TW201035131A - Stimuli-responsive crosslinked polymer and production method therefor - Google Patents

Stimuli-responsive crosslinked polymer and production method therefor Download PDF

Info

Publication number
TW201035131A
TW201035131A TW98144931A TW98144931A TW201035131A TW 201035131 A TW201035131 A TW 201035131A TW 98144931 A TW98144931 A TW 98144931A TW 98144931 A TW98144931 A TW 98144931A TW 201035131 A TW201035131 A TW 201035131A
Authority
TW
Taiwan
Prior art keywords
polymer
stimuli
responsive
group
cyclic
Prior art date
Application number
TW98144931A
Other languages
Chinese (zh)
Other versions
TWI503337B (en
Inventor
Takayuki Arai
Toshikazu Takata
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of TW201035131A publication Critical patent/TW201035131A/en
Application granted granted Critical
Publication of TWI503337B publication Critical patent/TWI503337B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F28/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F28/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A polymer (A) with two or more annular parts and a straight-chain molecule (B) with a block group at one end and a polymerizable functional group at the other end are mixed to produce a crosslinked polymer precursor (C) with an inclusion complex in at least part thereof, after which said straight-chain polymer (B) and a stimuli-responsive compound (D) are copolymerized by means of the polymerizable functional group in the straight-chain molecule (B), thereby yielding a stimuli-responsive crosslinked polymer (E) that contains a rotaxane structure

Description

201035131 四、 指定代表圖: (一) 本案指定代表圖為:第(1)圖。 (二) 本代表圖之元件符號簡單說明:盔。 五、 本案若梳學式時,減示最_示發__化學式 六、發明說明: 【發明所屬之技術領域】 本發明係關於刺激應答性高分子架橋體及其製造方 法。 【先前技術】 專利文獻1中揭示一種含有輪烷構造之高分子架橋體 (高分子凝膠),其係將使用環糊精作為環狀分子、使用内 含(inclusion)於環狀分子的聚乙二醇作為直鏈狀分子的 聚輪烷予以架橋而得。 此高分子凝膠,與習知的物理凝膠或化學凝膠不同, 係以未利用非共價鍵亦未利用共價鍵的機械性鍵結(互鎖 (interlock)構造)所構成’環狀分子可在直鏈狀分子上自 由地移動’故可顯示以往所無的優異柔軟性。 [先前技術文獻] [專利文獻] [專利文獻1]專利第3475252號公報 201035131 【發明内容】 [發明欲解決之問題] 有餅於溫度等刺激應答而產生物性變化的刺 激應答性物質。為τ制& μ # 為了製造對於上述高分子凝膠賦予刺激應 答性的刺激應答性赵 «Ρ» m 注凝膠,必需使用刺激應答性的聚合物作 為受内含的直鍵肤八 ..Β Λ ^ 刀子,或是ο成聚輪烷後,將刺激應答 ❹ Ο 性化合物導入直鏈狀分子。 但是’上述方法均係必需合成及分離擬聚輪院,並將 此擬聚輪烧再度溶解於其他溶劑後,使用封端劑將末端予 以封端藉此仵到聚輪燒,再度分離精製,再使架橋劑作用 而將聚輪统的環糊精部分架橋。於考慮工業化的情形,如 此的多階段反應從製造成本的觀點非常不利,且各階段的 產率也不一定高。 的方法難以使刺激應答性聚合物貫穿於環 狀分子,後者的方法,於聚輪院合成後,將刺激應答性化 合物導入直鏈狀分子太 本身有困難,任一方法均無法簡便地 敗造刺激應答性凝膠。 本發明係有鑑於此實情而生,目的在於提供一種能簡 的刺激應答性高分子架橋體、新賴的刺激應答性 南分子架橋體,及此等的製造方法。 [解決問題之手段] 為了達成上述目的’本發明首先,提供一種刺激應答 ’南分子架橋體之製造方法,其特徵在於:將具有2個以 201035131 上環狀部分的聚合物,與其中之一末端具有阻隔基 (blocking group)且另一末端具有聚合性官能基之直鏈狀 分子予以混合’就其全部或一部分使形成内含錯合體,其 次’介由前述直鏈狀分子之聚合性官能基,將前述直鏈狀 分子與刺激應答性化合物予以共聚合(發明1 )。又,與直 鏈狀分子的共聚合使用的刺激應答性化合物,為單體。 依照上述發明(發明1 ),可不經過擬輪烷的合成及分 離,而簡便地製造具有互鎖構造的刺激應答性高分子架橋 體。 第二,本發明提供一種刺激應答性高分子架橋體,其 特徵在於:具有互鎖構造,且骨架中包含刺激應答性化合 物或其殘基(發明2)。 上述發明(發明2)中,也可具有藉由具有互鎖構造之 化合物而架橋之部位(發明3)。 &上述發明(發明2、3)中,前述互鎖構造,宜為輪炫構 造L發明4)。惟,本發明不限於此,互鎖構造,例如也可 為交環烷(catenane)構造。 本發明提供一種刺 —一〜乃丁示攝體, 特徵在於·係介由將具有2個以上環狀部分之聚合物, ,中:-末端具有阻隔基且另一末端具有聚合性官能基 可與刖述聚合物形成内含錯合體的直鏈狀分 到的古八 4 兮 间刀子架橋前驅體的前述直鏈狀分子的聚合性官 ,而將前述直鏈狀分子與刺激應答性化合 而獲得(發明5)。 乂共t 201035131 上述發明(發明5)之刺激應答性高分子架橋體,可僅 將高分子架橋前驅體之直鏈狀分子介由該直鏈狀分子於末 端所具有的聚合性官能基而與刺激應答性化合物進行共聚 合,而能簡便地製造。此刺激應答性高分子架橋體,柔軟 性優異’使用該刺激應答性高分子架橋體而形成的塑膠材 料具有優異的應力緩和性。又,此刺激應答性高分子架橋 體’比起依以往的架橋製作的刺激應答性高分子架橋體, 0 能因應刺激而顯示大的膨潤、收縮行為,具有收縮速度顯 著為快的特徵。 第四’本發明提供一種刺激應答性高分子架橋體,其 特徵在於.具有以下構造:側鏈末端具有阻隔基的第工高 分子的至少1個側鏈以串插狀貫穿具有2個以上環狀部分 的聚合物中的前述環狀部分的開口部,且側鏈末端具有阻 隔基之第2高分子的至少i個側鏈以串插狀貫穿於相同的 前述具有環狀部分的聚合物的其餘至少丨個前述環狀部分 ◎ 的開口部;且於前述第1高分子、前述第2高分子、或前 述第1高分子與前述第2高分子鍵結之部分的至少一處, 包含刺激應答性化合物或其殘基(發明6)。 上述發明(發明6)之刺激應答性高分子架橋體,由於 聚合物之環狀部分可在高分子的側鏈上移動’故柔軟性優 異,因此,使用該刺激應答性高分子架橋體形成的塑膠材 料,應力緩和性等優異。又,該刺激應答性高分子架橋體, 比起依照以往的架橋製作的刺激應答性高分子架橋體,因 應於刺激而顯示大的膨潤、收縮行為,具有收縮速度顯著 201035131 快的特徵。 上述發明(發明6)中, r作為聚合物的剛述刺激應答性 化合物’也可構成前述第丨高 布1 Π»刀子及/或刖述第2高分子的 主鏈(發明7)。 …上述發明(發明5〜7)中’前述聚合物之環狀部分,宜 為選自由α環糊精n糊精及環糊精構成之群組 中至少1種’或選自由環狀聚醚、環狀聚酯、環狀聚醚胺 及環狀聚胺構成之群組中至少!種(發明8)。 上述發明(發明2〜i + 、贫β 2 8)中,刖述刺激應答性化合物宜 為N-異丙基丙烯醯胺或其聚合物(發明叼。 使用上述發明(發明8 )之刺 利激應答性问分子架橋體得 到之刺激應答性高分子牟和機@时 刀千架橋體薄媒’薄膜會因為加熱由透 明或半透明顯著變化為白色, J時表面狀態由親水性變 化為疏水性。 [發明效果] 依照本發明,能以簡便且良 R野效丰製造具有互鎖構造 之刺激應答性高分子架橋體。又,依照本發明,能得到具 有互鎖構造之新穎的刺激應答性高分子架橋體。得到的刺 激應答性鬲分子架橋體,其柔軟 馒吳使用該刺激應答 性尚刀子架橋體形成的㈣材料,應力緩和性等優異。又, 該刺激應答性高分子架橋體,比 、 匕起依照以往的架橋製作的 刺激應答性高分子架橋體,會 T U應於刺激而顯示大的膨 潤、收縮行為,具有收縮速度顯著快的特徵。 201035131 【實施方式】 以下說明本發明之實施形態。 本發明之一實施形態之刺激應答性高分子架橋體,可 依照以圖1示意表示的方法製造。 首先,準備具有2個以上環狀部分之聚合物(以下稱為 「聚合物A」),與其中之一末端具有阻隔基且另一末端具 有聚合性官能基之直鏈狀分子(以下稱為「直鏈狀分子 B」)(參照圖1 )。201035131 IV. Designated representative map: (1) The representative representative of the case is: (1). (2) A brief description of the symbol of the representative figure: helmet. V. In the case of the combing type, the present invention is directed to the invention. The present invention relates to a stimuli-responsive polymer bridging body and a method of manufacturing the same. [Prior Art] Patent Document 1 discloses a polymer bridging body (polymer gel) containing a rotaxane structure which uses cyclodextrin as a cyclic molecule and uses a poly group which is contained in a cyclic molecule. Ethylene glycol is obtained by bridging a polyrotaxane as a linear molecule. This polymer gel differs from a conventional physical gel or chemical gel in that it is composed of a mechanical bond (interlock structure) that does not utilize a non-covalent bond or a covalent bond. The molecule can move freely on the linear molecule, so that it can exhibit excellent flexibility which has not been obtained in the past. [PRIOR ART DOCUMENT] [Patent Document 1] Patent No. 3475252 Japanese Patent Application No. 3,754, 525. SUMMARY OF THE INVENTION [Problem to be Solved by the Invention] A stimuli-responsive substance having a physical property change in response to a stimulus such as temperature. In order to manufacture a stimuli-responsive Ρ Ρ m m m 对于 对于 对于 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了.Β Λ ^ Knife, or ο-polyrotaxane, stimulates the response of ❹ 化合物 compounds into linear molecules. However, the above methods are all necessary to synthesize and separate the pseudo-polyordinary hospital, and after dissolving the pseudo-poly-burning in other solvents, the end is sealed with a blocking agent to smash into the poly-boil, and then re-separate and refine. Then, the bridging agent acts to bridge the cyclodextrin portion of the poly wheel system. Considering the case of industrialization, the multi-stage reaction as such is very disadvantageous from the viewpoint of manufacturing cost, and the yield at each stage is not necessarily high. The method is difficult to make the stimuli-responsive polymer penetrate the cyclic molecule. The latter method is difficult to introduce the stimuli-responsive compound into the linear molecule after the synthesis in the poly-wheeling institute, and any method cannot be easily defeated. Stimulate a responsive gel. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a stimuli-responsive polymer bridge body, a novel stimuli-responsive south molecular bridge body, and the like. [Means for Solving the Problem] In order to achieve the above object, the present invention first provides a method for producing a stimulating response 'Southern molecular bridge body, characterized in that it has two polymers having a cyclic portion on 201035131, and one of them. A linear molecule having a blocking group at the other end and a polymerizable functional group at the other end is mixed 'in such a manner that all or a part thereof forms an in-situ complex, and secondly, a polymerizable function through the aforementioned linear molecule The linear molecule and the stimuli-responsive compound are copolymerized (Invention 1). Further, the stimuli-responsive compound used for copolymerization with a linear molecule is a monomer. According to the above invention (Invention 1), it is possible to easily produce a stimuli-responsive polymer bridge having an interlocking structure without undergoing synthesis and separation of the pseudo-rotaxane. Secondly, the present invention provides a stimuli-responsive polymer bridging body characterized by having an interlocking structure and containing a stimuli-responsive compound or a residue thereof in the skeleton (Invention 2). In the above invention (Invention 2), it is also possible to have a portion bridged by a compound having an interlocking structure (Invention 3). In the above inventions (Inventions 2 and 3), it is preferable that the interlocking structure is a wheel yoke structure L invention 4). However, the present invention is not limited thereto, and the interlocking structure may be, for example, a catanane structure. The present invention provides a thorn-to-half-indicator, characterized in that a polymer having two or more cyclic moieties is provided, wherein the :- terminal has a blocking group and the other end has a polymerizable functional group. Forming a polymerizable character of the linear molecule of the linear octagonal knive bridging precursor which is linearly distributed with the mismatched body, and combining the linear molecule with the stimuli responsiveness Obtained (Invention 5). In the stimuli-responsive polymer bridging body of the above invention (Invention 5), only the linear molecule of the polymer bridging precursor can be polymerized with the polymerizable functional group of the linear molecule at the terminal end. The stimuli-responsive compound is copolymerized and can be easily produced. This stimuli-responsive polymer bridge has excellent flexibility. The plastic material formed by using the stimuli-responsive polymer bridge has excellent stress relaxation properties. In addition, the stimuli-responsive polymer bridge body exhibits a large swelling and contraction behavior in response to stimulation, and has a characteristic that the contraction speed is remarkably fast. The present invention provides a stimuli-responsive polymer bridge body characterized in that at least one side chain of a polymer having a barrier group at a side chain end has two or more rings inserted in a series of insertions. At least one side chain of the second polymer having a barrier group at the side of the polymer at the side of the polymer is inserted in the same shape as the polymer having the ring portion in the same manner At least one of the openings of the annular portion ◎, and at least one of the first polymer, the second polymer, or the portion of the first polymer and the second polymer to be bonded Responsive compound or its residue (Invention 6). In the stimuli-responsive polymer bridge body of the invention (Invention 6), since the cyclic portion of the polymer can move on the side chain of the polymer, the flexibility is excellent, and therefore, the stimuli-responsive polymer bridge body is used. Excellent in plastic materials and stress relaxation. In addition, the stimuli-responsive polymer bridge body exhibits a large swelling and contraction behavior in response to stimulation, and has a characteristic that the shrinkage speed is remarkable, 201035131 is faster than the stimuli-responsive polymer bridge body produced by the conventional bridge. In the above invention (Invention 6), r as a polymer stimuli-responsive compound ' may also constitute the above-mentioned 丨 丨 1 刀 knife and/or the main chain of the second polymer (Invention 7). In the above invention (Inventions 5 to 7), the cyclic portion of the polymer is preferably at least one selected from the group consisting of α-cyclodextrin n-dextrin and cyclodextrin or selected from a cyclic polyether. At least in the group consisting of a cyclic polyester, a cyclic polyetheramine, and a cyclic polyamine! (Invention 8). In the above invention (Invention 2 to i + , β 2 8), the stimuli-responsive compound is preferably N-isopropylacrylamide or a polymer thereof. (Inventive 使用. The use of the above invention (Invention 8) The stimuli-responsive molecular bridging body obtains the stimuli-responsive polymer 牟 and the machine @时刀千桥桥薄薄' film will change from transparent or translucent to white due to heating, and the surface state changes from hydrophilic to hydrophobic. [Effect of the Invention] According to the present invention, it is possible to manufacture a stimuli-responsive polymer bridge body having an interlocking structure in a simple and convenient manner. Further, according to the present invention, a novel stimuli response having an interlocking structure can be obtained. The polymer bridge is a stimuli-responsive molecular bridge body, and the soft 馒 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激 刺激, compared with the stimuli-responsive polymer bridge body made according to the previous bridge, the TU should show a large swelling and contraction behavior under stimulation, and has a remarkable rapid shrinkage speed. [Embodiment] Hereinafter, an embodiment of the present invention will be described. The stimuli-responsive polymer bridge body according to an embodiment of the present invention can be manufactured according to the method schematically shown in Fig. 1. First, two or more annular portions are prepared. a polymer (hereinafter referred to as "polymer A"), a linear molecule having a blocking group at one end and a polymerizable functional group at the other end (hereinafter referred to as "linear molecule B") (refer to figure 1 ).

