201037361 六、發明說明: - 【發明所屬之技術領域】 , 本發明涉及光學元件領域,尤其涉及用於小型化電子設備的 微透鏡。 【先前技術】 鑒於輕便型、羽量級的便攜式電子設備越來越受到消費者的 青睞,對各種元件的小型化技術研究成為目前研究人員的研究熱 點’微透鏡也係其中一種。微透鏡為一種尺寸極為微小的透鏡, Ο 其可應用於光電元件如數碼相機、行動電話或太陽能電池。 由於目前的製造工藝還不成熟,已經使用的微透鏡還有許多 =足之處,特別地,有些微透鏡所成圖像出現照片發白、形成光 暈的現象,這主要因為微透鏡表面會反射一部分入射光線,各個 微透鏡的反射光線在透鏡和相機内部進行多次反射成為雜散光, 使得影像感測器接收到不必要的光訊號,從而產生上述問題,一 般被稱作眩光或鬼影。 【發明内容】 有鑒於此,有必要提供一種微透鏡及切割後可得到複數微透 鏡的微透鏡陣列,此種微透鏡及微透鏡陣列成像時將不會產生眩 光及鬼影問題。 一種微透鏡,其包括一個透光基板,具有第一表面及與該第 了表面相對的第二表面;第一抗反射層,該第一抗反射層設於該 第一表面;一個第一光學部,該第一光學部設於該第一抗反射層; 第一消光膜’該第一消光膜設於該抗反射層且圍繞該第一光學部。 一種微透,陣列,其包括透光基板,具有第一表面及與該第 了表面相對的第二表面;第一抗反射層,該第一抗反射層設於該 第一表面;第一光學部陣列,該第一光學部陣列包括複數第一光 學部且设於该第一抗反射層;第一消光膜,該第一消光膜設於該 3 201037361 第一抗反射層且位於每個第一光學部之外的區域。 • 與先前技術相比’本發明提供的微透鏡和微透鏡陣列具有消 , 光膜和抗反射層’可有效吸收入射到微透鏡光學部以外的光線及 有效增強經該微透鏡光學部入射的光線,從而解決成像中的眩光 及鬼影問題。 【實施方式】 下面將結合附圖對本發明作進一步詳細說明。 請參閱圖1,本發明實施例提供的微透鏡500包括透光基板 〇 1卜第一光學部130、第二光學部150、圍繞該第一光學部130的抗 反射層106、消光膜112、濾光層108。 透光基板11具有相對的第一表面102和第二表面104,抗反射 層106設於該第一表面102 ’第一光學部130和消光膜112設於該抗 反射層106。該消光膜112設於該第一光學部130周圍。 濾光層108設於該第二表面104,該第二光學部150設於該濾光 層 108。 該第一光學部130、第二光學部150均可採用紫外光壓印的方 式壓印成型。該第二光學部150可根據實際需要不予以設置。該第 © 一光學部130、第二光學部150可以為凹透鏡、凸透鏡等光學結構。 抗反射層106用於增強經第一光學部130入射的光線在第—表 面102的透射率。 消光膜112可採用真空濺鍍的方式鍍製。消光膜112的材料可 以為各種黑色的材料,優選地,可採用鉻。當光線入射至第一光 學部130之外的微透鏡500的表面時,將會被消光膜112吸收,從而 減少與微透鏡500組合使用的光學元件之間的多次反射,提高成像 效果。 濾光層108根據實際需要可以為紅外截止濾光層或紅外導通 4 201037361 -· 濾光層或者不設。還可在抗反射層106和第一表面102之間設置濾 光層。 當然,還可以在第二表面104設置抗反射層,以增強入射光線 在第二表面104的透射率。該抗反射層可單獨設於該第二表面 104 ’也可,於;慮光層log與第二表面之間,也可設於該瀘光層 108表面。當然,還可以在第二表面1〇4設置消光膜以將經過該第 一光學部130透射至第二光學部150以外區域的光線吸收,進一步 消減雜散光。消光膜可單獨設於該第二表面1〇4,也可設於濾光層 108與第二表面1〇4之間,也可設於該濾光層1〇8表面。請參閱圖2, Ο 本發明較佳實施例提供的微透鏡陣列50包括透光基板U、第一光 ,部陣列13、與第一光學部陣列13相對的第二光學部陣列(圖未 圍繞該第一光學部陣列13的消光膜112以及抗反射層1〇6。將 該微透鏡陣列50沿切割線Μ切割即可得到微透鏡5〇〇。 本發明較佳實施例提供的微透鏡製造方法包括以下步驟: 第一步,請參閱圖3 ’提供一個透光基板11,其具有第一表 面102及與第一表面1〇2相對的第二表面1〇4。對該透光基板u 進行清洗。 η 第二步,請參閱圖4,在第一表面102鍍抗反射層1〇6,在第 一表面104鐘濾光層1〇8。當然’也可以在第一表面1〇2鑛濾光層, 或者在第二表面104鍍抗反射層。 第二步’在抗反射層106上塗敷正光阻no。 第四步,請參閱圖5,提供一個光罩20,光罩20上有預設的 不透光區域21。 第五步’將光罩20置於正光阻11〇上方,對正光阻11〇進行 曝光。 第六步,請參閱圖6,顯影。顯影後被曝光的部分被顯影劑溶 解’留下部分正光阻110以及抗反射層1〇6。 5 201037361 第七步,請參_ 7 ’對透光基板u的第一表面ι〇2,即, 阳110所在表面鐘消光膜112 ’以使正光阻110表面以及正光 之間的空隙表面覆上消光膜112。鍍消光膜112可採用真空 。所鍍消光膜112的材料可以為各種黑色的膜,優選地, 材科為鉻。 f八步,凊參閱圖8,除去光阻。將剩下的正光阻no連同其 肖光膜去掉’留下沒有消細112覆蓋的區域31和被消光i 覆盍的區域。 Π ,請參閲® 9,壓印。在沒有消光膜112覆蓋的區域 Ο 錄料光可111化聚合物40 (UV eurable polymef),將-壓模 =’例如將壓印面形成有預設圖案的pDMS(p〇lydimethylsil〇xane' 壓模,將其壓在該紫外光可固化聚合物40上,並利用紫外光照射 該紫外光可固化聚合物40,從而可在透光基板u形成第一光g部 陣列13。該第一光學部陣列13包括複數第一光學部13〇。接著σ, ,透光基板11的第二表面1〇4上以紫外光壓印方式形成一個第二 光學部陣列,從而可得到一個微透鏡陣列5〇,並註意使得第二光 予0卩陣列中的母個苐一光學部150的光抽可以與位置相對的第一 光學部130的光軸重合。 0 第一光學部陣列的材料與第一光學部陣列13的材料可以相 同,也可以不同。 當然,也可以根據需要不壓印第二光學部陣列。 第一光學部13和第二光學部以及透光基板u、消光膜112、 抗反射層106等共同構成微透鏡陣列50。 、 第十步’切割。對微透鏡陣列50進行切割可得到複數微透 500。 由於本實施例在製造微透鏡500的過程中,在微透鏡5〇〇的 非光學部鍍有消光膜112和抗反射層106,使得照射或反射到微透 6 201037361 卩雜散光被魏或透過,竹钱線影響與其 、、且&的先予讀’例如,影像❹指,從响剌域光或鬼影。 但兩用負光阻代替正光阻進行曝光顯影的操作, 二要另卜叹置先罩’ gp,將本較佳實施例提供的光罩2〇的透光 區域改成不透紐域,同義不透光區域改錢光區域。 Ο 内 ,上所述,本發明確6符合發明專利之要件,遂依法提出專 利申續°惟’以上所述者縣本發明之雛實施方式,自不能以 此限制本案之中請專利細。舉凡熟悉本案技藝之人士援依本發 明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍 【圖式簡單說明】 圖1係本發明較佳實施例提供的微透鏡截面示意圖。 圖2係本發明較佳實施例提供的微透鏡陣列的俯視圖。 圖3係本發明較佳實施例提供的具有鍍膜的透光基板的示意 圖4係在圖3中的透光基板上塗佈正光阻的示意圖。 圖5係對圖4的透光基板曝光的示意圖。 圖6係圖5中的透光基板顯影處理示意圖。 圖7係在圖6中的透光基板上形成消光膜的示意圖。 圖8係去除圖7中透光基板上的剩餘光阻後的示意圖。 圖9係圖8中的透光基板上壓印微透鏡光學部的示意圖。 【主要元件符號說明】 微透鏡 500 透光基板 11 第一表面 102 7 201037361 第二表面 104 第一光學部 130 第二光學部 150 抗反射層 106 消光膜 112 滤光層 108 微透鏡陣列 50 第一光學部陣列 13 正光阻 110 光罩 20 不透光區域 21 沒有消光膜112覆蓋的區域 31 紫外光可固化聚合物 40 壓模 41201037361 VI. Description of the Invention: - Technical Field of the Invention The present invention relates to the field of optical components, and more particularly to microlenses for miniaturizing electronic devices. [Prior Art] In view of the fact that portable and feather-sized portable electronic devices are increasingly favored by consumers, research on miniaturization of various components has become a research hot spot for researchers. Microlenses are also one of them. The microlens is an extremely small lens that can be applied to photovoltaic elements such as digital cameras, mobile phones or solar cells. Since the current manufacturing process is still immature, there are still many places where the microlenses have been used. In particular, some of the images formed by the microlenses appear white and form halo, mainly because the surface of the microlens will Reflecting a portion of the incident light, the reflected light of each microlens is reflected multiple times inside the lens and the camera to become stray light, so that the image sensor receives unnecessary optical signals, thereby causing the above problem, generally called glare or ghosting. . SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a microlens and a microlens array capable of obtaining a plurality of microlenses after cutting. Such microlenses and microlens arrays will not cause glare and ghosting problems when imaged. A microlens comprising a light transmissive substrate having a first surface and a second surface opposite the first surface; a first anti-reflective layer, the first anti-reflective layer being disposed on the first surface; a first optics The first optical portion is disposed on the first anti-reflective layer; the first matte film is disposed on the anti-reflective layer and surrounds the first optical portion. A micro-transparent array comprising a light-transmitting substrate having a first surface and a second surface opposite to the first surface; a first anti-reflective layer, the first anti-reflective layer being disposed on the first surface; The first optical portion array includes a plurality of first optical portions and is disposed on the first anti-reflection layer; a first matte film disposed on the third anti-reflection layer of the 3 201037361 and located at each of the first An area outside the optics. • Compared with the prior art, the microlens and microlens array provided by the present invention have a light-absorbing film and an anti-reflection layer that can effectively absorb light incident outside the optical portion of the microlens and effectively enhance the incidence through the optical portion of the microlens. Light to solve glare and ghosting problems in imaging. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1 , a microlens 500 according to an embodiment of the present invention includes a transparent substrate, a first optical portion 130, a second optical portion 150, an anti-reflection layer 106 surrounding the first optical portion 130, and a matte film 112. Filter layer 108. The transparent substrate 11 has opposite first and second surfaces, 102, 104, and the anti-reflective layer 106 is disposed on the first surface 102'. The first optical portion 130 and the matte film 112 are disposed on the anti-reflective layer 106. The matte film 112 is disposed around the first optical portion 130. The filter layer 108 is disposed on the second surface 104, and the second optical portion 150 is disposed on the filter layer 108. Both the first optical portion 130 and the second optical portion 150 can be embossed by ultraviolet embossing. The second optical portion 150 can be disposed not according to actual needs. The first optical portion 130 and the second optical portion 150 may be optical structures such as a concave lens or a convex lens. The anti-reflection layer 106 serves to enhance the transmittance of the light incident through the first optical portion 130 on the first surface 102. The matte film 112 can be plated by vacuum sputtering. The material of the matte film 112 may be various black materials, and preferably, chromium may be employed. When light is incident on the surface of the microlens 500 other than the first optical portion 130, it is absorbed by the light-extinguishing film 112, thereby reducing multiple reflections between the optical elements used in combination with the microlens 500, and improving the imaging effect. The filter layer 108 may be an infrared cut filter layer or an infrared conduction according to actual needs. 4 201037361 -· Filter layer or not. A filter layer may also be disposed between the anti-reflective layer 106 and the first surface 102. Of course, an anti-reflective layer may also be provided on the second surface 104 to enhance the transmittance of incident light at the second surface 104. The anti-reflective layer may be disposed on the second surface 104', or between the light-receiving layer log and the second surface, or on the surface of the light-emitting layer 108. Of course, it is also possible to provide a matte film on the second surface 1 to 4 to absorb light transmitted through the first optical portion 130 to a region other than the second optical portion 150, thereby further reducing stray light. The matte film may be separately disposed on the second surface 1〇4, or may be disposed between the filter layer 108 and the second surface 1〇4, or may be disposed on the surface of the filter layer 1〇8. Referring to FIG. 2, a microlens array 50 according to a preferred embodiment of the present invention includes a transparent substrate U, a first light, a partial array 13, and a second optical portion array opposite to the first optical portion array 13. The matte film 112 of the first optical portion array 13 and the anti-reflection layer 1〇6. The microlens array 50 is cut along the cutting line to obtain the microlens 5〇〇. The microlens manufacturing provided by the preferred embodiment of the present invention The method comprises the following steps: First, please refer to FIG. 3 'providing a transparent substrate 11 having a first surface 102 and a second surface 1 〇 4 opposite to the first surface 1 。 2. The transparent substrate u Cleaning η. In the second step, referring to Fig. 4, the first surface 102 is plated with an anti-reflection layer 1〇6, and at the first surface 104 is a filter layer 1〇8. Of course, it can also be on the first surface 1〇2 The mineral filter layer, or the anti-reflective layer is coated on the second surface 104. The second step is to apply a positive photoresist no on the anti-reflection layer 106. In the fourth step, referring to FIG. 5, a photomask 20 is provided on the photomask 20. There is a preset opaque area 21. Step 5 'Place the reticle 20 above the positive photoresist 11 ,, align the light The second step is to perform exposure. In the sixth step, please refer to Fig. 6. Development. The exposed portion after development is dissolved by the developer', leaving a portion of the positive photoresist 110 and the anti-reflection layer 1〇6. 5 201037361 The seventh step, please refer to _ 7 'the first surface ι 〇 2 of the transparent substrate u, that is, the surface clock matte film 112 ′ where the yang 110 is located, so that the surface of the positive photoresist 110 and the gap between the positive light are covered with the matte film 112. The matte film 112 is plated. A vacuum may be used. The material of the matte film 112 may be a variety of black films, preferably, the material is chromium. f eight steps, see Figure 8, remove the photoresist. The remaining positive photoresist no. The film is removed 'left of the area 31 covered by the doping 112 and the area covered by the extinction i. Π , see ® 9, embossing. In the area without the matte film 112 录 Recording light can be 111 polymer 40 (UV eurable polymef), which is a stamper-formed pDMS (p〇lydimethylsil〇xane' stamper of a predetermined pattern, which is pressed onto the ultraviolet curable polymer 40, and utilized Ultraviolet light illuminates the ultraviolet curable polymer 40 so that it can be on the transparent substrate u The first optical portion 13 includes a plurality of first optical portions 13 . Then, σ, the second surface 1 〇 4 of the transparent substrate 11 is formed by ultraviolet embossing. An array of optical portions, such that a microlens array 5〇 is obtained, and it is noted that the light extraction of the second optical portion 150 of the second light into the array can be optically aligned with the optical axis of the first optical portion 130. The material of the first optical portion array may be the same as or different from the material of the first optical portion array 13. Of course, the second optical portion array may not be embossed as needed. The first optical portion 13 and the second optical portion, and the light-transmitting substrate u, the matte film 112, the anti-reflection layer 106, and the like together constitute the microlens array 50. , the tenth step 'cutting. Cutting the microlens array 50 results in a plurality of microtransparencies 500. Since the non-optical portion of the microlens 5 镀 is plated with the matte film 112 and the anti-reflective layer 106 in the process of manufacturing the microlens 500, the illumination or reflection to the micro-transmission 6 201037361 is performed by the Wei or the astigmatism. The bamboo money line affects its and the first reading of the 'amplifier', for example, from the sound of the field or the ghost. However, the dual-use negative photoresist replaces the positive photoresist for the exposure and development operation, and the other is to sigh the first cover 'gp, and the light-transmissive area of the photomask 2〇 provided by the preferred embodiment is changed to a non-transparent area. The opaque area changes to the light-light area. In the above, the present invention is indeed in accordance with the requirements of the invention patent, and the patent application method of the above-mentioned invention is not limited by this. The equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be included in the following claims. FIG. 1 is a schematic cross-sectional view of a microlens provided by a preferred embodiment of the present invention. 2 is a top plan view of a microlens array provided by a preferred embodiment of the present invention. 3 is a schematic view of a light-transmissive substrate having a plating film according to a preferred embodiment of the present invention. FIG. 4 is a schematic view showing the application of a positive photoresist on the light-transmitting substrate of FIG. FIG. 5 is a schematic view showing exposure of the light-transmitting substrate of FIG. 4. FIG. 6 is a schematic view showing the development process of the light-transmitting substrate in FIG. 5. FIG. Fig. 7 is a schematic view showing the formation of a matte film on the light-transmitting substrate of Fig. 6. FIG. 8 is a schematic view showing the removal of residual photoresist on the light-transmitting substrate of FIG. 7. 9 is a schematic view showing the embossing of the microlens optics on the light-transmissive substrate of FIG. [Major component symbol description] Microlens 500 Transmissive substrate 11 First surface 102 7 201037361 Second surface 104 First optical portion 130 Second optical portion 150 Anti-reflection layer 106 Matting film 112 Filter layer 108 Microlens array 50 First Optics array 13 positive photoresist 110 photomask 20 opaque region 21 region 31 without matte film 112 ultraviolet curable polymer 40 stamper 41
88