201036911 •六、發明說明: 【發明所屬之技術領域】 • 本發明涉及—種奈米複合材似其製備方法,尤其涉及—種 •奈米碳管複合材料及其製備方法。 【先前技術】 奈米碳管(c_n NanGtube,CNT)係—韻型奈米線結構。奈 米礙管具有極大的比表面積’優良的機械及光電性能,被廣泛應 ❹胳複合㈣的製備。奈米雜本身具紐大⑽表面積及麵 化等優異特性,'然,奈米顆粒本身容易團聚。故,將奈米顆粒分 散於絲碳管絲,以製備奈米碳管複合娜成為研究的熱點。 2〇〇7年3月Η日公告的公告號為CN1綱勘c的中國大陸專 利揭示-縣麵管複合材料及鄕财法。縣米碳管複合材 料包括複触奈米碳管紐及包覆於奈米碳管浦麵的四氧化 二銘奈米晶’且四氧化三错奈米晶與奈米碳管形成複合粉體。該 ❹料碳管複合材料的製備方法主要包括以下步驟:將奈米碳管^ 濃石肖酸中魏化處理6小時〜8小時,於奈米碳管表面狀經基、 幾基等雜魏ϋ;用去離子水清洗魏化處理後的奈米碳管, 並烘乾,·將六水合猶麟於正乙醇中形成混合溶液;將奈米碳 管加入到該混合溶液中超聲處理15分鐘,分鐘,六水合確酸钻 吸附於奈求碳管表面;將混合溶液於石夕油浴中回流處理$小時〜忉 小時’吸附於奈米碳管表面的六水合石肖酸始分解為四氧化三録, 從而得到四氧化三錯包覆的奈米碳管;及將四氧化三銘包覆的奈 4 201036911 而乙醇分別清洗’從而得到四氧化三_的奈米 反^體然而,該奈米碳管複合材料及其製備方法具有以下不 足:奈姆複合材_備方紅_,綱高,而且採 用/辰敵等化學藥品,容易造成環境污染。201036911 • VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for preparing a nanocomposite, and particularly relates to a nanocarbon tube composite material and a preparation method thereof. [Prior Art] Carbon nanotubes (c_n NanGtube, CNT) are rhyme-type nanowire structures. Nano has a large specific surface area. It has excellent mechanical and electrical properties and is widely used in the preparation of ❹ 复合 composite (4). Nano-hybrid itself has excellent properties such as surface area and surface area of New Zealand (10). However, the nanoparticles themselves are easily agglomerated. Therefore, it is a research hotspot to disperse nanoparticles into silk carbon nanotubes to prepare nanocarbon nanotubes. The announcement number announced on the next day of March, 2007 is the CN1 outline of the mainland China patent disclosure - county-level tube composite materials and wealth management law. The county carbon tube composite material includes a complex nanocarbon tube and a TiO2 crystal coated on the surface of the carbon nanotube, and the composite powder of the sesame tetraoxide and the carbon nanotube form a composite powder. . The preparation method of the carbon tube composite material mainly comprises the following steps: treating the nano carbon tube and the concentrated sulphuric acid in the Weihua for 6 hours to 8 hours, on the surface of the carbon nanotubes, the base, the base, etc. ϋ; Wash the Weihuan carbon nanotubes with deionized water, and dry, and form a mixed solution of hexahydrate in the positive ethanol; add the carbon nanotubes to the mixed solution for 15 minutes. , minute, the hexahydrate acid acid drill is adsorbed on the surface of the carbon tube; the mixed solution is refluxed in the Shixi oil bath for about 0 hours~忉 hours. The hexahydrate adsorbed on the surface of the carbon nanotubes is decomposed into four. Oxidation of the three records, thereby obtaining a carbon tetraoxide-coated carbon nanotube; and coating the 4,4,369,11, which is coated with the sulphuric acid, and the ethanol is separately washed, thereby obtaining a nano-oxide of the oxidized metal _, however, Nano carbon tube composite material and its preparation method have the following disadvantages: Naim composite material _prepared square red _, high level, and the use of chemicals such as / Chen enemy, easily cause environmental pollution.
屬年9月3日公開的公開號為CN10125篇Α的㈣大陸 專利申請揭卜姆與蝴的蝴卿及其製備方 法。該奈米碳管與奈米鎳的複合_材料包括—層沈積於金屬落 上的奈米碳管觀沈積於該奈米碳管虹的奈_輸。該夺米 碳管與奈雜的複合薄輯料的製#方法主要包括町步驟提 供-金屬躲底,並_金屬錄底進行表_光及除油脫脂處 理,將奈純管與乙_職合後超聲處理,⑽成—電泳懸浮 液;以金>1錄底為陰極’於上㈣賴浮液中通人直流電,進 行電泳沈積,於金屬絲絲面_—層奈米碳麵;以沈積有 奈米碳管膜的金屬絲底為陰極於—鎳電鍍液中進行電錢,於奈 米碳管膜表面沈積奈雜輸,從而得到-奈米碳管與奈米錄二 複合薄膜材料。細,該奈米碳管與奈米義複合_材料及其 製備方法具有以下不足:第-’該奈米碳管與奈米鎳的複合薄膜 材料中’由於採用電鏡方法製備鎳顆粒,複數個奈麵顆粒連續 地形成於奈米碳管膜表面’易於團聚,使得整個複合薄膜材料的 比表面積降低’故’限制其應用。第二,該奈米碳f與奈米錄的 複合薄膜材料的製備方法需要電泳沈積及電鍍,工藝複雜,成本 較高。 5 201036911 ' 【發明内容】 有馨·於此,確有必要提供一種具有較大的比表面積的奈米碳 官複合材料,且該奈米碳管複合材料的製備方法簡單、成本較低。 ' 一種奈米碳管複合材料,其包括:一奈米碳管結構及複數個 奈米顆粒,該奈米碳管結構包括複數個奈米碳管,其中,所述奈 米顆粒附著於上述奈米碳管表面上,並沿其_著的奈米碳管間 隔地排歹lj。 〇 —種奈米碳管複合材料,其包括:-個由複數個奈米碳管形 成的自支撐結構及複數個奈米顆粒,每個奈米顆粒皆附著於奈米 碳管的表面,所述複數個奈米顆粒並沿其所附著的奈米碳 地排列。 同 —種奈純管複合材料的製備方法,其包括以下步驟:提供 、,奈結構’該奈轉f結構包括複數個奈米碳管;向該奈 米碳管結構中狀至少兩種反應原料,於該奈米碳管結構的表^ =厚度為1絲〜奈耗反應原·;及引發反應原料進行 反μ ’生成奈米顆粒,從而得到―奈米碳管複合材料。 她於賴技術’由於魏奈轉管複合材财的複數個夺 較大:Γ置於奈米碳管結構中,故該奈米碳管複合材料具有 大的比表面積,可用作優異的催化 結構的表面的反應原料反應生成奈= ,備奈米碳錢合材H簡單,成本低廉。 【貧施方式】 6 201036911 以下將結合附圖對本發明提供的奈米碳管複合材料及其製備 方法的各個實施例作進一步的詳細說明。 請參閱圖1,本發明實施例提供一種奈米碳管複合材料1〇, •其包括一奈米碳管結構100及複數個奈米顆粒104。所述奈米碳管 結構100可包括複數個奈米碳管通過凡德瓦爾力緊密連接形成一 自支稽結構。所謂自支撐結構指該結構可無需—基底而保持一特 定形狀,如線狀或膜狀。所述複數個奈米顆粒104均勻分佈於該 Ο 奈米碳官結構1〇〇中。 所述奈米碳管結構100中的奈米碳管包括單壁奈米碳管、雙 壁奈米碳管及多壁奈米碳管中的—種或多種。所述單壁奈^炭管 的直徑為〇.5奈米〜10奈米,雙壁奈米碳管的直徑為1.0奈米~15 奈米,多壁奈米碳管的直徑為1>5奈米〜50奈米。所述奈米碳管的 長度大於50微米。優選地,該奈米碳管的長度為細微米溯 微米。 0 所述奈米碳管結構1⑻包括至少-奈米碳管膜、至少一奈米 奴、&線狀結構或其組合。所述奈米碳管膜包括複數個均句分佈的 ,丁、米炭g' °亥不米石厌管膜中的奈米碳管有序排列或無序排列。有 序排列指奈米碳管膜巾的大錄奈米碳管沿-個或多個方向擇優 取向排列。無序_指奈米碳管财的奈米碳管相互纏繞或雜IL 排列。當奈米碳管觀括無序排列的奈米碳料,奈米碳管相互 U者各向同㈣列;當奈米碳管膜包括有序㈣的奈来碳管 時,奈米碳管沿-個方向或者複數個方向擇優取向排列。具體地, 7 201036911 '該奈米碳管膜可包括奈米碳管絮化膜、奈米 官拉膜。絲米碳管雜結構包括結—雜_奈米碳管線灭 .=、-扭轉的奈米碳管線或其組合。當所述奈米碳管線狀結構包 =夕根雜轉的奈純管線或_的奈米碳管_,該非扭 示米碳管線或扭轉的奈純管線可相互平行呈—束㈣構,或相 互扭轉呈—绞線結構。 ο 且=閱圖2及圖3,具體地,該奈米碳管拉膜包括複數個連續 =排列的奈米碳管片段143。該複數個奈米碳管片⑽ 凡=力首尾吟每一奈米碳管片段143包括複數個相互平 二=碳管145’該複數個相互平行的奈米碳管145通過凡德瓦 勺° 段143具有任意的寬度、厚度、均 取向2 米碳管拉膜中的奈米碳管145沿同一方向擇優 〇 1〇〇°中j可理解’由複數個奈米碳管拉膜組成的奈米碳管結構 :〇:::鄰兩個奈米碳管拉膜中的奈米碳管的排列方向有一爽角 W90 ’從而使相鄰兩層奈米碳管拉膜中的奈米碳管相 微構’該網狀輸括複數個微孔,該複數個 太 見貝!刀佈於奈米碳管結構中,其中,該微孔直徑為i 米石山敦 、"、過拉取—奈米碳管陣列直接獲得。所述奈 9、日申^的結構及其製備方法請參見范守善等人於2007年2月 y曰申凊的’於2〇ns沐〇 α 大陸公開專利申請年=^開的第CN皿雙2Α射國 ^納未官溥膜結構及其製備方法”。 8 201036911 所述奈米碳管碾壓膜包括均勻分佈的奈米碳管。請參閱圖4, 奈米石反管石同一方向擇優取向排列。請參閱圖5,奈米碳管沿不同 方向擇優取向排列。優選地,所述奈米碳管碾壓膜中的奈米碳管 平行於奈米碳管碾壓膜的表面。