TW201034919A - Movable shelf equipment - Google Patents

Movable shelf equipment Download PDF

Info

Publication number
TW201034919A
TW201034919A TW98110725A TW98110725A TW201034919A TW 201034919 A TW201034919 A TW 201034919A TW 98110725 A TW98110725 A TW 98110725A TW 98110725 A TW98110725 A TW 98110725A TW 201034919 A TW201034919 A TW 201034919A
Authority
TW
Taiwan
Prior art keywords
shed
width
moving
walking
detected
Prior art date
Application number
TW98110725A
Other languages
Chinese (zh)
Other versions
TWI441766B (en
Inventor
Kazushi Tsujimoto
Natsuo Takagawa
Syouji Yokoyama
Original Assignee
Daifuku Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Kk filed Critical Daifuku Kk
Priority to TW98110725A priority Critical patent/TWI441766B/en
Publication of TW201034919A publication Critical patent/TW201034919A/en
Application granted granted Critical
Publication of TWI441766B publication Critical patent/TWI441766B/en

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

An objective of the invention is to provide a movable shelf equipment capable of performing the width discrepancy control of the movable shade without using the detected object with sheet rail shaped. The movable shelf equipment is provided, wherein a magnet as a detected object is disposed on the floor at the stopping position of each moving shelf, and a magnetic sensor for detecting the foregoing magnet is disposed at each moving shelf. Once the moving shelf 11 stops its travel, the magnet is detected by the magnetic sensor. If the detected magnetic sensitivity has changed above a predetermined value or more from the magnetic sensitivity detected at the previous travel stopping time, that is, if a width discrepancy larger than a predetermined value is detected, the traveling orbit of the moving shelf for eliminating the width discrepancy is taken, and the rotating speed of each driving motor is controlled by following the traveling orbit at the next traveling time.

Description

201034919 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種例如被設置在倉庫内的狹小空間内 之移動棚設備’亦即關於一種配設複數個可經由車輪而在 行走路徑上作往復行走的移動棚而成之移動棚設備,特別 是關於一種沒有被軌道導引,以無軌道(無軌條)的方式而 作成可往復行走自如的移動棚設備的發明。201034919 VI. Description of the Invention: [Technical Field] The present invention relates to a mobile shed device that is disposed, for example, in a small space within a warehouse, that is, a plurality of devices that can be placed on a walking path via wheels A mobile shed device made of a reciprocating walking shed, in particular, relates to a mobile shed device that can be reciprocated without a track guide and without a track (trackless strip).

【先前技術】 習知的以無軌條的方式而作成可往復行走自如的移動 棚設備的一個例子,已揭示於專利文獻丨中。[Prior Art] An example of a conventional mobile shed apparatus which can be reciprocated in a railless manner has been disclosed in the patent document 。.

亦即,已揭示出一種設備,其在固定棚之間,配設複 數個經由車輪而可在行走路徑(無軌條)上作往復行走的移 動棚’而藉由使這些移動棚行走,在相鄰的固定棚-移動棚 之間或是相鄰的移動棚之間,使通路開放,而可經由 路’對於面向通路的固定相H + 町u疋棚或移動棚,搬入或搬出物品。 又,車輪之中,位於與前述各移動棚的行走路徑方6 垂直之左右方向的兩側部分之鱼认ν ^ 仫方向 , 刀之車輪,分別設有驅動馬達而 構成驅動車輪,進而在前 ’連而 々崎士 ]这兩側部分,配置脈衝編碼器; 又,玟有移動棚控制器,用 旋轉量。 用从刀別控制兩驅動馬達的驅動 此移動棚控制器,藉由 ^ 7 由汁數各脈衝編碼器的脈衝,來 求取兩側部分的各驅動車 1野來 此4 半輪所產生的行走距離,並求出這 些订走距離的偏差與行走距 ^ 離的變化,然後以可以消除由 3 201034919 :些仃走距離的偏差與行走距離的變化所預測出來的預測 =距離的θ偏差之方式’來控制各驅動馬達的逮度(旋轉驅 篁使传移動棚在行走中不會傾斜,而τ維持姿勢(進 行姿勢控制)。 μ势c進 ,當沿著行走路徑而作往復 便疋無軌條的情況,也可以 所形成的通路不會變狹窄而 如此,藉由移動棚控制器 行走時’可執行姿勢控制,即 使移動棚在行走中不會傾斜, 不會妨礙物品的搬入、搬出。That is, a device has been disclosed in which a plurality of moving sheds that can reciprocate on a walking path (trackless strip) via wheels are provided between the fixed sheds, and by moving the moving sheds, Adjacent fixed sheds - between moving sheds or between adjacent moving sheds, the passages are opened, and items can be moved in or out of the road-oriented stationary phase H + machi 疋 shed or moving shed. Further, among the wheels, the fish are located in the left and right directions perpendicular to the traveling path side 6 of each of the moving sheds, and the wheels of the knives are respectively provided with drive motors to constitute the driving wheels, and further 'Lian and 々崎士】The two sides are equipped with a pulse encoder; in addition, there is a mobile shed controller with a rotation amount. The mobile shed controller is controlled by the two-drive motor from the cutter, and the pulse of each pulse encoder is used to determine the driving force of the two sides of the drive unit. The walking distance, and the deviation of the walking distance and the variation of the walking distance are obtained, and then the deviation of the prediction = distance predicted by the variation of the walking distance and the walking distance can be eliminated by 3 201034919. The mode 'to control the catch of each drive motor (rotation drive makes the transmission shed not tilt while walking, while τ maintains the posture (for posture control). μ potential c, when reciprocating along the walking path In the case of the trackless bar, the formed path may not be narrowed, and the "exercise posture control" when the mobile shed controller is walking, even if the moving shed does not tilt during walking, does not hinder the loading and unloading of the article. .

又,在地面上,設置寬度偏移檢出手段,此手段是先 石著订走路徑’鋪設薄片軌道狀的被檢出冑 出此被檢出體,來檢出移動棚的前述左右方向的偏= 偏移);前述移動棚控制器,是構成:若檢測出來的寬度偏 移超過規定值’則以可消除前述寬度偏移的方式,來控制 各驅動馬達的速度(驅動旋轉量),使得移動棚不會往左右 方向偏移(進行寬度偏移控制)。 [專利文獻1]曰本特許第38〇4462號公報 【發明内容】 [發明所欲解決的問題] 但是,習知的移動棚設備,為了消除寬度偏移,而使 用了薄片軌道狀的被檢出體,但是要將此種薄片軌道狀的 被檢出體,沿著一定路徑,且水平地鋪設在地面上,是困 難的。又,薄片軌道狀的被檢出體,在形成通路之處,由 於會出現在通路上,所以需要作成:即便作業者踩踏或是 4 201034919 用來搬運物品的車輛通過,也不會發生破損。但是,如此 強固地鋪設’是有困難的。 ’ 因此’本發明的目的是提供一種移動棚設備,沒有使 用薄片軌道狀的被檢出體,便能執行移動棚的寬度偏移控 制。 . [解決問題之技術手段] . 為了達成前述目的,本發明之中的申請專利範圍第1 〇 項所述的發明’是一種移動棚設備,配設有複數個可經由 車輪而在行走路徑上作往復行走的移動棚,其位在前述行 走路徑的寬度方向的兩侧部分之車輪,分別設有驅動馬達 而構成驅動車輪,並設有控制手段,用以驅動前述移動棚 、 的的各驅動馬達來控制移動棚的行走,此移動棚設備的設 徵在於: 在地面的前述各移動棚的停止位置,設置被檢出體; 在前述各移動棚上,設置寬度偏移檢出手段,藉由前 〇 述被檢出體的檢出’來檢出從移動棚的行走路徑算起的寬 , 度偏移(往垂直於前述行走路徑的左右方向); 前述控制手段,若行走停止,則先藉由前述寬度偏移 •檢出手段’檢測出前述寬度偏移,-旦檢測出比規定值更 大的寬度偏移時,則求取使前述寬度偏移變少之移動棚的 行走軌跡,而在下次行走時,以可沿著前述行走軌跡行走 的方式來控制各驅動馬達的旋轉速度。 右根據上述構成,當移動棚停止行走時,被檢出體被 檢出,若檢測出來的寬度偏移超過規定值,則求取用以消 201034919 除寬度偏移之移動棚的行走軌跡,而在下次行走時,控制 各驅動馬達的旋轉速度,使移動棚的寬度偏移被修正。此 時,沿著行走路徑,由於沒有光反射帶或磁帶等,所以是 先求取使寬度偏移變少之行走路徑,然後以可追蹤此軌跡 的方式’來控制兩驅動馬達的旋轉速度。如此,沒有使用 薄片執道狀的被檢出體,便可執行移動棚的寬度偏移控 制’於是薄片軌道狀的被檢出雔,變成不需要。 又’申請專利範圍第2項所述的發明,是針對申請專 〇 利範圍第1項所述的發明,其中前述控制手段,當使一個 移動棚’基於前述使寬度偏移變少的軌跡來行走時,使其 • 他的移動棚’延遲一定時間,才開始行走。 . 若根據上述構成,當使一個移動棚執行寬度偏移消除 的行走時’使其他的移動棚,延遲一定時間,才開始行走。 藉此,可避免後續的移動棚接觸(碰撞)先前的移動棚;該 先前的移動棚,為了進行用以消除寬度偏移的行走,會暫 時轉向用以消除寬度偏移的方向,而呈現傾斜狀。 〇 又’申請專利範圍第3項所述的發明,是針對申請專 利範園第1項或第2項所述的發明,其中前述行走執跡, , 疋刖述兩驅動馬達以規定旋轉速度以上被啟動,並繼續對 旋轉速度附加差值來進行驅動’而在移動規定距離時便可 消除寬度偏移之軌跡。 若根據上述構成’兩驅動馬達以規定旋轉速度以上被 啟動,並繼續對旋轉速度附加差值來進行驅動,而在移動 規定距離的期間,便可消除移動棚的寬度偏移。在啟動時, 201034919 藉由兩驅動馬達以規定旋轉速度以上作啟動,能消除以下 料良情況,亦即:其中—方的驅動車輪停止而作為中心, 若另-方的驅動車輪移動,則會發生其中一方的驅動車輪 被拉扯而隨意地移動的現象,而無法照著行走執跡行走。 又’申請專利範圍帛4項所述的發明,是針對申請專 .:圍第1項或第2項所述的發明,其中前述行走軌跡, 、是前述兩驅動馬達以規定旋轉速度以上被啟動,並繼續對 ㈣速度附加差值來進行驅動,而藉由複數次 U 、消除寬度偏移之軌跡。 錢Ύ 若根據上述構成,兩驅動馬達以規定旋轉速度以上被 動並繼續對旋轉速度附加差值來進行驅動,而在移動 規定距離複數次的期間,便可消除移動棚的寬度偏移。 又申明專利範圍第5項所述的發明,是針對申請專 利範圍第i項〜第4項中任一項所述的發明,其中前述控 手段先求取使寬度偏移的行走被執行的頻率或次數, 〇 若頻率超過規定的頻率或是次數超過規定的次數,則發出 警報。 若根據此構成,當移動棚的寬度偏移的頻率或次數增 加時,便發出警報,通知··移動棚一直會發生寬度偏移一 0 又,申請專利範圍第6項所述的發明,是針對申請專 利範圍第1項〜第5項中任一項所述的發明,其中: 作為前述被檢出體,是在前述各移動棚沿著行走路徑 移動而停止之前後的各停止位置,配置磁鐵; 7 201034919 作為前述寬度偏移檢出手段,是面對前述磁鐵,設置 磁感測器; ° 前述控制手段,若行走停止,則藉由前次的根據前述 磁感測器所檢測出來磁強度(磁感度)與此次的根據磁感測 器所檢測出來的磁強度之變化,來檢測出移動棚的寬度偏 移,然後執行使前述移動棚的寬度偏移變少之移動棚的行 走控制。 ^ ❹ 〇 若根據此構成,藉由比較根據磁感測器所檢測出來的 分別被配置在前後的各停止位置上的磁鐵的磁感度,來檢 測出移動棚的寬度偏移,然後以可減少檢測出來的寬度偏 移的方式,來執行移動棚的行走控制。如此 動棚的停止位置配置磁鐵即可,不需要铺p & & 被檢出體。 要舖叹薄片軌條狀的 又’申請專利範圍第7項所述的發明,是針對申請專 利範圍第1項〜第6項中任-項所述的發明,其中·· 在前述各移動财,設置行走量檢出手段 檢測出前述兩側部分的各驅動車輪的行走量; 前述控制手段,基㈣由前述 測出來的驅動車輪的1曰 丁定置檢出手段所檢 -走量的偏差的方式,來修正控制藉由各的 *… _此來進仃移動棚姿勢修正控制。 右 上述構成,移動棚的控 時,基於?工剌手段,在移動棚行走 吁基於藉由兩側的2 動車輪的行走量,以mi出手段所檢測出來的驅 W U可蝻除前述兩瓶叙由4人,^ 和艇動車輪的行走量的偏 8 201034919 馬達所產生的驅動旋轉 的方式,來執行行走控 差的方式,來修正控制藉由各驅動 里,而能以移動棚的姿勢沒有傾斜 制。 ’ L功效] 本發明的移動棚設備,當移動棚停止行走時, 偏移超過規定值,則求取用以消 又 θ咏見度偏移之移動棚的行 Ο ^軌跡,而在下次行走時,以可沿著此軌跡行走的方式, 控制各驅動馬達的旋轉速度’藉此能修正移動棚的寬产 偏移’因此’具有以下的效果:亦即,不需要沿著行走路 徑’在途中鋪設光反射帶或磁料,可消除此鋪 的不良情況。 成 【實施方式】 以下,基於圖面來說明本發明的實施形態。 如第1圖及第3圖所示,實施形態中的移動棚設備, 〇 是由6台(複數台的—個例子)移動棚i卜及被配置在這此 , 移動棚11群的行走路徑10的兩端外方位置上的固定棚3 所形成;在這一對固定棚3之間,前述6台移動棚U,在 • 行走路徑方向A,被配設成可作往復行走(往復行走自如); 為了要對移動棚11或固定棚3進行貨物的交接, 11之間或移動棚11與固定棚3之間,形成作業用通路S。 作業用通路S的行走路徑方向A的寬度,在本實施形態中, «c成移動棚的行走路徑方向a的寬度。 另外,以下將垂直於移動棚U的行走路徑方向Μ前後 9 201034919 方向)的方向’稱為寬度方向(左右方向)B。又,將移動棚 11的·》又有控制盤20(洋如後述)的面設為正面,將右方向設 為前方向(FW)並將往右方向移動的方向設為前進方向,將 左方向設為後方向(RE)並將往左方向移動的方向設為後退 方向。又,將移動棚11的寬度方向(左右方向)8的其中一 側(後面側)’稱為HP側,而將寬度方向β的另一側(正面 侧),稱為0P侧。又,移動棚丨丨為了要形成前述作業用通 路S ’在行走後停止的位置,將後退側設為rv停止位置, 將前進側設為FW停止位置。 [固定棚] 固定棚3’是由被载置並固定於地面上的下部框體 4、及被安裝在此下部框體4上的棚部5等所構成。在此棚 部5中,往上下方向及水平方向,形成複數個區隔收納空 間5a。 而且,在兩固定棚3的下部之間,設置障礙物檢出用 的光電感測器6。此光電感測器6,在寬度方向B,隔開是 當的間隔,並列設置複數個。此處,光電感測器6,是其 投光器7與受光器8面對面地配置的透過型光電開關,並 構成從各投光器7來的檢出用光線7a,可通過移動棚11 群中的下^卩框體12(後述)的底面與地面ia之間的空間, 而由位於對向位置的受光器8接收。 如此’利用設置一對固定棚3,可有效地利用設置空間 來保& 物又,藉由採用光電感測器6,即便萬一在作 業員進入作業用通路S内的狀態下’想要使移動棚11移 10 201034919 t藉由橫過作業用通路s的檢出用光線心能檢測到此 種W況,而可地、 J進仃使移動棚11的移動停止等的控制。另 外j利用檢出用光線7a S被設定在距地面la低水平的位 置所以不僅是作業員,即便是從固定棚3的棚部5或移 動棚11的棚部13(後述)落在作業用通路S内的小型異物, . 也可利用非接觸的方式檢測出來。 • 另外,作為其他檢出方式,也可以是將光電感測器,Further, a width deviation detecting means is provided on the ground, and this means is to detect the left and right direction of the moving shed by detecting the detected shape of the thin track in the shape of a thin track. The shifting controller is configured to control the speed of each driving motor (the amount of driving rotation) by eliminating the width deviation if the detected width shift exceeds a predetermined value The moving shed is not offset in the left and right direction (for width shift control). [Patent Document 1] Japanese Patent Publication No. 38〇4462 [Draft of the Invention] [Problems to be Solved by the Invention] However, conventional mobile shed equipment uses a sheet-like track to be inspected in order to eliminate the width deviation. It is difficult to lay out such a thin track-shaped object to be detected along a certain path and horizontally on the ground. Further, since the object to be detected in the shape of the sheet track appears on the path at the path where the passage is formed, it is necessary to make it not to be damaged even if the operator steps on or the vehicle for carrying the article passes through 2010. However, it is difficult to lay such a strong one. Therefore, it is an object of the present invention to provide a mobile shed apparatus capable of performing width shift control of a moving shed without using a sheet track-like object to be detected. [Technical means for solving the problem] In order to achieve the above object, the invention described in the first aspect of the invention is a mobile shed apparatus equipped with a plurality of wheels that can be traveled via a wheel. a moving shed for reciprocating walking, wherein the wheels on both sides of the width direction of the traveling path are respectively provided with a driving motor to constitute a driving wheel, and a control means for driving each driving of the moving shed is provided The motor controls the walking of the moving shed, and the moving shed equipment is designed to: set the detected object at the stop position of each of the moving sheds on the ground; and set a width offset detecting means on each of the moving sheds, The width of the movement path of the moving shed is detected by the detection of the detected object, and the degree of deviation (toward the left-right direction perpendicular to the traveling path) is detected. If the walking is stopped, the control means First, the width shift is detected by the width shift/detection means', and when a width shift larger than a predetermined value is detected, the width shift is reduced. Moving trajectory movable shed, and in the next walking, traveling in a manner traveling along the trajectory controlling the rotational speed of each drive motor. According to the above configuration, when the moving shed stops walking, the detected object is detected, and if the detected width shift exceeds a predetermined value, the traveling trajectory of the moving shed for canceling the width deviation of 201034919 is obtained. At the time of the next walk, the rotational speed of each drive motor is controlled so that the width shift of the moving shed is corrected. At this time, since there is no light reflection tape or a magnetic tape or the like along the traveling path, the traveling path in which the width shift is reduced is first obtained, and then the rotational speeds of the two driving motors are controlled in such a manner that the trajectory can be tracked. In this way, the width deviation control of the moving shed can be performed without using the object to be detected in the form of a sheet, and the detected ridges in the shape of the sheet track become unnecessary. Further, the invention described in claim 2 is directed to the invention described in claim 1, wherein the control means causes a moving shed to be based on the trajectory in which the width shift is reduced. When walking, make his • moving shed 'delay for a certain period of time before starting to walk. According to the above configuration, when one of the moving sheds is caused to perform the walking with the width offset canceled, the other moving sheds are delayed for a certain period of time before starting to travel. Thereby, the subsequent moving shed can be prevented from contacting (colliding) the previous moving shed; the previous moving shed, in order to perform the walking for eliminating the width deviation, temporarily turns to the direction for eliminating the width deviation, and presents the inclination shape. The invention described in the third application of the patent application is directed to the invention described in the first or second aspect of the patent application, wherein the above-mentioned walking is performed, and the two driving motors are expressed at a predetermined rotational speed or higher. It is activated and continues to drive the difference in the rotational speed to drive 'and the trajectory of the width offset can be eliminated when moving the specified distance. According to the above configuration, the two drive motors are activated at a predetermined rotational speed or higher, and the drive is further driven by adding a difference to the rotational speed. When the predetermined distance is moved, the width shift of the movable shed can be eliminated. At start-up, 201034919 can be activated by the two drive motors above the specified rotation speed, which can eliminate the following conditions: that is, the drive wheel of the square is stopped as the center, and if the drive wheel of the other side is moved, When one of the driving wheels is pulled and moves freely, it is impossible to walk along the walking track. The invention described in the fourth aspect of the invention is the invention described in the first aspect or the second aspect, wherein the travel track is activated by the two drive motors at a predetermined rotational speed or higher. And continue to drive (4) the speed difference difference, and by multiple times U, eliminate the trajectory of the width offset. According to the above configuration, the two drive motors are driven at a predetermined rotational speed or higher and continue to drive the difference in the rotational speed, and the width shift of the movable shed can be eliminated while the predetermined distance is moved. The invention of claim 5 is directed to the invention described in any one of the above-mentioned claims, wherein the control means first determines the frequency at which the width-shifted walking is performed. Or the number of times, if the frequency exceeds the specified frequency or the number of times exceeds the specified number of times, an alarm is issued. According to this configuration, when the frequency or the number of times of the width shift of the moving shed increases, an alarm is issued to notify that the moving shed always has a width shift of zero, and the invention described in claim 6 is In the invention according to any one of the first to fifth aspects of the invention, wherein the object to be detected is disposed at each of the stop positions before and after the moving shed moves along the traveling path. Magnet; 7 201034919 As the width deviation detecting means, a magnetic sensor is disposed facing the magnet; ° The control means, if the walking stops, the magnetic force detected by the previous magnetic sensor The strength (magnetic sensitivity) and the current change in the magnetic strength detected by the magnetic sensor are used to detect the width shift of the moving shed, and then the walking of the moving shed that reduces the width shift of the moving shed is performed. control. ^ ❹ 根据 According to this configuration, the width deviation of the moving shed is detected by comparing the magnetic sensitivities of the magnets respectively arranged at the respective stop positions detected by the magnetic sensors, and then can be reduced The detected width deviation is performed to perform the walking control of the moving shed. The magnet can be placed in the stop position of the shed, and it is not necessary to lay the p && The invention described in the seventh aspect of the patent application is to sigh the invention of the invention, and is directed to the invention described in the first to sixth items of the patent application, wherein a walking amount detecting means is provided to detect the running amount of each of the driving wheels on the both side portions; and the control means, the base (4) is detected by the first detecting means of the driving wheel, and the deviation of the running amount is detected. The way to correct the control is to move the shed posture correction control by each of the *. According to the above configuration, the control time of the mobile shed is based on the work means, and the walking of the mobile shed is based on the amount of walking of the two moving wheels on both sides, and the drive WU detected by the mi means can eliminate the two bottles. Described by 4 people, ^ and the amount of travel of the boat wheel 8 201034919 The driving rotation method generated by the motor to perform the walking control method to correct the control by the various driving, and can move the shed posture There is no tilt system. 'L effect> The mobile shed equipment of the present invention, when the mobile shed stops walking, if the offset exceeds a predetermined value, the trajectory of the mobile shed for canceling the θ visibility offset is obtained, and the next trajectory is taken. At the same time, the rotational speed of each of the drive motors is controlled in such a manner as to be able to travel along this trajectory, whereby the wide displacement of the mobile shed can be corrected. Therefore, the following effects are obtained: that is, there is no need to follow the travel path Laying light reflection tape or magnetic material on the way can eliminate the bad situation of the shop. [Embodiment] Hereinafter, embodiments of the present invention will be described based on the drawings. As shown in Fig. 1 and Fig. 3, in the mobile shed equipment according to the embodiment, 〇 is composed of six (a plurality of examples), and the traveling path of the moving shed 11 group is arranged here. The fixed shed 3 at the outer position of both ends of the 10 is formed; between the pair of fixed sheds 3, the six moving sheds U are arranged to reciprocate in the direction A of the traveling path (reciprocating walking) In order to transfer the goods to the moving shed 11 or the fixed shed 3, between the 11 or between the moving shed 11 and the fixed shed 3, a working passage S is formed. In the present embodiment, the width of the travel path direction A of the work path S is "c" the width of the travel path direction a of the mobile shed. In addition, hereinafter, the direction 'the direction perpendicular to the traveling path direction of the moving shed U Μ front and rear 9 201034919) is referred to as the width direction (left-right direction) B. In addition, the surface of the moving shed 11 and the control panel 20 (described later) is the front side, and the right direction is the front direction (FW) and the direction moving to the right direction is the forward direction. The direction is set to the rear direction (RE) and the direction of moving to the left direction is set to the backward direction. Further, one side (back side) of the width direction (left-right direction) 8 of the moving shed 11 is referred to as the HP side, and the other side (front side) of the width direction β is referred to as the 0P side. Further, in order to form the position where the work channel S' is stopped after traveling, the moving shed is set to the rv stop position and the forward side to the FW stop position. [Fixed shed] The fixed shed 3' is composed of a lower casing 4 that is placed and fixed to the floor, and a shed portion 5 that is attached to the lower casing 4. In the shed portion 5, a plurality of compartments accommodating spaces 5a are formed in the vertical direction and the horizontal direction. Further, between the lower portions of the two fixed booths 3, an optical detector 6 for detecting obstacles is provided. The photo-sensing device 6, in the width direction B, is spaced apart by a plurality of intervals. Here, the photodetector 6 is a transmissive photoelectric switch in which the light projector 7 and the photodetector 8 face each other, and constitutes the detection light 7a from each of the light projectors 7, and can pass through the lower part of the moving shed 11 group. The space between the bottom surface of the frame 12 (described later) and the ground ia is received by the light receiver 8 at the opposite position. By using a pair of fixed sheds 3, it is possible to effectively use the installation space to protect the objects, and by using the photo-sensing device 6, even if the operator enters the working path S, he wants When the moving shed 11 is moved 10 201034919 t, such a W condition can be detected by the illuminating light traverse of the working path s, and the control of stopping the movement of the moving shed 11 can be performed. In addition, the detection light ray 7a S is set at a position lower than the ground la, so that it is not only an operator, but also falls from the shed portion 5 of the fixed shed 3 or the shed portion 13 (described later) of the moving shed 11 for work. Small foreign objects in the path S can also be detected in a non-contact manner. • In addition, as another detection method, it is also possible to use a photo-electrical sensor,

