TW201035300A - CMP slurry composition for barrier polishing for manufacturing copper interconnects, polishing method using the composition, and semiconductor device manufactured by the method - Google Patents

CMP slurry composition for barrier polishing for manufacturing copper interconnects, polishing method using the composition, and semiconductor device manufactured by the method Download PDF

Info

Publication number
TW201035300A
TW201035300A TW098145048A TW98145048A TW201035300A TW 201035300 A TW201035300 A TW 201035300A TW 098145048 A TW098145048 A TW 098145048A TW 98145048 A TW98145048 A TW 98145048A TW 201035300 A TW201035300 A TW 201035300A
Authority
TW
Taiwan
Prior art keywords
acid
copper
slurry composition
cmp slurry
particle size
Prior art date
Application number
TW098145048A
Other languages
Chinese (zh)
Other versions
TWI471413B (en
Inventor
Tae-Young Lee
In-Kyung Lee
Byoung-Ho Choi
Yong-Soon Park
Original Assignee
Cheil Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Ind Inc filed Critical Cheil Ind Inc
Publication of TW201035300A publication Critical patent/TW201035300A/en
Application granted granted Critical
Publication of TWI471413B publication Critical patent/TWI471413B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1472Non-aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Provided is a CMP slurry composition for barrier polishing for manufacturing copper interconnects, the composition including abrasive particles, a copper surface protective agent, a copper corrosion inhibitor, an oxidizing agent, and a pH adjustor, wherein the abrasive particles are non-spherical colloidal silica having a ratio of an average primary particle size to an average secondary particle size of about 0.6 or less and the copper surface protective agent is a carboxyl-functionalized water-soluble polymer.