所述奈米碳管碾壓膜中的奈米碳 管相互父艺,且通過凡德瓦爾力相互吸引,緊密結合,使得該奈 米石炭官碾壓膜具有很好的柔章刃性,可彎曲折疊成任意形狀而不破 裂。且由於奈米碳管碾壓膜中的奈米碳管之間通過凡德瓦爾力相 〇 互吸引’ 合’使奈米碳管碾壓膜為—自支撐的結構,可無 需基底支撐。所述奈米碳管碾壓膜可通過碾壓一奈米碳管陣列獲 得。所述奈米碳管礙壓膜中的奈米礙管與形成奈米碳管陣列的基 底的表面形成一夾角β,其中,P大於等於〇度且小於等於15度 (0划5°) ’該夾角β與施加於奈米碳管陣列上的壓力有關,壓力 越大,该夾角越小。所述奈米碳管碾壓膜的長度及寬度不限。所 述碾壓膜包括複數個微孔結構,該微孔結構均勻且規則分佈於奈 〇 米碳f碾壓财,其愤孔紐為1奈米〜G.5微米。所述奈米碳 管碾壓膜及其製備方法請參見范守善等人於2〇〇7年6月i日申請 的,於2008年12月3日公開的第CN1〇1314464A號中國大陸專 利申請“碳納米管薄膜的製備方法”。 所述奈米碳管絮化膜的長度、寬度及厚度不限,可根據實際 需要選擇。本發明實施例提供的奈米碳管絮化膜的長度為丄厘米 〜10厘米,寬度為1厘米〜10厘米,厚度為!微米〜2毫米。請參 閱圖6,所述奈米碳管絮化膜包括相互纏繞的奈米礙管,奈米碳管 9 201036911 的長度大於10微米。所述奈米碳管之間通過凡德瓦爾力相互吸 引、纏繞,形成網絡狀結構。所述奈米碳管絮化膜中的奈米碳管 均勻分佈,無規則排列,使該奈米碳管絮化膜各向同性,所述奈 米碳官絮化膜中的奈米碳管之間形成大量的微孔,微孔孔徑為丄 奈米〜0.5微米。所述奈米碳管絮化膜及其製備方法請參見范守善 等人於20〇7年4月13日申請的,於2〇〇8年1〇月15曰公開的第 CN101284662A號中國大陸專利申請“碳納米$薄膜的製備方 ❹ 法”。 請參閱圖7,該非扭轉的奈米碳管線包括複數個沿該非扭轉的 奈米碳管線長度方向排_絲碳管。具魏,該雜轉的奈米 碳管線包域數絲米碳⑼段,該魏錄米碳料段通過凡 德瓦爾力首尾相連,每一奈米礙管片段包括複數個相互平行並通 過凡德瓦爾力緊密結合的奈米碳^該奈米碳管片段具有任意的 長度厚度、均勻性及形狀。該非扭轉的奈米碳管線長度不限, 直t為0.5不米〜卿微米。非扭轉的奈米碳管線為將奈米碳管拉 膜通過有機溶劑處理_。具體地,將有機溶劑 管拉請錄㈣输她崎《細編力的 ^用下,料碳轉财_互平行的複數個奈米碳管通過凡德 ^爾力緊密結合,從錢奈米碳錄難縮為―非轉的 管線。該《溶縣揮發財機溶劑,如乙醇、情、丙^、、二 =乙烧或氣仿,本實施财_乙醇。通過有機溶劑處理的非扭 轉的不k官線與未經有機溶劑處_奈妓管膜她,比表面 201036911 積減小,黏性降低。 所述扭轉的奈米碳管線為採用—機械力將所述奈米碳管拉膜 兩端沿相反方向扭轉獲得。請參_ 8,該扭轉的奈鱗管線包括 複數個繞雜轉的奈米碳管_㈣旋㈣的奈米碳管。呈體 地’該扭_奈㈣管線包括魏個奈米碳以段,該複數個夺 米碳管片段通過凡_力_連,每—麵_段包括複The publication number published on September 3rd of the year is CN10125 (4). The patent application for the publication of the patent and the butterfly and its preparation method. The composite of the carbon nanotubes and the nano-nickel comprises a layer of carbon nanotubes deposited on the metal deposits deposited on the nanotubes. The method of making the rice carbon tube and the nautilus compound thin material is mainly composed of the steps of the town to provide - metal hiding, and the _ metal recording table for the table _ light and degreasing treatment, the Nai pure tube and B After sonication, (10) into - electrophoresis suspension; using gold > 1 recording as the cathode 'in the upper (four) Lai floating liquid in the direct current, electrophoretic deposition, on the metal wire surface _ - layer nano carbon surface; The wire bottom deposited with the carbon nanotube film is used as a cathode for electromoney in the nickel plating solution, and the nano-carbon is deposited on the surface of the carbon nanotube film to obtain a nano-carbon film and a nano-composite film. material. Fine, the nano carbon tube and the nano-composite_material and the preparation method thereof have the following disadvantages: the first--the composite film material of the nano carbon tube and the nano nickel is prepared by using an electron microscope method, and a plurality of The fact that the granules are continuously formed on the surface of the carbon nanotube film is easy to agglomerate, so that the specific surface area of the entire composite film material is reduced, so that its application is limited. Second, the preparation method of the composite film material of the nano carbon f and the nanometer requires electrophoretic deposition and electroplating, and the process is complicated and the cost is high. 5 201036911 ' [Summary of the Invention] It is necessary to provide a nano carbon composite material having a large specific surface area, and the preparation method of the carbon nanotube composite material is simple and low in cost. a nano carbon tube composite material comprising: a carbon nanotube structure and a plurality of nano particles, the carbon nanotube structure comprising a plurality of carbon nanotubes, wherein the nano particles are attached to the naphthalene On the surface of the carbon nanotubes, and along the carbon nanotubes of the water pipes, they are spaced apart. 〇-nano carbon nanotube composite material, comprising: a self-supporting structure formed by a plurality of carbon nanotubes and a plurality of nano particles, each of which is attached to the surface of the carbon nanotube A plurality of nanoparticles are described and arranged along the carbon to which they are attached. The method for preparing a homogenous pure tube composite material, comprising the steps of: providing, a naphtha structure, wherein the naphthene structure comprises a plurality of carbon nanotubes; and at least two kinds of reaction materials are formed in the nanocarbon tube structure In the table of the structure of the carbon nanotubes, the thickness of the carbon nanotubes is 1 filament to the reaction state of the gas, and the reaction raw material is subjected to reverse μ' generation of nanoparticles, thereby obtaining a "nanocarbon nanotube composite material." She is based on the technology of Wei Nai's versatile composite material: Γ is placed in the carbon nanotube structure, so the carbon nanotube composite has a large specific surface area and can be used as an excellent catalyst. The reaction raw materials on the surface of the structure react to form nai =, and the nano carbon carbon material is simple and low in cost. [Poverty Mode] 6 201036911 The respective embodiments of the carbon nanotube composite material and the preparation method thereof provided by the present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1 , an embodiment of the present invention provides a carbon nanotube composite material, which includes a carbon nanotube