簡単に求めることができる。このように直交3軸方向の成分毎に接触力の大きさが判明すれば、物体に対する接触動作の種類が把握可能になり、また、指を物体に接触したまま横回転したとき等におけるモーメントも簡単に求めることができる。 ADVANTAGE OF THE INVENTION According to this invention, the force of each component of the said direction is synthesize|combined based on the measurement of the pressing force of the orthogonal 3 axial directions which acts on the contact member arrange|positioned so that the peripheral part except the contact part of a body part can be contacted. Then, since the magnitude of the contact force in the directions of the three orthogonal axes is obtained, the magnitude of the contact force can be accurately obtained. In addition, since the contact force in the orthogonal three-axis directions is obtained from the force acting on the contact member only by a dynamic calculation, a pre-calibration such as the above-mentioned Patent Document 2 for establishing the correspondence between the data is performed. Is unnecessary, and the contact force of the fingertip can be easily obtained only by mounting the sensor body on the fingertip. In this way, if the magnitude of the contact force is known for each of the components in the directions of the three orthogonal axes, it is possible to know the type of contact motion with respect to the object, and also the moment when the finger is horizontally rotated while contacting the object. Easy to find.

本実施形態に係る身体部位接触力センサの概略構成図。The schematic block diagram of the body part contact force sensor concerning this embodiment. センサ本体の概略断面正面図。The schematic sectional front view of a sensor main body.

以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る身体部位接触力センサの概略構成図が示されている。この図において、前記身体部位接触力センサ10は、測定対象者の指先が所定の物体に接触するときに、指先の接触部分に作用する接触力を測定するセンサである。具体的には、指先の腹の部分を接触部分とし、当該接触部分を除くその近傍の周辺部分である指の側面(以下、単に「指側面」と称する)の変形状態に基づいて接触力を求めるようになっている。 FIG. 1 shows a schematic configuration diagram of a body part contact force sensor according to the present embodiment. In the figure, the body part contact force sensor 10 is a sensor that measures the contact force acting on the contact portion of the fingertip when the fingertip of the measurement target person contacts a predetermined object. Specifically, the contact force is based on the deformed state of the side surface of the finger (hereinafter, simply referred to as “finger side surface”), which is the peripheral portion except for the contact portion, which is the belly part of the fingertip. I'm supposed to ask.

この指先接触力センサ10は、接触力の作用による指側面の変形状態を検知するセンサ本体11と、センサ本体11での検知結果に基づいて接触力を求める処理手段12とを備えている。 The fingertip contact force sensor 10 includes a sensor body 11 that detects a deformed state of the side surface of the finger due to the action of the contact force, and a processing unit 12 that obtains the contact force based on the detection result of the sensor body 11.

前記センサ本体11は、図2に示されるように、指Tの接触部分T1を除く爪T2側の領域を囲むように指先に装着される。このセンサ本体11は、正面視でほぼ逆U字状をなすホルダ14と、ホルダ14の内面2箇所に取り付けられ、左右両側の指側面に接触可能に配置される接触部材15と、指側面の変形によって接触部材15に作用する押圧力を計測する力計測手段16とを備えている。 As shown in FIG. 2, the sensor body 11 is attached to a fingertip so as to surround a region of the finger T on the nail T2 side except the contact portion T1. The sensor main body 11 includes a holder 14 having a substantially inverted U-shape when viewed from the front, a contact member 15 attached to two inner surfaces of the holder 14 so as to be in contact with the left and right finger side surfaces, and a finger side surface. The force measuring means 16 for measuring the pressing force applied to the contact member 15 by the deformation is provided.

前記ホルダ14は、弾性変形しながらセンサ本体11が指Tに対して脱着可能となるように形成されており、センサ本体11が指Tに装着された際に、左右両側の接触部材15が指側面にそれぞれ当接するようにサイズ設計されている。 The holder 14 is formed so that the sensor main body 11 can be attached to and detached from the finger T while elastically deforming. When the sensor main body 11 is attached to the finger T, the contact members 15 on both left and right sides are touched by the fingers. It is sized to abut each side.

