201033698 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種基板結構與應用其之液晶顯示 面板與液晶顯示裝置,且特別是有關於一種具間隙物設計 之基板結構與應用其之液晶顯示面板與液晶顯示裝置。 【先前技術】 目前,液晶顯示裝置已成為所有顯示器中的主流產 _ 品。舉凡面板的製程技術、光源模組的設計、以及各種所 需材料的研發與製造等,皆為各家顯示器製造廠商的發展 重點’以期製造出更低成本與高品質的顯示器產品。 液晶顯示裝置主要是由液晶顯示面板輿光源模組二 者搭配而成。一般來說,液晶顯示面板與光源模組通常是 先各別製作完成後才組裝在一起。於液晶顯示面板的製程 中,用來控制液晶顯示面板其二個基板間距的主要方式, 是將許多塑膠材質的間隙球分散設置在二個基板之間。由 ❹於間隙球並不是固定在基板上,因此若是使用者以手指按 壓在顯示面板上,間隙球會有位移的情形,而基板之間的 液晶也會跟著流動,導致液晶層厚度不均勻,進而使顯示 面板的亮度不均或是顏色改變。另外,間隙球之大小無法 完全一致,亦會影響顯示面板的透光性。 也由於如此,另一種用在控制基板間距的非球狀間隙 物設計亦被採行。此種間隙物通常被設計成柱狀,且是在 製程中直接製作於基板上。由於非球狀間隙物是固定於基 板上,且其一致性較佳,因而可有效解決上述間隙球的問 3 201033698 ▲ TV W / w丄▲ 1 題。然而,基板之間必須設置足夠的間隙物’才能將二個 基板以等間距維持住。如此,若是以滴下式注人法(Qne dropfill,ODF)去充填基板上的液晶,當-基板要組裝到 已經充填好液晶的基板上時,由於間隙物的關係,液晶表 面會形成凹凸狀,使得基板與基板之間會有氣泡殘留而不 易排除。如此一來,將影響液晶顯示面板之製程良率。 【發明内容】 本發明係有關於一種基板結構與應用其之液晶顯示 面板與液晶顯示裝置,係於基板上設計出具有高度差之間 隙元件,使基板與基板之間的間隙變化更有彈性,以改善 面板製程的良率。 本發明提出一種基板結構’其包括一基板、多個第一 間隙元件與多個第二間隙元件。基板具有—上表面與一下 表面,基板於其上表面具有多個第一平面與多個第二平 面,其中這些第一平面與下表面之距離係不等於第二平面 ❹與下表面之距離。所有的第一間隙元件與第二間隙元件皆 設置於基板之上表面,其中第一間隙元件各設置於一個第 一平面上,第二間隙元件各設置於一個第二平面上,使第 二間隙元件與第一間隙元件於基板上之設置基準面不相 同。 本發明另提出一種液晶顯示面板,其包括一第一基 板、一第二基板、多個第一間隙元件與多個第二間隙元 件。第二基板係平行第一基板設置,且二者之間夾置一液 晶層。第二基板具有一上表面與一下表面,其中上表面係 4 面向第一基板。第二基板於其上表面具有多個第一平面與 多個第二平面,其中第一平面與下表面之距離係不等於第 二平面與下表面之距離。第一間隙元件與第二間隙元件設 置於第二基板之上表面並位於第一基板與第二基板之 間。第一間隙元件係各設置於一個第一平面上,第二間隙 元件則各設置於一個第二平面上,使第二間隙元件與第一 間隙元件於第二基板上之設置基準面係不相同。 本發明更提出一種液晶顯示裝置,其包括一光源模組 ^ 與一液晶顯示面板。液晶顯示面板設置於光源模組之一 侧,並包括一第一基板、一第二基板、多個第一間隙元件 與多個第二間隙元件。第二基板係平行第一基板設置,且 二者之間夾置一液晶層。第二基板具有一上表面與一下表 面,其中上表面係面向第一基板。第二基板於其上表面具 有多個第一平面與多個第二平面,其中第一平面與下表面 之距離係不等於第二平面與下表面之距離。第一間隙元件 與第二間隙元件設置於第二基板之上表面並位於第一基 Φ 板與第二基板之間。第一間隙元件係各設置於一個第一平 面上,第二間隙元件則各設置於一個第二平面上,使第二 間隙元件與第一間隙元件於第二基板上之設置基準面係 不相同。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 實施例一 請參照第1圖,其繪示依照本發明實施例一的液晶顯 示面板之示意圖。液晶顯示面板100包括一第一基板110 與一第二基板120。第二基板120係平行第一基板11〇設 置,且二者之間夾置一液晶層130。第二基板120具有一 上表面與一下表面,其中上表面係面向第一基板110。第 二基板120於其上表面具有多個第一平面120A與多個第 二平面120B,其中第一平面120A與下表面之距離dl係 不等於第二平面120B與下表面之距離d2。液晶顯示面板 φ 100更包括多個第一間隙元件140 (僅繪示一個作說明) 與多個第二間隙元件150 (僅繪示一個作說明),第一間隙 元件140與第二間隙元件150設置於第二基板120之上表 面並位於第一基板110與第二基板120之間。第一間隙元 件140係各設置於一個第一平面120A上,第二間隙元件 150則各設置於一個第二平面120B上,使第二間隙元件 150與第一間隙元件140於第二基板120上之設置基準面 係不相同。 φ 本實施例之第二基板120係以一整合有彩色濾光結 構的薄膜電晶體基板(color filter on array,COA)作說明, 也因此於第二基板120上之不同高低平面效果可由彩色濾 光結構達成。如第1圖所示,第二基板120包括一第二底 板122、一彩色濾光結構124與多個薄膜電晶體及儲存電 容,本實施命j僅以三個薄膜電晶體T1〜T3與三個儲存電 容CS1〜CS3作說明。第二底板122上設置有多個資料線 L1〜L3與掃描線(未繪示)用以與驅動電路連接。這些 資料線與掃描線於第二底板122定義出多個晝素,本實施 6 201033698 X T V ^ WV/X i k 例僅以畫素PI〜P3作說明。薄膜電晶體T1〜T3與儲存電 容CS1〜CS3設置於第二底板122上並各對應一個畫素, 薄膜電晶體T1〜T3用以驅動晝素之顯示。彩色濾光結構 124設置於薄膜電晶體T1〜T3與第二底板122上,而第 一間隙元件140與第二間隙元件150則設置於彩色濾光結 構124上。 彩色濾光結構124例如是由多種不同顏色的光阻 (photo resist, PR)構成,本實施例僅以三種顏色的光阻 φ 作說明。彩色濾光結構124包括多個第一色光阻124a、第 二色光阻124b與第三色光阻124c,其中各色光阻係對應 一晝素設置。各個晝素具有一顯示區與一非顯示區,其中 各畫素之薄膜電晶體係位於該晝素之非顯示區中。另外, 較佳地於部分之非顯示區中,至少二個顏色的光阻是部分 重疊,使整個彩色濾光結構124於這些光阻的重疊處形成 向上凸起的第一平面或是第二平面。 以薄膜電晶體T1所處的晝素P1為例,第一色光阻 ❿ 124a、第二色光阻124b與第三色光阻124c係重疊以形成 較高之第一平面120A,且這三個光阻的重疊處係對應於 薄膜電晶體T1的位置。至於薄膜電晶體T2上方則是藉由 第一色光阻124a與第二色光阻124b重疊以形成較低的第 二平面120B。由於第一間隙元件140設置於較高的第一平 面120A,第二間隙元件150設置於較低的第二平面120B, 使得第一間隙元件140與第二間隙元件150形成高度差。 如此一來,便得以控制第一間隙元件140、第二間隙元件 150各別與第一基板110之間的間隙大小。第一間隙元件 7201033698 VI. Description of the Invention: [Technical Field] The present invention relates to a substrate structure and a liquid crystal display panel and a liquid crystal display device using the same, and more particularly to a substrate structure with a spacer design and application thereof Liquid crystal display panel and liquid crystal display device. [Prior Art] Currently, liquid crystal display devices have become mainstream products in all displays. The process technology of the panel, the design of the light source module, and the development and manufacture of various materials required are the development priorities of various display manufacturers to create lower cost and high quality display products. The liquid crystal display device is mainly composed of a liquid crystal display panel and a light source module. Generally, the liquid crystal display panel and the light source module are usually assembled separately after being separately manufactured. In the process of the liquid crystal display panel, the main way for controlling the distance between the two substrates of the liquid crystal display panel is to disperse a plurality of plastic material gap balls between the two substrates. Since the gap ball is not fixed on the substrate, if the user presses the finger on the display panel, the gap ball will be displaced, and the liquid crystal between the substrates will follow, resulting in uneven thickness of the liquid crystal layer. Further, the brightness of the display panel is uneven or the color is changed. In addition, the size of the gap ball cannot be completely uniform, which also affects the light transmittance of the display panel. Also, another non-spherical spacer design for controlling the pitch of the substrate has been adopted. Such spacers are typically designed in the form of a column and are fabricated directly on the substrate during the process. Since the non-spherical spacer is fixed on the substrate and the consistency is good, the problem of the above-mentioned clearance ball can be effectively solved. 