structure 100 and a plurality of nano particles 104. The carbon nanotube structure 100 can include a plurality of carbon nanotubes that are tightly joined by a van der Waals force to form a self-supporting structure. By self-supporting structure is meant that the structure can maintain a particular shape, such as a line or film, without the need for a substrate. The plurality of nanoparticles 104 are uniformly distributed in the carbon nanotube structure. The carbon nanotubes in the carbon nanotube structure 100 include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotubes is 〇.5 nm to 10 nm, the diameter of the double-walled carbon nanotubes is 1.0 nm to 15 nm, and the diameter of the multi-walled carbon nanotubes is 1> Nano ~ 50 nm. The carbon nanotubes have a length greater than 50 microns. Preferably, the carbon nanotubes are of a fine micron micron length. 0 The carbon nanotube structure 1 (8) comprises at least a carbon nanotube membrane, at least one nanoboron, & linear structure or a combination thereof. The carbon nanotube film comprises a plurality of uniform distributions, and the carbon nanotubes in the diced and diced charcoal g' ° haibei stone anatomical membrane are arranged or disorderly arranged. The ordered arrangement means that the large carbon nanotubes of the carbon nanotube film are arranged in a preferred orientation along one or more directions. Disordered _ refers to the carbon nanotubes of the carbon nanotubes intertwined or miscellaneous IL arrangement. When the carbon nanotubes are arranged in a disorderly arrangement of nano carbon materials, the carbon nanotubes are mutually identical (four) columns; when the carbon nanotube membrane comprises an ordered (four) carbon nanotubes, the carbon nanotubes are used. Arrange in a preferred orientation along one direction or in multiple directions. Specifically, 7 201036911 'The carbon nanotube film may include a carbon nanotube film, a nano film. The silk rice carbon nanotube heterostructure includes a knot-hetero-nano carbon line extinction, a twisted nanocarbon line, or a combination thereof. When the nanocarbon line-like structure package is a neat line or a carbon nanotube of _, the non-twisted rice carbon line or the twisted naphtha line may be parallel to each other in a bundle (four) configuration, or Twisted to each other to form a twisted wire structure. ο and = Figure 2 and Figure 3, in particular, the carbon nanotube film comprises a plurality of consecutive = aligned carbon nanotube segments 143. The plurality of carbon nanotube sheets (10), each of the first carbon nanotube segments 143, including a plurality of mutually parallel flat carbon tubes 145', the plurality of mutually parallel carbon nanotubes 145 passing through the van der Waals Section 143 has any width, thickness, and orientation of the carbon nanotubes in the 2 m carbon tube film. The carbon nanotubes 145 are preferably 沿1〇〇° in the same direction. It can be understood that 'the naphthalene consisting of a plurality of carbon nanotubes. Carbon tube structure: 〇::: The arrangement of the carbon nanotubes in the adjacent two carbon nanotubes has a refreshing angle W90 ', so that the carbon nanotubes in the adjacent two layers of carbon nanotubes are pulled. Phase micro-construction's mesh contains a plurality of micro-holes, the plural is too much! The knife is disposed in the carbon nanotube structure, wherein the micropore diameter is directly obtained from the i-meter rock, ", over-drawing-nanocarbon tube array. For the structure of the Nai 9, Nisshin ^ and its preparation method, please refer to Fan Shoushan et al. in February 2007, y曰 凊 凊 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 第 第2 Α 国 ^ ^ ^ 溥 溥 溥 溥 及其 及其 及其 8 8 8 8 8 8 8 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈Orientation arrangement. Referring to Figure 5, the carbon nanotubes are arranged in a preferred orientation in different directions. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube rolled film are mutually fraternal, and they are attracted to each other by the van der Waals force, which makes the nano-carbonized official film have a good flexibility and can be bent. Folded into any shape without breaking. And because the carbon nanotubes in the carbon nanotube film are mutually attracted by the van der Waals force, the carbon nanotube film is self-supporting. Structure, without substrate support. The carbon nanotube film can be laminated by crushing a carbon nanotube array The nano tube in the nano-carbon tube barrier film forms an angle β with the surface of the substrate forming the carbon nanotube array, wherein P is greater than or equal to 15 degrees and less than or equal to 15 degrees (0° 5°) The angle β is related to the pressure applied to the carbon nanotube array, and the larger the pressure, the smaller the angle. The length and width of the carbon nanotube film are not limited. a microporous structure, the microporous structure is uniform and regularly distributed in the nanometer carbon carbon crushing, and the anger pores are 1 nm to G. 5 micrometers. The carbon nanotube rolling film and preparation method thereof Please refer to the Chinese Patent Application No. CN1〇1314464A, published on December 3, 2008, by Fan Shoushan et al., published on December 3, 2008. The length, the width and the thickness of the carbon tube flocculation film are not limited, and may be selected according to actual needs. The length of the carbon nanotube film of the present invention is 丄 cm 10 cm and the width is 1 cm to 10 cm. The thickness is !