TW201037094A - Magnetic sputtering target for ferro-cobalt alloy with high magnetic flux and producing method thereof - Google Patents

Magnetic sputtering target for ferro-cobalt alloy with high magnetic flux and producing method thereof Download PDF

Info

Publication number
TW201037094A
TW201037094A TW98111755A TW98111755A TW201037094A TW 201037094 A TW201037094 A TW 201037094A TW 98111755 A TW98111755 A TW 98111755A TW 98111755 A TW98111755 A TW 98111755A TW 201037094 A TW201037094 A TW 201037094A
Authority
TW
Taiwan
Prior art keywords
magnetic
sputtering target
cobalt
flux
based alloy
Prior art date
Application number
TW98111755A
Other languages
Chinese (zh)
Other versions
TWI387658B (en
Inventor
Hui-Wen Cheng
Shang-Chieh Hou
Original Assignee
Solar Applied Mat Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Applied Mat Tech Corp filed Critical Solar Applied Mat Tech Corp
Priority to TW98111755A priority Critical patent/TWI387658B/en
Publication of TW201037094A publication Critical patent/TW201037094A/en
Application granted granted Critical
Publication of TWI387658B publication Critical patent/TWI387658B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a magnetic sputtering target for ferro-cobalt alloy with high magnetic flux that is made of melting and casting and that is a magnetic sputtering target composed of cobalt, iron and added metal, wherein the added metal is more than one selected from the group consisting of tantalum (Ta), zirconium (Zr), niobium (Nb), hafnium (Hf), aluminum (Al), and chromium (Cr). The goal of enhancing the magnetic flux of targets can be achieved by ferro-cobalt ratio and adding the blending of the metal containing and incorporating with appropriate thermal treatment process after melting and casting the targets.

Description

201037094 六、發明說明: 【發明所屬之技術領域】 本發明係一種始鐵基合金磁性濺射無材,尤其係一種 以製程簡單的熔煉铸造技術所製備的高磁通量之結鐵基合 金磁性濺射靶材。 【先前技術】 隨著科技的日新月異,人們對於高記錄密度硬碟的需 求越來越高,大量的資訊將需儲存在超高記錄密度的碟片 〇裡’傳統的硬碟是以水平式記錄碟片為主然而這樣的記 錄媒體在追求超高記錄密度時遇到物理的極限,因此才發 展出垂直式記錄媒體的膜層結構。對於垂直式記錄媒體而 言,軟磁層的引入可提升寫入的效率、降低去磁場的強度、 並提升記錄層的熱穩定性。 為了得到優良的軟磁特性,一般採用非晶態軟磁合金。 常見的合金組成有鐵鈷硼(Fe_C0_B)合金、姑锆鈮(c〇ZrNb)201037094 VI. Description of the Invention: [Technical Field] The present invention relates to a magnetically sputter-free material of a starting iron-based alloy, in particular to a high-flux iron-based alloy magnetic sputtering prepared by a simple process casting technique. Target. [Prior Art] With the rapid development of technology, people's demand for high-density hard disk is getting higher and higher, and a large amount of information will need to be stored in a disc with ultra-high recording density. 'The traditional hard disk is recorded horizontally. The disc is dominant. However, such a recording medium encounters a physical limit in pursuit of an ultra-high recording density, and thus a film structure of a vertical recording medium has been developed. For a vertical recording medium, the introduction of a soft magnetic layer can improve the efficiency of writing, reduce the strength of the demagnetizing field, and improve the thermal stability of the recording layer. In order to obtain excellent soft magnetic properties, an amorphous soft magnetic alloy is generally used. Common alloys are iron-cobalt-boron (Fe_C0_B) alloy, c-zirconium (c〇ZrNb)