聚合物(A)之環狀部分,係可内含直鏈狀分子(B),能 於此狀態在該直鏈狀分子(8)上移動者。又,本說明書中, 「環狀分子」之「環狀」,意指實質上為「環狀」,只要 能在直鏈狀分子(B)上維持内含狀態移動,則環狀部分也可 不完全閉環,例如可為螺旋構造。又,本發明之聚合物(a), 係如後述以具有較大分子量之環狀分子作為構成部分的多 聚物,即使重複數少’纟身的分子量仍為巨大。本發明之 聚合物(A),係為此而簡便稱之的名稱,也包含約2〜1〇聚 物左右的募聚物區的重複數者。 -環糊精、-環糊精 裱狀邵 m / 少衣W精 等環糊精’或環狀聚喊、環妝令 衣狀挈S日、環狀聚醚胺、環狀聚 胺等環狀分子,此等的璜壯却八 i 環狀部分,也可有2種以上混雜在 聚合物(A)中或高分子架橋前 ⑴驅體(c)或刺激應答性高分早 架橋體(E)中。 τ 上述環狀部分為環糊精時, 入用以使得能使對於聚合物(A ) 也可對於環糊精之羥基 之直鏈狀分子(B)的溶解 導 性 201035131 提升的高分子鏈及/或取代基。該高分子鏈,例如:羥基乙 烯鏈、烷基鏈、丙烯酸酯鏈等。另一方面’上述取代基’ 例如:乙醯基、烷基、三苯甲基(trityl)、甲笨磺醯基、 三甲基矽基、苯基等。 上述環狀部分之環糊精以外的具體例’例如:冠醚或 其衍生物、酚醛環狀聚合物(calixarene)或其衍生物、環 芬或其衍生物、大環胺醚(cryptand)或其衍生物等。 環狀分子,由容易使直鏈狀分子以串插狀貫穿的觀 點,宜為α-環糊精、/5-環糊精、7-環糊精及冠醚,由 容易在水中與直鏈狀分子形成内含錯合體之觀點,尤宜為 α -環糊精、石-環糊精及7 -環糊精。 聚合物(A)中’環狀分子之個數為2個以上,較佳為 3〜50個,尤佳為4〜10個。藉由環狀分子為2個以上,可 藉此内含多數的直鏈狀分子(B),藉由將此直鏈狀分子(B) 聚合,可將多數聚合物(A)彼此連結,並構成架橋構造。若 有3個以上環狀分子,則架橋構造變得緻密,因此可不妨 礙所得刺激應答性高分子架橋體(E)之應力緩和性,而使強 度提升,故為更佳。 宜為2個以上的環狀分子藉由連結The cyclic portion of the polymer (A) may contain a linear molecule (B), and can move on the linear molecule (8) in this state. In addition, in the present specification, the "ring shape" of the "cyclic molecule" means substantially "ring shape", and the ring portion may be omitted as long as the internal state state can be maintained on the linear molecule (B). Completely closed loop, for example, can be a spiral configuration. Further, the polymer (a) of the present invention is a polymer having a cyclic molecular molecule having a large molecular weight as a constituent, which will be described later, and has a large molecular weight even if the number of repetitions is small. The polymer (A) of the present invention is a name which is simply referred to for this purpose, and also includes the number of repeats of the polymer-polymer region of about 2 to 1 Å of the polymer. - cyclodextrin, - cyclodextrin 裱 邵 邵 / / / / / / / / 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或Molecules, these strong but eighty ring parts, there may be more than two kinds of mixed in the polymer (A) or polymer bridging (1) drive (c) or stimuli-responsive high-scoring early pontoon ( E). When the above-mentioned cyclic portion is a cyclodextrin, a polymer chain which can enhance the solubility conductivity of the linear molecule (B) of the polymer (A) or the hydroxyl group of the cyclodextrin is promoted. / or substituents. The polymer chain is, for example, a hydroxyethylene chain, an alkyl chain, an acrylate chain or the like. On the other hand, the above substituents are, for example, an ethenyl group, an alkyl group, a trityl group, a methyl sulfonyl group, a trimethyl fluorenyl group, a phenyl group or the like. Specific examples other than the cyclodextrin of the above cyclic moiety are, for example, a crown ether or a derivative thereof, a calixarene or a derivative thereof, a cyclophene or a derivative thereof, a cryptand or Its derivatives and so on. The cyclic molecule is preferably α-cyclodextrin,/5-cyclodextrin, 7-cyclodextrin and crown ether from the viewpoint of easily allowing the linear molecules to penetrate in a series. The view that the molecules form a complex containing a complex is particularly preferably α-cyclodextrin, stone-cyclodextrin and 7-cyclodextrin. The number of the 'cyclic molecules in the polymer (A) is two or more, preferably 3 to 50, and more preferably 4 to 10. By having two or more cyclic molecules, a plurality of linear molecules (B) can be contained therein, and by polymerizing the linear molecules (B), a plurality of polymers (A) can be linked to each other. Form the bridge structure. When there are three or more cyclic molecules, the bridging structure becomes dense, so that the stress relaxation property of the stimuli-responsive polymer bridge (E) can be hindered, and the strength is improved, which is preferable. More than 2 ring molecules should be linked by

