TW201035518A - Method for modeling distribution curve of reflectance and method, reflectometer for measuring thickness using the same - Google Patents

Method for modeling distribution curve of reflectance and method, reflectometer for measuring thickness using the same Download PDF

Info

Publication number
TW201035518A
TW201035518A TW099105813A TW99105813A TW201035518A TW 201035518 A TW201035518 A TW 201035518A TW 099105813 A TW099105813 A TW 099105813A TW 99105813 A TW99105813 A TW 99105813A TW 201035518 A TW201035518 A TW 201035518A
Authority
TW
Taiwan
Prior art keywords
distribution curve
reflectance
intensity
film layer
light
Prior art date
Application number
TW099105813A
Other languages
Chinese (zh)
Other versions
TWI428557B (en
Inventor
Heui-Jae Pahk
Woo-Jung Ahn
Seong-Ryong Kim
Original Assignee
Snu Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snu Precision Co Ltd filed Critical Snu Precision Co Ltd
Publication of TW201035518A publication Critical patent/TW201035518A/en
Application granted granted Critical
Publication of TWI428557B publication Critical patent/TWI428557B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02012Interferometers characterised by controlling or generating intrinsic radiation properties using temporal intensity variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Method for modeling distribution curve of reflectance is comprising: a step for preparing distribution curve of reflectance of thin layer corresponding to wavelength of the light; a step for bandpass filtering white-light about a certain wavelength and preparing distribution curve of intensity at a certain wavelength band, integrating the distribution curve of intensity within the above-mentioned wavelength bands and setting the distribution curve as input intensity of the above-mentioned certain wavelength; a step for setting output intensity of the said certain wave length, which is integrating distribution curve of composite intensity which is combination of the said distribution curve of reflectance and the said distribution curve of intensity within the said wavelength bands; a step for setting integrating reflectance of the certain wavelength, which is the result of the output intensity of the certain wavelength divided by input intensity of the certain wavelength; a step for repeating the above steps by changing certain wavelength, modeling integrating distribution curve of reflectance.