3 201033698 ▲ TV W / w丄▲ 1 problem. However, sufficient spacers must be provided between the substrates to maintain the two substrates at equal intervals. Thus, if the liquid crystal on the substrate is filled by the QN dropfill (ODF) method, when the substrate is assembled on the substrate which has been filled with the liquid crystal, the surface of the liquid crystal will be uneven due to the spacer. There is a bubble residue between the substrate and the substrate which is not easily eliminated. As a result, the process yield of the liquid crystal display panel will be affected. SUMMARY OF THE INVENTION The present invention relates to a substrate structure and a liquid crystal display panel and a liquid crystal display device using the same, and a gap component having a height difference is designed on the substrate to make the gap between the substrate and the substrate more flexible. To improve the yield of the panel process. The present invention provides a substrate structure 'which includes a substrate, a plurality of first gap elements and a plurality of second gap elements. The substrate has an upper surface and a lower surface, and the substrate has a plurality of first planes and a plurality of second planes on the upper surface thereof, wherein the distance between the first plane and the lower surface is not equal to the distance between the second plane and the lower surface. All the first gap elements and the second gap elements are disposed on the upper surface of the substrate, wherein the first gap elements are respectively disposed on a first plane, and the second gap elements are respectively disposed on a second plane, so that the second gap The component is different from the set reference plane of the first gap component on the substrate. The invention further provides a liquid crystal display panel comprising a first substrate, a second substrate, a plurality of first gap elements and a plurality of second gap elements. The second substrate is disposed in parallel with the first substrate with a liquid crystal layer interposed therebetween. The second substrate has an upper surface and a lower surface, wherein the upper surface 4 faces the first substrate. The second substrate has a plurality of first planes and a plurality of second planes on its upper surface, wherein the distance between the first plane and the lower surface is not equal to the distance between the second plane and the lower surface. The first gap element and the second gap element are disposed on the upper surface of the second substrate and located between the first substrate and the second substrate. The first gap elements are respectively disposed on a first plane, and the second gap elements are respectively disposed on a second plane, so that the second gap elements are different from the first reference elements of the first gap elements on the second substrate. . The invention further provides a liquid crystal display device comprising a light source module and a liquid crystal display panel. The liquid crystal display panel is disposed on one side of the light source module and includes a first substrate, a second substrate, a plurality of first gap elements and a plurality of second gap elements. The second substrate is disposed in parallel with the first substrate, and a liquid crystal layer is interposed therebetween. The second substrate has an upper surface and a lower surface, wherein the upper surface faces the first substrate. The second substrate has a plurality of first planes and a plurality of second planes on its upper surface, wherein the distance between the first plane and the lower surface is not equal to the distance between the second plane and the lower surface. The first gap element and the second gap element are disposed on the upper surface of the second substrate and located between the first base Φ plate and the second substrate. The first gap elements are respectively disposed on a first plane, and the second gap elements are respectively disposed on a second plane, so that the second gap elements are different from the first reference elements of the first gap elements on the second