聚合物(A)之構造, 部分而連結的構造。連 201035131 - 連結部分分子,宜使用不會與該環狀部分成為内含錯 合體之分子,該分子,可為直鏈狀,也可為分支鏈狀,— 某個程度具有體積大的側鏈。例如,前述環狀部分為α _ 環糊精時’宜為具有比起甲基的體積大的側鏈。亦即,由 不與前述環狀部分形成内含錯合體之觀點,較佳的連結部 分分子,例如:聚丙二醇、聚丙烯酸酯 '聚二甲基矽氧烷、 聚異戊二烯等,其中,尤佳為聚丙二醇。 〇 1個連結部分分子的數平均分子量(Μη)宜為 100〜100,000,尤佳為500~10, 000。若連結部分分子的數 平均分子量小於1 〇〇,則聚合物(Α)的環狀部分的開口部太 過接近,故難以成為架橋構造,又,可能有無法充分發揮 基於互鎖構造的效果之虞,若超過1〇〇 〇〇〇,則與直鏈狀 分子(Β)等的互溶性變差,有難以形成架橋構造之虞。 聚合物(Α)之質量平均分子量(Mw),尚取決於環狀部分 之種類,通常,宜為1,〇〇〇~〗,000, 000,尤佳為 〇 3’ 0〇〇〜1〇〇, 000。聚合物(A)之質量平均分子量若小於 1 ’ 〇〇〇,則常有環狀部分的個數小於2的情形,有無法形成 互鎖構造之虞,又,即使能形成也會因為架橋部分非常接 近,而有無法充分發揮基於互鎖構造的效果之虞。另一方 面右聚合物(A)之質量平均分子量超過丨,000, 000,則與 直鏈狀刀子(B)等的互溶性變差,有難以形成架橋構造之 虞。 聚合物(A)能依常法合成。例如,藉由使具有官能基之 構成環狀部分之分子(環狀分子),與末端具有能與該環狀 201035131 分子之官能基反應的反應性基的構成連結部分分子之原料 化合物反應’可得到聚合物(A)。具體而言,合成環狀部分 為α-環糊精、連結部分分子為聚丙二醇的聚合物(A)時, 將環糊精,與末端具有反應性基之聚丙二醇混合,並 視所望加入觸媒,使兩者反應,藉此’可得到聚合物(Α)。 與連結部分分子鍵結的環狀分子的官能基,例如,經 基、羧基、胺基、硫醇基等較佳,連結分子的末端的反應 性基,例如,異氰酸酯基、環氧基、氮丙啶基(aziridinyi) 等較佳,構成連結部分分子之原料化合物,可使用於末端 具有例如.二甲苯二異氰酸酯、六亞甲基二異氰酸酯 '甲 伸笨基二異氰酸酯、異佛爾酮二異氰酸酯等異氰酸酯系化 合物、乙二醇二環氧丙醚、丙二醇二環氧丙醚、16—己二 醇環氧丙醚等環氧系化合物、„_六亞甲基_1>6_雙(氮丙 唆叛基酿胺)等氮丙咬系化合物者。 直鏈狀分子(B) ’係内含於聚合物(4)之環狀部分且不 以共價鍵等化學鍵而以機械性鍵結而能__體化的直鍵狀分 子或物質’其中一末端具有阻隔基,且另一末端具有聚合 此基。又’本說明書中’ 「直鏈狀分子」的「直鍵」, 意屯實質上為「直鏈」。亦即,只要聚合物(a)之環狀部分 °在直鏈狀分子⑻上移動,則直鍵狀分子⑻具有分支鍵 亦可。 直鏈狀刀子(B)除去相當於兩末端之阻隔基及聚合性 官能基後的部分(本體部分),例如,聚乙二醇、聚丙二醇、 聚異戊二稀、聚異丁婦、聚丁二稀、聚四氫咬嗔、聚丙浠 10 201035131 - 酸醋、聚二甲基破氣炫、努7 Ψέ· /減聚乙歸、聚丙稀等,具有此等本 體部分的直鏈狀分子(Β),也可有2 也」有Ζ種混雜在高分子架橋前 驅體(c)或刺激應答性高分子架橋體(Ε)中。 直鏈狀分子(Β)之本體部分的數平均分子量(Μη),宜為 100〜30G,_,尤佳為2,⑽肩G,更佳為綱」⑽刚。 數平均分子量若小於_,則環狀部分在直鏈狀分子(B)的 移動量變小’可能會有得到的刺激應答性高分子架橋體⑻ ❹的柔軟性不肖的顧慮。X,若數平均分子量超過3〇〇〇〇〇, 則對於溶劑的溶解性有變差的可能。 阻隔基,只要是内含直鏈狀分子(B)的聚合物(A)的環 狀部分不脫離,能保持内含錯合體之形態的基團,即不特 別限定。如此種的基團,例如大體積之基團、離子性基團 等。 就阻隔基而言,例如:二烷基苯基類、二硝基苯基類、 環糊精類、金剛烷基類、三苯曱基類、螢紅素(f丨u 〇 r e s c e i n ) o 類、芘類、葱類等為佳,此等阻隔基,也可在内含錯合體 或高分子架橋體中混雜2種以上。鍵結於直鏈狀分子(B) 之單一末端而形成阻隔基之封端劑,例如宜使用異氰酸二 曱基苯醋’異氰酸三苯曱基笨酯、2, 4_二硝基氟苯、金剛 烷胺等。 聚合性官能基’只要係能介由該聚合性官能基而與直 鏈狀分子(B)及後述刺激應答性化合物(d)共聚合者,即不 特別限定。該聚合性官能基’例如:(甲基)丙烯醯基、祐 基、環氧基、乙炔基'環氧丙烷基等較佳。 11 201035131 直鍵狀分子(B)能以常法合成。例如,使其中之一末端 具有聚合性官能基之直鏈狀分子,或兩末端具有彼此不同 之聚合性官能基之直鏈狀分子,與阻隔基用的封端劑反 應,於其中之一末端保留上述聚合性官能基,另一末端加 成阻隔基’藉此,可得到直鏈狀分子(β)。 舉一例而言,將其中之一末端具有羥基、另一末端具 有(甲基)丙烯醯基之直鏈狀分子,與具有異氰酸酯基之二 烷基苯基類混合,並視所望添加觸媒,使兩者反應,藉此 可侍到其中之一末端具有作為阻隔基之二烷基苯基、另一 末端具有作為聚合性官能基之(甲基)丙烯醯基之直鏈狀分 子(Β)。 準備以上說明之聚合物(Α)與直鏈狀分子(Β)後,將聚 合物(Α)及直鏈狀分子⑻混合,並就其全部或—部分形成 内3錯合體,藉此製造高分子架橋前驅體(C)。亦即,將聚 合:(Α)之環狀部分的i個開口部以直鏈狀分子⑻串插狀 貫穿,並且將聚合物(A)之環狀部分的其餘開口部中的至少 1個以其他的直鏈狀分子⑻貫穿’製造具有上述2個以上 直㈣分子⑻内含於相同聚合物⑴之多數環狀部分的構 造的南分子架橋前驅體(C)(參照圖1)。 又,高分子架橋前驅體(〇的特徵在於:具有形成了上 述内含錯合體之構造,但是,並不需 八λα 而受眾σ物(八)之環狀部 刀的所有開口部均成為此種狀態。 ,.^ A t J即’亦可在混合物形 式的聚5物(A)中,其環狀部分的開 八工,邛僅有Μ固為直鏈狀 刀子(Β)以串插狀貫穿之構造,又, J具有聚合物(Α)之 12 201035131 環狀4 /刀的開口部完全未被直鏈狀分子(B)以串插狀貫穿 的構’或’也可含有未内含於聚合物(A)之混合物形式的 直鏈狀分子(B)。 如上述高分子架橋前驅體(C)之製造,可藉由使聚合物 (A)^直鍵狀分子(B),在存在於溶劑中例如水、氫氧化鈉 水溶液、二甲基甲酿胺⑽F)與水之混合溶液、甲醇與水之 犯合+液的狀態(例如,將直鏈狀分子(b)添加於聚合物(A)The structure of the polymer (A), partially connected structure. Even 201035131 - It is preferred to use a molecule that does not become a mismatch with the cyclic moiety. The molecule may be linear or branched, and has a bulky side chain to some extent. . For example, when the cyclic moiety is α _ cyclodextrin, it is preferable to have a side chain larger than the volume of the methyl group. That is, from the viewpoint of not forming a complex with the aforementioned cyclic portion, a preferred linking moiety is, for example, polypropylene glycol, polyacrylate 'polydimethylsiloxane, polyisoprene, etc., among which Especially preferred is polypropylene glycol.数 The number average molecular weight (Μη) of one linking moiety molecule is preferably from 100 to 100,000, particularly preferably from 500 to 10,000. When the number average molecular weight of the linking moiety molecule is less than 1 Å, the opening of the annular portion of the polymer is too close, so that it is difficult to form a bridging structure, and the effect of the interlocking structure may not be sufficiently exhibited. When the amount exceeds 1 Torr, the miscibility with a linear molecule (Β) or the like is deteriorated, and it is difficult to form a bridging structure. The mass average molecular weight (Mw) of the polymer (Α) is still determined by the kind of the cyclic moiety, and usually, it is preferably 1, 〇〇〇~, 000, 000, and particularly preferably 〇3'0〇〇~1〇 Oh, 000. When the mass average molecular weight of the polymer (A) is less than 1 '〇〇〇, the number of the ring portions is often less than 2, and the interlocking structure cannot be formed, and even if it is formed, the bridge portion is formed. Very close, and there is a flaw in the effect of the interlocking structure. When the mass average molecular weight of the other polymer (A) exceeds 丨, 000, 000, the miscibility with the linear knife (B) or the like is deteriorated, and it is difficult to form a bridging structure. The polymer (A) can be synthesized according to a usual method. For example, by reacting a molecule (cyclic molecule) having a cyclic moiety having a functional group with a starting compound having a reactive group capable of reacting with a functional group of the cyclic 201035131 molecule; The polymer (A) was obtained. Specifically, when the synthetic cyclic moiety is α-cyclodextrin and the polymer (A) whose partial molecule is a polypropylene glycol is mixed, the cyclodextrin is mixed with the polypropylene glycol having a reactive group at the terminal, and is added as desired. The medium reacts the two to obtain a polymer (Α). The functional group of the cyclic molecule bonded to the linking moiety molecule, for example, a trans group, a carboxyl group, an amine group, a thiol group or the like, preferably a reactive group linking the terminal of the molecule, for example, an isocyanate group, an epoxy group, or a nitrogen group. Aziridinyi or the like is preferred, and a raw material compound constituting a linking moiety molecule can be used for the terminal having, for example, xylene diisocyanate, hexamethylene diisocyanate 'methyl phenyl diisocyanate, isophorone diisocyanate. An epoxy compound such as an isocyanate compound, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether or 16-hexanediol glycidyl ether, „_hexamethylene_1>6_bis (nitrogen) Azide-accumulating compounds such as propylamine. The linear molecule (B) is contained in the cyclic portion of the polymer (4) and is not mechanically bonded by a chemical bond such as a covalent bond. The direct-bonded molecule or substance capable of __ has a blocking group at one end and a polymerizable group at the other end. In addition, the "straight bond" of the "linear molecule" in the present specification means It is essentially a "straight chain." That is, as long as the cyclic portion ° of the polymer (a) moves on the linear molecule (8), the linear bond molecule (8) may have a branching bond. The linear knife (B) removes a portion (bulk portion) corresponding to the barrier group at both ends and the polymerizable functional group, for example, polyethylene glycol, polypropylene glycol, polyisoprene, polyisobutylene, poly Dibutyl, polytetrahydroangous, polyacrylonitrile 10 201035131 - Sour vinegar, polydimethyl chlorpyrifos, Nu 7 Ψέ · / reduced polyethyl amide, polypropylene, etc., linear molecules with these bulk parts (Β), there are also 2 types of hybrids in the polymer bridging precursor (c) or the stimuli-responsive polymer bridge (Ε). The number average molecular weight (?η) of the bulk portion of the linear molecule (Β) is preferably 100 to 30 G, _, particularly preferably 2, (10) shoulder G, more preferably "10". When the number average molecular weight is less than _, the amount of movement of the cyclic moiety in the linear molecule (B) becomes small. There is a concern that the flexibility of the obtained stimuli-responsive polymer bridge body (8) may be unsatisfactory. X. If the number average molecular weight exceeds 3 Å, the solubility in a solvent may be deteriorated. The barrier group is not particularly limited as long as it is a group in which the cyclic portion of the polymer (A) containing the linear molecule (B) is not detached and can retain the form of the complex. Such groups are, for example, large-volume groups, ionic groups, and the like. In the case of a barrier group, for example, a dialkylphenyl group, a dinitrophenyl group, a cyclodextrin, an adamantyl group, a triphenylsulfonyl group, a fluorescein (f丨u 〇rescein) o type It is preferred that the mites, onions, etc., such barrier groups, may be mixed with two or more kinds of the inclusions or polymer bridges. A blocking agent which is bonded to a single end of the linear molecule (B) to form a barrier group, for example, didecyl phenyl acetonate 'triphenyl sulfonyl isocyanate, 2, 4 - dinitrate is preferably used. Fluorophene, amantadine, and the like. The polymerizable functional group is not particularly limited as long as it can be copolymerized with the linear molecule (B) and the stimuli-responsive compound (d) described later via the polymerizable functional group. The polymerizable functional group' is preferably a (meth) acrylonitrile group, a ketone group, an epoxy group or an ethynyl propylene oxide group. 11 201035131 The direct bond molecule (B) can be synthesized by a conventional method. For example, a linear molecule having a polymerizable functional group at one end thereof, or a linear molecule having polymerizable functional groups different from each other at both ends, reacts with a blocking agent for a barrier group, at one end thereof The above-mentioned polymerizable functional group is retained, and the other terminal is added with a blocking group', whereby a linear molecule (β) can be obtained. For example, a linear molecule having a hydroxyl group at one end and a (meth)acryl fluorenyl group at the other end is mixed with a dialkylphenyl group having an isocyanate group, and a catalyst is added as desired. The two are reacted, whereby one of the linear molecules having a dialkylphenyl group as a barrier group at one end and a (meth)acryl fluorenyl group as a polymerizable functional group at the other end (Β) . After preparing the polymer (Α) and the linear molecule (Β) described above, the polymer (Α) and the linear molecule (8) are mixed, and all or part of the polymer is formed into an inner 3 complex, thereby producing a high Molecular bridging precursor (C). In other words, i openings of the annular portion of the polymerization: (Α) are inserted in a straight line shape by a linear molecule (8), and at least one of the remaining openings of the annular portion of the polymer (A) is The other linear molecule (8) penetrates through the 'molecular bridging precursor (C) having a structure in which the above two or more straight (four) molecules (8) are contained in a plurality of cyclic portions of the same polymer (1) (see FIG. 1). Further, the polymer bridging precursor (the crucible is characterized in that it has a structure in which the above-described inclusive complex is formed, but all the openings of the annular blade which do not require eight λα and the audience σ object (eight) are State. ,.^ A t J ie ' can also be in the form of a mixture of poly 5 (A), the ring part of the open work, 邛 only tamping for a linear knife (Β) to string In the structure of the penetrating structure, J has a polymer (Α)12 201035131. The opening of the annular 4/knife is completely unstructured by the linear molecule (B) which is inserted in a series of insertions or may also contain no internal a linear molecule (B) in the form of a mixture of polymers (A). As described above, the polymer bridging precursor (C) can be produced by making the polymer (A) a direct bond molecule (B). In the presence of a solvent such as water, an aqueous solution of sodium hydroxide, a mixed solution of dimethyl methamine (10) F) and water, and a mixture of methanol and water (for example, adding a linear molecule (b) to Polymer (A)