合金以及鈷鐵錘(C0_Fe_Zr)合金,其中鈷鐵(c〇 F 特別受到重視。 一般的直流濺鍍、射頻濺鍍、三極濺鍍等,因放電過 程中氣體分子之電離度太小導致㈣率偏⑯,所以目前磁 控賤射技術是沉積高性能磁性薄膜的主要方法。磁控賤射 技術是利用磁場使電子以螺旋方式前進,增加電子與氣體 分子碰撞的機會’提高分子的電離度,因而使濺鍍率升高; 此外磁控激錢可在比較低的氣廢下進行,因此薄膜品質較 佳;且由於磁場會導致電子偏離基板,因此讓基板處於較 低的溫度,可鍍在不耐高溫的基板上。但由於鐵磁性乾材 3 201037094 的磁遮罩效應’造成靶材難以正常濺射;t因為磁力線的 聚焦造成靶材表面的侵蝕凹槽,而降低靶材的利用率。這 ㈣應都受到㈣磁通量的影響,因&,提高㈣的磁通 量是其中一種解決上述問題的方法。 磁通量(Pass Through Flux, PTFR義為被傳輸磁場與Alloy and cobalt iron hammer (C0_Fe_Zr) alloy, among which cobalt iron (c〇F is particularly valued. General DC sputtering, RF sputtering, tripolar sputtering, etc., due to the ionization degree of gas molecules in the discharge process is too small (4) The rate is 16, so the current magnetron sputtering technology is the main method for depositing high-performance magnetic thin films. Magnetron sputtering technology uses magnetic fields to advance electrons in a spiral manner, increasing the chance of electrons colliding with gas molecules' to improve the ionization degree of molecules. Therefore, the sputtering rate is increased; in addition, the magnetic control money can be carried out under relatively low gas waste, so the film quality is better; and since the magnetic field causes the electrons to deviate from the substrate, the substrate is at a lower temperature and can be plated. On a substrate that is not resistant to high temperatures, but due to the magnetic mask effect of ferromagnetic dry material 3 201037094, it is difficult for the target to be normally sputtered; t because the focus of the magnetic field line causes the erosion of the surface of the target, and the utilization of the target is reduced. Rate (4) should be affected by (4) magnetic flux, because &, improve (4) magnetic flux is one of the ways to solve the above problem. Magnetic flux (Pass Through Flux, P TFR is the transmitted magnetic field and

施加磁場的比率’其測量的方式可參考AstmF 1761 “圓形磁性濺射靶磁通量的標準試驗方法” ,100%The ratio of applied magnetic field' can be measured by reference to AstmF 1761 "Standard Test Method for Magnetic Flux of Circular Magnetic Sputter Targets", 100%

