TW201038975A - Unit area light flux enhancing apparatus capable of reducing the distance of light collection for light source - Google Patents

Unit area light flux enhancing apparatus capable of reducing the distance of light collection for light source Download PDF

Info

Publication number
TW201038975A
TW201038975A TW098113371A TW98113371A TW201038975A TW 201038975 A TW201038975 A TW 201038975A TW 098113371 A TW098113371 A TW 098113371A TW 98113371 A TW98113371 A TW 98113371A TW 201038975 A TW201038975 A TW 201038975A
Authority
TW
Taiwan
Prior art keywords
light
lens
array
rear lens
light source
Prior art date
Application number
TW098113371A
Other languages
Chinese (zh)
Other versions
TWI406012B (en
Inventor
Hiu Yeung Li
Original Assignee
New Concept Aircraft Zhuhai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Concept Aircraft Zhuhai Co Ltd filed Critical New Concept Aircraft Zhuhai Co Ltd
Priority to TW098113371A priority Critical patent/TWI406012B/en
Publication of TW201038975A publication Critical patent/TW201038975A/en
Application granted granted Critical
Publication of TWI406012B publication Critical patent/TWI406012B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a unit area light flux enhancing apparatus capable of reducing the distance of light collection for light source, mainly comprises forward and backward lens arrays, dual axis supporting frames perpendicular to each other, movement supporting frame and fixing frame, automatic slant rotation speed limiter damper mechanism, slant rotation gravitation generator and photoelectric converter array. Said apparatus is based on the light group field theory, uses lens array to increase the light flux and light intensity of emission light per unit area, so that the light energy obtained by the photoelectric converter is increased. The present apparatus, not using concentrating solar power generation method, will not generate high temperature effect to the photoelectric converter and is mainly applied to solar energy generation and assorted recycling of photo energy. The present apparatus can increase the solar energy collection efficiency during the effective sun shine period, and all components can be manufactured by common materials with a regular industry method.

Description

201038975 六、發明說明: 【發明所屬之技術領域】 月^及種主要應用於太陽能發電和光能回收利 用=置,尤其是-種能夠有效縮短對光源採光距離?從 而提回受光地點單位面積的光通量和光強度,並且能夠在 ❹ Ο 有效曰知時間内提高太陽能收集效率的可縮短對光源採光 距離的單位面積光通量增量裝置。 【先前技術】 太陽能是-種怪久能源和環保潔淨能源,而太陽能發 電則是目前人類從太陽獲取能量的基本方法之—。評估某 一種太陽能發電技術方案效益優劣的主要指標,是該方案 在地球表面單位面積内收集太陽能的效率,而地球表面單 位面積内太陽能的收集效率具體而言是指:單位時間内, 在地球表面某一地點單位球面所能收集到之太陽光的光通 量值和光強度值。 對於太陽能發電來說,光譜頻率相對穩定的太陽光光 通量和光強度越大,則越有利於提高光電轉換裝置(例如 太陽能電池)產生的光電量,在地球表面單位面積上也就 能夠獲得更多的電能。這是因為:投射到光電轉換裝置上 的投射光’如果能發生光電效應並且其光譜頻率(或振幅) 相對穩定,則所產生的光電流強度飽和值與投射光單位面 積的光通量以及光強度值成正比。 201038975 目前世界上現有利用光學方法來聚集太陽能的技術方 案,主要有凸透鏡聚焦和菲涅爾透鏡聚焦方案,以及各類 平面鏡或拋物面反射鏡聚光方案等。 現有各類凸透鏡、菲涅爾透鏡聚光方案,是利用聚光 -透鏡的折光特性將通過透鏡面積内的太陽光折射後,聚集 在透鏡焦距附近以形成高溫和高亮度的焦點。由於聚光透 鏡的面積遠大於聚光後焦點的面積’因此這類方案實質上 〇並不此夠提冋單位面積太陽能的收集量,只是將通過透鏡 面積内的太陽光折射聚集以提高焦點的光強度而已。這類 , 雖可以減;太陽能電池的使用量,但由於聚光透鏡 折射陽光聚焦後所形成的焦點溫度很高,而太陽能電池的 光電轉換效率又與溫度成反比’這類聚光鏡式太陽能電 r、/員有冷卻裝置才能維持工作效率和避免燒壞,冷卻 〇裝置南耗費一定能量,因此這類方案的效費比和性價比都 比較低。而且,這類方案的前提是“聚焦,,’因此為了確 保“…’纟的形成和保證焦點的光強度,不能通過調節太陽能 木板與透鏡之間的距離,來達到避免過高的溫度的 情況發生。 現有各類平面鏡或抛物面反射鏡聚光方案,其聚光系 統龐大的體積需要佔用較大的土地面積和空間容積。而 且^類方案只是從不同的角度將到達各個反光面内的陽 光同反射聚集在某一個聚光點上,以提高該點的太陽 4 201038975 光強度,其採光反射面的總面積,仍然遠大於其聚光點的 面積。因此,這類方法實質上也並不具備提高地球表面單 位面積太陽能收集效率的效果,就其效率和裝置、土地花 費成本而言相當不划算。 Ο ο 由於地球自轉和繞太陽公轉,因此相對於地球表面的 某一點來說,太陽每天的運動都有方位角和赤緯角變化。 2在每天有效曰照時段的單位時間内收集到更多的太陽 月"’就必須使太陽能電池的採光面能夠始終追隨太陽運 動。現有各類太陽追縱方法大多是利用測量感測器(例如 先敏傳感、熱敏傳感、溫差傳感等)來感應太陽光,然後 I相關裝置力析處理測量資訊後,對飼服傳動機構發出 指令使機構作出相應動作來追縱太陽。而這類方法機構複 雜並且需要耗費-定能量,且這類方法的裝置受氣象條件 ㈣約較為明顯(例如看不見太陽的陰天或者多雲遮陽天 孔)’系統的有效性和可靠性低而容易產生誤㈣。此外, 現有太陽追縱方法中, 中還有利用電腦編制預設程式來指令 4司服傳動機構追隨女陪,笛I U # π 隨太%運動的裝置’然這類裝置同樣是因 為'造複雜和需要耗費能量,所以就成本耗費上而言過高。 』而易見,要進一步發展人類的太陽能發電技術,就 新=二:現有太陽能的採光集能方案,用更有效的 ^ 也球表面單位面積的太陽能收集效率,並且 而要有間約和可靠的新方法來跟蹤太陽二維運動。根據新 5 201038975 的技術方案製造的裝置產品 廣泛應用。 且需確實降低成本,以利於 目前人類社會的曰常電能耗費中有很大一部分是消喪 在照明上(例如街道照明、公園、廣場、商店等公共設施 照明、地下交通照明、住宅區、樓道和家庭照明等等)。如 果在不影響照明的效果和環境外觀等的前提下,利用簡單 〇 有j的知光集能方法將各種燈光的光能回收再利用,將能 句p勺大置牝源’其重大意義值得人類社會高度關注。 【發明内容】 本發明的目的在於提供一種主要應用於太陽能發電和 各種光能回收㈣的技術方案,即提供—種可縮短對光源 採光距離的單位面積光通量增量裝置,能夠顯著增加單位 面積光通量和出射光強度。 本發明的另一個目的是提供一種可以自動追縱曰光的 〇 可縮短對光源採光距離的單位面積光通量增量裝置,該裝 置無需測量感測器,且運動時無需能量耗費即可實現太陽 二維運動追蹤功能。 本發明疋通過以下技術方案來實現的: 一種可縮短對光源採光距離的單位面積光通量增量穿 置,其包括支架和迎著入射光依次設置的前置透鏡元件、 後置透鏡7C件,所述前置透鏡元件、後置透鏡元件通過所 述支架相互連接形成裝置主體;所述前置透鏡元件的主光 6 201038975 軸、後置透鏡元件的主光軸和受光裝置的受光面的中心轴 相互重合;其中所述前置透鏡元件將射入其受光面的入射201038975 VI. Description of the invention: [Technical field of invention] Months and species are mainly used in solar power generation and light energy recovery = set, especially - can effectively shorten the light source distance? Therefore, the luminous flux and light intensity per unit area of the light-receiving point are recovered, and the luminous flux per unit area which can shorten the light-collecting distance to the light source can be improved in the effective time of the ❹ 曰. [Prior Art] Solar energy is a kind of long-lasting energy and environmentally clean energy, and solar power is the basic method for humans to obtain energy from the sun. The main indicator for evaluating the effectiveness of a solar power technology solution is the efficiency of the program to collect solar energy per unit area of the Earth's surface. The efficiency of solar energy collection per unit area of the Earth's surface is specifically: unit time, on the surface of the earth. The luminous flux value and light intensity value of the sunlight collected by the spherical surface of a certain location. For solar power generation, the larger the luminous flux and the light intensity of the relatively stable spectral frequency, the more favorable it is to increase the amount of photoelectric light generated by the photoelectric conversion device (such as a solar cell), and the more the unit surface area of the earth surface can be obtained. Electrical energy. This is because if the projected light projected onto the photoelectric conversion device can have a photoelectric effect and its spectral frequency (or amplitude) is relatively stable, the generated photocurrent intensity saturation value and the luminous flux per unit area and the light intensity value In direct proportion. 201038975 There are currently some technical solutions in the world that use optical methods to concentrate solar energy, mainly including convex lens focusing and Fresnel lens focusing schemes, as well as various types of plane mirrors or parabolic mirror concentrating schemes. Various types of convex lens and Fresnel lens concentrating schemes use the refracting property of the concentrating lens to refract sunlight passing through the lens area and gather near the focal length of the lens to form a high temperature and high brightness focus. Since the area of the concentrating lens is much larger than the area of the focus after concentrating, such a scheme is not sufficient to increase the amount of solar energy collected per unit area, but only to condense the sunlight through the lens area to increase the focus. Light intensity only. This type can be reduced; the amount of solar cells used, but the focus temperature formed by the concentrating lens after refracting the sunlight is high, and the photoelectric conversion efficiency of the solar cell is inversely proportional to the temperature. There are cooling devices to maintain work efficiency and avoid burnout. It takes a certain amount of energy to cool the device. Therefore, the cost-effectiveness and cost performance of such a solution are relatively low. Moreover, the premise of such a scheme is "focusing," so in order to ensure the formation of "..." 和 and to ensure the light intensity of the focus, it is not possible to avoid excessive temperature by adjusting the distance between the solar panel and the lens. occur. There are various types of flat mirror or parabolic mirror concentrating schemes, and the large volume of the concentrating system needs to occupy a large land area and space volume. Moreover, the ^ class scheme only collects the sunlight and reflections reaching the respective reflective surfaces from a different angle on a certain concentrating point to increase the light intensity of the sun 4 201038975 at the point, and the total area of the illuminating reflection surface is still much larger than The area of its spotlight. Therefore, such methods do not substantially have the effect of improving the solar energy collection efficiency of the surface area of the earth, which is quite uneconomical in terms of efficiency and cost of equipment and land. Ο ο Because the earth rotates and revolves around the sun, the sun's daily movements have azimuth and declination angles relative to a point on the Earth's surface. 2 Collecting more solar months per unit time during the effective daily monitoring period, the solar cell's lighting surface must always follow the sun's movement. Most of the existing methods of sun tracking are using measuring sensors (such as susceptibility sensing, thermal sensing, temperature difference sensing, etc.) to sense sunlight, and then I related devices to analyze the measurement information, The transmission mechanism issues an instruction to cause the mechanism to perform a corresponding action to trace the sun. Such methods are complex and require a lot of energy, and the devices of such methods are subject to meteorological conditions (4), which are more obvious (for example, the sun is not visible or the cloudy sunshades). The effectiveness and reliability of the system is low. It is easy to make mistakes (4). In addition, in the existing sun tracking method, there is also a computer-programmed preset program to command the 4th servo drive to follow the female companion, and the flute IU # π is too mobile to move the device. And it takes a lot of energy, so it is too expensive. It is easy to see that to further develop human solar power generation technology, the new = two: existing solar energy collection system, with more efficient ^ also the surface area of the ball solar energy collection efficiency, but also have a compromise and reliability A new way to track the two-dimensional movement of the sun. The device products manufactured according to the technical solution of the new 5 201038975 are widely used. And it is necessary to really reduce the cost, so that a large part of the current human society's electricity consumption costs are lost in lighting (such as street lighting, parks, squares, shops and other public facilities lighting, underground traffic lighting, residential areas, corridors) And home lighting, etc.). If the light energy of various lights is recycled and reused without using the effect of lighting and the appearance of the environment, it will be able to recycle the light energy of various lights. Human society is highly concerned. SUMMARY OF THE INVENTION An object of the present invention is to provide a technical solution mainly for solar power generation and various light energy recovery (four), that is, to provide a luminous flux unit per unit area capable of shortening the light collection distance of a light source, which can significantly increase the luminous flux per unit area. And the intensity of the emitted light. Another object of the present invention is to provide a unit area light flux increasing device capable of automatically tracking light, which can shorten the light collecting distance of the light source, and the device does not need to measure the sensor, and the solar energy can be realized without energy consumption during the movement. Dimensional motion tracking. The present invention is achieved by the following technical solutions: a unit area luminous flux incrementing for shortening the light source distance of a light source, comprising a bracket and a front lens element and a rear lens 7C arranged in sequence against the incident light. The front lens element and the rear lens element are connected to each other by the holder to form a device body; the main light of the front lens element 6 201038975, the main optical axis of the rear lens element, and the central axis of the light receiving surface of the light receiving device Coincident with each other; wherein the front lens element will be incident on its light receiving surface

光進行第一次匯聚後形点4» UL 或出射光,所述後置透鏡元件將前 置透鏡元件的所述出射异淮Ur_ 町九進仃第一次匯聚後投射在受光裝 置的受光面上,所述前置读於-ζ j置透鏡儿件的受光面的面積A1與受 光裝置的受光面的面積A3萁士知纪 積A3基本相等,且所述後置透鏡元件 的第一次匯聚後的出射光為新、+,為丨,# Ο Ο 尤在所述文光裝置的受光面所在的 平面上的截面面積A2鱼炻;+、、<,、k 〇所逑文光裝置的受光面的面積A3 基本相等,所述面積A2蛊A〗的兰s〆n/ -、的差異^ 10%之A1,A3與 A1的差異^ 10%之A1。 所述受光裝置包括有位於你$ 位於後置透鏡元件後方的光電轉 換元件,所述前置透鎊开A m 後置透鏡元件和光電轉換元 件通過所述支架相互連接 接$成裝置主體;所述後置透鏡元 件將前置透鏡元件的所述出 出射先進行第二次匯聚後投射在 所述光電轉換元件的受光面上。After the light is concentrated for the first time, the spot 4»UL or the outgoing light is emitted, and the rear lens element projects the first exit of the front lens element, and the second light is projected onto the light receiving surface of the light receiving device. The area A1 of the light-receiving surface of the pre-reading lens is substantially equal to the area A3 of the light-receiving surface of the light-receiving device, and the first time of the rear lens element The emerging light after convergence is new, +, is 丨, # Ο Ο especially the cross-sectional area A2 of the plane where the light-receiving surface of the illuminating device is located; +, , <,, k 〇 The area A3 of the light-receiving surface of the apparatus is substantially equal, and the difference of the area A2蛊A is s〆n/-, the difference is 10% of A1, the difference between A3 and A1 is 10% of A1. The light-receiving device includes a photoelectric conversion element located behind your rear lens element, and the front-end aperture-opening A m rear lens element and the photoelectric conversion element are connected to each other through the bracket to form a device body; The rear lens element firstly concentrates the exit and exit of the front lens element on the light-receiving surface of the photoelectric conversion element.

所述受光裝置還可以A 為一種直接利用光能充電的裝 置’例如:利用光能充雷从 的充電燈、利用光能充電的手機 充電器、利用光能充電的蓄m e 所述可縮短對光源摄央^ 光巨離的單位面積光通量增量裝 置還包括追日機構,用於 、使所述裝置主體根據入射的太陽 光線的方向而相對於水伞 卞面轉動’以使所述前置透鏡元件 的受光面垂直於入射的太陽光線。 7 201038975 效 由於採用了上述技術方案,本發明具有如下優點和 果: 本發明的透鏡陣列組在擴大了對光源中心點的採光 角度的同4,縮小了對光源中心點的採光場範圍,從而增 大了透鏡陣列組單位面積出射光的光通量,導致從透鏡陣 列組出射光單位面積的光強度也隨之增大,顯著提高了單 Ο 〇 位面積的光能收集效率,使得所對應的單位面積光電轉換 裝置(例如太陽能電池)能夠換裝出更多光電能量。本發 明在現有材料條件下的卫程實驗結果表明:本發明能夠將 地球表面自㈣(例如夏季的太陽光)單位面積的光通量 和光強度增大4〇%至8G%;能夠在—^距離内將室内外燈 光(例如普通照明燈光)單位面積的光通量和光強度增: 60〇/〇至 250〇/〇。 θ 义2、本發明的透鏡陣列組出射光的光斑面積之和約等於 前置透鏡陣列面積,光斑處的光強度顯著增大但溫度變化&lt; 抓。因此,本發明不會對光電轉換裝置(例如太陽能電― 池)造成高溫危害’無需於太陽能電池配備冷卻或恒溫褒 置,結構簡單和明顯節約能源。 3'本發明利用重力和離心式傾轉限速阻尼原理在— 定的時段内使本發明始終追隨太陽方位角和㈣角變化而一 保持與太陽同步二維運動,從而能夠在每 = 八的有效日照時 段内最大限度地收集太陽能。本發明 一維追蹤機構 8 201038975 無需測量感測器和無需能耗 源。 結構簡單可靠和明顯節約 4、本發明所佔 能電池)的·面積, 資源有限的區域應 優勢。 用的面積即為光電轉換裝置(例如太陽 匕本兔明在城市或者城郊土地和空間 用時’具有節約土地和空間資源的明顯 :)、本發明的光電轉 〇 〇 、裝置陣列移動槽裝置設計,能夠 使光電轉換裝置陣列(例如 双㈣月b包池)在低照度的陰天 或多雲天氣環境中脫離透 規丨皁列組,採集太陽的漫射光、 反射光和散射光等光能來實 她先電轉換,從而擴大了本發 明的應用範圍並提高了利用率。 本I月可用曰通玻璃或光學玻璃和工程塑料、普通 金屬材料以一般工業技術製造,具有良好的效費比和性價 比’易於廣泛應用。本發明油 月〜體結構簡單可靠,重量相對 較輕,沒有明顯的易損易 、约耗7G件’使用和維護修理都很簡 便。本發明低重心的側向通透式構造,能夠有效抗擊惡劣 氣象環境(例如賴暴雨或沙塵)的侵襲,適合在各種地 域環境中長期應用。 本發明的透鏡陣列用卫藝技術集成並微小型化後, 能夠直接應用於太陽能電池封I,從而進一步減輕重量和 擴大應用範圍’例如應用於各種照明燈光能的回收,或者 應用於航太飛行器、太空站以及月球或火星地面站等。 9 201038975 【實施方式】 為利貴審查員暸解本發明之發明特徵、内容與優點及 其所能達成之功效,茲將本發明配合附圖,並以實施例之 表達形式詳細說明如下,而其中所使用之圖式,其主旨僅 為示意及輔助說明書之用,未必為本發明實施後之真實比 例與精準配置’ &amp;不應就所附之圖式的比例與配置關係偈 限本發明於實際實施上的專利範圍,合先敘明 貫施例一: 如圖1和圖2所不,根據本發明的可縮短對光源採光 距離的單位面積光通量增量裝置包括有:&amp;著光源方向依 次設置的前置透鏡元件、後置透鏡元件和光電轉換元件, 所述前置透鏡元件、後置透鏡元件和光電轉換元件通過活 動支架5組接成一體。 如圖3a、扑所示’所述前置透鏡元件包括有由單塊或 〇夕塊凸透鏡17橫向排列而成的前置透鏡陣列丨;所述後置 透鏡兀件包括一組或者多組陣列’每組陣列由單塊或多塊 透鏡可為凸或凹透鏡)橫向排列而成;光電轉換元件包 括有由單塊或多塊光電轉換單元19橫向排列而成的光電 轉換裝置陣列4。在太奋如丨士 在本Λ %例中,所述後置透鏡陣列包括 有迎著光源方向依次設置的第一組後置透鏡陣列2和第二 組後置透鏡陣列3 〇卢Μ @、条丄 早幻3所述刚置透鏡陣列丨、第一組後置透鏡 陣列2和第二組後置透 皁列3中,多塊橫向排列成陣列 10 201038975 的透鏡相互間通過連接裝里^ 按裝置固定連接成矩形(或 形、橢圓形、圓形等ι他夕邊 寻,、他4何形狀)的板狀結構; 換裝置陣列4中,多塊排^ 再先電轉 免排列成陣列的太陽能電池相互間通 過連接裝置固定連接占^^ 耸1… 或者多邊形、橢圓形、圓形 等其他幾何形狀)的板狀結構。 前置透鏡陣列1中的 、 中的凸透鏡17的中心軸與所對應的後 置透鏡陣列中的透鏡 ❹ Ο ㈣鏡18(可為凸或凹透鏡)的中心軸在同一 條直線上,構成可擴大斟 夂大對先源中心點的採光角度和縮小對 光源中心點的採井i^ , 木九每I巳圍的相對於光源近距離採光集能的 光通量增量縱歹I丨. 〇’所述光通量增量縱列單元2〇且 有增大的由後置透鏡元件射出的出射光的單位面積光通量 矛光強度戶斤述光通1增量縱列單元2〇的出射光投射在光 電轉換裝置的光接收部。 如圖4b和圖4c所示,所述前置透鏡元件丨、第一組 後置透鏡陣列2、第二組後置透鏡陣列3和光電轉換陣列4 之間間隔有特定距離’使得所述前置透鏡元件的受光面的 面積A1與光電轉換元件的受光面的面積基本相等,且 所述後置透鏡元件的第二次匯聚後的出射光在所述光電轉 換元件的文光面所在的平面上的截面面積A?與所述受光 面的面積A3基本相等,所述面積A2與a 1的差異$ 1 〇〇/〇 之A1,A3與A1的差異$ 1〇%之Ai。 在本實施例中’所述的前置透鏡陣列1中的透鏡的後 11 201038975 焦距’大於所對應的第一組後置透鏡陣列2甲的透鏡的前 焦距;所述的前置透鏡陣列丨中的透鏡的後焦點與所對應 的第一組後置透鏡陣列2的透鏡的前焦點重合、或所述的 前置透鏡陣列1中的透鏡的後焦點與所對應的第一組後置 透鏡陣列2的透鏡的前焦點的距離£前置透鏡陣列丨中的透 鏡的後焦距的10%。 〇 〇 所述則置透鏡陣列丨中的凸透鏡17和透鏡18(可為凸 或凹透鏡)為矩形或者多邊形、圓形,凸透鏡17邊長或直 徑^第-組後置透鏡陣列2中的透鏡18(可為凸或凹透鏡) 的邊長或直徑;第-組後置透鏡陣列2中的透鏡18(可為凸 或凹透鏡),其邊長或直徑與第二組後置透鏡陣列3中的透 (可為凸或凹透鏡)邊長或直徑相同或者不相同;所述 前置透鏡陣列1中的凸透鏡⑴其焦距〉第—組後置透鏡 】2中的透鏡18(可為凸或凹透鏡)的焦距;第二組後置 透鏡陣列3中的透鏡18(可為凸或凹透鏡),其焦、距$第一組 後置透鏡陣列2中的透锫 边鏡18(可為凸或凹透鏡)的焦距。 所述的光通量增量縱列單元2〇為凸·凸_凸式縱列結 構’前置透鏡陣列1中的凸透鏡是邊長相對較大的正方 形’第—組後置透鏡陣列2t的透鏡18是邊長相對較小的 正方形凸透鏡’第二組後置透鏡陣列3中的透鏡18為正方 形且邊長與第一組後置透鏡陣列2中的透鏡以邊長相等。 中别置透鏡1的後焦距是第_組後置透鏡2的前焦距 12 201038975 的4倍·,前置透鏡1的光心與後置透鏡2 μ &amp; 前置透鏡1的後焦距與第一組後置透鏡2的前焦距之和· 第二組後置透鏡3的後焦距〈第一組後置透鏡二的前焦’ -距:由第二組後置透鏡陣列3射出的出射光,投射到:電 -轉換裝置陣列4的受光表面後所形成的光斑的面積之和, 等於前置透鏡陣列1中所有透鏡的面積之和。 本發明中的透鏡可用普通玻璃或光學玻璃或工程塑 〇料、其❿元件可用*通金屬和工程塑料等材料以 技術製造。 案 根據本實施例的單位面積光通量增量裝置,其透鏡陣 列組能夠實現把對光源的採光距離縮短為實際距離的四分 之一的光學效果和光通量增量效果。例如··當光源s為直 射太陽光’地球表面某一地點單位面積的陽光照度Eb約為 )112980Lux時’本發明具體實施方案之一的裝置能夠將同 i也,點與陽光照度Eb面積相同的太陽光的照度增強約為 M570〇Lux (光斑Ea)。因此,本發明具體實施方案之一的 裝置月b夠使單位面積的光通量增量約46·7%,即光電轉換 裝置陣列4受光表面單位面積的光通量增加了約46.7% , 從而使光電轉換裝置陣列4所產生的光電能量能夠顯著增 加(光電能量的增量值,與具體採用的光電轉換裝置陣列 4的轉換效率有關)。同時,本發明具體實施方案之一的裝 置在使早位面積光通量增加了約46.7%的條件下,投射到 13 201038975 &quot;電轉換裝置陣列4的受光表面的光斑^的溫度,與光斑 外周邊環境的溫度相比沒有明顯變化’因此光電轉換裝置 陣列4不會明顯受到溫度變化影響,無需冷卻或恒溫處 理。所述的本發明具體實施方案之—的前置透鏡陣列&quot;采 用面積相對較大的凸透鏡,有利於常年太陽光照度較低的 地區應用。The light-receiving device can also be a device for directly charging by using light energy, for example, a charging lamp that is charged by light energy, a mobile phone charger that is charged by light energy, and a battery that is charged by light energy. The light flux increasing device per unit area of the light source further includes a tracking mechanism for causing the main body of the device to rotate relative to the surface of the water umbrella according to the direction of the incident solar light to make the front The light receiving surface of the lens element is perpendicular to the incident solar rays. 7 201038975 EFFICIENCY By adopting the above technical solution, the present invention has the following advantages and advantages: The lens array group of the present invention expands the lighting angle of the center point of the light source by 4, and reduces the range of the lighting field to the center point of the light source, thereby The luminous flux of the light emitted by the lens array unit per unit area is increased, so that the light intensity per unit area of the light emitted from the lens array group is also increased, and the light energy collection efficiency of the single-turn clamp area is significantly improved, so that the corresponding unit is obtained. Area photoelectric conversion devices (such as solar cells) can be retrofitted with more photovoltaic energy. The results of the experimental results of the invention under the existing material conditions show that the present invention can increase the luminous flux and light intensity per unit area of the earth surface from (4) (for example, summer sunlight) by 4% to 8 G%; Increasing the luminous flux and light intensity per unit area of indoor and outdoor lighting (such as general lighting): 60 〇 / 〇 to 250 〇 / 〇. θ 义 2, the sum of the spot areas of the lens arrays of the present invention is approximately equal to the area of the front lens array, and the light intensity at the spot is significantly increased but the temperature changes &lt; Therefore, the present invention does not cause a high temperature hazard to a photoelectric conversion device (e.g., a solar cell). It is not necessary to provide a cooling or constant temperature device for the solar cell, and the structure is simple and the energy is significantly saved. 3' The present invention utilizes the principle of gravity and centrifugal tilting speed limiting damping to enable the present invention to always follow the solar azimuth and (four) angular changes for a predetermined period of time while maintaining a two-dimensional motion synchronized with the sun, thereby enabling each in eight Maximize solar energy collection during effective daylight hours. The one-dimensional tracking mechanism of the present invention 8 201038975 eliminates the need for measuring sensors and eliminating the need for energy sources. The structure is simple, reliable and obviously economical. 4. The area occupied by the battery of the present invention and the area with limited resources should be advantageous. The area used is the photoelectric conversion device (for example, when the sun is used in urban or suburban land and space), it has obvious advantages of saving land and space resources:), the photoelectric conversion device of the invention, and the device array moving groove device design It can enable the photoelectric conversion device array (for example, the double (four) month b pool) to be separated from the translucent soap group in a low-light cloudy or cloudy weather environment, and collect light energy such as diffused light, reflected light and scattered light of the sun. In fact, she first converted the electricity, thereby expanding the application range of the invention and improving the utilization rate. This I month can be made by using glass or optical glass and engineering plastics, ordinary metal materials in general industrial technology, and has a good cost-effectiveness and price-performance ratio. The oil of the invention has simple and reliable structure, relatively light weight, no obvious vulnerability, and consumes about 7G pieces. The use and maintenance are very simple. The low-centered lateral permeable structure of the invention can effectively resist the invasion of severe meteorological environments (such as rain or sand) and is suitable for long-term application in various geographical environments. The lens array of the present invention can be directly applied to the solar cell seal I after being integrated and miniaturized by the satellite technology, thereby further reducing the weight and expanding the application range, for example, for recycling various lighting energy, or for use in aerospace vehicles. , space stations and moon or Mars ground stations. 9 201038975 [Embodiment] To understand the features, contents, and advantages of the invention, and the effects thereof, the present invention will be described in detail with reference to the accompanying drawings. The use of the drawings is intended to be illustrative only and to assist in the specification, and is not necessarily a true proportion and precise configuration after the implementation of the invention. &amp; The ratio and configuration of the attached drawings should not be limited to the actual invention. The scope of patents in the implementation is as follows: As shown in FIG. 1 and FIG. 2, the unit of the luminous flux increment per unit area capable of shortening the lighting distance of the light source according to the present invention includes: &amp; The front lens element, the rear lens element, and the photoelectric conversion element are disposed, and the front lens element, the rear lens element, and the photoelectric conversion element are integrally assembled by the movable bracket 5. As shown in FIG. 3a, the front lens element includes a front lens array 横向 which is laterally arranged by a single block or a lenticular lens 17; the rear lens element includes one or more sets of arrays. The 'each array is made up of a single or a plurality of lenses which may be convex or concave lenses." The photoelectric conversion element includes an array 4 of photoelectric conversion devices which are laterally arranged by a single or a plurality of photoelectric conversion units 19. In the example of the genius of the genius, the rear lens array includes a first group of rear lens arrays 2 and a second group of rear lens arrays 3 arranged in the direction of the light source. In the first lens array 丨, the first group of rear lens arrays 2, and the second group of rear permeable soap columns 3, a plurality of lenses arranged horizontally in an array 10 201038975 are connected to each other through a connection. a plate-like structure that is fixedly connected by a device into a rectangular shape (or a shape, an ellipse, a circle, etc., and a shape of the other), and in the array 4 of the device, the plurality of rows are electrically transferred to an array. The solar cells are fixedly connected to each other by a connecting device to occupy a plate-like structure of a plurality of geometric shapes such as a polygonal shape, an elliptical shape, and a circular shape. The central axis of the convex lens 17 in the front lens array 1 is on the same straight line as the central axis of the lens ❹ (four) mirror 18 (which may be a convex or concave lens) in the corresponding rear lens array, and can be expanded.采 所 所 对 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 先 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所The luminous flux increments the column unit 2〇 and has an increased luminous flux per unit area of the emitted light emitted by the rear lens element. The spear light intensity is reflected by the luminous flux 1 and the output light of the incremental column unit 2 is projected in the photoelectric conversion. The light receiving portion of the device. As shown in FIG. 4b and FIG. 4c, the front lens element 丨, the first group of rear lens arrays 2, the second group of rear lens arrays 3, and the photoelectric conversion array 4 are spaced apart by a specific distance 'such that the front The area A1 of the light receiving surface of the lens element is substantially equal to the area of the light receiving surface of the photoelectric conversion element, and the second concentrated light of the rear lens element is in a plane where the surface of the photoelectric conversion element is located The upper cross-sectional area A? is substantially equal to the area A3 of the light-receiving surface, and the difference between the area A2 and a1 is $1 〇〇/〇 of A1, and the difference between A3 and A1 is $1〇% of Ai. In the present embodiment, the rear 11 201038975 focal length of the lens in the front lens array 1 is greater than the front focal length of the lens of the corresponding first rear lens array 2A; the front lens array 丨The back focus of the lens in the coincidence with the front focus of the lens of the corresponding first set of rear lens array 2, or the back focus of the lens in the front lens array 1 and the corresponding first set of rear lens The distance of the front focus of the lens of array 2 is 10% of the back focus of the lens in the pre-lens array 丨. The convex lens 17 and the lens 18 (which may be convex or concave lenses) in the lens array 为 are rectangular or polygonal, circular, and the length of the convex lens 17 or the diameter of the lens 18 in the second-group rear lens array 2 The length or diameter of the edge (which may be a convex or concave lens); the lens 18 (which may be a convex or concave lens) in the first set of rear lens array 2, the side length or diameter of which is transparent to the second set of rear lens arrays 3 (may be a convex or concave lens) having the same or different sides or diameters; the convex lens (1) of the front lens array 1 has a focal length > a rear lens of the second group of lenses 2 (which may be a convex or concave lens) a focal length; a lens 18 (which may be a convex or concave lens) in the second set of rear lens arrays 3, the focal length of which is a translucent edge mirror 18 (which may be a convex or concave lens) in the first set of rear lens arrays 2 focal length. The light flux increment column unit 2 is a convex/convex_convex column structure. The convex lens in the front lens array 1 is a lens 18 of a square 'group-group rear lens array 2t having a relatively long side length. It is a square convex lens having a relatively small side length. The lens 18 in the second group rear lens array 3 is square and has a side length equal to that of the lens in the first group rear lens array 2. The back focal length of the centering lens 1 is 4 times the front focal length 12 201038975 of the first group rear lens 2, the optical center of the front lens 1 and the rear lens 2 μ &amp; the back focal length of the front lens 1 and the The sum of the front focal lengths of the set of rear lenses 2 · the back focus of the second set of rear lenses 3 <the front focus of the first set of rear lenses 2 - the distance: the outgoing light emitted by the second set of rear lens arrays 3 The sum of the areas of the spots formed after the light-receiving surface of the electro-conversion device array 4 is equal to the sum of the areas of all the lenses in the pre-lens array 1. The lens of the present invention can be made of ordinary glass or optical glass or engineering plastics, and its enamel elements can be manufactured by materials such as metal and engineering plastics. According to the unit area luminous flux incrementing apparatus of the present embodiment, the lens array group can realize an optical effect and a luminous flux incrementing effect of shortening the lighting distance of the light source to a quarter of the actual distance. For example, when the light source s is a direct sunlight, the solar illuminance Eb of a certain area of the earth surface is about 112980 Lux, the apparatus of one embodiment of the present invention can have the same area as the sun illumination Eb. The illumination of the sun is enhanced by approximately M570〇Lux (spot Ea). Therefore, the device b of one embodiment of the present invention is sufficient to increase the luminous flux per unit area by about 46.7%, that is, the luminous flux per unit area of the light-receiving surface of the photoelectric conversion device array 4 is increased by about 46.7%, thereby making the photoelectric conversion device The photoelectric energy generated by the array 4 can be significantly increased (incremental value of the photoelectric energy, which is related to the conversion efficiency of the specifically employed photoelectric conversion device array 4). Meanwhile, the apparatus according to one embodiment of the present invention projects the temperature of the spot on the light-receiving surface of the array 13 of the electric power conversion device 4, and the outer periphery of the spot, under the condition that the light energy of the early-area area is increased by about 46.7%. The temperature of the environment does not change significantly compared to the fact that the photoelectric conversion device array 4 is not significantly affected by temperature changes, and no cooling or constant temperature treatment is required. The pre-lens array of the embodiment of the present invention described above employs a convex lens having a relatively large area, which is advantageous for applications in areas where the annual solar illuminance is low.

所述可縮短對光源採光距離的單位面積光通量增量裝 置還包括有軸向互垂直雙軸支架6、以及固定座架9;所述 活動支* 5呈矩形(或者多邊形、橢圓形、圓形等其他幾 何形狀)框架結構’前置透鏡陣列!、後置透鏡陣列2、3 和光電轉換裝置陣列4分別位於活動支架5的頂部、中部 和底部;前置透鏡陣列丨和第一組後置透鏡陣列2、第二 組後置透鏡陣列3以-定的相對距離,平行對稱安裝在活 動支架5上,形成透鏡陣列組;軸向互垂直雙軸支架6採 用矩形(或者多邊形、擴圓形、圓形等其他幾何形狀)框 架結構,位於活動支架5高度方向中部的外周;所述軸向 互垂直雙軸支架6設置有相互垂直的兩組轉軸,即水準向 轉軸7和赤緯向轉軸8,所述兩組轉軸的中心線在同一平 面上並且軸向互相垂直;所述水準向轉軸7連接於固定座 架9的頂部,所述軸向互垂直雙軸支架6繞水準向轉軸7 翻轉;所述活動支架5通過兩根中連桿51與所述赤緯向轉 軸8連接,所述活動支架5繞赤緯向轉軸s翻轉並懸置於 14 3/? 201038975 固定座架9的頂部。 根據原生光群場特性〜=0 姐3 ’即:由光源產生的 場中’與光群運動方向垂直的某一平面或曲面的子光群密 度内,與光源點表面的子光群密度p成正比,與該平面到光The unit area luminous flux increasing device capable of shortening the light collecting distance of the light source further comprises an axial mutually perpendicular biaxial bracket 6 and a fixed mount 9; the movable branch * 5 is rectangular (or polygonal, elliptical, circular) Other geometric shapes) frame structure 'front lens array! The rear lens array 2, 3 and the photoelectric conversion device array 4 are respectively located at the top, the middle and the bottom of the movable frame 5; the front lens array 丨 and the first group of rear lens arrays 2, and the second group of rear lens arrays 3 are - a fixed relative distance, mounted in parallel on the movable bracket 5 to form a lens array group; the axial mutually perpendicular biaxial bracket 6 adopts a rectangular (or polygonal, circular, circular, and other geometrical) frame structure, located at the movable The outer circumference of the middle portion of the bracket 5 in the height direction; the axial mutually perpendicular biaxial bracket 6 is provided with two sets of rotating shafts perpendicular to each other, that is, a horizontal direction rotating shaft 7 and a declination rotating shaft 8, and the center lines of the two sets of rotating shafts are in the same plane Up and axially perpendicular to each other; the leveling shaft 7 is coupled to the top of the fixed mount 9, the axially mutually perpendicular biaxial bracket 6 is flipped about the horizontal axis of rotation 7; the movable bracket 5 passes through two intermediate links 51 is coupled to the declination to the rotating shaft 8, and the movable bracket 5 is turned around the declination to the rotating shaft s and suspended at the top of the 14 3/? 201038975 fixed mount 9. According to the characteristics of the primary light group field~=0 Sister 3' is the sub-optical group density of the surface of the light source point in the sub-light group density of a certain plane or curved surface in the field generated by the light source perpendicular to the direction of motion of the light group. In proportion to the plane to the light

源點距離F的三次方成及卜。td V 珉反比如圖4a所示,本發明採光場 所示’S點為光源點,B、C、D分別為與光群運動方向垂 〇 〇 直但與光源點距離不同的採光平面,c點在8與d兩點距 離的_間。因B、C、〇三點單位面積的子光群密度不同, 所以B、C、D三點單位面積中的光通量和光強度也不同, 依次為B&gt;C&gt;D° #本發明裝置放置在D點對光源採光, 並且其透鏡陣列組的透鏡主光軸正對光源點中心,又前置 凸透鏡17的焦距大於透鏡18的焦距2 5倍或以上時,透 鏡陣列組採集到的是s點與c點之間的單位面積光通量和 光強度(圖4a’B),而不是D點的單位面積光通量和光強 度(圖4a,D),即使用本發明裝置後,採集到了相對於光 源更近距離區域的光能’因此單位面積採集到的光通量和 光強度大於D點本身自然投射的單位面積光通量和光強 度。第二組後置透鏡陣列3的作用,是將第一組後置透鏡 陣列2的出射光的投影面積擴大到與前置透鏡陣列^的面 積相同’使本發明達到提高D點單位面積光通量和光強度 的目的。 本發明是料料肋來提高D點的單位面積光通量 15 201038975 和光強度,並非在0點用凸透鏡聚光,在原理上與聚光透 鏡的聚焦集能方法完全不同。由於從本發明透鏡陣列組投 射到光電轉換裝置陣列4上的光溫度變化很小,不會對光 •'電轉換裝置(例如太陽能電池)構成高溫危害,因此無需 •配傷冷卻或者恒溫袭置。本發明後置透鏡陣列中的透鏡, 無論是採用凸透鏡還是凹透鏡都具有相同的效果。本發明 如果不設置第二組後置透鏡陣列3,也具有提高單位面積 © *通量和光強度的效果’但將增大[組後置透鏡陣列2 與光電轉換裝置陣列4之間的距離。 所述可縮短對光源採光距離的單位面積光通量增量裝 置還包括有追曰機構,所述追日機構為一種自動傾轉限速 機構,所述可縮短對光源採光距離的單位面積光通量增量 裝置設置有兩組自動傾轉限速機構,每組各由齒盤 '傾轉 〇 F艮速阻尼器機構和傾轉重力發生器組成,分別控制轴向互 垂直雙軸支架和活動支架相對與地面的傾轉速度;其中一 組重力發生器使軸向互垂直雙軸支架產生指向地面的傾轉 力矩,另一組重力發生器使活動支架產生指向地面的傾轉 力矩。 所述的傾轉限速阻尼器機構由離心轉子、錐筒形限速 罩和齒輪組構成,離心轉子設有彈性離合片;重力發生器 產生的傾轉力矩通過齒盤傳遞給限速阻尼器驅動離心轉 子,錐筒形限速罩控制離心轉子的轉速,離心轉子的轉速 16 201038975 控制齒盤的轉動速度。 如圖 1、固 1 __ 追曰機槿广 5b、圖5c、圖5d所示,所述 、匕括.水準向傾轉重力發生器10、赤嶂Θ 力 亦、咩向傾轉重 ” / 、水準向候轉限速阻尼器12'水準向限速齒盤 、赤緯向傾轉限速阻尼器14、赤緯向限速齒盤15。 戶Μ水準向傾轉重力發生器1〇和赤緯向傾轉重力發生 Ο Ο :阻Γ::,固定在活動支架5的底部;水準向傾轉限 定在轴向互垂::固疋座架9上’水準向限速齒盤U固 阻尸雙軸支架6的-端’所述水準向傾轉限速 F尼益12包括有:主傳動器從動齒輪21、離心轉子22、 錐:形限速罩23,所述水準向傾轉限速阻尼器12的 傾轉=從動絲21與水準向限速齒盤13唾合;赤緯向 15固:右阻尼器Μ固定在活動支架5上’赤緯向限速齒盤 ㈣ 向互垂直雙軸支架6的-側’所述赤緯向傾轉 ^ 14包括有:主傳動器從動齒輪24、離心轉子 主值W錐筒形限速罩25,赤緯向傾轉限速阻尼器14的 動器從動齒輪24與赤緯向限速齒盤15嗔合。 構,戶=^圖广圖8所示’對於本發明的水準向追曰機 雙輪古:的固定座架9通過水準向轉抽7,與軸向互垂直 木6動連接’水準向轉轴了支樓在軸向互垂直雙軸 的重心處;所述的水準向傾轉重力發生器10内部灌 產生重力,固定在活動支架5的底部,形成以水準 17 201038975 向㈣,7為軸Γ的傾轉力^1。抬升軸向互垂直雙軸支架 6帶動活動支架5’使透鏡陣列主光軸對準太陽時, 準向傾轉重力發生㈣的下沉作用,軸向互垂直雙轴支牟 6總疋自動在文裝有水準向傾轉重力發生器的-側傾 轉。所述的赤緯向傾轉重力發生器u内部灌注潔淨水以產 生重力’固定在活動支牟$ 初叉木5的底部’形成傾轉力矩μ。 Ο 〇 又知’水準向傾轉限逮阻尼器Η安裝在固定… 上,水準向限速齒盤15固定在軸向互垂 側,水準向傾轉限速阻尼器14&amp; 士难 支木6的一 ,尼益14的主傳動器從動齒輪24盥 水率向限速齒盤15喷合,主傳動器從動齒 : Γ28,使水準向限速齒盤…反向旋轉復…: 向互垂直雙站古加田車由 木在水準向傾轉重力發生器10的作用 傾轉時’帶動水準向限速 速阻尸〜 速以盤15叙轉,驅使水準向傾轉限 匕益的主傳動器從動齒輪24也隨之轉動,^ 動離心轉子26旋轉 轉動’進而帶 接的離合#27,1 料環是㈣性菁片連 田離'U轉子26旋轉時,離合片27 I:3:子作用下張開,張開量取決於離心轉子26的轉迷。 轉子26的外部,a-p、、 疋可以沿軸向移動的錐筒形限迷罩 如果=筒形限速罩25的軸線與離心轉子26的軸線重合。 接觸到:26的轉速增大’其張開的離合片”就會因 δ &gt;限速罩25的内壁而減速,離心 可以限制在某-轉速。沿轴向移動調節錐筒形限速罩:此 18 201038975 調:錐筒形限速罩25内壁與所述離合片27的相對距離, 就月&quot;控制離心轉子26轉速’從而控制主傳動器從動齒輪 24、水準向限速齒盤15的轉速’使轴向互垂直雙軸支架6 以-定的速度緩慢傾轉,達到與太陽赤緯角同步變化的目 的。本發明的赤緯向追日機構實施方式與效果和所述的水 準向追日機構相同。 Ο ❹ 可知,所述的軸向互垂直雙軸支架6的水準向轉軸7、 赤緯向轉軸8,分別與^座架9、活動支架5動連接,因 此本發明可以二維傾轉。曰出時,將所述的轴向互垂直雙 活動支架5傾轉’使透鏡陣列的主光轴對準太 陽’並調節所述的離心轉子26、離心轉子22至預定的轉 速。在水準向傾轉重力發生器1〇、赤緯向傾轉重力發生器 1丄和傾轉限速阻尼器機構的共同作用τ,本發明能夠實施 追縱太陽二維運動至預定的終止時間。 如圖1、® 2、目9所示,所述活動支架的底部設置有 移動槽裝置16,所述光電轉換裝置陣列通過所述移動槽裝 置與活動支架連接,並且所述光電轉換裝置陣列通過移動 槽裝置來進入或脫離透鏡陣列組出射光的投射區域。採集 太陽的漫射光、反射光和散射光等光能。 實施例 明的實施 與前述的實施例一的不同之處在於,在本發 19 201038975 例二中,如圖10a、圖10b及圖1〇 00 山 斤不’光通量增量縱列 早兀20為凸-凸·凸式縱列結 3 Α ⑴置透鏡陣列1中的凸透 鏡疋邊長相對較小的正方形, 直逯鏡陣列2中的透鏡是 邊長相對更小的正方形凸透鏡 置透鏡陣列3中的透鏡 是與後置透鏡陣列2中的读锫;蚀Λ 、 中的透鏡面積相同的正方形&amp;透鏡。 其中,前置透鏡1的後焦距是後 ^ 处蜆2的前焦距的2倍; 如置透鏡1的光心盘接蓄读於 Ο 〃後置透鏡2的光心距離,為前置透鏡 1的後焦距與後置透鏡2的前隹 …、距之和,後置透鏡3的後The source point is equal to the cube of F. For example, as shown in FIG. 4a, the 'S point of the light field shown in the present invention is a light source point, and B, C, and D are respectively light-harvesting planes that are perpendicular to the direction of movement of the light group but different from the source point, and point c is 8 and d two distances between the _. Since the sub-optical group density per unit area of B, C, and 〇 is different, the luminous flux and light intensity in the unit area of B, C, and D are also different, which is B&gt;C&gt;D° in time. When the point-to-light source is used for illumination, and the lens main optical axis of the lens array group faces the center of the light source point, and the focal length of the front convex lens 17 is greater than 25 times or more of the focal length of the lens 18, the lens array group collects the s point and The luminous flux per unit area and the light intensity between points c (Fig. 4a'B), rather than the luminous flux per unit area and the light intensity at point D (Fig. 4a, D), that is, after using the device of the present invention, a closer distance region with respect to the light source is collected. The light energy' is therefore greater than the luminous flux and light intensity per unit area naturally projected by the D-point itself. The second group of rear lens arrays 3 functions to enlarge the projected area of the outgoing light of the first group of rear lens arrays 2 to the same area as that of the front lens arrays ′ to enable the present invention to increase the luminous flux per unit area and light of the D point. The purpose of strength. The present invention is a material rib to increase the luminous flux per unit area of point D. 15 201038975 and the light intensity, not concentrating with a convex lens at 0 o'clock, in principle is completely different from the focusing energy collecting method of the concentrating lens. Since the temperature variation of the light projected from the lens array group of the present invention onto the photoelectric conversion device array 4 is small, it does not pose a high temperature hazard to the optical 'electrical conversion device (for example, a solar cell), so there is no need for trapping cooling or constant temperature attack. . The lens in the rear lens array of the present invention has the same effect whether it is a convex lens or a concave lens. The present invention also has an effect of increasing the unit area © * flux and light intensity without providing the second group of rear lens arrays 3 but increasing the distance between the group rear lens array 2 and the photoelectric conversion device array 4. The unit area luminous flux increasing device capable of shortening the light collecting distance of the light source further includes a tracking mechanism, wherein the tracking mechanism is an automatic tilting speed limiting mechanism, and the light flux increase per unit area of the light source distance can be shortened The device is provided with two sets of automatic tilting speed limiting mechanisms, each set consisting of a crankset 'tilting 〇F idling damper mechanism and a tilting gravity generator, respectively controlling the axial mutual vertical biaxial bracket and the movable bracket relative to The rate of tilting of the ground; one set of gravity generators causes the axially perpendicular biaxial supports to produce a tilting moment directed toward the ground, and the other set of gravity generators causes the movable supports to produce a tilting moment directed toward the ground. The tilting speed limit damper mechanism is composed of a centrifugal rotor, a cone-shaped speed limit cover and a gear set, and the centrifugal rotor is provided with an elastic clutch piece; the tilting torque generated by the gravity generator is transmitted to the speed limit damper through the toothed disc The centrifugal rotor is driven, and the cone-shaped speed limit cover controls the rotation speed of the centrifugal rotor, and the rotational speed of the centrifugal rotor 16 201038975 controls the rotational speed of the toothed disc. As shown in Fig. 1, the solid 1 __ tracking machine 槿 guang 5b, Fig. 5c, Fig. 5d, the said, including the horizontal tilting gravity generator 10, the red 嶂Θ force, the 倾 tilting weight" / , leveling to the speed limit damper 12' level to the speed limit tooth plate, declination direction speed limit damper 14, declination speed limit gear plate 15. Toho water level tilt gravity generator 1 and Declination tilting gravity occurs Ο Γ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The level-shifting speed limit F Niyi 12 of the mortuary biaxial bracket 6 includes: a main actuator driven gear 21, a centrifugal rotor 22, a cone-shaped speed limit hood 23, and the level is inclined Tilting of the speed limit damper 12 = the driven wire 21 is salivated with the leveling speed limiting sprocket 13; the declination is 15 solid: the right damper Μ is fixed on the movable bracket 5 'declining speed limiting sprocket (4) The declination tilting to the side of the mutually perpendicular biaxial bracket 6 includes: a main drive driven gear 24, a centrifugal rotor main value W cone cylindrical speed limit cover 25, a declination tilt limit Speed damper 14 The driven gear 24 is coupled with the declination to the speed limiting sprocket 15 . The structure of the household is shown in FIG. 8 'for the leveling chasing machine of the present invention: the fixed frame 9 is rotated by the level Pumping 7 and the axially perpendicular wood 6-moving connection 'leveling axis of the branch is at the center of gravity of the axially perpendicular two-axis; the level is poured into the internal gravity generator 10 to generate gravity, fixed at the activity The bottom of the bracket 5 is formed at a level of 17 201038975 to (4), and 7 is the tilting force of the shaft. The lifting axially perpendicular vertical biaxial bracket 6 drives the movable bracket 5' to align the main optical axis of the lens array with the sun. The tilting effect occurs when the tilting gravity occurs (4), and the axially perpendicular vertical biaxial support 6 is automatically tilted in the direction of the tilting gravity generator. The declination tilting gravity occurs. The inside of the device u is filled with clean water to generate gravity 'fixed at the bottom of the movable support $ the initial fork wood 5' to form the tilting moment μ. Ο 〇 also knows that the 'level tilting limit damper Η is installed on the fixed... Fixed to the speed-limiting sprocket 15 on the axial side, the horizontal tilting speed limiter 14&amp; The first of the six, the main drive of the Niyi 14 driven gear 24 hydraulic rate to the speed limit gear 15 spray, the main drive driven gear: Γ 28, the water to the speed limit sprocket... reverse rotation complex...: When the mutual vertical double-station Gujiatian car is tilted by the effect of the tilting gravity generator 10 at the level of the wood, the water level is limited to the speed limit of the corpse. The speed is reversed by the disk 15 to drive the level to the limit of the tilt. The main actuator driven gear 24 also rotates, and the centrifugal rotor 26 rotates and rotates, and then the clutch #27,1 is connected. When the ring is (4), the ring is rotated from the 'U rotor 26, and the clutch 27 I : 3: The opening is opened by the sub-action, and the opening amount depends on the revolving of the centrifugal rotor 26. On the outside of the rotor 26, a-p, 疋 can be moved in the axial direction of the cone-shaped limiter if the axis of the cylindrical speed limiter 25 coincides with the axis of the centrifugal rotor 26. Contact: 26 increase in the speed of the 'opening clutch plate' will be decelerated by the inner wall of the δ &gt; speed limit cover 25, the centrifugation can be limited to a certain speed - the axial adjustment of the cone-shaped speed limit cover : This 18 201038975 adjustment: the relative distance between the inner wall of the cone-shaped speed limit cover 25 and the clutch plate 27, and the control of the rotational speed of the centrifugal rotor 26 to control the main drive driven gear 24 and the level-limiting speed-limiting toothed disc The rotational speed of 15 makes the axial mutually perpendicular biaxial support 6 slowly tilt at a constant speed to achieve a synchronous change with the solar declination angle. The embodiment and effect of the declination tracking mechanism of the present invention and the described The level is the same as that of the Japanese tracking mechanism. ❹ ❹ The horizontal axis 7 and the declination axis 8 of the axially perpendicular biaxial bracket 6 are respectively movably connected to the mount 9 and the movable bracket 5, so that the present invention It can be tilted in two dimensions. When scooping out, tilt the axial mutual vertical double-moving bracket 5 'aligning the main optical axis of the lens array with the sun' and adjust the centrifugal rotor 26 and the centrifugal rotor 22 to a predetermined Rotating speed of gravity generator 1 〇, declination The interaction between the gravity generator 1丄 and the tilting speed limit damper mechanism τ, the present invention is capable of performing a two-dimensional movement of the tracking sun to a predetermined end time. As shown in Figures 1, 2, and 9, the activity The bottom of the bracket is provided with a moving slot device 16 through which the array of photoelectric conversion devices is connected to the movable bracket, and the array of photoelectric conversion devices enters or leaves the projection region of the emitted light of the lens array group by moving the slot device The light energy such as the diffused light, the reflected light, and the scattered light of the sun is collected. The implementation of the embodiment is different from the first embodiment described above in the second example of the present invention, FIG. 10a, FIG. 10b and FIG. 1〇00 山斤不 'Light flux increments 兀 兀 20 is a convex-convex convex bulge 3 Α (1) The convex lens in the lens array 1 has a relatively small square length, in the 逯 mirror array 2 The lens is a square convex lens with a relatively small side length. The lens in the lens array 3 is a square &amp; lens in the same area as the read lens in the rear lens array 2; The back focal length of the mirror 1 is twice the front focal length of the rear lens 2; if the optical core of the lens 1 is connected to the optical center distance of the rear lens 2, the back focal length of the front lens 1 is The front of the rear lens 2, the sum of the distances, the rear of the rear lens 3

焦距 &lt; 後置透鏡2 Μ老·隹, J 鏡的剛焦距,由後置透鏡陣们射出的出 射光,投射到光電轉換裝置陣列 J叫的又先表面後所形成的 光斑的面積之和,等於前w清 寻於則置透鏡陣列1中所有透鏡的面積 之和。所述的本發明具體實施方案之二,其透鏡陣列組能 夠實現把對光源的採光距離縮短為實際距離的二分之一的 光學效果和光通量增量效果。例如:當光源s為直射太陽 光,地球表面某一地點單位面積的陽光照度Ed約為 9522〇Lux時,本發明具體實施方案之二的裝置能夠將同一 地點、與Ed相同面積的太陽光的照度增強約為m〇96〇Lux (光斑Ec)。因此,本發明具體實施方案之二的裝置能夠 使單位面積的光通量增量約48%,即光電轉換裝置陣列4 又光表面單位面積的光通量增加了約48%,從而使光電轉 換裝置陣列4所產生的光電能量能夠顯著增加(光電能量 的增里值,與具體採用的光電轉換裝置陣列4的轉換效率 20 201038975 有關)。同時,本發明具體實施方案之二的裂置在使單位面 積光通量增加了約48%的條件下’投射到光電轉換裝置陣 列4的受光表面的光斑以的溫度,與光斑外周邊環境的溫 度相比沒有明顯變化,因此光電轉換襄置陣列4不會明^ 受到溫度變化影響,無需冷卻或恒溫處理。由於所述的本 發明具體實施方案之二的前置透鏡陣列1中的凸透鏡面積 ❹ 〇 較小,因此,相對於上述所述本發明具體實施方案之—, 在光通I增量效果基本相同的前提下,本發明具體實施方 案之二的t置總體積明顯小於本發日月具體實施方案之一的 裝置的總體積。本發明具體實施方案之二的裴置主要適人 於太陽光照度較大和氣象條件變化較頻密的地區(例如沙 漠地帶)應用。 實施例 本2明的實施例三主要適合於各種燈光光能的回收利 用。與前述的實施例一的不同之處在於,在本發明的實施 例三中’如圖11 a、圖! i b、圖i i 所示’所述可縮短對光 源採光距離的單位面積光通量增量 至曰置哀罝的刖置透鏡陣列 1、第一組後置透鏡陣列2和第— 乐一組後置透鏡陣列3 ,均為 以各自相對於光源L的中心點的ΐΕ絲k r點的距離為半徑的弧形;所述 的本發明具體實施方案之三的光通量增量縱列單元⑽ 凸-凸-凹式縱列結構,前置透鏡陣列】中的透鏡是直徑相 21 201038975 ❹ Ο ί較大的圓形凸透鏡,第 '组後置透鏡陣列2中的透鏡是 直㈣對較小的圓形凸透鏡,第二組後置透鏡陣列3中的 透鏡是^徑相對較小的圓形凹透鏡。其中,前置透鏡i的 '’、、疋第組後置透鏡2的前焦距的*倍;前置透鏡1 的光心與第―虹後置透鏡2的光心距離,為前置透鏡}的 後焦距與第一組後置透鏡2的前焦距之和;第二組後置透 鏡3的後焦距&lt; 第-組後置透鏡2的前焦距;由第二組後 置透鏡陣列3射出的出射光,投射到光電轉換裝置陣列4 的受光表面後所形成的光斑的面積之和,等於前置透鏡陣 列1中所有透鏡的面積之和。所述的本發明具體實施方案 之三的裝置’其透鏡陣列組能夠實現把對光源的採光距離 縮短為實際距離的四分之—的光學效果和光通量增量效 果。例如:光源L為功率500W的普通白煤燈,距光源L 約6米處的照度Ef約為66Lux ’採光環境除光源l外無任 何其他光源,所述的本發明具體實施方案之三的裝置,&amp; 夠將將距光源點6米、與Ef相同面積的光照度增強為約 140Lux (光斑Ee)。因此,本發明具體實施方案之三的装 置能夠使單位面積的光通量增量約1121%,即光電轉換裝 置陣列4受光表面單位面積的光通量增加了約,從 而使光電轉換裝置陣列4所產生的光電能量顯著增加(光 電轉換裝置陣列4的單位面積光電能量的增量值,與具體 採用的光電轉換裝置陣列4的轉換效率有關)。同時,/本發 22 201038975 明具體實施方案之三的裝置,在使單位面積光通量增加了 約112.1%的條件下,投射到光電轉換裝置陣列4的受光表 面的光斑^的溫度,與光斑外周邊環境的溫度相比I有明 顯變化,因此光電轉換裝置陣列4不會明顯受到溫度變化 影響’無需冷卻或恒溫處理。 Ο Ο 所述的本發明實施方案之一、二和三的光通量增量效 果,與所採用透鏡的透光性能、透鏡材料的各向同性或各 向異性條件,以及透鏡加玉製造的精度等條件有闕。 而综觀上述,可見本發明在 破先别之技術下,確實 已達到所欲增進之功效,且也染 、 «. , * ^ ^ …、’u δ亥項技蟄者所易於思 再者’本發明申請前未曾公開,其所具之進步性、實 顯已符合發明專利申 * 、 請,Μ 件,麦依法提出發明申 心。月 貝局核准本件發明專利申社宏 s ^ 感德便。 寻引申-案,以勵發明,至 以上所述之實施例僅係為 點,1日^ + 月本發明之技術思想及特 點其目的在使熟習此項技藝丹 容並據以實施,A T At 此夠瞭解本發明之内 备不處以之限定本發明之 凡依本發明所揭示之精神所&amp;卩 蓋在本發明之專利範圍内。々寻曼化或修飾’仍應涵 【圖式間單說明】 圖1為本發明的可縮短對 通量增量裝置t MW距離的單位面積光 1施例-的整體組裝結構示意圖; ’、、、圖1所示的可縮短對光源採光距離的單位面積 23 201038975 光通量增量裝置的分解爆炸示意圖; 圖3a為本么明的可縮短對光源採光距離的單位面積光 通量增量裝置的實施一的透鏡陣列的分解結構示意圖; 圖3b為圖3&amp;所示的透鏡陣列的組裝結構示意圖; 圖4a為本發明的可縮短對光源採光距離的單位面積 光通量增量裝置所適用的採光場的示意圖; Ο 圖4b為本發明的可縮短對光源採光距離的單位面積光 通量增量裝置的實施例一的透鏡陣列的光路示意圖,· 圖4c為圖4b所示的透鏡陣列中的單組透鏡縱列的光路 及光通量增量效果示意圖; 圖5a為本發明的可縮短對光源採光距離的單位面積 光通量增量裝置的實施例—的水準向傾轉限速阻尼器機構 的結構透視圖; ❹ 圖5b為本發明的可縮短對光源採光距離的單位面 光通量增量裝置的水準向傾轉限速 積 圖; 阻尼器機構的結構平視 、圖5c為本發明可縮短對光源採光距離的單位 通量增量裝置的離心轉子與_ 、 傅卞興錐疴形限速罩移動式限逮原王 示意圖; 、原玉 圖5d為本發明可縮短對光源採光距離的單 旦_驻 面積先 里曰里傾轉限速阻尼器機構組合外觀立 意圖; 粗%構不 24 201038975 圖6為本發明可缩 縮紐對光源採光距離的單 量增量裝置水準向追蹤®積光通 促太知運動過程示意圖; 圖7為本發明可縮短對光源採光距離的單 量增量裝置赤緯向追蹤面積光通 灰%運動過程示意圖; 圖8為本發明可 化紐對先源採光距離的單位 量增量裝置:維追縱太m“ *積先通 太陽運動總體效果立體示意 ΟFocal length &lt; Rear lens 2 Μ老·隹, the focal length of the J mirror, the sum of the areas of the spots formed by the rear lens array and projected onto the surface of the photoelectric conversion device array J Is equal to the sum of the areas of all the lenses in the lens array 1 before the first w clear. According to the second embodiment of the present invention, the lens array group can realize the optical effect and the luminous flux increment effect of shortening the lighting distance of the light source to one-half of the actual distance. For example, when the light source s is direct sunlight, and the sunlight illuminance Ed per unit area of the earth surface is about 9522 〇 Lux, the device of the second embodiment of the present invention can bring the same area and the same area of sunlight as the Ed. The illuminance enhancement is about m〇96〇Lux (spot Ec). Therefore, the apparatus of the second embodiment of the present invention can increase the luminous flux per unit area by about 48%, that is, the luminous flux per unit area of the photoelectric conversion device array 4 and the light surface area is increased by about 48%, thereby causing the photoelectric conversion device array 4 to The generated photoelectric energy can be significantly increased (increased value of photoelectric energy, which is related to the conversion efficiency 20 201038975 of the specifically employed photoelectric conversion device array 4). Meanwhile, the cleavage of the second embodiment of the present invention is 'the temperature at which the spot of the light-receiving surface of the photoelectric conversion device array 4 is projected under the condition that the luminous flux per unit area is increased by about 48%, and the temperature of the surrounding environment of the spot is There is no significant change in the ratio, so the photoelectric conversion array 4 is not affected by temperature changes and does not require cooling or constant temperature treatment. Since the convex lens area ❹ 中 in the front lens array 1 of the second embodiment of the present invention is small, the incremental effect in the light flux I is substantially the same as that of the above-described embodiment of the present invention. The total volume of the t-set of the second embodiment of the present invention is significantly smaller than the total volume of the device of one of the specific embodiments of the present invention. The device of the second embodiment of the present invention is mainly suitable for applications in areas with large solar illuminance and frequent changes in meteorological conditions (e.g., desert areas). EXAMPLES The third embodiment of the present invention is mainly suitable for recycling various light energy sources. The difference from the first embodiment described above is that in the third embodiment of the present invention, 'as shown in Fig. 11 a, Fig! Ib, as shown in Figure ii, which can reduce the luminous flux per unit area of the light source distance to the set of lens arrays 1, the first set of rear lens arrays 2 and the first set of rear lenses The array 3 is an arc having a radius of a distance of a kr wire kr point with respect to a center point of the light source L; the luminous flux increment column unit (10) of the third embodiment of the present invention is convex-convex-concave The longitudinal column structure, the lens in the front lens array is a large circular convex lens with a diameter phase 21 201038975 ❹ ί ί , and the lens in the second group rear lens array 2 is a straight (four) pair of smaller circular convex lenses. The lenses in the second group of rear lens arrays 3 are circular concave lenses having relatively small diameters. Wherein, the front lens i of the front lens i is * times the front focal length of the first group rear lens 2; the optical center distance of the optical axis of the front lens 1 and the first rainbow rear lens 2 is a front lens} The sum of the back focal length and the front focal length of the first set of rear lenses 2; the back focal length of the second set of rear lenses 3 &lt; the front focal length of the first set of rear lenses 2; emitted by the second set of rear lens arrays 3 The sum of the areas of the spots formed by the light emitted from the light-receiving surface of the photoelectric conversion device array 4 is equal to the sum of the areas of all the lenses in the front lens array 1. The device of the third embodiment of the present invention has a lens array group capable of realizing an optical effect and a luminous flux increment effect of shortening the lighting distance of the light source to a quarter of the actual distance. For example, the light source L is a common white coal lamp with a power of 500 W, and the illuminance Ef at a distance of about 6 meters from the light source L is about 66 Lux. The lighting environment has no light source other than the light source l, and the device of the third embodiment of the present invention is described. , &amp; will increase the illuminance of 6 meters from the source point and the same area as Ef to about 140 Lux (spot Ee). Therefore, the apparatus of the third embodiment of the present invention can increase the luminous flux per unit area by about 1121%, that is, the luminous flux per unit area of the light-receiving surface of the photoelectric conversion device array 4 is increased, thereby causing the photoelectricity generated by the photoelectric conversion device array 4. The energy is significantly increased (incremental value of the photoelectric energy per unit area of the photoelectric conversion device array 4 is related to the conversion efficiency of the specifically employed photoelectric conversion device array 4). At the same time, the device of the third embodiment of the present invention, under the condition that the luminous flux per unit area is increased by about 112.1%, the temperature of the spot incident on the light-receiving surface of the photoelectric conversion device array 4, and the outer periphery of the spot The temperature of the environment changes significantly compared to I, so the photoelectric conversion device array 4 is not significantly affected by temperature changes 'no need for cooling or constant temperature treatment.光 Ο The luminous flux increment effect of one, two, and three of the embodiments of the present invention, the light transmission performance of the lens used, the isotropic or anisotropic conditions of the lens material, and the precision of lens and jade manufacturing, etc. The conditions are flawed. Looking at the above, it can be seen that the invention has achieved the desired effect under the technology of breaking the prior art, and it is also dyed, «., * ^ ^ ..., and the 'u δ hai project is easy to think again. 'The invention has not been disclosed before the application, and its progressiveness and actuality have been in conformity with the invention patent application*, please, and the stipulations. The monthly shell office approved this invention patent Shen Shehong s ^ Sense. Investigating the application-invention, in order to invent the invention, the above-mentioned embodiments are only for the point, 1 day ^ + month The technical idea and characteristics of the invention are aimed at making the skill of the invention and implementing it, AT At It is to be understood that the invention is not limited by the scope of the invention disclosed herein. 々 曼 曼 或 修饰 仍 仍 仍 仍 仍 仍 仍 仍 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图FIG. 1 is a schematic diagram showing the decomposition and explosion of the unit of the luminous flux incrementing device of the unit 2010 23, which can shorten the light-collecting distance of the light source; FIG. 3a shows an implementation of the luminous flux incrementing unit per unit area capable of shortening the lighting distance of the light source. FIG. 3b is a schematic view showing the assembled structure of the lens array shown in FIG. 3 &amp; FIG. 4a is a schematic view of a lighting field applicable to a unit area luminous flux increasing device capable of shortening the light collecting distance of a light source according to the present invention; Figure 4b is a schematic view of the optical path of the lens array of the first embodiment of the present invention for shortening the light source distance of the light source, and Figure 4c is a single lens column in the lens array shown in Figure 4b. Schematic diagram of the optical path and luminous flux increment effect; FIG. 5a is an embodiment of the present invention for reducing the luminous distance per unit area of the light source FIG. 5b is a perspective view of the structure of the standard tilting speed limiter damper mechanism of the present invention; FIG. 5b is a plan view of the standard tilting speed limit of the unit surface light flux increasing device for shortening the light source distance of the light source; FIG. 5c is a schematic diagram of the centrifugal rotor of the unit flux increasing device capable of shortening the light collecting distance of the light source, and the moving limit of the Fuyuxing cone-shaped speed limit cover; and the original jade figure 5d is the invention Shortening the single-denier _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ FIG. 7 is a schematic diagram showing the movement process of the illuminating area of the latitudinal tracking area of the single-quantity incremental device for shortening the light-collecting distance of the light source according to the present invention; FIG. The invention can be used to increase the distance between the source and the source of the amount of light in the unit: the dimension of the 縱 縱 m “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “

圖9為本發明可縮短對光泝M # 了九源知先距離的單位面 增量裝置的光電轉拖積先通置 九電轉換裝置陣列移動槽裝 示意圖; 原理立體 圖1 〇a為本發明的可 通旦… 、_先源抓光距離的單仅面積光 里曰里裝置的實施例二的透鏡陣列投影示意圖; 圖10b為圖H)a所示的透鏡陣列的組合示意圖; I W為本發明的可縮短對光源採光距離的單位面積光 通I增量袭置的實施例二的單組縱列透鏡光路圖和光通量 增量效果示意圖; 、圖Ua為本發明的可縮短對光源採光距離的單位面積光 通量吾St to 曰I裒置的實施例三的透鏡陣列投影示意圖; 圖11 b為圖π a所示的透鏡陣列的示意圖; 、圖U C為本發明的可縮短對光源採光距離的單位面積光 通量姆旦ux. 曰里忒置的實施例三的單組縱列透鏡光路圖和光通量 增量效果 双果不意圖。 【主要元件符號說明】 25 201038975 前置透鏡陣列1 水準向傾轉重力發生器1 〇 赤緯向傾轉重力發生器11 . 水準向傾轉限速阻尼器1 2 水準向限速齒盤13 赤緯向傾轉限速阻尼器1 4 赤緯向限速齒盤1 5 移動槽裝置1 6 ¢) 凸透鏡17 透鏡18 光電轉換單元19 後置透鏡陣列2 光通量增量縱列單元2 0 主傳動器從動齒輪2 1 離心轉子22 Q 錐筒形限速罩23 主傳動器從動齒輪24 錐筒形限速罩25 離心轉子26 離合片27 後置透鏡陣列3 光電轉換裝置陣列4 活動支架5 中連桿5 1 26 201038975 軸向互垂直雙轴支架6 水準向轉軸7 赤緯向轉軸8 . 固定座架9 面積A 1 面積A2 面積A3FIG. 9 is a schematic diagram of the first embodiment of the present invention for shortening the photoelectric shifting of the unit surface incrementing device of the unit of the light source M #9 源 知 知 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The lens array projection of the second embodiment of the single-area light-only device in the light source distance; FIG. 10b is a schematic diagram of the combination of the lens array shown in FIG. H)a; The single-group longitudinal lens optical path diagram and the luminous flux increment effect diagram of the second embodiment of the second embodiment of the light-transmitting I-incrementing of the light-emitting area of the light source can be shortened; and Ua is the invention capable of shortening the light-collecting distance of the light source. FIG. 11b is a schematic diagram of a lens array shown in FIG. π; FIG. 11b is a schematic diagram of a lens array capable of shortening the light source distance of the light source according to the projection of the lens array of the third embodiment of the light flux per unit area; FIG. The light flux of the single-group longitudinal lens and the luminous flux increment effect of the third embodiment of the area luminous flux are not intended. [Main component symbol description] 25 201038975 Front lens array 1 Level tilting gravity generator 1 〇 Declination tilting gravity generator 11. Leveling tilting speed limiter 1 2 Leveling speed limiting gear 13 Red Zonal tilt speed limit damper 1 4 Declination speed limit gear plate 1 5 Moving groove device 1 6 ¢) Convex lens 17 Lens 18 Photoelectric conversion unit 19 Rear lens array 2 Luminous flux increment column unit 2 0 Main actuator Driven gear 2 1 Centrifugal rotor 22 Q Conical cylinder speed limiter 23 Main drive driven gear 24 Conical cylinder speed limit cover 25 Centrifugal rotor 26 Clutch 27 Rear lens array 3 Photoelectric conversion device array 4 Movable bracket 5 Connecting rod 5 1 26 201038975 Axial mutually perpendicular two-axis bracket 6 Leveling shaft 7 Declining shaft 8. Fixed frame 9 Area A 1 Area A2 Area A3

採光平面B、C、D 〇 光斑EaLighting plane B, C, D 〇 Spot Ea

陽光照度Eb、Ed 光斑Ec 光斑Ee 照度Ef 傾轉力矩F 1 傾轉力矩F2 〇 向心力F3 光源L 光源點S 27Sunlight illuminance Eb, Ed spot Ec spot Ee illuminance Ef tilting moment F 1 tilting moment F2 〇 centripetal force F3 light source L source point S 27

Claims (1)

201038975 七、申請專利範圍: l 一種可縮短對光源採光 e離的早位面積光通量增量 义置’係包括支架和迎著 入射光依次設置的前置透鏡元 件、後置透鏡元件,所述前f , 置透鏡元件、後置透鏡元件诵 過所述支架相互連接形成裝 r · 、/ 置主體;所述前置透鏡元件的 ❹ ❹ 、、光軸纟置透鏡兀件的主光軸和受光裝置的受光面的中 軸相互重合,其中所述前置透鏡元件將射入其受光面的 :光進行第—次匯聚後形成出射光,所述後置透鏡元件 將月】置透鏡几件的所述出射光進行第二次匯聚後投射在受 ^裝置的文光面上,所述前置透鏡元件的受光面的面積Α1 與文光裝置的受光面的面積八3基本相等,且所述後置透鏡 凡件的第二次匯聚後的出射光在所述受光裝置的受光面所 在的平面上的截面面積Α2與所述受光裝置的受光面的面 積A3基本相等’所述面積μ與Ai的差異$ 10%之Α1, A3與Α1的差異$ 1〇%之Α1。 2.如申請專利範圍第1項所述之可縮短對光源採光距 離的單位面積光通量增量裝置,其中所述受光裝置包括有 位於後置透鏡元件後方的光電轉換元件,所述前置透鏡元 件、後置透鏡元件和光電轉換元件通過所述支架相互連接 形成裝置主體;所述後置透鏡元件將前置透鏡元件的所述 出射光進行第二次匯聚後投射在所述光電轉換元件的受光 面上。 3 如申請專利範圍第2項所述之可縮短對光源採光距 離的單位面積光通量增量裝置,其中所述前置透鏡元件包 28 201038975 括至少一個由多塊透鏡橫向排列而成的前置透鏡陣列;所 述後置透鏡元件包括至少一個由多塊透鏡橫向排列而成的 後置透鏡陣列;所述光電轉換元件包括由多塊光電轉換單 元橫向排列而成的光電轉換裝置陣列;每個所述前置透鏡 陣列中的透鏡的數量與每個所述後置透鏡陣列中的透鏡的 數量以及所述光電轉換裝置陣列中的光電轉換單元的數量 相同;所述前置透鏡陣列中的每塊透鏡的主光軸分別與所 述後置透鏡陣列中的相應的透鏡的主光軸以及所述光電轉 換裝置陣列中的相應的光電轉換單元的受光面的中心軸相 互重合,從而每一組迎著入射光依次設置的透鏡形成一組 光通量增量縱列單元。 4,如申請專利範圍第3項所述之可縮短對光源採光距 離的單位面積光通量增量裝置,其中每個所述前置透鏡陣 列中的透鏡是凸透鏡;每個所述後置透鏡陣列中的透鏡分 別包括有凸透鏡,或者包括有凹透鏡。 “ 5 ·如中凊專利㈣第2《3項所述之可縮短對光源採 光距離的單位面積光通量增量裝置中所述可縮短對光 源採光距離的單位面積光通量增量裝置還包括追日機構, 用於使所述裝置主體根據人射的太陽光線的方向而相對於 水平面轉冑’以使所述前置透鏡元件的$光㈣直於入射 的太陽光線。 6.如申請專利範圍第$ 離的單位面積光通量增量裝 括第一組後置透鏡陣列和第 項所述之可縮短對光源採光距 置,其中所述後置透鏡陣列包 二組後置透鏡陣列,所述第一 29 201038975 組後置透鏡陣列與第二組後置透鏡陣列的主光軸重合且迎 著入射光依次設置;所述前置透鏡陣列中的透鏡的後焦 距,大於所對應的第一組後置透鏡陣列中的透鏡的前焦 距;所述前置透鏡陣列中的透鏡.的後焦點與所對應的第一 組後置透鏡陣列的透鏡的前焦點之間的距離^前置透鏡陣 列中的透鏡的後焦距的10%;所述前置透鏡陣列中的透鏡 和第一組後置透鏡陣列中的透鏡為矩形或者多邊形、圓 形,透鏡邊長或直徑^第一組後置透鏡陣列中的透鏡的邊 長或直徑;第二組後置透鏡陣列中的透鏡,其焦距$第一 組後置透鏡陣列中的透鏡的焦距。 7.如申請專利範圍第 6項所述之可縮短對光源採光距201038975 VII. Patent application scope: l An early-area light flux incrementing means for shortening the illumination of the light source, including a bracket and a front lens element and a rear lens element arranged in sequence against the incident light, the front f. The lens element and the rear lens element are connected to each other via the bracket to form a body, a body, a main optical axis of the front lens element, a main optical axis of the optical axis, and a light receiving device The central axes of the light-receiving surfaces of the device overlap each other, wherein the front lens elements are incident on the light-receiving surface: the light is first concentrated to form an outgoing light, and the rear lens element is placed on the lens. After the second light is concentrated, the light is projected onto the surface of the light receiving device, and the area Α1 of the light receiving surface of the front lens element is substantially equal to the area VIII of the light receiving surface of the light device, and the The cross-sectional area Α2 of the emitted light after the second convergence of the lens member on the plane of the light-receiving surface of the light-receiving device is substantially equal to the area A3 of the light-receiving surface of the light-receiving device. The difference from Ai is $10%, the difference between A3 and Α1 is $1〇%. 2. The unit area light flux increasing device according to claim 1, wherein the light receiving device comprises a photoelectric conversion element located behind the rear lens element, the front lens element a rear lens element and a photoelectric conversion element are connected to each other by the holder to form a device body; the rear lens element converges the emitted light of the front lens element for a second time and then is projected on the photoelectric conversion element On the surface. 3 The unit area luminous flux increasing device capable of shortening the light collecting distance of the light source as described in claim 2, wherein the front lens element package 28 201038975 includes at least one front lens which is laterally arranged by a plurality of lenses Array; the rear lens element includes at least one rear lens array which is laterally arranged by a plurality of lenses; the photoelectric conversion element includes an array of photoelectric conversion devices laterally arranged by a plurality of photoelectric conversion units; The number of lenses in the front lens array is the same as the number of lenses in each of the rear lens arrays and the number of photoelectric conversion units in the photoelectric conversion device array; each of the front lens arrays a main optical axis of the lens coincides with a main optical axis of a corresponding lens in the rear lens array and a central axis of a light receiving surface of a corresponding photoelectric conversion unit in the photoelectric conversion device array, so that each group welcomes The lenses in which the incident light is sequentially disposed form a set of luminous flux increment columns. 4. The unit area light flux increasing device according to claim 3, wherein the lens in each of the front lens arrays is a convex lens; each of the rear lens arrays The lenses respectively include a convex lens or a concave lens. "5. The unit of luminous flux increment per unit area which can shorten the light-receiving distance to the light source as described in the third paragraph of the third paragraph of the third paragraph, which can shorten the luminous distance of the light source, includes a chasing mechanism. , for causing the apparatus body to switch to the horizontal plane according to the direction of the sun light emitted by the person to make the light of the front lens element (four) straight to the incident solar light. 6. The distance per unit area of the luminous flux increment includes a first set of rear lens arrays and the first item can shorten the light source distance to the light source, wherein the rear lens array includes two sets of rear lens arrays, the first 29 201038975 The set of rear lens arrays coincides with the main optical axes of the second set of rear lens arrays and are sequentially arranged against the incident light; the back focal length of the lenses in the front lens array is greater than the corresponding first set of rear lenses The front focal length of the lens in the array; the distance between the back focus of the lens in the pre-lens array and the front focus of the lens of the corresponding first set of rear lens arrays ^ pre-lens array 10% of the back focal length of the lens; the lens in the front lens array and the lens in the first set of rear lens arrays are rectangular or polygonal, circular, lens side length or diameter ^ first set of rear lens array The length or diameter of the lens in the second set; the lens in the second set of rear lens arrays, the focal length of which is the focal length of the lens in the first set of rear lens arrays. 7. Can be shortened as described in claim 6 Light source distance 離的單位面積光通量增量裝置,&amp;中所述的前置透鏡陣列 中:透鏡的後焦點與所對應的第—組後置透鏡陣列的透鏡 的前焦點重合’使得第—組後置透鏡陣列的透鏡的出射光 為平行光;所述第—組後置透鏡陣列的透鏡與所述第二組 後置透鏡陣列的透鏡面積相同’ I第一組後置透鏡陣列的 後焦點與所對應的第二組後置透鏡陣列的前焦點重合。 8.如申請專利範圍第7 離的單位面積光通量增量裝 列、第一组後置透鏡陣列以 括有凸透鏡。 項所述之可縮短對光源採光距 置,其中每個所述前置透鏡陣 及第二組後置透鏡陣列分別包 9.如中請專利範圍第8項所述之可縮短對光源採光距 :的單位面積光通量增量裝置…所述支架包括活動支 木、軸向互垂直雙軸支架以及固定座帛;所述前置透鏡陣 30 201038975 列、後置透鏡陣列和光電轉換裝置陣列分別位於活動支架 的頂部、中部和底部;所述軸向互垂直雙軸支架位於活動 支架高度方向中部的外周;所述軸向互垂直雙軸支架設置 有相互垂直的水準向轉軸和赤緯向轉軸,所述水準向轉轴 和赤緯向轉軸的中心線在同—平面上;所述水準向轉軸連 接於固疋座架的頂部,所述軸向互垂直雙軸支架繞水準向 轉軸翻轉;所述活動支架㈣㈣巾連桿與所述赤緯向轉 軸連接,所述活動支架繞赤緯向轉軸翻轉並懸置於固定座 架的頂部。 1 υ _如甲請專利範 離的 ,單位面積光通量增量裝置,其中所述追日機構包括水 準向和赤緯向兩組自動傾轉限迷機構,所述水準向自動傾 轉限速機構包括水準向傾轉重力發生器、水準向傾轉限速 =器和水準向限速齒[所述赤緯向自動傾轉限速機構 Ο =赤緯向傾轉重力發生器、赤緯向傾轉限速阻 緯向限速齒盤。 方 距離的、申明專利耗圍弟Μ項所述之可縮短對光源採光 力發生光通量增量裝置’其中所述水準向傾轉重 發生态和赤緯向傾轉重 動支_的“ R.匕 货玍益破互相垂直地固定在活 ,氏邠,所述水準向傾轉限 架上,水準向限速齒盤固定在軸二:固“固定座 側,所述水準向傾轉限速阻尼器包括有垂=支架的-輪 '離心轉子、以及雜钱/ 有.傳動器從動齒 阻尼器的主 斤述水準向傾轉限速 主傳動…请輪與水準向限速*盤嘴合;赤緯 31 201038975 向傾轉限速阻尼器固定冰 ^疋在活動支架上,赤緯向限速齒盤固 疋在轴向互垂直雙軸支 ^ 水準向限速齒盤相鄰的一側, 所述赤緯向傾轉限速阻 Μ、、M 2 TO包括有.主傳動器從動齒輪、 .離〜轉子以及錐筒形限速 . 單所述主傳動器從動齒輪設有 早向軸承,離心轉子 去飧 衣疋用彈性簧片連接的離合片; 赤緯向傾轉限速阻尼器的 齒盤嘴合。 主傳動益攸動齒輪與赤緯向限速 ❹ 12.如申請專利範圍第 光距_ I 所述之可縮短對光源採 尤距離的單位面積光诵| 尤通里增量裝置,其中所述支架的底邻 設置有移動槽裝置,所呼止 4又木的履。Ρ ^ , κ 〃電轉換裝置陣列通過所述移動 、,、 並且所迷光電轉換裝置陣列可 ==述移動槽裝置來進入或脫離透鏡陣列組出射光的 1 3 .如申明專利範圍第5項 、^ M ,, 〇D ^ j維短對先源採光距 離的早位面積光通量增量褒 〇 .A ^ 具干所述支架的底部設晋 有移動槽裝置,所述光 U冤轉換裝置陣列⑨過所 置與所述支架相連接,並且辦.+.丄兩 動槽裝 、 且所述光電轉換裝置陣列 過所述移動槽裝置來進入啖 區域。 域離相陣肋A射光的投射 二·如申請專利範圍第9項所述之可縮短對光源 離的單位面積光通量增量#w 、 置日里裝置,其中所述支架的底 移動槽裝置,所述光電轉&amp;壯 '°又有 與所述支架相連接’且光電轉換袭置陣列可通過所= 槽裝置來進人歧離透鏡陣㈣出射Μ投射區域。 32The unit area light flux increasing device, in the pre-lens array described in the &amp;, the back focus of the lens coincides with the front focus of the lens of the corresponding first-group rear lens array, such that the first group of rear lenses The emitted light of the lens of the array is parallel light; the lens of the lens of the first group of rear lens arrays is the same as the lens area of the second group of rear lens arrays. The front focus of the second set of rear lens arrays coincides. 8. The luminous flux per unit area of the seventh application of the patent application is incremented, and the first set of rear lens arrays includes a convex lens. According to the item, the light source distance can be shortened, wherein each of the front lens array and the second group of rear lens arrays respectively comprise 9. The light source distance can be shortened as described in the eighth item of the patent scope. The unit area luminous flux increasing device comprises: a movable branch, an axial mutual vertical biaxial support, and a fixed seat; the front lens array 30 201038975 column, the rear lens array and the photoelectric conversion device array are respectively located a top, a middle portion and a bottom portion of the movable bracket; the axial mutually perpendicular biaxial bracket is located at an outer circumference in a middle portion of the movable bracket height direction; and the axial mutually perpendicular biaxial bracket is provided with mutually perpendicular horizontal and vertical slanting shafts, The center line of the horizontal axis and the declination axis are on the same plane; the horizontal axis is connected to the top of the solid frame, and the axially perpendicular two-axis frame is turned around the horizontal axis; The movable bracket (4) (four) towel link is connected to the declination rotating shaft, and the movable bracket is turned around the declination axis and suspended on the top of the fixed frame. 1 υ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Including horizontal tilting gravitational generator, leveling tilting speed limiter and leveling speed limiting gear [the declination direction automatic tilting speed limiting mechanism Ο = declination tilting gravity generator, declination tilting The speed limit resistance zonal speed limit sprocket. The square distance, the stated patent consumption, can shorten the light flux increasing device for the light source of the light source, where the horizontal tilting repetitive state and the declination tilting the heavy branch _ ".匕 玍 破 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相 互相The damper consists of a centrifugal rotor with a vertical-bracket-wheel, and a mainstay with a wedlock/driver driven tooth damper. The wheel-and-water-speed limit* ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The side, the declination tilting speed limit, the M 2 TO includes a main drive driven gear, a departure rotor, and a cone-shaped speed limit. The single main drive driven gear is provided Early-direction bearing, centrifugal rotor to the detachment of the clutch with elastic springs; declination Chainring mouth damper engagement. Main transmission benefit gear and declination speed limit 12. As described in the patent scope, the distance _ I can shorten the unit area of the light source to the distance of the light source | The bottom of the bracket is provided with a moving slot device, and the four stops are wooden. Ρ ^ , κ 〃 转换 阵列 阵列 通过 通过 通过 通过 通过 通过 通过 通过 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ^ M , , 〇 D ^ j dimension short for the early source area luminous flux increment 先.A ^ with the bottom of the bracket is set with a moving slot device, the optical U 冤 conversion device array 9 is placed in contact with the bracket, and is mounted in a two-moving slot, and the photoelectric conversion device array passes through the moving slot device to enter the crucible region. Projection of the astigmatism of the rib A from the phase Array A. As described in claim 9 of the patent application, the luminous flux increment per unit area of the light source can be shortened by #w, and the apparatus for arranging the bottom, wherein the bottom moving slot device of the bracket, The photoelectric conversion &amp;amplitude '° is further connected to the support' and the photoelectric conversion array can enter the projection area of the pupil through the lens arrangement (4). 32
TW098113371A 2009-04-22 2009-04-22 Can reduce the light source distance of light per unit area luminous flux increment device TWI406012B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098113371A TWI406012B (en) 2009-04-22 2009-04-22 Can reduce the light source distance of light per unit area luminous flux increment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098113371A TWI406012B (en) 2009-04-22 2009-04-22 Can reduce the light source distance of light per unit area luminous flux increment device

Publications (2)

Publication Number Publication Date
TW201038975A true TW201038975A (en) 2010-11-01
TWI406012B TWI406012B (en) 2013-08-21

Family

ID=44995239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098113371A TWI406012B (en) 2009-04-22 2009-04-22 Can reduce the light source distance of light per unit area luminous flux increment device

Country Status (1)

Country Link
TW (1) TWI406012B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117544072A (en) * 2023-10-09 2024-02-09 西安电子科技大学 Light-weight 'cable-rod-beam' structure for supporting space Fresnel lens condensing system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080185034A1 (en) * 2007-02-01 2008-08-07 Corio Ronald P Fly's Eye Lens Short Focal Length Solar Concentrator
CN201159790Y (en) * 2007-11-20 2008-12-03 王自强 Solar energy collector capable of bidirectional tracing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117544072A (en) * 2023-10-09 2024-02-09 西安电子科技大学 Light-weight 'cable-rod-beam' structure for supporting space Fresnel lens condensing system

Also Published As

Publication number Publication date
TWI406012B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
CN102374477B (en) Sunshine intelligent household-entry system
CN101375111A (en) Concentrating solar panel and related systems and methods
CN102789046A (en) Multi-plane reflecting mirror solar energy condensation device
WO2020007292A1 (en) Single-axis tracking system for enhancing light intensity of component
EA032692B1 (en) Solar and wind power plant
KR20120115072A (en) Compact structured solar power generation equipment with improved power generation efficiency
CN2884538Y (en) HIgh efficiency reflecting solar cell collector
CN2926790Y (en) Sunlight-induced collecting illuminating system
CN104620060A (en) Solar tracking concentrator
CN104235736B (en) Can be from motion tracking solar azimuth solid glass ball refracting solor energy power generation road lamp
Tripanagnostopoulos New designs of building integrated solar energy systems
CN101093114A (en) Improved type sunlight automatic track follower
CN101807866B (en) Unit area luminous flux increasing device capable of shortening lighting distance to light source
KR101262212B1 (en) A Fence including a solar cell
CN201876600U (en) Sunlight converging device as well as lighting device and heating device using same
CN102800731A (en) Device for increasing solar energy illuminance
CN101881520A (en) Automatic tracking line focusing solar collector tube receiving hanger frame device
TW201038975A (en) Unit area light flux enhancing apparatus capable of reducing the distance of light collection for light source
US9344031B2 (en) Concentrator-driven, photovoltaic power generator
CN202710834U (en) Multi-plane reflecting mirror solar energy light condensing device
CN202118792U (en) Solar lighting lamp and solar-thermal collection utilizing system formed by same
CN201402809Y (en) Unit area luminous flux increment device capable of shortening lighting distance from light source
CN202048493U (en) Prism type sunlight guider
CN1420322A (en) Controlled solar device
CN100545544C (en) T shape reflecting mirror for automatically tracing sun restorer