之洛液中)’將此溶液進行攪拌而進行。已得到高分子架橋 前驅體(C)的事實’可利用溶液之黏度上升而判斷。 關於授拌方法無特別限定,可於常溫或適當控制的温 度,以機械性授拌處理、超音波處理等方㈣m 以超曰波處理進行攪拌較佳。㈣時間,宜以數分鐘〜1小 時的條件進行。關於超音波之照射條件無特別限制,宜於 頻率20〜40kHz進行。 以上述方式製造高分子架橋前驅體(C)後,介由内含於 聚合物(A)之環狀部分的直鏈狀分子⑻之聚合性官能基, 使該直鏈狀分子⑻與刺激應答性化合物⑻共聚合,得到 刺激應答性高分子架橋體⑻(參照圖1)。此刺激應答性古 分子架橋體⑻’含有作為互鎖構造的輪燒構造。 ^ 與直鏈狀分子⑻共聚合之錢應答性化合物⑼ 介由直鏈狀分子⑻之聚合性官能基而與直鍵狀分子(. 聚合,且係於使用刺激應答性化合物⑻形成高分子餐滕 時’展現刺激應答性的單體。聚合性官能基,例如 碳雙鍵的聚合性基。單體的分子量不特別限定。 噥 13 201035131 在此,詳細說明刺激應答性化合物(D)之細節。刺激應 答性的刺激,例如:溫度之變化;光、磁場、電流或電場 之賦予;pH、離子濃度或溶劑組成之變化;化學物質之吸 脫附等。又’應答行為’例如.由於溶劑之吸脫(吸收、放 出)造成的體積變化(膨潤、收縮)。此體積變化可為單向也 可為可逆的,宜為可逆的。 刺激應答性化合物(D)之具體單體,例如以下列舉者。 形成溫度應答性的高分子凝膠的單體,例如:異丙基丙 稀釀胺等N-烧基取代(曱基)丙烯醯胺、(甲基)丙烯醯胺、 (甲基)丙烯酸及其鹽、乙烯基曱醚、或具有辛某、癸基、 月桂基、硬脂基等長鏈烷基之(甲基)丙烯酸烷酯等。 形成光應答性的高分子凝膠的單體,例如:三芳基甲 烷衍生物或螺苯并吡喃(Spirobenz〇pyran)衍生物等。 形成以電流或電場應答之高分子凝膠的單體,例如: 二曱基胺基丙基(曱基)丙烯醯胺等胺基取代(甲基)丙烯醯 胺、(甲基)丙烯酸二甲基胺基乙醋、(甲基)丙烯酸二乙基 胺基乙酯、丙烯酸二甲基胺基丙酯、苯乙烯、乙烯基吡啶、 乙烯基咔唑、二甲基胺基苯乙烯等。 形成PH應答性之高分子凝膠的單體,例如:(甲基) 丙稀酸、(甲基)丙稀醯胺、(甲基)丙稀酸經基乙、馬來 酸、乙稀基確酸、乙烯基苯錢、聚二甲基胺基丙基(甲基) 丙烯醯胺、(甲基)丙烯腈等。 形成離子濃度應答性之高分子凝膠之單體,例如:可 使用與形成前述pH應答性高分子凝膠之單體同樣者。 14 201035131 • 形成因為化學物質之吸脫附而刺激應答的刺激應答性 高分子凝膠的單體,以強離子性者較佳,其例,例如:乙 稀基確酸、乙烯基苯續酸、(甲基)丙烯酿胺燒基項酸等。 形成因為溶劑組成之變化而刺激應答的刺激應答性高 分子凝膠的單體,相應於形成幾乎全部的該分子凝膠的單 體。可藉由利用良溶劑及貧溶劑,而引起膨潤、收縮。 利用以上的刺激應答性高分子凝膠的特性,與直鏈狀 ❹ 刀子(B)共聚合之刺激應答性化合物(D),尤佳為例如異 丙基丙烯醯胺(參照圖1及圖2)。 若使上述刺激應答性化合物(D),以前述製作方法中所 說明之方式,介由高分子架橋前驅體(c)所含的聚合性官能 基進行共聚合,則可得到含有刺激應答性化合物(D)作為構 成單位的刺激應答性高分子架橋體(Eh又,刺激應答性高 分子架橋體(E)中,刺激應答性化合物(D),係以單體或聚 。物之形式存在。將此刺激應答性高分子架橋體製作為 〇 薄膜獲得的刺激應答性高分子架橋體薄膜,比起利用以往 的架橋製作的刺激應答性高分子架橋體,因應刺激而顯示 大的膨潤、收縮行為,具有收縮速度顯著快的特徵。 例如’使用上述N-異丙基丙烯醯胺作為刺激應答性化 •合物(D),依照前述製作方法所說明之方式,介由高分子架 月J驅體(C)所含的聚合性官能基進行共聚合,則可得到含 有N異丙基丙烯醯胺作為構成單位的刺激應答性高分子架 橋體(E)。又,刺激應答性高分子架橋體(E)中,N_異丙基 ㈣醯胺’以單體或聚合物之形態存在。將此刺激應答性 15 201035131 高分子架橋體(E)製作為薄膜得到的刺激應答性高分子架 橋體薄膜’薄膜因為兩溫會由透明或半透明顯著地變為白 色,同時’表面狀態由親水性變為疏水性。又,比起依照 以往的架橋製作的刺激應答性高分子架橋體,顯示更大的 膨潤、收縮行為,且收縮速度顯著較快。 使用異丙基丙烯醯胺作為刺激應答性化合物(1))的 刺激應答性高分子架橋體(E)的一例,於圖2示意表示。圖 2所示之刺激應答性高分子架橋體(E)中,對於以N_異丙基 丙烯醯胺作為主成分之聚合物(BDi)之第11位的單體成分共 〇 聚合的直鏈狀分子(B)來源的側鏈(Bx),係成為貫穿於聚合 物(A)之1個環狀部分的狀態。於此側鏈(Βχ)的末端,鍵結 著阻隔基。内含之環狀部分的聚合物(Α)之其他環狀部分, 進一步成為貫穿於以其他的Ν_異丙基丙烯醯胺作為主成分 的聚合物(Bh)的侧鏈(Βγ)的狀態。惟,刺激應答性高分子 架橋體(Ε),不限於此構造。 刺激應答性高分子架橋體(Ε),具體而言,係具有以下 構&.侧鍵末端具有阻隔基之第1高分子的側鏈以串插狀 ◎ 貫穿於聚合物(A)中之環狀部分的1個開口部,且側鏈末端 具有阻隔基之第2高分子之側鏈以串插狀貫穿於同一聚合 環狀部为的其他開口部(也包含同一聚合物(A)進 ,、3局刀子、第4高分子…第η高分手等形成同樣 的内s錯合體的情形)、其他個高分子之側鏈内含於聚合物 ()之環狀分的至少2個開口部。又,於第η(η為包含1、 2之整數)之;八 。刀子之主鏈或側鏈,或此等高分子彼此鍵結 16 201035131 之部分(包含高分子鏈)的至少1處,含有刺激應答性化合 物(D)或其殘基。又,第η高分子之側鏈,係源於直鏈狀分 子(Β)。得到的刺激應答性高分子架橋體(Ε),為新穎物質。 高分子架橋前驅體(C)中,直鏈狀分子(Β)與刺激應答 性化合物(D)之聚合反應,可依照常法進行即可,例如,利 用自由基聚合使反應。如此種反應,例如,於含有高分子 架橋前驅體(C)及刺激應答性化合物(D)之溶液中,視所望 ◎添加光聚合起始劑並照射紫外線,或者,添加熱聚合起始 劑並加熱,藉此,將直鏈狀分子(B)與刺激應答性化合物(d) 予以共聚合》 光聚合起始劑,只要是通常使用者,即不特別限制, 例如:二苯曱酮、苯乙酮、苯偶因、苯偶因甲醚、苯偶因 乙醚、苯偶因異丙醚、苯偶因異丁醚、苯偶因苯甲酸、苯 偶因苯甲酸甲酯、苯偶因二甲基酮縮醇、2,4_二乙基噻噸 酮(2’4-(14讣711:1^似抓1;11〇1^)、1-羥基環己基苯酮、苄基 〇 二苯硫、四甲基單硫化秋蘭姆(tetramethyl thiur二 m〇n〇sulfide)、偶氮雙異丁腈、节基、聯节(dibenzyi)、 聯乙醯(diacetyl)、万-氣蒽醌、4-(2_羥基乙氧基)_笨基 (2-羥基-2-丙基)酮、(2, 4, 6-三甲基苄基二苯基)氧化膦、 2-苯并噻唑-n,n_二乙基二硫胺基甲酸輯等。 另-方面’熱聚合起始劑’只要是通常使用者,即不 特別限制,例如,可使用過氧化苯甲醯基、偶氮雙異丁 (AIBN)等。 月 刺激應答性高分子架橋體⑻之精製,可依照常法進行 17 201035131 即可,例如可依序以水、四氫呋喃及二甲基甲醯胺清洗。 依照以上方法,可不經由擬輪烷之合成,而僅是將聚 合物(A)與直鏈狀分子(B)混合攪拌,而簡便地製造高分子 架橋剛驅體(c),又,將得到之高分子架橋前驅體(〇之直 鏈狀分子(B)與刺激應答性化合物共聚合,藉此可簡便 製4具有互鎖構造之含有輪烧構造的刺激應答性高分子 架橋體(E)。 得到之刺激應答性高分子架橋體(E)中,由於聚合物(A) 之環狀部分能在高分子之側鏈上移動,故柔軟性優異,因 此使用刺激應答性高分子架橋體(E)形成之塑膠材料,應 力緩和性優異。又,得到之刺激應答性高分子架橋體(E), 比起依照以往之架橋製作之刺激應答性高分子架橋體,因 應刺激顯示較大的膨潤、收縮行為,具有收縮速度顯著快 的優異眭質。又,使用異丙基丙烯醯胺作為刺激應答性 化合物(D)時,得到之刺激應答性高分子架橋體(E)製成薄 膜時的刺激應答性高分子架橋體薄膜,薄膜由於加熱會由 透明或半透明顯著變化為白I,同時,表面狀態會顯示由 親水性變化為疏水性之特性。 以上說明之實施形態,係為了容易理解本發明而記 ^ ’並非為了限定本發明而記載。因此,上述實施形態揭 不之各要素,意圖包含屬於本發明技術範圍的所有的設計 變更或均等物^ 例如,本發明之刺激應答性高分子架橋體,只要是具 有互鎖構造’且於骨架中包含刺激應答性化合物或其殘基 18 201035131 • 者即可。前述例中,具有互鎖構造,該互鎖構造係由具有 2個以上之環狀部分的聚合物(A)與直鏈狀分子構成。 互鎖構造,以輪烷構造為佳,但此外,例如也可為交環产 構造。具有交環烷構造之刺激應答性高分子架橋體,例如 將刺激應答性化合物導入將具有交環烷構造之環狀分子彼 此鍵結之部分者等。 [實施例] 以下,以實施例等更具體說明本發明,但本發明之範 U 圍不限定於此等實施例等。 [實施例1] (1) 聚合物(A)之合成 將α-環糊精(Nacalai Tesque公司製)5g溶解於二甲 基甲醯胺50mL ’並於此溶液中添加甲伸苯(1:〇1以咖)2, 4_ 二異氰酸酯末端聚丙二醇(Aldrich公司製,Μη··1,〇〇0)3. 4g 及為錫觸媒之二月桂酸二丁基錫(東京化成公司 〇 製)200mg ’於室溫攪拌20小時。 將上述反應溶液注入二乙醚中使沉澱,將回收的固體 乾燥後丄乂水清洗並再度使乾燥,冑到具有作為環狀分子 的α環糊精、作為連結部分分子的聚丙二醇的聚合物 (A)4.6g。 (2) 直鏈狀分子(B)之合成 使聚乙二醇(和光純藥工業公司製,Mn: 1000)5g溶解 &氣甲烧5〇mL,並於此溶液中添加異氣酸5一二甲基笨 备曰(Aldrich公司製6g及為錫觸媒之二月桂酸二丁基錫 19 201035131 (東京化成公司製)2〇〇rog,於室溫攪拌2〇小時。接著,於 此溶液中加入異氰酸2-甲基丙烯酿基氧乙酯(昭和電工公 司製,產品名「KARENZMOI」1.7g及二月桂酸二丁基錫(東 京化成公司製)1 〇〇mg,再於室溫攪摔2〇小時。將得到之溶 液濃縮後,使沉澱於冷卻到_75<t之二乙醚,並回收沉澱 物,得到於其中之一末端具有由3, 二甲基苯基構成之阻 隔基、且另一末端具有甲基丙烯醯基之聚乙二醇(以下,稱 為「MA-PEG-DPI」;直鏈狀分子(B))3 8g。 (3) 高分子架橋前驅體(c)之製造 使聚合物(A)300mg溶解於〇.4wt%的氫氧化鈉水溶液 lmL,於此溶液中加入直鏈狀分子(B)2〇〇mg,一面機械性地 攪拌一面照射超音波(35Hz)5分鐘,結果溶液成為白濁, 且黏性上升。如此種黏度上升的白濁物,可認為係聚合物 (A)之環狀部分將直鏈狀分子(B)内含而成的高分子架橋前 驅體(C )。 (4) 刺激應答性高分子架橋體(e)之製造 於上述白濁物中,加入作為刺激應答性化合物(D)的 N-異丙基丙烯醯胺2· 0g,攪拌至達均勻。其次,添加為光 聚合起始劑之1-羥基-環己基—苯酮/二苯基酮共融混合物 (Ciba Speciality Chemicals 公司製,產品名「Irga⑶奵 500」40# 1,攪拌後,照射紫外線3分鐘(照射條件:照度 3. OmW/cm2 ;光量 5〇〇mJ/cm2)。 得到之物質,可認為係刺激應答性高分子架橋體(E), 其係介由上述高分子架橋前驅體(c)中的直鏈狀分子(b)之 20 201035131 - 聚合性官能基(甲基丙烯醯基),使首舖站八也 土 >使1鏈狀分子與刺激應 答性化合物(D)共聚合而成(末端 』、不舳具有阻隔基之高分子之側 鍵内含於聚合物(A)之環麻'Λυα,n 疋%狀邛刀,且刺激應答性化合物⑺) 之聚合物構成該高分子之主+ + 4 鍵而成之刺激應答性高分子架 橋體(Ε))。 將得到的物質(刺激應答性高分子架橋體(Ε)),依序浸 泡於水、四氫咬喃及二甲基甲酿胺並清洗,之後使乾燥, 得到刺激應答性高分子架橋體薄臈(厚度:i · 〇 m m,非延伸)。 ν [比較例1] 將實施例1中的聚合物(Α)改為使用聚乙二醇二丙烯 酸酯(作為未形成互鎖構造之架橋體使用)44mg,除此以 外,與實施例1同樣進行,製作刺激應答性高分子架橋體 薄膜(厚度.1. 〇mm,非延伸)。 [試驗例1 ](膨潤率之測定) 將實施例及比較例得到的刺激應答性高分子架橋體薄 Ο 膜浸泡於水中,使水溫以升溫速度rc /min由室溫上升至 50 C。此時’測定於各溫度的刺激應答性高分子架橋體薄 膜之質量,並計算膨潤率。 膨潤率’係由乾燥後的薄膜的質量與膨潤後的薄臈的 質量(Wswell)的差值求得。計算式如下。 膨潤率[%]={(Ws#ell_Wdry)/uxl〇〇 依此方式得到之溫度與膨潤率之關係,如圖3所示。 由圖3之圖可得知,實施例之刺激應答性高分子架橋 體薄膜’相較於比較例之刺激應答性高分子架橋體薄膜, 21 201035131 因應於温度顯示非常大的膨潤、收縮行為。 [試驗例2 ](收縮行為之評價) 將實施例及比較例得到之刺激應答性高分子架橋薄膜 (至溫)浸泡於50 C的水中,經時測定膨潤率s(t),並計算 收縮率Sn。 收縮率Sn,以下式求得。 收縮率Sn=於時間(t)之膨潤率s(t)/於完全膨潤狀態 (23°C )之膨潤率S(max) 圖4顯示藉此得到之時間與收縮率sn之間的關係(收 縮行為)。 由圖4之圖可得知,實施例之刺激應答性高分子架橋 體薄膜’相較於比較例之刺激應答性高分子架橋體薄膜, 對於温度刺激的收縮速度顯著為快。 [試驗例3 ](水滴接觸角之測定) 於23°C (室溫)及6(TC (加熱),使用接觸角計(KRUSS 公司製,DSA100)測定於實施例及比較例得到之刺激應答性 高分子架橋體薄膜之表面對純水的接觸角。結果如表1所In the solution, the solution is stirred. The fact that the polymer bridging precursor (C) has been obtained can be judged by the increase in the viscosity of the solution. The method of mixing is not particularly limited, and it can be stirred at room temperature or appropriately controlled temperature by mechanical mixing treatment, ultrasonic treatment, etc. (4) m is preferably stirred by ultra-chopping treatment. (4) Time should be carried out in the range of several minutes to one hour. The irradiation condition of the ultrasonic wave is not particularly limited, and it is preferably carried out at a frequency of 20 to 40 kHz. After the polymer bridging precursor (C) is produced in the above manner, the linear molecule (8) and the stimulatory response are caused by the polymerizable functional group of the linear molecule (8) contained in the cyclic portion of the polymer (A). The compound (8) is copolymerized to obtain a stimuli-responsive polymer bridge (8) (see Fig. 1). This stimuli-responsive ancient molecular bridge body (8)' contains a wheel-burning structure as an interlocking structure. ^ The money-responsive compound (9) copolymerized with the linear molecule (8) is a polymerized compound via a polymerizable functional group of the linear molecule (8), and is polymerized, and is formed by using the stimuli-responsive compound (8) to form a polymer meal. A monomer exhibiting stimuli responsiveness. A polymerizable functional group such as a polymerizable group of a carbon double bond. The molecular weight of the monomer is not particularly limited. 