Description

201035518 六、發明說明: 【發明所屬之技術頌域】 [0001] 本發明涉及反射度分布曲線建模方法及應用該方法的厚 度檢測方法、岸度檢測反射儀,特別涉及通過在一定波 長帶中積分(integration)的方式,来改善薄膜層對 經過帶通的光線的反射度分布曲線建模方法的反射度分 布曲線建模方法、應用該方法的厚度檢測方法及厚度檢 測反射儀。 [先前技術] [0002] 在LCD、半導體領域中廣泛應用的逸明薄膜層在其特性上 其厚度分布度對後續工序産生較大的影響。因此在整個 産業中需要有一種能夠監視薄膜層厚度之系統。在薄膜 層厚度檢測中’被廣泛應用的裝置有非接觸式檢測裝置 干擾計(Interf erometer)和反射儀(Ref lectometer) 習知反射儀將白光投射到薄嫉層後,用分光計分光被薄 膜層反射的光線,旅藉以獲得含在白色光中的各個波長 光的強度(intensity)。這種強度數據將被應用到薄膜 層反射度的計算上,而最終藉此完成反射度分布曲線, 用以顯示針對波長的反射度變化。 爲了確定薄膜層厚度,當前被廣泛應用的是將通過如上 方法檢測到的反射度分布曲線和通過數學式建模的反射 度分布曲線相比較的方法。該方法首先假設有多種具有 互不相同厚度之薄膜層,並針對各薄膜層,通過數學式 生成反射度分布曲線。之後在多個反射度分布曲線模型 中選擇一個同檢測到的反射度分布曲線最爲相近的反射 099105813 表單編號A0101 第4頁/共27頁 201035518 度分布曲線模型,並將該反射度分布曲線模型所對應的 厚度作爲薄膜層的厚度。 然而,當光線被帶通(bandpass)後以一定波長帶入射的 情況下,實測反射度分布曲線和基於習知建模方法生成 的反射度分布曲線具有相當大的誤差,因此互不一致。 因此通過習知建模方法無法確定薄膜層的厚度。 【發明内容】 [0003] Ο ❹ 099105813 爲了解決上述習知技術中存在的問題’本發明提供一種 反射度分布曲線建模方法、應用該方法的厚度檢測方法 以及厚度檢測反射儀。當籍線被帶通(bandpass)後以 一定波長帶入射的情況下,透過在波長帶中積分的方法 建模被薄膜層反射的光線的反射度分布曲線,從而以數 學方式建模同實測反射度分布曲線實質上接近的反射度 分布曲線。 爲達到上述目的,本發明的反射度分布曲線建模方法針 . 對預定厚度薄膜層建模基於光線波長變化的薄膜層的反 射度分布,其中包括:反射度>布曲線製作步驟,製作 用來表示基於光線波長變化的所述薄膜層反射度分布的 反射度分布曲線;輸入強度設定步驟’針對特定波長帶 通白色光後,在所述特定波長爲中心的一定波長帶中製 作用來表示光線強度分布的強度分布曲線,並在所述波 長帶中積分所述強度分布曲線後將其結果設定爲所述特 定波長的輸入強度;輸出強度設定步驟’在所述波長帶 中積分由所述反射度分布曲線和所述強度分布曲線結合 而成的復合強度分布曲線,並將其結果設定爲所述特定 波長的輸出強度;積分反射度設定步驟’將把所述特定 表單編號A0101 第5頁/共27頁 0993133469-0 201035518 波長輸出強度除以所述特定波長輸入強度的商作爲針對 所述特定波長的所述薄膜層的積分反射度;及積分反射 度分布曲線生成步驟,邊改變所述特定波長,邊重復執 行所述輸入強度設定步驟、所述輸出強度設定步驟及所 述積分反射度設定步驟,以生成用來顯示基於波長變化 的所述積分反射度分布的積分反射度分布曲線。 而且爲了達到上述目的,本發明的厚度檢測方法應用白 色光反射儀檢測沈積在襯底層上的薄膜層,其中包括: 建模步驟,假設有具有不同厚度之多個薄膜層樣片,並 應用上述反射度分布應線建模方法製備對應每個薄膜層 樣片的積分反射度分布曲線;獲得步驟’向所述薄膜層 照射白色光,獲得基於光線波長變化的所述薄膜層的實 測反射度分布曲線;比較步棘,分別比較多個積分反射 度分布曲線和所述實測反射度分布曲線實質上是否一致 ;確定步驟,選擇與所述實測反射度分布曲線實質上一 致的積分反射度分布曲線,並膊與所選積分反射度分布 曲線對應的厚度確定爲所述薄膜層厚度。 而且爲了達到上述目的,本發明的厚度檢測反射儀包括 :光源,用來放出白色光;線性可變濾波器,針對特定 波長帶通所入射的白色光,使得以所述特定波長爲中心 的一定波長帶的光線通過,在所述線性可變渡波器的長 度方向上,能夠變更可通過的特定波長;濾波器移送單 元’在所述線性可變濾波器的所述長度方向上往復移送 所述線性可變濾波器;光學系,向薄膜層照射通過所述 線性可變濾波器的光線,並接收被所述薄膜層或襯底層 反射的光線,所述襯底層用來支承所述薄膜層;及攝像 099105813 表單編號A0101 第6頁/共27頁 0993133469-〇 201035518 單元,接收被所述薄膜層或襯底層反射後射入及通過所 述光學系的反射光,並將此反射光成像爲圖像。 本發明的反射度分布曲線建模方法及厚度檢測方法’可 通過在波長帶中積分經過帶通的光線的方式’建模被薄 膜層反射的光線的反射度分布曲線’從而透過數學方式 建模同實測反射度分布曲線實質上接近的反射度分布曲 線。 而且,本發明的厚度檢測反射儀可以僅讓以所要檢測的 特定波長爲中心的波長帶的光線通過,而不包含具有周 〇 邊波長的光線等雜訊,因此能夠更加精密地檢測薄膜層 厚度。 而且,本發明的厚度檢測反射儀不僅可以測出薄膜層厚 度,還可以同時求出用來顯示薄膜層相對厚度差的表面 形貌,因此能夠算出及視覺化薄膜層综令資訊。 【實施方式】 [0004] 下面參照附圖’詳细說明本發明反射度分布曲線的建模 方法及應用該方法的厚度檢測方法、以及厚度檢測反射 儀的實施例。 第1圖是本發明厚度檢測反射儀一實施例的示意圖;第2 圖是透過第1圖中厚度檢測反射儀的線性可變濾波器帶通 的光線的強度分布曲線圖;第7圖是用以說明經檢測薄膜 層的表面形狀示例的圖面。 請參照第1圖、第2圖及第7圖,本實施例的厚度檢測反射 儀100包括光源110、線性可變濾波器120、濾波器移送 單元130、聚光鏡160、光學系140及攝像單元150。 光源110用來照射白色光’在本實施例中使用鹵素燈。光 表單煸號A0101 第7頁/共27頁 0993133469-0 201035518 源110輸出波長爲380nm - 800nm的可見光L。光源110 除了鹵素燈外還可以使用各種不同的光源。 所述線性可變遽波器1 20由高通渡波器(hi gh-pass filter)和低通滤波器(l〇w-pass filter)組合而成。 當白色光射入後只通過以特定波長31爲中心的一定波長 帶32的光線。如果把線性可變濾波器120在長度方向上移 動,從而改變光線L在線性可變濾波器120上的照射區域 ’就可以同時改變可通過的特定波長31。例如如第2圖所 示,當光線投射到線性可變濾波器120的最左側區域,只 有以500nm的特定波長31爲中心的一定波長帶32的光線 才能通過線性可變濾波器,並呈現如圖所示的強度分布 曲線30。如果把光線L所照射的區域依次向右移動,就會 分別把波長爲550nm、600nm、650nm、700nm的特定波 長31爲中心的一定波長帶32的光線通過。 所述濾波器移送單元130用來把線性可變濾波器120在長 度方向上往復移動’從而改變光線在線性可變濾波器120 上的照射區域。濾波器移送單元13€Ϊ:由包括旋轉電機、 滚珠螺杆、直線運動導引機構的組合件或直線電機組件 專構成。其結構對本領域的技術人員來說是習知的,因 此不再贅述。 所述聚光鏡160配置在光源11〇和線性可變濾波器12〇之 間’用來彙聚從光源110入射的光線L後向線性可變濾波 器120投射。由於設置有聚光鏡160,通過線性可變濾波 器120的光線直徑將會變小。 在本實施例的厚度檢測反射儀100中,通過在光源11〇和 光學系140之間設置線性可變濾波器120來帶通光線L。如 099105813 表單編號Α0101 第8頁/共27頁 0993133469-0 201035518201035518 VI. Description of the invention: [Technical field of invention] [0001] The present invention relates to a method for modeling a reflectance distribution curve, a thickness detecting method using the same, and a shore detecting reflectometer, in particular, in a certain wavelength band Integral method to improve the reflectance distribution curve modeling method of the film layer on the reflectance distribution curve modeling method of the band pass light, the thickness detecting method using the method, and the thickness detecting reflectometer. [Prior Art] [0002] The thickness distribution of the thin film layer widely used in the field of LCD and semiconductor has a large influence on the subsequent process. Therefore, there is a need in the industry for a system that can monitor the thickness of a film layer. In the film thickness measurement, 'the widely used devices are non-contact detection device Interferometer and Ref lectometer. The conventional reflector reflects the white light into the thin layer and splits the film with a spectrometer. The light reflected by the layer is borrowed to obtain the intensity of the light of each wavelength contained in the white light. This intensity data will be applied to the calculation of the reflectance of the film layer, which is ultimately used to complete the reflectance profile to show the change in reflectance for the wavelength. In order to determine the thickness of the film layer, a method which is currently widely used is a method of comparing a reflectance profile detected by the above method with a reflectance profile modeled by a mathematical formula. The method first assumes that there are a plurality of film layers having mutually different thicknesses, and for each film layer, a reflectance profile is generated by a mathematical formula. Then, in a plurality of reflectance distribution curve models, select a reflection that is most similar to the detected reflectance distribution curve. 099105813 Form No. A0101 Page 4 / 27 page 201035518 degree distribution curve model, and the reflectance distribution curve model The corresponding thickness is taken as the thickness of the film layer. However, when the light is incident on a certain wavelength band after being bandpassed, the measured reflectance distribution curve and the reflectance distribution curve generated based on the conventional modeling method have considerable errors and thus are inconsistent. Therefore, the thickness of the film layer cannot be determined by conventional modeling methods. SUMMARY OF THE INVENTION [0003] Ο ❹ 099105813 In order to solve the problems in the above-mentioned prior art, the present invention provides a method for modeling a reflectance distribution curve, a thickness detecting method using the same, and a thickness detecting reflectometer. When the home line is bandpassed and incident on a certain wavelength band, the reflectance distribution curve of the light reflected by the film layer is modeled by integrating in the wavelength band, thereby mathematically modeling the same measured reflection. The degree distribution curve is substantially close to the reflectance profile. In order to achieve the above object, the reflectance distribution curve modeling method of the present invention is characterized in that a predetermined thickness film layer is modeled by a reflectance distribution of a thin film layer based on a change in light wavelength, including: reflectance> a cloth curve making step, for fabrication The reflectance distribution curve of the thin film layer reflectance distribution based on the change of the light wavelength; the input intensity setting step 'passed the white light for a specific wavelength, and is formed in a certain wavelength band centered on the specific wavelength to represent An intensity distribution curve of the light intensity distribution, and integrating the intensity distribution curve in the wavelength band to set the result to the input intensity of the specific wavelength; the output intensity setting step 'integrating in the wavelength band by the a composite intensity distribution curve combining the reflectance distribution curve and the intensity distribution curve, and setting the result to the output intensity of the specific wavelength; the integral reflectance setting step 'will be the specific form number A0101 page 5 / Total 27 pages 0993133469-0 201035518 Wavelength output intensity divided by the input power of the specific wavelength An integral reflectance of the thin film layer of the specific wavelength; and an integrated reflectance distribution curve generating step of repeatedly performing the input intensity setting step, the output intensity setting step, and the step of changing the specific wavelength An integrated reflectance setting step is generated to generate an integrated reflectance profile for displaying the integrated reflectance distribution based on the wavelength change. Moreover, in order to achieve the above object, the thickness detecting method of the present invention applies a white light reflectometer to detect a thin film layer deposited on a substrate layer, including: a modeling step, assuming a plurality of thin film layer samples having different thicknesses, and applying the above reflection The integral distribution line modeling method prepares an integrated reflectance distribution curve corresponding to each film layer sample; obtaining a step of irradiating the film layer with white light to obtain a measured reflectance distribution curve of the film layer based on a change in light wavelength; Comparing the stepped spines, respectively comparing whether the plurality of integrated reflectance distribution curves and the measured reflectance distribution curves are substantially identical; determining the step, selecting an integral reflectance distribution curve substantially consistent with the measured reflectance distribution curve, and The thickness corresponding to the selected integrated reflectance profile is determined as the film layer thickness. Moreover, in order to achieve the above object, the thickness detecting reflectometer of the present invention comprises: a light source for emitting white light; and a linear variable filter for banding the incident white light for a specific wavelength such that a certain wavelength centered on the specific wavelength The light passing through the band is capable of changing a specific wavelength that can pass in the longitudinal direction of the linear variable waveguide; the filter transfer unit 'reciprocally transfers the linearity in the length direction of the linear variable filter a variable filter; an optical system that illuminates a thin film layer through the linear variable filter and receives light reflected by the thin film layer or the substrate layer, the substrate layer for supporting the thin film layer; Imaging 099105813 Form No. A0101, page 6 of 27, 0993133469-〇201035518 unit, receiving reflected light that is reflected by the film layer or the substrate layer and incident on and through the optical system, and images the reflected light as an image . The reflectance distribution curve modeling method and the thickness detecting method of the present invention can be mathematically modeled by 'forming the reflectance distribution curve of the light reflected by the thin film layer' by integrating the light passing through the band in the wavelength band. A reflectance profile that is substantially similar to the measured reflectance profile. Further, the thickness detecting reflectometer of the present invention can pass only the light of the wavelength band centered on the specific wavelength to be detected, and does not include noise such as light having a peripheral wavelength, thereby enabling more precise detection of the thickness of the film layer. . Further, the thickness detecting reflectometer of the present invention can not only measure the thickness of the film layer, but also simultaneously obtain the surface topography for displaying the relative thickness difference of the film layer, so that the film layer comprehensive information can be calculated and visualized. [Embodiment] Hereinafter, a modeling method of a reflectance distribution curve of the present invention, a thickness detecting method using the same, and an embodiment of a thickness detecting reflectometer will be described in detail with reference to the accompanying drawings. 1 is a schematic view of an embodiment of a thickness detecting reflectometer of the present invention; and FIG. 2 is a graph showing intensity distribution of light passing through a linear variable filter of the thickness detecting reflectometer of FIG. 1; FIG. A diagram illustrating an example of the surface shape of the detected film layer. Referring to FIGS. 1 , 2 , and 7 , the thickness detecting reflectometer 100 of the present embodiment includes a light source 110 , a linear variable filter 120 , a filter transfer unit 130 , a condensing mirror 160 , an optical system 140 , and an imaging unit 150 . . The light source 110 is used to illuminate white light. A halogen lamp is used in this embodiment. Light Form nickname A0101 Page 7 of 27 0993133469-0 201035518 Source 110 outputs visible light L with a wavelength of 380 nm - 800 nm. Light source 110 can use a variety of different light sources in addition to halogen lamps. The linear variable chopper 1 20 is a combination of a high gh-pass filter and a low pass filter. When white light is incident, only light of a certain wavelength band 32 centered at a specific wavelength 31 is passed. If the linear variable filter 120 is moved in the length direction, thereby changing the illumination area of the light L on the linear variable filter 120, the specific wavelength 31 that can pass can be changed at the same time. For example, as shown in Fig. 2, when light is projected to the leftmost region of the linear variable filter 120, only light of a certain wavelength band 32 centered at a specific wavelength 31 of 500 nm can pass through the linear variable filter and appear as The intensity distribution curve 30 shown in the figure. When the area irradiated by the light L is sequentially moved to the right, light of a certain wavelength band 32 having a specific wavelength 31 of wavelengths of 550 nm, 600 nm, 650 nm, and 700 nm is passed. The filter transfer unit 130 is used to reciprocate the linear variable filter 120 in the longitudinal direction to change the illumination area of the light on the linear variable filter 120. The filter transfer unit 13 is composed of an assembly including a rotary electric machine, a ball screw, a linear motion guiding mechanism, or a linear motor assembly. The structure is well known to those skilled in the art and will not be described again. The condensing mirror 160 is disposed between the light source 11 〇 and the linear variable filter 12 ’ for concentrating the light L incident from the light source 110 and then projecting toward the linear variable filter 120. Since the condensing mirror 160 is provided, the diameter of the light passing through the linear variable filter 120 will become small. In the thickness detecting reflectometer 100 of the present embodiment, the light ray L is carried by providing a linear variable filter 120 between the light source 11A and the optical system 140. Such as 099105813 Form number Α 0101 Page 8 / Total 27 0993133469-0 201035518