Description

201035300 六、發明說明: 【發明所屬之技彳标領域】 相關申請案的交互參考 本申請案主張2008年12月31日申請於韓國智慧財產局 之韓國專利10-2008-0137804以及2009年9月15曰申請於韓 國智慧財產局之韓國專利10-2009-0086869的優先權,各專 利申請案的全部揭露内容併入此處作為參考。 _ 發明領域 〇 本發明關於一種在製造銅互連線上用於障壁研磨的化 學機械研磨(CMP)漿體組成物。 - 發明背景 就現今大尺度積體電路(以下,稱作LSIs)趨向高積體 性、尚表現性的趨勢而言,已經發展出新的微處理方法。 此種方法之一者係化學機械研磨(以下,稱作CMp),其為 〇 —種常用於LSIs製程(特別是多層金屬互連線製程)的技 術,用以平面化絕緣間層來形成金屬栓或埋入的金屬互連 線,或類似物。近來,銅或銅合金已經被用作互連線材料 以製造高度積體的LSIs。然而,銅及銅合金很難以形成鋁 合金互連線常用的乾蝕刻加工。就此而言,使用一種金屬 鑲嵌法,其中銅或銅合金薄膜被沉積並埋在其上形成有溝 槽的絕緣膜上或内,而且非溝槽的薄膜部分以CMp移除, 藉此形成埋入的銅互連線》 201035300 CMP係-種半導體裝置製造期間使用研磨墊及浆體組 成物平面化晶圓表面的過程。於CMp期間,晶圓相對於研 磨墊進行軌道移動(結合迴_動及顧移動),其中晶圓及 研磨墊處於彼此相互接觸的狀態,而且於此時,使用包括 研磨顆粒的槳體組成物實行研磨。通常上,CMp所用的聚 體組成物包括負責物理作用的研磨顆粒與負責化學作用的 關劑。因此,CMP細、组成物可藉物理及化學作用選擇 f生地移除日日圓表面上的暴露部分,如此確保可於寬廣的表 面地帶上獲得最佳的平面化。 當使用CMP形成金屬互連線時’重要的是實現所要的 研磨速率,同時控制化學_。特別是,於形成銅互連線 時’由於對化學材料的高腐㈣性,銅臈可以很容易地移 除,但是銅互連線由於增加的蝕刻速率因此很容易被腐 蝕。為了解決此問題,要使用適當比例的氧化劑,同時, 將腐蝕抑制劑加入CMP漿體組成物中係必要的。 就埋入的金屬互連線而言,例如銅或銅合金互連線或 鶴栓互連線,實行二步驟研磨如下。例如,為了形成銅互 連線,首先,快速移除大量的銅(所謂“大量銅研磨步驟”)。 第二,銅被移除但是障壁膜及絕緣膜未被移除(所謂“銅過 度研磨步驟”)。第三,銅移除速率降低而障壁膜及絕緣膜 移除速率增加,使得銅移除速率與障壁膜及絕緣膜的移除 速率實質相同(所謂“障壁研磨步驟,,)。亦即,銅相對於障 壁膜及絕緣膜的研磨選擇性應該降低以減少第二研磨步驟 期間所發生的腐蝕/凹陷並完全地移除銅殘餘物。若障壁膜 201035300 及絕緣膜的研磨速率明顯較銅低,第二研磨步驟發生的腐 蝕/凹陷不會被去除。 通常上,第一及第二研磨步驟的實行係在不同的研磨 條件下使用相同的大量銅研磨漿體組成物。第三研磨步驟 的實行係使用與大量銅研磨漿體組成物不同的障壁研磨漿 體組成物。本發明提供用於第三研磨步驟的漿體組成物。 為了形成銅互連線,组、组合金、氮化组或其他钽化 合物被用作障壁材料以防止銅擴散進入絕緣間層。這些障 壁材料比銅及銅合金具有較高的堅硬性而且比較不容易氧 化。因此,通常上利用機械方法之障壁材料的移除速率會 增加。然而,在本案中,很有可能在研磨之後於圖案表面 上造成刮痕。 為了改善障壁研磨步驟期間,最後銅互連線圖案上之 凹陷及腐蝕的移除,銅膜、障壁膜及絕緣膜的研磨速率比 例理想上要為1 : 1 : 1,而且於最後研磨之後,留在絕緣膜 及銅互連線上之殘餘研磨顆粒所造成的表面缺陷(諸如污 染及刮痕)應該越少越好。 【發明内容】 發明概要 本發明提供一種在製造銅互連線上之障壁研磨用的 CMP漿體組成物,其可以實現對於用作障壁材料之钽及用 作絕緣材料之氧化矽的高研磨速率,使得钽、氧化矽及銅 的研磨速率比例約1 : 1 : 1(非選擇性研磨)。 201035300 發月也提供—種使用上述CMP漿體組成物以高速 y非選擇性研磨障壁膜、絕_及鋼膜的方法,藉此使最 1研磨後的表面缺陷變得最小’以及—種由該方法製造的 半導體裝置。 依據本發明的—面向,一種在製造銅互連線上之障壁 研磨用的化學機械研磨(™pm體組成物,該組成物包括研 磨顆粒、銅表面保護劑、銅腐蚀抑制劑、氧化劑及pH調整 劑,其中,該研磨顆粒係平均主要顆粒大小對平均次要顆 粒大小的比例約G_6或更少的非球形膠财石,及該銅表 面保護劑係羧基-官能基化的水溶性聚合物。 該組成物可實行非選擇性研磨使得障壁膜、絕緣膜及 銅膜關於彼此的研磨速率比例範圍為從約〇 8至約1 2。 膠體矽石的平均主要顆粒大小為約2〇至約6〇nm及平 均次要顆粒大小為約34至約200nm,且使用數量為基於 CMP漿體組成物的總重約〇.5至約30wt%。 銅表面保護劑的使用數量為基於CMP毁體纟且成物@ 總重約0.01至約3wt%,及包括至少一選自由多敌酸,聚 丙烯酸-共-有機酸及約60%或更多之羧基-官能基化的多繞 酸·共-醯胺組成之群組的材料。 酸 酸 銅表面保護劑選自由聚丙烯酸、聚丁二烯-共_順丁稀_ 、聚順丁烯二酸' 聚曱基丙烯酸、聚丙烯酸-共_順丁缚_ 及聚丙烯醯胺-共-丙烯酸(acylic acids)組成之群組的至,丨、 —者。 201035300 氧化劑選自由無機或有機過化合物(per-compound)、漠 酸、溴酸的鹽類、硝酸、硝酸的鹽類、氯酸、氯酸的鹽類、 鉻酸、鉻酸的鹽類、碘酸、碘酸的鹽類、鐵、鐵的鹽類、 銅、銅的鹽類、稀土金屬氧化物、過渡金屬氧化物、鐵氰 化鉀、重鉻酸鉀組成之群組的至少一者,及使用數量基於 CMP漿體組成物的總重為約〇·〇1至約1.5wt%。 該銅腐蝕抑制劑選自由5-甲基-1H-苯并三唑、2,2,-[[(5-甲基-1H-苯並三唑-i_基)_甲基]亞胺基]雙-乙醇、12,4-三 唑、1,2,3-三唾、1,2,3-三唑基[4,5-b]吡啶組成之群組的至少 一者’及使用數量為基於CMP漿體組成物的總重約0.001 至約lwt%。 依據本發明另一面向,提供一種使用上述CMP漿體組 成物研磨製造鋼互連線用之障壁膜的方法。 依據本發明再一面向,提供一種包括由上述方法製造 之銅互連線的半導體裴置。 如上所述’本發明CMP漿體組成物可以實現對於用作 障壁材料之组及用作絕緣材料之氧化料高研磨速率,如 此钮膜、氧化發膜及銅膜關於彼此的研磨速率比例落入從 約〇·8至約1·2的範圍,藉此使最後研磨後的表面缺陷變得 最小及因此’非常有用於製造銅互連線用之障壁研磨。 【實' ^ 本發明之詳細說明 在以下的詳細描述中,本發明現將被更更完整地說 八兒月些但不是所有的本發明實施例。事實上, 201035300 本發明可以許多不同形式具體化,所以不應該將本發明解 釋成侷限於此處所記載的實施例;相反的,提供這些實施 例以使得本揭露内容得以符合現行有效的法律要求。 此處所使用的術語係僅是為了說明特定實施利的目 的’並不想要限制本發明。此處所用的術語“及/或”包括一 或更多之相關列舉項目的任—或所有組合。除非内文中另 有清楚指示,此處所用的單數型式“一,,及“該’,並包括其複 數型式。更應了解的是,術語“包括,,及/或“包含”當使用於 本說明書中時,特別指出所述特性、整數、步驟、操作、 7L件及/或組份的存在,但是並不排除一或更多其他特性、 整數、步驟、操作、元件及/或組份及/或其等群組的存在或 力口入。 本發明k供一種在製造銅互連線上之障壁研磨用的 CMP漿體組成物,該組成物包括研磨顆粒、銅表面保護劑、 銅腐姓抑制劑、氧化劑及pH調整劑,其中研磨顆粒係平均 主要顆粒大小對平均次要顆粒大小的比例為約〇6或更少 的非球形膠㈣石,及銅表面保㈣缝基官能基化的 水溶性聚合物。 本發明現將更完全地說明於下。 膠體石夕石係-種用於在酸性條件下提供加強之分散穩 定性的材料,其亦肢無刮痕__研磨料及增加障 壁模及絕賴研磨速率,使得銅膜、障壁膜及絕緣膜關於 彼此的研磨速率比例實質地相同。膠_石之平均主要顆 粒大小_對平均次要顆粒大小(D2)的比例為約〇6或更 201035300 少,例如從約0.3至約0.6。雖然較小的D1/D2比例提供較 佳研磨效率’但是範圍從約〇·3至約〇 6的D1/D2比例被用 於商業上的尺度。如習於此藝者所熟知的,金屬氧化物的 顆粒大小(直徑)可被區分為兩種類型,亦即,主要顆粒大小 (直徑)及次要顆粒大小(長度)。通常上,主要顆粒大小意指 製備漿體組成物之前,以布厄特 (BEIXBnmauer-Emmett-Teller))或 TEM(穿透式電子顯微鏡) 分析測定之個別球形金屬氧化物顆粒的大小(直徑),而次要 顆粒大小意指製備漿體組成物之後,以DLS(動態雷射散 射)分析測定之非球开)顆粒團的大小(長度)。膠體石夕石的平 均主要顆粒大小係約20至約6〇11111及平均次要顆粒大小係 約34至約200nm。 膠體矽石的使用數量基於CMp漿體組成物總重為約 0.5至約30wt%,例如約!至約2〇wt% ’於另一例中為約5 至約1_%,其可提供適t的研磨速率及良好的㈣分散 穩定性。 銅表面保護劑藉由與腐姓抑制劑競爭地作用在銅表面 以調整銅研磨速率至適當的程度而不發生銅斑#。銅表面 保護劑可為重3:平均分子量(Mw)約·,麵或更少陰離子 的羧基-B fb基化的水溶性聚合物。銅表面保護劑可選自 多叛酸(例如聚丙烯酸)、丙稀酸_共_有機酸(例如丙稀酸-共_ 順丁烯二酸)、羧酸-共-醯胺及其等之組合。關於羧酸共_ 酸胺’ It基官能基對ϋ胺官能基的相對分布(比例)可為約 201035300 60%或更多。這是因為更多的 刃呀14酿胺官能基會導致障壁 膜移除速率降低及㈣組成物儲存穩定性下降。 例示的多紐包括但不限於聚丙稀酸、聚丁二稀共_ 順丁烯二酸、聚順丁稀二酸、聚甲基丙烯酸與類似物及其 專之組合,例㈣丙_•共__酸包括但紐於聚丙稀酸 •共-順丁烯二酸與類似物及其等之組合,麻的紐共酿 胺包括但不限於聚丙稀醯胺_共_非環狀酸與類似物及其等 之組合。 銅表面保護綱使用數量為基於CMp漿體組成物總 重約0.01至約3wt%,例如約0.02至約2wt%,於另一例中 為約0.05至約Iwt%’其可提供適當的研磨速率及良好的 漿體分散穩定性。 此處使用的氧化劑係用於氧化金屬表面,藉此確保強 化的研磨速率。例示的氧化劑包括但不限於無機或有機過 氧化化合物、溴酸及其之鹽、硝酸及其之鹽、氣酸及其之 鹽、鉻酸及其之鹽、碘酸及其之鹽、鐵及其之鹽、銅及其 之鹽、稀土金屬氧化物、過渡金屬氧化物 '鐵氰化卸、重 鉻酸鉀與類似物及其等之組合。其中過氧化氫比較不會造 成環境污染。 氧化劑的使用數量為基於CMP漿體組成物總重約〇.〇1 至約1.5wt%,例如約0.05至約1 wt%,於另一例中為約〇工 至約0.5wt%,其可提供適當的研磨速率及研磨表面的良好 表面性質。 201035300 銅腐姓抑制劑係用於減緩氧化劑化學反應的材料。詳 言之,銅触抑·作為研磨調整劑,其在不發生物理研 磨的較低地帶抑制銅賴,且藉研磨顆粒的物理作用在較 高地帶被移除。銅雜抑制社㈣自含氮化合物,例如 氦、炫基胺、胺基酸、亞胺、嗤類與類似物,及兩個或更 多的組合。例示的銅腐餘抑制劑包括但不限於環狀氮化合 物或其衍生物,例如,笨並三㈣其衍生物,進—步例子 為5-甲基-1H-苯並三嗤的異構混合物、22|佩甲其出 苯並三唾小基)_甲細絲]雙·乙_異構混合物;;Μ 三唑、1,2,3-三唑或1,2,3_三唑基[4,5抑比啶。 腐⑽制劑的使用數量為基於CMp聚體組成物的總 重約0.001至、約lwt%,例如約〇 〇〇5至約〇 Iwt%,於另一 例中約_至約0.07wt%,其提供良好的腐姓抑制作用, 適當的研磨速率及良好的漿體儲存穩定性。 本發明之CMP聚體組成物包括習於此藝者常用的pH 調整劑以調整聚體組成物的pH至從約2〇至約45的範 圍。此外,CMP漿體組成物更包括添加物,諸如習於此 藝者常用的表面活性劑。 使用本發明CMP漿體組成物的障壁膜研磨現將簡單描 述。使用習於此藝者熟知的大量銅研磨漿體組成物實行第 一研磨步驟以快速移除過多的銅。然後,除了施加較低的 下壓力以及當移除銅時障壁膜及絕緣膜未被移除之外,使 用與第一研磨步驟相同的大量銅研磨漿體組成物實行第二 研磨步驟。最後,銅、障壁膜及絕緣膜利用本發明CMp的 11 201035300 研磨步驟 以及完全移除銅 漿體組成物以實質相同的速率移除,來降低第 期間障壁膜及絕緣膜上發生的腐蝕/凹陷一 殘餘物 因此,本發明提供-種在製造銅互連線上使用 CMP漿體組成物來研磨障壁骐的方法。 本發明也提供—種製造―連線的方法,該方法包 括:使用料此藝者熟知_研磨《組成物於較高下壓 力下在晶圓表面上研磨銅膜,該晶圓表面上具有銅膜、障 壁膜及絕緣膜;使用與上述相同的銅研磨漿體組成物於較 低下壓力在晶圓表面上研磨殘餘銅膜下;及使用上述本發 明聚體組成物以實質相同的逮率研磨障壁膜、絕緣膜與埋 入的銅’以及-種以上述方法製造之包括銅互連線的半導 體裝置。 如上所述,本發明CMP漿體組成物對於在製造銅互連 線上之障壁研磨係有用的,因此,對於牽涉到障壁研磨步 驟之半導體裝置的製造也是有用的。 以下,本發明將參考下述的的實例說明,但並不限於 此0 實例1至4 首先’ 〇·5 wt的膠體石夕石(顆粒大小:20nm)、0.5wt% 的甘胺酸及O.lwt%的苯並三唑(BTA)與純水混合以製備用 於大量銅研磨的漿體前驅組成物。使用KOH及硝酸使漿體 月1J驅組成物調整至pH7·0,於即將研磨之前與1 .〇wt%的過 氣化氫混合並攪;拌10分鐘以製成銅研磨聚體組成物。然 12 201035300 , 使其上含鋼膜、钽膜及TEOS(原矽酸四乙基酯)膜的晶 圓於下愿+ 1 主刀人5psi、平臺轉動速率93rpm、頭轉動速率87rpm 及漿體I4·入、* 貝八速率150ml/min的情況下使用所得的漿體組成 物進彳_ $一研磨步驟’接著於下壓力l.5psi、平臺轉動速率 頌轉動速率87rpm及漿體饋入速率I50ml/min的 兄下使用所得的漿體組成物進行第二研磨步驟。 如以下第1表所示,8wt%的膠體矽石、用作腐蝕抑 制劑之〇 Ο· 45wt% 的 5-甲基-1Η-苯並三唑(ΤΤΑ)、0.2wt% 的 ° 風〇‘lwt%的銅表面保護劑及91.65wt%的去離子水 旦乂製備用於障壁研磨的漿體組成物。漿體組成物以少 ’ 里肖黾調整至PH2.9-3.0。利用各個障壁研磨漿體組成物在 、下的情况下於經第一及第二研磨步驟處理的晶圓上實行 第一研磨步驟。評估銅蝕刻速率及研磨表現,結果簡述於 以下第2表中。 為了》平估銅银刻速率,一銅樣品(3x3cm)被置於含有 Q 1〇 g各個障壁研磨漿體組成物的25°C燒杯中達30分鐘,測 定钮刻前後的銅樣品厚度。 為了評估研磨表現,埋入的銅、钽膜及TEOS膜在平 臺轉動速率93rpm、頭轉動速率87rpm、下壓力i.5pSi、漿 體饋入速率150ml/min的情況下使用200mm Applied Mirra Mesa CMP系統(AMAT)移除60秒。使用IC1010研磨墊 (Rodel)。研磨前後的膜厚度差異被轉換成電阻以獲得研磨 速率。 13 201035300 評估銅與TEOS膜之表面缺陷的程度。就銅表面而言, 計算0.247 μιη或更大的缺陷,就TEOS表面而言,計算0.09 μιη或更大的缺陷。 比較實例1至6 除了銅表面保護劑及研磨顆粒之顆粒分布如以下第1 表中所示之外,研磨表現以與實例1相同方式評估,結果 簡單顯示於以下第2表中。 第1表 樣品 銅表面保 護劑 腐钱 抑制 劑 (ΤΤΑ) (wt%) H2〇2 (wt%) 研磨顆粒 I.J pH 平均主 要顆粒 大小 (D1) (±3nm) 平均次 要顆粒 大小 (D2) (±5nm) D1/ D2 實例1 ΡΑΑ 0.045 0.2 25 41 0.6 2.97 實例2 ΡΑΑ 0.045 0.2 35 90 0.4 3.02 實例3 ΡΑΑ/ΜΑ (1:1) 0.045 0.2 25 50 0.5 2.97 實例4 ΡΑΜ/ΑΑ (4:6) 0.045 0.2 25 50 0.5 2.97 比較實 例1 ΡΑΑ 0.045 0.2 20 25 0.8 2.94- 比較實 例2 ΡΑΑ 0.045 0.2 50 55 0.9 3.01 比較實 例3 ΡΑΑ 0.045 0.2 70 75 0.9 2.99 比較實 例4 ΡΑΜ 0.045 0.2 25 50 0.5 3.01 比較實 例5 ΡΑΜ/ΑΑ (6:4) 0.045 0.2 25 50 0.5 2.97 比較實 例6 - 0.045 0.2 25 50 0.5 2.98 14 201035300 PAA : 聚丙烯酸 PAM :聚丙烯醯胺 PAA/MA :聚丙烯酸-共-順丁烯二酸 PAM/AA:聚丙烯醯胺-共-丙烯酸 第2表 樣品 銅蝕刻 速率 (A/min) 研磨速率 (A/min) 研磨速率 比例 表面缺陷數目 组 TEO S 銅 Ta : TEOS : Cu &gt;0.24 7D (Cu) &gt;0.09 □ (TEOS) 實例1 8.2 601 550 542 1.1 : 1 : 1 96 113 實例2 8.4 576 640 654 0.9 : 1 : 1 93 124 實例3 8.1 605 560 534 1.1 : 1 : 1 75 98 實例4 8.3 521 550 539 1:1:1 92 116 比較實 例1 8.1 364 150 1423 0.3 : 0.1 : 1 138 562 比較實 例2 7.8 353 199 1362 0.3 : 0.2 : 1 157 457 比較實 例3 8.2 262 241 717 0.4 : 0.3 : 1 113 519 比較實 例4 9.5 145 547 326 0.4 : 1.7 : 1 95 120 比較實 例5 8.5 254 642 650 0.4 : 1 : 1 124 126 比較實 例6 6.0 596 553 198 3 : 2.8 : 1 87 1565 〇 〇 如第1及2表所示,依據本發明CMP漿體組成物,鈕 膜及氧化物膜呈現高研磨速率,而且钽膜、氧化物膜及銅 的研磨速率比例約1 : 1 : 1(非選擇性研磨)。此處所使用之 “非選擇性研磨”或類似表達想要意指障壁膜、絕緣膜及銅 膜關於彼此的研磨速率比例為1.0±0.20(即,0.80至1.20)。 15 201035300 實例1-4的本發明CMP漿體組成物,其中使用D1/D2 比例0.4至〇·6的研磨顆粒,而且聚丙稀酸、丙烯酸與順丁 烯二酸(1 : 1)的共聚物或丙稀醯胺與丙稀酸(4: 6)的共聚物 被用作銅表面保護劑,可達到所要的研磨表現。 關於比較實例1-3的CMP漿體組成物,其中使用D1/D2 比例0.8至0.9的研磨顆粒及聚丙烯酸被用作銅表面保護 劑’组膜及TEOS膜呈現較低的研磨速率。關於比較實例4 -5的CMP漿體組成物’其中使用di/d2比例0.5的研磨顆 粒,且聚丙烯醯胺或丙烯醯胺與丙烯酸(6: 4)的共聚物被用 作銅表面保護劑,钽膜研磨速率比TE〇s膜及銅還低,這 讓CMP漿體組成物报難達到鈕膜、氧化物膜及銅膜約i : 1 : 1的研磨速率比例(非選擇性研磨)。 關於不含銅表面保護劑之比較實例6的CMP漿體組成 物’由於銅表面上腐财卩制劑的過度反應,銅研磨不會有 效率的發生。