μm to 2 mm. Referring to Figure 6, the carbon nanotube flocculation film includes intertwined The nano tube is obstructed, and the length of the carbon nanotube 9 201036911 is more than 10 micrometers. The carbon nanotubes are mutually attracted and entangled by van der Waals force to form a network structure. The carbon nanotube flocculation film The carbon nanotubes in the medium are evenly distributed and arranged in an irregular manner, so that the carbon nanotube film is isotropic, and a large number of micropores are formed between the carbon nanotubes in the nano carbon official flocculation film. The pore diameter is 丄 nanometer ~ 0.5 micron. The carbon nanotube flocculation membrane and its preparation method can be found in Fan Shoushan et al. on April 13, 20, 7 years, in 2, 8 years, 1 month, 15曰Copenal CN101284662A Chinese Patent Application "Preparation Method of Carbon Nanofilm". Referring to Figure 7, the non-twisted nanocarbon pipeline includes a plurality of rows along the length direction of the non-twisted nanocarbon pipeline. Carbon tube. With Wei, the miscellaneous nano carbon pipeline has several filaments of carbon (9), and the Weilumi carbon section is connected end to end by Van der Waals force, and each nanometer obstruction segment includes a plurality of parallel and through each Deval's tightly bonded nanocarbons have a length, uniformity and shape of any length. The length of the non-twisted nano carbon pipeline is not limited, and the straight t is 0.5 mm to qing. The non-twisted nano carbon pipeline is used to treat the carbon nanotube membrane through an organic solvent. Specifically, the organic solvent tube is pulled (4) to lose her skin, the fine-grained force is used, and the carbon is turned into _ _ parallel multiple carbon nanotubes through the combination of Van der er er, from Chennai The carbon record is hard to shrink into a non-transfer line. The "solvent solvent", such as ethanol, love, C, ^, II = E-burn or gas-like, this implementation of the financial_ethanol. The non-twisted non-k-line treated by the organic solvent and the non-organic solvent at the end of the film, the specific surface of the 201036911 product decreased, the viscosity decreased. The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in the opposite direction by mechanical force. Please refer to _ 8, the twisted Nenium pipeline includes a plurality of carbon nanotubes _ (four) spin (four) around the carbon nanotubes. The body of the twisted-negative (four) pipeline includes a section of Wei-Nan carbon, and the plurality of carbon nanotube sections are passed through the _ force_connected, and each-face _ section includes a complex
數個相互朴並騎凡魏_輕密結合的奈米碳管。該奈米碳 官片段具有任意的長度、厚度、均勻性及形狀。雜轉的奈米碳 官線長度不限,直徑為0.5奈米〜卿微米。進—步地,可採用一 揮發性有機溶舰理該扭轉的奈米碳管線。在揮發性有機溶劑揮 發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相 鄰的奈米碳管通過凡德關力緊密結合,使扭轉的奈米碳管線的 比表面積減小,密度及強度增大。 所述奈米碳管線狀結構及其製備方法請參見等人於纖年9 月日申°月的,於2008年8月2〇日公告的第CN1004ii979C號 中國大陸公告糊m奸繩及其製造方法,,,及於廳 〇月16日申明的,於2007年6月20日公開的第CN1982209A 號中國大陸公開專利帽“奈米碳管絲及其製作方法”。 所述硬數個奈米顆粒104間隔一定距離設置於奈米碳管結構 1〇〇中^所述奈米顆粒撕附著於奈米碳管表面上,並沿其所附著 的不米厌g間隔地排列。優選地,相鄰的奈米顆粒之間的距 離可大於等於所述奈米顆粒辦的粒徑。所述奈米顆粒綱的粒 11 201036911 徑可大於等於1奈米且小於等於奈米。優選地,所述奈米顆 ,谢的粒#大於等於%奈米且小於等於期奈米。所述奈米碳 官稷合材料ίο中,每個奈米顆粒腦包覆於至少一奈米碳管的部 分表面,即每個奈米顆粒104中都有至少一奈米碳管部分被包覆 於其中。可理解’當奈米碳管的尺寸小於奈米難1G4狀寸時, 該奈米顆粒綱可包覆於整個奈米石炭管的表面,即整個奈米碳管 ^包覆於-奈米顆粒顺中。所述複數個奈米碳管組成—奈米碳 €>官束,且至少部分奈米顆粒辦間隔附著於上述奈米碳管束上, 並沿該奈米碳管束長度方向排列。所述複數個奈米碳管相互纏 繞’複數個相互纏繞的奈米碳管的至少部分被包覆於_奈米顆粒 1〇4中。-個絲碳管或奈米碳管絲面可形成有複數烟隔設置 的奈求顆粒1〇4將該奈米碳管或奈米碳管束部分包覆。由於夺米 顆粒104包覆於至少一奈米碳管表面,所述奈米顆粒他盘= 碳管之㈣軌德力或化賴緊密結合,故,奈米顆粒: 與奈米碳管牢固的結合於一起。由於奈米碳管結構中的奈米碳管 之間具有間隙,且複數個奈米顆粒1〇4間隔設置於該二 構中,故’該奈米碳管複合材料1〇具有較大的比表面積。。 所述奈米顆粒期包括金屬奈米顆粒、非金屬奈米顆粒、合 金奈米顆粒、金;I氧化物奈糊粒及聚合物奈米縣中的—種: 幾種。所述金屬氧化物奈米顆粒包括二氧化鈦奈米顆粒、氧崎 奈米顆粒、氧化鎳奈米顆粒及氧他奈米顆粒中的—種或幾. 本實施例中,所述奈米顆粒104為二氧化鈦奈米顆粒t 12 201036911 顆粒舰的形狀不限,可為球狀、橢球狀等㈣一種或幾種。當 所述奈米碳管結構耀包括複數個平行或交叉設置的奈米碳管線 時’所述複數個奈米顆粒腹沿著每一個奈米石炭管線定向排列。 相鄰兩個奈米顆粒綱間隔設置,且每個奈米顆粒腦將所述太 米碳管線中的至少一奈米填管包覆。所述奈米顆粒谢的大㈣ 勾,即奈米顆粒104輸徑尺寸分佈範圍較小。本實施例中,所 述奈米顆粒1〇4的粒徑尺寸為大於等於8〇奈米且小於等於⑽太 本發明所提供的奈米碳管複合材料1G具有町n , 二中的奈米碳管之間具有間隙,且複數個奈米顆 10且有置:該奈米碳管結構中,故’該奈米碳管複合材料 八有較大的比表面積,可作為優異的催化# 所述奈米碳管結物中的奈米碳管均勻分佈 腦包覆於至少-奈米碳管部分表面,故,奈 ^未她 〇團聚。第三’由於所述奈米碳管結構卿具有自支撐特:易形成 合材料ig為—自支_構。而且,“米碳管: 遞中的奈米碳管具有良好的導電與導熱性 ^。構 100可起到支擇及傳輸的功能。 不米兔官結構 請參閱圖9及圖10,本發明實施例進一步提供 複合材料10的製備方法,其包括以下步驟:〃也丁、未碳管 個:’。提供一奈米破管結構100,該奈米破管結構包括複數 201036911 ―所述奈求碳管結構膽包括複數個奈米碳管,且複數個奈米 碳管通過凡德瓦爾力緊密結合形成一自支樓結構。具體地,所述 奈米碳管結構励包括至少—奈米碳管膜、至少一奈米碳管線狀 、,、。構或其組合。所核米碳管膜可包括奈米碳管絮化膜、奈米唆 管礙壓膜或奈米碳管拉膜。所述奈米碳管拉膜,奈米破管礙壓膜, 奈米碳管絮化膜及奈米碳管綠結構的製備方法請參見相關專利 或專利申請。 ° 所述奈米碳管結構100可進一步設置於-支撐體上。該支撐 體可為基板或框架。 本實施例中,將兩個奈米碳管_層疊鋪設於—金屬環上得 到-奈米碳管結構跡且兩個絲碳紐財的奈米碳管的排列 方向相同。 步驟二,向該奈米碳管結構勘中引入至少兩種反應原料 102,於該奈米碳管結構細的表面形成厚度為丄奈米〜⑽奈米的 反應原料層(圖未示)。 所述反應原料102的材料與所需形成的奈米顆粒1〇4的材料 相關。所述反應原料102可為固態、液態或氣態。所述向奈米碳 管結構100中引入至少兩種反應原料102的方法具體包括兩種情 形。 第-種:首先’於該奈米碳管結構表面形成一層厚度為工 奈米〜100奈米的第一反應原料層。 所述第-反應原料層的材料與所要製備的奈米難104的材 14 201036911 料有關,可為金屬、非金屬及半導體中的一種或多種。例如,當 奈米顆粒104的材料為金屬化合物,如金屬氧化物或金屬矽化物, 第一反應原料層為金屬層’如鈦層、鋁層或鎳層等;當奈米顆粒 104的材料為非金屬化合物,如氮化矽或碳化矽,第一反應原料層 為矽層。 