的PTF是非磁性材料的指標,而在磁性材料中PTF和最大 導磁率存在反比的關聯性。 傳統以真空感應熔煉(Vacuum丨.nduct丨…邮丨加V丨⑷ 製作厚度纟3mm〜7圓之間的軟磁性乾材,通常磁通量小 於15%。在美國第1〇/163 62〇號申請案(即第㈣〇228238 號公開案)中提到㈣末冶金的方式混合具備不同磁通量特 性的粉末,混合後的材料在巨觀上仍具備軟磁的特性,而 其中磁通量較高的材料所形成的㈣提供較高的磁通路線 =場通過輕材。另外,在美國第趣/〇〇83616號公開 =提到基的軟磁乾材中含有Hcp_c〇構成的相 1及以Fe為主體的合金相時’會有提升乾材磁通量的效 果,然而其製程技術仍以粉末冶金為主。 粉末冶金相較於熔煉鑄造技術,其製造流程複 用難以製造大尺寸料材,所以較難在生產中 ^廣泛制。㈣煉鑄造法的製程簡單、成本低,對尺 發展及應用前景。 連續生產而具有廣闕的 【發明内容】 201037094 . 纟發明人有鑑於—般以真空感應熔煉法無法製作且有 面磁通量的軟磁性敦材,而能製作高磁通量之乾材的粉 冶金技術又有製程複雜、成本高且無法製造大尺寸乾材的 缺點1此經過長時間的研究以及不斷的試驗後,終於發 明出此高磁通量之鈷鐵基合金磁性濺射耙材。 /發^目㈣在於提供—種以製程簡單的炼煉禱造 技術所製備的高磁通量之鈷鐵基合金磁性濺射靶材。 4達上述目的,本發明高磁通量之#鐵基合金磁性濺 〇射乾材,其係以熔煉禱造所製成者,且係由銘、鐵以及添 加金屬所組成的磁性濺射乾材,該添加金屬係一種以上選 自於由组(Ta)、锆(Zr)、銳⑽)、給(Hf)、㉝(A|)以及絡 (C「)所組成之群組,其中姑具有令磁性㈣㈣的導磁 率降低之比例’且該添加金屬佔整體磁性濺射靶材的卜2〇 at·%。 其中,令磁性濺射靶材的磁通量提升之比例係鈷佔整 體磁性濺射靶材的10〜35 at.%,而鐵係佔整體磁性濺射靶 Ο 材的 45〜82 at.%。 其中,令磁性濺射靶材的磁通量提升之比例係鈷佔整 體磁性濺射靶材的60〜70 at·%,而鐵係佔整體磁性濺射靶 材的10〜32 at.%。 當該磁性濺射靶材的厚度不超過15厘米(mm),可具 有大於15%的磁通量 較佳的是,該添加金屬為鈕、鍅、鋁和鉻所組成。 較佳的是,該添加金屬為鈕和锆所組成。 較佳的是,該添加金屬為鈕所組成。 5 201037094 本發明又關於一種高磁通量之銘鐵基合金磁性濺射無 材的製造方法,其係包括: 一 提供一由熔煉鑄造的鈷鐵基合金磁性濺射靶材,其係 由始、鐵以及添加金屬所組成的磁性濺射靶材,其中該添 加金屬係—種以上選自於由鈕(Ta)、錯(Zr)、鈮(Nb)、铪(Hf)、 鋁(A丨)以及鉻(c「)所組成之群組,其中鈷具有令磁性 濺射靶材的導磁率降低之比例,且該添加金屬佔整體磁性 濺射靶材的8~20 at.% ; 〇 將該鈷鐵基合金磁性濺射靶材經過80CTC〜1200°c之熱 處理,以獲得高磁通量之鈷鐵基合金磁性濺射靶材。 較佳的是,該鈷鐵基合金磁性濺射靶材在熱處理後尚 包括將該鈷鐵基合金磁性濺射靶材冷卻,其中控制熱處理 後之鈷鐵基合金磁性濺射靶材冷卻速率小於15(rc/mjn。 本發明又關於一種利用以上所述之方法所製成的高磁 通量之銘鐵基合金磁性賤射乾材。 由於本發明之磁性濺射靶材係以熔煉鑄造所製成者, Ο 避兔既有以粉末冶金製程所產生的缺點,藉由祐鐵比例以 及添加金屬含量的調配,搭配靶材熔煉鑄造後適當的熱處 理製程達到提高靶材磁通量的目的。在靶材厚度不超過15 厘米的情況下’可獲得大於15 %的磁通量。 【實施方式】 經研究發現,在製作鈷鐵基靶材時,添加一定比例的 Ta或Zr或Nb或Hf或AI或Cr或其組合可提高材料的軟 磁特性,但參考第一圖以及第二圖,以熔煉鑄造製程製作 的乾材經過一般高溫高壓製程後,如第一圖所示添加物會 6 201037094 在初日日相析出,同瞎杂4 時靶材的磁通量隨之下降;但若經過本 發月所提供的熱處理及冷卻 1磓程後,添加物重新固溶回基 目如第二圖所示),而乾材的磁通量亦隨之提升。 而且本發明亦指出鈷的比例在1〇~3加%或叨〜7〇以% 時有較低的最大導磁率,相對而言會有提升的磁通量。 實施例: 請參看表一所示,其係wCo、Fe、丁「或n Ο 900 C的熱處理後以空冷的方式冷卻至室溫。再以 Standard F1761標準試驗方法進行磁通量的量測 表一PTF is an indicator of non-magnetic materials, and there is an inverse correlation between PTF and maximum permeability in magnetic materials. Traditionally, vacuum induction melting (Vacuum 丨.nduct 丨 丨 丨 丨 丨 丨 4 4 4 4 4 4 4 4 4 4 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软The case (ie, the publication of (4) 〇 228238) mentions that (4) the end metallurgical method mixes powders with different magnetic flux characteristics, and the mixed materials still have soft magnetic properties on the giant view, and the materials with higher magnetic flux are formed. (4) Provide a higher magnetic flux line = field through the light material. In addition, in the United States, the first soft magnetic dry material contains the phase 1 composed of Hcp_c〇 and the alloy mainly composed of Fe. At the same time, there will be an effect of improving the magnetic flux of dry materials. However, the process technology is still mainly powder metallurgy. Compared with smelting and casting technology, powder metallurgy is difficult to manufacture large-size materials due to the reuse of manufacturing processes, so it is difficult to produce in production. ^ Extensive system. (4) The process of refining and casting is simple, low cost, development of the ruler and application prospects. Continuous production and extensive [invention content] 201037094. The inventor has a vacuum induction melting method It is impossible to produce soft magnetic materials with surface magnetic flux, and the powder metallurgy technology capable of producing high magnetic flux dry materials has the disadvantages of complicated process, high cost and the inability to manufacture large-sized dry materials. After the test, the high-flux cobalt-based alloy magnetic sputtering coffin was finally invented. / (M) is to provide a high-flux cobalt-based alloy magnetic splash prepared by a simple process of refining and praying technology. Targeting material 4. For the above purpose, the high magnetic flux of the present invention is an iron-based alloy magnetic splashing dry material, which is made by melting and praying, and is a magnetic splash composed of inscription, iron and added metal. The dry material is one or more selected from the group consisting of group (Ta), zirconium (Zr), sharp (10), (Hf), 33 (A|), and network (C"). The ratio of the magnetic permeability of the magnetic (four) (four) is reduced, and the added metal accounts for 2% at % of the total magnetic sputtering target. Among them, the ratio of the magnetic flux of the magnetic sputtering target is increased by the total magnetic property of cobalt. 