於此方面,可以考慮調整腐鱗制劑的含量,201035300 VI. Description of the invention: [Technical target field of invention] Cross-reference of related application This application claims Korean Patent Application 10-2008-0137804 and September 2009, applied to Korea Intellectual Property Office on December 31, 2008. The priority of the Korean Patent No. 10-2009-0086869, the entire disclosure of which is incorporated herein by reference. FIELD OF THE INVENTION This invention relates to a chemical mechanical polishing (CMP) slurry composition for barrier wall polishing in the fabrication of copper interconnects. - Background of the Invention In the current trend of large-scale integrated circuits (hereinafter referred to as LSIs) tending to be highly integrated and expressive, new microprocessing methods have been developed. One such method is chemical mechanical polishing (hereinafter referred to as CMp), which is a technique commonly used in LSIs processes (especially multilayer metal interconnect processes) to planarize insulating interlayers to form metals. Tethered or buried metal interconnects, or the like. Recently, copper or copper alloys have been used as interconnect material to make highly integrated LSIs. However, copper and copper alloys are difficult to form dry etching processes commonly used for forming aluminum alloy interconnects. In this regard, a damascene method is used in which a copper or copper alloy film is deposited and buried on or in an insulating film on which a trench is formed, and the non-trenched film portion is removed by CMp, thereby forming a buried Incoming Copper Interconnects 201035300 CMP is a process in which a polishing pad and a slurry composition are used to planarize a wafer surface during fabrication of a semiconductor device. During the CMp, the wafer is orbitally moved relative to the polishing pad (in combination with the moving and moving), wherein the wafer and the polishing pad are in contact with each other, and at this time, the pad body composition including the abrasive particles is used. Grinding is carried out. In general, the polymer composition used in CMp includes abrasive particles responsible for physical action and a chemical responsible agent. Therefore, the CMP fine, composition can be physically and chemically selected to remove the exposed portion of the surface of the Japanese yen, thus ensuring optimum planarization over a wide surface area. When forming metal interconnects using CMP, it is important to achieve the desired polishing rate while controlling the chemical _. In particular, in the formation of copper interconnects, the copper beryllium can be easily removed due to the high rot (four) properties of the chemical material, but the copper interconnect is easily corroded due to the increased etching rate. In order to solve this problem, it is necessary to use an appropriate proportion of the oxidizing agent while adding a corrosion inhibitor to the CMP slurry composition. For buried metal interconnects, such as copper or copper alloy interconnects or crane plug interconnects, a two-step grinding is performed as follows. For example, in order to form a copper interconnect, first, a large amount of copper is quickly removed (a so-called "large amount of copper grinding step"). Second, the copper is removed but the barrier film and the insulating film are not removed (the so-called "copper overgrinding step"). Third, the copper removal rate is lowered and the barrier film and the insulating film removal rate are increased, so that the copper removal rate is substantially the same as the removal rate of the barrier film and the insulating film (so-called "barrier grinding step,"). The polishing selectivity with respect to the barrier film and the insulating film should be lowered to reduce the corrosion/depression occurring during the second grinding step and completely remove the copper residue. If the barrier film 201035300 and the insulating film are polished at a significantly lower rate than copper, The corrosion/depression occurring in the second grinding step is not removed. Generally, the first and second grinding steps are carried out using the same large amount of copper abrasive slurry composition under different grinding conditions. A slurry polishing slurry composition is used which is different from a large amount of copper abrasive slurry composition. The present invention provides a slurry composition for a third grinding step. To form a copper interconnect, groups, combined gold, nitrided groups or Other antimony compounds are used as barrier materials to prevent copper from diffusing into the insulating interlayer. These barrier materials are more rigid and less susceptible than copper and copper alloys. Oxidation. Therefore, the removal rate of the barrier material, which is usually mechanically used, is increased. However, in the present case, it is highly probable that scratches are formed on the surface of the pattern after grinding. To improve the last copper interconnection during the barrier grinding step The recession and corrosion removal on the line pattern, the ratio of the polishing rate of the copper film, the barrier film and the insulating film is desirably 1: 1: 1, and after the final polishing, the residue remaining on the insulating film and the copper interconnection line The surface defects (such as contamination and scratches) caused by the abrasive particles should be as small as possible. SUMMARY OF THE INVENTION The present invention provides a CMP slurry composition for barrier polishing in the manufacture of copper interconnect wires, which can be realized For the high polishing rate of tantalum used as a barrier material and tantalum oxide used as an insulating material, the polishing rate ratio of tantalum, niobium oxide and copper is about 1: 1: (non-selective grinding). 201035300 also provides - a method of polishing a barrier film, a film, and a steel film at a high speed y using the above CMP slurry composition, thereby minimizing the surface defects after the first polishing. - A semiconductor device manufactured by the method. According to the invention, a chemical mechanical polishing (TMpm body composition for the barrier grinding of a copper interconnect wire, the composition comprising abrasive particles, a copper surface protectant a copper corrosion inhibitor, an oxidizing agent, and a pH adjusting agent, wherein the abrasive particles are non-spherical gelstones having an average primary particle size to an average minor particle size of about G_6 or less, and the copper surface protecting agent is a carboxyl group. a functionalized water-soluble polymer. The composition can be subjected to non-selective grinding so that the ratio of the polishing rate of the barrier film, the insulating film and the copper film with respect to each other ranges from about 8 to about 12. The average of the colloidal vermiculite The primary particle size is from about 2 Torr to about 6 〇 nm and the average secondary particle size is from about 34 to about 200 nm, and is used in an amount of from about 0.5 to about 30% by weight based on the total weight of the CMP slurry composition. The copper surface protectant is used in an amount of from about 0.01 to about 3 wt% based on the CMP, and includes at least one selected from the group consisting of polyacids, polyacrylic acid-co-organic acids, and about 60% or more. a material of the group consisting of carboxyl-functionalized polyacids and co-amines. The copper acid surface protectant is selected from the group consisting of polyacrylic acid, polybutadiene-co-butadiene _, polymaleic acid 'polydecyl acrylate, polyacrylic acid-co- cis-butane _ and polypropylene decylamine- To the group of acylic acids, 丨, —. 