所述於奈米碳管結構10〇表面形成一第一反應原料層的方法 不限,可包括物理氣相沈積法、化學氣相沈積法、浸潰法、喷塗 〇 法及絲網列印法等中的一種或多種。可理解,根據第一反應原料 層的材料不同,可選擇不同的方法於奈米碳管結構100中的奈米 碳官表面形成第一反應原料層。例如,通過物理氣相沈積法可將 金屬濺射到奈米碳管表面;通過化學氣相沈積法可於奈米碳管表 面形成非金屬;通過喷塗法或絲網列印法可將含有金屬的有機漿 料形成於奈米碳管的表面。 其次’向該奈米碳管結構100引入氣態或液態第二反應原料。 ® 所述氣態第二反應原料可為氡氣、氮氣、矽源氣體及碳源氣 體中的一種或多種。所述向奈米碳管結構1〇〇引入氣態第二反應 原料的方法可包括直接將氣態第二反應原料通入到設置有奈米碳 管結構100的反應室(圖未示)或將奈米碳管結構丄⑻設置於一 含有氣態第二反應原料的軋氛中,從而使氣態第二反應原料分佈 於奈米破管結構100及第一反應原料層周圍。 所述液態第二反應職可為甲醇、乙醇、蝴及液態樹脂等 中的-種或多種。所述向奈米碳管結構100引入液態第二反應原 15 201036911 料的方法可包括直接將液態第二反應原料滴到奈米碳管結構100 表面或將奈米碳管結構100浸潤於一液態第二反應原料中,從而 使液態第二反應原料分佈於奈米碳管結構100及第一反應原料層 周圍。 第二種:首先,於該奈米碳管結構100表面形成一第一反應 原料層;其次,於該第一反應原料層上形成一第二反應原料層。 所述第一反應原料層與第二反應原料層的總厚度為1奈米〜1〇〇奈 〇 米。如,第一反應原料層為金屬層,第二反應原料層為矽層;第 一反應原料層與第二反應原料層均為金屬層,如:第一反應原料 層與第二反應原料層均分別為鋁層與鈦層、鋁層與鎳層等。 可理解,當沈積於所述奈米碳管結構100表面的反應原料層 的厚度較小時,如厚度為1奈米〜100奈米,反應原料反應後可形 成複數個間隔的奈米顆粒104。當所述奈米碳管結構1〇〇表面的反 應原料層的厚度較大時,如大於1()〇奈米,反應原料反應後容易 〇 形成連續的奈米線。 可理解,不同的反應原料102對厚度的要求不同。本實施例 中,通過磁控濺射法於奈米碳管結構100相對的兩面分別沈積一 鈦層。本實施例製備3個樣品,其t ’樣品i至3中欽層的厚度 分別為10奈米、20奈米、50奈米。然後,將該沈積有欽層的奈 米碳管結構100置於大氣環境中,使得奈米碳管結構麵表面的 鈦顆粒與大氣中的氧氣接觸。當鈦層的厚度為1〇奈米~5〇奈米 時,鈦層與氧歧織可形成複數個間關二氧紐奈米顆粒。 16 201036911 當鈦層的厚度大於5〇奈米時,鈦層與氧氣反應後容易形成連續的 一氧化鈦奈米線。 步驟三,引發反應原料102進行反應,生成奈米顆粒1〇4,從 而得到一奈米碳管複合材料10。 所述引發反應原料1〇2進行反應的方法包括加熱,用電火花, 及用雷射掃描中的一種或多種。可理解,根據反應條件的不同, 可選擇不同的方法來引發反應原料102進行反應。如通過加熱可 〇 使矽與碳源氣反應製備碳化矽奈米顆粒;通過雷射掃描可使金屬 與氧氣反應製備金屬氧化物奈米顆粒。 本實施例中,採用雷射掃描引發反應原料1〇2進行反應。採 用雷射掃描引發反應原料1〇2進行反應包括兩種情形:第一種為 採用田射掃描整個奈米碳管結構1〇〇的表面,使奈米碳管結構励 表面的反應原料102進行反應;第二種為採用雷射掃描奈米碳管 、,。構100的部分表面,使奈米碳管結構100表面的反應原料102 由雷轉描的位置_沿著奈米碳管制方向進行自擴散反應。 當採用第二種方法時,可將奈米碳管結構設置於—基板(圖 未不)上,通選擇不同導熱係數的基板以控制生長奈米顆粒綱 的逮度。所述基板的導熱係數越大,熱量向基板傳導就越快,而 &不米奴官方向傳導就越慢,奈米顆粒1〇4的生長速度越慢。反 之則生長速度越快。由於㉝料熱餘很小,故,當奈米碳管 結構綱懸空設置時,奈麵粒綱具有最快的生長速度。另, 通過選擇雷射掃描的位置還可實現奈米石炭管結構励的部分表面 17 201036911 可選擇地生長奈米顆粒104。 可理解’由於所述反應原料層的厚度為i奈米〜厕奈米,反 應原料1〇2反應後無法形成連續的奈米膜或奈米線,而生長得到 複數個奈米顆粒1〇4。該奈米顆粒辦均勻分散,且 管表面與奈米碳管緊密結合。由於本發明中所採用的奈米^管^ 構卿中的奈米礙管通過凡德瓦爾力緊密結合形成一且有自支产 ❹ 特性的奈米碳管結構勘,故,該反應得到奈米碳管複合材料= 也具有自支撐結構。 本實施例中,_雷射掃描奈米碳管結構_邊緣,引發自 擴散反應’得到奈米碳#二氧化鈦奈_粒複合材料。1中,♦ 射掃描的速度為1〇厘米/秒〜綱厘米/秒’雷射掃插的轉大於^ 於0.5瓦。該自擴散反應的速度大於1〇厘米/秒。 、 ❹ 見圓11至13,其分別為本實施例採用樣品i至3製備的 奈米故官-氧化欽奈米顆粒複合材料。所述夺 構及複數個均勻二: ^ 構1W表面沈積触層厚度較小時,形 ^辦麵粒的粒徑 尺寸刀佈《_小。而且,隨著奈米碳管結構 層厚度增加,形成的二氣化致奈米顆粒的粒徑尺寸 每一個二氧讀奈米難包合難的透射電鏡照片。 個奈米碳管形成的奈米碳管“ 8 =6表面’即由複數 刀被包覆於二氧化鈇奈米顆粒 18A number of carbon nanotubes that are simple and easy to ride together. The nanocarbon segment has any length, thickness, uniformity and shape. The pitch of the nano carbon official line is not limited, and the diameter is 0.5 nm ~ Qing micron. Further, a volatile organic solvent can be used to treat the twisted nanocarbon line. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by the van der Waals force, so that the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength. The nanocarbon line-like structure and the preparation method thereof can be found in the Chinese mainland announcement paste and the manufacture of the CN1004ii979C, which was announced on August 2, 2008 on August 2, 2008. The method, and, in the case of the hall on the 16th of the month, the CN198220209A China mainland public patent cap "Nano carbon tube wire and its manufacturing method" disclosed on June 20, 2007. The hard number of nano-particles 104 are disposed at a certain distance from the carbon nanotube structure 1〇〇. The nano-particles are torn on the surface of the carbon nanotubes, and are spaced along the surface of the carbon nanotubes. Arranged in order. Preferably, the distance between adjacent nanoparticles may be greater than or equal to the particle size of the nanoparticle. The particle size of the nanoparticle particle 11 201036911 may be greater than or equal to 1 nanometer and less than or equal to nanometer. Preferably, the nanoparticle, Xie's grain # is greater than or equal to % nanometer and less than or equal to the phase nanometer. In the nano carbon official composite material, each nanoparticle is coated on a part of the surface of at least one carbon nanotube, that is, each nanoparticle 104 has at least one carbon nanotube portion Covered in it. It can be understood that when the size of the carbon nanotube is less than 1G4 in the nanometer, the nanoparticle can be coated on the surface of the entire carboniferous tube, that is, the entire carbon nanotube is coated on the nanoparticle. Shunzhong. The plurality of carbon nanotubes are composed of a nanocarbon, and at least a portion of the nanoparticle particles are attached to the carbon nanotube bundles at intervals and arranged along the length of the carbon nanotube bundle. The plurality of carbon nanotubes are intertwined with each other. At least a portion of the plurality of intertwined carbon nanotubes are coated in the nanoparticle 1〇4. - A carbon nanotube or a carbon nanotube surface may be formed with a plurality of soot spacers 1 to 4 partially coated with the carbon nanotube or the carbon nanotube bundle. Since the rice granules 104 are coated on the surface of at least one carbon nanotube, the nano granules are replaced by a carbon tube (four) or a combination of ruthenium or ruthenium, so that the nano granules are firmly bonded to the carbon nanotubes. Combine together. Since the carbon nanotubes in the carbon nanotube structure have a gap between each other, and a plurality of nanoparticles 1〇4 are disposed in the two structures at intervals, the carbon nanotube composite material has a large ratio. Surface