10 to 35 at.% of the sputtering target, while the iron system It accounts for 45~82 at.% of the total magnetic sputtering target material. Among them, the magnetic flux of the magnetic sputtering target is increased by 60 to 70 at·% of the total magnetic sputtering target, and the iron system accounts for 10 to 32 at.% of the overall magnetic sputtering target. When the thickness of the magnetic sputtering target does not exceed 15 cm (mm), the magnetic flux may be greater than 15%. Preferably, the added metal is a button or a crucible. Preferably, the added metal is composed of a button and zirconium. Preferably, the added metal is composed of a button. 5 201037094 The invention further relates to a magnetic flux of a high magnetic flux A method for manufacturing a sputter-free material, comprising: providing a cobalt-iron-based alloy magnetic sputtering target cast by smelting, which is a magnetic sputtering target composed of an initial, an iron, and an added metal, wherein the addition The metal system is selected from the group consisting of a button (Ta), a wrong (Zr), a ruthenium (Nb), a ruthenium (Hf), an aluminum (A ruthenium), and a chromium (c"), wherein the cobalt has a The ratio of the magnetic permeability of the magnetic sputtering target is reduced, and the added metal accounts for the integral magnetic sputtering target 8 ~ 20 at%;. The square magnetic cobalt-iron-based alloy sputtering target after the heat treatment 80CTC~1200 ° c, to obtain a high magnetic flux of the iron-cobalt based alloy magnetic sputtering targets. Preferably, the cobalt-iron-based alloy magnetic sputtering target further comprises cooling the cobalt-iron-based alloy magnetic sputtering target after the heat treatment, wherein the cooling rate of the cobalt-iron-based alloy magnetic sputtering target after the heat treatment is controlled is less than 15(rc/mjn. The present invention is also related to a high magnetic flux of the iron-based alloy magnetic dry material produced by the method described above. Since the magnetic sputtering target of the present invention is made by smelting casting , 避 兔 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既 既In the case of no more than 15 cm, more than 15% of the magnetic flux can be obtained. [Embodiment] It has been found that a certain proportion of Ta or Zr or Nb or Hf or AI or Cr or a The combination can improve the soft magnetic properties of the material, but referring to the first figure and the second figure, after the dry material produced by the smelting casting process is subjected to a general high temperature and high pressure process, as shown in the first figure, the additive will be 6 20103709 4 In the first day of the Japanese phase, the magnetic flux of the target decreases with the same time. However, after the heat treatment and cooling provided by this month, the additive is re-solidified back to the base as shown in the second figure. Show), and the magnetic flux of dry materials also increases. Moreover, the present invention also indicates that the ratio of cobalt is 1 〇 to 3 plus % or 叨 〇 7 〇 has a lower maximum magnetic permeability, and relatively increased magnetic flux. EXAMPLES: Please refer to Table 1 for the heat treatment of wCo, Fe, D or N Ο 900 C and then cool to room temperature by air cooling. Measurement of magnetic flux by Standard F1761 standard test method