果在光學系140和攝像單元150之間設置線性可變渡波器 120 ’並讓被薄膜層11反射的光線L帶通,由於經過線性 可變滤波器120的光線L的直徑較大’所檢信號中不僅包 括真正需要的以特定波長31爲中心的波長帶32,還會包 括周邊波長的雜訊。本發明中,由於光線L在直徑較小的 階段中通過線性可變濾波器120,就可在無雜訊的情況下 僅讓以所需特定波長31爲中心的波長帶32的光線通過。 所述光學系140用來把通過線性可變濾波器120的光線l照 射到沈積在襯底層10上的薄膜層11處,而被薄膜層11或 襯底層10反射的光線就會重新射入光學系14(^光學系 140可由用來反射入射光的反射鏡、用來分割入射光後以 不同路徑傳送的分光鏡、向薄膜層或攝像單元方向彙聚 入射光的聚光鏡等各種鏡子、透鏡及光學器件等結構組 裝而成’而這種各種鏡子、透鏡及光學器件的組合對於 本領域技術人員來說是習知技術,因此不再贅述。 被薄膜層11或襯底層10反射後射入光學系14〇,並經過光 學系140的光線L將投射到攝像單元150中,而攝像單元 150將以圖像形式成像光線強度(i.ntensity)等資訊。本 實施例的攝像單元150可使用CCD (charge coupled device)攝像機,所述CCD攝像機具有適於所檢區域的像 素數。特別是,本實施例使用了可通過單個觸發信號攝 影薄膜層11上一定面積的面陣攝像機。 透過使用面陣攝像機,可同時獲得一定面積上的厚度資 訊,並以三維圖表形式顯示該厚度資訊,從而獲得該面 積内的表面形貌資訊,如第7圖所示。透過薄膜層π厚度 之間的相對差,可以視覺化方式顯示薄膜層丨丨的表面具 099105813 表單編號A0101 第9頁/共27頁 0993133469-0 201035518 有多大的高度差,而在本發明中,將薄膜層π厚度之間 的相對差定義爲表面形貌。 下面結合第3圖到第6圖,詳細說明應用上述厚度檢測反 射儀100執行本發明厚度檢測方法的實施例。 第3圖是本發明的厚度檢測方法一實施例的示意圖;第4 圖疋射入薄膜層的光線的反射路控示意圖,弟5圖是本發 明的反射度分布曲線建模方法一實施例的示意圖;第6圖 是用來對比實測反射度分布曲線、積分反射度分布曲線 及依照現有建模方法製作的反射度分布曲線的圖。 請參照第3圖到第6圖:本實施例的厚度檢測方法包括建 模步驟S110、獲得步驟312〇、比較步驟S130及確定步驟 S140。 在所述建模步驟S110中,假設有多個具有不同厚度之薄 膜層樣片,並利用本發明的反射度分布曲線建模方法, 製作對應每個薄膜層樣片的積分反射度分布曲線20。 在此,薄膜層樣片並不是實〖瞭存在的薄膜層,而是用來 透過數學式建模的、具有不同厚度之假想的薄膜層。在 針對薄膜層樣片建模積分反射度分布曲線20時’所述薄 膜層樣片假設成與實際要檢測厚度的薄膜層11相同的物 質,並利用需要檢測厚度的薄膜層11的物性值如反射率 (reflection coefficient)、復折射率(complex refractive index)等建模。 和積分反射度分布曲線20模型對應的厚度上限及下限, 則根據實際製程中所處理的薄膜層11的厚度上限及下限 資訊預先確定,並按一定間隔劃分上限與下限之間厚度 099105813 後,針對每一厚度建模積分反射度分布曲線20 ° 表單編號A0101 第10頁/共27頁 0993133469-0 201035518 爲了製作對應每個薄膜層樣片的積分反射度分布曲線20 ,本發明的反射度分布曲線建模方法一實施例包括:反 射度分布曲線製作步驟S111、輸入強度設定步驟S112、 輸出強度設定步驟S113、積分反射度設定步驟S114及積 分反射度分布曲線生成步驟S115。 在所述反射度分布曲線製作步驟S111中製作用來顯示薄 膜層11的反射度(reflectance)隨光線波長的變化而 變化的反射度分布曲線40。反射度分布曲線40透過以下 數學式並藉由數學建模方法製作。 Ο [0005] 【數學式1】If the linear variable ferrite 120' is disposed between the optical system 140 and the imaging unit 150 and the light L reflected by the thin film layer 11 is passed, the diameter of the light L passing through the linear variable filter 120 is large. The signal includes not only the wavelength band 32 centered on the specific wavelength 31 that is really needed, but also the noise of the peripheral wavelength. In the present invention, since the light ray L passes through the linear variable filter 120 in the stage of the small diameter, only the light of the wavelength band 32 centering on the desired specific wavelength 31 can pass without noise. The optical system 140 is used to illuminate the light passing through the linear variable filter 120 onto the thin film layer 11 deposited on the substrate layer 10, and the light reflected by the thin film layer 11 or the substrate layer 10 is re-injected into the optical System 14 (^ optical system 140 can be used to reflect incident light, a mirror used to split the incident light and then split the mirror, a spectroscope that converges the incident light in the direction of the film layer or the camera unit, etc.) The structure of the device and the like is assembled, and such a combination of various mirrors, lenses and optical devices is well known to those skilled in the art, and therefore will not be described again. After being reflected by the film layer 11 or the substrate layer 10, it is incident on the optical system. 14〇, and the light L passing through the optical system 140 will be projected into the imaging unit 150, and the imaging unit 150 will image information such as light intensity (i.ntensity) in the form of an image. The imaging unit 150 of the present embodiment can use a CCD ( Charge coupled device), the CCD camera having a number of pixels suitable for the area to be inspected. In particular, the present embodiment uses a certain surface on the film layer 11 that can be photographed by a single trigger signal. The area array camera. By using the area array camera, the thickness information on a certain area can be obtained at the same time, and the thickness information is displayed in a three-dimensional chart to obtain the surface topography information in the area, as shown in FIG. Through the relative difference between the π thicknesses of the film layers, it is possible to visually display the surface of the film layer 0099105813 Form No. A0101 Page 9 / Total 27 Page 0993133469-0 201035518 How much height difference, in the present invention, The relative difference between the π thicknesses of the film layers is defined as the surface topography. An embodiment in which the thickness detecting method 100 of the present invention is applied to the thickness detecting reflectometer 100 will be described in detail below with reference to Figs. 3 to 6. Fig. 3 is a view A schematic diagram of an embodiment of the thickness detecting method of the invention; FIG. 4 is a schematic diagram of the reflection path of the light incident on the film layer, and FIG. 5 is a schematic diagram of an embodiment of the method for modeling the reflectance distribution curve of the present invention; FIG. It is a graph used to compare the measured reflectance distribution curve, the integrated reflectance distribution curve, and the reflectance distribution curve produced according to the existing modeling method. Figure to Figure 6: The thickness detecting method of the present embodiment includes a modeling step S110, obtaining step 312, comparing step S130, and determining step S140. In the modeling step S110, it is assumed that there are a plurality of films having different thicknesses. The swatches are used, and the integral reflectance distribution curve 20 corresponding to each film layer swatch is produced by using the reflectance distribution curve modeling method of the present invention. Here, the film layer swatches are not actual layers, but are used An imaginary film layer having different thicknesses modeled by mathematical formula. When the integrated reflectance distribution curve 20 is modeled for the film layer swatch, the film layer swatch is assumed to be the same as the film layer 11 actually having a thickness to be detected. The substance is modeled by a physical property value such as a reflection coefficient, a complex refractive index, or the like of the thin film layer 11 whose thickness is to be detected. The upper and lower thickness limits corresponding to the integral reflectance distribution curve 20 model are determined in advance according to the upper and lower limit information of the thickness of the film layer 11 processed in the actual process, and the thickness between the upper limit and the lower limit is divided by 099105813 at regular intervals. Integral reflectance distribution curve for each thickness model 20 ° Form No. A0101 Page 10 / Total 27 Page 0993133469-0 201035518 In order to produce an integrated reflectance distribution curve 20 corresponding to each film layer sample, the reflectance distribution curve of the present invention is constructed. An embodiment of the mode method includes a reflectance profile creation step S111, an input intensity setting step S112, an output intensity setting step S113, an integrated reflectance setting step S114, and an integrated reflectance distribution curve generating step S115. In the reflectance distribution curve forming step S111, a reflectance profile 40 for displaying the reflectance of the thin film layer 11 as a function of the wavelength of the light is produced. The reflectance profile 40 is produced by the following mathematical formula and by mathematical modeling methods. Ο [0005] [Math 1]