201035300 The oxidizing agent is selected from the group consisting of inorganic or organic per-compounds, salts of oxalic acid and bromic acid, salts of nitric acid and nitric acid, salts of chloric acid and chloric acid, salts of chromic acid, chromic acid, and iodine. At least one of a group consisting of a salt of an acid, a iodic acid, a salt of iron, iron, a salt of copper, copper, a rare earth metal oxide, a transition metal oxide, potassium ferricyanide, and potassium dichromate, And the amount used is from about 〇·〇1 to about 1.5% by weight based on the total weight of the CMP slurry composition. The copper corrosion inhibitor is selected from the group consisting of 5-methyl-1H-benzotriazole, 2,2,-[[(5-methyl-1H-benzotriazole-i-yl)-methyl]imino At least one of a group consisting of bis-ethanol, 12,4-triazole, 1,2,3-tris-s, 1,2,3-triazolyl [4,5-b]pyridine, and the amount used It is from about 0.001 to about 1% by weight based on the total weight of the CMP slurry composition. According to another aspect of the present invention, there is provided a method of manufacturing a barrier film for a steel interconnect using the above CMP slurry composition. In accordance with still another aspect of the present invention, a semiconductor device including a copper interconnect line fabricated by the above method is provided. As described above, the CMP slurry composition of the present invention can achieve a high polishing rate for an oxide material used as a barrier material and as an insulating material, so that the ratio of the polishing rate of the button film, the oxide film, and the copper film to each other falls. From about 〇8 to about 1.25, the surface defects after final polishing are minimized and thus are very very difficult to use for the fabrication of copper interconnects. DETAILED DESCRIPTION OF THE INVENTION In the following detailed description, the invention will now be more fully described, but not all of the embodiments of the invention. In fact, the present invention may be embodied in many different forms, and the present invention should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that the disclosure can be The terminology used herein is for the purpose of the description, and is not intended to limit the invention. The term "and/or" used herein includes any or all combinations of one or more of the associated listed items. The singular forms "a", "the" and "the" are used in the <RTI ID=0.0> </ RTI> </ RTI> <RTIgt; It should be further understood that the terms "including," and/or "comprising", when used in the specification, particularly indicate the presence of the features, integers, steps, operations, 7L parts and/or components, but not Excluding the presence or the presence of one or more other characteristics, integers, steps, operations, components and/or components and/or groups thereof. The present invention is for a barrier grinding process for the manufacture of copper interconnects. a CMP slurry composition comprising abrasive particles, a copper surface protectant, a copper corrosion inhibitor, an oxidizing agent, and a pH adjuster, wherein the ratio of the average primary particle size to the average secondary particle size of the abrasive particles is about 〇6 Or less non-spherical rubber (tetra) stone, and copper surface protected (four) slit-functionalized water-soluble polymer. The present invention will now be more fully described below. Colloidal stone stone type - used under acidic conditions A material that provides enhanced dispersion stability, which also has no scratches __abrasives and increases the barrier mode and the absolute polishing rate, so that the ratios of the polishing rates of the copper film, the barrier film and the insulating film with respect to each other are substantially the same. The ratio of primary particle size to average secondary particle size (D2) is less than about 或更6 or 201035300, such as from about 0.3 to about 0.6. Although a smaller D1/D2 ratio provides better milling efficiency, the range is from about The D1/D2 ratio of 〇·3 to about 被6 is used for commercial scales. As is well known to those skilled in the art, the particle size (diameter) of metal oxides can be distinguished into two types, that is, Primary particle size (diameter) and secondary particle size (length). Typically, the primary particle size means BEIXBnmauer-Emmett-Teller or TEM (transmissive electron microscopy) prior to preparation of the slurry composition The size (diameter) of the individual spherical metal oxide particles determined by analysis, and the minor particle size means the size of the aspherical particles determined by DLS (Dynamic Laser Scattering) analysis after preparation of the slurry composition ( Length). The average primary particle size of the colloidal stone is about 20 to about 6 11111 and the average secondary particle size is about 34 to about 200 nm. The amount of colloidal vermiculite used is about 0.5 based on the total weight of the CMp slurry composition. Up to about 30% by weight, for example about To about 2 〇 wt% 'in another case, from about 5 to about 1%, which provides a suitable polishing rate and good (four) dispersion stability. The copper surface protectant acts by competing with the rot inhibitor The copper surface adjusts the copper polishing rate to an appropriate extent without copper spots. The copper surface protectant can be a weight 3: average molecular weight (Mw) about, surface or less anionic carboxyl-B fb-based water-soluble polymerization The copper surface protecting agent may be selected from the group consisting of polyphenolic acid (for example, polyacrylic acid), acrylic acid (co-acidic acid) (for example, acrylic acid-co-maleic acid), carboxylic acid-co-amine and its The relative distribution (ratio) of the carboxylic acid co-amine 'It-based functional group to the guanamine functional group may be about 201035300 60% or more. This is because more of the 14-branched amine functional group results in a decrease in the barrier film removal rate and (4) a decrease in the storage stability of the composition. Exemplary multi-nuclears include, but are not limited to, polyacrylic acid, polybutadiene common _ maleic acid, poly-succinic acid, polymethacrylic acid and the like, and combinations thereof, and examples (4) __acids include but not limited to polyacrylic acid • co-maleic acid with analogs and combinations thereof, and hemp amines include, but are not limited to, polyacrylamides _ co-acyclic acids and the like a combination of objects and the like. The copper surface protection is used in an amount of from about 0.01 to about 3 wt%, based on the total weight of the CMp slurry composition, for example from about 0.02 to about 2 wt%, and in another example from about 0.05 to about 1 wt%, which provides a suitable polishing rate and Good slurry dispersion stability. The oxidizing agent used herein is used to oxidize the metal surface, thereby ensuring an enhanced polishing rate. Exemplary oxidizing agents include, but are not limited to, inorganic or organic peroxy compounds, bromic acid and salts thereof, nitric acid and salts thereof, gaseous acids and salts thereof, chromic acid and salts thereof, iodic acid and salts thereof, iron and Its salt, copper and its salt, rare earth metal oxide, transition metal oxide 'ferric cyanide unloading, potassium dichromate and the like and combinations thereof. Among them, hydrogen peroxide does not cause environmental pollution. The oxidizing agent is used in an amount of from about 〇1〇 to about 1.5% by weight, based on the total weight of the CMP slurry composition, for example from about 0.05 to about 1% by weight, and in another case from about 10,000 to about 0.5% by weight, which is provided Proper polishing rate and good surface properties of the abraded surface. 201035300 Copper rot inhibitor is a material used to slow the chemical reaction of oxidants. In particular, copper is used as a grinding modifier to inhibit copper lands in the lower regions where physical grinding does not occur, and is removed at higher altitudes by the physical action of the abrasive particles. (4) Self-containing nitrogen compounds such as hydrazine, leucine, amino acids, imines, guanidines and the like, and combinations of two or more. Exemplary copper rot inhibitors include, but are not limited to, cyclic nitrogen compounds or derivatives thereof, for example, benzotriazine (tetra) derivatives thereof, and further examples are isomeric mixtures of 5-methyl-1H-benzotriazine. , 22|Peijia benzotrisinyl) _A filament] bis-ethyl _ isomer mixture; Μ triazole, 1,2,3-triazole or 1,2,3-triazolyl [4,5 inhibitory pyridine. The rot (10) formulation is used in an amount of from about 0.001 to about 1% by weight based on the total weight of the CMp polymer composition, such as from about 5 to about 1% by weight, and in another case from about _ to about 0.07% by weight, which is provided Good corrosion resistance, proper polishing rate and good slurry storage stability. The CMP polymer composition of the present invention comprises a pH adjusting agent conventionally used in the art to adjust the pH of the polymer composition to a range of from about 2 Torr to about 45. Further, the CMP slurry composition further includes an additive such as a surfactant conventionally used in the art. The barrier film polishing using the CMP slurry composition of