在移動棚11的前後面’使其檢出用光線配設在寬度方向B 的形式;進而,也可以是在移動_ U的前後面的下部,配 設接觸式的緩衝器的形式。 ' [移動棚] 如第1圖〜第7圖所示,移動棚11,經由行走車輪(行 走支持裝置,車輪的一個例子)14,在行走路徑1 〇上,往 復行走自如地配設複數個。這些移動棚丨丨,是由下部框體 12、及被安裝在此下部框體12上的棚部13等所構成。In the front and rear of the moving shed 11, the detection light is disposed in the width direction B. Further, the contact damper may be provided in the lower portion of the front and rear sides of the movement _U. [Moving shed] As shown in Fig. 1 to Fig. 7, the moving shed 11 is reciprocally and arbitrarily arranged on the traveling path 1 via the traveling wheels (the walking support device, an example of the wheel) 14 . These moving sheds are composed of a lower casing 12, a shed portion 13 attached to the lower casing 12, and the like.

〇 前述下部框體12,是藉由位於寬度方向(左右方向)B 兩側的側下部框12a、位於内側的5處(複數處)的中間下 邛框12b、連結這些側下部框12a與中間下部框12b之間 的寬度方向(左右方向)B的連結材12c、被配設在連結材 12c間的複數處之前後方向的架材i2d、及複數根揮臂 (brace) 12e等,而形成矩形框狀。 另外’側下部框12a、中間下部框12b,分別藉由一對 側板部、及連設在兩側板部的上端間之上板部,形成下面 開放的門形的形狀。又,連結材12c、架材12d,其剖面形 201034919 成筒形的形狀。 前述棚部13,是藉由從側下部框丄2a、中間下部框i沉 直立地設置的桁架l3a、樑l3b、副樑13c、撐臂13d等 而形成框架狀,因而’在行走路徑方向A開放的區隔收納 工間13e,在上下方向及寬度方向B,形成複數個。另外, . 最上段的區隔收納空間1 3 e ’其上方也開放。 〈車輪〉 ❹ 在側下部框12a及中間下部框12b内,經由車輪軸15, 分別設置前後一對的前述行走車輪14。這些行走車輪14, 是由金屬製的内側輪體14a、及硬質胺基甲酸酯橡膠製的 外側輪體14b所構成,經由外側輪體丄4b,例如可在混凝 ' 土製的地板1的地面13上,構成轉動自如。亦即,行走車 輪14,在行走路徑1〇的寬度方向B的7處(複數處),並 且在行走路徑方向A的2處(複數處),分別設置。 而且,位於行走路徑1〇的寬度方向B的兩側部分之行 〇 走車輪I4,为別设置旋轉驅動手段而構成驅動車輪(驅動 , 式仃走支持裝置)14A。亦即,被支持於行走路徑1 〇的寬度 • 方向B的兩側部分也就是側下部框12a處的行走車輪14群 之中,行走路徑方向A的一方端側(至少一個)的行走車 輪,是經由驅動車輪轴15A而被設置,藉此而構成驅動車 輪 14A。 此時,被設在寬度方向B的兩側部分之驅動車輪14A, 對於矩形框狀的下部框體12,被配設於在寬度方向B對向 的直線狀位置的2處。進而,驅動車輪軸15A,利用在寬 12The lower frame 12 is connected to the side lower frame 12a on both sides in the width direction (left-right direction) B, the middle lower frame 12b at the inner side (the plurality), and the middle lower frame 12a and the middle The connecting member 12c in the width direction (left-right direction) B between the lower frames 12b, the frame member i2d in the front-rear direction between the plurality of connecting members 12c, and the plurality of arms 12e and the like are formed. Rectangular frame shape. Further, the side lower frame 12a and the middle lower frame 12b are formed in a shape of a gate shape having an open lower surface by a pair of side plate portions and a plate portion connected between the upper ends of the side plate portions. Further, the connecting member 12c and the frame member 12d have a cylindrical shape in the shape of a cross section 201034919. The shed portion 13 is formed in a frame shape by the truss l3a, the beam l3b, the sub beam 13c, the support arm 13d, and the like which are vertically erected from the side lower frame 丄2a and the middle lower frame i, and thus is formed in the traveling path direction A. The open compartment storage compartment 13e is formed in plural in the vertical direction and the width direction B. In addition, the uppermost storage space 1 3 e ' is also open above. <Wheel> ❹ In the side lower frame 12a and the intermediate lower frame 12b, a pair of front and rear traveling wheels 14 are provided via the wheel axles 15, respectively. These traveling wheels 14 are composed of a metal inner wheel body 14a and an outer wheel body 14b made of a hard urethane rubber. For example, the outer wheel body 丄4b can be used to coagulate the earthen floor 1 On the ground 13, the composition is free to rotate. That is, the traveling wheels 14 are provided at seven (in plural) positions in the width direction B of the traveling path 1 , and at two places (in plural places) in the traveling path direction A. Further, the traveling wheel I4 located on both sides of the width direction B of the traveling path 1A is provided with a driving wheel (driving, driving support device) 14A in order to provide a rotational driving means. That is, the width of the traveling path 1 • and the two sides of the direction B are the traveling wheels of one side (at least one) of the traveling path direction A among the traveling wheels 14 at the side lower frame 12a. It is provided by driving the wheel axle 15A, thereby constituting the drive wheel 14A. At this time, the drive wheels 14A provided on both sides in the width direction B are disposed at two positions of the linear frame-oriented lower frame 12 in the width direction B. Further, the wheel axle 15A is driven to utilize the width 12

G Ο 201034919 度方向B往内側延伸,在該内端部分,安 間下部框咖切的行 裝有破相鄰的十 驅動車輪14A。而且1走車輪,藉此’此行走車輪也構成 機,並連動連兩驅動車輪軸⑸,分別附有減速 個例子)16,這:=、電動型驅動馬達(旋轉驅動手段的-框12b上。‘驅動馬達16,是被裝設在前述中間下部G Ο 201034919 The direction B extends to the inside. At the inner end portion, the lower frame is cut with the adjacent ten drive wheels 14A. Moreover, 1 wheel is taken, whereby the 'walking wheel also constitutes a machine, and the two driving wheel axles (5) are respectively connected with a deceleration example) 16, which: =, electric type driving motor (rotary driving means - frame 12b) 'Drive motor 16, is installed in the middle lower part

橡膠:In在則述側下部框123中的前後端的上部,設有 橡膠裝的圓柱狀擋體H 藉由以上的元件符號i2〜i7等所示的構件,在行走路 技10上’構成往復行走自如的移動棚u的一個例子。 [脈衝編碼器]Rubber: In is placed on the upper portion of the front and rear ends of the side lower frame 123, and the rubber-mounted cylindrical stopper H is formed by the above-described members i2 to i7 and the like. An example of a mobile shed u that walks freely. [Pulse encoder]

又,在移動棚u中,於寬度方向B 内侧的驅動車輪(驅動式行走支持裝置)14A的附近,= 設置脈衝編碼器(行走量檢出手段的—個例子)21,這此脈 衝編碼器21’連接已設在移動棚11的側面上的控制盤20。 亦即’脈衝編喝器2卜是由以下的構件等所構成,亦 即:從下部框體12側來的托架22;支持框體24,其沿著 寬度方向B’經由横軸23,被設成上下擺動自如;檢測用 輪體2 7,經由輔承91; -B* «a j. 。 承25,其輪體軸26空轉自如地被支持在 該支持框體24上’旋轉體28,其被安裝在前述輪體軸26 上’以及光電開關29,其面對已形成在該旋轉體Μ上的 狹缝部28a、28b ’並被設在前述支持框體24側。 此處在旋轉體28巾,其凹入狀的外側狹縫部28a ’、角孔狀的内侧狹縫部28b ’分別預先形成設定角度,此 13 201034919Further, in the moving shed u, in the vicinity of the driving wheel (driving traveling support device) 14A inside the width direction B, = a pulse encoder (an example of the traveling amount detecting means) 21 is provided, and the pulse encoder is provided. 21' connects the control panel 20 that has been placed on the side of the mobile shed 11. That is, the 'pulse maker 2' is composed of the following members, that is, the bracket 22 from the side of the lower casing 12; and the support frame 24, which passes through the horizontal axis 23 along the width direction B', It is set to swing up and down freely; the detecting wheel body 2, 7 is supported by the auxiliary bearing; -B* «a j. The wheel body 26 is rotatably supported on the support frame 24 on the 'rotating body 28, which is mounted on the wheel body shaft 26' and the photoelectric switch 29, the surface of which has been formed on the rotating body The slit portions 28a and 28b' on the crucible are provided on the side of the support frame body 24. Here, in the rotating body 28, the concave outer slit portion 28a' and the angular inner slit portion 28b' are respectively formed with a set angle, and this 13 201034919