Hf或Ai或C「依特定比例進行溶練禱造,$成的•电 等均壓(HIP)製程消除鑄錠内部的縮孔,再將鑄錢進行約、 astm 實施例 實施例 實施例三 實施例四 實施例五 比較例 比較例 成分組成 64Co-28Fe-6Ta-2Zr 28Co-54Fe-16Ta 63Co-27Fe-5Ta-5Zr 65Co-26Fe-5Zr-4NbHf or Ai or C "spraying at a specific ratio, and the HIP process to eliminate the shrinkage cavities inside the ingot, and then cast the money into the astm. Example 3 Example 4 Example 5 Comparative Example Comparative Composition Composition 64Co-28Fe-6Ta-2Zr 28Co-54Fe-16Ta 63Co-27Fe-5Ta-5Zr 65Co-26Fe-5Zr-4Nb

63.5Co-27.5Fe-3.7Ta-4.3Zr-0.5AI 0.5Cr 90Co-5Fe-8Ta 65Co-30Fe-5Ta63.5Co-27.5Fe-3.7Ta-4.3Zr-0.5AI 0.5Cr 90Co-5Fe-8Ta 65Co-30Fe-5Ta

7 201037094 由於磁通量與最大導磁率成反比關係,由第三圖可以 看出當鈷的比例在1〇~35at%或6〇~7〇at%時有較低的最 大導磁率,相對而言亦會有較高的磁通量。由實施例一至 實施例五,靶材在進行熱處理後較熱處理前有較高的磁通 量。而由比較例-以及比較例二可以分別看出,當銘的比 例和添加金屬的比例超出設定的範圍日夺,即使經過熱處理 也無法令厚度材的磁通量提升至15%以上。 【圖式簡單說明】7 201037094 Since the magnetic flux is inversely proportional to the maximum magnetic permeability, it can be seen from the third graph that when the proportion of cobalt is between 1〇3535at or 6〇~7〇at%, it has a lower maximum magnetic permeability. There will be a higher magnetic flux. From Example 1 to Example 5, the target has a higher magnetic flux after heat treatment than before heat treatment. From Comparative Example - and Comparative Example 2, it can be seen separately that when the ratio of the ratio of the metal to the added metal exceeds the set range, the magnetic flux of the thickness material cannot be increased to 15% or more even after the heat treatment. [Simple description of the map]

第—圖係既有以熔煉鑄造製程製作再經過一 > 壓製程所製作之靶材的 ^巧溫南 (BSE) 〇 平m政射電子顯微影像 理及冷製程製作再經過適當熱處 影像⑽e) 材的原位準動態背散射電子顯微 圖。第二圖係磁性㈣乾材中之料量與導磁率的關係 【主要元件符號說明】 無 8The first-picture system has both the smelting and casting process and the target made by the press process. The BSE is used to process the electron micro-image and the cold process. Image (10) e) In-situ quasi-dynamic backscattered electron micrograph of the material. The second figure is the relationship between the amount of material in the magnetic (4) dry material and the permeability. [Main component symbol description] None 8

Claims (1)