Ep(djX)= rf2U) + r|3(A)exp(-划(d,A)) 1 + rf2 (Λ) + r|3 (Λ )exp(-j20(d,Λ)) 其中 λ)是與入射面平行的ρ波的總反射率,Ep(djX)= rf2U) + r|3(A)exp(-draw(d,A)) 1 + rf2 (Λ) + r|3 (Λ )exp(-j20(d,Λ)) where λ) Is the total reflectivity of the ρ wave parallel to the incident surface,

是Ρ波在空氣層12與薄膜層11界面上的菲 >'圼耳(Fresnel) 反射率 是P波在薄膜層11與襯底層10界面上的菲涅 Ο 耳反射率,/3是光線L在通過薄膜層11時産生的相位變化 量。 【數學式2】 [0006] ,、、 rf2(Λ) + r|3(A)exp(- ββ{ά;λ)) E (d,λ)=-—-—---:-— 1 + rf 2 (Λ) + r|3 (Λ )exp (- ββ{ά, X)) [0007] 其中,λ)是與入射面垂直的S波的總反射率, 是S波在空氣層12與薄膜層11界面上的菲涅耳反射率, 099105813 表單編號A0101 第11頁/共27頁 0993133469-0 201035518 是S波在薄膜層11與襯底層10界面上的菲涅耳反射率 【數學式3】 [0008]It is the phenotype of the chord at the interface between the air layer 12 and the film layer 11 . The Fresnel reflectance is the Fresnel reflectance of the P wave at the interface between the film layer 11 and the substrate layer 10, and /3 is light. The amount of phase change that L produces when passing through the film layer 11. [Math 2] [0006] , , rf2(Λ) + r|3(A)exp(- ββ{ά;λ)) E (d,λ)=-------:-- 1 + rf 2 (Λ) + r|3 (Λ )exp (- ββ{ά, X)) [0007] where λ) is the total reflectance of the S wave perpendicular to the incident surface, and is the S wave in the air layer 12 Fresnel reflectance at the interface with the film layer 11, 099105813 Form No. A0101 Page 11 / Total 27 pages 0993133469-0 201035518 is the Fresnel reflectance of the S wave at the interface between the film layer 11 and the substrate layer 10 [Mathematical formula 3] [0008]

[0009] 其中,d是薄膜層11的厚度,是薄膜層11的復折射 率,φ2是薄膜層11中的折射角。 【數學式4】 [0010]Wherein d is the thickness of the film layer 11, which is the complex refractive index of the film layer 11, and φ2 is the angle of refraction in the film layer 11. [Math 4] [0010]