哝13 201035131 Here, the details of the stimuli-responsive compound (D) are described in detail. Stimulating responsive stimuli, such as: changes in temperature; impartance of light, magnetic fields, currents or electric fields; changes in pH, ion concentration or solvent composition; absorption and desorption of chemical substances, etc. and 'response behavior', for example. Volume change (swelling, shrinkage) caused by suction (absorption, release). This volume change may be unidirectional or reversible, and is preferably reversible. Specific monomers that stimulate the responsive compound (D), such as the following The monomer which forms a temperature-responsive polymer gel, for example, N-alkyl substituted (mercapto) acrylamide such as isopropyl acrylamide, (meth) acrylamide, ( Acrylic acid and its salt, vinyl oxime ether, or alkyl (meth) acrylate having a long-chain alkyl group such as octyl, decyl, lauryl or stearyl group, etc. Monomer, for example: triarylmethane derivative or spirobenzpyran derivative, etc. A monomer which forms a polymer gel responsive to electric current or electric field, for example: dimercaptopropylpropyl (mercapto) amino-substituted (meth) acrylamide such as acrylamide, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylamine acrylate Propyl propyl ester, styrene, vinyl pyridine, vinyl carbazole, dimethylamino styrene, etc. Monomers for forming a pH-responsive polymer gel, such as (meth) acrylic acid, (A) Acetylamine, (meth)acrylic acid via base ethyl, maleic acid, ethylene acid, vinyl benzene, polydimethylaminopropyl (meth) acrylamide, Methyl) acrylonitrile, etc. A monomer of a polymer gel which forms an ion concentration responsiveness, for example, can be used and shaped The monomer of the pH-responsive polymer gel is the same. 14 201035131 • It is preferable to form a monomer of a stimuli-responsive polymer gel which is responsive to the absorption and desorption of a chemical substance, and is excellent in ionicity. For example, ethylene dibasic acid, vinyl benzoic acid, (meth) acrylamide amine base acid, etc. Forming a monomer stimulating a responsive polymer gel that stimulates a response due to a change in solvent composition, correspondingly A monomer which forms almost all of the molecular gel, which can cause swelling and shrinkage by using a good solvent and a poor solvent. The characteristics of the above stimuli-responsive polymer gel are utilized, and a linear ❹ knife (B) The copolymerizable responsive compound (D) is preferably, for example, isopropyl acrylamide (see Figs. 1 and 2). The stimuli-responsive compound (D) is as described in the above production method. By copolymerizing a polymerizable functional group contained in the polymer bridging precursor (c), a stimuli-responsive polymer bridge body containing a stimuli-responsive compound (D) as a constituent unit can be obtained (Eh, stimulation should In the highly polymeric hull (E), the responsive compound (D) is stimulated by monomer or poly. The form of things exists. The stimuli-responsive polymer bridge film obtained by using the stimuli-responsive polymer bridging system as a ruthenium film exhibits large swelling and contraction behavior in response to stimulation in comparison with a stimuli-responsive polymer bridge body produced by a conventional bridge. , has a feature that the shrinking speed is significantly faster. For example, 'the above-mentioned N-isopropyl acrylamide is used as the stimuli-responsive compound (D), and the polymerity contained in the polymer J (C) is in accordance with the method described in the above production method. When the functional group is copolymerized, a stimuli-responsive polymer bridging body (E) containing N-isopropylacrylamide as a constituent unit can be obtained. Further, in the stimuli-responsive polymer bridging body (E), N-isopropyl (tetra)decylamine is present in the form of a monomer or a polymer. This stimulating response 15 201035131 polymer bridging body (E) is made into a film-derived stimuli-responsive polymer bridge film 'film because the two temperatures will change from transparent or translucent to white, and the surface state is hydrophilic. Sex becomes hydrophobic. Further, it exhibits a larger swelling and contraction behavior than the stimuli-responsive polymer bridge body manufactured according to the conventional bridge, and the shrinkage speed is remarkably fast. An example of the stimuli-responsive polymer bridging body (E) using isopropyl acrylamide as the stimuli-responsive compound (1)) is schematically shown in Fig. 2 . In the stimuli-responsive polymer bridging body (E) shown in Fig. 2, the linear component of the 11th monomer component of the polymer (BDi) having N-isopropyl acrylamide as a main component is conjugated. The side chain (Bx) derived from the molecule (B) is in a state of penetrating through one annular portion of the polymer (A). At the end of this side chain (Βχ), a barrier is bonded. The other cyclic portion of the polymer (Α) contained in the cyclic portion further becomes a side chain (Βγ) of the polymer (Bh) which is mainly composed of other Ν-isopropyl acrylamide as a main component. . However, the stimuli-responsive polymer bridge body is not limited to this structure. The responsive polymer bridge (specifically) has a side chain of a first polymer having a barrier group at the side of the side bond, and is inserted in the polymer (A) in a matrix shape. One opening of the annular portion, and the side chain of the second polymer having the barrier group at the side of the side chain penetrates through the other opening portion of the same polymerization annular portion in a series insertion manner (including the same polymer (A) , the third knives, the fourth polymer, the η high-strength, etc., form the same internal s-coupling), and the other polymer's side chain contains at least two openings of the polymer () ring. unit. Further, at the nth (n is an integer including 1, 2); The main chain or the side chain of the knives, or at least one of the portions of the polymer (the polymer chain), which are bonded to each other, contains a stimuli-responsive compound (D) or a residue thereof. Further, the side chain of the η polymer is derived from a linear molecule (Β). The obtained stimuli-responsive polymer bridging body (Ε) is a novel substance. In the polymer bridging precursor (C), the polymerization reaction of the linear molecule (Β) with the stimuli-responsive compound (D) can be carried out according to a usual method, for example, by radical polymerization. In such a reaction, for example, in a solution containing a polymer bridging precursor (C) and a stimuli-responsive compound (D), a photopolymerization initiator is added and irradiated with ultraviolet rays, or a thermal polymerization initiator is added. Heating, whereby the linear molecule (B) and the stimuli-responsive compound (d) are copolymerized. The photopolymerization initiator is not particularly limited as long as it is a usual user, for example, benzophenone and benzene. Ethyl ketone, benzoin, benzoin methyl ether, benzoin ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin benzoic acid methyl ester, benzoin II Methyl ketal, 2,4-diethyl thioxanthone (2'4-(14讣711:1^)1,11〇1^), 1-hydroxycyclohexyl benzophenone, benzyl hydrazine Benzoyl sulfide, tetramethyl thiur dim〇n〇sulfide, azobisisobutyronitrile, nodal group, dibenzyi, diacetyl, 10,000-gas , 4-(2-hydroxyethoxy)-phenyl (2-hydroxy-2-propyl) ketone, (2, 4, 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole -n,n_diethyldisulfide Further, the 'thermal polymerization initiator' is not particularly limited as long as it is a usual user, and for example, benzammonium peroxide, azobisisobutylene (AIBN) or the like can be used. The purification of the polymer bridge body (8) can be carried out according to the usual method 17 201035131, for example, it can be washed sequentially with water, tetrahydrofuran and dimethylformamide. According to the above method, the synthesis of the pseudo-rotaxane can be omitted, and only The polymer (A) and the linear molecule (B) are mixed and stirred, and the polymer bridged body (c) is simply produced, and the polymer bridging precursor (the linear molecule of the ruthenium) is obtained. B) Copolymerization with a stimuli-responsive compound, whereby a stimuli-responsive polymer bridging body (E) having a rotationally-burning structure having an interlocking structure can be easily produced. The stimulating responsive polymer bridging body (E) is obtained. Since the ring portion of the polymer (A) can move on the side chain of the polymer, it is excellent in flexibility, and therefore the plastic material formed by the