the present invention will now be briefly described. The first grinding step is carried out using a large amount of copper abrasive slurry composition well known to those skilled in the art to quickly remove excess copper. Then, a second grinding step is carried out using the same large amount of the copper abrasive slurry composition as the first grinding step except that a lower downforce is applied and the barrier film and the insulating film are not removed when the copper is removed. Finally, the copper, barrier film and insulating film are removed at substantially the same rate by the 11 201035300 grinding step of the CMp of the present invention and the copper slurry composition is completely removed to reduce the corrosion/depression occurring on the barrier film and the insulating film during the first period. A Residue Accordingly, the present invention provides a method of polishing a barrier raft using a CMP slurry composition on a copper interconnect. The present invention also provides a method of fabricating a wire, the method comprising: using a material known to the artist to grind a composition to polish a copper film on a wafer surface at a higher downforce, the wafer having copper on its surface a film, a barrier film, and an insulating film; using the same copper abrasive slurry composition as described above to grind the residual copper film on the surface of the wafer at a lower pressing pressure; and using the above-described polymer composition of the present invention at substantially the same rate A barrier film, an insulating film, and buried copper 'and a semiconductor device including a copper interconnection line manufactured by the above method are polished. As described above, the CMP slurry composition of the present invention is useful for barrier polishing systems for fabricating copper interconnect lines and, therefore, is also useful for the fabrication of semiconductor devices involving barrier polishing steps. Hereinafter, the present invention will be explained with reference to the following examples, but is not limited to this. Examples 1 to 4 First, '〇·5 wt of colloidal stone (particle size: 20 nm), 0.5 wt% of glycine and O .lwt% of benzotriazole (BTA) was mixed with pure water to prepare a slurry precursor composition for a large amount of copper grinding. The slurry was adjusted to pH 7.0 with KOH and nitric acid, mixed with 1% by weight of hydrogen peroxide before stirring, and stirred for 10 minutes to prepare a copper abrasive composition. However, 12 201035300, the wafer containing the steel film, ruthenium film and TEOS (former tetraethyl citrate) film is 5 psi for the main knife, the table rotation rate is 93 rpm, the head rotation rate is 87 rpm, and the slurry I4 ·Into, * Bayer rate 150ml/min using the resulting slurry composition into the 彳 _ $ a grinding step' followed by a lower pressure of 1.5 psi, platform rotation rate 颂 rotation rate of 87 rpm and slurry feed rate I50ml The resulting slurry composition was subjected to a second grinding step under the brother of /min. As shown in Table 1 below, 8 wt% of colloidal vermiculite, used as a corrosion inhibitor, 45 wt% of 5-methyl-1 fluorene-benzotriazole (ΤΤΑ), 0.2 wt% of ° A lwt% copper surface protectant and 91.65 wt% deionized water hydrazine were used to prepare a slurry composition for barrier grinding. The slurry composition was adjusted to a pH of 2.9-3.0 with a small amount. A first grinding step is performed on the wafers processed by the first and second grinding steps, with each barrier polishing slurry composition being under and under. The copper etch rate and polishing performance were evaluated and the results are summarized in Table 2 below. To evaluate the copper silver engraving rate, a copper sample (3 x 3 cm) was placed in a 25 ° C beaker containing Q 1 〇 g of each barrier slurry composition for 30 minutes, and the thickness of the copper sample before and after the button was measured. In order to evaluate the grinding performance, the embedded copper, ruthenium and TEOS membranes were used with a 200 mm Applied Mirra Mesa CMP system at a platform rotation rate of 93 rpm, a head rotation rate of 87 rpm, a downforce of i.5 pSi, and a slurry feed rate of 150 ml/min. (AMAT) removed for 60 seconds. Use the IC1010 polishing pad (Rodel). The difference in film thickness before and after grinding is converted into a resistance to obtain a polishing rate. 13 201035300 Assessment of the extent of surface defects in copper and TEOS films. For the copper surface, a defect of 0.247 μm or more is calculated, and in the case of the TEOS surface, a defect of 0.09 μm or more is calculated. Comparative Examples 1 to 6 The polishing performance was evaluated in the same manner as in Example 1 except that the particle distribution of the copper surface protective agent and the abrasive particles was as shown in Table 1 below, and the results are simply shown in Table 2 below. Table 1 Sample Copper Surface Protectant Cortisol Inhibitor (ΤΤΑ) (wt%) H2〇2 (wt%) Abrasive Particle IJ pH Average Primary Particle Size (D1) (±3nm) Average Secondary Particle Size (D2) ( ±5nm) D1/ D2 Example 1 ΡΑΑ 0.045 0.2 25 41 0.6 2.97 Example 2 ΡΑΑ 0.045 0.2 35 90 0.4 3.02 Example 3 ΡΑΑ/ΜΑ (1:1) 0.045 0.2 25 50 0.5 2.97 Example 4 ΡΑΜ/ΑΑ (4:6) 0.045 0.2 25 50 0.5 2.97 Comparative Example 1 ΡΑΑ 0.045 0.2 20 25 0.8 2.94- Comparative Example 2 ΡΑΑ 0.045 0.2 50 55 0.9 3.01 Comparative Example 3 ΡΑΑ 0.045 0.2 70 75 0.9 2.99 Comparative Example 4 ΡΑΜ 0.045 0.2 25 50 0.5 3.01 Comparative Example 5 ΡΑΜ/ΑΑ (6:4) 0.045 0.2 25 50 0.5 2.97 Comparative Example 6 - 0.045 0.2 25 50 0.5 2.98 14 201035300 PAA : Polyacrylic acid PAM: Polyacrylamide PAA/MA: Polyacrylic acid-co-maleic acid PAM/AA: Polyacrylamide-co-acrylic acid 2nd sample Copper etching rate (A/min) Polishing rate (A/min) Grinding rate ratio Surface defect number group TEO S Copper Ta : TEOS : Cu &gt; 0.24 7D (Cu) &gt;0.09 □ (TEOS) Example 1 8.2 601 550 542 1.1 1 : 1 96 113 Example 2 8.4 576 640 654 0.9 : 1 : 1 93 124 Example 3 8.1 605 560 534 1.1 : 1 : 1 75 98 Example 4 8.3 521 550 539 1:1:1 92 116 Comparative Example 1 8.1 364 150 1423 0.3 : 0.1 : 1 138 562 Comparative Example 2 7.8 353 199 1362 0.3 : 0.2 : 1 157 457 Comparative Example 3 8.2 262 241 717 0.4 : 0.3 : 1 113 519 Comparative Example 4 9.5 145 547 326 0.4 : 1.7 : 1 95 120 Comparative Example 5 8.5 254 642 650 0.4 : 1 : 1 124 126 Comparative Example 6 6.0 596 553 198 3 : 2.8 : 1 87 1565 As shown in Tables 1 and 2, the CMP slurry composition according to the present invention, the button film And the oxide film exhibits a high polishing rate, and the polishing rate ratio of the ruthenium film, the oxide film, and the copper is about 1:1 (non-selective polishing). As used herein, "non-selective grinding" or the like is intended to mean that the ratio of the polishing rate of the barrier film, the insulating film, and the copper film with respect to each other is 1.0 ± 0.20 (i.e., 0.80 to 1.20). 15 201035300 The CMP slurry composition of the invention of Examples 1-4, wherein abrasive particles having a D1/D2 ratio of 0.4 to 〇·6 are used, and a copolymer of polyacrylic acid, acrylic acid and maleic acid (1:1) Or a copolymer of acrylamide and acrylic acid (4:6) is used as a copper surface protectant to achieve the desired abrasive performance. Regarding the CMP slurry compositions of Comparative Examples 1-3, in which abrasive particles having a D1/D2 ratio of 0.8 to 0.9 and polyacrylic acid were used as the copper surface protective agent's film and the TEOS film exhibited a lower polishing rate. Regarding the CMP slurry composition of Comparative Example 4-5, wherein abrasive particles having a di/d2 ratio of 0.5 were used, and a copolymer of polypropylene decylamine or acrylamide and acrylic acid (6:4) was used as a copper surface protective agent. The polishing rate of the ruthenium film is lower than that of the TE〇s film and copper, which makes it difficult for the CMP slurry composition to reach the ratio of the polishing rate of the button film, the oxide film and the copper film of about i:1:1 (non-selective grinding). . Regarding the CMP slurry composition of Comparative Example 6 containing no copper surface protecting agent, copper grinding did not occur efficiently due to excessive reaction of the rot recipe on the copper surface. In this regard, it may be considered to adjust the content of the rot scale preparation,