[0011] 其中,R1是依照數學建模方法形成的反射度,/是入射 *'i 光L的強度(intensity),/是反射光L的強度。 如果把數學式1到數學式3代入數學式4中,就可以針對一 定厚度的薄膜層11算出反射度,如果改變波長並用圖表 形式顯示反射度分布,就可以生成如第5圖所示的反射度 分布曲線4 0。 在所述輸入強度設定步驟S112中,在一定波長帶32内積 分強度分布曲線30,並將積分值設定爲輸入強度/ 。 M i 如果針對特定波長31帶通(bandpass)白色光,就會如第 5圖所示,以特定波長爲中心的一定波長帶中形成顯示光 099105813 表單編號A0101 第12頁/共27頁 0993133469-0 201035518 線強度(intensity)分布的強度分布曲線30。本實施例 中,透過線性可變濾波器120帶通白色光來形成帶通光的 強度分布曲線30。第5圖例示出一個以600nm爲中心的帶 通光的強度分布曲線30。 針對特定波長31製作強度分布曲線30後,在波長帶32中 積分所述強度分布曲線30後設定爲特定波長31的輸入強 度/ 。[0011] wherein R1 is a reflectance formed according to a mathematical modeling method, / is an intensity of incident *'i light L, and / is an intensity of reflected light L. If Mathematical Formula 1 to Mathematical Formula 3 are substituted into Mathematical Formula 4, the reflectance can be calculated for the film layer 11 of a certain thickness. If the wavelength is changed and the reflectance distribution is displayed in a graph form, the reflection as shown in Fig. 5 can be generated. Degree distribution curve 40. In the input intensity setting step S112, the intensity distribution curve 30 is integrated in the certain wavelength band 32, and the integral value is set as the input intensity /. M i If the white light is bandpassed for a specific wavelength 31, as shown in Fig. 5, the display light is formed in a certain wavelength band centered on a specific wavelength. 099105813 Form No. A0101 Page 12/Total 27 Page 0993133469- 0 201035518 Intensity distribution curve of line intensity distribution 30. In the present embodiment, white light is transmitted through the linear variable filter 120 to form an intensity distribution curve 30 of the bandpass light. Fig. 5 illustrates an intensity distribution curve 30 with a pass light centered at 600 nm. After the intensity distribution curve 30 is created for the specific wavelength 31, the intensity distribution curve 30 is integrated in the wavelength band 32 and set to the input intensity / of the specific wavelength 31.