stimuli-responsive polymer bridge body (E) is excellent in stress relaxation property. Stimulating responsiveness The molecular bridge body (E) has an excellent enamel with a significantly faster shrinkage speed than a stimulus-responsive polymer bridge body made according to the conventional bridge, and exhibits a large shrinkage speed. When the acrylamide is used as the stimuli-responsive compound (D), the stimuli-responsive polymer bridge body (E) obtained as a stimuli-responsive polymer bridge film is formed, and the film changes significantly by transparency or translucency due to heating. In the case of white I, the surface state shows a change from hydrophilicity to hydrophobicity. The embodiments described above are intended to facilitate the understanding of the present invention and are not described in order to limit the present invention. Therefore, the respective elements of the above-described embodiments are intended to include all design changes or equivalents belonging to the technical scope of the present invention. For example, the stimuli-responsive polymer bridge body of the present invention has an interlocking structure and Contains a stimuli-responsive compound or its residue 18 201035131 • Yes. In the above examples, the interlocking structure is composed of a polymer (A) having two or more annular portions and a linear molecule. The interlocking structure is preferably a rotaxane structure, but it may be, for example, a cross-ring structure. The stimuli-responsive polymer bridging body having a paracycloalkane structure, for example, a responsive compound is introduced into a portion in which a cyclic molecule having a paracycloalkane structure is bonded to each other. [Examples] Hereinafter, the present invention will be specifically described by way of Examples and the like, but the present invention is not limited to the Examples and the like. [Example 1] (1) Synthesis of polymer (A) 5 g of α-cyclodextrin (manufactured by Nacalai Tesque Co., Ltd.) was dissolved in dimethylformamide 50 mL' and methylbenzene was added to the solution (1: 2, 4_ diisocyanate terminal polypropylene glycol (made by Aldrich Co., Ltd., Μη··1, 〇〇0) 3. 4g and dibutyltin dilaurate (made by Tokyo Chemical Industry Co., Ltd.) 200mg as a tin catalyst. Stir at room temperature for 20 hours. The reaction solution was poured into diethyl ether to precipitate, and the recovered solid was dried, washed with water and dried again, and then transferred to a polymer having α-cyclodextrin as a cyclic molecule and polypropylene glycol as a linking moiety molecule ( A) 4.6g. (2) Synthesis of linear molecule (B) 5 g of polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., Mn: 1000) was dissolved & gas methane was burned 5 mL, and isogastric acid 5 was added to the solution. Dimethyl sulfonate (6 g of Aldrich Co., Ltd. and dibutyltin dilaurate 19, 201035131 (manufactured by Tokyo Chemical Industry Co., Ltd.), which is a tin catalyst, was stirred at room temperature for 2 hours. Then, in this solution Add 2-methyl propylene hydroxyethyl isocyanate (manufactured by Showa Denko Co., Ltd., product name "KARENZMOI" 1.7g and dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd.) 1 〇〇mg, and then stir at room temperature After concentrating the obtained solution, the precipitate was cooled to _75 < t diethyl ether, and the precipitate was recovered to obtain a barrier group composed of 3, dimethylphenyl group at one end thereof, and Polyethylene glycol having a methacryl oxime group at the other end (hereinafter referred to as "MA-PEG-DPI"; linear molecule (B)) 38 g. (3) Polymer bridging precursor (c) 300 mg of the polymer (A) was dissolved in 1 mL of a 4 wt% aqueous sodium hydroxide solution, and a linear molecule (B) was added to the solution. Mg, while mechanically stirring and irradiating ultrasonic waves (35 Hz) for 5 minutes, the solution becomes cloudy and viscous. Such a white turbidity with an increased viscosity is considered to be a linear portion of the cyclic portion of the polymer (A). a polymer bridging precursor (C) contained in the molecule (B). (4) The stimuli-responsive polymer bridging body (e) is produced in the white turbid substance, and is added as a stimuli-responsive compound (D). N-isopropyl acrylamide 2·0g, stirred until uniform. Secondly, a 1-hydroxy-cyclohexyl-benzophenone/diphenyl ketone co-melt mixture added as a photopolymerization initiator (manufactured by Ciba Speciality Chemicals) , product name "Irga (3) 奵 500" 40 # 1, after stirring, irradiated with ultraviolet light for 3 minutes (irradiation conditions: illuminance 3. OmW / cm2; light quantity 5 〇〇 mJ / cm2). The obtained substance can be considered to have high stimuli responsiveness. Molecular bridging body (E), which is based on the linear polymer of the above-mentioned polymer bridging precursor (c) (b) 20 201035131 - polymerizable functional group (methacryl fluorenyl), making the first shop eight土土> Copolymerization of a 1-chain molecule with a stimuli-responsive compound (D) A polymer having a side bond of a polymer having a barrier group contained in a side bond of a polymer (A), and a polymer stimulating the responsive compound (7) A stimuli-responsive polymer bridge (Ε) made of a polymer + + 4 bond. The obtained substance (stimulated responsive polymer bridge (Ε)) is sequentially immersed in water, tetrahydroanthene And dimethyl ketone is washed and then dried to obtain a stimuli-responsive polymer bridge thin (thickness: i · 〇 mm, non-extended). ν [Comparative Example 1] The same procedure as in Example 1 except that the polymer (Α) in Example 1 was changed to use 44 mg of polyethylene glycol diacrylate (used as a bridge body in which an interlocking structure was not formed). A stimuli-responsive polymer bridge film (thickness: 1. 〇mm, non-extension) was produced. [Test Example 1] (Measurement of swelling ratio) The stimuli-responsive polymer bridge thin film obtained in the examples and the comparative examples was immersed in water, and the water temperature was raised from room temperature to 50 C at a temperature increase rate rc /min. At this time, the mass of the stimuli-responsive polymer bridge film at each temperature was measured, and the swelling ratio was calculated. The swelling ratio is determined from the difference between the mass of the dried film and the mass (Wswell) of the thinned swell. The calculation formula is as follows. The swelling ratio [%]={(Ws#ell_Wdry)/uxl〇〇 The relationship between the temperature obtained in this way and the swelling ratio is shown in Fig. 3. As can be seen from the graph of Fig. 3, the stimuli-responsive polymer bridge film of the example was compared with the stimuli-responsive polymer bridge film of the comparative example, and 21 201035131 showed a very large swelling and contraction behavior in response to temperature. [Test Example 2] (Evaluation of Shrinkage Behavior) The stimuli-responsive polymer bridging film (to the temperature) obtained in the examples and the comparative examples was immersed in 50 C of water, and the swelling ratio s(t) was measured over time, and the shrinkage was calculated. Rate Sn. The shrinkage ratio Sn is obtained by the following formula. Shrinkage ratio Sn = swelling ratio s(t) at time (t) / swelling ratio S (max) at full swelling state (23 ° C) Fig. 4 shows the relationship between the time obtained thereby and the shrinkage ratio sn ( Contraction behavior). As can be seen from the graph of Fig. 4, the stimuli-responsive polymer bridge film of the example was significantly faster than the stimuli-responsive polymer bridge film of the comparative example for the temperature stimuli. [Test Example 3] (Measurement of contact angle of water droplets) The stimulation responses obtained in the examples and the comparative examples were measured at 23 ° C (room temperature) and 6 (TC (heating) using a contact angle meter (DSA100, manufactured by KRUSS). The contact angle of the surface of the polymer bridge film to pure water. The results are shown in Table 1.