框體24下降。 ’以設定角度的一 地錯開。又,光電開關29, 免縫部28a之外側光電開關 28b之内側光電開關2肋所組 ‘ 29b ’連接至前述控制盤20。 接,是藉由利 ,但是’也可 板彈簧等)來迫使支持 22〜29等所示的構件,構成脈 藉由以上的元件符號 衝編碼器21的一個例子。 [寬度偏移檢出] 在地板1上,對每個移動棚i丨,在HP側與〇p側的2 處,埋入設置用以表不RV停止位置的圓形磁鐵(被檢出體 的一個例子)31,進而,在行走路徑方向(前後方向)A,替 換位置,在HP側與0P側的2處,埋入設置用以表示Fw 停止位置的圓形磁鐵(被檢出體的一個例子)在各移動 棚11 ’設置磁感測器,此磁感測器在HP位置與〇p位置 檢出這些磁鐵31’並作為用以檢出移動棚u的寬度偏移 的寬度偏移手段來使用。亦即,在中央部的一對連結材 12C上,於寬度方向B,安裝一靠近地板1的托架36,而 在此托架36上’於寬度方向(左右方向)B,併設3個磁感 測器35a(HP側)、35b(中央)、35c(0P侧)。這些磁感測 器35a、35b、35c之中的中央的磁感測器35b,當移動棚 14 201034919 11在寬度方向β沒有偏移時,是被配置成面對磁鐵31的 上方 4 2組磁感測35a、35b、35c,被連接至上述控 制盤20。 [近接檢出] 在移動棚11的下部框體12的前後面,分別設置:近 接感測器37a,其用以檢出前側的相鄰的移動棚11已靠 近的情況;以及近接感測器37b,其用以檢出後側的相鄰 的移動棚11已靠近的情況;這些近接感測器37a、37b, Ο 被連接至上述控制盤20。近接感測器37a、37b,是藉由 磁感測器、反射式光電開關、超音波感測器等而形成。 - [主控制盤] - 設在上述各移動棚11上的控制盤20’被連接至主 控制盤38。此主控制盤38,用以控制整個移動棚設備, 例如設有移動棚設備的啟閉開關、各移動棚u的行走操 作部(按鈕)等。而且,藉由行走操作部的操作,對於想要 使其移動的移動棚11的控制盤20,給予行走方向信號來 作為行走指令。例如,當使停在第丨圖〜第3圖的停止位 , 置(e)上的移動棚11,在行走路徑ίο上行走後,停止在 - 停止位置(f )時,首先,若操作主控制盤38,則對於停在 停止位置(e)上的移動棚u的控制盤2〇,給予前述行走 指令信號(行走方向信號)。 又,主控制盤38,當使複數台移動棚u同時行走時, 則構成:可在設定時間(2〜3秒)内,進行依序啟動““η) 的控制。又,若給予前述行走方向信號,在行走方向,冬 15 201034919 有後述的進行寬度偏移控制的移動棚1 1時,則給予一「有 寬度偏移控制」的信號,來表示有進行寬度偏移控制的移 動棚。 [移動棚的控制盤] 在各移動棚11的控制盤20的内部,如第丨丨圖所示, 設有:操作面板4〇(第9圖);由電腦所組成的移動棚控 . 制11 (控制手段的—個例子)41;以及對應從此移動棚控制 器輸出的速度指令值,對設在寬度方向B(左右方向)的各 〇 驅動馬達16,分別進行轉矩向量控制之向量控制變頻器 42a、42b ;並設有:當無法自動地消除寬度方向B的偏移 -(稱為寬度偏移)時,便會亮起的警報燈43 ;以及當移動 ' 棚11時常發生寬度偏移時’便會亮起的注意燈44。前述 向量控制變頻器42a'42b,是構成:分別藉由高速運算 器(CPU) ’高速運算對應負荷狀態的輸出,並將電壓、電 流控制成最適值,且使啟動轉矩提高;藉由使用這些向量 ㈣變頻器42a、42b來進行轉矩向量控制,可進行對於 負荷變動的影響少的旋轉驅動,而可將由於收納在移動棚 ,11内的貨物的荷重分布的不均所造成的斜行(傾斜行 • 走),抑制在最小限度内。 〈操作面板〉 藉由移動棚控制器4卜當移動棚u在寬度方向6發 生寬度偏移時,能自動地執行用以消除此寬度偏㈣修正 控制(寬度偏移控制)(詳如後述),但此種修正不需要時, 則設有用以進行手動操作的操作面4〇。在此操作面板 16 201034919 40上,如第9圖所示,設有: 自動-強制選擇開關51,用以選擇使移動棚11自動 運轉、或是藉由後述的開關來使其強制移動; HP轉動開關(利用手動來操作其中一方的驅動車輪 14A之開關)52,對於連結在HP侧的驅動車輪14A上的驅 . 動馬達,將開關按下,來驅動驅動車輪14A ; . op轉動開關(利用手動來操作另一方的驅動車輪ι4Α 之開關)53’對於連結在op側的驅動車輪14A上的驅動馬 達16,將開關按下,來驅動驅動車輪1; HP移動按鈕開關(利用半自動,往Hp側修正一定距 離的第1開關的一個例子)54,用以發出使移動棚丨丨往 HP側的寬度方向(左右方向)移動預先設定的值(例如 10mm)的指令;以及 〇P移動按鈕開關(利用半自動,往Hp侧修正一定距 離的第2開關的-個例子)55,用以發出使移動棚i i往 ◎ 0P侧的寬度方向(左右方向)移動預先設定的值(例如 10mm)的指令。 〈移動棚控制器41 &gt; 如第11圖所示,在移動棚控制器41上,連接著··主 控制盤38;操作面板4〇; 〇p的脈衝編碼器21(光電 29a、29b);HP、〇P 的磁感_35a、35b、35c,_ 近接感測器37a、37b ; HP、op的向量控制變頻器仏、 仙;警報燈43以及注意燈44。而且,移動棚控制器… 17 201034919 是如以下般地構成。亦即是由以下構件所構成: 強制行走控制部61 (詳如後述); HP感度檢出部62a,將藉由HP的各磁感測器35a、 35b、35c所檢出的磁感度相加,來求出肝位置的磁感度, 進而藉由比較HP側的磁感測器35a與〇p側的磁感應器 35c的磁感度,來檢測出移動棚u的寬度偏移方向(往肝 侧偏移或往0P側偏移);The frame 24 is lowered. 'Staggered at a set angle. Further, the photoelectric switch 29, the inner photoelectric switch 2 rib group '29b' of the outer side photoelectric switch 28b of the unsealing portion 28a is connected to the aforementioned control panel 20. In the case of the connection, the members shown in Figs. 22 to 29 and the like are forced to be forced, and an example of the above-described component symbol punching encoder 21 is constructed. [Width Width Detection] On the floor 1, for each of the moving sheds, a circular magnet (detected body) for indicating the RV stop position is embedded in two places on the HP side and the 〇p side. In the case of the travel path direction (front-rear direction) A, the position is replaced by a circular magnet (the detected object is placed at two places on the HP side and the 0P side) to indicate the Fw stop position. An example) a magnetic sensor is disposed in each of the mobile sheds 11', and the magnetic sensor detects the magnets 31' at the HP position and the 〇p position and serves as a width shift for detecting the width deviation of the moving shed u Means to use. That is, a bracket 36 close to the floor panel 1 is attached to the pair of connecting members 12C at the center portion in the width direction B, and three magnetic bodies are disposed on the bracket 36 in the width direction (left-right direction) B. Sensor 35a (HP side), 35b (center), 35c (0P side). The central magnetic sensor 35b among the magnetic sensors 35a, 35b, 35c is configured to face the upper magnetic group of the magnet 31 when the moving shed 14 201034919 11 is not offset in the width direction β. The senses 35a, 35b, 35c are connected to the above-described control panel 20. [Proximity detection] In the front and rear of the lower casing 12 of the moving shed 11, respectively, a proximity sensor 37a for detecting that the adjacent moving shed 11 on the front side is close; and a proximity sensor 37b, which is used to detect that the adjacent moving sheds 11 on the rear side are close; these proximity sensors 37a, 37b, Ο are connected to the above-mentioned control panel 20. The proximity sensors 37a, 37b are formed by a magnetic sensor, a reflective photoelectric switch, an ultrasonic sensor, or the like. - [Main Control Panel] - The control panel 20' provided on each of the above mobile sheds 11 is connected to the main control panel 38. The main control panel 38 is used to control the entire mobile shed equipment, such as an open/close switch provided with a mobile shed device, a walking operation portion (button) of each mobile shed u, and the like. Further, by the operation of the walking operation portion, the traveling direction signal of the moving shed 11 which is desired to be moved is given as a walking command. For example, when stopping the stop position in the second to third figures, the moving shed 11 on the (e), after walking on the walking path ίο, stops at the -stop position (f), first, if the main operation The control panel 38 gives the walking command signal (traveling direction signal) to the control panel 2 of the mobile shed u stopped at the stop position (e). Further, when the plurality of mobile storage booths u are simultaneously traveling, the main control panel 38 is configured to sequentially control the ""n" in the set time (2 to 3 seconds). When the traveling direction signal is given, in the traveling direction, when winter 15 201034919 has the moving shed 11 for performing the width shift control described later, a signal having the "width shift control" is given to indicate that the width is biased. Move controlled shed. [Control panel of the mobile shed] Inside the control panel 20 of each mobile shed 11, as shown in the figure, there is: an operation panel 4 (Fig. 9); a mobile shed controlled by a computer. 11 (an example of the control means) 41; and corresponding to the speed command value output from the moving shed controller, vector control of the torque vector control for each of the 〇 drive motors 16 provided in the width direction B (left and right direction) The inverters 42a, 42b are provided with an alarm lamp 43 that illuminates when the offset in the width direction B (referred to as a width offset) cannot be automatically eliminated; and a width deviation occurs when moving the shed 11 The attention light 44 that will be illuminated when moving. The vector control inverter 42a'42b is configured to "high-speed calculation of the output of the corresponding load state by a high-speed arithmetic unit (CPU), and to control the voltage and current to an optimum value, and to increase the starting torque; These vector (4) inverters 42a and 42b perform torque vector control, and can perform rotational driving with less influence on load fluctuation, and can obliquely cause uneven load distribution of goods stored in the moving shed 11. Lines (tilt lines • walk) are suppressed to a minimum. <Operation panel> By moving the shed controller 4 when the width of the moving shed u is shifted in the width direction 6, it can be automatically performed to eliminate the width offset (four) correction control (width shift control) (described later) However, if such correction is not required, an operation surface for manual operation is provided. On the operation panel 16 201034919 40, as shown in FIG. 9, there is provided: an automatic-force selection switch 51 for selecting to automatically operate the mobile shed 11 or forcibly moving it by a switch to be described later; Rotating the switch (operating to operate one of the driving wheels 14A) 52, for the driving motor coupled to the driving wheel 14A on the HP side, pressing the switch to drive the driving wheel 14A; Manually operating the other drive wheel ι4Α switch 53' for the drive motor 16 coupled to the drive wheel 14A on the op side, pressing the switch to drive the drive wheel 1; HP moving the push button switch (using semi-automatic, An example of the first switch for correcting a certain distance on the Hp side) 54 for issuing a command for moving the moving shed toward the width direction (left and right direction) of the HP side by a predetermined value (for example, 10 mm); and 〇P moving the button A switch (an example of a second switch that corrects a certain distance to the Hp side by a semi-automatic) 55 is used to move the moving shed ii to the width direction (left-right direction) of the ◎ 0P side in advance. The set value (for example, 10mm) is the command. <Mobile Shed Controller 41 &gt; As shown in Fig. 11, on the mobile shed controller 41, the main control panel 38 is connected; the operation panel 4A; the pulse encoder 21 of the 〇p (photoelectrics 29a, 29b) ; HP, 〇P magnetic sense _35a, 35b, 35c, _ proximity sensor 37a, 37b; HP, op vector control inverter 仙, 仙; alarm light 43 and attention light 44. Moreover, the mobile shed controller... 17 201034919 is constructed as follows. In other words, the forced running control unit 61 (described later); the HP sensitivity detecting unit 62a adds the magnetic sensitivities detected by the respective magnetic sensors 35a, 35b, and 35c of the HP. The magnetic sensitivity of the liver position is obtained, and the width deviation direction of the moving shed u is detected by comparing the magnetic sensitivities of the magnetic sensor 35a on the HP side and the magnetic sensor 35c on the 〇p side (toward the liver) Shift or offset to the 0P side);

〇P感度檢出部62b,將藉由01&gt;的各磁感測器353、 35b、35c所檢出的磁感度相加’來求出〇p位置的磁感度; 自動行走判斷部6 3 (詳如後述); 上仃走重置部64,當從自動行走判斷部63輸出的行走 仏號’被切換成前進指令或後退指令時,將行走啟動(開 始)信號’輸出1個脈衝; 卜1叶數器65 ’輸入後述的重置信號,且當從自ί 行走判斷部63輸出前進指令時’會被重置(卿),言&quot; 從左方的脈衝編碼器21輸出的脈衝,並乘上每一㈣ 動量(預先取得),來測定左方的驅動車輪UA的行; 距離(行走量的—個例子); 第2計數n 66,輸入後述的重置信號,且當從“ 從右:斷°“3輸出前進指令時,會被重置(reset),計赛 的移動:脈衝編碼器21輪出的脈衝,並乘上每-個脈後 動Λ(預先取得),來測定右方的驅動車輪UA的行走 距離(仃走量的一個例子); 脈衝誤差判斷部67,藉由從行走重置部㈣出的行 201034919 動(開始)脈衝彳5號,而被重置(reset),計數從左右 二方的衝編碼器21分別輸出的脈衝數,檢測出二者的 差值,右其差值超過設定值(可預先變更設計),則 測控制執仃信號(開啟),而當脈衝數的差值幾乎為〇 則將預測控制執行信號切斷(Off); ΟThe 〇P sensitivity detecting unit 62b obtains the magnetic sensitivity at the 〇p position by adding the magnetic sensitivities detected by the magnetic sensors 353, 35b, and 35c of 01&gt;; the automatic walking determining unit 63 ( As will be described later in detail, when the walking apostrophe 'output from the automatic walking determining unit 63 is switched to the forward command or the reverse command, the travel start (start) signal is output as one pulse; The first leaf counter 65' inputs a reset signal to be described later, and 'when the forward command is output from the ί walking determination unit 63, 'will be reset (clear), and the pulse output from the left pulse encoder 21, And multiply each (four) momentum (pre-acquired) to measure the left drive wheel UA line; distance (walking amount - an example); second count n 66, input the reset signal described later, and when from From the right: break ° "3 output forward command, will be reset (reset), the movement of the game: the pulse of the pulse encoder 21, and multiply each pulse after the pulse (pre-acquisition), Measuring the walking distance of the driving wheel UA on the right side (an example of the amount of squatting); 67, by the line 201034919 from the walking reset unit (four), the pulse (彳) is reset (reset), and the number of pulses output from the left and right punch encoders 21 is counted, and two are detected. The difference between the right and the right difference exceeds the set value (the design can be changed in advance), then the control signal is turned on (on), and when the difference in the number of pulses is almost 〇, the predicted control execution signal is turned off (Off). ; Ο

第1微分器68 ’將藉由第1計數器65檢測出來的左 方的驅動車輪14A的行走距離加讀分,並乘上後述的係 數來求取由左方的驅動車輪m所產生的— (前進)行走距離; a 、 第1加法器69 ’對藉由帛1計數器65所檢測出來的 左方的驅動車# 14A的行走距離,加上藉由帛1微分器 匕所求得的由左方的驅動車輪&quot;A所產生的一定時間的 (前進)行走距離,來求取一定時間後的預測行走距離(行 走距離的預測值); 第2微分器70,將藉由帛2計數器66所檢測出來的 右方的驅料輪14A的行走㈣加⑽分,並乘上後述的 係數,來求取由右方的驅動車輪14A所產生的一定時間的 (前進)行走距離; 第2加法盗71 ’對藉由第2計數器66所檢測出來的 右方的驅動車輪UA的行走距離,加上藉由帛2微分!| 70所求得的由右方的驅動| 他勒早輪14A所產生的一定時間的 (前進)行走距離’來求取一中主 取定時間後的預測行走距離(行 走距離的預測值); 第1減法盗7 2,從μ 士留, 猎由第1汁數器6 5所檢測出來的 201034919 左方的驅動車輪14A的行走距離,減去藉由帛2計數器 66所檢測出來的右方的驅動車冑14A的行走距離,來求 取左右的驅動車輪14A的行走距離偏差; 第2減法器73,從藉由第!加法器69所求得的由左 方的驅動車輪14A戶斤產生的一定時間後的預測行走距 離,減去藉由第2加法器71所求得的由右方的驅動車輪 14A所產生i定時間後的制行走距離,來求取左右的 驅動車輪14A的預測行走距離偏差; _ -十器74,藉由從行走重置冑64輸出的行走開始脈 衝信號’來開始時間的計數,而藉由從脈衝誤差判斷部 二輸出的預測控制執行信號,來停止時間的計數,並測 里=行走啟動開始至發生脈衝數的差值超過設定值為止 的時間,來輪出反比例^此敎時間的係數,也就是輸出 基於脈衝數的差值超過設定值(行走量偏差的規定值)為 止的傾向而得的係數;以及 速度控制部75(詳如後述)。 〈強制行走控制部61 &gt; 如第12圖所示,強制行走控制部61,會被輸入:操 乍面板40的各開關5!〜55的操作信號;以及藉由前後的 近接感測器37a、37b所檢測*來的前後的近接信號;藉 由自動__選擇開關51’當選擇「強制」日夺,將強制選 擇信號往速度控制部75輸出’當_「自動」時,自動 選擇信號往速度控制部75輸出。 20 201034919 又’藉由自動-強制選擇開關51而選擇「強制」時 若HP轉動開關52被操作而倒向前進側(fw側),則將、皮 操作的時間、HP馬達前側驅動信號,往速度控制部輸出被 若被操作而倒向後退側(RE側),則將被操作的時間、Hp 馬達後側驅動信號’往速度控制部75輸出;又,若卯 轉動開關53被操作而倒向前進侧(FW側),則將被操作的 . 時間、〇p馬達前側驅動信號,往速度控制部75輸出;若 被操作而倒向後退側(抓側),則將被操作的時間、= 達後側驅動信號,往速度控制部75輸出。 又,藉由上述自動-強制選擇開關51而選擇「強制」 時,若HP移動按鈕開關54被按壓(被操作),當前側的近 ' 接感測器37a的近接信號開啟(0N)時,則將後側強制Hp 寬度偏移指令信號(亦即用以往後侧行走來強制地消除往 肝侧的寬度偏移的指令)重置(reset),並往速度控制部 75輸出;當後侧的近接感測器37b的近接信號開啟(〇n) 〇 時,則將前侧強制HP寬度偏移指令信號(亦即用以往前侧 行走來強制地消除往HP側的寬度偏移的指令)重置 (reset),並往速度控制部75輸出。 另外’若後述的後側強制〇p寬度偏移指令信號或前 側強制〇p寬度偏移指令信號,被重置(reset)時,則無法 接收HP移動按紐開關54的操作,先前被操作的〇p移動 按紐開關5 5的操作,是優先的。 又’藉由上述自動-強制選擇開關51而選擇「強制」 時’若0P移動按钮開關55被按壓(被操作),當前側的近 21 201034919 接n 37a的近接信號開啟⑽)時,則將後側強制0P 寬度偏移指令信號(亦即用以往後侧行走來強制地消除往 0P側的寬度偏移的指令)重置(reset),並往速度控制部 75輸出,田後側的近接感測器37b的近接信號開啟(on) 時則將如側強制0P寬度偏移指令信號(亦即用以往前側 • 行走來強制地消除往〇P側的寬度偏移的指令)重置 (reset),並往速度控制部75輸出。 又若後侧強制HP寬度偏移指令信號或前側強制Hp 寬度偏移指令信號,被重置(reset)時,則無法接收〇p 移動按鈕開關55的操作,先前被操作的Hp移動按鈕開關 54的操作,是優先的。 又,後側強制HP寬度偏移指令信號和後側強制〇p寬 度偏移指令信號,若後側的近接感測器37b的近接信號變 成開啟(0N) ’則會被重置(reset);又,前侧強制Hp寬度 偏移指令信號和前侧強制0P寬度偏移指令信號,若前側 ◎ 的近接感測器37a的近接信號變成開啟(on),則會被重 置。 〈自動行走判斷部63&gt; 藉由主控制盤38’輸入前述行走方向信號及具有寬 度偏移控制的信號,藉由HP感度檢出部62a來輸入HP 位置的磁感度’藉由0P感度檢出部62b來輸入op位置的 磁感度’並輸入則後的近接感測器3 7 a、3 7 b的相鄰的移 動棚11的近接信號,來判斷是否藉由前述行走方向信號 來使移動棚11前進或後退;當收到具有寬度偏移控制的 22 201034919 信號時’使時間遲延,來輸出前進指令或後退指令,並根 據行走方向的近接感測n 37a $ 37b的近接信號、或是 HP位置的磁感度檢出或op位 丨儿直的磁感度檢出,來輸出停 止指令。X,雖然沒有圖示出來,若光電感測器6動作, 則輸出停止指令。 . 〈速度控制部75&gt; 〇 匕速度控制部75 ’是基於強制行走控制部61的強制行 走指令信號等、自動行走判斷部63的行走判斷信號、藉 由第1減法器72所求得的左右的驅動車輪UA的行走距 離偏差、藉由第2減法器73戶斤求得的左右的驅動車輪ια 的預測行走距離偏差、藉由脈衝誤差判斷部67而輪出的 預測控制執行信號、藉由Hp感度檢出部62a而求得的肝 位置的磁感度與寬度偏移方向、以及藉由0P感度檢出部 62b而求得的〇p位置的磁感度,來求取左右的向量控制 〇 變頻器42a、Cb的速度指令值(相當於藉由旋轉驅動手段 . 所產生的驅動旋轉量),並加以輸出,進而,將警報信號 =報燈43輪出’將注入信號往注意燈輸出,並將寬度 偏移控制執行信號往主控制盤38輸出;如第11圖所示, 疋由強制驅動部77、半自動寬度偏差控制部78、自動姿 勢·控制部79及自動寬度偏差控制部8〇所構成。 又’如第12圖所示,設有:藉由從強制行走控制部 61輸出的強制選擇信號而動作(激磁)的繼電器RY-F0R、 以及^ 符田從強制行走控制部61輸出的自動選擇信號而動 23 201034919 作的繼電器RY-AUT0;進而,如第16圖所示,設有繼電 器RY-W,當從後述的自動寬度偏移控制部8〇輸出的繼電 器RY-W-0P啟動(0N)或繼電器RY_W—Hp啟動(抓)時,會動 作(激磁)。 「強制驅動部77」 在強制驅動部U中,如第12圖所示,設有:當強制 行走控制部61的HP馬達前側驅動信號輸入時,便^動作 • 的繼電器RY-HP~FW;當強制行走控制部61的HP馬達後 〇 側驅動信號輸入時,便會動作的繼電器RY_Hp〜RE\當強 制行走控制冑61 # 0P馬達前側驅動信號輸入時,便會動 作的繼電器RY-0P-FW;以及當強制行走控制部Μ的卯 . 馬達後側驅動信號輸入時,便會動作的繼電器RY_〇p_RE。 又,在強制驅動部77中,如第13圖所示,設置:已 設定手動操作時的HP的驅動車輪UA的速度指令值之肝 速度設定器8卜以及已設定手動操作時的〇p的驅動車輪 14A的速度指令值之〇p速度設定器82。The first differentiator 68' adds a reading point to the traveling distance of the left driving wheel 14A detected by the first counter 65, and multiplies the coefficient described later to obtain the driving wheel m generated by the left side - ( (advance) walking distance; a, the first adder 69', the walking distance of the left driving vehicle #14A detected by the 帛1 counter 65, plus the left side obtained by the 帛1 differentiator 左The predicted driving distance (the predicted value of the walking distance) after a certain period of time is obtained by the driving wheel &quot;A; the second differentiator 70 will be operated by the 帛2 counter 66. The detected right (4) of the drive wheel 14A is added (10) and multiplied by the coefficient described later to obtain a (forward) travel distance generated by the right drive wheel 14A for a certain period of time; The thief 71 'the walking distance of the right driving wheel UA detected by the second counter 66 is added by 帛 2 differential! | 70-derived drive from the right | The forward travel distance of a certain time (the forward travel distance) generated by the early morning 14A to obtain the predicted travel distance (predicted travel distance) after a master-set time The first subtraction thief 7 2, from the μ 士 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The distance traveled by the square drive rudder 14A is used to determine the deviation of the travel distance of the left and right drive wheels 14A; the second subtractor 73 is derived from the first! The predicted travel distance after a certain period of time generated by the left drive wheel 14A obtained by the adder 69 is subtracted from the right drive wheel 14A obtained by the second adder 71. The travel distance after the time is determined to obtain the predicted travel distance deviation of the left and right drive wheels 14A; _ - the tenth 74, by counting the travel start pulse signal output from the travel reset 胄 64, and counting the time The counting of the time is stopped by the predictive control execution signal outputted from the pulse error determining unit 2, and the time until the difference between the start of the walking and the number of generated pulses exceeds the set value is measured, and the inverse proportional time is rounded off. The coefficient, that is, the coefficient obtained by the tendency that the difference in the number of pulses exceeds the set value (the predetermined value of the running amount deviation), and the speed control unit 75 (described later). <Forced Travel Control Unit 61 &gt; As shown in Fig. 12, the forced travel control unit 61 is input with an operation signal of each of the switches 5! to 55 of the operation panel 40; and a proximity sensor 37a by the front and rear The proximity signal detected before and after 37b is detected by the automatic __ selection switch 51'. When the "forced" day is selected, the forced selection signal is outputted to the speed control unit 75 when "when _" automatic, the signal is automatically selected. The speed control unit 75 outputs the result. 20 201034919 In addition, when "Forced" is selected by the automatic-forced selection switch 51, if the HP rotary switch 52 is operated and is turned to the forward side (fw side), the time of the skin operation, the HP motor front side drive signal, When the speed control unit output is reversed to the retracted side (RE side), the operated time and the Hp motor rear side drive signal are output to the speed control unit 75. Further, if the rotary switch 53 is operated, the output is turned down. On the forward side (FW side), the time, the 〇p motor front side drive signal is output to the speed control unit 75, and if it is operated backward and backwards (grab side), the time to be operated, = The rear side drive signal is reached and output to the speed control unit 75. Further, when "forced" is selected by the above-described automatic-forced selection switch 51, when the HP moving button switch 54 is pressed (operated), when the proximity signal of the near-side sensor 37a of the current side is turned on (0N), Then, the rear side forced Hp width offset command signal (that is, the command to forcibly cancel the width shift to the liver side by the conventional rear side walking) is reset and output to the speed control unit 75; When the proximity signal of the proximity sensor 37b is turned on (〇n) 〇, the front side is forced to the HP width offset command signal (that is, the command for forcibly canceling the width offset to the HP side by the conventional front side walking) The reset is reset and output to the speed control unit 75. In addition, if the rear side forced 宽度p width offset command signal or the front side forced 〇p width offset command signal described later is reset, the operation of the HP moving button switch 54 cannot be received, and the previously operated operation is performed. 〇p The operation of the move button switch 5 5 is preferred. In addition, when "Forced" is selected by the above-described automatic-forced selection switch 51, if the 0P movement button switch 55 is pressed (operated), when the near side of the current side 21 201034919 is connected to the proximity signal of the n 37a (10), The rear side forcing the 0P width shift command signal (that is, the command for forcibly canceling the width shift to the 0P side by the conventional rear side travel) is reset, and is output to the speed control unit 75, and the back side of the field is connected. When the proximity signal of the sensor 37b is turned on, the side forced 0P width offset command signal (that is, the command for forcibly canceling the width offset to the 〇P side by the front side • walking) is reset (reset) And output to the speed control unit 75. If the rear side forced HP width shift command signal or the front side forced Hp width shift command signal is reset, the operation of the 〇p move button switch 55 cannot be received, and the previously operated Hp move button switch 54 The operation is prioritized. Further, the rear side forces the HP width offset command signal and the rear side forced 宽度p width offset command signal, and if the proximity signal of the rear proximity sensor 37b becomes ON (0N), it is reset; Further, the front side forced Hp width shift command signal and the front side forced 0P width shift command signal are reset if the proximity signal of the proximity sensor 37a of the front side ◎ is turned "on". <Automatic Walking Determination Unit 63> The above-described traveling direction signal and the signal having the width shift control are input by the main control panel 38', and the magnetic sensitivity 'in the HP position is input by the HP sensitivity detecting unit 62a' is detected by the 0P sensitivity The portion 62b inputs the magnetic sensitivity ' of the op position and inputs the proximity signal of the adjacent moving shed 11 of the proximity sensors 3 7 a, 3 7 b to determine whether the moving shed is used by the traveling direction signal. 11 forward or backward; when receiving the 22 201034919 signal with width offset control, 'delay the time to output the forward command or the reverse command, and sense the proximity signal of n 37a $ 37b according to the proximity of the walking direction, or HP The magnetic sensitivity of the position is detected or the magnetic sensitivity of the op bit is detected to output a stop command. X, although not shown, outputs a stop command if the photodetector 6 operates. <Speed Control Unit 75> The speed control unit 75' is a walking determination signal of the automatic travel determination unit 63 based on the forced travel command signal of the forced travel control unit 61, and the left and right signals obtained by the first subtractor 72. The deviation of the travel distance of the drive wheel UA, the predicted travel distance deviation of the left and right drive wheels ια obtained by the second subtractor 73, and the prediction control execution signal rotated by the pulse error determination unit 67, by The magnetic sensitivity and the width shift direction of the liver position obtained by the Hp sensitivity detecting unit 62a and the magnetic sensitivity of the 〇p position obtained by the 0P sensitivity detecting unit 62b are used to obtain the left and right vector control 〇 frequency conversion. The speed command values of the devices 42a and Cb (corresponding to the amount of driving rotation generated by the rotational driving means) are output and further, the alarm signal = the lamp 43 is turned "over" and the injection signal is output to the attention lamp, and The width shift control execution signal is output to the main control panel 38; as shown in Fig. 11, the forced drive unit 77, the semi-automatic width deviation control unit 78, the automatic posture control unit 79, and the automatic width deviation control are provided. 8〇 unit constituted. Further, as shown in Fig. 12, the relay RY-F0R that is operated (excited) by the forced selection signal output from the forced travel control unit 61, and the automatic selection output from the forced travel control unit 61 are provided. In response to the signal, the relay RY-AUT0 is formed as shown in Fig. 16. Further, as shown in Fig. 16, the relay RY-W is provided, and the relay RY-W-0P output from the automatic width offset control unit 8 described later is activated ( 0N) or when the relay RY_W-Hp is activated (caught), it will act (excitation). "Forced drive unit 77" In the forced drive unit U, as shown in Fig. 12, when the HP motor front side drive signal of the forced travel control unit 61 is input, the relay RY-HP~FW of the operation is activated; When the HP motor of the forcible travel control unit 61 inputs the 驱动-side drive signal, the relay RY_Hp to RE\ that will operate will be activated when the forced travel control 胄61 # 0P motor front drive signal is input, and the relay RY-0P- FW; and the relay RY_〇p_RE that will operate when the motor's rear side drive signal is input when the forced travel control unit is turned on. Further, as shown in FIG. 13, the forced driving unit 77 is provided with a liver speed setting unit 8 that has set a speed command value of the HP driving wheel UA at the time of manual operation, and a 〇p when the manual operation has been set. The speed command value of the wheel 14A is driven by the 速度p speed setter 82.