substrate. . In order to make the above-mentioned contents of the present invention more comprehensible, the following detailed description of the preferred embodiments and the accompanying drawings will be described in detail as follows: [Embodiment] For the first embodiment, please refer to FIG. A schematic diagram of a liquid crystal display panel according to Embodiment 1 of the present invention. The liquid crystal display panel 100 includes a first substrate 110 and a second substrate 120. The second substrate 120 is disposed parallel to the first substrate 11 and has a liquid crystal layer 130 interposed therebetween. The second substrate 120 has an upper surface and a lower surface, wherein the upper surface faces the first substrate 110. The second substrate 120 has a plurality of first planes 120A and a plurality of second planes 120B on its upper surface, wherein the distance d1 between the first plane 120A and the lower surface is not equal to the distance d2 between the second plane 120B and the lower surface. The liquid crystal display panel φ 100 further includes a plurality of first gap elements 140 (only one is illustrated) and a plurality of second gap elements 150 (only one is illustrated), the first gap element 140 and the second gap element 150 The anode substrate 120 is disposed on the upper surface of the second substrate 120 and located between the first substrate 110 and the second substrate 120. The first gap elements 140 are respectively disposed on a first plane 120A, and the second gap elements 150 are respectively disposed on a second plane 120B, so that the second gap element 150 and the first gap element 140 are on the second substrate 120. The setting datum is different. φ The second substrate 120 of the embodiment is described by a color filter on array (COA) integrated with a color filter structure, and thus the different height and low plane effects on the second substrate 120 can be filtered by color. The light structure is achieved. As shown in FIG. 1 , the second substrate 120 includes a second bottom plate 122 , a color filter structure 124 , a plurality of thin film transistors and a storage capacitor. The present embodiment only uses three thin film transistors T1 T T3 and three. Storage capacitors CS1 to CS3 are described. The second bottom plate 122 is provided with a plurality of data lines L1 L L3 and scan lines (not shown) for connection with the driving circuit. These data lines and scanning lines define a plurality of elements in the second bottom plate 122. This embodiment 6 201033698 X T V ^ WV/X i k is only illustrated by pixels PI to P3. The thin film transistors T1 to T3 and the storage capacitors CS1 to CS3 are disposed on the second substrate 122 and correspond to one pixel. The thin film transistors T1 to T3 are used to drive the display of the pixels. The color filter structure 124 is disposed on the thin film transistors T1 TT3 and the second bottom plate 122, and the first gap element 140 and the second gap element 150 are disposed on the color filter structure 124. The color filter structure 124 is composed of, for example, a plurality of photo resists (PR) of different colors, and this embodiment is described only by the photoresist φ of three colors. The color filter structure 124 includes a plurality of first color photoresists 124a, second color photoresists 124b and third color photoresists 124c, wherein the respective color photoresists are corresponding to a single pixel arrangement. Each of the pixels has a display area and a non-display area, wherein the thin film electro-crystal system of each pixel is located in the non-display area of the pixel. In addition, preferably, in part of the non-display area, the photoresists of at least two colors are partially overlapped, so that the entire color filter structure 124 forms an upwardly convex first plane or a second at the overlap of the photoresists. flat. Taking the halogen P1 where the thin film transistor T1 is located as an example, the first color photoresist 124a, the second color photoresist 124b and the third color photoresist 124c overlap to form a higher first plane 120A, and the three lights The overlap of the resistance corresponds to the position of the thin film transistor T1. As for the upper portion of the thin film transistor T2, the first color photoresist 124a overlaps with the second color photoresist 124b to form a lower second plane 120B. Since the first gap element 140 is disposed on the upper first plane 120A, the second gap element 150 is disposed on the lower second plane 120B such that the first gap element 140 forms a height difference with the second gap element 150. In this way, the gap size between the first gap element 140 and the second gap element 150 and the first substrate 110 can be controlled. First gap element 7