前記接触部材15は、当接する指側面が接触部分T1の接触力の作用によって外側に膨出するように変形した際に弾性変形可能となる弾性体によって形成されており、特に限定されるものではないが、後述する磁気センサ19での磁界の変化の検知を阻止しない材料、例えば、ウレタン材やシリコン材等からなる。 The contact member 15 is formed of an elastic body that is elastically deformable when the abutting finger side surface is deformed so as to bulge outward by the action of the contact force of the contact portion T1, and is not particularly limited. Although not present, it is made of a material that does not prevent the magnetic sensor 19 described later from detecting a change in magnetic field, such as a urethane material or a silicon material.

前記力計測手段16は、接触部材15の内部に埋設された磁性体18と、磁性体18に対向するように固定配置され、磁性体18との間の磁界の変化を検知する磁気センサ19とにより構成されている。 The force measuring means 16 includes a magnetic body 18 embedded in the contact member 15, and a magnetic sensor 19 fixedly arranged so as to face the magnetic body 18 and detecting a change in a magnetic field between the magnetic body 18 and the magnetic body 18. It is composed by.

前記磁性体18は、永久磁石によって形成されているが、磁気センサ19との間に所定の大きさの磁界を発生させる限りにおいて、種々の磁性体や磁界発生装置を用いることもできる。この磁性体18は、接触部材15の内部に固定された状態となっており、接触部材15の弾性変形に伴って変位する。 Although the magnetic body 18 is formed of a permanent magnet, various magnetic bodies and magnetic field generators may be used as long as they generate a magnetic field of a predetermined magnitude with the magnetic sensor 19. The magnetic body 18 is fixed inside the contact member 15, and is displaced by elastic deformation of the contact member 15.

前記磁気センサ19は、図示省略しているが、ホール素子や磁気抵抗素子等からなる磁気検出用素子と、磁気検出用素子が電気的に接続された基板とを含む公知の構成のものが採用されており、接触部材15を介した磁性体18との間の磁界の大きさに対応する電気信号に変換する構造となっている。なお、前記磁気検出用素子は、指側面の変形によって接触部材15に作用した直交3軸方向(図2中x、y、z軸方向)の押圧力の大きさをそれぞれ検出可能にするため、3つ1セットで設けられており、図2においては、それらをまとめて1つの直方体で簡略的に図示している点、了承されたい。 Although not shown, the magnetic sensor 19 has a known structure including a magnetic detection element including a Hall element or a magnetic resistance element, and a substrate to which the magnetic detection element is electrically connected. The structure is such that it is converted into an electric signal corresponding to the magnitude of the magnetic field with the magnetic body 18 via the contact member 15. In addition, since the magnetic detection element can detect the magnitude of the pressing force in each of the three orthogonal directions (x, y, z axes in FIG. 2) acting on the contact member 15 due to the deformation of the side surface of the finger, It should be understood that three sets are provided as one set, and in FIG. 2, they are collectively illustrated as a single rectangular parallelepiped.

以上の構成のセンサ本体11では、次のようにして、指側面の左右両側の変形状態が検知される。すなわち、指先の腹の接触部分T1が所定の物体Bに接触した際に、当該接触に伴って指側面が外側に膨出するように変形する。これにより、当該指側面の左右2箇所にそれぞれ接触する接触部材15が押圧され、接触部材15が弾性変形する。これにより、接触部材15に一体化された磁性体18が変位し、固定配置された磁気センサ19と磁性体18との間の相対位置関係が変化する。これにより、磁気センサ19で検知される磁界の大きさが変化し、指側面から各接触部材15への押圧力に対応した磁気センサ19での電気信号が生成されることになる。 With the sensor body 11 having the above configuration, the deformed state of the left and right sides of the finger side surface is detected as follows. That is, when the contact portion T1 of the ball of the fingertip comes into contact with the predetermined object B, the side surface of the finger is deformed so as to bulge outward along with the contact. As a result, the contact member 15 that comes into contact with each of the two left and right positions on the side surface of the finger is pressed, and the contact member 15 is elastically deformed. As a result, the magnetic body 18 integrated with the contact member 15 is displaced, and the relative positional relationship between the magnetic sensor 19 and the magnetic body 18, which are fixedly arranged, changes. As a result, the magnitude of the magnetic field detected by the magnetic sensor 19 changes, and an electric signal at the magnetic sensor 19 corresponding to the pressing force from the side surface of the finger to each contact member 15 is generated.

なお、前記力計測手段16としては、接触部材15に作用する直交3軸方向の押圧力を検出可能であれば、前述の構成に限定されず、他のセンサ等を用いることもできる。 Note that the force measuring unit 16 is not limited to the above-described configuration as long as it can detect the pressing force acting on the contact member 15 in the directions of the three orthogonal axes, and another sensor or the like can be used.