D 被設定在HP逮度設定器81中的HP的驅動㈣14A 的速度指令值,是藉由繼電器RY_Hp_Fff的動作而被輸 出;當HP的驅動車輪UA的速度指令值是負值時,是藉 由繼電器RY-HP-re的動作而被輸出。 被設定在0P速度設定器82中的0P的驅動車輪UA 的速度指令值’是藉由繼電器RY_〇p,的動作而被輸 出;當0P的驅動車輪14A的速度指令值是負 由繼電器RY-〇P-RE的動作而被輸出。 24 201034919 另外,速度指令值是正值時,是表示前進的速度指令 值,負值時,是表示後退的逮度指令值。 說月藉由如此的強制驅動部7 7的構成所產生的作 用。 • 藉由自動—強制選擇開關51而選擇「強制」時,若 . 肝轉動開關52被操作而倒向前進侧(Fff侧),則在被操作 〇 的期間中,繼電器RY-HP-FW動作,被設定於HP速度設定 器81中的正值的Hp的驅動車輪“A的速度指令值(前進) 被輸出’於是藉由HP側的驅動馬達16 ’ HP的驅動車輪 14A被往前進侧驅動。又,若Hp轉動開關52被操作而倒 ' 向後退侧(RE側)’則在倒向的期間(被操作的期間),繼 電Is RY-HP-RE動作’被設定於Hp速度設定器81中的負 值的HP的驅動車輪14A的速度指令值(後退)被輸出,於 是藉由HP側的驅動馬達16,Hp的驅動車輪14A被往後退 _ 侧驅動。 〇 又’藉由自動-強制選擇開關51而選擇「強制」時, 右〇P轉動開關53被操作而倒向前進側(FW側),則在被 ' 操作的期間中,繼電器RY-OP-Ff動作,被設定於0P速度 設定器82中的正值的0P的驅動車輪14A的速度指令值 (别進)被輸出’於是藉由〇p側的驅動馬達16,〇p的驅動 車輪14A被往前進側驅動。又,若〇p轉動開關53被操作 而倒向後退側(RE側),則在被操作的期間,繼電器 RY OP RE動作,被設定於〇p速度設定器82中的負值的 25 201034919 OP的驅動車輪14A的速度指令值(後退)被輸出,於是藉 由0P側的驅動馬達16,0P的驅動車輪14A被往後退側驅 動0 如以上般地藉由HP轉動開關52與0P轉動開關53 的操作,如第10圖(a)、(b)所示,能使移動棚n轉動。 亦即,藉由自動-強制選擇開關51而選擇「強制」時, 如第10圖(a)所示,若操作HP轉動開關52而使其倒向前 進侧(FW侧),並操作〇p轉動開關53而使其倒向後退側 〇 (⑽側),則在被操作的期間中,HP側的驅動馬達16會被 直接驅動,於是HP側的驅動車輪14A被往前進側驅動, -而0P侧的驅動馬達Η會被直接驅動,於是卯側的驅動 •車輪^被往後退側驅動,藉此,移動棚U會往Hp側傾 斜。又,相反地,如110圖⑻所示,若操作HP轉動開 關52而使其倒向後退側⑽側),並操作〇p轉動開_ 而使其倒向前進侧⑽側)’則移動棚Π會往0P側傾斜。 〇 半自動寬度偏移控制部78」 有二半:二寬度偏移控制部7 8中,如第12圖所示,設 田’仃走控制部61的後側強制HP寬度 號輸入時’便會動作的繼電器以,:二 動作的繼電器 側_寬度偏移指令信號輸八時二會控= ™e;以及當強制行走控制部61的二= 26 201034919 電器 RY-WS-0P- 寬度偏f夕‘令k號輸入時,便會動作的繼 FW。 ' Ο 又,在半自動寬度偏移控制部78中,如第14圖所示, 設有繼電器RY_WS’當繼電器ry,_hp_re動作時 電器RY’-hp-fw動作時、當繼電器RY,_〇p_RE :作 時、或是當繼電器RY-WS_0P—FW動作時,便會動作。又, 在半自動寬度偏移控制部78中’設有:第」速度指切 83,當繼電器RY-WS動作時,開始執行,預先被設定的: 中-方的驅動車輪UA的逮度指令值會被輸出;以及第2 速度指令部84’當繼電器RY_WS動作時,開始執行,預 先被設定的另-方的驅動車^ 14A的速度指令值會被輪 出。 ' 當繼電器RY-WS-0P-FW啟動(0N)時,從第丨速度指令 部83輸出的速度指令值;當繼電器RY一ws_Hp—Fw啟動時, 從第2速度指令部84輸出的速度指令值;當繼電器 RY4S-0P-RE啟動時,從第丨速度指令部83輸出的負的 速度指令值;以及當繼電器RY-WS-ΗΡ-RE啟動時,從第2 速度指令部84輸出的負的速度指令值;這些速度指令 值,都會往HP的向量控制變頻器42a輸出。 當繼電器RY-WS-0P-FW啟動(0N)時,從第2速度指令 部84輸出的速度指令值;當繼電器RY-WS-HP-FW啟動時, 從第1速度指令部83輸出的速度指令值;當繼電器 RY-WS-0P-RE啟動時’從第2速度指令部84輸出的負的 速度指令值;以及當繼電器RY-WS-HP-RE啟動時,從第i 27 201034919 速度指令部83輸出的負的速度指令值;這些速度指令 值,都會往op的向量控制變頻器42b輸出。 另外,當迷度指令值是正值時,表示前進的速度指令 值,而田速度指令值是負值時,表示後退的速度指令值。 說明有關從上述第1速度指令部83與第2速度指令 . 部84輸出的速度指令值。 0 如第17圖(a)所示,假設移動棚llx發生寬度偏移’ 則如第17圖(b)所示,在移動作業用通路s的寬度(前後 方向)例如2m的期間,設定移動棚丨丨的行走軌跡(軌道修 正軌跡)’用以消除已預先設定幅度的寬度偏移(寬度偏移 的至少—個例子),如第17圖(d)所示,先運算用以實現 此行走軌跡之HP側的驅動馬達16與0P側的驅動馬達16 的每單位時間的旋轉速度(速度指令值),然後對第1速度 心7部83 ’設定其中一方(在實施形態中,是Hp侧)的驅 Ο 動馬達16的每單位時間的旋轉速度(速度指令值),且對 . 第2速度指令部84,設定另一方(在實施形態中,是op . 側)的驅動馬達16的每單位時間的旋轉速度(速度指令 值)°前述預先設定的幅度(偏移量),是設為:當移動棚 11移動作業用通路S的寬度這樣的距離時,藉由驅動馬 達16可輸出的旋轉速度與加減速度,實際上可以修正的 幅度以下。 前迷行走轨跡,是設成:最初是使移動棚11平行地 移動’亦即,使兩驅動馬達16同時地以相同的規定旋轉 28 201034919 速度(HP與0P的驅動車輪UA都不會滑動的旋轉速度)以 ^的旋轉速度,進行啟動,然後以第Η圖(C)所示的傾斜 角度’使移動棚11 一邊移動一邊分 , 邊在消除寬度偏移的方向 轉彎,來作傾斜,亦即,對於兩 珣驅動馬達16的旋轉速度, 以設有差值的方式來進行驅動, 11 _ . 电 操者 u一邊使移動棚 11移動-邊將傾斜角度設成「〇」的方式(可D is set in the HP catch setting unit 81 HP drive (four) 14A speed command value, is output by the action of the relay RY_Hp_Fff; when the HP drive wheel UA speed command value is negative, by The action of the relay RY-HP-re is output. The speed command value ' of the drive wheel UA of the 0P set in the 0P speed setter 82 is output by the action of the relay RY_〇p; when the speed command value of the drive wheel 14A of the 0P is negative by the relay RY - 〇 P-RE action is output. 24 201034919 In addition, when the speed command value is positive, it indicates the forward speed command value, and when it is negative, it indicates the skip command value. It is said that the month is caused by the configuration of the forced driving unit 77. • When "Forced" is selected by the automatic-forced selection switch 51, if the liver rotation switch 52 is operated and is turned to the forward side (Fff side), the relay RY-HP-FW operates during the period in which the operation is performed. The drive wheel "A speed command value (forward) of the positive value Hp set in the HP speed setter 81 is outputted", and the drive wheel 14A of the HP side drive motor 16' HP is driven to the forward side. Further, if the Hp rotation switch 52 is operated and is turned "backward side (RE side)", during the reverse period (during operation), the relay Is RY-HP-RE action ' is set to the Hp speed setting. The speed command value (reverse) of the HP drive wheel 14A of the negative value in the 81 is output, so that the drive wheel 16 of the HP side is driven by the drive wheel 16 of the HP side to the reverse side _ side. - When "Forced" is selected by forcibly selecting the switch 51, when the right turn P rotation switch 53 is operated and is turned to the forward side (FW side), the relay RY-OP-Ff is operated during the "operation" period, and is set to 0P speed setter 82 positive value of 0P drive wheel 14A speed command The value (input) is outputted. Then, the drive wheel 16 of the 〇p is driven to the forward side by the drive motor 16 on the 〇p side. Further, when the 〇p rotation switch 53 is operated and is reversed to the retreating side (RE side), the relay RY OP RE operates during the operation, and is set to a negative value of 25 in the 〇p speed setting unit 82. 201034919 OP The speed command value (reverse) of the drive wheel 14A is output, so that the drive wheel 16A of the 0P side is driven to the reverse side by the drive motor 16 of the 0P side. 0. The HP rotary switch 52 and the 0P rotary switch 53 are controlled by the above. The operation, as shown in Figs. 10(a) and (b), enables the moving shed n to rotate. That is, when "forced" is selected by the automatic-forced selection switch 51, as shown in Fig. 10(a), when the HP rotary switch 52 is operated, it is turned to the forward side (FW side), and 〇p is operated. When the switch 53 is turned to the reverse side 〇 ((10) side), the HP side drive motor 16 is directly driven during the operation, and the HP side drive wheel 14A is driven to the forward side. The drive motor 0 on the 0P side is directly driven, so that the drive/wheel on the 卯 side is driven to the reverse side, whereby the mobile shed U is tilted toward the Hp side. Further, conversely, as shown in Fig. 10 (8), if the HP rotary switch 52 is operated to be reversed to the retreating side (10) side, and the 〇p is rotated to open _ while being turned to the forward side (10) side), the moving shed is operated. Π will tilt to the 0P side. 〇 semi-automatic width shift control unit 78" has two halves: in the second width shift control unit 78, as shown in Fig. 12, when the rear side of the field "walking control unit 61 is forced to input the HP width number" The relay of the action is: the relay side of the two action _ width offset command signal is sent to the second time control = TMe; and when the forced travel control part 61 is two = 26 201034919 electrical RY-WS-0P- width bias 'When the k number is entered, it will follow the FW. Further, in the semi-automatic width shift control unit 78, as shown in Fig. 14, a relay RY_WS' is provided when the relay ry, _hp_re operates, when the electric appliance RY'-hp-fw operates, and when the relay RY, _〇p_RE : When it is working, or when the relay RY-WS_0P-FW is activated, it will be activated. Further, in the semi-automatic width shift control unit 78, 'the first speed index 83 is provided, and when the relay RY-WS operates, the execution is started, and the preset command value of the middle-side drive wheel UA is set in advance: When the relay RY_WS operates, the second speed command unit 84' starts execution, and the speed command value of the other drive vehicle 14A that is set in advance is rotated. When the relay RY-WS-0P-FW is activated (0N), the speed command value output from the second speed command unit 83; when the relay RY_ws_Hp_Fw is activated, the speed command output from the second speed command unit 84 Value; a negative speed command value output from the second speed command unit 83 when the relay RY4S-0P-RE is activated; and a negative output from the second speed command unit 84 when the relay RY-WS-ΗΡ-RE is activated The speed command value; these speed command values are output to the HP vector control inverter 42a. When the relay RY-WS-0P-FW is activated (0N), the speed command value output from the second speed command unit 84; when the relay RY-WS-HP-FW is activated, the speed output from the first speed command unit 83 Command value; a negative speed command value output from the second speed command unit 84 when the relay RY-WS-0P-RE is activated; and a speed command from the i 27th 201034919 when the relay RY-WS-HP-RE is activated The negative speed command value output by the unit 83; these speed command values are output to the vector control inverter 42b of the op. In addition, when the obscurity command value is a positive value, it indicates a forward speed command value, and when the field speed command value is a negative value, it indicates a reverse speed command value. The speed command value output from the first speed command unit 83 and the second speed command unit 84 will be described. As shown in Fig. 17 (a), it is assumed that the width lapse of the moving shed llx is as shown in Fig. 17 (b), and the movement is set while the width (front-rear direction) of the moving work path s is, for example, 2 m. The trajectory of the shed (track correction trajectory) is used to eliminate the width offset of the pre-set amplitude (at least one example of the width offset). As shown in Fig. 17(d), the first operation is used to achieve this. The rotational speed (speed command value) per unit time of the drive motor 16 on the HP side of the traveling path and the drive motor 16 on the 0P side is set to one of the first speed center 7 portions 83' (in the embodiment, Hp) The rotation speed (speed command value) per unit time of the drive motor 16 is set to the drive motor 16 of the other (in the embodiment, the op. side) of the second speed command unit 84. The rotational speed per unit time (speed command value). The predetermined amplitude (offset amount) is set to be outputted by the drive motor 16 when the moving shed 11 moves the distance of the width of the work path S. Rotation speed and acceleration and deceleration You can actually corrected magnitude less. The front walking track is set such that the moving shed 11 is first moved in parallel, that is, the two driving motors 16 are simultaneously rotated by the same regulation 28 201034919 speed (HP and 0P driving wheels UA do not slide) The rotation speed is started at the rotation speed of ^, and then the movement shed 11 is moved while moving at the inclination angle ' shown in Fig. (C), and is tilted in the direction of eliminating the width deviation. That is, the rotational speed of the two-turn drive motor 16 is driven in such a manner as to have a difference, and the electric operator u moves the moving shed 11 while setting the tilt angle to "〇" ( can