Vj\ 〇 ί^Ι] 於23°C (室溫)之接觸角 於60°C (加熱)之接觸角 :施例1 72.4。 118.1。 st較例1 69.2。 78.4° 由表1可知,實施例之刺激應答性高分子架橋體薄膜 中,表面狀態由於加熱而由親水性顯著變化為疏水性。 [5式驗例4 ](透明性之評價) 22 201035131 ' 將實施例及比較例得到之刺激應答性高分子架橋體薄 膜由23 c (室溫)加熱至6〇〇c,以目視評價此時之刺激應答 陡间刀子架橋體薄膜之外觀。其結果,實施例之刺激應答 眭间刀子架橋體薄膜,薄膜由於加熱而由透明顯著變化為 白色另方面,比較例之刺激應答性高分子架橋體薄膜, 由透明變為有些混濁(半透明圖5顯示實施例得到之刺 激應答性高分子架橋體薄膜於加熱前之狀態(透明)的照 〇 片’圖6顯示加熱後之狀態(白色)的照片。 [產業利用性] 本發明適於製造應力緩和性及刺激應答性優異的高分 架橋趙又,知到之尚分子架橋體,可使用於作為刺激 應答性優異的薄膜等,例如:作為使用在感測器、凝膠材 料、醫療材料等的機能性材料為有用的。 〇 【圖式簡單說明】 圖1顯示本發明一實施形態之刺激應答性高分子架橋 體的製造步驟示意圖。 圖2顯示本發明一實施形態之刺激應答性高分子架橋 體之構造示意圖。 圖3顯示刺激應答性高分子架橋體薄膜之溫度與膨潤 率之關係圖。 圖4顯示刺激應答性高分子架橋體薄膜之時間與收縮 率之關係圖。 23 201035131 圖5顯示於試驗例4的透明性的評價中,實施例之刺 激應答性高分子架橋體薄膜於加熱前之狀態(透明)的照 片。 圖6顯示於試驗例4之透明性之評價中,實施例之刺 激應答性高分子架橋體薄膜於加熱後之狀態(白色)的照 片0Vj\ 〇 ί^Ι] Contact angle at 23 ° C (room temperature) Contact angle at 60 ° C (heating): Example 1 72.4. 118.1. St is compared to Example 1 69.2. 78.4° As is apparent from Table 1, in the stimuli-responsive polymer bridging film of the example, the surface state was remarkably changed from hydrophilic to hydrophobic due to heating. [5 test example 4] (evaluation of transparency) 22 201035131 'The stimuli-responsive polymer bridging film obtained in the examples and the comparative examples was heated from 23 c (room temperature) to 6 〇〇c to visually evaluate this. The stimulus stimulates the appearance of the steep knives of the bridge film. As a result, the stimuli of the examples responded to the inter-turn knives of the bridge film, and the film changed significantly from transparent to white due to heating, and the stimuli-responsive polymer bridge film of the comparative example changed from transparent to somewhat turbid (translucent pattern). 5 shows a photograph of the stimuli-responsive polymer bridge film obtained in the embodiment before being heated (transparent). FIG. 6 shows a photograph of the state after heating (white). [Industrial Applicability] The present invention is suitable for manufacture. High-rise bridges, which are excellent in stress relaxation and stimuli responsiveness, are known as molecular bridges, and can be used as films excellent in stimuli responsiveness, for example, as sensors, gel materials, and medical materials. Fig. 1 is a schematic view showing a manufacturing step of a stimuli-responsive polymer bridge according to an embodiment of the present invention. Fig. 2 shows a high stimuli responsiveness according to an embodiment of the present invention. Schematic diagram of the structure of the molecular bridge body. Figure 3 shows the relationship between the temperature and the swelling rate of the stimuli-responsive polymer bridge film. A graph showing the relationship between the time and the shrinkage rate of the stimuli-responsive polymer bridge film. 23 201035131 FIG. 5 shows the state of the stimuli-responsive polymer bridge film of the example before heating in the evaluation of the transparency of Test Example 4. (transparent) photograph. Fig. 6 is a photograph showing the state of the stimuli-responsive polymer bridging film of the example after heating (white) in the evaluation of the transparency of Test Example 4.

【主要元件符號說明】 無0[Main component symbol description] No 0

24twenty four

Claims (1)

201035131 . 七、申請專利範圍: 1. 一種刺激應答性高分子架橋體之製造方法,其特徵 在於:將具有2個以上環狀部分之聚合物,與其中之一末 端具有阻隔基且另一末端具有聚合性官能基之直鍵狀分子 混合’就其全部或一部分使形成内含錯合體,接著,介由 該直鏈狀分子之聚合性官能基,使該直鏈狀分子與刺激應 答性化合物共聚合。 〇 2. —種刺激應答性高分子架橋體,其特徵在於:具有 互鎖構造’且於骨架中包含刺激應答性化合物或其殘基。 3.如申請專利範圍第2項之刺激應答性高分子架橋 體’其中包含以具有互鎖構造之化合物架橋的部位。 4_如申請專利範圍第2項之刺激應答性高分子架橋 體’其中該互鎖構造,為輪烧構造。 5. —種刺激應答性高分子架橋體,其特徵在於:介由 將具有2個以上環狀部分之聚合物、與其中之一末端具有 〇 阻隔基且另一末端具有聚合性官能基之可與該聚合物形成 内含錯合體的直鏈狀分子混合而獲得的高分子架橋前驅體 的該直鏈狀分子的聚合性官能基,使得該直鏈狀分子與刺 激應答性化合物共聚合而獲得。 6. 一種刺激應答性高分子架橋體,其特徵在於: 具有以下構造:側鏈末端具有阻隔基之第丨高分子之 至少-側鏈以串插狀貫穿具有2個以上環狀部分之聚合物 中之該環狀部分之開口部,1,側鏈末端具有阻隔基之第 2高分子之至少1個側鏈以串插狀貫穿同一之具有該環狀 25 201035131 部分之聚合物的其餘至少 王夕1個該環狀部分之開口部; 於該第1高分子、註 飞第2间为子’或該第1高分子與 該第2高分子鍵結的部分 77的至少一處,具有包含刺激應答 性化合物,或其殘基之處。 7. 如申請專利範圍第 吗卑6項之刺激應答性高分子架橋 體’其特徵在於:作先助人 ’、'、聚u物的該刺激應答性化合物,構 成該第1高分子及/或該第2高分子之主鏈。 8. 如申印專利範圍第5或6項之刺激應答性高分子架 橋體,其中該聚合物之環狀部分,係選自自α—環糊精、 $環糊精、r~環糊精構成之族群中至少1種,或選自由 環狀聚醚、環狀聚酿、環狀聚醚胺及環狀聚胺構成之族群 中至少1種。 9.如申請專利範圍第2至7項中任一項之刺激應答性 面分子架橋體’其中該刺激應答性化合物,為N-異丙基丙 稀醯胺或其聚合物。 26201035131. VII. Patent application scope: 1. A method for manufacturing a stimulating responsive polymer bridging body, characterized in that a polymer having two or more cyclic portions, one of the ends has a barrier group and the other end The direct-bonded molecule having a polymerizable functional group mixes all or a part of the compound to form an in-situ complex, and then, through the polymerizable functional group of the linear molecule, the linear molecule and the stimuli-responsive compound Copolymerization. 〇 2. A stimuli-responsive polymer bridging body having an interlocking structure and containing a stimuli-responsive compound or a residue thereof in the skeleton. 3. The stimuli-responsive polymer bridging body of claim 2, wherein the portion comprising a compound having a interlocking structure is bridged. 4_ The stimuli-responsive polymer bridge body of claim 2, wherein the interlocking structure is a wheel-fired structure. 5. A stimuli-responsive polymer bridging body characterized in that a polymer having two or more cyclic moieties and a terminal having a ruthenium blocking group at one end and a polymerizable functional group at the other end are provided a polymerizable functional group of the linear molecule of the polymer bridging precursor obtained by mixing the polymer with a linear molecule containing a complex, such that the linear molecule is copolymerized with the stimuli-responsive compound . A stimuli-responsive polymer bridging body having a structure in which at least a side chain of a second polymer having a barrier group at a side of a side chain penetrates a polymer having two or more cyclic portions in a series of insertions In the opening portion of the annular portion, at least one side chain of the second polymer having a barrier group at the side of the side chain penetrates the same at least one of the remaining polymers having the portion of the ring 25 201035131 One opening of the annular portion; at least one of the first polymer, the second portion of the injection, or the portion 77 of the first polymer and the second polymer; Stimulate a responsive compound, or a residue thereof. 7. The stimuli-responsive polymer bridging body of the patent application scope No. 6 is characterized in that the stimulating compound which is a helper's, ', or a poly-substance constitutes the first polymer and/or The main chain of the second polymer. 8. The stimuli-responsive polymer bridging body of claim 5, wherein the cyclic portion of the polymer is selected from the group consisting of α-cyclodextrin, cyclodextrin, and r-cyclodextrin. At least one of the constituent groups or at least one selected from the group consisting of a cyclic polyether, a cyclic polyglycol, a cyclic polyether amine, and a cyclic polyamine. 9. The stimuli-responsive surface molecular bridging body of any one of claims 2 to 7 wherein the stimuli-responsive compound is N-isopropylpropanylamine or a polymer thereof. 26
TW098144931A 2008-12-26 2009-12-25 Stimulation responsive macromolecule bridging body and its manufacturing method TWI503337B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333574A JP5379470B2 (en) 2008-12-26 2008-12-26 Stimulated responsive polymer crosslinked body and method for producing the same

Publications (2)

Publication Number Publication Date
TW201035131A true TW201035131A (en) 2010-10-01
TWI503337B TWI503337B (en) 2015-10-11

Family

ID=42287599

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098144931A TWI503337B (en) 2008-12-26 2009-12-25 Stimulation responsive macromolecule bridging body and its manufacturing method

Country Status (3)

Country Link
JP (1) JP5379470B2 (en)
TW (1) TWI503337B (en)
WO (1) WO2010073989A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723638B2 (en) * 2011-03-10 2015-05-27 リンテック株式会社 Crosslinked polymer and method for producing crosslinked polymer
JP5611087B2 (en) * 2011-03-10 2014-10-22 リンテック株式会社 Polymer cross-linking precursor, stimulus-responsive polymer cross-linked product, and production method thereof
JP5855839B2 (en) * 2011-03-10 2016-02-09 リンテック株式会社 Light control panel
US10308772B2 (en) 2015-01-09 2019-06-04 Sumitomo Seika Chemicals Co., Ltd. Method for producing pseudopolyrotaxane aqueous dispersion
JP6740527B2 (en) * 2015-05-01 2020-08-19 株式会社リコー Polymers, optical materials and lenses
JP6511340B2 (en) * 2015-06-09 2019-05-15 大日本印刷株式会社 Evaluation method of functional layer
JP6941759B2 (en) * 2016-09-09 2021-09-29 Kjケミカルズ株式会社 (Meta) Acrylamide-modified polyrotaxane
JP2021178878A (en) * 2018-08-08 2021-11-18 株式会社トクヤマ Curable composition including poly pseudo rotaxane monomer
CN112876644A (en) * 2019-11-29 2021-06-01 永胜光学股份有限公司 Carrier unit and method for manufacturing same
WO2023171709A1 (en) * 2022-03-09 2023-09-14 国立大学法人大阪大学 Resin composition and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3832970B2 (en) * 1998-05-11 2006-10-11 独立行政法人科学技術振興機構 Temperature-responsive biodegradable polymer
JP3475252B2 (en) * 2000-04-28 2003-12-08 株式会社先端科学技術インキュベーションセンター Compound having cross-linked polyrotaxane
JP2007063398A (en) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd Hydrophobic straight chain molecule polyrotaxane and crosslinked polyrotaxane
JP5137097B2 (en) * 2006-07-14 2013-02-06 リンテック株式会社 Method for producing polyrotaxane
KR101504771B1 (en) * 2007-03-06 2015-03-20 아도반스토 소후토 마테리아루즈 가부시키가이샤 Polyrotaxanes and material having polyrotaxane, crosslinked polyrotaxanes and material having the crosslinked polyrotaxane, and processes for producing these
JP5522891B2 (en) * 2007-08-29 2014-06-18 リンテック株式会社 Polymer cross-linked precursor, polymer cross-linked product, and production method thereof
JP5612311B2 (en) * 2007-11-27 2014-10-22 アドバンスト・ソフトマテリアルズ株式会社 Composition comprising a polyrotaxane or a crosslinked polyrotaxane and a multi-component dispersion medium
JP5641695B2 (en) * 2009-01-07 2014-12-17 リンテック株式会社 Thermoresponsive polymer gel and thermoresponsive polymer gel film
JP5683072B2 (en) * 2009-01-07 2015-03-11 リンテック株式会社 Thermoresponsive polymer gel film

Also Published As

Publication number Publication date
WO2010073989A1 (en) 2010-07-01
TWI503337B (en) 2015-10-11
JP5379470B2 (en) 2013-12-25
JP2010155880A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
TW201035131A (en) Stimuli-responsive crosslinked polymer and production method therefor
US20170129999A1 (en) PH Responsive Self-Healing Hydrogels Formed By Boronate-Catechol Complexation
Shi et al. The use of azide–alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers
Apostolides et al. Dynamic covalent star poly (ethylene glycol) model hydrogels: A new platform for mechanically robust, multifunctional materials
TWI557173B (en) Block copolymer
Campos et al. Development of thermal and photochemical strategies for thiol− ene click polymer functionalization
Wang et al. In Situ Synthesis of Thermoresponsive Polystyrene-b-poly (N-isopropylacrylamide)-b-polystyrene Nanospheres and Comparative Study of the Looped and Linear Poly (N-isopropylacrylamide) s
Zhang et al. Morphological stabilization of block copolymer worms using asymmetric cross-linkers during polymerization-induced self-assembly
JP6868395B2 (en) Multigraft copolymer superelastomer by emulsion polymerization
Pafiti et al. End-linked poly [2-(dimethylamino) ethyl methacrylate]–poly (methacrylic acid) polyampholyte conetworks: synthesis by sequential RAFT polymerization and swelling and SANS characterization
Pramanik et al. A new class of self-healable hydrophobic materials based on ABA triblock copolymer via RAFT polymerization and Diels-Alder “click chemistry”
Adkins et al. Synthesis of star polymer architectures with site-isolated chromophore cores
TW201033233A (en) Crosslinked polymer and crosslinked polymer production method
Jiang et al. Synergistically tailoring mechanical and optical properties of diblock copolymer thermoplastic elastomers via lanthanide coordination
Li et al. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: A modular platform for drug delivery
Kadam et al. Synthesis of star-shaped polymers
Kataoka et al. Fast and Reversible Cross-Linking Reactions of Thermoresponsive Polymers Based on Dynamic Dialkylaminodisulfide Exchange
JP5250641B2 (en) pH-sensitive polyethylene oxide copolymers and methods for their synthesis
Paderes et al. Photo‐Controlled [4+ 4] Cycloaddition of Anthryl‐Polymer Systems: A Versatile Approach to Fabricate Functional Materials
Chen et al. A well-defined thermo-and pH-responsive double hydrophilic graft copolymer bearing pyridine-containing backbone
JP5611087B2 (en) Polymer cross-linking precursor, stimulus-responsive polymer cross-linked product, and production method thereof
JP2002201327A (en) High-density and branched structure type aliphatic polyester for plasticizer of pvc and flexible pvc blend containing the same
Sheng et al. Temperature and pH responsive hydrogels based on polyethylene glycol analogues and poly (methacrylic acid) via click chemistry
Ren et al. Polyisobutylene‐b‐Poly (N, N‐diethylacrylamide) well‐defined amphiphilic diblock copolymer: Synthesis and thermo‐responsive phase behavior
JP2009051994A (en) Crosslinked polymer precursor, polymer crosslinked product and their manufacturing methods