area. . The nano-particle phase includes metal nanoparticles, non-metallic nanoparticles, gold nanoparticles, gold, I oxide, and polymer nanometers. The metal oxide nanoparticle comprises one or more of titanium dioxide nanoparticle, oxysalimeter nanoparticle, nickel oxide nanoparticle and oxytanaliite granule. In the embodiment, the nanoparticle 104 is Titanium dioxide nano particles t 12 201036911 The shape of the particle ship is not limited, and may be spherical or ellipsoidal or the like (four) one or several. When the carbon nanotube structure comprises a plurality of parallel or intersecting carbon nanotube lines, the plurality of nanoparticle particles are aligned along each of the nanocarbon charcoal lines. Two adjacent nanoparticle particles are spaced apart, and each nanoparticle brain encapsulates at least one nanotube in the carbon nanotube line. The nanoparticle granules have a large (four) hook, that is, the nanoparticle 104 has a small size distribution range. In this embodiment, the particle size of the nanoparticle 1〇4 is greater than or equal to 8 nanometers and less than or equal to (10) too. The carbon nanotube composite material 1G provided by the invention has the nanometer of the town, and the nanometer of the second There is a gap between the carbon tubes, and a plurality of nano-particles 10 and have: the carbon nanotube structure, so the carbon nanotube composite material has a large specific surface area, which can be used as an excellent catalyst. The carbon nanotubes in the carbon nanotubes are evenly distributed on the surface of at least the carbon nanotubes, so that they are not agglomerated. The third 'because the carbon nanotube structure has a self-supporting characteristic: the easy-to-form material ig is a self-supporting structure. Moreover, the "meter carbon tube: the carbon nanotube in the transfer has good electrical and thermal conductivity. The structure 100 can play a role of selection and transmission. The structure of the rabbit is shown in Figures 9 and 10, the present invention The embodiment further provides a method for preparing the composite material 10, which comprises the following steps: a diced tube, a carbon tube: '. provides a nano tube breaking structure 100, the nano tube breaking structure includes a plurality of 201036911 - the The carbon tube structure comprises a plurality of carbon nanotubes, and the plurality of carbon tubes are tightly combined by a van der Waals force to form a self-supporting structure. Specifically, the carbon nanotube structure includes at least a nano carbon. The tubular membrane, at least one nanometer carbon pipeline, or the like, or a combination thereof, the nuclear carbon nanotube membrane may include a carbon nanotube flocculation membrane, a nanotube buffer film or a carbon nanotube membrane. For the preparation method of the carbon nanotube film, the nano tube breaking film, the carbon nanotube film and the nano carbon tube green structure, please refer to related patents or patent applications. ° The carbon nanotube structure 100 may be further disposed on the support body. The support body may be a substrate or a frame. In the embodiment, two carbon nanotubes are layered on the metal ring to obtain a carbon nanotube structure trace, and the arrangement of the two carbon carbon nanotubes is the same. Step two, to the nai At least two kinds of reaction raw materials 102 are introduced into the carbon nanotube structure, and a reaction raw material layer (not shown) having a thickness of 丄 nanometer ~ (10) nanometer is formed on the fine surface of the carbon nanotube structure. The reaction raw material 102 is The material is related to the material of the nanoparticle 1〇4 to be formed. The reaction material 102 may be in a solid state, a liquid state or a gaseous state. The method of introducing at least two reaction materials 102 into the carbon nanotube structure 100 specifically includes In the two cases, the first type: firstly, a first reaction raw material layer having a thickness of from work nanometer to 100 nanometer is formed on the surface of the carbon nanotube structure. The material of the first reaction raw material layer and the naphthalene to be prepared The material of the rice material 104 may be one or more of a metal, a non-metal and a semiconductor. For example, when the material of the nanoparticle 104 is a metal compound such as a metal oxide or a metal halide, the first reaction material The layer is a metal layer' a titanium layer, an aluminum layer or a nickel layer; etc.; when the material of the nanoparticle 104 is a non-metal compound such as tantalum nitride or tantalum carbide, the first reaction raw material layer is a tantalum layer. The method of forming a first reaction raw material layer is not limited, and may include one or more of a physical vapor deposition method, a chemical vapor deposition method, a dipping method, a spray coating method, and a screen printing method. Depending on the material of the first reaction raw material layer, different methods may be selected to form the first reaction raw material layer on the surface of the nanocarbon surface in the carbon nanotube structure 100. For example, the metal may be sputtered by physical vapor