二式’來進行傾斜’亦即,對於兩驅動馬達16的旋轉 速度,以設有「相反的」差值的方式來進行驅動,最後使 移動棚u平行地移動’亦即,使兩驅動馬達16同時地以 相同的旋轉速度來移動而至結束。 如此,從開始行走之後,藉由使速度指令值隨著時間 而變化’可實現預先設定的移動棚㈣行走軌跡。另外, 在本實施形態中’藉由HP移動按鈕開關54與0P移動按 鈕開關55的-次操作,能消除的寬度偏移,是設成:一 次的移動’亦即移動作業用通路3的寬度這樣的距離時, 能修正的幅度(最大幅度)的一半。於是,只要利用2次的 操作’便可消除最大幅度。 說明藉由如此的半自動寬度偏移控制部78的構 產生的作用。 藉由上述自動—強制選擇開關51而選擇「強制」時, 若HP移動按鈕開關54被按壓(被操作),則藉由第12圖 所不的近接感測器37a、37b所檢測出來的近接信號,判 斷出移動棚11的開放側(形成作業用通路s,移動棚Η 29 201034919 可單獨移動的—側),並形成前側或後側的強制Hp寬度偏 移指令,於是繼電器RY—WS_HP-FW或繼電器RY〜ws_Hp_RE 動作。 一旦繼電器RY-ffS-HP-FW動作,則從第2速度指令部 84,往HP的向量控制變頻器42a,輸出配合行走軌跡的 速度指令值,並從第1速度指令部83,往0P的向量控制 變頻器42b,輸出配合行走軌跡的速度指令值,按照這些 • 速度指令值,HP側與〇P側的驅動馬達16被驅動,^動 〇棚1卜邊前進,一邊沿著第1〇圖⑷所示的行走執跡移 動(行走)’於是,移動棚u,往Hp侧的方 •設定的幅度(寬度距離)。 動預先 又,一旦繼電器RY_ws_Hp_RE動作,則從第1速度指 令部83’往HP的向量控制變頻器似,輸出配合行走^ 跡的負(逆方向)的速度指令值,並從第2速度指令部8心 往0P的向量控制變頻胃42b,輸出配合行走轨跡的負(逆 0方向)的速度指令值’按照這些速度指令值,HP側與卯 側的驅動馬達16被驅動,移動棚1卜邊後退,—邊沿 ’ 10目⑷所示的行走執跡相反方向的行走執跡( ►則後方向A)進行移動,於是,移動棚u,往Hp側的方 移動預先設定的幅度。 °’ 如此,藉由自動-強制選擇開關51而選擇「強制」時, 若肝移動按紐開關54被按壓,則移動棚11 —邊在作董 用通路S側行走一邊往Hp側移動預定的設定值。〃 又’藉由上述自動-強制選擇開關51而選擇「強制 30 201034919 時,右OP移動按鈕開關55被按壓(被操作),則藉由第 12圖所示的近接感測器37a、37b所檢測出來的近接信 號,判斷出移動棚丨丨的開放側(形成作業用通路s,移動 棚11可單獨移動的一侧),並形成前側或後側的強制Hp 寬度偏移指令,於是繼電器RY-WS-0P-FW或繼電器 RY-WS-OP-re 動作。 裔 一旦繼電器RY_WS-0P-FW動作,則從第1速度指令部 83’往HP的向量控制變頻器42a,输出配合行走執跡的 速度指令值,並從第2速度指令部84,往0P的向量控制 變頻器42b ’輸出配合行走軌跡的速度指令值,按照這些 速度指令值’ HP側與〇p側的驅動馬達丨6被驅動,移動 棚11則進,並沿著第10圖(d)所示的行走軌跡移動,於 疋’移動棚1卜往〇p側的方向,移動預先設定的幅度。 又,一旦繼電器rY_ws_〇p_re動作,則從第丄速度指 令部83 ’往HP的向量控制變頻器42a,輸出配合行走軌 〇 跡的負(圯方向)的速度指令值,並從第2速度指令部84, 往0P的向里控制變頻器42b,輸出配合行走軌跡的負(逆The second type 'is tilted', that is, the rotational speed of the two drive motors 16 is driven in such a manner as to provide an "opposite" difference, and finally the moving shed u is moved in parallel 'that is, the two drive motors are made 16 simultaneously moves at the same rotational speed to the end. Thus, the predetermined moving shed (four) walking trajectory can be realized by changing the speed command value over time after starting the walking. Further, in the present embodiment, the width shift that can be eliminated by the operation of the HP moving button switch 54 and the 0P moving button switch 55 is set to "one movement", that is, the width of the moving work path 3. At this distance, half of the amplitude (maximum amplitude) can be corrected. Thus, the maximum amplitude can be eliminated by using the operation twice. The action produced by the configuration of the semi-automatic width shift control unit 78 will be described. When "Forced" is selected by the above-described automatic-forced selection switch 51, if the HP moving button switch 54 is pressed (operated), the proximity sensor detected by the proximity sensors 37a, 37b not shown in Fig. 12 The signal determines the open side of the moving shed 11 (forming the working passage s, moving the side 2010 29 201034919 separately movable side), and forming a forced Hp width offset command on the front side or the rear side, so the relay RY-WS_HP- FW or relay RY~ws_Hp_RE action. When the relay RY-ffS-HP-FW is operated, the second speed command unit 84 outputs a speed command value for the traveling trajectory to the HP vector control inverter 42a, and goes from the first speed command unit 83 to the 0P. The vector control inverter 42b outputs a speed command value for the travel trajectory, and according to these speed command values, the drive motor 16 on the HP side and the 〇P side is driven, and moves along the first side along the first side. The walking track movement (walking) shown in Fig. 4 is then moved to the side of the Hp side to set the amplitude (width distance). In addition, when the relay RY_ws_Hp_RE is operated, the vector control inverter from the first speed command unit 83' to the HP is outputted, and the speed command value corresponding to the negative (reverse direction) of the travel track is outputted, and the second speed command unit is output from the second speed command unit. 8 heart to 0P vector control frequency conversion stomach 42b, output with the negative (reverse 0 direction) speed command value of the travel trajectory 'According to these speed command values, the HP side and the 卯 side drive motor 16 are driven, moving the shed 1 While retreating, the edge of the walking track in the opposite direction of the walking track shown in '10 mesh (4) moves ( ► the rear direction A), so that the moving shed u moves to the side of the Hp side by a predetermined amplitude. When the "force" is selected by the automatic-forced selection switch 51, if the liver movement button 54 is pressed, the moving shed 11 moves to the Hp side while walking on the side of the main passage S. Set value. 〃 'When the forcing 30 201034919 is selected by the above-described automatic-forced selection switch 51, the right OP moving button switch 55 is pressed (operated), and the proximity sensors 37a, 37b shown in Fig. 12 are used. The detected proximity signal determines the open side of the moving shed (forming the working passage s, the side on which the moving shed 11 can be moved separately), and forms a forced Hp width offset command on the front side or the rear side, so that the relay RY -WS-0P-FW or relay RY-WS-OP-re action. When the relay RY_WS-0P-FW operates, the first speed command unit 83' goes to the HP vector control inverter 42a to output a coordinated walk. The speed command value is output from the second speed command unit 84 to the vector control inverter 42b' of the 0P, and the speed command value for the travel trajectory is outputted. According to these speed command values, the drive motor 丨6 on the HP side and the 〇p side is Drive, the moving shed 11 enters and moves along the walking trajectory shown in Figure 10 (d), moving the preset amplitude in the direction of the moving shed 1 to the side of the 〇p. Again, once the relay rY_ws_ 〇p_re action, then from the third speed The command unit 83' outputs a speed command value corresponding to the negative (圯 direction) of the traveling rail track to the vector control inverter 42a of the HP, and controls the inverter 42b from the second speed command unit 84 to the 0P inward, and outputs Negative with the walking trajectory

方向)的速度扣令值,按照這些速度指令值,肝側與0P - 側的驅動馬達皮驅動,移動棚11後退,並沿著與第 10圖(d)所示的行走執跡相反方向的行走軌跡(指在前後 方向A)進行移動,於是,移動棚U,彺0P側的方向,移 動預先設定的幅度。 如此,藉由自動-強制選擇開關51而選擇「強制」時, 若0P移動按鈕開關55被按壓,則移動棚u —邊在作業 31 201034919 用通路s側行老—请 邊在HP側移動預定的設定值 「自動姿勢控制部?9」 行走判斷t勢控制冑79 ’如第15圖所示,設有:當自動 偏#抟P 63的仃走指令信號是前進指令(當具有寬度 偏移控制的信號時 使時〗遲延而輸幻時,便會動作的 、° ’虽疋後退指令(當具有寬度偏移控制的信號The speed command value of the direction), according to these speed command values, the liver side and the 0P-side drive motor skin drive, the moving shed 11 retreats, and in the opposite direction to the walking track shown in Fig. 10(d) The traveling trajectory (refers to the front and rear direction A) is moved, so that the direction in which the shed U is moved to the P0P side is moved by a predetermined amplitude. In this way, when "Forced" is selected by the automatic-forced selection switch 51, if the 0P move button switch 55 is pressed, the mobile shed u is on the side of the path s in the work 31 201034919 - please move on the HP side. Setting value "Automatic posture control unit? 9" Walking judgment t-potential control 胄79' As shown in Fig. 15, it is provided that when the automatic deviation #抟P 63 is a forward command signal (when there is a width offset) When the control signal is delayed and the illusion is lost, it will move. ° 'Although the back command (when the signal has the width offset control)

使時間遲延而輸出)時,便會動作的繼電器RY-B;當 疋知止^令時’便會動作的繼電胃RY-s;以及當脈衝誤 差判斷邻67的預測控制執行信號是開啟(0Ν)時,便會動 作的繼電器RY-M。 進而,設置已設有移動棚U的規定行走速度之速度 設定器85。又’藉由繼電器㈣的動作,構成:當預測 控制執行信號不是開啟⑽)時,則行走距離偏差會被選 #’ # t㈣㈣執行㈣是開啟(⑹時,則預測行走距 離偏差會被選擇;進而’設有:藉由該所選擇的偏差,來 求取HP的驅動車輪14A的速度修正量之第i函數部86 ; 以及藉由該所選擇的偏差,來求取⑽的驅動車輪uA的 速度修正量之第2函數部87。第!函數部㈣,若偏差超 過正值的規定量(無感帶(dead band))而成為正值,則比 例於該值而輸出負值的速度修正量;第2函數部87,若 偏差超過負值的規定量(無感帶)而成為負值,則比例於該 值而輸出正值的速度修正量。又,所選擇的偏差,若超過 正值或負值的規定量(無感帶)’則藉由第i函數部86戍 32 201034919 第2函數部87來輸出速度修正量’於是可執行移動棚姿 勢修正控制(傾斜修正控制)。 又,在速度設定器85中,設置:第3減法器,其從 已被設定的移動棚U的規定行走速度,減去從上述第i 函數。P 86輸出的正值的速度修正量,來求取Η?的驅動車 輪14A的速度指令值;以及第i下限限制器89,用以限 =藉由此第3減法器所求得的Hp的驅動車輪UA的速度 才曰7值的下限,來保障最低速度;此速度設定器Μ,並 構成可將速度指令值往Hp的向量控制變頻器42a輸出。 該速度指令值,是以下述方式來選擇:藉由繼電器RY_F 的動作(前進指令啟動),此下限已被限定的肝的驅動車 輪14A的速度指令值會被選擇;藉由繼電器ry b的動作 (後退指令啟動),此下限已被限定的Hp的驅動車輪14八 的負值的速度指令值會被選擇;而藉由繼電器RY_S的動 作(停止指令啟動),HP的驅動車輪14A的速度指令值「〇」 會被選擇。When the time is delayed and output), the relay RY-B that will act; the relay stomach RY-s that will act when the command is stopped; and the predictive control execution signal of the pulse error judgment neighbor 67 is turned on. (0Ν), the relay RY-M will operate. Further, a speed setter 85 having a predetermined traveling speed of the moving shed U is provided. In addition, by the action of the relay (4), when the predictive control execution signal is not turned on (10), the travel distance deviation is selected #' (4) (4) Execution (4) is on ((6), the predicted travel distance deviation is selected; Further, "providing: an i-th function portion 86 for obtaining a speed correction amount of the HP driving wheel 14A by the selected deviation; and obtaining the driving wheel uA of (10) by the selected deviation The second function unit 87 of the speed correction amount. When the deviation exceeds a predetermined amount (dead band) of a positive value and becomes a positive value, the speed is corrected by a negative value. When the deviation exceeds a predetermined amount (non-inductive band) of a negative value and becomes a negative value, the second function unit 87 outputs a positive speed correction amount in proportion to the value. Further, if the selected deviation exceeds the positive value The predetermined amount (non-sensitive band) of the value or the negative value is outputted by the i-th function unit 86戍32 201034919, the second function unit 87, and the mobile-station posture correction control (tilt correction control) can be executed. In the speed setter 85, The third subtractor obtains the speed correction amount of the positive value output from the i-th function P 86 from the predetermined traveling speed of the mobile shed U that has been set, and obtains the driving wheel 14A of the Η? a speed command value; and an ith lower limit limiter 89 for limiting the minimum speed of the speed of the drive wheel UA of the Hp obtained by the third subtractor to ensure the minimum speed; the speed setter Μ, and configured to output the speed command value to Hp vector control inverter 42a. The speed command value is selected in the following manner: by the action of relay RY_F (advance command start), the lower limit has been defined The speed command value of the drive wheel 14A is selected; by the action of the relay ry b (the reverse command is activated), the lower limit has been limited to the speed command value of the negative value of the drive wheel 14 of the Hp; By the action of the relay RY_S (start of the stop command), the speed command value "〇" of the HP drive wheel 14A is selected.

又,在速度控制器85中,設置:第4減法器,其從 已被設定的移動棚U的規定行走速度,減去從上述第2 函數邛86輸出的正值的速度修正量,來求取的驅動車 輪14A的速度指令值;以及第2下限限制器91,用以限 制藉由此第4減法器所求得的〇p的驅動車輪i 4A的速度 才曰令值的下限,來保障最低速度;此速度設定器85,並 構成可將速度指令值往〇p的向量控制變頻器42b輸出。 忒速度指令值,是以下述方式來選擇:藉由繼電器RY_F 33 201034919 的動作(前進指令啟動),此下限已被限定的op的驅動車 輪14A的速度指令值會被選擇;藉由繼電器RY-B的動作 (後退指令啟動)’此下限已被限定的〇p的驅動車輪14A 的負值的速度指令值會被選擇;而藉由繼電器RY-S的動 作(停止指令啟動),〇P的驅動車輪14A的速度指令值「〇」 會被選擇。Further, the speed controller 85 is provided with a fourth subtractor that subtracts the speed correction amount of the positive value output from the second function 邛86 from the predetermined traveling speed of the mobile storage U that has been set. The speed command value of the drive wheel 14A is taken; and the second lower limit limiter 91 is used to limit the lower limit of the speed of the drive wheel i 4A of the 〇p obtained by the fourth subtractor. The lowest speed; the speed setter 85 is configured to output a speed command value to the vector control inverter 42b of 〇p. The 忒 speed command value is selected in the following manner: by the action of the relay RY_F 33 201034919 (the forward command is started), the speed command value of the drive wheel 14A of the op that has the limited limit is selected; by the relay RY- The action of B (reverse command is activated) 'The speed command value of the negative value of the drive wheel 14A whose 下限p is limited by this lower limit is selected; and the action of the relay RY-S (start of the stop command), 〇P The speed command value "〇" for driving the wheel 14A is selected.

說明藉由如此的自動姿勢控制部79的構成所產生的 作用。 若從主控制盤38被輸入前進指令或後退指令,則從 速度5又疋器85輸出的速度指令值(前進時為正值、後退時 為負值),會被輸出至HP的向量控制變頻器42a與〇p的 向量控制變頻器42b,於是移動棚u行走。又,若從主 控制盤38被輸入停止指令,則「〇」的速度指令值,會被 輸出至HP的向量控制變頻器423與〇1)的向量控制變頻器 42b ’於是移動棚11停止。 又,移動棚11行走時,基於藉由兩側的2個脈衝編 碼器與計數器65、66所檢測出來的驅動車輪14A的行走 量,來求取兩驅動車輪14A的行走量的偏差,並輸入控制 部中,而為了消除此偏差,修正從速度収器⑽輸出的 速度指令值,1具有差異的速度指令值,會往Hp的向量 控制變頻器42a與0P的向量控制變頻器桃輸出,於是 藉由各驅動馬it 16所產生的驅動旋轉量會被修正控制, 因而移動棚11的姿勢會被控制。 34 201034919 又、,兩驅動車輪14A的行走量的偏差,若從移動開始 、’超過’㈣應行走距離與從開始移動至產生超 過設定值的脈衝差異為止的時間,來求取關行走距離: 而對於驅動馬達16的向量控制變頻器42a或咖連動於 預測行走㈣超前制驅動車輪14A),輸出使其驅動旋 轉量降低的控制信號。藉此,超前側的驅動馬達16的驅 動旋轉量會下降,於是超前側會變慢而以低速前進,可對 應預測行走距離’率先將傾斜㈣逐漸修正而消除偏差。 相對於在僅利用行走距離偏差的控制中,其偏差會過大一 事,藉由此預測控制,能消除偏差過大的情況而可安定地 進行行走控制。 如此,在自動姿勢控制部79中,基於被檢測出來的 兩驅動車輪UA的行走量,以消除兩驅動車輪m的行走 量的偏差的方式,修正控制由各驅動馬達16所產生的驅 動旋轉量,來執行移動棚U的姿勢修正控制。 「自動寬度偏差控制部80」 自動寬度偏差控制部80,如第16圖所示,設有:第 3加法器93’將藉由HP感度檢出部62a而求得的Hp位置 的磁感度、及藉由0P感度檢出部62b而求得的肿位置的 磁感度相加’來求取磁感度的合計值;以及前次感度記憶 部93,用以記憶在行走停止時,經過一定時間(繼電器 RY_S啟動,以計時器來決定,經過一定時間後),在第3 加法器92中所求得的磁感度的合計值。 35 201034919 又’設置· 度檢出部…而t1比較器94,用以檢出有無藉由肝感 器犯,用以檢出有1TP位置的磁感度;以及第2比較 位置的磁感由GP感度檢出部咖而求得的〇ρ 由這-第心•繼電11RY—S(停止指令)啟動時,若藉 产,則將⑭ 94或第2比較器95檢測出沒有磁感 往警報燈43輸出;或是,當繼電器 較器曰 動時,若藉由第1比較器94或第2比The action by the configuration of the automatic posture control unit 79 will be described. If a forward command or a reverse command is input from the main control panel 38, the speed command value output from the speed 5 and the counter 85 (positive value at the time of forward and negative at the time of backward) is output to the vector control inverter of HP. The vector 42a and the vector of the 〇p control the inverter 42b, so that the mobile shed u travels. When a stop command is input from the main control panel 38, the speed command value of "〇" is output to the vector control inverter 423 of HP and the vector control inverter 42b' of 〇1), and the mobile shed 11 is stopped. Further, when the moving shed 11 is traveling, the deviation of the traveling amount of the two driving wheels 14A is obtained based on the amount of travel of the driving wheels 14A detected by the two pulse encoders on both sides and the counters 65 and 66, and is input. In the control unit, in order to eliminate the deviation, the speed command value output from the speed receiver (10) is corrected, and a speed command value having a difference is obtained, and the vector control inverter 42a and the vector control inverter of Hp are outputted to the Hp vector, so that The amount of driving rotation generated by each of the driving horses 16 is corrected, so that the posture of the moving shed 11 is controlled. 34 201034919 In addition, the deviation of the amount of travel of the two driving wheels 14A is determined by the distance from the start of the movement, the time of the 'overtake' (four) travel distance, and the time from the start of the movement to the occurrence of a pulse difference exceeding the set value. On the other hand, the vector control inverter 42a of the drive motor 16 or the coffee machine is connected to the predictive travel (four) lead drive wheel 14A), and outputs a control signal for reducing the amount of drive rotation. As a result, the amount of driving rotation of the drive motor 16 on the leading side is lowered, so that the leading side is slowed down and proceeds at a low speed, and the inclination (four) can be gradually corrected correspondingly to eliminate the deviation. In the control using only the travel distance deviation, the deviation is excessive, and by this predictive control, the deviation can be eliminated and the travel control can be performed stably. In the automatic posture control unit 79, based on the detected running amount of the two driving wheels UA, the driving rotation amount generated by each driving motor 16 is corrected and controlled so as to eliminate the variation in the running amount of the two driving wheels m. To perform the posture correction control of the mobile shed U. "Automatic width deviation control unit 80" As shown in Fig. 16, the automatic width deviation control unit 80 is provided with a magnetic sensitivity of the Hp position obtained by the HP adder detecting unit 62a by the third adder 93'. And the sum of the magnetic sensitivities of the swollen positions obtained by the 0P sensitivity detecting unit 62b to obtain the total value of the magnetic sensitivities; and the previous sensitivity storage unit 93 for memorizing the passage of the travel for a certain period of time ( The relay RY_S is activated, and the total value of the magnetic sensitivities obtained in the third adder 92 is determined by a timer after a certain period of time. 35 201034919 The 'Settings and Degree Detection Section... and the t1 comparator 94 are used to detect the presence or absence of a liver sensor, to detect the magnetic sensitivity of the 1TP position; and the magnetic sense of the second comparison position by the GP When the sensibility detection unit 启动ρ is activated by this - centering relay 11RY-S (stop command), if the production is borrowed, 14 94 or the second comparator 95 detects that there is no magnetic sense to the alarm. Lamp 43 output; or, when the relay is tilted, if by the first comparator 94 or the second ratio

=95檢測出有磁感度,則將上述重置(㈣⑷信號輸 出。 又°又有寬度偏差檢出部96,若繼電器ry_s(停止指 令)啟動時’根據由第3加法器93所求得的磁感度的合計 值及被記憶在前次感度記憶部93中的前次磁感度的合計 值之偏差’求出由於此次行走所發生的行走路徑ι〇的寬 度方向B&amp;寬度偏差(將前述磁感纟的合計值的偏差,換 算成寬度偏差)’並確認所求得的寬度偏差是否在預先設 定的寬度偏差以上,當在設定的寬度偏差以上時,若藉由 HP感度檢出部62a檢出往HP侧的寬度偏差,則輸出往〇p 側的寬度偏差修正信號,而若藉由Hp感度檢出部62a檢 出往0P側的寬度偏差時,則輸出往Hp側的寬度偏差修正 信號。又,設有藉由往0P側的寬度偏差修正信號而動作 的繼電器RY-W-0P,並設有藉由往Hp側的寬度偏差修正 信號而動作的繼電器RY-W-HP。 又,設有:第3速度指令部97,當繼電器RYn 或繼電器RY-W-HP動作,且繼電器RY_F(前進指令)或繼 36 201034919 電器RY-B(後返指八、&amp; ^ 和7 )動作時,便開始執行,而輸出預先 設定的其中一方的+ 的驅動車輪14A的速度指令值;以及第4 速度指令部9 8,於φ π Λ 麵山預先設定的驅動車輪14Α的速度指 令值。 往HP的向量松也丨嫩卜 二制變頻器42a之速度指令值,是如以 下般地輸出。當繼蕾ητ7 - 繼電益RY-W-0P啟動(ON)時,求取從第3 速度指令部97輪ψ &amp;、Α Λ , . j出的速度指令值;當繼電器RY-W-HP啟 4速度扣令部98輸出的速度指令值;並 藉由繼電器RY'F(前進指令)來選擇此速度指令值、藉由 繼電器RY B(後退指令)來選擇此負值的速度指令值、以 ' 及藉由繼電器RY-SOa U此人、4 b(停止指令)來選擇速度指令值「0」, 而將其輸出。 又往0P的向量控制變頻器42b之速度指令值,是 如以下般地輸出。當繼電器^[⑽啟動⑽)時,求取從 第4速度扣7 σρ 98輸出的速度指令值;當繼電器πυρ ©啟動時,求取從第3逮度指令部97輸出的速度指令值; •並藉由繼電器Μ(前進指令)來選擇此速度指令值、藉 由繼電器RY-B(後退指令)來選擇此負值的速度指令值、 .以及藉由繼電器Μ,停止指令)來選擇速度指令值 「〇」,而將其輸出。 又,汉有頻率檢出部99,計數繼電器RY_w_〇p或繼 電器RY-W-HP發生動作的次數,亦即求取使寬度偏差縮小 的行走被執行的頻率,若頻率比規定頻率大,則將注意信 號往注意燈44輸出。另外,頻率檢出部99,也可以作成: 37 201034919 求取使寬度偏差縮小的行走被執行的次數,若次數比規定 次數大’則輸出注意信號。 從上述第3速度指令部97與第4速度指令部98輸出 的速度指令值的設定方法’是與半自動寬度偏差控制部 78的第1速度指令部83與第2速度指令部84所輸出的 . 速度心7值的没疋方法相同,但是,在自動寬度偏差控制 . P 〇中疋將此消除寬度偏差的設定,設定成:在一次 〇 ㈣動巾’亦即移動作業料路s的寬度距料,能修正 的幅度(最大幅度);並且,將用以求取行走路徑ίο的寬 度方向B的寬度偏差之磁感度的合計值的偏差,配合此設 定的最大幅度來進行設定。 . 另外,在自動寬度偏差控制部80中,是如此地在一 次的移動中,將能消除的寬度偏差的設定,設為可修正的 最大幅度,但是,也可設成與半自動寬度偏差控制部78 同樣地設為-半,此時,在下次以及下下次行走時,執行 Q 寬度偏移控制,藉由2次移動來消除寬度偏移。進而,也 可以設成藉由重複地行走3次以上的移動來消除寬度偏 . 移0 說明藉由如此的自動寬度偏差控制部80的構成所產 生的作用。 當移動棚11停止行走時,藉由ΗΡ與〇ρ的各磁感應 器35,檢測出磁鐵31,一旦檢測出來的磁感度的合計值 與在刖次行走停止時所記憶的磁感度的合計值之間的偏 38 201034919 差超過規定值,亦即若孤山 出比規定值大的寬度偏移,則根 據寬度偏移方向,若去丨跑^ , 斷出需要往op側的修正時,則驅 動繼電器RY-W-0P,若刹齡山* 斷出而要往HP側的修正時,則 驅動繼電器RY-W-HP。又丸於 _ &amp; ,备發生寬度偏移時,寬度偏移 控制執行信號被輸出至主知 出至主控制盤38,且將寬度偏移發生 加以計數,若有一定頻率 用牛以上’則判斷移動棚11頻繁地 發生寬度偏移而輸出注音产 „ %、化唬,注意燈44亮起。又,若 Ο Ο HP與0P的磁感應器π沾知 ^ 认 的任一個的感度變無,亦即沒有 檢出磁鐵31,則判斷· φ ώ在,你 出自動寬度偏移控制產生不良而發 …、法自動地消除寬度偏移的情況,於是便會輸出促使按 * HP移動按紐開關54 &lt; 〇ρ移動按紐開關π的警報信 號’警報燈43亮起。 如此,繼電窃RY-W-θρ或繼電器RY_w_Hp動作,若藉 由下次的行走指令,繼電器RY_F(前進指令)或繼電器 (後退指令)動作,則會從第3速度指令部97與第4 逮度指令部98輸出速度指令值。 田繼電器RY_W_0P動作時,在繼電器RY-F(前進指令) 人作的情況’㈣3速度指令部97輸出的正值的速度指 ,會往HP的向量控制變頻器仏輸出,且從第斗速 v冲98輸出的正值的速度指令值,會往0P的向量控 I變頻器42b輸出’於是按照這些速度指令值,Hp側與 移側的驅動馬達16會被驅動,使移動棚n前進,因此, 棚11藉由移動棚控制器41而被控制成可往0P側 @ 方 1*^ °移動預先設定的幅度。當繼電器RY_B(後退指令) 39 201034919 動作的情況,從第3速度指令部97輸出的負值的速度指 令值’會往HP的向量控制變頻器42a輸出,且從第4速 度指令部98輸出的負值的速度指令值,會往〇p的向量控 制變頻器42b輸出’於是按照這些速度指令值,Hp側與 〇P側的驅動馬達16會被驅動,使移動棚11後退,因此, , 移動棚11,藉由移動棚控制器41而被控制成可往0P側 . 的方向移動預先設定的幅度。 ❹ 當繼電器RY-W-HP動作時,在繼電器RY-F(前進指令) 動作的情況,從第4速度指令部98輸出的正值的速度指 令值,會往HP的向量控制變頻器42a輸出,且從第3速 度指令部97輸出的正值的速度指令值,會往〇p的向量控 - 制變頻器42b輸出,於是按照這些速度指令值,Hp側與 〇P側的驅動馬達16會被驅動,使移動棚11前進,因此, 移動棚11,藉由移動棚控制器41而被控制成可往Hp侧 的方向移動預先設定的幅度。當繼電器RY__B(後退指令) ◎ 動作的情況,從第4速度指令部98輸出的負值的速度指 令值’會往HP的向量控制變頻器42a輸出,且從第3速 • 度指令部97輸出的負值的速度指令值,會往0P的向量控 '制變頻器42b輸出’於是按照這些速度指令值,HP側與 0P侧的驅動馬達16會被驅動,使移動棚丨丨後退,因此, 移動棚11 ’藉由移動棚控制器4 i而被控制成可往仙側 的方向移動預先設定的幅度。 若繼電器RY-S(停止指令)被輸入,則往肝的向量控 制變頻器42a肖〇p的向量控制變頻器似輸出的速度指 40 201034919 令值,設為「0 ,於是移動棚1 1停止 「從速度控制部75來的輸出」 〇 而且速度控制部75 ’是藉由繼電器RY—F〇R(強制選 擇)繼電器ry-AUT0(自動選擇)及繼電器m(寬度偏移 控制中)進行切換,來輸出從各強制驅動部7 7、半自動寬 差控制# 78、自動姿勢控制部79或自動寬度偏差控 制480所輸出的各個往Hp的向量控制變頻器仏的速度 指令值與往0P的向量控制變頻器42a的速度指令值。 亦即’強制驅動部77與半自動寬度偏差控制部78的 輸出信號’當繼電器RY_F〇R動作時,會被輸出;自動姿 勢控制邛79的輸出信號’當繼電器RY-AUTO動作且繼電 器㈣^有動作時,會被輸出;自動寬度偏差控制部8〇 的輸出U虽繼電器κγ_Αϋτ〇動作且繼電器ΜΙ也動 作時,會被輸出。 ❹ [全體的作用] 以下,說明上述實施形態中的作用。 第1圖第3圖所不,藉由使丨台或複數台移動棚 1 1在行走路徑1 〇卜j ^ ^ 仃走,可在目標移動棚11的前方, 形成作業用通路s,而可你舲株普m 從此作業用通路S,對目標區隔 :納空間13e進行貨物的搬入、搬出。此貨物的搬入、搬 m又式升降機在作業用通路s内行走,並經由 μ架(pal let)來進行。 41 201034919 由二1,在作業用通路S内的地…上,埋設磁鐵3b 東西^ 通路S的兩側外方的地面m,沒有任何 用通二中二Γ升降機等的車輛的行走’可使往作業 意方向進行二㈣行走成為可能,並可在隨 路s &amp;、隹/ &quot; ^物的搬入、搬出等,利用作業用通 來進行的作業’可迅速且順暢地進行。 Ο 〇 棚11:如當要=1丨:、第3圖的停止位置(e)上的移動 士、 走路徑10上行走後,停在停止位置 t #先’操作主控制m藉此,對於停在停止位 =上的移動棚u的控制盤2〇,給予行走指令信號(行 走方向信號)。 動鱼:疋啟動HP與〇P的一對驅動馬達16,分別使驅 動車輪14A旋轉。藉此,可對移動棚u賦予行走力,因 :邊使剩餘的行走車輪14追縱旋轉(空轉),一邊使 移動棚11在行走路in &gt; 1 二 上仃走。而且,藉由設在移動棚 間的近接感測器37a等所實行的檢出控制,使移動棚 不會碰撞已停在停止位置(g)上的移動棚U,並可停在 所希望的停止位置(|)上。 移動棚11如上述般地行走時,由於收納中的貨物的 置、地面la的狀態、驅動車輪14A相對於地面la的滑 、及驅動車輪14A中的外側輪體⑽的磨損等原因,移 =11的仃走,無法維持成相對於行走路徑1〇呈直角狀 的安勢’例如第1圖的假想線所示’會發生一側部分超前 而另一側部分遲延的傾斜姿勢。 42 201034919 如此的情況,藉由在窗声古&amp; η 見度方向β的兩侧部分, 置脈衝編竭器21,來拾屮并土忙 ° 控制盤20,來控制藉由前 桡出籍由 &amp;曰+ 】述驅動馬達Μ所產生的旋轉區 動-。亦即,隨著移動棚心行走, 檢知用輪體27作摩擦棘動。盐山 ^ ”動藉由此檢知用輪體27的轉 動,,在由輪體軸26,使旋轉體28旋轉。 =藉由旋轉體28的旋轉,可藉由光電開關_、 ΟIf the magnetic sensitivity is detected at =95, the above-mentioned reset ((4) (4) signal is output. Further, the width deviation detecting unit 96 is activated, and when the relay ry_s (stop command) is activated, 'based on the third adder 93. The total value of the magnetic sensitivity and the deviation of the total value of the previous magnetic sensitivity stored in the previous sensitivity storage unit 93 'determine the width direction B &amp; width deviation of the traveling path ι caused by the current walking (the foregoing The deviation of the total value of the magnetic sensation is converted into the width deviation ′′ and it is confirmed whether or not the obtained width deviation is equal to or larger than a predetermined width deviation. When the width deviation is greater than or equal to the set width deviation, the HP sensitivity detecting unit 62a is used. When the width deviation to the HP side is detected, the width deviation correction signal to the 〇p side is output, and when the width deviation to the 0P side is detected by the Hp sensitivity detecting unit 62a, the width deviation correction to the Hp side is output. In addition, a relay RY-W-0P that operates by the width deviation correction signal on the 0P side is provided, and a relay RY-W-HP that operates by the width deviation correction signal on the Hp side is provided. With: 3rd speed command unit 9 7. When relay RYn or relay RY-W-HP is activated, and relay RY_F (forward command) or following 36 201034919 appliance RY-B (backward refers to eight, &amp; ^ and 7), the execution starts and the output The speed command value of the drive wheel 14A of + of one of the presets; and the speed command value of the drive wheel 14A set by the fourth speed command unit 98 at φ π 面 face mountain. The vector to HP is also tender. The speed command value of the inverter 42a is output as follows. When the relay ητ7 - relay RY-W-0P is activated (ON), the rim rotation from the third speed command unit 97 is obtained. , Α Λ , . j out speed command value; when the relay RY-W-HP starts the speed command value output by the speed command 98; and selects the speed command value by the relay RY'F (forward command), Selecting the negative speed command value by relay RY B (reverse command), and selecting the speed command value "0" by the relay RY-SOa U, 4 b (stop command), and The speed command value of the vector control inverter 42b to the 0P vector is output as follows. When [[10] starts (10)), the speed command value output from the fourth speed buckle 7 σρ 98 is obtained; when the relay πυρ © starts, the speed command value output from the third catch command unit 97 is obtained; The speed command value is selected by the relay Μ (forward command), the speed command value of the negative value is selected by the relay RY-B (reverse command), and the speed command value is selected by the relay Μ, the stop command) "〇" and output it. Further, the frequency detection unit 99, the number of times the counting relay RY_w_〇p or the relay RY-W-HP operates, that is, the frequency at which the running of the width deviation is reduced is obtained, and if the frequency is larger than the predetermined frequency, Then, the attention signal is output to the attention lamp 44. Further, the frequency detecting unit 99 may be configured to: 37 201034919 to obtain the number of times the walking in which the width deviation is reduced is performed, and to output the attention signal if the number of times is larger than the predetermined number. The method of setting the speed command value outputted from the third speed command unit 97 and the fourth speed command unit 98 is outputted by the first speed command unit 83 and the second speed command unit 84 of the semi-automatic width deviation control unit 78. The speed heart 7 value is the same, but in the automatic width deviation control. P 〇 疋 set the elimination width deviation to: the width of the moving material path s at one time (four) The amount of correction (maximum amplitude) that can be corrected, and the deviation of the total value of the magnetic sensitivity for determining the width deviation of the width direction B of the traveling path ίο is set in accordance with the maximum amplitude set. Further, in the automatic width deviation control unit 80, the setting of the width deviation that can be eliminated is set to the maximum amplitude that can be corrected in one movement, but the semi-automatic width deviation control unit may be provided. 78 is also set to -half. At this time, the Q width shift control is executed at the next and next next walk, and the width shift is eliminated by 2 movements. Further, it is also possible to eliminate the width deviation by repeatedly moving three or more times. The shift 0 indicates the action caused by the configuration of the automatic width deviation control unit 80. When the moving shed 11 stops traveling, the magnets 31 are detected by the respective magnetic sensors 35 of ΗΡ and 〇ρ, and the total value of the detected magnetic sensitivities and the total value of the magnetic sensitivities stored when the traverse is stopped are detected. The difference between the deviations of 2010 and 201034919 exceeds the specified value, that is, if the width deviation of the mountain is larger than the specified value, then according to the width deviation direction, if the operation is to be performed, the correction to the op side is broken, then the drive is driven. Relay RY-W-0P, if the brakes are broken and the HP side is corrected, the relay RY-W-HP is driven. When the width deviation occurs, the width offset control execution signal is outputted to the main control panel 38, and the width offset is counted. If there is a certain frequency, the number is more than It is judged that the moving shed 11 frequently shifts in width and outputs the phonograph „%, 唬 唬, and the attention light 44 is lit. In addition, if the sensitivity of any of the 磁 Ο HP and the 0P magnetic sensor π is known, That is, if the magnet 31 is not detected, it is judged that φ ώ is in, and the automatic width shift control is defective, and the method automatically cancels the width offset, so that the output is urged to press the * HP moving button switch. 54 &lt; 〇ρ The alarm signal of the shift button π's alarm light 43 lights up. Thus, the relay RY-W-θρ or the relay RY_w_Hp operates, and if the next walking command, the relay RY_F (forward command) When the relay (reverse command) is operated, the speed command value is output from the third speed command unit 97 and the fourth degree command unit 98. When the field relay RY_W_0P is operated, the relay RY-F (forward command) is performed. (4) Output by the 3 speed command unit 97 The speed of the value refers to the vector control inverter output to HP, and the positive speed command value output from the first speed v rush 98 will be output to the vector control I inverter 42b of 0P. Then, according to these speed commands The value, the Hp side and the shift side drive motor 16 are driven to advance the moving shed n, so that the shed 11 is controlled to move to the 0P side @方1*^° by the moving shed controller 41. When the relay RY_B (reverse command) 39 201034919 is operated, the negative speed command value 'outputted from the third speed command unit 97 is output to the HP vector control inverter 42a, and the fourth speed command unit 98 is output. The output speed command value of the negative value is output to the vector control inverter 42b of 〇p. Then, according to these speed command values, the drive motor 16 on the Hp side and the 〇P side is driven to retract the moving shed 11, therefore, The moving shed 11 is controlled to move to a predetermined amplitude in the direction of the 0P side by the moving shed controller 41. ❹ When the relay RY-W-HP operates, the relay RY-F (forward command) operates. In the case of the fourth speed command unit 98 The output speed command value of the positive value is output to the HP vector control inverter 42a, and the positive speed command value output from the third speed command unit 97 is output to the vector control inverter 42b of the 〇p. Then, according to these speed command values, the drive motor 16 on the Hp side and the 〇P side is driven to advance the moving shed 11, and therefore, the moving shed 11 is controlled to be movable to the Hp side by the shed controller 41. The direction moves by a predetermined amplitude. When the relay RY__B (reverse command) ◎ is operated, the negative speed command value 'output from the fourth speed command unit 98 is output to the HP vector control inverter 42a, and is output from the third The speed command value of the negative value outputted by the speed command unit 97 is output to the vector control processor 42b of the 0P. Then, according to these speed command values, the drive motor 16 on the HP side and the 0P side is driven to move. The shed is retracted, so that the moving shed 11' is controlled to move the predetermined amplitude in the direction of the fairy side by the moving shed controller 4i. If the relay RY-S (stop command) is input, the vector control inverter 42a of the liver controls the speed of the inverter-like output speed index 40 201034919, and sets it to “0, so the mobile shed 1 1 stops. "Output from the speed control unit 75" and the speed control unit 75' is switched by the relay RY_F〇R (forced selection) relay ry-AUT0 (automatic selection) and relay m (width shift control) And outputting the speed command value of each of the vector control inverters to the Hp output from each of the forced driving unit 77, the semi-automatic width difference control #78, the automatic posture control unit 79, or the automatic width deviation control 480, and the vector to the 0P The speed command value of the inverter 42a is controlled. That is, the output signal of the forced driving unit 77 and the semi-automatic width deviation control unit 78 is output when the relay RY_F〇R operates; the output signal of the automatic posture control 邛79 'when the relay RY-AUTO is activated and the relay (four)^ has During operation, it is output; the output U of the automatic width deviation control unit 8 is output when the relay κγ_Αϋτ〇 operates and the relay ΜΙ also operates. ❹ [Effect of the whole] Hereinafter, the action in the above embodiment will be described. In Fig. 1 and Fig. 3, the working passage s can be formed in front of the target moving shed 11 by causing the squatting platform or the plurality of moving sheds 1 to be walked on the traveling path 1 From this work, you can use the path S to carry in and out the goods to the target area: the space 13e. The loading and unloading of the cargo is carried in the working passage s and is carried out via a pal let. 41 201034919 By the second, the ground 3 of the magnets 3b on both sides of the passage S is buried in the ground in the work path S, and there is no travel of a vehicle such as a two-way lift or the like. It is possible to perform two (four) walks in the direction of the work, and it is possible to carry out the work by the work of the s &amp; 隹 & &quot; 〇 shed 11: If you want to =1:, the stop position on the stop position (e) of Figure 3, walk on the path 10, stop at the stop position t #先' operation master control m, for The control panel 2〇 of the mobile shed u stopped at the stop position= is given a walking command signal (traveling direction signal). The moving fish: 疋 activates a pair of drive motors 16 of HP and 〇P to rotate the drive wheels 14A, respectively. Thereby, the traveling force can be imparted to the moving shed u, and the moving shed 11 is moved over the traveling path in &gt; 1 while the remaining traveling wheel 14 is rotated (idle). Moreover, by the detection control performed by the proximity sensor 37a or the like provided between the moving sheds, the moving shed does not collide with the mobile shed U that has stopped at the stop position (g), and can be stopped at the desired position. Stop position (|). When the moving shed 11 travels as described above, the movement of the cargo in the storage, the state of the ground la, the sliding of the driving wheel 14A with respect to the ground la, and the wear of the outer wheel body (10) in the driving wheel 14A, etc. When the squatting of 11 is not maintained, it is maintained in a right angle with respect to the traveling path 1 ′. For example, as shown by the imaginary line of FIG. 1 , an inclined posture in which one side is advanced and the other side is delayed is generated. 42 201034919 In such a case, by placing the pulse sterilizer 21 on both sides of the window sound &amp; η visibility direction β, to control the disk 20 to control the home by the former The rotation zone generated by the drive motor 由 is controlled by &amp;曰+. That is, as the moving shed is walking, the wheel body 27 is detected as a frictional ratchet. The salt mountain ^" moves to detect the rotation of the wheel body 27, and the rotating body 28 is rotated by the wheel body shaft. = By the rotation of the rotating body 28, the photoelectric switch _, Ο

成於此旋轉體28上的狹縫部如、哪群 的移動數(通過數),並輸入柝 控制盤20。在此控制盤20中, 藉由S十數從兩脈衝編碼2 “认η 卿^ d輸出的脈衝,求出由各個驅 動車輪14A所產生的行走距離计你a &gt; ^ UD y 丁定距離並作比較,在此情況,成為The number of movements (number of passes) of the slit portion formed on the rotating body 28 is input to the 柝 control panel 20. In this control panel 20, the pulse output from each of the driving wheels 14A is obtained from the pulses output from the two pulse codes 2 by the S-number, and the distance traveled by each of the driving wheels 14A is a &gt; ^ UD y And compare it, in this case, become

由HP側的驅動車輪UA 询所產生的行走距離大(超前),且 由〇P側的驅動車輪14A所吝;+ i4A所產生的打走距離小(延遲)的狀 態0 ” ' b比較從控制盤2() ’對於與行走距離超前侧 的驅動車輪14A連動之驅動馬達16,亦即對於與Hp側的 驅動車輪UA連動之驅動馬冑16的向量控制變頻器 似’輸出使該驅動旋轉量降低的控制信號。藉此,HP侧 的驅動馬達16的驅動旋轉量會降低,於是,此Hp側,相 對於另j則,變成以低速前進,於是可將上述傾斜姿勢逐 漸地修正而消除傾斜狀態。 進而’在控制盤20中’由脈衝編碼器21輸出的脈衝, 若從移動開始時,超過設定值而產生脈㈣異,則對應行 走距離與從開始移動至產生超過設定值的脈衝差異為止 43 201034919 的時間,來求取預測行走距離,而對於驅動馬達16的向 量控制變頻器42a或42b(連動於預測行走距離超前側的 驅動車輪14A),輸出使其驅動旋轉量降低的控制信號。 藉此’超前側的驅動馬達16的驅動旋轉量會下降,於是 超前側,相對於延遲侧,變成會以低速前進,可對應預測 行走距離,率先將傾斜姿勢逐漸修正而消除偏差。相對於 在僅利用行走距離偏差的控制中,其偏差會過大一事,藉 由此預測控制,能消除偏差過大的情況而可安定地進行行 走控制。 如此’利用經由控制盤20來進行控制,所以移動棚 Π的行走,能以相對於行走路徑1〇呈直角狀態姿勢來進 行。 又’當移動棚11停止行走時,藉由抓與〇p的各磁 感應器35,檢測出磁鐵3卜一旦檢測出來的磁感度的合 計值與纟前次行走停止時所記憶的磁感度的合計值之間 ❹產生偏差’則會被認為發生寬度偏移,而在下次行走時, . &amp; 了消除寬度偏移,對於驅動馬達16的向量控制變頻器 . 似或42b(連動於驅動車輪14A),輸出對該驅動旋轉量 . W加差Λ的控制信號。藉此,僅在作業用通路8中移動的 期間,便可消除寬度偏移。又,此時,在執行此寬度偏移 控制之移動棚U之後,接著行走的移動棚u,是延遲規 定時間後才開始移動。又,若肝與⑽的磁感應器35的 任一個的感度變無’亦即沒有檢出磁鐵3卜則判斷出自 動寬度偏移控制產生不良而發生無法自動地消除寬度偏 44 201034919 移的It況於是便會輪出促使按壓Hp移動按钮開關54 或op移動按纽開關55的警報信號,警報燈43亮起。又 若執行寬度偏移控制的頻度超過規定值,則注意燈亮起。 又#業者,藉由操作面&amp; 4〇,能強制地使移動棚 11移動。The travel distance generated by the HP side drive wheel UA is large (advanced), and is driven by the drive wheel 14A on the 〇P side; + i4A produces a small (delayed) state of the strike distance 0" 'b comparison The control panel 2()' is similar to the drive motor 16 that is linked to the drive wheel 14A on the leading side of the travel distance, that is, the vector control inverter that drives the stirrup 16 in conjunction with the drive wheel UA on the Hp side. The amount of control signal is reduced, whereby the amount of driving rotation of the drive motor 16 on the HP side is lowered, so that the Hp side advances at a low speed with respect to the other j, so that the tilt posture can be gradually corrected and eliminated. In the tilt state, the pulse outputted by the pulse encoder 21 in the control panel 20, if the pulse exceeds the set value and the pulse (four) is different from the start of the movement, the corresponding travel distance and the pulse from the start to the generation exceeding the set value are generated. The difference is 43 201034919 to obtain the predicted walking distance, and the vector control inverter 42a or 42b for driving the motor 16 (linked to the driving wheel 14A on the leading side of the predicted walking distance) The control signal for lowering the amount of rotation of the drive is output. Thereby, the amount of driving rotation of the drive motor 16 on the leading side is lowered, so that the leading side is advanced at a low speed with respect to the retard side, and the traveling distance can be predicted in advance. The tilt posture is gradually corrected to eliminate the deviation. With respect to the control using only the travel distance deviation, the deviation is excessive, and by this predictive control, the deviation can be eliminated and the travel control can be performed stably. Since the control panel 20 is controlled, the movement of the movable shed can be performed in a right angle state with respect to the traveling path 1 。. Further, when the moving shed 11 stops traveling, each of the magnetic sensors 35 is grasped by the 〇p. It is detected that a deviation between the total value of the magnetic sensitivity detected by the magnet 3 and the total value of the magnetic sensitivity stored in the previous stop of travel is considered to be a width shift, and the next time the walk is made , . &amp; cancels the width offset, for the vector control inverter of the drive motor 16. Like or 42b (linked to the drive wheel 14A), the output pair The rotation amount of the driving amount is increased by W. In this case, the width shift can be eliminated only during the movement of the working path 8. Further, at this time, after the moving shed U is executed, the width shift control is performed. Then, the moving shed u is moved after the predetermined time has elapsed. Further, if the sensitivity of any of the liver and the magnetic sensor 35 of the (10) becomes no, that is, the automatic width shift is judged without detecting the magnet 3 If the control is defective, the width deviation 44 cannot be automatically eliminated. The situation of the shift is changed. The alarm condition of the Hp moving button switch 54 or the op moving button switch 55 is turned on, and the warning light 43 is illuminated. When the frequency of the offset control exceeds the specified value, the attention light is on. Moreover, the operator can forcibly move the mobile shed 11 by operating the face &amp;

藉由上述自動—強制選擇開關51而選擇「強制」,如 第10圖(a)所示,藉由使HP轉動開關52倒向前進側(FW • 侧),並藉由使0P轉動開關53倒向後退側(RE側),Hp © 側的驅動馬S 1 6會被直接驅動,於是HP ί㈣驅動車輪 14Α被往刚進側驅動,而〇ρ側的驅動馬達丨6會被直接驅 - 動,於是0P側的驅動車輪14A被往後退側驅動,藉此, • 移動棚11會往HP側傾斜。相反地,如第10圖(b)所示, 藉由使HP轉動開關52倒向後退側(re侧),並使〇p轉動 開關53倒向前進侧(Fw側),則移動棚丨丨會往〇p側傾斜。 藉由上述自動-強制選擇開關51而選擇「強制」,如 第10圖(c)所示’藉由按壓(操作)Hp移動按鈕開關54, 移動棚11,往HP側的方向’移動預先設定的幅度;如第 • 10圖(d)所示’藉由按壓(操作)0P移動按鈕開關55,移 • 動棚11 ’往0p側的方向,移動預先設定的幅度。 如以上所述,若根據本實施形態,當移動棚1 1停止 行走時’藉由磁感應器35,檢測出HP與0P的磁鐵31, 旦檢測出來的磁感度的合計值超過規定值而被檢測到 度偏移’則求取用以消除寬度偏移之移動棚的行走軌跡, 45 201034919 而在下次行走時’控制各驅動馬達16的旋轉速度,使移 動棚可沿著行走軌跡來移動;藉由移動棚11的寬度偏移 被修正’如習知般地沿著行走路徑1 〇而鋪設的薄片軌道 狀的被檢出體’變成不需要’而可消除伴隨著此鋪設而導 致的不良情況。 又’若根據本實施形態,當一個移動棚11執行用以 . 消除寬度偏移的行走時,跟著(追隨)的其他的移動棚 11 ’藉由使其延遲一定時間後才使其開始行走,可避免後 續的移動棚11接觸(碰撞)先前的移動棚u;該先前的移 動棚11,為了進行用以消除寬度偏移的行走,會暫時轉 向用以消除寬度偏移的方向,而呈現傾斜狀。 又,若根據本實施形態,為了消除寬度偏移而驅動 HP與0P的驅動馬達16時,藉由兩驅動馬達16以規定旋 轉速度以上作啟動,能消除以下的不良情況,亦即:其中 -方的驅動車輪14A停止而作為中心,若另—方的驅動車 ^輪14A移動’則會發生其中一方的驅動車輪14a被拉扯而 隨意地移動的現象,而無法照著行走軌跡行走。 又,右根據本實施形態,當移動棚11的寬度偏移控 制的頻率(或次數)增加時,注意燈亮起,作業者可認識到 f動棚11頻繁地發生寬度偏移,能促使其再研究取得設 定於第1計數器65與第2計數器66中的每一脈的移動量。 又,右根據本實施形態,根據磁感測器35來檢測已 =置在移動棚U的各停止位置上的磁鐵,藉此來執行移 棚U的寬度偏移控制,如此,只要在各移動棚的停止 46 201034919 位置配置磁鐵即可’相較於鋪設薄片軌條狀的被檢出體的 施工,能使施工簡單化。 又,若根據本實施形態,若肝移動按鈕開關54被操 作,藉由移動棚U的移動棚控制器41,以可以沿著行走 路徑(被設定成可往Hp方向減少寬度偏移)的方式,來控 * 制驅動馬達16的旋轉速度,於是,移動棚u,往寬度方 . 向B的HP方向’移動預先設定的幅度;又若⑽移動按 〇 ⑭開關55被操作’藉由移動棚11的移動棚控制器4卜 以可以沿著行走路徑(被設定成可往〇p丨向減少寬度偏 移)的方式,來控制驅動馬達16的旋轉速度,於是,移動 棚1卜往op方向,移動預先設定的幅度;藉此,作業者, 對於在HP轉動開關52與〇p轉動開關53的操作中,難以 消除的寬度偏移,僅操作HP移動按鈕開關54或〇p移動 按鈕開關55,便能簡單地除去,所以可改善操作性。 又。,當對應HP移動按鈕開關54或〇p移動按鈕開關"Forcing" is selected by the above-described automatic-forcible selection switch 51, as shown in Fig. 10(a), by turning the HP rotary switch 52 to the forward side (FW • side), and by turning the 0P rotary switch 53 Backward to the retreating side (RE side), the drive horse S 1 6 on the Hp © side will be driven directly, so the HP ί (4) drive wheel 14Α will be driven to the front side, and the drive motor 丨6 on the 〇ρ side will be driven directly - Then, the drive wheel 14A on the 0P side is driven to the retreating side, whereby the moving shed 11 is tilted toward the HP side. Conversely, as shown in Fig. 10(b), by moving the HP rotary switch 52 to the retreating side (re side) and the 〇p rotation switch 53 to the forward side (Fw side), the shed is moved. It will tilt to the side of the 〇p. By the above-described automatic-forced selection switch 51, "Forced" is selected, as shown in Fig. 10(c), by pressing (operating) Hp to move the push button switch 54, moving the shed 11, moving to the HP side direction 'moving preset The amplitude; as shown in Fig. 10(d), 'by pressing (operating) the 0P moving button switch 55, moving the shed 11' toward the 0p side, moving the preset amplitude. As described above, according to the present embodiment, when the moving shed 11 stops traveling, the magnetic sensor 35 detects the HP 31 and the OP 31, and the detected total value of the magnetic sensitivity exceeds a predetermined value. To the degree offset, the traveling trajectory of the moving shed for eliminating the width deviation is obtained, 45 201034919 and the rotational speed of each driving motor 16 is controlled during the next walking, so that the moving shed can move along the walking trajectory; The width deviation of the moving shed 11 is corrected as 'the thin-track-shaped detected object' laid along the traveling path 1 变成 becomes unnecessary, and the problem associated with the laying can be eliminated. . Further, according to the present embodiment, when a moving shed 11 performs walking for eliminating the width deviation, the other moving shed 11' following (following) is delayed by a certain period of time before starting to walk. It is possible to prevent the subsequent moving shed 11 from contacting (colliding) the previous moving shed u; the previous moving shed 11 is temporarily turned to eliminate the width shifting direction, and is temporarily turned to tilt shape. Further, according to the present embodiment, when the HP and OP drive motors 16 are driven to eliminate the width deviation, the two drive motors 16 are activated at a predetermined rotational speed or higher, thereby eliminating the following problems, namely: When the side drive wheel 14A is stopped and the other drive wheel 14A is moved, one of the drive wheels 14a is pulled and moved freely, and it is impossible to travel along the traveling path. Further, according to the present embodiment, when the frequency (or the number of times) of the width shift control of the moving shed 11 is increased, the attention light is turned on, and the operator can recognize that the width of the movable shed 11 frequently shifts, which can prompt the urging. The amount of movement of each pulse set in the first counter 65 and the second counter 66 is obtained. Further, according to the present embodiment, the magnetic sensor 35 detects the magnets that have been placed at the respective stop positions of the moving shed U, thereby performing the width shift control of the transfer shed U. Stopping of the shed 46 201034919 Positioning the magnets can be simplified compared to the construction of the detected objects in the form of thin strips. Further, according to the present embodiment, when the liver moving button switch 54 is operated, by moving the shed controller 41 of the shed U, it is possible to follow the traveling path (which is set to reduce the width shift in the Hp direction). To control the rotational speed of the drive motor 16, then move the shed u to the width. Move the preset amplitude to the HP direction of B; if (10) move the 〇14 switch 55 is operated 'by moving the shed The moving shed controller 4 of 11 can control the rotational speed of the driving motor 16 along the traveling path (which is set to be 可p丨 to reduce the width offset), so that the moving shed 1 is moved to the op direction. The predetermined amplitude is moved; thereby, the operator, for the operation of the HP rotary switch 52 and the 〇p rotary switch 53, it is difficult to eliminate the width shift, and only the HP moving button switch 54 or the 〇p moving button switch 55 is operated. It can be easily removed, so the operability can be improved. also. When the corresponding HP move button switch 54 or 〇p move button switch

Q 的操作來行走時’藉由移動棚11往面向作業用通路S . 侧行走,能確實地消除寬度偏移。 • 又,若根據本實施形態,藉由操作HP移動按紐開關 54或0P移動按鈕開關55而可消除的寬度偏移的幅度’ 藉由&quot;又疋成忐在作業用通路S移動的期間作修正的規定 幅度(範圍)以内’在寬度偏移修正的期間,能避免因檢測 初行走方向的移動棚Π而停止或因姿勢傾斜而停止的情 況^生。如此,若移動棚11的姿勢傾斜,作業用通路S 的前後方向A的幅度變狹窄,貨物的搬入、搬出變困難。 47 201034919 又’务根據本實施形能 移動按紐開關54或0?移设成當基於一方的肝 棚u㈣㈣=^_55_而使移動 方的0P移動按鈕開關55或HP移動按 :’開關54的操作便會無效’則半自動寬度偏移控制,在 途中便會:斷’能避免因姿勢傾斜而停止的情況發生。When the Q operation is performed, the side shift is performed by moving the shed 11 toward the work path S. The width shift can be surely eliminated. Further, according to the present embodiment, the amplitude of the width deviation which can be eliminated by operating the HP moving button switch 54 or the 0P moving button switch 55 is further reduced by the movement of the working path S by &quot; Within the predetermined range (range) of the correction, during the period of the width offset correction, it is possible to avoid the stoppage caused by the detection of the moving shed in the initial traveling direction or the stop of the posture. When the posture of the moving shed 11 is inclined, the width of the front and rear direction A of the work path S is narrowed, and it is difficult to carry in and carry out the goods. 47 201034919 Further, according to this embodiment, the movable button switch 54 or 0 is moved to make the moving OPP move button switch 55 or HP move based on one of the liver sheds u(4)(4)=^_55_: 'Switch 54 The operation will be invalid 'then semi-automatic width offset control, on the way will: break 'can avoid the situation caused by the tilt of the posture.

右根據本發明,當行走停止時,若未檢測出磁鐵 31,則判斷出自動寬度偏移控制產生不良而發生無法自動 地濟除寬度偏移的情況’警報燈43亮起。作業者,根據 此警報,能確認移動棚的寬度偏移方向,促使操作肝移 動按紐開關54或0P移動按鈕開關55。 又,若根據本實施形態,藉由移動棚控制器4丨,在 移動棚11行走時,執行姿勢控制,藉此,能避免因移動 棚Π傾斜而停止的情況發生。According to the present invention, when the magnet 31 is not detected when the traveling is stopped, it is judged that the automatic width shift control is defective and the width shift cannot be automatically removed. The warning lamp 43 lights up. The operator can confirm the width shift direction of the moving shed according to the alarm, and prompt the operation of the liver movement button 54 or the 0P movement button switch 55. Further, according to the present embodiment, when the moving shed 11 is moved by the moving shed controller 4, the posture control is executed, whereby it is possible to avoid the occurrence of the stop due to the tilt of the moving shed.

另外,在本實施形態中’作為移動棚11或固定棚3, 疋表示出由下部框體12、4及棚部13、5所組成的形式, 但也可以省略棚部13、5而成為台車形式的移動棚u或 架台形式的固定棚3等。 又’在本實施形態中,作為移動棚11或固定棚3, 表示出其最上段的區隔收納空間13e、5a是往上方開放的 形式,但是,也可以是設有屋頂的移動棚11或固定棚3。 又,在本實施形態中,磁鐵31,表示出埋設的形式, 但是’也可以將車輛可越過的薄磁鐵31配置在地面la 上的形式等。 又,在本實施形態中,是藉由驅動馬達16來驅動一 48 201034919 對(2個)驅動車輪14A,但是,也可以是藉由驅動馬達Μ 來驅動一個驅動車輪14A的形式,又,也可以將減速機直 接連結在1個驅動車輪14A的驅動轴的一端部,來作成將 驅動馬達16直接連結在此減速機上的直接驅動形式。 又,在本實施形態中,作為行走支持裝置,表示出行 .走車輪14但疋,也可以是滚子鏈(履帶)等的形式。此 情況’滾子鍵等,在移動棚11的寬度方向B中的兩側部 . 份分別在行走路徑方向A的整個長度,設置一個;或是 〇將行走路;U方向A的整個長度加以分割,而設置複數個。 又,在本實施形態中,作為行走量檢出手段,表示出: 採用脈衝編竭器,而且,在旋轉體28,形成外側狹縫部 • 28^與内側狹縫部28b ’並設置面對外侧狹縫部28a之外 侧光電開關29a、及面對内側狹縫部之内側光電開關 29b’這樣的2組檢出形式;但是,也可以是【組檢出形 式或是2組以上的複數組檢出形式等。 又,在本實施形態中,作為行走量檢出手段,表示出: 〇 具有檢測用輪體2 7等的脈衝編碼器21 ;但是,也可以是 . 用以測量驅動車輪14A的驅動旋轉量的形式等。又,脈衝 編碼器2卜是用以檢出檢測用輪體27的旋轉;但是,也 可以作成.連結驅動馬達(旋轉驅動手段的一例)16的旋 轉轴,來檢測移動棚11的行走量。 又’在本實施形態中,作為寬度偏移檢出手段,是使 用磁感測器35,但是,也可以作成:在移動棚丨丨的前後 的側面,朝向對向的移動棚11,設置複數個回歸反射型 49 201034919 光感測器,並在此對向的移動棚11上,面對光感測器來 設置反射體,以此種構成,根據移動棚11彼此之間發生 偏移,會使光感測器變成關閉(〇f f)’而可檢測出寬度偏 移。 又,在本實施形態中,當同時使複數台移動棚丨丨行 走時,是隔開規定時間,依序地啟動(start),但是,也 可使複數台移動棚11同時啟動(start).。Further, in the present embodiment, 'as the moving shed 11 or the fixed shed 3, 疋 denotes a form composed of the lower frames 12 and 4 and the sheds 13 and 5, but the sheds 13 and 5 may be omitted to become a trolley. The form of the mobile shed u or the fixed shed 3 in the form of a stand. In the present embodiment, the movable shed 11 or the fixed shed 3 is a form in which the uppermost storage spaces 13e and 5a are opened upward. However, the movable shed 11 may be provided with a roof. Fixed shed 3. Further, in the present embodiment, the magnet 31 is shown in a form of embedding, but the thin magnet 31 through which the vehicle can pass may be placed on the floor la or the like. Further, in the present embodiment, the drive motor 16 drives a pair of (2010) drive wheels 14A, but it is also possible to drive a drive wheel 14A by driving the motor Μ, and also The speed reducer can be directly coupled to one end portion of the drive shaft of one of the drive wheels 14A to form a direct drive type in which the drive motor 16 is directly coupled to the reducer. Further, in the present embodiment, the travel support device indicates travel. The wheel 14 may be a roller chain (track) or the like. In this case, the roller keys and the like are disposed on both sides in the width direction B of the moving shed 11 . One part is set in the entire length of the traveling path direction A; or the walking path is taken; the entire length of the U direction A is Split, and set a plurality. Further, in the present embodiment, as the traveling amount detecting means, a pulse squeezing device is used, and the outer slit portion 28 28 and the inner slit portion 28b ' are formed in the rotating body 28, and the outer side narrow portion is provided. Two sets of detection forms such as the outer side photoelectric switch 29a of the slit portion 28a and the inner photoelectric switch 29b' facing the inner slit portion; however, the group detection type or two or more sets of complex array detection forms may be used. . Further, in the present embodiment, the traveling amount detecting means indicates that the pulse encoder 21 having the detecting wheel body 27 or the like is provided; however, it may be used to measure the driving rotation amount of the driving wheel 14A. Form and so on. Further, the pulse encoder 2 is for detecting the rotation of the detecting wheel body 27; however, the rotation axis of the driving motor (an example of the rotational driving means) 16 may be connected to detect the amount of travel of the moving shed 11. Further, in the present embodiment, the magnetic sensor 35 is used as the width shift detecting means. However, it is also possible to provide a plurality of moving sheds 11 facing the opposite side of the moving shed. a retroreflective type 49 201034919 light sensor, and on the opposite moving shed 11, facing the light sensor to set the reflector, in such a configuration, according to the shifting of the moving shed 11 The width sensor is detected by turning the photo sensor off (〇ff)'. Further, in the present embodiment, when a plurality of moving sheds are simultaneously moved, the predetermined time is sequentially started (start), but a plurality of moving sheds 11 can be simultaneously started. .

在本實施形態中,磁鐵31是被配置在移動棚u的寬 度(幅度)内’但是,也可以是磁鐵31位在移動棚U的寬 度外的形式等。 門13:在本實施形態中’對於移動棚11的區隔收納&lt; ==棚::區::納空一由貨… 箱)内來進行收納的形式等疋切以疋先載置在箱(集 201034919 【圖式簡單說明】 第1圖是本發明的實施形態中的移動棚設備的平面圖。 第2圖是表示該移動棚設備的磁鐵的配置的平面圖。 第3圖是該移動棚設備的側面圖。 第4圖是該移動棚設備中的移動棚的重要部分的部分 剖面平面圖。 第5圖是該移動.棚設備中的移動棚的旋轉驅動手段及^ 〇 行走量檢出手段部分的縱剖側面圖。 第6圖是該移動棚設備中的移動棚的寬度偏移檢4 + 段部分的縱剖側面圖。 . 第7圖是該移動棚設備中的移動棚的行走量檢出手段 與寬度偏移檢出手段部分的縱剖正面圖。 第8圖是該移動棚設備中的移動棚的行走車輪的縱為】 側面圖。 第9圖是該移動棚設備中的移動棚的控制面板的開關 〇 配置圖。 . 第10圖是用以說明藉由該移動棚設備中的移動棚的控 . 制面板的開關所產生的作用的說明圖。 第11圖是該移動棚設備中的移動棚的控制方塊圖。 第12圖是該移動棚設備中的移動棚控制器的強制行走 控制部的方塊圖。 第13圖是該移動棚設備中的移動棚控制器的強制驅動 部的方塊圖。 51 201034919 第14圖是該移動棚設備中的移動棚控制器的半自動寬 度偏差控制部的方塊圖。 第15圖是該移動棚設備中的移動棚控制器的自動姿勢 控制部的方塊圖。 第16圖是該移動棚設備中的移動棚控制器的自動寬声 . 偏差控制部的方塊圖。 . 第17圖是用以形成要被設定在該移動棚設備中的移動 棚控制器的半自動寬度偏差控制部與自動寬度偏差控制部 〇 的速度指令部中的速度指令值之說明圖。In the present embodiment, the magnet 31 is disposed within the width (amplitude) of the moving shed u. However, the magnet 31 may be placed outside the width of the moving shed U. Door 13: In the present embodiment, the type of storage for the storage shed 11 is included in the storage compartment <== shed::zone::navailable from the cargo...box) Box (collection 201034919) BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing a moving shed apparatus according to an embodiment of the present invention. Fig. 2 is a plan view showing the arrangement of magnets of the moving shed apparatus. Fig. 3 is a plan view of the moving shed. Figure 4 is a partial cross-sectional plan view of an important part of the moving shed in the mobile shed equipment. Fig. 5 is a view showing the rotational driving means of the moving shed in the moving shed equipment and the means for detecting the walking amount Partial longitudinal sectional side view. Fig. 6 is a longitudinal sectional side view of the width offset detection 4 + section of the moving shed in the moving shed equipment. Fig. 7 is the moving amount of the moving shed in the moving shed equipment A longitudinal sectional front view of the detection means and the width deviation detecting means portion. Fig. 8 is a longitudinal side view of the traveling wheel of the moving shed in the moving shed apparatus. Fig. 9 is a movement in the moving shed apparatus The switch 〇 configuration diagram of the shed's control panel. Figure 10 is for use An explanatory diagram illustrating the action produced by the switch of the control panel of the mobile shed in the mobile shed equipment. Fig. 11 is a control block diagram of the mobile shed in the mobile shed equipment. Fig. 12 is the mobile shed A block diagram of the forced travel control portion of the mobile shed controller in the device. Fig. 13 is a block diagram of the forced drive portion of the mobile shed controller in the mobile shed equipment. 51 201034919 Figure 14 is a view of the mobile shed equipment Block diagram of the semi-automatic width deviation control unit of the mobile shed controller. Fig. 15 is a block diagram of the automatic posture control unit of the mobile shed controller in the mobile shed equipment. Fig. 16 is a mobile shed control in the mobile shed equipment Automatic wide sound of the device. Block diagram of the deviation control unit. Fig. 17 is a diagram showing the speed of the semi-automatic width deviation control unit and the automatic width deviation control unit for forming the mobile shed controller to be set in the mobile shed equipment. An explanatory diagram of the speed command value in the command unit.

5252

Ο 201034919 【主要元件符號說明】 1 ·地板 3 :固定棚 4 :下部框體 5 =棚部 5a :區隔收納空間 1〇 :行走路徑 12 :下部框體 13 :棚部 13e :區隔收納空間 Η :行走車輪(行走支持裝置) 15 :車輪軸 15Α :驅動車輪軸 16 .驅動馬達(旋轉驅動手段) 20 :控制盤 21:脈衝編碼器(行走量檢出手段) 31 :磁鐵(被檢出體) 35 :磁感測器(t度偏移檢出手段) 37a、37b :近接感測器 38 :主控制盤 40 :操作面板 41 :移動棚控制器 42a、42b :向量控制變頻器 43 :警報燈 44 :注意燈 51 :自動-強制選擇開關 52 : HP轉動開關 53 : 0P轉動開關 54 : HP移動按鈕開關 55 : OP移動按鈕開關 61 :強制行走控制部 62a : HP感度檢出部 62b : OP感度檢出部 63 :自動行走判斷部 67 :脈衝誤差判斷部 75 :速度控制部 Ή:強制驅動部 78:半自動寬度偏差控制部 79 :自動姿勢控制部 80 :自動寬度偏移控制部 81 : HP速度設定器 82 : 0P速度設定器 83 :第1速度指令部 84 :第2速度指令部 96 :寬度偏移檢出部 97 :第3速度指令部 98:第4速度指令部 99 :頻率檢出部 A:行走路徑方向 B :寬度方向(左右方向) S :作業用通路 53Ο 201034919 [Description of main components] 1 · Floor 3 : Fixed shed 4 : Lower frame 5 = Shed 5a : Compartment storage space 1 : Walking path 12 : Lower frame 13 : Shed 13e : Separate storage space Η : Traveling wheel (walking support device) 15 : Wheel axle 15 Α : Drive wheel axle 16 . Drive motor (rotary drive means) 20 : Control panel 21 : Pulse encoder (traveling amount detection means) 31 : Magnet (detected 35) Magnetic sensor (t-degree shift detection means) 37a, 37b: Proximity sensor 38: Main control panel 40: Operation panel 41: Mobile shed controller 42a, 42b: Vector control inverter 43: Alarm light 44: Attention light 51: Automatic-forced selection switch 52: HP rotary switch 53: 0P rotary switch 54: HP moving button switch 55: OP moving button switch 61: Forced travel control unit 62a: HP sensitivity detecting unit 62b: OP sensitivity detection unit 63: automatic travel determination unit 67: pulse error determination unit 75: speed control unit Ή: forced drive unit 78: semi-automatic width deviation control unit 79: automatic posture control unit 80: automatic width deviation control unit 81: HP Speed Setter 82: 0P Speed Setter 83 The first speed command unit 84: the second speed command unit 96: the width shift detecting unit 97: the third speed command unit 98: the fourth speed command unit 99: the frequency detecting unit A: the traveling path direction B: the width direction (left and right direction) S : working path 53

Claims (1)

201034919 七、申請專利範圍: 1. 一種移動棚設備’配設有複數個可經由車輪而在行走路 住上作往復行走的移動棚’其位在前述行走路徑的寬度方 向的兩側部分之車輪,分別設有驅動馬達而構成驅動車 輪,並設有控制手段,用以驅動前述移動棚的的各驅動馬 達來控制移動棚的行走’此移動棚設備的設徵在於: 在地面的前述各移動棚的停止位置,設置被檢出體; 在前述各移動棚上,設置寬度偏移檢出手段,藉由前 〇 述被檢出體的檢出,來檢出從移動棚的行走路徑算起的寬 度偏移(往垂直於前述行走路徑的左右方向); 前述控制手段,若行走停止,則先藉由前述寬度偏移 • 檢出手段檢測出前述寬度偏移,一旦檢測出比規定值更 大的寬度偏移時,則求取使前述寬度偏移變少之移動棚的 行走執跡,而在下次行走時,以可沿著前述行走軌跡行走 的方式,來控制各驅動馬達的旋轉速度。 〇 2. 如申吻專利範圍第1項所述的移動棚設備,其中前述控 又田使個移動棚,基於前述使寬度偏移變少的執 來行走時’使其他的移動棚,延遲一定時間,才開始行 走。 3. =申請專利範圍第1項或第2項所述的移動棚設備,其 、’v行走軌跡’是前述兩驅動馬達以規定旋轉速度以上 、動I繼續對旋轉速度附加差值來進行驅動,而在移 54 201034919 動規定距離時便可消除寬度偏移之執跡。 4.如申請專利範圍第1項或第2頊所、+、&amp; # n 本^項所述的移動棚設備,盆 中刖迷行走軌跡,是前述兩驅動馬達以規定旋轉速度以上 被啟動,並繼續對旋轉速度附加差值來進行驅動,而藉由 複數次的移動便可消除寬度偏移之執跡。 A 5.如申請專利範圍帛i項〜第4項中任一項所述的移動棚 〇 :史備’其中前述控制手段,先求取使寬度偏移的行走被執 =的頻率或次數,若頻率超過規定的頻率或是次數超過規 定的次數,則發出警報。 6·如申請專利範圍第i項〜第5項中任一項所述的移動棚 設備,其中: 作為前述被檢出體,是在前述各移動棚沿著行走路徑 移動而停止之前後的各停止位置,配置磁鐵; 作為則述寬度偏移檢出手段,是面對前述磁鐵,設置 磁感測器; 如述控制手段’若行走停止,則藉由前次的根據前述 磁感測器所檢測出來磁強度(磁感度)與此次的根據磁感測 器所檢測出來的磁強度之變化,來檢測出移動棚的寬度偏 移’然後執行使前述移動棚的寬度偏移變少之移動棚的行 走控制。 55 201034919 7·如申請專利範圍第1項〜第6項中 設備,其中: 壬項所逃的移動棚 一π心兮秒勒棚中,設置行走旦 檢測出前述兩側部分的各驅動車輪:=:段,用以分別 前述控制手段,基於藉由前卞欠,里, 測出來的驅動車輪的,_击θ “各仃走量檢出手段所檢 行走量的偏差的方々也狄 纟除則相驅動車輪的 的驅動旋轉量,/ Λ '正控㈣由各驅動馬達所產生201034919 VII. Patent application scope: 1. A mobile shed equipment 'equipped with a plurality of mobile sheds that can reciprocate on a walking road through wheels, 'the wheels on both sides of the width direction of the aforementioned walking path Each of the driving motor is provided with a driving motor to constitute a driving wheel, and a control means is provided for driving each driving motor of the moving shed to control the walking of the moving shed. The mobile shed equipment is designed to: the foregoing movements on the ground The stop position of the shed is provided with the detected object; the width shift detecting means is provided on each of the moving sheds, and the detection of the detected object is described before, and the travel path from the moving shed is detected. Width offset (toward the left-right direction perpendicular to the traveling path); the control means, if the walking stops, first detecting the width offset by the width offset detecting means, and detecting more than a predetermined value When the width is shifted, the walking trajectory of the moving shed which reduces the width deviation is obtained, and when walking for the next time, the walking can be performed along the walking trajectory Mode, controls the rotation speed of each drive motor. 〇2. The mobile shed equipment according to claim 1, wherein the control of the mobile shed is based on the above-mentioned operation of making the width shift less, and the other mobile sheds are delayed. Time begins to walk. 3. The mobile shed equipment according to claim 1 or 2, wherein the 'v walking trajectory' is that the two driving motors are driven at a predetermined rotational speed or higher, and the moving I continues to add a difference to the rotational speed. The deviation of the width offset can be eliminated when the distance is moved by 54 201034919. 4. If the mobile shed equipment described in item 1 or 2, +, &amp;# n of the patent application, the trajectory of the fascinating fascia in the basin is that the two driving motors are activated at a predetermined rotational speed or higher. And continue to drive the difference in the rotation speed to drive, and the deviation of the width offset can be eliminated by multiple movements. A. The mobile shed according to any one of the claims 帛i to 4: the history control method in which the above-mentioned control means first obtains the frequency or the number of times the walking of the width is shifted. If the frequency exceeds the specified frequency or the number of times exceeds the specified number of times, an alarm is issued. The mobile shed equipment according to any one of the items of the present invention, wherein: the object to be detected is each before and after the moving shed moves along the traveling path. a stop position, a magnet is disposed; as a width offset detecting means, a magnetic sensor is disposed facing the magnet; and if the control means 'when the travel is stopped, the previous magnetic sensor is used The magnetic intensity (magnetic sensitivity) is detected and the current magnetic intensity change detected by the magnetic sensor is used to detect the width shift of the moving shed' and then the movement of reducing the width of the moving shed is performed. The walking control of the shed. 55 201034919 7·If you apply for the equipment in the first to sixth items of the patent scope, among them: In the mobile shed where the escaping escapes, set the driving wheels to detect the driving wheels of the two sides: =: segment, used to separate the above-mentioned control means, based on the front wheel yoke, the inner, the measured drive wheel, _ θ θ "the deviation of the walking amount detected by each slap detection means is also removed Then the amount of driving rotation of the phase-driven wheel, / Λ 'positive control (four) is generated by each drive motor 藉此來進行移動棚姿勢修正控制。Thereby, the mobile shed posture correction control is performed. 5656
TW98110725A 2009-03-31 2009-03-31 Mobile shed equipment TWI441766B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98110725A TWI441766B (en) 2009-03-31 2009-03-31 Mobile shed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98110725A TWI441766B (en) 2009-03-31 2009-03-31 Mobile shed equipment

Publications (2)

Publication Number Publication Date
TW201034919A true TW201034919A (en) 2010-10-01
TWI441766B TWI441766B (en) 2014-06-21

Family

ID=44855721

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110725A TWI441766B (en) 2009-03-31 2009-03-31 Mobile shed equipment

Country Status (1)

Country Link
TW (1) TWI441766B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962927A (en) * 2020-06-30 2020-11-20 济南轨道交通集团有限公司 Intelligent control system and method for mobile work shed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962927A (en) * 2020-06-30 2020-11-20 济南轨道交通集团有限公司 Intelligent control system and method for mobile work shed

Also Published As

Publication number Publication date
TWI441766B (en) 2014-06-21

Similar Documents

Publication Publication Date Title
TW593085B (en) Mobile rack facility
KR101940469B1 (en) Object tracking and steer maneuvers for materials handling vehicles
CN103356130B (en) Robot cleaner and the method for controlling the robot cleaner
JP2023113851A5 (en)
EP2897017B1 (en) Steer control maneuvers for materials handling vehicles
US20110166753A1 (en) Walking assistance device with detection members
JP6717355B2 (en) Mobile
JP2018067183A (en) Mobile body tracking controller
KR101645764B1 (en) Moving shelf equipment
JP2017033450A (en) Moving robot
JP2012006721A (en) Safety device of passenger conveyor
KR20220144392A (en) Positioning support system for material handling vehicles
WO2004013022A1 (en) Shelving system
KR20130056655A (en) A counter moving method for collision avoidance of unmanned automatic vehicle
TW201034919A (en) Movable shelf equipment
JP6738377B2 (en) Curvature information calculation device and autonomous vehicle including the same
JP2008003801A5 (en)
JP2017068439A (en) Autonomous traveling system
JP5130883B2 (en) Moving shelf equipment
KR101484941B1 (en) Robot cleaner and control method thereof
JP2019200700A (en) Autonomous moving entity
JP2008175674A (en) Traveling vehicle, and measuring method of its wheel abrasion quantity
JP2005288657A (en) Robot
JP2009132489A (en) Mobile rack facility
JP2021049910A (en) Vehicle control system and vehicle control method