* I 在所述輸出強度設定步驟S113中,首先把反射度分布曲 0 線40和針對特定波長的強度分布曲線3〇結合形成復合強 度分布曲線50。復合強度分布曲線50是針對特定波長的 ,第5圖例示出針對600nm的復合強度分布曲線50。製作 針對特定波長31的復合強度分布曲線50後’在波長帶32 中積分所述復合強度分布曲線50並將其結果設定爲特定 波長輸出強度/。 * r 在所述積分反射度設定步驟s114中,將把特定波長輸出 強度/除以特定波長輸入強度。的商作爲薄膜層針對特 定波長的積分反射度R2。第5圖所示圖表中例示出針對波 長600nm的薄膜層的積分反射度(R2 ’ 21)。 上述輸入強度設定步驟5112、輸出強度設定步驟S113及 積分反射度設定步驟S114可透過以下數學式5求出。 【數學式5】 [0012] M{dX) = L (λ*} f (Jo瑪⑸嫌以靡λ wr ^7½ 099105813 表單編號A0101 第13頁/共27頁 0993133469-0 201035518 [0013] 其中,R2是依照數學建模方法獲得的積分反射度,/是 特定波長,/是輸入強度,/是輸出強度,/是特定 波長下的強度最大值,是特定波長的強度分布 曲線,R1是反射度分布曲線。 在所述積分反射度分布曲線生成步驟S115中,改變特定 波長31,並反復執行輸入強度設定步驟S112、輸出強度 設定步驟S113及積分反射度設定步驟S114,從而生成按 波長變化顯示積分反射度的積分反射度分布曲線20。針 對50111111、50211111、50311111、",、600.11111、〜等多個特 定波長求出積分反射度R2,並以圖表形式表示針對波長 的積分反射度R2的變化,就可以生成如第5圖所糸的積分 反射度分布曲線20。 針對一個厚度的薄膜層樣片求出積分反射度分布曲線20 後,邊改變厚度邊執行上述步驟分別製作針對不同厚度 的積分反射度分布曲線20。如此針對不同厚度製得積分 反射度分布曲線20,即完成建模步驟S110。 重新針對本實施例的厚度檢測方法說明如下:在所述獲 得步驟S120中,向薄膜層11照射白色光,並獲得按光線L 的波長變化顯示的薄膜層11的實測反射度分布曲線60。 所述獲得步驟S120包括第一強度設定步驟S121、第二強 度設定步驟S122、實測反射度設定步驟S123、實測反射 度分布曲線生成步驟S124。 在所述第一強度設定步驟S121中,帶通(bandpass)白色 光,使之在以特定波長31爲中心的一定波長帶32中具有 強度分布,之後向頂面未沈積有薄膜層的襯底層10照射 099105813 表單編號 A0101 第 14 頁/共 27 頁 0993133469-0 201035518 經過帶通的光線L。然後,在波長帶32中積分被襯底層10 反射的光線的強度分布曲線’並將其結果作爲第一強度 〇 在所述第一強度设疋步驟S122中,帶通(bandpass)白色 光,使之在以特定波長31爲中心的一定波長帶32中具有 強度分布,之後向薄膜層11照射經過帶通的光線L。然後 ,在波長帶32中積分被薄膜層π及襯底層1〇反射的光線 的強度分布曲線,並將其結果作爲第二強度。 在所述實測反射度設定步驟S123中,將把第二強度除以 第一強度的商作爲薄膜層針對特定波長的實測反射度。 即把被薄膜層11反射的光線強度與被未沈積有薄膜層的 襯底層10反射的光線強度之比設定爲薄膜層的實測反射 度。 在所述實測反射度分布曲線生成步驟S124中,邊改變特 定波長31,邊重復執行第一強度設定步驟S121、第二強 度設定步驟S122及實測反射度設定步驟S123,從而生成 按波長變化顯示實測反射度分布的實測反射度分布曲線 60。針對501nm、502nm、503nm、…、600nm、.·.等多 個特定波長求出實測反射度,並用圖表形式表示針對歧 長的實測反射度變化,就可以生成如第3圖所示的實剛反 射度分布曲線60。 在所述比較步驟S130中,分別對比透過數學建模方法製 作的多個積分反射度分布曲線20和實測反射度分布曲綠 60實質上是否一致。在確認實質上是否一致的過程中, 求出基於最小二乘法的誤差函數,並當具有最小講差時 ,將積分反射度分布曲線20和實測反射度分布曲線6〇匈 099105813 表單編號A0101 第15頁/共27頁 201035518 定爲實質上一致。而這種方法對於本領域的技術人員來 說是習知的,因此不再贅述。 在所述確定步驟S140中,選擇同實測反射度分布曲線60 實質上一致的積分反射度分布曲線20,並將與所述積分 反射度分布曲線2 0對應的厚度最終確定爲薄膜層11的厚 度。 第6圖是用來對比實測反射度分布曲線60、基於本發明建 模方法的積分反射度分布曲線20及基於習知建模方法的 反射度分布曲線1的圖表。如圖所示,和基於習知建模方 法製作的反射度分布曲線1相比,基於本發明建模方法製 作的積分反射度分布曲線20更加符合透過厚度檢測反射 儀100實際測出的實測反射度分布曲線60。 本發明的反射度分布曲線建模方法和厚度檢測方法,針 對經過帶通而以一定波長帶入射的光線,透過在該波長 帶中積分的方法建模薄膜層對光線的反射度分布曲線, 從而用數學方式建模同實測反射度分布曲線實質上接近 的反射度分布曲線。 此外,本發明的厚度檢測反射儀透過在光源和光學系之 間配置線性可變濾波器來帶通光線,從而僅讓以所要檢 測的特定波長爲中心的波長帶的光線通過,而不包含具 有周邊波長的光線等雜訊,因此可獲得更加精密檢測薄 膜層厚度的效果。 而且,本發明的厚度檢測反射儀不僅可以測出薄膜層厚 度,還可以同時求出用來顯示薄膜層相對厚度差的表面 形貌,因此可以獲得能夠算出及視覺化薄膜層綜合資訊 的效果。 099105813 表單編號A0101 第16頁/共27頁 0993133469-0 201035518 本發明並不限於上述實施例,在所附的申請專利範圍内 可以有各種不同的實施方式。所屬技術領域的技術人員 應該可以理解’在不脫離本發明精神的範圍内所進行的 各種變更及修飾均屬於本發明的保護範圍内。 【圖式簡單說明】 [0014]第1圖是本發明厚度檢測反射儀一實施例的示意圖。 第2圖是透過第1圖中厚度檢測反射儀的線性可變濾波器 帶通的光線的強度分布曲線圖。 第3圖是本發明的厚度檢測方法一賁施例的示意圖》 第4圖是射入薄膜層的光線的反射路徑示意圖》 第5圖是本發明的反射度分布曲線建模方法一實施例的示 意圖。 第6圖是用來對比實測反射度分布曲線、積分反射度分布 曲線及依照現有建模方法製作的反射度分布曲線的圖。 第7圖是用來說明經檢測薄膜層的表面形貌示例的圖面。* I In the output intensity setting step S113, the reflectance distribution curve 0 line 40 and the intensity distribution curve 3〇 for a specific wavelength are first combined to form a composite intensity distribution curve 50. The composite intensity distribution curve 50 is for a particular wavelength, and the fifth figure illustrates a composite intensity distribution curve 50 for 600 nm. After the composite intensity distribution curve 50 for a specific wavelength 31 is produced, the composite intensity distribution curve 50 is integrated in the wavelength band 32 and the result is set to a specific wavelength output intensity /. * r In the integrated reflectance setting step s114, the specific wavelength output intensity/divided by the specific wavelength input intensity. The quotient is the integrated reflection R2 of the film layer for a specific wavelength. The graph shown in Fig. 5 illustrates the integral reflectance (R2' 21) for a film layer having a wavelength of 600 nm. The input intensity setting step 5102, the output intensity setting step S113, and the integral reflectance setting step S114 can be obtained by the following mathematical expression 5. [Math 5] [0012] M{dX) = L (λ*} f (Jomar (5) 靡 λ wr ^ 71⁄2 099105813 Form No. A0101 Page 13 / Total 27 Page 0993133469-0 201035518 [0013] R2 is the integral reflectance obtained according to the mathematical modeling method, / is the specific wavelength, / is the input intensity, / is the output intensity, / is the maximum intensity at a specific wavelength, is the intensity distribution curve of a specific wavelength, R1 is the reflectance In the integrated reflectance distribution curve generating step S115, the specific wavelength 31 is changed, and the input intensity setting step S112, the output intensity setting step S113, and the integral reflectance setting step S114 are repeatedly performed, thereby generating an integral for displaying the wavelength change. Integral reflectance distribution curve 20 of reflectance. The integral reflectance R2 is obtained for a plurality of specific wavelengths such as 50111111, 50211111, 50311111, ", 600.11111, and the like, and the change of the integral reflectance R2 for the wavelength is represented in a graph form. Then, the integrated reflectance distribution curve 20 as shown in Fig. 5 can be generated. After the integral reflectance distribution curve 20 is obtained for a film layer of a thickness, the edge is changed. Performing the above steps to separately form the integrated reflectance distribution curve 20 for different thicknesses. Thus, the integrated reflectance distribution curve 20 is obtained for different thicknesses, that is, the modeling step S110 is completed. The thickness detecting method for the present embodiment is described as follows: In the obtaining step S120, the thin film layer 11 is irradiated with white light, and the measured reflectance distribution curve 60 of the thin film layer 11 which is displayed according to the wavelength change of the light ray L is obtained. The obtaining step S120 includes a first intensity setting step S121, The second intensity setting step S122, the measured reflectance setting step S123, and the measured reflectance distribution curve generating step S124. In the first intensity setting step S121, bandpass white light is made at a specific wavelength 31 The center has a intensity distribution in a certain wavelength band 32, and then illuminates the substrate layer 10 on which the film layer is not deposited on the top surface. 099105813 Form No. A0101 Page 14 of 27 0993133469-0 201035518 Light passing through the band L. Then, at The intensity distribution curve of the light reflected by the substrate layer 10 in the wavelength band 32 is integrated and the result is taken as the first intensity In the first intensity setting step S122, the white light is bandpassed to have an intensity distribution in a certain wavelength band 32 centered on the specific wavelength 31, and then the film layer 11 is irradiated with the band pass. Light L. Then, the intensity distribution curve of the light reflected by the film layer π and the substrate layer 1 is integrated in the wavelength band 32, and the result is taken as the second intensity. In the measured reflectance setting step S123, the quotient of dividing the second intensity by the first intensity is taken as the measured reflectance of the thin film layer for a specific wavelength. That is, the ratio of the intensity of the light reflected by the film layer 11 to the intensity of the light reflected by the substrate layer 10 on which the film layer is not deposited is set as the measured reflectance of the film layer. In the measured reflectance distribution curve generating step S124, the first intensity setting step S121, the second intensity setting step S122, and the measured reflectance setting step S123 are repeatedly performed while changing the specific wavelength 31, thereby generating a measured value by wavelength change. The measured reflectance distribution curve 60 of the reflectance distribution. The measured reflectance is obtained for a plurality of specific wavelengths such as 501 nm, 502 nm, 503 nm, ..., 600 nm, . . ., and the measured reflectance change for the bisecting length is expressed in a graph form, and the real just as shown in FIG. 3 can be generated. Reflectance profile 60. In the comparing step S130, whether the plurality of integral reflectance distribution curves 20 and the measured reflectance distribution curve green 60 produced by the mathematical modeling method are substantially identical are respectively compared. In the process of confirming whether the essence is consistent, the error function based on the least squares method is obtained, and when there is the minimum difference, the integrated reflection degree distribution curve 20 and the measured reflectance distribution curve 6 〇 0 099105813 Form No. A0101 No. 15 Page / a total of 27 pages 201035518 is set to be substantially consistent. This method is well known to those skilled in the art and will not be described again. In the determining step S140, the integrated reflectance distribution curve 20 substantially coincident with the measured reflectance distribution curve 60 is selected, and the thickness corresponding to the integrated reflectance distribution curve 20 is finally determined as the thickness of the thin film layer 11. . Fig. 6 is a graph for comparing the measured reflectance distribution curve 60, the integrated reflectance distribution curve 20 based on the modeling method of the present invention, and the reflectance distribution curve 1 based on the conventional modeling method. As shown, the integrated reflectance profile 20 made based on the modeling method of the present invention is more consistent with the measured reflectance actually measured by the thickness-detecting reflectometer 100, as compared to the reflectance profile 1 made based on the conventional modeling method. Degree distribution curve 60. The reflectance distribution curve modeling method and the thickness detecting method of the present invention are characterized in that a light beam incident on a wavelength band by a band pass is used to model a reflectance distribution curve of the film layer to light by integrating in the wavelength band, thereby A mathematically modeled reflectance profile that is substantially similar to the measured reflectance profile. Further, the thickness detecting reflectometer of the present invention transmits light through a linear variable filter disposed between a light source and an optical system, thereby allowing only light of a wavelength band centered on a specific wavelength to be detected to pass, without including Noise such as light at a peripheral wavelength allows for more precise detection of the thickness of the film layer. Further, the thickness detecting reflectometer of the present invention can not only measure the thickness of the film layer, but also simultaneously obtain the surface topography for displaying the relative thickness difference of the film layer, so that the effect of calculating and visualizing the comprehensive information of the film layer can be obtained. 099105813 Form No. A0101 Page 16 of 27 0993133469-0 201035518 The present invention is not limited to the above embodiments, and various different embodiments are possible within the scope of the appended claims. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS [0014] Fig. 1 is a schematic view showing an embodiment of a thickness detecting reflectometer of the present invention. Fig. 2 is a graph showing the intensity distribution of light passing through the linear variable filter of the thickness detecting reflectance in Fig. 1. Fig. 3 is a schematic view showing a first embodiment of the thickness detecting method of the present invention. Fig. 4 is a schematic view showing a reflection path of light incident on the thin film layer. Fig. 5 is a view showing an embodiment of the method for modeling the reflectance distribution curve of the present invention. schematic diagram. Figure 6 is a graph used to compare measured reflectance profiles, integrated reflectance profiles, and reflectance profiles made according to existing modeling methods. Fig. 7 is a view for explaining an example of the surface topography of the detected film layer.