deposition. The surface of the carbon nanotube; a non-metal can be formed on the surface of the carbon nanotube by chemical vapor deposition; the metal-containing organic slurry can be formed on the surface of the carbon nanotube by spray coating or screen printing. Next, a gaseous or liquid second reaction material is introduced into the carbon nanotube structure 100. The gaseous second reaction material may be one or more of helium, nitrogen, helium source gas, and carbon source gas. The method of introducing a gaseous second reaction raw material to the carbon nanotube structure 1〇〇 may include directly introducing the gaseous second reaction raw material into a reaction chamber (not shown) provided with the carbon nanotube structure 100 or The carbon nanotube structure 丄 (8) is disposed in a rolling atmosphere containing the gaseous second reaction raw material, so that the gaseous second reaction raw material is distributed around the nano-tube structure 100 and the first reaction raw material layer. The liquid second reaction job may be one or more of methanol, ethanol, butterfly and liquid resin. The method of introducing the liquid second reactant 15 201036911 into the carbon nanotube structure 100 may include directly dropping the liquid second reaction material onto the surface of the carbon nanotube structure 100 or impregnating the carbon nanotube structure 100 into a liquid state. In the second reaction raw material, the liquid second reaction raw material is distributed around the carbon nanotube structure 100 and the first reaction raw material layer. Secondly, first, a first reaction raw material layer is formed on the surface of the carbon nanotube structure 100; secondly, a second reaction raw material layer is formed on the first reaction raw material layer. The total thickness of the first reaction raw material layer and the second reaction raw material layer is from 1 nm to 1 nanometer. For example, the first reaction raw material layer is a metal layer, and the second reaction raw material layer is a ruthenium layer; the first reaction raw material layer and the second reaction raw material layer are both metal layers, such as: the first reaction raw material layer and the second reaction raw material layer are both They are an aluminum layer and a titanium layer, an aluminum layer and a nickel layer, respectively. It can be understood that when the thickness of the reaction raw material layer deposited on the surface of the carbon nanotube structure 100 is small, such as a thickness of 1 nm to 100 nm, a plurality of spaced nano particles 104 can be formed after the reaction raw material is reacted. . When the thickness of the reaction material layer on the surface of the carbon nanotube structure 1 is large, such as more than 1 () 〇 nanometer, the reaction raw material is easily 〇 to form a continuous nanowire after the reaction. It will be appreciated that different reaction materials 102 have different thickness requirements. In this embodiment, a titanium layer is deposited on opposite sides of the carbon nanotube structure 100 by magnetron sputtering. In this example, three samples were prepared, and the thickness of the layer of the t' samples i to 3 was 10 nm, 20 nm, and 50 nm, respectively. Then, the deposited carbon nanotube structure 100 is placed in an atmosphere such that the titanium particles on the surface of the carbon nanotube structure surface are in contact with oxygen in the atmosphere. When the thickness of the titanium layer is from 1 nanometer to 5 nanometers, the titanium layer and the oxygen woven fabric can form a plurality of intermittent dioxonium nanoparticles. 16 201036911 When the thickness of the titanium layer is greater than 5 nanometers, the titanium layer reacts with oxygen to form a continuous titanium oxide nanowire. In the third step, the reaction raw material 102 is initiated to react to form nanoparticle 1〇4, thereby obtaining a carbon nanotube composite material 10. The method of initiating the reaction of the starting material 1〇2 includes heating, using an electric spark, and scanning with one or more of lasers. It will be appreciated that depending on the reaction conditions, different methods may be employed to initiate the reaction of the reaction feedstock 102. For example, by heating, cerium can be reacted with a carbon source gas to prepare cerium carbide nano particles; by laser scanning, metal and oxygen can be reacted to prepare metal oxide nano particles. In this embodiment, the reaction raw material 1〇2 is initiated by laser scanning to carry out the reaction. The reaction of initiating the reaction raw material 1〇2 by laser scanning includes two cases: the first one is to scan the surface of the entire carbon nanotube structure by field scanning, and the reaction raw material 102 of the surface of the carbon nanotube structure is excited. The second reaction is to use a laser scanning carbon nanotube, . A portion of the surface of the structure 100 causes the reaction material 102 on the surface of the carbon nanotube structure 100 to be self-diffused by the position of the ray-scanning direction. When the second method is adopted, the carbon nanotube structure can be disposed on the substrate (not shown), and the substrate with