但是此種調整?丨起鋼研磨速率的㈣變動,如此導致不當 的銅移除結果。 W 於與上述相同的研磨條件下,利用實例3的CMp聚體 2物來!評估。絲齡扣下第3表。在線寬 μπι之、、.及乳化物線地帶測量凹陷現象,以及在線寬 _氧化線之9G_密度的地帶測量 腐触現象。 201035300 第3表 凹陷 〇 (A) 凹陷改善程 度(人) 腐蝕(λ) 凹陷改善程 度(Α) 起始 600 - 550 研磨60秒 380 220 392 158 研磨120秒 185 415 211 339 研磨180秒 28 572 40 510 如第3表所示,本發明CMP漿體組成物顯著地改善最 後研磨之後的凹陷及腐蝕問題,而且絕緣膜在腐蝕地帶的 凹陷顯著地降低。 如上所述’本發明CMP漿體組成物就以鈕用作障壁材 料及以氧化矽用作絕緣材料者可實現高研磨速率,使得 钽、氧化矽及銅關於彼此的研磨速率比例落入從約〇8至 約1.2,即約1 : 1 : 1的範圍(非選擇性研磨),如此使得最 後研磨後的表面缺陷減到最少,並因此,對於製造銅互連 線所用的障壁研磨非常有用。 本發明的許多修改及其他實施例將會提醒習於此藝者 本發明具有上述教示的所有優點。所以,應了解I本發明 不限於所揭露的特定實施例,而且修改及其他實施例也包 括^本發”請專利範__内。雖然此處使用特別的 =’它們僅以普通及制的意義被使用而非用作限制的 本發明的範_界定於申請專利範圍。 式簡單說明】 (無) 【主要元件符號說明】 (無) 17But what about this adjustment? The (4) variation in the grinding rate of the steel is caused, which leads to improper copper removal results. W was evaluated using the CMp-mer of Example 3 under the same grinding conditions as above. The silk age is deducted from the third table. The on-line width μπι, , and the emulsion line were used to measure the sag phenomenon, and the 9G_ density of the line width _ oxidized line measured the rot. 201035300 3rd table depression 〇(A) crater improvement degree (human) corrosion (λ) dent improvement degree (Α) starting 600 - 550 grinding 60 seconds 380 220 392 158 grinding 120 seconds 185 415 211 339 grinding 180 seconds 28 572 40 510 As shown in Table 3, the CMP slurry composition of the present invention remarkably improves the depression and corrosion problems after the final polishing, and the depression of the insulating film in the corrosion zone is remarkably lowered. As described above, the CMP slurry composition of the present invention can achieve a high polishing rate by using a button as a barrier material and a ruthenium oxide as an insulating material, so that the polishing rate ratio of ruthenium, iridium oxide and copper to each other falls from about From 8 to about 1.2, i.e., a range of about 1: 1: (non-selective grinding), which minimizes surface defects after final polishing and, therefore, is useful for barrier grinding used to make copper interconnects. Many modifications and other embodiments of the invention will be apparent to those skilled in the art. Therefore, it should be understood that the present invention is not limited to the specific embodiments disclosed, and that the modifications and other embodiments are also included in the "patent of the invention". Although the use of the special = 'they are only ordinary and The meaning of the invention, which is used instead of being used as a limitation, is defined in the scope of the patent application. Brief description of the formula] (none) [Explanation of main component symbols] (none) 17