201037094 . 七、申請專利範圍: 1_ 一種高磁通量之鈷鐵基合金磁性濺射靶材,其係以 溶煉鑄造所製成者,且係由姑、鐵以及添加金屬所^成的 磁性濺射靶材,其中該添加金屬係一種以上選自於由鈕 (Ta)、锆(Zr)、鈮(Nb)、铪(Hf)、紹(A丨)以及鉻(⑺所 組成之群組,其中結具有令磁性錢射起材的導磁率降低之 比例,且該添加金屬佔整體磁性濺射靶材的8〜2〇at %。 2·如申請專利範圍帛彳項所述之高磁通量之鈷。鐵基 ◎ 合金磁性濺射靶材,其中令磁性濺射靶材的磁通量提升之 比例係鈷佔整體磁性濺射靶材的1〇〜35 at %,而鐵係佔整 體磁性濺射乾材的45〜82 at.%。 3·如申請專利範圍第彳項所述之高磁通量之鈷鐵基 合金磁性濺射靶材,其中令磁性濺射靶材的磁通量提升之 比例係鈷佔整體磁性濺射靶材的6〇〜7〇 at %,而鐵係佔整 體磁性濺射靶材的10-32 at.%。 4·如申請專利範圍第卜2或3項所述之高磁通量之 〇 姑鐵基合金磁性賤射把材,其中該磁性滅射乾材的厚度不 超過15厘米(mm),且具有大於15%的磁通量 又 5·如申請專利範圍第12$ 3項所述之高磁通量之 鈷鐵基合金磁性濺射靶材,其中該添加金屬為鈕、鍅、鋁 和鉻所組成。 6. 如申請專利範圍第4項所述之高磁通量之姑鐵基 合金磁性濺射靶材,其中該添加金屬為鈕、锆、鋁和鉻二 組成。 7. 如申請專利範圍第卜2$ 3項所述之高磁通量之 .201037094 • 姑鐵基合金磁性濺射靶材,其中該添加金屬為钽和锆所組 成。. 8. 如申請專利範圍第4項所述之高磁通量之鈷鐵基 合金磁性濺射靶材’其中該添加金屬為鈕和鍅所組成。 9. 如申請專利範圍第1、2或3項所述之高磁通量之 姑鐵基合金磁性濺射耙材,其中該添加金屬為钽所組成。 10. 如申請專利範圍第4項所述之高磁通量之鈷鐵基 合金磁性賤射靶材’其中該添加金屬為鈕所組成。 〇 11· 一種高磁通量之鈷鐵基合金磁性濺射靶材的製造 方法’其係包括: 提供一由熔煉鑄造的鈷鐵基合金磁性濺射靶材,其係 由鈷、鐵以及添加金屬所組成的磁性濺射靶材,其中該添 加金屬係一種以上選自於由鈕(Ta)、锆(Zr)、鈮(Nb)、姶 (Hf)、鋁(AI)以及鉻()所組成之群組,其中鈷具有 令磁性濺射靶材的導磁率降低之比例,且該添加金屬佔整 體磁性濺射靶材的8〜20 at.% ; Ο 將該姑鐵基合金磁性濺射靶材經過800°c〜1200°c之 熱處理。 12_如申請專利範圍第彳彳項所述之高磁通量之鈷鐵 基合金磁性濺射靶材的製造方法,其中該鈷鐵基合金磁性 濺射靶材在熱處理後尚包括將該鈷鐵基合金磁性濺射靶材 冷卻,其中控制熱處理後之鈷鐵基合金磁性濺射靶材冷卻 速率小於15〇t: /min。 13.如申請專利範圍第12項所述之高磁通量之鈷鐵 基合金磁性濺射靶材的製造方法,其中令磁性溅射靶材的 201037094 磁通量k升之比例係姑佔整體磁性濺射把材的1 〇〜35 at.% ’而鐵係佔整體磁性濺射靶材的45~82 at.%。 14_如申請專利範圍第13項所述之高磁通量之鈷鐵 基合金磁性濺射靶材的製造方法,其中令磁性濺射靶材的 磁通量提升之比例係鈷佔整體磁性濺射靶材的6〇〜7〇 at·%,而鐵係佔整體磁性濺射靶材的1〇~32 %。 15.如中請專利範圍第^至14項中任_項所述之高 磁通量之鈷鐵基合金磁性濺射靶材的製造方法,其中該磁 〇㈣射㈣的厚度不超過15厘米(_),且具有大於15% 的磁通量 16.如申請專利範圍第n至14項中任一項所述之 磁通量之鈷鐵基合金磁性濺射把材的製造方法,其中該 加金屬為组、錯、銘和鉻所組成 1 7 如申請專利範圍第 基合金磁性濺射靶材的製造 錯、銘和銘·所組成。 15項所述之高磁通量之鈷鐵 方法,其中該添加金屬為鈕、 ❹ 认如申請專利範圍第^至14項中任 磁通量之㈣基合金磁㈣射㈣的製造方法, 二 加金屬為鈕和鍅所組成。 /、中該添 认⑯申請專利範圍第15所述之高磁 合金磁性濺射靶材的製造方法, 之鈷鐵基 所組成。 〇該添加金屬為鈕和錯 2〇·如申請專利範圍第11 斑、s真 至14項中任—項所诚夕古 磁通量之㈣基合金磁性Μ之间 加金屬為鈕所組成。 &方法,其中該添 11 201037094 21.如申請專利範圍第15所述之高磁通量之鈷鐵基 合金磁性濺射靶材的製造方法,其中該添加金屬為钽所組 成。 22· —種利用如申請專利範圍第11至21項所述之方 法所製成的高磁通量之钻鐵基合金磁性滅射乾材。 八、圖式:(如次頁)201037094 . VII. Patent application scope: 1_ A high-flux cobalt-based alloy magnetic sputtering target, which is made by smelting and casting, and is magnetically sputtered by guar, iron and added metal. a target, wherein the added metal is one or more selected from the group consisting of a button (Ta), zirconium (Zr), niobium (Nb), hafnium (Hf), sho (A), and chromium ((7), wherein The knot has a ratio of decreasing magnetic permeability of the magnetic money priming material, and the additive metal accounts for 8 to 2 〇 at% of the entire magnetic sputtering target. 2. The high magnetic flux cobalt as described in the patent application scope Iron-based ◎ alloy magnetic sputtering target, in which the magnetic flux of the magnetic sputtering target is increased by a ratio of 1 to 35 at % of the total magnetic sputtering target, and the iron system accounts for the overall magnetic sputtering dry material. 45 to 82 at.%. 3. A high-flux cobalt-based alloy magnetic sputtering target as described in the scope of the patent application, wherein the magnetic flux of the magnetic sputtering target is increased by the ratio of cobalt to the overall magnetic property. 6 〇 to 7 〇 at % of the sputtering target, and the iron system accounts for 10-32 of the overall magnetic sputtering target At.%. 4. The high magnetic flux of the argon-based alloy magnetic ramming material as described in claim 2 or 3, wherein the thickness of the magnetically active dry material does not exceed 15 cm (mm), And a cobalt-based alloy magnetic sputtering target having a magnetic flux of more than 15% and a high magnetic flux as described in claim 12, wherein the additive metal is composed of a button, a crucible, an aluminum, and a chromium. 6. The high magnetic flux galvanic alloy magnetic sputtering target according to claim 4, wherein the additive metal is composed of a button, zirconium, aluminum and chromium. The high magnetic flux described in the three items. 201037094 • A guar-based alloy magnetic sputtering target, wherein the added metal is composed of lanthanum and zirconium. 8. High-flux cobalt iron as described in claim 4 a base alloy magnetic sputtering target, wherein the additive metal is composed of a button and a ruthenium. 