前記処理手段12は、コンピュータに組み込まれた1機能であり、当該コンピュータを含む機器は、磁気センサ19に対して有線若しくは無線によって電気的に接続されている。この機器は、特に限定されるものではないが、例えば、測定対象者の手首等の身体の一部に装着可能に設けられている。なお、携帯端末のコンピュータに処理手段12の機能を持たせ、測定対象者が携行可能な態様としても良い。 The processing unit 12 has one function incorporated in a computer, and a device including the computer is electrically connected to the magnetic sensor 19 by wire or wirelessly. This device is not particularly limited, but is provided so as to be attachable to a part of the body such as the wrist of the measurement target person, for example. Note that the computer of the mobile terminal may be provided with the function of the processing means 12 so that the person to be measured can carry it.

この処理手段12は、図1に示されるように、磁気センサ19からの電気信号に基づいて、左右両側の接触部材15に作用した押圧力の大きさをそれぞれ検出する力検出部21と、力検出部21によって検出された左右両側の押圧力の検出値から、指先の接触部分T1における接触力を演算によって求める接触力演算部22とにより構成されている。 As shown in FIG. 1, the processing means 12 includes a force detection unit 21 for detecting the magnitude of the pressing force acting on the contact members 15 on the left and right sides, and a force detection unit 21, based on the electric signal from the magnetic sensor 19. The contact force calculator 22 is configured to calculate the contact force at the contact portion T1 of the fingertip from the detected values of the pressing forces on the left and right sides detected by the detector 21.

前記力検出部21では、磁気センサ19からの電気信号の変換により、左右2箇所の指側面における押圧力が、直交3軸方向の成分毎にそれぞれ導出されるようになっている。 In the force detection unit 21, the pressing force on the finger side faces at the two left and right positions is derived for each component in the directions of the three orthogonal axes by converting the electric signal from the magnetic sensor 19.

前記接触力演算部22では、次式に示されるように、力処理手段21で検出された左右の指側面の押圧力の直交3軸方向の各成分を総合して、当該各成分の接触力と、指先Fを物体Bに接触したまま横回転したときのモーメントとが求められる。 In the contact force calculation unit 22, as shown by the following equation, the contact forces of the respective components are integrated by summing up the respective components of the pressing force of the left and right finger side faces detected by the force processing means 21 in the directions of the three orthogonal axes. And the moment when the fingertip F is horizontally rotated while being in contact with the object B.

Figure 0006719756
Figure 0006719756

なお、上式において、F、F,Fは、指の幅方向となる図2中の第1座標系C1におけるx軸方向、指の厚み方向となる同座標系y軸方向、指の長さ方向となる同座標系z軸方向の接触力を表し、Myは、前記横回転となる同座標系y軸回りのモーメントを表す。
また、S1、S1,S1は、図2中右側の力計測手段16(S1)で計測された同図中の第2座標系C2におけるx軸方向、同y軸方向、z同軸方向の押圧力を表す。
S2、S2,S2は、図2中左側の力計測手段16(S2)で計測された同図中の第3座標系C3におけるx軸方向、同y軸方向、同z軸方向の押圧力を表す。
更に、k〜k12は、予め設定されたゲインを表し、0以外の正の値を採る。
In the above equation, F x , F y , and F z are the x-axis direction in the first coordinate system C1 in FIG. 2, which is the width direction of the finger, the y-axis direction of the coordinate system that is the thickness direction of the finger, and the finger direction. Represents the contact force in the z-axis direction of the same coordinate system, which is the length direction, and My represents the moment about the y-axis of the same coordinate system, which is the horizontal rotation.
Further, S1 x , S1 y , and S1 z are the x-axis direction, the y-axis direction, and the z-coaxial direction in the second coordinate system C2 in the figure measured by the force measuring means 16 (S1) on the right side in FIG. Represents the pressing force of.
S2 x , S2 y and S2 z are the x-axis direction, the y-axis direction and the z-axis direction in the third coordinate system C3 in the figure measured by the force measuring means 16 (S2) on the left side in FIG. Indicates pressing force.
Further, k 1 to k 12 represent preset gains, and take positive values other than 0.

ここで、本実施例では、第1〜第3座標系C1〜C3が図2に表示するように設定されており、各成分の押圧力及び接触力の方向は次の通りとなる。全ての座標系において、y成分は図2中上方が正の値を採り、z成分は、同図中前方が正の値を採る。一方、x成分においては、第1及び第2座標系C1,C2と第3座標系C3との間で、正の値を採る方向が相反している。すなわち、第1及び第2座標系C1,C2では、図2中右方が正の値を採り、第3座標系C3では、同図中左方が正の値を採る。換言すれば、指の幅方向における押圧力は、指Tの接触によって指側面が膨出する方向である接触部材を圧縮する方向が正の値となる。 Here, in the present embodiment, the first to third coordinate systems C1 to C3 are set as shown in FIG. 2, and the pressing force and the contact force direction of each component are as follows. In all coordinate systems, the y component has a positive value in the upper part of FIG. 2, and the z component has a positive value in the front part of FIG. On the other hand, in the x component, the directions of positive values are opposite between the first and second coordinate systems C1 and C2 and the third coordinate system C3. That is, in the first and second coordinate systems C1 and C2, the right side in FIG. 2 takes a positive value, and in the third coordinate system C3, the left side in the figure takes a positive value. In other words, the pressing force in the width direction of the finger has a positive value in the direction of compressing the contact member, which is the direction in which the side surface of the finger bulges due to the contact of the finger T.

上式によれば、指の幅方向となるx軸方向の接触力Fは、右側の接触部材15への押圧力におけるx,y成分(S1、S1)にそれぞれ所定のゲインを乗じた上で加算し、左側の接触部材15への押圧力におけるx,y成分(S2、S2)にそれぞれ所定のゲインを乗じた上で加算し、各加算値を接触部材15単位で相殺することで求められる。 According to the above equation, the contact force F x in the x-axis direction, which is the width direction of the finger, is obtained by multiplying the x and y components (S1 x , S1 y ) in the pressing force applied to the right contact member 15 by a predetermined gain. , The x and y components (S2 x , S2 y ) of the pressing force to the contact member 15 on the left side are multiplied by predetermined gains, respectively, and added to cancel each added value in units of the contact member 15. Is required by doing.

また、指の厚み方向となるy軸方向の接触力Fは、右側の接触部材15への押圧力におけるx,y成分(S1、S1)にそれぞれ所定のゲインを乗じた上で加算し、左側の接触部材15への押圧力におけるx,y成分(S2、S2)にそれぞれ所定のゲインを乗じた上で加算し、各加算値を総合計することで求められる。 Further, the contact force F y in the y-axis direction, which is the thickness direction of the finger, is added after multiplying the x and y components (S1 x , S1 y ) in the pressing force on the contact member 15 on the right side by predetermined gains. Then, the x and y components (S2 x , S2 y ) of the pressing force to the contact member 15 on the left side are multiplied by predetermined gains, respectively, and added, and the added values are summed.

更に、指の長さ方向となるz軸方向の接触力Fは、右側の接触部材15への押圧力におけるz成分S1と、左側の接触部材15への押圧力におけるz成分S2とにそれぞれ所定へのゲインを乗じ、それらを総合計することで求められる。 Further, the contact force F z in the z-axis direction, which is the length direction of the finger, is the z component S1 z in the pressing force on the right contact member 15 and the z component S2 z in the pressing force on the left contact member 15. It is obtained by multiplying each by a gain to a predetermined value and totaling them.

また、指を横回転する方向のy軸回りのモーメントMは、右側の接触部材15への押圧力におけるz成分S1と、左側の接触部材15への押圧力におけるz成分S2とにそれぞれ所定へのゲインを乗じ、それらを相殺することで求められる。 Further, the moment M y direction of the y-axis of lateral rotation of fingers, and z components S1 z in the pressing force to the right of the contact member 15 and to the z component S2 z in the pressing force to the left of the contact member 15 It is obtained by multiplying each by a gain and canceling them.

なお、前記実施形態における身体部位接触力センサ10では、指先にセンサ本体11を装着して当該指先の接触力を求めるようになっているが、本発明はこれに限らず、センサ本体11を、指先以外の指の部分等、その他の身体部分に装着可能な構成とし、当該身体部分の接触力を求める態様を採ることもできる。 In the body part contact force sensor 10 in the above-described embodiment, the sensor body 11 is attached to the fingertip to obtain the contact force of the fingertip, but the present invention is not limited to this, and the sensor body 11 is It is also possible to adopt a configuration in which the body part can be attached to other body parts such as a finger part other than the fingertip, and the contact force of the body part is obtained.

また、前記実施形態では、2箇所の接触部材15に作用した押圧力から前記接触力を求めているが、接触力を測定する身体部位等に応じて、接触部材15を1箇所若しくは3箇所以上に配置し、前述と同様に、前記周辺部分の変形により各接触部材15に作用する押圧力を力計測手段16で計測し、当該計測結果を用いて演算により前記接触力を求めるようにしても良い。 Further, in the above-described embodiment, the contact force is obtained from the pressing force applied to the contact members 15 at two locations, but the contact member 15 may be provided at one location or at three locations or more depending on the body part or the like for measuring the contact force. In the same manner as described above, the pressing force acting on each contact member 15 due to the deformation of the peripheral portion is measured by the force measuring means 16, and the contact force is calculated by using the measurement result. good.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。 In addition, the configuration of each part of the device in the present invention is not limited to the illustrated configuration example, and various modifications can be made as long as substantially the same action is exhibited.

10 身体部位接触力センサ
11 センサ本体
12 処理手段
15 接触部材
16 力計測手段
B 物体
T 指(身体部位)
T1 接触部分
10 body part contact force sensor 11 sensor body 12 processing means 15 contact member 16 force measuring means B object T finger (body part)
T1 contact part

Claims (4)

測定対象者の身体の部位が所定の物体に接触するときに前記部位の接触部分に作用する接触力を測定する身体部位接触力センサにおいて、
前記接触力によって前記接触部分の周辺部分が変形したときの状態を検知するセンサ本体と、当該センサ本体での検知結果に基づいて前記接触力を求める処理手段とを備え、
前記センサ本体は、前記周辺部分に接触可能に配置されて当該周辺部分の変形に伴い押圧される接触部材と、当該接触部材に作用する直交3軸方向の各成分それぞれの押圧力の大きさを計測するための力計測手段とを備え、
前記処理手段では、前記力計測手段での計測結果から、前記接触部材に作用する各押圧力の前記各成分を用い、前記接触力の大きさを前記成分毎に演算で求めることを特徴とする身体部位接触力センサ。
In a body part contact force sensor for measuring the contact force acting on the contact part of the body part of the measurement subject when the body part contacts a predetermined object,
A sensor main body that detects a state when a peripheral portion of the contact portion is deformed by the contact force; and a processing unit that obtains the contact force based on a detection result of the sensor main body,
The sensor body has a contact member that is disposed so as to be contactable with the peripheral portion and that is pressed as the peripheral portion is deformed, and a magnitude of the pressing force of each component acting on the contact member in the orthogonal triaxial directions. Equipped with force measuring means for measuring,
In the processing means, from the measurement result of the force measuring means, the components of the pressing forces acting on the contact member are used, and the magnitude of the contact force is calculated by each component. Body part contact force sensor.
前記接触部材は、前記周辺部分の少なくとも2箇所に配置され、
前記力計測手段では、前記各接触部材に作用する直交3軸方向の各成分それぞれの押圧力の大きさが計測されることを特徴とする請求項1記載の身体部位接触力センサ。
The contact member is arranged at least at two places in the peripheral portion,
2. The body part contact force sensor according to claim 1, wherein the force measuring unit measures the magnitude of the pressing force of each component acting on each of the contact members in the directions of the three orthogonal axes.
前記接触部材は、前記物体に接触する指の幅方向両側となる指側面で接触可能に配置され、
前記処理手段では、前記接触部材毎に指の幅方向の前記押圧力と指の厚み方向の前記押圧力とを所定のゲインを乗じた上で加算して、当該加算値を前記接触部材単位で相殺することで、前記幅方向の前記接触力が求められ、前記接触部材毎に算出された前記加算値を総合計することで、前記厚み方向の前記接触力が求められ、指の長さ方向の前記各押圧力に所定のゲインを乗じた上で総合計することで、当該長さ方向の前記接触力が求められることを特徴とする請求項2記載の身体部位接触力センサ。
The contact member is arranged so as to be contactable on the finger side surfaces on both sides in the width direction of the finger contacting the object,
In the processing means, the pressing force in the width direction of the finger and the pressing force in the thickness direction of the finger are multiplied by a predetermined gain for each contact member, and then added, and the added value is calculated for each contact member. By canceling, the contact force in the width direction is obtained, and the contact force in the thickness direction is obtained by summing up the added values calculated for each of the contact members, and the length direction of the finger is obtained. 3. The body part contact force sensor according to claim 2, wherein the contact force in the lengthwise direction is obtained by multiplying each of the pressing forces of 1. by a predetermined gain and then totalizing the product.
前記処理手段では、前記長さ方向の前記各押圧力に所定のゲインを乗じた上で、当該各押圧力を相殺することにより、指を横回転する方向のモーメントが求められることを特徴とする請求項3記載の身体部位接触力センサ。 In the processing means, the moment in the lateral rotation direction of the finger is obtained by multiplying each pressing force in the length direction by a predetermined gain and canceling each pressing force. The body part contact force sensor according to claim 3.
JP2017009422A 2017-01-23 2017-01-23 Body part contact force sensor Expired - Fee Related JP6719756B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017009422A JP6719756B2 (en) 2017-01-23 2017-01-23 Body part contact force sensor
PCT/JP2018/000726 WO2018135416A1 (en) 2017-01-23 2018-01-12 Body part contact force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009422A JP6719756B2 (en) 2017-01-23 2017-01-23 Body part contact force sensor

Publications (2)

Publication Number Publication Date
JP2018119801A JP2018119801A (en) 2018-08-02
JP6719756B2 true JP6719756B2 (en) 2020-07-08

Family

ID=62909218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009422A Expired - Fee Related JP6719756B2 (en) 2017-01-23 2017-01-23 Body part contact force sensor

Country Status (2)

Country Link
JP (1) JP6719756B2 (en)
WO (1) WO2018135416A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116195999B (en) * 2023-05-05 2023-07-07 成都市青白江区人民医院 Portable blood oxygen analysis device for mobile health physical examination

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700497B2 (en) * 2010-04-27 2015-04-15 株式会社 資生堂 Calibration method of motion detection sensor
JP5985384B2 (en) * 2012-12-27 2016-09-06 トヨタテクニカルディベロップメント株式会社 Acting force measuring device and acting force measuring method
JP6114562B2 (en) * 2013-01-22 2017-04-12 株式会社 資生堂 Motion detection sensor and motion detection device
GB2516634A (en) * 2013-07-26 2015-02-04 Sony Corp A Method, Device and Software

Also Published As

Publication number Publication date
WO2018135416A1 (en) 2018-07-26
JP2018119801A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP3409160B2 (en) Grasping data input device
Cutkosky et al. Force and tactile sensing
US11481029B2 (en) Method for tracking hand pose and electronic device thereof
EP1880163B1 (en) Dimensional measurement probe
Chang et al. Sensor glove based on novel inertial sensor fusion control algorithm for 3-D real-time hand gestures measurements
EP2418562A1 (en) Modelling of hand and arm position and orientation
CN110394817B (en) Apparatus, method and program for estimating weight and center of gravity of load using robot
WO2020190311A1 (en) Sensing system
EP3098691A1 (en) Flex sensor and instrumented glove
JP2012137421A (en) Control device of robot performing force control using triaxial sensor
CN101441512A (en) Fingertip force feedback apparatus based on piezoresistance sensor
Mohammadi et al. Fingertip force estimation via inertial and magnetic sensors in deformable object manipulation
JP6719756B2 (en) Body part contact force sensor
JP6663219B2 (en) Posture motion detection device
Chen et al. i-hand: An intelligent robotic hand for fast and accurate assembly in electronic manufacturing
JP2011255457A (en) Failure detecting method of external force detecting interface
JP2005339088A (en) Spherical type input device
JP5905840B2 (en) Tactile sensor system, trajectory acquisition device, and robot hand
Kobayashi et al. Motion capture with inertial measurement units for hand/arm robot teleoperation
Wang et al. Design and performance of a haptic data acquisition glove
JP5700497B2 (en) Calibration method of motion detection sensor
KR101479709B1 (en) Sensor and method for measuring tactile information
JP2019032239A (en) Fingertip contact state measurement device
Veber et al. Assessing joint angles in human hand via optical tracking device and calibrating instrumented glove
US11507202B2 (en) 3-D input device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200609

R150 Certificate of patent or registration of utility model

Ref document number: 6719756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees