201037094 六、發明說明: 【發明所屬之技術領域】 本發明係一種始鐵基合金磁性濺射無材,尤其係一種 以製程簡單的熔煉铸造技術所製備的高磁通量之結鐵基合 金磁性濺射靶材。 【先前技術】 隨著科技的日新月異,人們對於高記錄密度硬碟的需 求越來越高,大量的資訊將需儲存在超高記錄密度的碟片 〇裡’傳統的硬碟是以水平式記錄碟片為主然而這樣的記 錄媒體在追求超高記錄密度時遇到物理的極限,因此才發 展出垂直式記錄媒體的膜層結構。對於垂直式記錄媒體而 言,軟磁層的引入可提升寫入的效率、降低去磁場的強度、 並提升記錄層的熱穩定性。 為了得到優良的軟磁特性,一般採用非晶態軟磁合金。 常見的合金組成有鐵鈷硼(Fe_C0_B)合金、姑锆鈮(c〇ZrNb)201037094 VI. Description of the Invention: [Technical Field] The present invention relates to a magnetically sputter-free material of a starting iron-based alloy, in particular to a high-flux iron-based alloy magnetic sputtering prepared by a simple process casting technique. Target. [Prior Art] With the rapid development of technology, people's demand for high-density hard disk is getting higher and higher, and a large amount of information will need to be stored in a disc with ultra-high recording density. 'The traditional hard disk is recorded horizontally. The disc is dominant. However, such a recording medium encounters a physical limit in pursuit of an ultra-high recording density, and thus a film structure of a vertical recording medium has been developed. For a vertical recording medium, the introduction of a soft magnetic layer can improve the efficiency of writing, reduce the strength of the demagnetizing field, and improve the thermal stability of the recording layer. In order to obtain excellent soft magnetic properties, an amorphous soft magnetic alloy is generally used. Common alloys are iron-cobalt-boron (Fe_C0_B) alloy, c-zirconium (c〇ZrNb)
合金以及鈷鐵錘(C0_Fe_Zr)合金,其中鈷鐵(c〇 F 特別受到重視。 一般的直流濺鍍、射頻濺鍍、三極濺鍍等,因放電過 程中氣體分子之電離度太小導致㈣率偏⑯,所以目前磁 控賤射技術是沉積高性能磁性薄膜的主要方法。磁控賤射 技術是利用磁場使電子以螺旋方式前進,增加電子與氣體 分子碰撞的機會’提高分子的電離度,因而使濺鍍率升高; 此外磁控激錢可在比較低的氣廢下進行,因此薄膜品質較 佳;且由於磁場會導致電子偏離基板,因此讓基板處於較 低的溫度,可鍍在不耐高溫的基板上。但由於鐵磁性乾材 3 201037094 的磁遮罩效應’造成靶材難以正常濺射;t因為磁力線的 聚焦造成靶材表面的侵蝕凹槽,而降低靶材的利用率。這 ㈣應都受到㈣磁通量的影響,因&,提高㈣的磁通 量是其中一種解決上述問題的方法。 磁通量(Pass Through Flux, PTFR義為被傳輸磁場與Alloy and cobalt iron hammer (C0_Fe_Zr) alloy, among which cobalt iron (c〇F is particularly valued. General DC sputtering, RF sputtering, tripolar sputtering, etc., due to the ionization degree of gas molecules in the discharge process is too small (4) The rate is 16, so the current magnetron sputtering technology is the main method for depositing high-performance magnetic thin films. Magnetron sputtering technology uses magnetic fields to advance electrons in a spiral manner, increasing the chance of electrons colliding with gas molecules' to improve the ionization degree of molecules. Therefore, the sputtering rate is increased; in addition, the magnetic control money can be carried out under relatively low gas waste, so the film quality is better; and since the magnetic field causes the electrons to deviate from the substrate, the substrate is at a lower temperature and can be plated. On a substrate that is not resistant to high temperatures, but due to the magnetic mask effect of ferromagnetic dry material 3 201037094, it is difficult for the target to be normally sputtered; t because the focus of the magnetic field line causes the erosion of the surface of the target, and the utilization of the target is reduced. Rate (4) should be affected by (4) magnetic flux, because &, improve (4) magnetic flux is one of the ways to solve the above problem. Magnetic flux (Pass Through Flux, P TFR is the transmitted magnetic field and
施加磁場的比率’其測量的方式可參考AstmF 1761 “圓形磁性濺射靶磁通量的標準試驗方法” ,100%The ratio of applied magnetic field' can be measured by reference to AstmF 1761 "Standard Test Method for Magnetic Flux of Circular Magnetic Sputter Targets", 100%
的PTF是非磁性材料的指標,而在磁性材料中PTF和最大 導磁率存在反比的關聯性。 傳統以真空感應熔煉(Vacuum丨.nduct丨…邮丨加V丨⑷ 製作厚度纟3mm〜7圓之間的軟磁性乾材,通常磁通量小 於15%。在美國第1〇/163 62〇號申請案(即第㈣〇228238 號公開案)中提到㈣末冶金的方式混合具備不同磁通量特 性的粉末,混合後的材料在巨觀上仍具備軟磁的特性,而 其中磁通量較高的材料所形成的㈣提供較高的磁通路線 =場通過輕材。另外,在美國第趣/〇〇83616號公開 =提到基的軟磁乾材中含有Hcp_c〇構成的相 1及以Fe為主體的合金相時’會有提升乾材磁通量的效 果,然而其製程技術仍以粉末冶金為主。 粉末冶金相較於熔煉鑄造技術,其製造流程複 用難以製造大尺寸料材,所以較難在生產中 ^廣泛制。㈣煉鑄造法的製程簡單、成本低,對尺 發展及應用前景。 連續生產而具有廣闕的 【發明内容】 201037094 . 纟發明人有鑑於—般以真空感應熔煉法無法製作且有 面磁通量的軟磁性敦材,而能製作高磁通量之乾材的粉 冶金技術又有製程複雜、成本高且無法製造大尺寸乾材的 缺點1此經過長時間的研究以及不斷的試驗後,終於發 明出此高磁通量之鈷鐵基合金磁性濺射耙材。 /發^目㈣在於提供—種以製程簡單的炼煉禱造 技術所製備的高磁通量之鈷鐵基合金磁性濺射靶材。 4達上述目的,本發明高磁通量之#鐵基合金磁性濺 〇射乾材,其係以熔煉禱造所製成者,且係由銘、鐵以及添 加金屬所組成的磁性濺射乾材,該添加金屬係一種以上選 自於由组(Ta)、锆(Zr)、銳⑽)、給(Hf)、㉝(A|)以及絡 (C「)所組成之群組,其中姑具有令磁性㈣㈣的導磁 率降低之比例’且該添加金屬佔整體磁性濺射靶材的卜2〇 at·%。 其中,令磁性濺射靶材的磁通量提升之比例係鈷佔整 體磁性濺射靶材的10〜35 at.%,而鐵係佔整體磁性濺射靶 Ο 材的 45〜82 at.%。 其中,令磁性濺射靶材的磁通量提升之比例係鈷佔整 體磁性濺射靶材的60〜70 at·%,而鐵係佔整體磁性濺射靶 材的10〜32 at.%。 當該磁性濺射靶材的厚度不超過15厘米(mm),可具 有大於15%的磁通量 較佳的是,該添加金屬為鈕、鍅、鋁和鉻所組成。 較佳的是,該添加金屬為鈕和锆所組成。 較佳的是,該添加金屬為鈕所組成。 5 201037094 本發明又關於一種高磁通量之銘鐵基合金磁性濺射無 材的製造方法,其係包括: 一 提供一由熔煉鑄造的鈷鐵基合金磁性濺射靶材,其係 由始、鐵以及添加金屬所組成的磁性濺射靶材,其中該添 加金屬係—種以上選自於由鈕(Ta)、錯(Zr)、鈮(Nb)、铪(Hf)、 鋁(A丨)以及鉻(c「)所組成之群組,其中鈷具有令磁性 濺射靶材的導磁率降低之比例,且該添加金屬佔整體磁性 濺射靶材的8~20 at.% ; 〇 將該鈷鐵基合金磁性濺射靶材經過80CTC〜1200°c之熱 處理,以獲得高磁通量之鈷鐵基合金磁性濺射靶材。 較佳的是,該鈷鐵基合金磁性濺射靶材在熱處理後尚 包括將該鈷鐵基合金磁性濺射靶材冷卻,其中控制熱處理 後之鈷鐵基合金磁性濺射靶材冷卻速率小於15(rc/mjn。 本發明又關於一種利用以上所述之方法所製成的高磁 通量之銘鐵基合金磁性賤射乾材。 由於本發明之磁性濺射靶材係以熔煉鑄造所製成者, Ο 避兔既有以粉末冶金製程所產生的缺點,藉由祐鐵比例以 及添加金屬含量的調配,搭配靶材熔煉鑄造後適當的熱處 理製程達到提高靶材磁通量的目的。在靶材厚度不超過15 厘米的情況下’可獲得大於15 %的磁通量。 【實施方式】 經研究發現,在製作鈷鐵基靶材時,添加一定比例的 Ta或Zr或Nb或Hf或AI或Cr或其組合可提高材料的軟 磁特性,但參考第一圖以及第二圖,以熔煉鑄造製程製作 的乾材經過一般高溫高壓製程後,如第一圖所示添加物會 6 201037094 在初日日相析出,同瞎杂4 時靶材的磁通量隨之下降;但若經過本 發月所提供的熱處理及冷卻 1磓程後,添加物重新固溶回基 目如第二圖所示),而乾材的磁通量亦隨之提升。 而且本發明亦指出鈷的比例在1〇~3加%或叨〜7〇以% 時有較低的最大導磁率,相對而言會有提升的磁通量。 實施例: 請參看表一所示,其係wCo、Fe、丁「或n Ο 900 C的熱處理後以空冷的方式冷卻至室溫。再以 Standard F1761標準試驗方法進行磁通量的量測 表一PTF is an indicator of non-magnetic materials, and there is an inverse correlation between PTF and maximum permeability in magnetic materials. Traditionally, vacuum induction melting (Vacuum 丨.nduct 丨 丨 丨 丨 丨 丨 4 4 4 4 4 4 4 4 4 4 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软The case (ie, the publication of (4) 〇 228238) mentions that (4) the end metallurgical method mixes powders with different magnetic flux characteristics, and the mixed materials still have soft magnetic properties on the giant view, and the materials with higher magnetic flux are formed. (4) Provide a higher magnetic flux line = field through the light material. In addition, in the United States, the first soft magnetic dry material contains the phase 1 composed of Hcp_c〇 and the alloy mainly composed of Fe. At the same time, there will be an effect of improving the magnetic flux of dry materials. However, the process technology is still mainly powder metallurgy. Compared with smelting and casting technology, powder metallurgy is difficult to manufacture large-size materials due to the reuse of manufacturing processes, so it is difficult to produce in production. ^ Extensive system. (4) The process of refining and casting is simple, low cost, development of the ruler and application prospects. Continuous production and extensive [invention content] 201037094. The inventor has a vacuum induction melting method It is impossible to produce soft magnetic materials with surface magnetic flux, and the powder metallurgy technology capable of producing high magnetic flux dry materials has the disadvantages of complicated process, high cost and the inability to manufacture large-sized dry materials. After the test, the high-flux cobalt-based alloy magnetic sputtering coffin was finally invented. / (M) is to provide a high-flux cobalt-based alloy magnetic splash prepared by a simple process of refining and praying technology. Targeting material 4. For the above purpose, the high magnetic flux of the present invention is an iron-based alloy magnetic splashing dry material, which is made by melting and praying, and is a magnetic splash composed of inscription, iron and added metal. The dry material is one or more selected from the group consisting of group (Ta), zirconium (Zr), sharp (10), (Hf), 33 (A|), and network (C"). The ratio of the magnetic permeability of the magnetic (four) (four) is reduced, and the added metal accounts for 2% at % of the total magnetic sputtering target. Among them, the ratio of the magnetic flux of the magnetic sputtering target is increased by the total magnetic property of cobalt. 10 to 35 at.% of the sputtering target, while the iron system It accounts for 45~82 at.% of the total magnetic sputtering target material. Among them, the magnetic flux of the magnetic sputtering target is increased by 60 to 70 at·% of the total magnetic sputtering target, and the iron system accounts for 10 to 32 at.% of the overall magnetic sputtering target. When the thickness of the magnetic sputtering target does not exceed 15 cm (mm), the magnetic flux may be greater than 15%. Preferably, the added metal is a button or a crucible. Preferably, the added metal is composed of a button and zirconium. Preferably, the added metal is composed of a button. 5 201037094 The invention further relates to a magnetic flux of a high magnetic flux A method for manufacturing a sputter-free material, comprising: providing a cobalt-iron-based alloy magnetic sputtering target cast by smelting, which is a magnetic sputtering target composed of an initial, an iron, and an added metal, wherein the addition The metal system is selected from the group consisting of a button (Ta), a wrong (Zr), a ruthenium (Nb), a ruthenium (Hf), an aluminum (A ruthenium), and a chromium (c"), wherein the cobalt has a The ratio of the magnetic permeability of the magnetic sputtering target is reduced, and the added metal accounts for the integral magnetic sputtering target 8 ~ 20 at%;. The square magnetic cobalt-iron-based alloy sputtering target after the heat treatment 80CTC~1200 ° c, to obtain a high magnetic flux of the iron-cobalt based alloy magnetic sputtering targets. Preferably, the cobalt-iron-based alloy magnetic sputtering target further comprises cooling the cobalt-iron-based alloy magnetic sputtering target after the heat treatment, wherein the cooling rate of the cobalt-iron-based alloy magnetic sputtering target after the heat treatment is controlled is less than 15(rc/mjn. The present invention is also related to a high magnetic flux of the iron-based alloy magnetic dry material produced by the method described above. Since the magnetic sputtering target of the present invention is made by