140與第一基板110的間隙小於第二間隙元件15〇與第一 基板no之間隙。在本實施例中,第一間隙元件與 一基板110的間隙為零,第一間隙元件! 4 〇是維持第」基 板110與第二基板120間距之主間隙元件,而第二間隙元 件150可於面板受壓時提供支擇面板之效果,因二二二二 隙元件150被視為次間隙元件。 B 光阻的重疊效果係可藉由依序形成各光阻材料並圖 案化後達成。以形成彩色濾光結構124為例,是先於第二 ❹底板122上形成一第一色光阻124a的光阻材料層,再利 用曝光、顯影與烘烤等光微影製程將第一色光阻12铭的 光阻材料層圖案化,使薄膜電晶體T1所處畫素Η中形成 用以顯示顏色之第-色光阻124a,且於薄膜電晶體丁2、 Τ3上亦形成部分的第—色光阻124a。接著,形成第二色 光阻124b的光阻材料層於第二底板122上後,再將第二 色光阻124b的光阻材料層圖案化,使薄膜電晶體^所處 晝素中形成用以顯示顏色之第二色光阻㈣,且於薄膜電 •晶體T1、T3上亦形成部分的第二色光阻124b。之後,形 成第三色光阻124c的光阻材料層於第二底板122上,並 圖案化第三色光阻124C的光阻材料層。如此一來,便可 將彩色濾光結構124製作完成。 第m件14 G與第二_元件15 0較佳為光阻材 T其亦可藉由光微影製程製作出來。將第一間隙元件⑽ 、第二間隙元件15〇之光阻材料塗佈於彩色濾光結構124 後丄再經由曝光、顯影與供烤等步驟於第一平面i2〇A與 平面120B上各別形成第一間隙元件^與第二間隙 8 201033698 元件150。第一間隙元件140與第二間隙元件150例如為 高度相同的柱狀體,然由於這兩種間隙元件所處平面具有 高度差(在本實施例中為距離dl、d2之差值△<!),使第 一間隙元件140之頂面與第二間隙元件150之頂面相對於 第二基板120之高度不同。 由於第一基板110與第二基板120貼合時,頂面較高 之第一間隙元件140會直接抵靠在第一基板110 (例如是 接觸到第一基板110之透明電極114)以維持第一基板110 φ 與第二基板120的間隙,因此可將第一間隙元件140視為 主間隙元件(main photo-spacei*)。第二間隙元件150則可 被視為次間隙元件(sub photo-spacer),其與第一基板110 之間隙大小為距離dl、d2之差值,使第一基板110與第 二基板120之間形成更有彈性之間隙設計。第二間隙元件 150除了於面板受壓時提供一緩衝效果以辅助第一間隙元 件140之支撐作用外’亦能有效提升面板的製程良率。舉 例來說,於第一基板110與第二基板12〇貼合時,若是基 ❹板間殘留氣泡,可藉由輕壓第一基板11〇的方式逐漸將氣 泡排除掉。 另外,第一間隙元件140與第二間隙元件15〇是直接 在第二基板120上形成,是以第一間隙元件14〇、第二間 隙元件150與第二基板12〇之接著性較佳,故不會在液晶 顯示面板100受力時產生位移。由於第一間隙元件14〇與 第一間隙το件150是利用光微影製程製作,間隙元件其厚 度的控制容易而可產生厚度較為均勻的效果。同時,第一 間隙元件⑽與第二間隙元件15G之間隔密度亦可依照需 9 201033698 求調整。 第一間隙元件140、第二間隙元件15〇與第一基板11〇 之間隙控制也可以透過其他方式達成。請參照第2圖,其 繪示第一基板的透明電極具有圖案之示意圖。如第2圖所 示,第一基板110上之透明電極114,上相對於第二間隙元 件150之位置具有一開口 114A,。此開口 114A’是藉由將透 明電極114’圖案化形成,使第二間隙元件15〇與第一基板 110具有更大的間隙(標示為△ d’)<>另外,當透明電極〖Μ, Φ 具有圖案時,為使第一基板110與第二基板120之對位更 為準確,可於第一基板110上設計出對位圖案以利第一基 板110與第二基板120之組裝貼合。於第一基板11〇上之 對位圖案亦可藉由圖案化透明電極114,時形成,如第2圖 所示之對位圖案114B’。 請參照第3圖,其繪示應用第丨圖液晶顯示面板之液 晶顯示裝置之示意圖。液晶顯示裝置包括液晶顯示面板 100、上偏光板160、下偏光板17〇與光源模組18〇。液晶 • 顯示面板100設置於光源模組180之一侧,上偏光板16〇 與下偏光板170則分別位於液晶顯示面板1〇〇上下側。液 晶顯示面板100其詳細之架構如第1圖所示,其第一間隙 元件140與第二間隙元件15〇係位於具有高度差之設置基 準面。 雖然本實施例是將主間隙元件(第一間隙元件14〇) 與次間隙元件(第二間隙元件150)形成於一整合有彩色 濾光結構之薄膜電晶體基板(第二基板120)上作說明, 然本發明並不以此為限定。任何將間隙元件設置於各式基 201033698 板上不同高度之基準面,使基板與基板之間隙產生較為彈 性變化之設計,皆屬於本發明之範疇。另外,雖然本實施 例之主間隙元件與次間隙元件具有相同之柱體高度,然本 發明亦不以此為限定。於其他實施例中,主間隙元件與次 間隙元件亦可具有不同之柱體尚度’例如使辅助支擇之次 間隙元件其柱體高度小於主間隙元件之柱體高度。 實施例二 請參照第4圖,其繪示依照本發明實施例二的液晶顯 φ 示面板之示意圖。液晶顯示面板200包括一第一基板210 與一第二基板220。第二基板220係平行第一基板210設 置,且二者之間夾置一液晶層230。第二基板220於面向 第一基板210之表面上具有多個第一平面220A與多個第 二平面220B,其中第一平面220A、第二平面220B於第 二基板220上之高度位置不同。液晶顯示面板200更包括 多個第一間隙元件240 (僅繪示一個作說明)與多個第二 間隙元件250 (僅繪示一個作說明),第一間隙元件240與 φ 第二間隙元件250設置於第二基板220上,並位於第一基 板210與第二基板220之間。第一間隙元件240係各設置 於一個第一平面220A上,第二間隙元件250則各設置於 一個第二平面220B上,使第二間隙元件250與第一間隙 元件240於第二基板220上之設置基準面係不相同。 本實施例之液晶顯示面板200是一多顯示域垂直配 向型(multi-domain vertical alignment)顯示面板。第一基 板210是一薄膜電晶體基板,其包括第一底板212、透明 電極214、掃描線、資料線與薄膜電晶體等。第二基板220 11 201033698 則是一彩色濾光片基板,其包括第二底板222、透明電極 224、多個配向元件(protrusion ) 260、多個墊高部270與 彩色濾光片等。配向元件260與墊高部270是同時形成於 透明電極224上且具有相同的材質(如光阻材料)。其中, 第一平面220A是位於墊高部270上,而第一間隙元件240 設置於墊高部270上。第二間隙元件250則是直接形成於 透明電極224上而與第一間隙元件240形成一高度差。 由於第一間隙元件240與第二間隙元件250具有高度 φ 差,當第一基板210與第二基板220貼合後,主要是由第 一間隙元件240維持第一基板210與第二基板220之間 隙。至於第二間隙元件250,由於其與第一基板210仍有 間隙存在’而能夠提供液晶顯示面板200 —緩衝的功能。 除此之外’亦可解決基板間氣泡殘留問題,以進一步提升 液晶顯示面板之製程良率。 關於第一間隙元件240與第二間隙元件250於第二基 板220上之配置方式,請參照第5圖,其繪示第4圖的第 ❹二基板之俯視圖。第一間隙元件240與第二間隙元件250 較佳是位在第二基板220上非顯示區之位置,例如對應於 信號線(掃描線或資料線)或薄膜電晶體等位置。如第4 圖所示’第一間隙元件240與第二間隙元件250是對應於 信號線設置。於製作配向元件260時,可同時在光罩上定 義出塾南部270 (或第一間隙元件240)之位置。如此一 來’配向元件260與墊高部270便得以一併形成於第二底 板222上。於後續製作第一間隙元件240與第二間隙元件 250時,由於第一間隙元件240之底層已經墊高,除了使 12 201033698 第一間隙元件240與第二間隙元件250產生高度差,同時 可減少間隙元件其光阻材料的用量。 雖然本實施例僅在第一間隙元件240下加塾一塾高 部,然於其他實施例中’亦可同時在第一間隙元件240與 第二間隙元件250下加墊不同高度之墊高部。如此,同樣 也可達到形成高度差之效果。另外,雖然本實施例之第一 基板210是以薄膜電晶體基板為例,而第二基板220是以 彩色遽'光片基板說明’然本發明並不以此為限定。第一基 φ 板210亦可直接為一整合有彩色濾光結構之薄膜電晶體基 板,而第·一基板220則可單純為一具有配向元件之透明基 板。而本實施例之第一間隙元件240與第二間隙元件250 雖然是設置於彩色濾光片基板上,然於其他實施例中,亦 可將第一間隙元件240與第二間隙元件250設置於薄膜電 晶體基板上。 實施例三 請參照第6圖’其繪示依照本發明實施例三的液晶顯 參 示面板之示意圖。液晶顯示面板300包括第一基板310與 第二基板320。第二基板320係平行第一基板310設置, 二者之間夾置一液晶層330。液晶顯示面板300更包括多 個第一間隙元件340 (僅繪示一個作說明)、多個第二間隙 元件350 (僅繪示一個作說明)與多個墊高部370,其中 第一間隙元件340、第二間隙元件350與墊高部370設置 於第二基板220上,並位於第一基板310與第二基板320 之間。第二間隙元件350與第一間隙元件340於第二基板 320上之設置基準面並不相同。 13 201033698 a ❹ 第-基板no包括第-底板312與透明電槐 二基板320則具有第二底板322與彩色滤光結’第 中’第-間隙it件340、第二間隙元件35Q與藝^。其 是設置於彩色濾光結構324上。較佳地,可於製370 光結構324時’將塾高部370 —併製作完成。另)色遽 部370可為-單層或多層結構。本實施二以將 元件340設置於具有雙層結構之墊高部37〇上作說^隙 彩色渡光結構324包括多個第一色光阻324&、 色光阻324b與第三色光阻324c,其中各色光阻是 : 矩陣324d分隔開來。較佳地,第—間隙元件34〇與第、色 間隙元件350是對應於黑色矩陣32如設置。於黑色矩: 324d的部分開口中形成第一色光阻32乜時,係可同時於 黑色矩陣324d之表面(墊高部37〇)形成一類似於點狀的 第一色光阻324a。接著於黑色矩陣324d的其他開口中形 成第二色光阻324b時,再同時於該點狀之第一色光阻32虬 上形成少部分的第二色光阻324b。最後,將第三色光阻 324c形成於黑色矩陣324d中剩餘的開口中後,彩色濾光 結構324與墊高部370即一併製作完成。 4d上’如此以形成一高度差 曰 本發明上迷實施例所揭露之基板結構與應用其之液 曰日顯不面板與液晶顯示裝置,於基板上設置多個主間隙元 接著’將第—間隙元件340、第二間隙元件350之光 料塗佈於彩色濾光結構324後,再經由曝光、顯影與 :立等光微景;製程之步驟將第一間隙元件34〇製作於墊 门370上’而第二間隙元件350直接設置於黑色矩陣 201033698 X / WX 4 λ 件與次間隙元件以維持基板間的間距。主間隙元件與次間 隙元件分設於基板上不同高度之設置基準面,使主間隙元 件與次間隙元件之間產生高度差。基板與基板之間的間隙 變化會因間隙元件之咼度差而更有彈性。不僅可有效解決 氣泡殘留之問題而大幅改善面板製程的良率,且可減少間 隙元件之材料用量而降低生產成本。 综上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 ❷知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1圖繪示依照本發明實施例一的液晶顯示面板之 不意圖。 第2圖繪示第一基板的透明電極具有圖案之示意圖。 第3圖繪示應用第1圖液晶顯示面板之液晶顯示裝置 φ 之示意圖。 第4圖繪示依照本發明實施例二的液晶顯示面板之 示意圖。 第5圖繪示第4圖的第二基板之俯視圖。 第6圖繪示依照本發明實施例三的液晶顯示面板之 示意圖。 【主要元件符號說明】 100、200、300 :液晶顯示面板 110、210、310:第一基板 15 201033698 112、212、312 :第一底板 114、114’、214、224、314 :透明電極 114A,:開口 114B’ :對位圖案 120、220、320 :第二基板 120A、220A :第一平面 120B、220B :第二平面 122、222、322 :第二底板 »124、324 :彩色濾光結構 124a、324a :第一色光阻 124b、324b :第二色光阻 124c、324c :第三色光阻 130、230、330 :液晶層 140、240、340 :第一間隙元件 150、250、350 :第二間隙元件 160 :上偏光板 φ 170 :下偏光板 180 :光源模組 260 :配向元件 270、370 :墊高部 324d :黑色矩陣 L1〜L3 :資料線 T1〜T3 :薄膜電晶體 P1〜P3 :晝素 CS1〜CS3 ··儲存電容 16The gap between the 140 and the first substrate 110 is smaller than the gap between the second gap member 15A and the first substrate no. In this embodiment, the gap between the first gap element and the substrate 110 is zero, and the first gap element! 4 〇 is the main gap element for maintaining the distance between the first substrate 110 and the second substrate 120, and the second gap element 150 can provide the effect of the selection panel when the panel is pressed, because the 222 slit element 150 is regarded as the second Clearance element. The overlapping effect of the B photoresist can be achieved by sequentially forming each photoresist material and patterning it. For example, the color filter structure 124 is formed by forming a photoresist layer of a first color photoresist 124a on the second substrate 122, and then using a photolithography process such as exposure, development, and baking to make the first color. The photoresist layer of the photoresist 12 is patterned, so that the first-color photoresist 124a for displaying the color is formed in the pixel region of the thin film transistor T1, and the portion of the thin-film transistor D2 and Τ3 is also formed. —Color photoresist 124a. Then, after forming the photoresist material layer of the second color photoresist 124b on the second bottom plate 122, the photoresist material layer of the second color photoresist 124b is patterned, so that the thin film transistor is formed in the pixel to be displayed. A second color photoresist (4) of color, and a portion of the second color photoresist 124b is also formed on the thin film transistors T1 and T3. Thereafter, a photoresist material layer forming the third color photoresist 124c is formed on the second substrate 122, and the photoresist material layer of the third color photoresist 124C is patterned. In this way, the color filter structure 124 can be completed. The m-th member 14 G and the second-element 15 0 are preferably photo-resist materials T which can also be fabricated by a photolithography process. Applying the photoresist material of the first gap element (10) and the second gap element 15 to the color filter structure 124, and then performing the steps of exposure, development, and baking on the first plane i2A and the plane 120B. A first gap element ^ is formed with a second gap 8 201033698 element 150. The first gap element 140 and the second gap element 150 are, for example, columns of the same height, but the planes of the two gap elements have a height difference (in the present embodiment, the difference Δ between the distances d1 and d2). The top surface of the first gap element 140 and the top surface of the second gap element 150 are different in height from the second substrate 120. When the first substrate 110 and the second substrate 120 are attached, the first gap element 140 having a higher top surface directly abuts against the first substrate 110 (for example, the transparent electrode 114 contacting the first substrate 110) to maintain the first substrate 110. A gap between the substrate 110 φ and the second substrate 120 can thus be regarded as a main gap element (main photo-spacei*). The second gap element 150 can be regarded as a sub photo-spacer, and the gap size of the first substrate 110 is a distance dl, d2 between the first substrate 110 and the second substrate 120. Create a more flexible gap design. The second gap element 150 provides a cushioning effect to assist the support of the first gap element 140 in addition to the panel being pressed, thereby effectively improving the process yield of the panel. For example, when the first substrate 110 and the second substrate 12 are bonded together, if bubbles are left between the base plates, the bubbles can be gradually removed by gently pressing the first substrate 11A. In addition, the first gap element 140 and the second gap element 15 are formed directly on the second substrate 120, and the first gap element 14 and the second gap element 150 are better connected to the second substrate 12, Therefore, displacement is not generated when the liquid crystal display panel 100 is stressed. Since the first gap member 14 and the first gap τ are formed by photolithography, the thickness of the gap member is easily controlled to produce a uniform thickness. At the same time, the separation density between the first gap element (10) and the second gap element 15G can also be adjusted according to the requirement of 9 201033698. The gap control between the first gap element 140, the second gap element 15A, and the first substrate 11A can also be achieved by other means. Referring to FIG. 2, a schematic diagram of a transparent electrode of the first substrate has a pattern. As shown in Fig. 2, the transparent electrode 114 on the first substrate 110 has an opening 114A at a position relative to the second gap element 150. The opening 114A' is formed by patterning the transparent electrode 114' such that the second gap element 15A has a larger gap (labeled as Δd') with the first substrate 110. In addition, when the transparent electrode is Μ, Φ When the pattern is provided, in order to make the alignment between the first substrate 110 and the second substrate 120 more accurate, an alignment pattern may be designed on the first substrate 110 to facilitate assembly of the first substrate 110 and the second substrate 120. fit. The alignment pattern on the first substrate 11 can also be formed by patterning the transparent electrode 114, as shown by the alignment pattern 114B' shown in FIG. Referring to Figure 3, there is shown a schematic diagram of a liquid crystal display device using a liquid crystal display panel of the second embodiment. The liquid crystal display device includes a liquid crystal display panel 100, an upper polarizing plate 160, a lower polarizing plate 17A, and a light source module 18A. Liquid crystal display panel 100 is disposed on one side of the light source module 180, and the upper polarizing plate 16A and the lower polarizing plate 170 are respectively located on the upper and lower sides of the liquid crystal display panel 1. The detailed structure of the liquid crystal display panel 100 is as shown in Fig. 1, and the first gap element 140 and the second gap element 15 are disposed on the set reference surface having the height difference. In this embodiment, the main gap element (the first gap element 14A) and the secondary gap element (the second gap element 150) are formed on a thin film transistor substrate (the second substrate 120) integrated with the color filter structure. It should be noted that the present invention is not limited thereto. Any design in which the gap elements are disposed on the reference planes of different heights on the various types of the base 201033698, and the gap between the substrate and the substrate is relatively elastic, is within the scope of the present invention. Further, although the primary gap element and the secondary gap element of the present embodiment have the same column height, the present invention is not limited thereto. In other embodiments, the primary and secondary gap elements may also have different cylinder degrees. For example, the auxiliary gap element may have a lower column height than the column height of the primary gap element. Embodiment 2 Referring to Figure 4, there is shown a schematic diagram of a liquid crystal display panel according to a second embodiment of the present invention. The liquid crystal display panel 200 includes a first substrate 210 and a second substrate 220. The second substrate 220 is disposed in parallel with the first substrate 210 with a liquid crystal layer 230 interposed therebetween. The second substrate 220 has a plurality of first planes 220A and a plurality of second planes 220B on the surface facing the first substrate 210. The heights of the first plane 220A and the second plane 220B on the second substrate 220 are different. The liquid crystal display panel 200 further includes a plurality of first gap elements 240 (only one is illustrated) and a plurality of second gap elements 250 (only one is illustrated), the first gap elements 240 and φ the second gap elements 250 It is disposed on the second substrate 220 and located between the first substrate 210 and the second substrate 220. The first gap elements 240 are disposed on a first plane 220A, and the second gap elements 250 are disposed on a second plane 220B, such that the second gap elements 250 and the first gap elements 240 are on the second substrate 220. The setting datum is different. The liquid crystal display panel 200 of the present embodiment is a multi-domain vertical alignment display panel. The first substrate 210 is a thin film transistor substrate including a first substrate 212, a transparent electrode 214, a scanning line, a data line, a thin film transistor, and the like. The second substrate 220 11 201033698 is a color filter substrate including a second substrate 222, a transparent electrode 224, a plurality of alignment elements 260, a plurality of pad portions 270, a color filter, and the like. The alignment member 260 and the pad portion 270 are simultaneously formed on the transparent electrode 224 and have the same material (e.g., photoresist material). The first plane 220A is located on the padding portion 270, and the first gap element 240 is disposed on the padding portion 270. The second gap element 250 is formed directly on the transparent electrode 224 to form a height difference from the first gap element 240. Since the first gap element 240 and the second gap element 250 have a difference in height φ, after the first substrate 210 and the second substrate 220 are bonded, the first substrate 210 and the second substrate 220 are mainly maintained by the first gap element 240. gap. As for the second gap member 250, the liquid crystal display panel 200 can be provided with a buffer function because it has a gap with the first substrate 210. In addition, the problem of bubble residue between substrates can be solved to further improve the process yield of the liquid crystal display panel. For the arrangement of the first gap element 240 and the second gap element 250 on the second substrate 220, refer to FIG. 5, which is a plan view of the second substrate of FIG. The first gap element 240 and the second gap element 250 are preferably located at a non-display area on the second substrate 220, for example, corresponding to a signal line (scanning line or data line) or a thin film transistor. As shown in Fig. 4, the first gap element 240 and the second gap element 250 are disposed corresponding to the signal lines. When the alignment element 260 is fabricated, the position of the southern portion 270 (or the first gap element 240) can be defined simultaneously on the reticle. Thus, the alignment member 260 and the elevated portion 270 are formed together on the second chassis 222. When the first gap element 240 and the second gap element 250 are subsequently formed, since the bottom layer of the first gap element 240 has been raised, in addition to the height difference between the first gap element 240 and the second gap element 250, 12 201033698 can be reduced. The amount of photoresist material used for the gap element. Although the embodiment only adds a high portion under the first gap element 240, in other embodiments, the height of the height portion of the first gap element 240 and the second gap element 250 may be simultaneously applied. . In this way, the effect of forming a height difference can also be achieved. In addition, although the first substrate 210 of the present embodiment is exemplified by a thin film transistor substrate, and the second substrate 220 is illustrated by a color 遽 'wafer substrate, the present invention is not limited thereto. The first base φ plate 210 can also be directly a thin film transistor substrate integrated with a color filter structure, and the first substrate 220 can be simply a transparent substrate having an alignment element. The first gap element 240 and the second gap element 250 of the embodiment are disposed on the color filter substrate. However, in other embodiments, the first gap element 240 and the second gap element 250 may be disposed on On a thin film transistor substrate. Embodiment 3 Referring to Figure 6, a schematic diagram of a liquid crystal display panel according to a third embodiment of the present invention is shown. The liquid crystal display panel 300 includes a first substrate 310 and a second substrate 320. The second substrate 320 is disposed parallel to the first substrate 310 with a liquid crystal layer 330 interposed therebetween. The liquid crystal display panel 300 further includes a plurality of first gap elements 340 (only one illustrated), a plurality of second gap elements 350 (only one illustrated) and a plurality of elevated portions 370, wherein the first gap elements The second gap element 350 and the padding portion 370 are disposed on the second substrate 220 and located between the first substrate 310 and the second substrate 320. The second gap element 350 is not the same as the set reference plane of the first gap element 340 on the second substrate 320. 