I 【主要元件符號說明】 : [0015] 10 11 20 30 40 50 60 100 Ο 概底層 薄膜層 積分反射度分布曲線 強度分布曲線 反射度分布曲線 復合強度分布曲線 實測反射度分布曲線 厚度檢測反射儀 110 :光源 099105813 表單編號A0101 第17頁/共27頁 0993133469-0 201035518 120 : 線性可變濾波器 130 : 濾波器移送單元 140 : 光學系 150 : 攝像單元 160 : 聚光鏡 099105813 表單編號 A0101 第 18 頁/共 27 頁 0993133469-0I [Description of main component symbols]: [0015] 10 11 20 30 40 50 60 100 概 Almost thin film layer integral reflectance distribution curve intensity distribution curve reflectance distribution curve composite intensity distribution curve measured reflectance distribution curve thickness detecting reflectometer 110 :Light source 099105813 Form number A0101 Page 17 of 27 0993133469-0 201035518 120 : Linear variable filter 130 : Filter transfer unit 140 : Optical system 150 : Camera unit 160 : Condenser 099105813 Form No. A0101 Page 18 / Total 27 pages 0993133469-0

Claims (1)

201035518 七、申請專利範圍: 1 . 一種反射度分布曲線建模方法’針對預定厚度薄膜層建模 基于光線波長變化的薄膜層的反射度分布,其中包括:反 射度分布曲線製作步驟’製作按光線波長變化顯示薄膜層 反射度分布的反射度分布曲線; 輸入強度設定步驟’針對特定波長帶通白色光後,在所述 特定波長爲中心的一定波長帶中製作用來表示光線強度分 布的強度分布曲線’並在所述波長帶中積分所述強度分布 曲線後將其結果設定爲所述特定波長的輸入強度; ® 輸出強度設定步驟’在所述波長帶中積分由所述反射度分 布曲線和所述強度分布曲線結合而成的復合強度分布曲線 ,並將其結果設定爲所述特定波長的輸出強度; 積分反射度設定步驟’將把所述特定波長輸出強度除以所 述特定波長輸入強度的商作爲所述薄膜層對所述特定波長 的積分反射度;及 積分反射度分布曲線生成步驟,邊改變所述特定波長,邊 重復執行所述輸入強度設定步驟、所述輸出強度設定步驟 〇 及所述積分反射度設定步驟,以生成按波長變化顯示所述 積分反射度分布的積分反射度分布曲線。 2 .如申請專利範圍第1項所述之反射度分布曲線建模方法, 其中所述強度分布曲線是透過用線性可變濾波器帶通白色 光來製作的。 3 . —種厚度檢測方法,用白色光反射儀檢測沈積在櫬底層上 的薄膜層,其中包括: 建模步驟,假設有具有不同厚度之多個薄膜層樣片,並應 099105813 表單編號A0101 第19頁/共27頁 0993133469-0 201035518 用申請專利範圍第1項或第2項所述之反射度分布曲線建模 方法製備對應每個薄膜層樣片的積分反射度分布曲線; 獲得步驟,向所述薄膜層照射白色光,獲得按光線波長變 化顯示的所述薄膜層的實測反射度分布曲線; 比較步驟,分別比較多個積分反射度分布曲線和所述實測 反射度分布曲線實質上是否一致;及 確定步驟,選擇與所述實測反射度分布曲線實質上一致的 積分反射度分布曲線,並將與所選積分反射度分布曲線對 應的厚度確定爲所述薄膜層厚度。 4.如申請專利範圍第3項所述之厚度檢測方法,其中所述獲 得步驟包括: 第一強度設定步驟,向頂面未沈積有薄膜層的襯底層照射 經過帶通的光線,並在所述波長帶中積分被所述襯底層反 射的光線的強度分布曲線後,將其結果設定爲第一強度; 第二強度設定步驟,向所述薄膜層照射經過帶通的光線, 並在所述波長帶中積分被所述薄膜層反射的光線的強度分 布曲線後,將其結果設定爲第二強度; 實測反射度設定步驟,將所述第二強度除以所述第以強度 的值設定爲所述薄膜層對所述特定波長的實測反射度;及 實測反射度分布曲線生成步驟,邊改變所述特定波長,邊 重復執行所述第一強度設定步驟、所述第二強度設定步驟 及所述實測反射度設定步驟,以生成按波長變化顯示實測 反射度分布的實測反射度分布曲線。 5 . —種厚度檢測反射儀,包括: 光源,用來放出白色光; 線性可變濾波器,針對特定波長帶通所入射的白色光,使 099105813 表單編號A0101 第20頁/共27頁 0993133469-0 201035518 得以所述特定波長爲中心的一定波長帶的光線通過’在所 述線性可變濾波器的長度方向上,得以變更呀通過的特定 波長; 濾波器移送單元,在所述線性可變濾波器的長度方向上往 復移送所述線性可變濾波器; 光學系,命薄膜層照射通過所述線性可變濾波器的光線’ 並接收被所述薄膜層或襯底層反射的光線’所述補*底層用 來支承所述薄膜層;及 攝像單元,接收被所述薄膜層或襯底層反射後射入及通過 〇 所述光學系的反射光,並將此反射光成像爲圖像。 6 .如申請專利範圍第5項所述之厚度檢測反射儀,其中所述 攝像單元包括面陣攝像機,所述面陣攝像機可同時攝像所 述薄膜層或所述襯底層的預定面積。 7 .如申請專利範圍第5項所述之厚度檢測反射儀,其中進一 步包括聚光鏡,所述聚光鏡配置在所述光源和所述線性可 變濾波器之間,用來彙聚從所述光源發射的光線後向所述 線性可變濾波器投射。 099105813 表單編號A0101 第21頁/共27頁 0993133469-0201035518 VII. Patent application scope: 1. A method for modeling the reflectance distribution curve 'Modeling the reflectance distribution of the film layer based on the change of the light wavelength for the predetermined thickness film layer, including: the step of making the reflectance distribution curve' The wavelength change indicates a reflectance distribution curve of the reflectance distribution of the film layer; the input intensity setting step 'passes the white light for a specific wavelength, and produces an intensity distribution indicating a light intensity distribution in a certain wavelength band centered on the specific wavelength Curve 'and integrates the intensity distribution curve in the wavelength band to set the result to the input intensity of the specific wavelength; ® output intensity setting step 'integrate in the wavelength band by the reflectance profile and a composite intensity distribution curve of the intensity distribution curve, and setting the result to an output intensity of the specific wavelength; an integrated reflectance setting step 'divide the specific wavelength output intensity by the specific wavelength input intensity The quotient as the integral of the film layer to the specific wavelength And an integral reflectance distribution curve generating step of repeatedly performing the input intensity setting step, the output intensity setting step, and the integral reflectance setting step to generate a display according to a wavelength change while changing the specific wavelength An integrated reflectance distribution curve of the integrated reflectance distribution. 2. The method of modeling a reflectance profile as described in claim 1, wherein the intensity profile is produced by bandpassing white light with a linear variable filter. 3. A thickness detecting method for detecting a film layer deposited on a crucible bottom layer by a white light reflectometer, comprising: a modeling step, assuming a plurality of film layer samples having different thicknesses, and should be 099105813 Form No. A0101 No. 19 Page / Total 27 pages 0993133469-0 201035518 The integral reflectance distribution curve corresponding to each film layer sample is prepared by the reflectance profile modeling method described in claim 1 or 2; The thin film layer illuminates the white light to obtain a measured reflectance distribution curve of the thin film layer displayed according to the change of the wavelength of the light; and the comparing step respectively compares whether the plurality of integrated reflectance distribution curves and the measured reflectance distribution curve are substantially identical; The determining step selects an integrated reflectance distribution curve substantially identical to the measured reflectance distribution curve, and determines a thickness corresponding to the selected integrated reflectance profile as the film layer thickness. 4. The thickness detecting method according to claim 3, wherein the obtaining step comprises: a first intensity setting step of irradiating the substrate layer on which the thin film layer is not deposited on the top surface with the light passing through the band, and After integrating the intensity distribution curve of the light reflected by the substrate layer in the wavelength band, the result is set as the first intensity; the second intensity setting step irradiates the film layer with the light passing through the band, and in the After integrating the intensity distribution curve of the light reflected by the film layer in the wavelength band, setting the result to the second intensity; and measuring the reflectance setting step, setting the second intensity by the value of the first intensity as Performing, by the thin film layer, the measured reflectance of the specific wavelength; and the measured reflectance distribution curve generating step, while repeatedly changing the specific wavelength, repeating the first intensity setting step, the second intensity setting step, and the The measured reflectance setting step is described to generate a measured reflectance distribution curve showing the measured reflectance distribution as a function of wavelength. 5 . A thickness detecting reflectometer comprising: a light source for emitting white light; a linear variable filter for white light incident on a specific wavelength band, such that 099105813 Form No. A0101 Page 20 / Total 27 Page 0993133469-0 201035518 A light of a certain wavelength band centered on the specific wavelength passes through a specific wavelength that is changed in the length direction of the linear variable filter; a filter transfer unit in which the linear variable filter The linear variable filter is reciprocally transferred in the longitudinal direction; the optical system illuminates the light passing through the linear variable filter and receives the light reflected by the thin film layer or the substrate layer The bottom layer is for supporting the thin film layer; and the image capturing unit receives the reflected light that is reflected by the thin film layer or the substrate layer, enters and passes through the optical system, and images the reflected light into an image. 6. The thickness detecting reflectometer according to claim 5, wherein the image capturing unit comprises an area array camera, wherein the area array camera can simultaneously image a predetermined area of the film layer or the substrate layer. 7. The thickness detecting reflectometer of claim 5, further comprising a condensing mirror disposed between the light source and the linear variable filter for concentrating emission from the light source The light is then projected onto the linear variable filter. 099105813 Form No. A0101 Page 21 of 27 0993133469-0
TW099105813A 2009-03-23 2010-03-01 Method for modeling distribution curve of reflectance and method, reflectometer for measuring thickness using the same TWI428557B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090024362A KR101107507B1 (en) 2009-03-23 2009-03-23 Method for modeling distibution curve of reflectance and method, reflectometer for measuring thickness using the same