smelting casting , 避 兔 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既In the case of no more than 15 cm, more than 15% of the magnetic flux can be obtained. [Embodiment] It has been found that a certain proportion of Ta or Zr or Nb or Hf or AI or Cr or a The combination can improve the soft magnetic properties of the material, but referring to the first figure and the second figure, after the dry material produced by the smelting casting process is subjected to a general high temperature and high pressure process, as shown in the first figure, the additive will be 6 20103709 4 In the first day of the Japanese phase, the magnetic flux of the target decreases with the same time. However, after the heat treatment and cooling provided by this month, the additive is re-solidified back to the base as shown in the second figure. Show), and the magnetic flux of dry materials also increases. Moreover, the present invention also indicates that the ratio of cobalt is 1 〇 to 3 plus % or 叨 〇 7 〇 has a lower maximum magnetic permeability, and relatively increased magnetic flux. EXAMPLES: Please refer to Table 1 for the heat treatment of wCo, Fe, D or N Ο 900 C and then cool to room temperature by air cooling. Measurement of magnetic flux by Standard F1761 standard test method
Hf或Ai或C「依特定比例進行溶練禱造,$成的•电 等均壓(HIP)製程消除鑄錠内部的縮孔,再將鑄錢進行約、 astm 實施例 實施例 實施例三 實施例四 實施例五 比較例 比較例 成分組成 64Co-28Fe-6Ta-2Zr 28Co-54Fe-16Ta 63Co-27Fe-5Ta-5Zr 65Co-26Fe-5Zr-4NbHf or Ai or C "spraying at a specific ratio, and the HIP process to eliminate the shrinkage cavities inside the ingot, and then cast the money into the astm. Example 3 Example 4 Example 5 Comparative Example Comparative Composition Composition 64Co-28Fe-6Ta-2Zr 28Co-54Fe-16Ta 63Co-27Fe-5Ta-5Zr 65Co-26Fe-5Zr-4Nb
63.5Co-27.5Fe-3.7Ta-4.3Zr-0.5AI 0.5Cr 90Co-5Fe-8Ta 65Co-30Fe-5Ta63.5Co-27.5Fe-3.7Ta-4.3Zr-0.5AI 0.5Cr 90Co-5Fe-8Ta 65Co-30Fe-5Ta
7 201037094 由於磁通量與最大導磁率成反比關係,由第三圖可以 看出當鈷的比例在1〇~35at%或6〇~7〇at%時有較低的最 大導磁率,相對而言亦會有較高的磁通量。由實施例一至 實施例五,靶材在進行熱處理後較熱處理前有較高的磁通 量。而由比較例-以及比較例二可以分別看出,當銘的比 例和添加金屬的比例超出設定的範圍日夺,即使經過熱處理 也無法令厚度材的磁通量提升至15%以上。 【圖式簡單說明】7 201037094 Since the magnetic flux is inversely proportional to the maximum magnetic permeability, it can be seen from the third graph that when the proportion of cobalt is between 1〇3535at or 6〇~7〇at%, it has a lower maximum magnetic permeability. There will be a higher magnetic flux. From Example 1 to Example 5, the target has a higher magnetic flux after heat treatment than before heat treatment. From Comparative Example - and Comparative Example 2, it can be seen separately that when the ratio of the ratio of the metal to the added metal exceeds the set range, the magnetic flux of the thickness material cannot be increased to 15% or more even after the heat treatment. [Simple description of the map]
第—圖係既有以熔煉鑄造製程製作再經過一 > 壓製程所製作之靶材的 ^巧溫南 (BSE) 〇 平m政射電子顯微影像 理及冷製程製作再經過適當熱處 影像⑽e) 材的原位準動態背散射電子顯微 圖。第二圖係磁性㈣乾材中之料量與導磁率的關係 【主要元件符號說明】 無 8The first-picture system has both the smelting and casting process and the target made by the press process. The BSE is used to process the electron micro-image and the cold process. Image (10) e) In-situ quasi-dynamic backscattered electron micrograph of the material. The second figure is the relationship between the amount of material in the magnetic (4) dry material and the permeability. [Main component symbol description] None 8