13 201033698 a ❹ The first substrate 301 and the transparent substrate 2 substrate 320 have a second substrate 322 and a color filter junction 'the middle' first-gap member 340, the second gap member 35Q and the art ^ . It is disposed on the color filter structure 324. Preferably, the 370 light structure 324 can be fabricated and finished. Alternatively, the color portion 370 may be a single layer or a multilayer structure. In the second embodiment, the component 340 is disposed on the pad portion 37 having a two-layer structure, and the color light absorbing structure 324 includes a plurality of first color photoresists 324 & color resistors 324b and third color photoresists 324c. The photoresist of each color is: The matrix 324d is separated. Preferably, the first gap element 34 and the first color fringe element 350 correspond to the black matrix 32 as provided. When the first color photoresist 32 is formed in the partial opening of the black matrix: 324d, a first-color photoresist 324a similar to the dot shape can be formed on the surface (the pad portion 37A) of the black matrix 324d at the same time. Then, when the second color photoresist 324b is formed in the other openings of the black matrix 324d, a small portion of the second color photoresist 324b is formed on the dot first color photoresist 32'. Finally, after the third color photoresist 324c is formed in the remaining openings in the black matrix 324d, the color filter structure 324 and the pad portion 370 are formed together. 4d, in order to form a height difference, the substrate structure disclosed in the embodiment of the present invention and the liquid crystal display panel and the liquid crystal display device using the same, and a plurality of main gap elements are disposed on the substrate, followed by 'the first The light material of the gap element 340 and the second gap element 350 is applied to the color filter structure 324, and then the first gap element 34 is fabricated on the pad gate 370 through exposure, development, and the like; The second gap element 350 is disposed directly on the black matrix 201033698 X / WX 4 λ piece and the secondary gap element to maintain the spacing between the substrates. The primary gap element and the secondary gap element are disposed on the set reference planes at different heights on the substrate to create a height difference between the primary gap element and the secondary gap element. The change in the gap between the substrate and the substrate is more elastic due to the poorness of the gap elements. Not only can the problem of bubble residue be effectively solved, but the yield of the panel process can be greatly improved, and the material usage of the gap component can be reduced to reduce the production cost. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. It will be apparent to those skilled in the art that various modifications and changes can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a liquid crystal display panel according to a first embodiment of the present invention. FIG. 2 is a schematic view showing a pattern of a transparent electrode of the first substrate. Fig. 3 is a view showing a liquid crystal display device φ to which the liquid crystal display panel of Fig. 1 is applied. Fig. 4 is a schematic view showing a liquid crystal display panel according to a second embodiment of the present invention. Fig. 5 is a plan view showing the second substrate of Fig. 4. Figure 6 is a schematic view showing a liquid crystal display panel according to a third embodiment of the present invention. [Main component symbol description] 100, 200, 300: liquid crystal display panel 110, 210, 310: first substrate 15 201033698 112, 212, 312: first bottom plate 114, 114', 214, 224, 314: transparent electrode 114A, Opening 114B': alignment pattern 120, 220, 320: second substrate 120A, 220A: first plane 120B, 220B: second plane 122, 222, 322: second substrate » 124, 324: color filter structure 124a 324a: first color photoresists 124b, 324b: second color photoresists 124c, 324c: third color photoresists 130, 230, 330: liquid crystal layers 140, 240, 340: first gap elements 150, 250, 350: second Gap element 160: upper polarizing plate φ 170: lower polarizing plate 180: light source module 260: alignment elements 270, 370: padding portion 324d: black matrix L1 to L3: data lines T1 to T3: thin film transistors P1 to P3: Alizarin CS1~CS3 ··Storage Capacitor 16