Publications (2)

Publication Number Publication Date
TW201035518A true TW201035518A (en) 2010-10-01
TWI428557B TWI428557B (en) 2014-03-01

Family

ID=42781626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099105813A TWI428557B (en) 2009-03-23 2010-03-01 Method for modeling distribution curve of reflectance and method, reflectometer for measuring thickness using the same

Country Status (5)

Country Link
JP (1) JP5424143B2 (en)
KR (1) KR101107507B1 (en)
CN (1) CN102362146B (en)
TW (1) TWI428557B (en)
WO (1) WO2010110535A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800038B (en) * 2021-04-23 2023-04-21 日商山葉發動機股份有限公司 Measuring device and substrate inspection device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537854B1 (en) * 2013-09-23 2015-07-21 에스엔유 프리시젼 주식회사 Apparatus for measuring thickness and method for measuring thickness for the same
CN104111235B (en) * 2014-07-11 2016-10-05 北京大学 A kind of method measuring two-dimensional film material complex refractivity index spectrum
KR101650319B1 (en) * 2015-03-06 2016-08-24 에스엔유 프리시젼 주식회사 Method and Apparatus for measuring thickness using color camera
JP6568041B2 (en) * 2016-10-25 2019-08-28 株式会社ブルービジョン Light source device and imaging system
JP6550101B2 (en) * 2017-07-13 2019-07-24 Jfeテクノリサーチ株式会社 Film thickness measuring method and film thickness measuring apparatus
KR102210348B1 (en) 2019-07-25 2021-02-01 (주)지엘테크 Reflectometer with adjustable of focal position and optical axis
CN110763657B (en) * 2019-11-20 2022-05-13 江苏赛诺格兰医疗科技有限公司 Photoelectric digital conversion system for reflective material reflectivity test system
US11168978B2 (en) 2020-01-06 2021-11-09 Tokyo Electron Limited Hardware improvements and methods for the analysis of a spinning reflective substrates
US11738363B2 (en) 2021-06-07 2023-08-29 Tokyo Electron Limited Bath systems and methods thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657345B2 (en) * 1996-04-25 2005-06-08 オリンパス株式会社 Film thickness inspection system
JP3723392B2 (en) * 1999-11-29 2005-12-07 大日本スクリーン製造株式会社 Film thickness measuring apparatus and film thickness measuring method
JP3932836B2 (en) * 2001-07-27 2007-06-20 株式会社日立製作所 Thin film thickness measuring method and apparatus, and device manufacturing method using the same
KR100490325B1 (en) * 2001-09-21 2005-05-17 케이맥(주) Apparatus for measuring characteristics of thin film by means of two-dimensional detector and method of measuring the same
WO2003025497A1 (en) * 2001-09-21 2003-03-27 Kmac Apparatus for measuring thickness profile and refractive index distribution of multiple layers of thin films by means of two-dimensional reflectometry and method of measuring the same
JP2003168666A (en) * 2001-12-03 2003-06-13 Nikon Corp Film layer state measuring method and apparatus, polishing apparatus, and manufacturing method of semiconductor device
JP4216209B2 (en) * 2004-03-04 2009-01-28 大日本スクリーン製造株式会社 Film thickness measuring method and apparatus
JP2007212477A (en) * 2007-05-01 2007-08-23 Toshiba Corp Method and apparatus for measuring amount of deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800038B (en) * 2021-04-23 2023-04-21 日商山葉發動機股份有限公司 Measuring device and substrate inspection device

Also Published As

Publication number Publication date
CN102362146B (en) 2013-10-16
JP5424143B2 (en) 2014-02-26
CN102362146A (en) 2012-02-22
TWI428557B (en) 2014-03-01
JP2012521560A (en) 2012-09-13
WO2010110535A2 (en) 2010-09-30
WO2010110535A3 (en) 2010-12-09
KR101107507B1 (en) 2012-01-31
KR20100105976A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
TW201035518A (en) Method for modeling distribution curve of reflectance and method, reflectometer for measuring thickness using the same
US11792384B2 (en) Processing color information for intraoral scans
JP4242767B2 (en) Thin film characteristic measuring apparatus using two-dimensional detector and measuring method thereof
US8947673B2 (en) Estimating thickness based on number of peaks between two peaks in scanning white light interferometry
TWI278597B (en) Optical film tester
KR960013677B1 (en) Apparatus and method for interferometrically measuring the thickness of thin films using full aperture irradiation
US5293214A (en) Apparatus and method for performing thin film layer thickness metrology by deforming a thin film layer into a reflective condenser
TWI528017B (en) Apparatus for measuring thickness and method for measuring thickness for the same
JP6550101B2 (en) Film thickness measuring method and film thickness measuring apparatus
CN102027315B (en) Method for measuring thickness
JP2009031301A (en) Device for measuring thin film characteristic using two-dimensional detector and its measurement method
JPH07134007A (en) Measuring device for film thickness of thin-film by high space resolution
TW200837327A (en) Interferometry for lateral metrology
JP2002206918A (en) Clearance measuring method, device thereof, shape measuring method, device thereof, and manufacturing method of liquid crystal device
US20100296104A1 (en) Inspection system and method with multi-image phase shift analysis
TW200532164A (en) Film thickness measuring method and apparatus
CN104570616B (en) A kind of self-reference scatterometry device and method
JP2011174764A (en) Inspecting method and inspecting device
JPH09133517A (en) Distribution measuring device
JP4192038B2 (en) Surface shape and / or film thickness measuring method and apparatus
JPH11325856A (en) Optical measurement device and adapter for optical measurement
JP2011141136A (en) Inspection apparatus