Claims (1)

201035300 七、申請專利範圍: 1. 一種在製造銅互連線上之障壁研磨用的化學機械研磨 (CMP)漿體組成物,該組成物包括研磨顆粒、銅表面保 護劑、銅腐姓抑制劑、氧化劑及pH調整劑, 其中,該研磨顆粒係為具有平均主要顆粒大小對平均次 要顆粒大小的比例約0.6或更少的非球形膠體矽石,及 該銅表面保護劑係為羧基-官能基化的水溶性聚合物。 2. 如申請專利範圍第1項的CMP漿體組成物,其實行非 選擇性研磨以使得一障壁膜、一絕緣膜及一銅膜關於彼 此的研磨速率比例在約0.8至約1.2的範圍。 3. 如申請專利範圍第1項的CMP漿體組成物,其中該膠 體矽石具有約20至約60nm的平均主要顆粒大小及約 34至約200nm的平均次要顆粒大小,且使用數量為基 於CMP漿體組成物的總重約0.5至約30wt%。 4. 如申請專利範圍第1項的CMP漿體組成物,其中該銅 表面保護劑的使用數量為基於CMP漿體組成物的總重 約0.01至約3wt%。 5. 如申請專利範圍第1項的CMP漿體組成物,其中該銅 表面保護劑包括多羧酸、聚丙烯酸-共(co)-有機酸、約 60%或更多的羧基-官能基化的多羧酸-共-醯胺或其等 的組合。 6. 如申請專利範圍第1項的CMP漿體組成物,其中該銅 表面保護劑包括聚丙烯酸、聚丁二烯-共-順丁烯二酸、 聚順丁烯二酸、聚曱基丙烯酸、聚丙烯酸-共-順丁烯二 18 201035300 酸,聚丙烯醯胺-共-丙烯酸或其等的組合。 7. 如申請專利範圍第1項的CMP漿體組成物,其中該氧 化劑包含一無機過化合物(per-compound)、有機過化合 物、溴酸、溴酸的鹽類、硝酸、硝酸的鹽類、氯酸、氯 酸的鹽類、鉻酸、鉻酸的鹽類、碘酸、碘酸的鹽類、鐵、 鐵的鹽類、銅、銅的鹽類、稀土金屬氧化物、過渡金屬 氧化物、鐵氰化鉀、重鉻酸鉀或其等的組合,及使用數 量基於CMP漿體組成物的總重為約0.01至約1.5wt%。 8. 如申請專利範圍第1項的CMP漿體組成物,其中該銅 腐蝕抑制劑包括5-甲基-1H-苯并三唑、2,2'-[[(5-甲基 -1H-苯並三唑-1-基)-甲基]亞胺基]雙-乙醇、1,2,4-三 唑、1,2,3-三唑、1,2,3-三唑基[4,5-b]吡啶或其等的組合, 及使用數量為基於CMP漿體組成物的總重約0.001至 約 lwt%。 9. 一種使用CMP漿體組成物研磨一製造銅互連線用之障 壁膜的方法,該CMP漿體組成物包含研磨顆粒、銅表 面保護劑、銅腐蝕抑制劑、氧化劑及pH調整劑,其中 該研磨顆粒係為具有平均主要顆粒大小對平均次要顆 粒大小的比例約0.6或更少的非球形膠體矽石,及該銅 表面保護劑係羧基-官能基化的水溶性聚合物。 10. 如申請專利範圍第9項的方法,其中包括在一以相對彼 此從約0.8至約1.2的研磨速率比例範圍下研磨一障壁 膜、一絕緣膜及一銅膜。 11. 如申請專利範圍第9項的方法,其中該膠體矽石具有約 19 201035300 20至約60nm之平均主要顆粒大小及約34至約200nm 的平均次要顆粒大小,且使用數量為基於CMP漿體組 成物的總重約0.5至約30wt%。 12. 如申請專利範圍第9項的方法,其中該銅表面保護劑的 使用數量為基於CMP漿體組成物的總重約0.01至約 3wt%。 13. 如申請專利範圍第9項的方法,其中該銅表面保護劑包 括多羧酸、聚丙稀酸-共-有機酸、約60%或更多的羧基 -官能基化的多羧酸-共-醯胺或其等的組合。 14. 如申請專利範圍第9項的方法,其中該銅表面保護劑包 括聚丙烯酸、聚丁二烯-共-順丁烯二酸、聚順丁烯二酸、 聚甲基丙烯酸、聚丙烯酸-共-順丁烯二酸、聚丙烯醯胺-共-丙烯酸或其等的組合。 15. 如申請專利範圍第9項的方法,其中該氧化劑包括無機 或有機過化合物、溴酸、溴酸的鹽類、硝酸、硝酸的鹽 類、氯酸、氯酸的鹽類、鉻酸、鉻酸的鹽類、碘酸、碘 酸的鹽類、鐵、鐵的鹽類、銅、銅的鹽類、稀土金屬氧 化物、過渡金屬氧化物、鐵氰化鉀、重鉻酸钟或其等的 組合,及使用數量基於CMP漿體組成物的總重為約0.01 至約 1.5wt%。 16. —種半導體裝置,包含以申請專利範圍第9項之方法所 製造的銅互連線。 20 201035300 四、指定代表圖: (一) 本案指定代表圖為:第( )圖。(無) (二) 本代表圖之元件符號簡單說明: (無) 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201035300 VII. Patent application scope: 1. A chemical mechanical polishing (CMP) slurry composition for barrier grinding in the manufacture of copper interconnect wires, the composition comprising abrasive particles, copper surface protection agent, copper corrosion inhibitor, An oxidizing agent and a pH adjusting agent, wherein the abrasive particles are non-spherical colloidal vermiculite having an average primary particle size to an average minor particle size of about 0.6 or less, and the copper surface protecting agent is a carboxyl-functional group. Water soluble polymer. 2. The CMP slurry composition of claim 1 which is subjected to non-selective grinding such that a barrier film, an insulating film and a copper film have a polishing rate ratio of from about 0.8 to about 1.2 with respect to each other. 3. The CMP slurry composition of claim 1, wherein the colloidal vermiculite has an average primary particle size of from about 20 to about 60 nm and an average secondary particle size of from about 34 to about 200 nm, and the amount used is based on The total weight of the CMP slurry composition is from about 0.5 to about 30% by weight. 4. The CMP slurry composition of claim 1, wherein the copper surface protecting agent is used in an amount of from about 0.01 to about 3 wt% based on the total weight of the CMP slurry composition. 5. The CMP slurry composition of claim 1, wherein the copper surface protecting agent comprises a polycarboxylic acid, a polyacrylic acid-co-organic acid, and about 60% or more carboxyl-functionalized. A combination of a polycarboxylic acid-co-amine or a combination thereof. 6. The CMP slurry composition of claim 1, wherein the copper surface protecting agent comprises polyacrylic acid, polybutadiene-co-maleic acid, polymaleic acid, polyacrylic acid , Polyacrylic acid-co-m-butylene 18 201035300 acid, polypropylene decylamine-co-acrylic acid or a combination thereof. 7. The CMP slurry composition according to claim 1, wherein the oxidizing agent comprises a per-compound, an organic per compound, a bromic acid, a bromic acid salt, a nitric acid, a nitric acid salt, Chloric acid, salts of chloric acid, salts of chromic acid, chromic acid, salts of iodic acid and iodic acid, salts of iron and iron, salts of copper and copper, rare earth metal oxides, transition metal oxides The combination of potassium ferricyanide, potassium dichromate or the like, and the amount used is from about 0.01 to about 1.5% by weight based on the total weight of the CMP slurry composition. 8. The CMP slurry composition of claim 1, wherein the copper corrosion inhibitor comprises 5-methyl-1H-benzotriazole, 2,2'-[[(5-methyl-1H-) Benzotriazol-1-yl)-methyl]imino]bis-ethanol, 1,2,4-triazole, 1,2,3-triazole, 1,2,3-triazolyl [4 The combination of 5-b]pyridine or the like, and the amount used is from about 0.001 to about 1% by weight based on the total weight of the CMP slurry composition. 9. A method of fabricating a barrier film for a copper interconnect using a CMP slurry composition, the CMP slurry composition comprising abrasive particles, a copper surface protectant, a copper corrosion inhibitor, an oxidant, and a pH adjuster, wherein The abrasive particles are non-spherical colloidal vermiculite having an average primary particle size to average minor particle size ratio of about 0.6 or less, and the copper surface protectant is a carboxyl-functionalized water soluble polymer. 10. The method of claim 9, which comprises grinding a barrier film, an insulating film, and a copper film at a polishing rate ratio of from about 0.8 to about 1.2. 11. The method of claim 9, wherein the colloidal vermiculite has an average primary particle size of from about 19 201035300 20 to about 60 nm and an average secondary particle size of from about 34 to about 200 nm, and the amount used is based on CMP pulp. The bulk composition has a total weight of from about 0.5 to about 30% by weight. 12. The method of claim 9, wherein the copper surface protecting agent is used in an amount of from about 0.01 to about 3 wt% based on the total weight of the CMP slurry composition. 13. The method of claim 9, wherein the copper surface protecting agent comprises a polycarboxylic acid, a polyacrylic acid-co-organic acid, and about 60% or more of a carboxyl-functionalized polycarboxylic acid. - a combination of guanamine or the like. 14. The method of claim 9, wherein the copper surface protecting agent comprises polyacrylic acid, polybutadiene-co-maleic acid, polymaleic acid, polymethacrylic acid, polyacrylic acid- A combination of co-maleic acid, polypropylene decylamine-co-acrylic acid, or the like. 15. The method of claim 9, wherein the oxidizing agent comprises an inorganic or organic compound, a salt of bromic acid, bromic acid, a salt of nitric acid, nitric acid, a salt of chloric acid, chloric acid, chromic acid, Salts of chromic acid, salts of iodic acid, iodic acid, salts of iron, iron, salts of copper, copper, rare earth metal oxides, transition metal oxides, potassium ferricyanide, dichromic acid or The combination, and the amount used, is from about 0.01 to about 1.5% by weight based on the total weight of the CMP slurry composition. 16. A semiconductor device comprising a copper interconnect produced by the method of claim 9 of the patent application. 20 201035300 IV. Designated representative map: (1) The representative representative of the case is: ( ). (None) (2) A brief description of the symbol of the representative figure: (none) 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW98145048A 2008-12-31 2009-12-25 Cmp slurry composition for barrier polishing for manufacturing copper interconnects, polishing method using the composition, and semiconductor device manufactured by the method TWI471413B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080137804 2008-12-31
KR1020090086869A KR101279971B1 (en) 2008-12-31 2009-09-15 CMP slurry composition for polishing copper barrier layer, polishing method using the composition, and semiconductor device manifactured by the method