different thermal conductivity is selected to control the growth of the nanoparticle particles. The higher the thermal conductivity of the substrate, the faster the heat is transferred to the substrate, and the slower the conduction of the non-Mino slave, the slower the growth rate of the nanoparticle 1〇4. On the contrary, the faster the growth rate. Since the heat of the 33 material is small, when the structure of the carbon nanotubes is suspended, the Noodles has the fastest growth rate. Alternatively, a portion of the surface of the nano-carboniferous structure can be realized by selecting the location of the laser scan. 17 201036911 The nanoparticle 104 can optionally be grown. It can be understood that since the thickness of the reaction raw material layer is i nanometer ~ toilet nanometer, the reaction raw material can not form a continuous nano film or nanowire after the reaction of 1〇2, and a plurality of nano particles are grown to obtain a plurality of nano particles. . The nanoparticles are uniformly dispersed and the surface of the tube is tightly bonded to the carbon nanotubes. Since the nano-tubes in the nanotubes of the present invention are closely combined by van der Waals force to form a carbon nanotube structure having self-supporting properties, the reaction is obtained. Carbon tube composite = also has a self-supporting structure. In this embodiment, the _laser-scanned carbon nanotube structure_edge, which initiates a self-diffusion reaction, yields a nanocarbon #TiO 2 nanoparticle composite. In 1 , the speed of the ray scan is 1 〇 cm / sec ~ 厘米 cm / sec 'The rotation of the laser sweep is greater than ^ watts. The rate of the self-diffusion reaction is greater than 1 cm/sec. ❹ See circles 11 to 13, which are the nano-organized-oxidized Chennai particle composites prepared by using the samples i to 3 of the present embodiment, respectively. The structure and the plurality of uniform two are: ^ When the thickness of the surface layer of the 1W surface is small, the particle size of the surface particle size is knives "_ small. Moreover, as the thickness of the carbon nanotube structure layer increases, the particle size of the formed two gasified nanoparticles is difficult to meet the TEM image of each dioxin. The carbon nanotubes formed by the carbon nanotubes "8 = 6 surface" are coated with cerium oxide nanoparticles by a plurality of knives 18
❹❹
•材料的 201036911 中。 本發明通過引發形成於奈米碳管結構觸的表面的反應原料 ,反應生長奈米顆粒104來製備奈米碳管複合材料ι〇,工藝簡 單’成本低廉。 I =上所述,本發明確已符合發明專利之要件,遂依法提出專 利申d以上所述者僅為本發明之較佳實施例,自不能以此 限制本案之_請專鄕圍。舉凡闕本案技藝之人士援依本發明 之精f所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 1 圖1為本發賴供的奈米碳管複合材料的結構示意圖。 圖2為本發明採用的奈米碳管拉膜的掃描電鏡照片。 圖3為圖2中的奈米碳管拉财的奈米碳判段的結構示音 =及圖5為本發縣用的奈㈣管膜 圖6為本發明採用的奈米碳管絮化膜的掃描電鏡照片 圖8 膝㈣非扭翻奈米碳管線的掃描電鏡照片。 為本發明採用的扭轉的奈米碳管線的掃描電鏡昭片。 圖9為本發明提供的奈米碳 魏,、、片 圖為本發明提供的夺一、—I1傷方法流程圖。 财、的不未石反官複合材料的製備工 圖11為本發明實施例採用樣品 ϋ 掃描電鏡照片。 Ml複合; 圖12為本發明實施例採用樣 口 σ 2 製備的奈米碳管複合材料的 19 201036911 掃描電鏡照片。 圖13為本發明實施例採用樣品3製備的奈米碳管複合材料的 掃描電鏡照片。 圖14為圖11中的奈米碳管複合材料的透射電鏡照片。 【主要元件符號說明】 奈米碳管複合材料 10 奈米碳管結構 100 反應原料 102 奈米顆粒 104• Materials in 201036911. The invention prepares the carbon nanotube composite ι by reacting the growth of the nanoparticle 104 by initiating a reaction raw material formed on the surface of the carbon nanotube structure contact, and the process is simple and inexpensive. I = As described above, the present invention has indeed met the requirements of the invention patent, and the patent application is based on the above. The above description is only a preferred embodiment of the present invention, and it is not possible to limit the case. Equivalent modifications or variations made by those skilled in the art to the present invention are intended to be included within the scope of the following claims. [Simple description of the diagram] 1 Figure 1 is a schematic view of the structure of the carbon nanotube composite material. 2 is a scanning electron micrograph of a carbon nanotube film taken in the present invention. Figure 3 is a structural representation of the nanocarbon segment of the carbon nanotubes of Figure 2; and Figure 5 is a naphthalene film for the county. Figure 6 is a carbon nanotube flocculation used in the present invention. Scanning Electron Micrograph of the Membrane Figure 8 Scanning electron micrograph of the knee (four) non-twisted nanocarbon pipeline. The scanning electron microscope of the twisted nanocarbon pipeline used in the present invention. Fig. 9 is a flow chart showing the method for taking the first, and the I1 injury provided by the present invention. The preparation of the composite material of Fig. 11 is a scanning electron micrograph of a sample 为本 according to an embodiment of the invention. Ml composite; Fig. 12 is a scanning electron micrograph of 19 201036911 of a carbon nanotube composite prepared by using the sample σ 2 according to an embodiment of the invention. Figure 13 is a scanning electron micrograph of a carbon nanotube composite prepared using Sample 3 in accordance with an embodiment of the present invention. Figure 14 is a transmission electron micrograph of the carbon nanotube composite of Figure 11. [Main component symbol description] Carbon nanotube composite material 10 Carbon nanotube structure 100 Reaction raw material 102 Nanoparticles 104
2020