9. The high magnetic flux galvanic alloy magnetic sputtering material according to claim 1, 2 or 3, wherein The added metal is composed of strontium. 10. If the scope of patent application is item 4 The high-flux cobalt-based alloy magnetic sputum target 'which is composed of a button. 〇11· A method for producing a high-flux cobalt-based alloy magnetic sputtering target' includes: a cobalt-based alloy magnetic sputtering target cast by smelting, which is a magnetic sputtering target composed of cobalt, iron, and an additive metal, wherein the added metal is one or more selected from the group consisting of a button (Ta) and zirconium ( a group consisting of Zr), niobium (Nb), hafnium (Hf), aluminum (AI), and chromium (), wherein cobalt has a ratio that reduces the magnetic permeability of the magnetic sputtering target, and the added metal accounts for the overall magnetic properties. 8 to 20 at.% of the sputtering target; 热处理 The urethane-based alloy magnetic sputtering target is subjected to heat treatment at 800 ° C to 1200 ° C. The method for producing a high-flux cobalt-based alloy magnetic sputtering target according to the above-mentioned patent application, wherein the cobalt-iron-based alloy magnetic sputtering target further comprises the cobalt-iron base after heat treatment. The alloy magnetic sputtering target is cooled, wherein the cobalt iron-based alloy magnetic sputtering target after the heat treatment is controlled to have a cooling rate of less than 15 〇t: /min. 13. The method for producing a high-flux cobalt-based alloy magnetic sputtering target according to claim 12, wherein a magnetic sputtering target of 201037094 has a magnetic flux k liter ratio as a whole magnetic sputtering device. The material is 1 〇~35 at.%' and the iron system accounts for 45~82 at.% of the overall magnetic sputtering target. The method for producing a high-flux cobalt-based alloy magnetic sputtering target according to claim 13 wherein the magnetic flux of the magnetic sputtering target is increased by a ratio of cobalt to the entire magnetic sputtering target. 6〇~7〇at·%, while iron accounts for 1〇32% of the total magnetic sputtering target. The method for producing a high-flux cobalt-based alloy magnetic sputtering target according to any one of the above claims, wherein the thickness of the magnetic enthalpy (four) is not more than 15 cm (_ And a method for producing a magnetic iron-based cobalt-based alloy magnetic sputtering material according to any one of claims n to 14 wherein the metal addition is a group or a fault. , Ming and chrome consist of 1 7 as in the patent application of the base alloy magnetic sputtering target manufacturing error, Ming and Ming · composed. The high-flux cobalt iron method according to the item 15, wherein the additive metal is a manufacturing method of a (four)-based alloy magnetic (four) shot (four) which is a magnetic flux of any of the above-mentioned patents, and the second metal is a button. He is composed of 鍅. The method for producing a high magnetic alloy magnetic sputtering target according to the fifteenth aspect of the invention is the cobalt iron group. 〇The added metal is the button and the wrong 2〇·If the patent application range is 11th, s true to 14th, the item is the essence of the magnetic flux (4), and the alloy is magnetic. The method of producing a high-flux cobalt-iron-based alloy magnetic sputtering target according to the fifteenth aspect of the invention, wherein the additive metal is a ruthenium composition. 22. A high-flux iron-based alloy magnetically fired dry material produced by the method of claims 11 to 21 of the patent application. Eight, schema: (such as the next page) 1212
TW98111755A 2009-04-09 2009-04-09 High magnetic flux of cobalt-based alloy magnetic sputtering target and its manufacturing method TWI387658B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98111755A TWI387658B (en) 2009-04-09 2009-04-09 High magnetic flux of cobalt-based alloy magnetic sputtering target and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98111755A TWI387658B (en) 2009-04-09 2009-04-09 High magnetic flux of cobalt-based alloy magnetic sputtering target and its manufacturing method