Publications (2)

Publication Number Publication Date
TW201035300A true TW201035300A (en) 2010-10-01
TWI471413B TWI471413B (en) 2015-02-01

Family

ID=42641288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98145048A TWI471413B (en) 2008-12-31 2009-12-25 Cmp slurry composition for barrier polishing for manufacturing copper interconnects, polishing method using the composition, and semiconductor device manufactured by the method

Country Status (2)

Country Link
KR (1) KR101279971B1 (en)
TW (1) TWI471413B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465603B1 (en) * 2012-12-18 2014-11-27 주식회사 케이씨텍 Cmp slurry composition for polishing copper barrier layer and polishing method using the same
KR102455159B1 (en) * 2020-07-17 2022-10-18 주식회사 케이씨텍 Slurry composition for metal film chemical mechanical polishing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187878A (en) * 1999-12-28 2001-07-10 Nec Corp Slurry for chemical mechanical polishing
JP4152218B2 (en) 2003-02-25 2008-09-17 Necエレクトロニクス株式会社 Slurries for chemical mechanical polishing
US20040216388A1 (en) 2003-03-17 2004-11-04 Sharad Mathur Slurry compositions for use in a chemical-mechanical planarization process
JP2008523638A (en) * 2004-12-13 2008-07-03 プラナー ソリューションズ エルエルシー Chemical mechanical polishing slurry based on colloidal silica
US20080220610A1 (en) * 2006-06-29 2008-09-11 Cabot Microelectronics Corporation Silicon oxide polishing method utilizing colloidal silica
JP5012800B2 (en) * 2006-07-05 2012-08-29 日立化成工業株式会社 Polishing liquid and polishing method for CMP

Also Published As

Publication number Publication date
KR20100080329A (en) 2010-07-08
TWI471413B (en) 2015-02-01
KR101279971B1 (en) 2013-07-05

Similar Documents

Publication Publication Date Title
TWI286157B (en) Bicine/tricine containing composition and method for chemical-mechanical planarization
JP5539934B2 (en) Chemical mechanical polishing slurry useful for copper substrate
JP6023125B2 (en) Chemical mechanical polishing slurry composition and method for copper using it and through silicon via application
TWI434955B (en) Method for chemical mechanical planarization of a tungsten-containing substrate
TWI342332B (en) Selective barrier metal polishing solution
JP4814784B2 (en) Modular barrier removal polishing slurry
US20100164106A1 (en) CMP Slurry Composition for Barrier Polishing for Manufacturing Copper Interconnects, Polishing Method Using the Composition, and Semiconductor Device Manufactured by the Method
US20050104048A1 (en) Compositions and methods for polishing copper
JP2002519471A5 (en)
KR20070001994A (en) Polishing agent and polishing method
WO2017114309A1 (en) Chemical mechanical polishing slurry and application thereof
TW201013771A (en) Method for forming through-base wafer vias in fabrication of stacked devices
TW201024396A (en) Ground composition for use in flatness metal layer
JP7103794B2 (en) Chemical mechanical polishing method for tungsten
JP2005123577A (en) Chemical mechanical planarization composite for reducing erosion in semiconductor wafer
JPWO2008132983A1 (en) Abrasive composition and method for producing semiconductor integrated circuit device
EP2161737A1 (en) Polishing composition and method for manufacturing semiconductor integrated circuit device
JP2018164075A (en) Chemical mechanical polishing method for tungsten
TW201309787A (en) CMP slurry composition for tungsten
TW200938614A (en) CMP slurry composition and process for planarizing copper containing surfaces provided with a diffusion barrier layer
TW201819588A (en) Elevated temperature CMP compositions and methods for use thereof
JP4719204B2 (en) Chemical mechanical polishing slurry and semiconductor device manufacturing method
TW201927953A (en) Chemical mechanical polishing slurry
TW201202402A (en) Polishing agent and polishing method
JP2010010717A (en) Abrasive agent and polishing method