Publications (2)

Publication Number Publication Date
TW201037094A true TW201037094A (en) 2010-10-16
TWI387658B TWI387658B (en) 2013-03-01

Family

ID=44856508

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98111755A TWI387658B (en) 2009-04-09 2009-04-09 High magnetic flux of cobalt-based alloy magnetic sputtering target and its manufacturing method

Country Status (1)

Country Link
TW (1) TWI387658B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461557B (en) * 2013-06-11 2014-11-21 Solar Applied Mat Tech Corp Fe-co-ta alloy sputtering target
CN111957982A (en) * 2020-08-31 2020-11-20 宁波江丰电子材料股份有限公司 Preparation method of iron-cobalt-tantalum alloy powder, iron-cobalt-tantalum alloy powder and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461557B (en) * 2013-06-11 2014-11-21 Solar Applied Mat Tech Corp Fe-co-ta alloy sputtering target
CN111957982A (en) * 2020-08-31 2020-11-20 宁波江丰电子材料股份有限公司 Preparation method of iron-cobalt-tantalum alloy powder, iron-cobalt-tantalum alloy powder and application

Also Published As

Publication number Publication date
TWI387658B (en) 2013-03-01

Similar Documents

Publication Publication Date Title
JP5290468B2 (en) Fe-Pt sputtering target in which C particles are dispersed
JP5226155B2 (en) Fe-Pt ferromagnetic sputtering target
US20030228238A1 (en) High-PTF sputtering targets and method of manufacturing
JP5472688B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2007284741A (en) Soft magnetic target material
TWI508114B (en) A magneto-magnetic recording medium for magnetic recording, a sputtering target, and a magnetic recording medium
JP2008189996A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007128630A (en) Magnetic recording medium, manufacturing method of magnetic recording medium, and sputtering target
JP4953082B2 (en) Co-Fe-Zr alloy sputtering target material and method for producing the same
US20100300876A1 (en) Cobalt-iron alloy sputtering target with high pass through flux and method for manufacturing the same
JP4810360B2 (en) Magnetic thin film
JP5477724B2 (en) Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium
US20050277002A1 (en) Enhanced sputter target alloy compositions
TW201037094A (en) Magnetic sputtering target for ferro-cobalt alloy with high magnetic flux and producing method thereof
JP7385370B2 (en) Ni-based sputtering target and magnetic recording medium
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
JP2012216273A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND POWDER SINTERING SPATTERING TARGET MATERIAL FOR FORMING Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2010150591A (en) Cobalt-iron based alloy for soft-magnetic film
JP5066136B2 (en) Cobalt iron alloy sputtering target material with high magnetic permeability
JP7157573B2 (en) Ni-based alloy for seed layer of magnetic recording media
CN101880858B (en) The ferro-cobalt based alloy magnetic sputtering target material of high magnetic flux and manufacture method thereof
TWI823989B (en) Sputtering targets for soft magnetic layers of magnetic recording media and magnetic recording media
JP6128421B2 (en) Sputtering target material for heat sink layer formation of thermally assisted magnetic recording media
TWI716166B (en) Fe-co-based alloy target and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees