TW201030999A - Scribing device and method of producing a thin-film solar cell module - Google Patents

Scribing device and method of producing a thin-film solar cell module Download PDF

Info

Publication number
TW201030999A
TW201030999A TW098140428A TW98140428A TW201030999A TW 201030999 A TW201030999 A TW 201030999A TW 098140428 A TW098140428 A TW 098140428A TW 98140428 A TW98140428 A TW 98140428A TW 201030999 A TW201030999 A TW 201030999A
Authority
TW
Taiwan
Prior art keywords
solar cell
cell module
light source
layer
scoring
Prior art date
Application number
TW098140428A
Other languages
Chinese (zh)
Inventor
Tobias Repmann
Axel Straub
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/362,281 external-priority patent/US20100190275A1/en
Priority claimed from EP09151595A external-priority patent/EP2214215A1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201030999A publication Critical patent/TW201030999A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser scribing device 20 is provided which comprises at least a laser light source 21. The laser light source 21 may generate a laser beam 22 for scribing cell lines 12a, 12b,...; 13a, 13b,...; 14a, 14b,... to form a patterned solar cell module 10. Furthermore, the laser 21 may emit a light beam 23 for generating a light spot 24 on the surface of the solar cell module. The light beam 23 may be modulated compared with the light beam 22 used for the scribing process. By means of the light spot 24 a particular region of the active area 18 of the solar cell module may be illuminated, and the voltage VOC (L) may be measured at a voltage measurement device 25. The voltage measurement device 25 is connected between the negative contact area 15 and the positive contact area 16 of the solar cell module 10. The measured voltage VOC (L) depends on the location of the laser spot 24 on the solar cell module 10 and the intensity of the laser spot 24.

Description

201030999 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種刻劃裝置,其用於劃分具有一第一 接觸電極及一第二接觸電極之太陽能電池模組之至少一 層。其中該刻劃裝置包含至少一個光源,其適用於=部 地照射該太陽能電池模組之不同區域。此外,本發明係 關於一種製造具有一第一接觸電極及—第二接觸電極之 φ 太陽能電池模組之方法,包含以下步驟:a)在一襯底上 沈積一層;及b)藉由刻劃工具劃分沈積於該襯底上之 該層以形成該層之電絕緣部分。 【先前技術】 薄膜太陽能電池模組之發展使太陽能電池得以在大幅 減少矽消耗之下大量製造。因此,與傳統基於矽波動之 太陽能電池相比,可大幅減少每單位功率輸出之製造費 • 用。 薄膜太陽能電池由沈積於玻璃片襯底上之薄材料層堆 疊組成。通常,薄膜太陽能電池至少包含一第一透明接 觸層(例如一透明導電氧化物TCO層)、一具有一接合 組態(例如以非晶矽為基礎)之半導體層及一第二電極 層。然而,亦存在諸如串聯結構之多接合組態。 由於—太陽能電池模組之輸出電壓視能帶間隙而定, 而輸出電流隨太陽能電池模組之表面增加,所以與低電 201030999 壓相比,大面積太陽能電池模組輪出相當高的電流。 為了降低該電流同時提高該電壓,將該太陽能電池模 組切割成串聯連接之較小電池部分。該等較小太陽能電 池部分之互連在面板之製造期間產生。舉例而言,在該 製造製程開始時’在一襯底上沈積一第一導電層(例如201030999 VI. Description of the Invention: [Technical Field] The present invention relates to a scribing apparatus for dividing at least one layer of a solar cell module having a first contact electrode and a second contact electrode. Wherein the scoring device comprises at least one light source adapted to illuminate different regions of the solar cell module. Furthermore, the present invention relates to a method of fabricating a φ solar cell module having a first contact electrode and a second contact electrode, comprising the steps of: a) depositing a layer on a substrate; and b) by scribing The tool divides the layer deposited on the substrate to form an electrically insulating portion of the layer. [Prior Art] The development of thin film solar cell modules enables solar cells to be mass-produced with drastic reduction in germanium consumption. As a result, manufacturing costs per unit of power output can be significantly reduced compared to conventional solar cells based on turbulence. Thin film solar cells consist of a stack of thin layers of material deposited on a glass substrate. Typically, a thin film solar cell comprises at least a first transparent contact layer (e.g., a transparent conductive oxide TCO layer), a semiconductor layer having a bonded configuration (e.g., based on amorphous germanium), and a second electrode layer. However, there are also multiple joint configurations such as a series configuration. Since the output voltage of the solar cell module depends on the band gap and the output current increases with the surface of the solar cell module, the large-area solar cell module rotates a relatively high current compared with the low-voltage 201030999 voltage. To reduce this current while increasing the voltage, the solar cell module is cut into smaller cell portions that are connected in series. The interconnection of the smaller solar cell sections is produced during the manufacture of the panel. For example, a first conductive layer is deposited on a substrate at the beginning of the fabrication process (e.g.,

tco)。該第-導電層藉由-第—刻劃製程(ρι)分成條 狀部分。之後在該第一電極層上沈積一半導體層。該半 導體層亦藉由-第二刻劃製程(Ρ2)分成複數個條狀部 分。之後,在該半導體層上沈積一第二觸點且該第二觸 點亦藉由-第三刻劃製程(Ρ3)分成條狀部分。在各刻 劃製程之後,各個條形藉由在該刻劃製程中製造之凹陷/ 間隙相互電絕緣。 習知刻劃製程包括蝕刻、化學刻劃或雷射刻劃。然而, 雷射刻劃正變成一項非常重要的技術’因為它能以高品 質並迅速大量生產、然而,該等刻劃製程之可靠度有限。 該刻劃製程之殘留材料或低劣品質導致太陽能電池模組 發生難以接受之故障。 【發明内容】 本發明之目的在提供一種刻劃裝置及一種製造薄膜太 陽能電池模組之方法,該方法得以大量生產並提供提高 品質之薄膜層太陽能電池模組。 上述問題得藉由申請專利範圍第1項之刻劃裝置及申 201030999 請專利範圍第9項之製造薄 ,. $膜太陽能電池模組土& 施例。 項之特徵請參見本發明之較佳實 一種用於劃分一具有一第— 接觸電極及一篦-拉ί®办 極之太陽能電池模組之至少一β 第一接觸電 4 *丨*丨層的發明刻劃裝置,其中 該刻劃裝置包含至少一光源χ其中 Β 再適用於局部地昭勒每"士 陽能電池模組之不同區域,其 …以 含至少—#w 、特徵在於,該刻劃裝置包 量測裝置’其用於量測在該太陽能電池模組之 第一接觸電極與第二接觸電極 '、 兮止、κ 电極間之^諕,該信號對於由 該光源照射之該太陽能電池模 供砠之區域的位置有反應。 通常,該太陽能電池模組為薄膜太陽能電池模组其 具有至少-第-電極層(例如—透明導電氧化層)、一半 導體層(例如一非晶矽層)及-第二電極層(例如一 Μ〇 或am)。該薄膜太陽能電池模組包含複數個條狀太陽 能電池部分,其各自具有至少一第一電極層一半導體 層及一第二電極層。該太陽能電池模組條狀部分之第一 電極層的—部分與該第-電極層之相鄰部分分隔且電絕 緣。該太陽能電池模組條狀部分之半導體層的一部分與 該半導體層之各相鄰部分分隔且電絕緣。該太陽能電池 模組條狀部分之第二電極層的一部分與該第二電極層之 各相鄰部分分隔且電絕緣。此外,該薄膜太陽能電池模 組包含一至少與該第一電極層之一部分連接之第一(負 極)接觸電極及一至少與該第二電極層之一部分連接之 第二(正極)接觸電極。 6 201030999 該刻劃裝置可用於評定、量測、監視及/或控制太陽能 電池模組或-特定太陽能電池部分之功能效力。尤其可 測定各條狀太陽能電池部分之效率、在兩相鄰條狀太陽 忐電池部分之間之電絕緣、分路電阻等。用於評定/量測 太陽忐電池模組之太陽能電池部分及/或該太陽能電 池模組之功能效力的裝置可為一分流掃描單元。 ▲該量測方法包含以下步驟:a)提供—如上所述之太陽 ❹ 電池模組,b)藉由—光源發出之光局部且選擇性地照 射該太陽能電池模組表面之—特定區域;及藉由一 與該第一接觸電極及/或該第二接觸電極相連接之量測 裝置量測對該太陽能電池模組之照射區域之位置有反應 之信號。對於—太陽能電池模組之不同太陽能電池部分 之量測’僅需要兩個觸點,即該太陽能電池模組之一正 極觸點及一負極觸點。 此外該裝置特別適用於監視或控制該刻劃製程。該 -準製造製程包括一些劃分/刻劃/圖案化步驟例如上述 2三個雷射刻劃步驟P1、P…3。此外,形成一絕緣 请該絕緣線至少部分圍繞該模組之主動區域以在其 j緣處與該太陽能電池模組之主動區域電絕I如上所 =行該量測。藉由改變對於下一電池刻劃或對於開始 i線之—再㈣的雷射功率’該量測之結果可用來評 :該雷射刻劃製程及控制該雷射刻劃製程,以獲得一更 ^電池·對·電池之絕緣。對於p3刻劃製程亦即刻劃 電極層時’該刻劃製程之監視及/或控制尤其重要。 7 201030999 在各(P3 )電池劃分刻劃之後及/或在結束該(p3 )刻劃 製程之後及/或在該(P3 )刻劃製程期間,可重複該量測 方法。 該光源可為一單一波長之光源(例如雷射二極體)或 一窄波長帶之光源(例如led )。在該量測中,可量測一 特定照射波長下之反應信號。當使用不同波長時,可獲 得關於一太陽能電池部分及該太陽能電池模組效能之光 譜資訊。 一較佳之刻劃裝置包含至少一個刻劃工具其用於形成 該層之電絕緣區域》該刻劃工具或許特別適用於刻劃圍 繞該太陽能電池模組之主動區域之(P3 )絕緣線,及/ 或用於刻劃該太陽能電池模組之該等太陽能電池部分間 之電池線。該工具通常藉由產生條狀電池部分組態劃分 該主動區域。 在本發明之一較佳實施例中,該光源經組態以提供光 瘳 照射該太陽能電池模組之不同區域,並藉由光刻劃製程 劃分該太陽能電池模組層。光源可整合於該刻劃工具中。 在本發明之一較佳實施例中,光源可包含至少一個雷 射光源。該光源可為—雷射,尤其為與用於雷射刻刻相 同之雷射。在-刻劃製程之後,在開始量測太陽能電池 模組之前,可調適雷射光束之光強度及/或橫截面尺寸。 刻劃工具可組態為一雷射刻劃工具。雷射刻劃能使太 陽能電池模組以高品質及速度大量製造。 較佳之刻劃裝置經組態以藉由來自相對於該太陽能電 201030999 池模組表面之光源所發射光束之相對移動來照射該太陽 能電池模組之不同區域。該刻劃裝置可包含,例如,一 (雷射)掃描器,用以掃描該太陽能電池模组之表面。 而在另—實施例中,可以一固定光束及一用於移動該太 陽能電池模組之裝置替代之。 在本發明之另一較佳實施例中,刻劃裝置包含複數個 光源,其經排列以藉由選擇性地變換該等光源來照射該 φ 太陽能電池模組之不同區域。該等光源可在該太陽能電 池模組之表面相鄰排列,各該光源經排列以照射該太陽 能電池模組之一特定區域。當相繼變換該等光源時,可 模擬 移動」之光源。該量測包括量測在該太陽能電 池模組之接觸電極處或在該等接觸電極之間對於照射區 域之位置有反應之信號。 量測裝置特別包含一電壓量測裝置,用於量測在該太 陽能電池模組之第一接觸電極與第二接觸電極間之電 修壓。所量測之信號可為一開路電壓、一電流、一電阻或 任何其他由照射太陽能電池部分產生的電信號。太陽能 電池部分可借助於該(等)光源連續地照射。只有太陽 能電池模組兩個觸點必須接觸,即可評定各電池部分, 而。 根據本發明’提供一種製造一薄膜太陽能模組之方 法,該薄膜太陽能模組具有一第一接觸電極及一第二接 觸電極,該方法包含以下步驟:a)在一襯底上沈積至少 一層;及b)藉由一刻劃工具劃分沈積於該襯底上之該 9 201030999 形成該層之電絕緣部分;D藉由-光源發出之 先’局部及/或選擇性地照射該太陽能電池模組表面之至 少一個特定區域來監視及/或控制製程步驟b),及藉由一 與該第-接觸電極及/或該第二接觸電極相連接之量測 裝置量測—對該太陽能電池模組之照射區域之位置有反 應之信號。 該製程特別適合在P3刻劃製程中進行。其用於形成一 蟾 帛二電極層沈積於一層堆叠上。通常,在該P3刻劃製程 中,一第二電極層之電絕緣條狀區域藉由該刻劃工具形 成。 製程步驟c)可在劃分步驟b)期間或在劃分製程步驟 b) 結束之後進行。監視及/或控制步驟包括一評定及 或量測上述薄膜太陽能電池功能效力的步驟。 最好是藉由該光源發出之光束移除該劃分步驟b)中 之材料,且該光源在製程步驟c)中用於照射該太陽能 ® 電池模組之至少在特定區域。舉例而言該刻劃工具包 δ 雷射光源’該雷射光源在雷射刻劃製程之製程步驟 c) 中用於照射該太陽能電池模組之表面之一特定區域, 且在製程步驟b)中用於劃分該第二電極層。 特別是’在使用該光源時,可分別針對劃分步驟b ) 及監視及/或控制步驟改變該光源發出之光束。舉例而 言’可修改一光束或光點之直徑以及該光源之強度。 此外’可在製程步驟b)及/或c)使用不同波長,以 獲得用於各製程步驟之適當波長。此外,當改變用於製 10 201030999 程步驟C)之光波長時,可獲得關於該等太陽能電池部 分特性的光譜資訊。 製程步驟b)可包括刻劃一絕緣線,其使該太陽能電 池模組主動區域之至少一部分自該太陽能電池模組之邊 緣部分電絕緣。該絕緣線至少部分地圍繞該太陽能電池 模組之主動區域。該絕緣線使該太陽能電池模組之主動 區域自鄰近處電絕緣^ 此外,製程步驟b)可包括刻劃用於使該層之一第一 霸 區域自該層之相鄰區域電絕緣的電池(劃分)線。電池 線使第二電極層(例如)之第一條狀區域/電池部分自該 第二電極層之相鄰電池部分電絕緣。在形成電池劃分線 之别形成P 3絕緣線為有利的。如此可在一製程步驟b ) 之後量測各部分及該電池劃分線之效能。 在刻劃P3電池線之前刻劃絕緣線(例如P3絕緣線) 通常為有利的。因此’各P3刻劃或劃分線使一新近形成 〇 之電池部分自該太陽能電池模組之負接觸電極絕緣。藉 由照射新形成之電池部分之一部分及量測信號,該電池 部分之絕緣及效能得以一僅與該太陽能電池模組之第一 接觸電極及/或第二接觸電極連接之量測裝置量測之舉 例而言,各電池劃分刻劃之效能可在每一額外刻劃之後 立即量測及決定。在該量測之前不必直接接觸待特徵化 之電池部分。 較佳之製程步驟C)包括用該光源發出之光掃描該太 陽能電池模組之表面。提供一系統,以掃瞄相對於該等 11 201030999 條狀電池部分之縱轴的側向/橫向方向(尤其在一垂直方 向)。該縱轴實質上為一與該等電池劃分線平行之軸。掃 描意謂相對於該太陽能電池模組之表面移動光點或光 束。藉由自該光源發出之光束與太陽能電池模組表面之 相對移動來照射該太陽能電池模組之不同區域。該光源 發出之光束可在該表面上移動’及/或該太陽能電池模組 之表面可經排列以便相對於該光源發出之光束移動。該Tco). The first conductive layer is divided into strip portions by a -first scribing process (ρι). A semiconductor layer is then deposited over the first electrode layer. The semiconductor layer is also divided into a plurality of strip portions by a second scribing process (Ρ2). Thereafter, a second contact is deposited on the semiconductor layer and the second contact is also divided into strip portions by a third scribe process (Ρ3). After each scribing process, the individual strips are electrically insulated from each other by recesses/gap created in the scribing process. Conventional scoring processes include etching, chemical scribing, or laser scribing. However, laser scoring is becoming a very important technology' because it can be produced in high quality and rapidly mass-produced, however, the reliability of such scribing processes is limited. The residual material or poor quality of the scribing process causes an unacceptable failure of the solar cell module. SUMMARY OF THE INVENTION An object of the present invention is to provide a scribing apparatus and a method of manufacturing a thin film solar cell module which can mass produce and provide a thin film solar cell module of improved quality. The above problems can be solved by applying the marking device of the first paragraph of the patent scope and the application of the 201030999 patent scope to the manufacturing of thin film, the solar cell module soil & For the feature of the present invention, reference is made to a preferred embodiment of the present invention for dividing at least one β first contact electric 4*丨*丨 layer having a first contact electrode and a solar cell module. Inventive scoring device, wherein the scoring device comprises at least one light source, wherein Β is further applied to a different region of the local Zhaole per "Shiyang energy battery module, ... containing at least -#w, characterized by The scoring device includes a measuring device for measuring between the first contact electrode and the second contact electrode of the solar cell module, the stop, and the κ electrode, and the signal is irradiated by the light source The position of the area where the solar cell module is supplied with the crucible is reactive. Generally, the solar cell module is a thin film solar cell module having at least a first electrode layer (eg, a transparent conductive oxide layer), a semiconductor layer (eg, an amorphous germanium layer), and a second electrode layer (eg, a Μ〇 or am). The thin film solar cell module includes a plurality of strip solar cell portions each having at least a first electrode layer, a semiconductor layer and a second electrode layer. The portion of the first electrode layer of the strip portion of the solar cell module is separated from and electrically insulated from the adjacent portion of the first electrode layer. A portion of the semiconductor layer of the strip portion of the solar cell module is separated from and electrically insulated from adjacent portions of the semiconductor layer. A portion of the second electrode layer of the strip portion of the solar cell module is spaced apart from and electrically insulated from adjacent portions of the second electrode layer. Further, the thin film solar cell module includes a first (negative) contact electrode at least partially connected to one of the first electrode layers and a second (positive) contact electrode connected at least to a portion of the second electrode layer. 6 201030999 This scoring device can be used to assess, measure, monitor and/or control the functional effectiveness of a solar cell module or a specific solar cell segment. In particular, the efficiency of each strip solar cell portion, electrical insulation between two adjacent strip solar cell portions, shunt resistance, and the like can be measured. The means for assessing/measuring the solar cell portion of the solar cell module and/or the functional effectiveness of the solar cell module can be a shunt scanning unit. ▲ The measurement method comprises the steps of: a) providing a solar cell module as described above, b) partially and selectively illuminating a specific area of the surface of the solar cell module by light emitted by the light source; A signal responsive to the position of the illuminated area of the solar module is measured by a measuring device coupled to the first contact electrode and/or the second contact electrode. For the measurement of different solar cell sections of a solar cell module, only two contacts are required, namely one positive electrode contact and one negative contact of the solar cell module. Furthermore, the device is particularly suitable for monitoring or controlling the scoring process. The quasi-manufacturing process includes a number of division/scribe/patterning steps such as the two laser scoring steps P1, P...3 described above. In addition, an insulation is formed to at least partially surround the active area of the module to electrically measure the active area of the solar cell module at its j-edge as described above. By measuring the laser power for the next battery characterization or for the start of the i-line (four), the result of the measurement can be used to evaluate the laser scribe process and control the laser scribe process to obtain a More ^ battery · right · battery insulation. Monitoring and/or control of the scoring process is particularly important for the p3 scribing process, i.e., when the electrode layer is scored. 7 201030999 The measurement method may be repeated after each (P3) battery division scribe and/or after the end of the (p3) scribe process and/or during the (P3) scribe process. The light source can be a single wavelength source (e.g., a laser diode) or a narrow wavelength band source (e.g., led). In this measurement, a reaction signal at a specific irradiation wavelength can be measured. When different wavelengths are used, spectral information about a solar cell portion and the performance of the solar cell module can be obtained. A preferred scoring apparatus includes at least one scoring tool for forming an electrically insulating region of the layer. The scoring tool may be particularly suitable for scoring (P3) insulated wires around an active region of the solar cell module, and / or a battery line between the portions of the solar cells of the solar cell module. The tool typically divides the active area by generating a strip-shaped battery portion configuration. In a preferred embodiment of the invention, the light source is configured to provide illumination to illuminate different regions of the solar cell module and to divide the solar cell module layer by photolithographic processing. The light source can be integrated into the scoring tool. In a preferred embodiment of the invention, the light source can comprise at least one laser source. The source can be a laser, especially for the same laser used for laser engraving. After the scribing process, the light intensity and/or cross-sectional dimensions of the laser beam are adjusted prior to beginning the measurement of the solar cell module. The scoring tool can be configured as a laser scoring tool. Laser scribing enables solar modules to be manufactured in large quantities at high quality and speed. Preferably, the scoring device is configured to illuminate different regions of the solar cell module by relative movement of light beams emitted from a source of light relative to the surface of the solar module 201030999. The scoring device can include, for example, a (laser) scanner for scanning the surface of the solar cell module. In another embodiment, a fixed beam and a device for moving the solar cell module can be substituted. In another preferred embodiment of the invention, the scoring apparatus includes a plurality of light sources arranged to illuminate different regions of the φ solar cell module by selectively converting the light sources. The light sources may be adjacently arranged on a surface of the solar cell module, and each of the light sources is arranged to illuminate a specific area of the solar cell module. When the light sources are successively transformed, the light source can be simulated. The measurement includes measuring a signal at the contact electrode of the solar cell module or between the contact electrodes that is responsive to the location of the illumination region. The measuring device particularly includes a voltage measuring device for measuring the repair pressure between the first contact electrode and the second contact electrode of the solar battery module. The measured signal can be an open circuit voltage, a current, a resistor or any other electrical signal generated by the illumination solar cell portion. The solar cell portion can be continuously illuminated by means of the (equal) light source. Only the two contacts of the solar module must be in contact to evaluate each battery section. According to the present invention, there is provided a method of fabricating a thin film solar module having a first contact electrode and a second contact electrode, the method comprising the steps of: a) depositing at least one layer on a substrate; And b) forming the electrically insulating portion of the layer by the scribe tool to divide the 9 201030999 deposited on the substrate; and D locally and/or selectively illuminating the solar cell module by the light source At least one specific area of the surface to monitor and/or control the process step b), and measuring by a measuring device connected to the first contact electrode and/or the second contact electrode - the solar cell module The position of the illuminated area is a signal of reaction. This process is particularly suitable for use in the P3 scribing process. It is used to form a layer of electrodes deposited on a stack of layers. Typically, in the P3 scribing process, an electrically insulating strip region of a second electrode layer is formed by the scoring tool. Process step c) can be carried out during the dividing step b) or after the dividing process step b). The monitoring and/or control step includes the step of assessing and or measuring the functional effectiveness of the thin film solar cell described above. Preferably, the material in the dividing step b) is removed by a beam emitted from the source, and the source is used in process step c) to illuminate at least a particular region of the solar module. For example, the scoring tool δ laser light source 'the laser light source is used in the process step c) of the laser scribing process to illuminate a specific area of the surface of the solar cell module, and in the process step b) Used to divide the second electrode layer. In particular, when the light source is used, the light beam emitted by the light source can be changed for the dividing step b) and the monitoring and/or control step, respectively. For example, the diameter of a beam or spot and the intensity of the source can be modified. Further, different wavelengths can be used in process steps b) and/or c) to obtain the appropriate wavelengths for each process step. In addition, when changing the wavelength of light used in step C) of 201010999, spectral information about the characteristics of the solar cells can be obtained. Process step b) can include scribing an insulated wire that electrically insulates at least a portion of the active area of the solar cell module from a portion of the edge of the solar cell module. The insulated wire at least partially surrounds an active area of the solar cell module. The insulated wire electrically insulates an active region of the solar cell module from adjacent regions. Further, the process step b) may include scoring a cell for electrically isolating one of the first region of the layer from an adjacent region of the layer (divide) line. The battery line electrically insulates the first strip region/battery portion of the second electrode layer (e.g.,) from adjacent battery portions of the second electrode layer. It is advantageous to form the P 3 insulated wire in forming the battery dividing line. Thus, the performance of each part and the battery dividing line can be measured after a process step b). It is often advantageous to scribe an insulated wire (e.g., a P3 insulated wire) prior to scoring the P3 cell line. Thus, each P3 scribe or dividing line insulates a newly formed 电池 battery portion from the negative contact electrode of the solar cell module. By illuminating a portion of the newly formed battery portion and measuring the signal, the insulation and performance of the battery portion can be measured by a measuring device connected only to the first contact electrode and/or the second contact electrode of the solar cell module. For example, the effectiveness of each battery division characterization can be measured and determined immediately after each additional scribe. It is not necessary to directly contact the portion of the battery to be characterized prior to the measurement. Preferably, process step C) includes scanning the surface of the solar cell module with light from the source. A system is provided for scanning the lateral/lateral direction (especially in a vertical direction) relative to the longitudinal axis of the strips of the 2010 10999 strip. The longitudinal axis is substantially an axis parallel to the dividing lines of the cells. Scanning means moving a spot or beam relative to the surface of the solar module. Different areas of the solar cell module are illuminated by relative movement of the light beam from the source to the surface of the solar module. The light beam emitted by the light source can move on the surface' and/or the surface of the solar cell module can be arranged to move relative to the light beam emitted by the light source. The

刻劃裝置可包括一掃描器,其至少用於沿著一與該太陽 能電池模組表面之縱轴橫向的線掃描。 該相對移動可藉由提供複數個光源在該太陽能電池部 分上方排成一列或一光柵圖案來模擬。藉由變換該等光 源,經自-光源變換至下-光源,可產生—實際:㈣ 之光源》 在掃描期間,該量測裝置量測對於電池_對、電池絕緣 特性及/或一特定電池部分之表現有反應之信號。該量測 裝置在太陽能電池模組兩個觸點處測量信號。 較佳之方法包括其他製程步驟d)評價該量蜊之仿號. 及e)於重複製程步驟b)以產生另一刻劃線及/心複 製程步驟b)以改善產生之關線時,改變該刻劃工具 之一輸入參數。在劃分步驟b)期間照射電池部分用、 以提供-劃分步驟b)之線上(即時)控制亦為可能。 在製程步驟c)中量測之較佳信號為一電壓信號S、一 電流信號及/或一電阻信號。舉例而言,該信號可為 路電壓。該信號可視光強度及/或經照射電池部分之分二 12 201030999 電阻而定。該光之光點特別如此之小,以致其可經調節 以僅照射一個電池部分或其中一部分。 【實施方式】 第1圖圖示根據本發明,使用刻劃裝置生產薄膜太陽 能電池模組10之製造製程中的製程步驟a)至〇。The scoring device can include a scanner for scanning at least along a line transverse to the longitudinal axis of the surface of the solar module. The relative movement can be simulated by providing a plurality of light sources arranged in a row or a grating pattern above the solar cell portion. By transforming the light sources, the self-light source is converted to the lower-light source to produce - the actual: (four) light source. During the scanning, the measuring device measures the battery_on, the battery insulation characteristics and/or a specific battery. Part of the performance is a sign of reaction. The measuring device measures the signal at two contacts of the solar module. Preferably, the method comprises the following steps: d) evaluating the imitation of the quantity .. and e) changing the step when the re-copying step b) is to generate another scribe line and/or the heart copying step b) to improve the resulting line Enter one of the parameters for the scribing tool. It is also possible to illuminate the battery portion during the dividing step b) to provide on-line (instantaneous) control of the dividing step b). The preferred signal measured in process step c) is a voltage signal S, a current signal and/or a resistance signal. For example, the signal can be a road voltage. The signal is dependent on the intensity of the light and/or the portion of the irradiated battery that is divided into two 12 201030999 resistors. The spot of light is so small that it can be adjusted to illuminate only a portion of the battery or a portion thereof. [Embodiment] Fig. 1 is a view showing process steps a) to 〇 in a manufacturing process for producing a thin film solar cell module 10 by using a scribing apparatus according to the present invention.

在第一製程步驟a)中,一 TC〇 (透明導電氧化物) 層12沈積於一玻璃襯底(例如一玻璃片)n上。該tc〇 層形成該太陽能電池模組1〇之一前電極。 在後續製程步驟b)中’使用根據本發明之雷射刻劃 裝置進行第-刻劃製程(p i )。該刻劃裝置之雷射刻劃穿 過整個TCO層12以在條狀部分之間形成間隙i2a及 12b,從而使該TCO層12之相鄰部分電絕緣。 在製程步驟c)中’ 一碎層13在電極層12之上形成, 用石夕材料填充間隙12a及12b。 之後’在製程步驟d)巾,使用根據本發明之雷射刻 劃裝置進仃第二刻劃製程(P2)。該刻劃裝置之雷射刻劃 穿過整個半導體層13以在條狀部分之間形成間隙及 從而使半導體層13之相鄰部分電絕緣《在半導體 層13之相鄰部分之間之間陽:13a及13b相對於在TC〇 層之相鄰部分之間之間隙12&及i2b橫 在製程步驟e)中,一第14r〜 τ 禾一電極層14 (例如一 Ai赤 M〇層)在欲思 層13之上形成,填充間隙13a及i3b以接 13 201030999 觸第一電極層12。 在製程步驟f)中,使用根據本發明之雷射刻劃裝置進 行第三刻劃製程步驟⑺)。該刻劃裝置之雷射刻劃穿過 整個電極層14以在條狀部分之間形成間隙14a及14b, 從而使層14之相鄰部分電絕緣。該第三刻劃製程在由間 隙14a及14b分隔之篦-赍权aΛ丄 弟一電極層14中形成電極部分之圖 I㈣Ma* m相對於半導體層13之間隙…及別 以及TC〇層12之間隙…及12b橫向偏移。 根據本發明,在製程步驟f)_或之後,亦即在隔離 電極層14中之一特定部分或在終止刻劃製程P3之後, 一雷射光束23照射太陽能電池模組10之-區域24 (雷 射點)以決定刻劃冑l4a、14b之品質及/或太陽能電池 模組1〇之相應照射部分之品質。此外,雷射光束23可 以速度v掃描太陽能電池模組1G之表面以量測各部分及 刻劃線之品f且控制該刻劃製程(例如用於刻劃後續P3 線或重複P3刻劃)之參數。 產生雷射光束23之雷射與用於刻劃至少一製程 Μ及Η之雷射相同。在進行一刻劃及一量測掃描時, 可分別調整雷射光束23(例如點24之強度或直徑)。 第2圖係根據本發明之完整太陽能電池模組10及刻劃 裝置20之俯視圖。 太陽能電池模組10由-第-電極層(TCO層)、一矽 層及第二電極層於襯底上沈積堆疊組成。各層由沿縱轴 χ延伸之條狀部分區隔。該第一電極層之第-刻劃線 14 201030999 刀隔該矽層條狀部分之刻劃線 12a、12b以實線標明 ”,八口「刀4刻割始 13a、13b以虛線標明。分隔該第-雷权肚 一 阳邊弟一電極層之該等條 分之刻劃線14a、14b另外以奢娩,」 ° 乃外以實線14a、14b標明 ι 圖中f)為沿第2圖之平面”之-橫斷面圖的—部分。 此外,太陽能電池模組1G包含兩個_區域,亦卜 負極觸點15及一正極觸點16。太陽能带、山财2 双防能電池模組10之電 池部分可在觸點1 5與16之間忐亩娩认嫩Μ 门珉直線地變換。太陽能電In a first process step a), a TC (transparent conductive oxide) layer 12 is deposited on a glass substrate (e.g., a glass sheet) n. The tc layer forms one of the front electrodes of the solar cell module. The first scoring process (pi) is carried out in a subsequent process step b) using a laser scoring apparatus according to the present invention. The laser of the scoring device is scribed across the entire TCO layer 12 to form gaps i2a and 12b between the strip portions to electrically insulate adjacent portions of the TCO layer 12. In process step c), a fragment 13 is formed over the electrode layer 12, and the gaps 12a and 12b are filled with a stone material. Thereafter, in the process step d, the second scoring process (P2) is carried out using the laser scribing apparatus according to the present invention. The laser of the scoring device is scribed across the entire semiconductor layer 13 to form a gap between the strip portions and thereby electrically insulate adjacent portions of the semiconductor layer 13 "between adjacent portions of the semiconductor layer 13 : 13a and 13b are transverse to the gaps 12 & and i2b between the adjacent portions of the TC layer, and in the process step e), a 14r~τ-an electrode layer 14 (for example, an Ai red M layer) is The layer 13 is formed over the layer 13, and the gaps 13a and i3b are filled to contact the first electrode layer 12 at 13 201030999. In process step f), a third scoring process step (7)) is carried out using the laser scoring apparatus according to the present invention. The laser of the scoring device is scribed across the entire electrode layer 14 to form gaps 14a and 14b between the strip portions to electrically insulate adjacent portions of layer 14. The third scribing process forms a portion of the electrode portion of the electrode portion 14 in the electrode layer 14 separated by the gaps 14a and 14b, and the gap between the surface of the semiconductor layer 13 and the TC layer 12 The gap... and 12b are laterally offset. According to the invention, a laser beam 23 illuminates the region 24 of the solar module 10 after a process step f)_ or after a specific portion of the isolating electrode layer 14 or after terminating the scribing process P3 ( The laser spot is determined by determining the quality of the 胄l4a, 14b and/or the quality of the corresponding illumination portion of the solar cell module 1〇. In addition, the laser beam 23 can scan the surface of the solar cell module 1G at a speed v to measure each part and the scribe line f and control the scribing process (for example, for scoring a subsequent P3 line or repeating a P3 scribe). The parameters. The laser that produces the laser beam 23 is the same as the laser used to scribe at least one process Μ and Η. The laser beam 23 (e.g., the intensity or diameter of the point 24) can be separately adjusted during a scribe and a measurement scan. Figure 2 is a plan view of the complete solar cell module 10 and scoring apparatus 20 in accordance with the present invention. The solar cell module 10 is composed of a -first electrode layer (TCO layer), a germanium layer and a second electrode layer deposited on a substrate. The layers are separated by strips extending along the longitudinal axis χ. The first-electrode layer of the first electrode layer 14 201030999 is separated by a solid line from the scribe lines 12a and 12b of the strip-shaped portion of the enamel layer, and the eight-port knives are cut by dashed lines 13a and 13b. The first and the right side of the electrode layer of the first sacred sacred sacred sacred sacred sacred sacs 14a, 14b are additionally used for extravagant delivery," ° is indicated by the solid line 14a, 14b, ι, f) In addition, the solar cell module 1G includes two _ regions, namely a negative contact 15 and a positive contact 16. Solar energy, Shancai 2 dual-energy battery The battery portion of the module 10 can be linearly changed between the contacts 15 and 16.

Φ 池模組Η)之主動區域18可由一邊緣刪除(17)圍繞, 其藉由-絕緣線19自電主動區域18處分隔,該絕緣線 19在刻劃製程Ρ1、ΡΜΡ3之至少一者中形成。在刻劃 Ρ3、刻劃線14a及14b之前刻劃絕緣線19為有利的。在 刻劃絕緣線19之後,電池線14a、14b各產生一新的絕 緣太陽能電池部分。因此,一開路電壓v〇c ( L )可在每 一 p3刻劃之後量測般而言,當刻劃一新的電絕緣電 池部分時’該電壓Voc ( L )會有所改變。 當光照射太陽能電池模組1 〇之主動區域1 8時,在接 觸區域15與16之間產生一電壓。藉由一光點24產生之 信號可藉由一電壓量測裝置量測。該信號可為一開路電 壓V〇c (L)’其視雷射點24之強度及雷射點24之位置 決定。該電壓V0C(L)可在太陽能電池模組10之兩個 觸點15與1 6之間量測。 當沿L線(y-方向)掃描一雷射點24時,該量測結果 可以第2圖之圖表示之。該電壓Voc ( L)視點24沿掃 描L線之位置l而定。在位置18a、18b、18c......處量 15 201030999 測之電麼值V0C(L)指示太陽能電池部分i8a、1仙、 18c......之品質,尤其為刻劃製程P3之品質。此外,因 個別電池部分之前電極及後電極電阻率之故,該開路電 壓Voc (L)視該電池部分上之分路電阻及分路位置而 定。在該圖示中之峰值指示雷射點24自一特定電池部分 至下一相鄰電池部分之轉換❶每次該光點自一電池部分 移動至下一電池部分時’電壓信號根據來自各個照射之 φ 電池部分之開路電壓V〇c(L)之總和產生一峰值。藉由 該峰值’各電池部分之Voc ( L )信號可自該圖表中之相 鄰電池部分的信號區分。由於快速的反應時間,在量測 V〇c (L)信號時,掃描速度v相當的高,且各個別電池 之分路資訊可在每模組僅一次掃描中收集。當沿一太陽 能電池模組10之縱軸在不同位置X掃描太陽能電池模組 1〇時(掃描方向y),可獲得一包括關於分路位置之資訊 之三維圖案。 ❹ 第3圖係與第2圖所示者相似之太陽能電池模組1 〇之 剖視圖。 根據本發明,提供一種雷射刻劃裝置20,其包含至少 一個雷射光源21。該雷射光源21可產生一雷射光束22, 以刻劃絕緣線19 (參看第2圖)及/或電池線i2a、 12b...... ; 13a、13b...... ; 14a、14b......以形成一圖案化 的太陽能電池模組1〇。可能有一個以上雷射21,其用於 同時雷射刻劃製程及/或用於不同刻劃製程,例如卩卜p2 及/或P3 » 16 201030999 雷射21可發出一光束23用以在該太陽能電 池模組之表面上產生一光點24。與用於該刻劃製程之光 束22相比’該光束23為可調節的。藉由光點24,可照 射該太陽能電池模組主動區域18之一特定部位,且電壓 voc⑴亦可用-電壓量測裝置25量測。該電壓量測裝 置25連接於太陽能電池模組1〇之負極觸點區域B與正 極觸點區域16之間。所量測之電壓v〇c⑴視雷射點 24在太陽能電池模組10上之位置及雷射點24之強度而 定。 由於條狀電池部分18a、18b、18e··.·.·在接觸區域i5 與16之間成一直線變換’所以在電池部分…、⑽、 18C……中產生之電壓合計為—電池模組之電壓。根據本 發明,若僅照射一個或幾也! 八 双煢個部分,則可得出關於該(等) 照射之電池部分之結論。 ❹ 本發明之刻劃裝置20可具有—雷射,其用於產生一雷 射刻劃光束22及一量測雷射光束23 ’或該刻劃裝置2〇 可具有兩個或兩個以上之愈私01 之雷射21 ,用以產生一雷射刻劃 光束22及/或一量測雷射光束23。 整合於刻劃裝置2〇中之量測裝置可用於校核、監視及 ’或控制一刻劃製程’尤其ρ3刻劃製程,及/或用於評定 所製造之太陽能電池模組1〇之分路電阻。 根據本發明,可將任何其他適當光源整合於刻劃裝置 =中’代替產生一雷射點24之一雷射光束23。舉例而 言’可使用任何單一波長之光源或窄波長帶之光源(例 17 201030999 如一 LED )來代替—雷射光源。當使用不同波長時,可 獲得關於該太陽能電池模組之光譜資訊及電池部分之效 能。 【圖式簡單說明】 本發明之其他特徵結構及優點藉由以上較佳實施例之 描述及附圖可更加明白。 ❿ 第1圖係根據本發明使用一刻劃裝置製造一薄膜太陽 能電池模組之製程步驟。 第2圖係根據本發明之一薄膜太陽能電池模組及一刻 劃裝置之俯視圖。 第3圖係根據本發明之一薄膜太陽能電池模組及一刻 劃裝置之側視圖。 【主要元件符號說明】 10薄膜太陽能電池模組/太陽能電池模組 11玻璃片/玻璃襯底 12 TCO (透明導電氧化物)層/第—電極層 12a、Ub間隙/刻劃線/電池線 13 碎層/半導體層 13a、13b間隙/電池線 14第二電極層/電極層/層 14a、14b間隙/刻劃線/電池線 201030999 15 負極觸點/接觸區域/觸點/負極觸點區域/第一接 觸電極 16 正極觸點/接觸區域/觸點/正極觸點區域/第二接 觸電極 17 邊緣部分 18 電主動區域/主動區域 18a ' 18b ' 18c ' 18d 位置/條狀電池部分 19 絕緣線 20 雷射刻劃裝置/刻劃裝置/刻劃工具 21 雷射光源/雷射/光源 22 雷射光束/光束/雷射刻劃光束 23 雷射光束/光束/量測雷射光束 24 區域/雷射點/光點 25 電壓量測裝置/量測裝置 V〇c ( L)開路電壓 19The active region 18 of the Φ cell module 可由) may be surrounded by an edge deletion (17) which is separated from the active active region 18 by an insulated wire 19 which is in at least one of the scribing processes Ρ1, ΡΜΡ3 form. It is advantageous to score the insulated wires 19 before scribing Ρ3, scribe lines 14a and 14b. After scribing the insulated wires 19, the battery wires 14a, 14b each create a new insulating solar cell portion. Therefore, an open circuit voltage v 〇 c ( L ) can be measured after each p3 scribe, as the voltage Voc ( L ) changes when a new electrically insulated battery portion is scored. When the light illuminates the active region 18 of the solar cell module 1, a voltage is generated between the contact regions 15 and 16. The signal generated by a spot 24 can be measured by a voltage measuring device. This signal can be an open circuit voltage V 〇 c (L)' which is determined by the intensity of the laser spot 24 and the position of the laser spot 24. This voltage V0C(L) can be measured between the two contacts 15 and 16 of the solar cell module 10. When a laser spot 24 is scanned along the L line (y-direction), the measurement result can be represented by the graph of Fig. 2. This voltage Voc (L) viewpoint 24 is determined along the position l of the scanning L line. At the position 18a, 18b, 18c, ... the amount of 15 201030999 measured value of the value V0C (L) indicates the quality of the solar cell parts i8a, 1 sen, 18c ..., especially for the characterization process The quality of P3. Further, the open circuit voltage Voc (L) depends on the shunt resistance and the shunt position on the battery portion due to the resistivity of the front electrode and the rear electrode of the individual battery portions. The peak in the illustration indicates the conversion of the laser spot 24 from a particular battery portion to the next adjacent battery portion. Each time the spot moves from one battery portion to the next, the voltage signal is based on the respective illumination. The sum of the open circuit voltages V〇c(L) of the φ battery portion produces a peak. The Voc (L) signal of each battery portion by the peak ' can be distinguished from the signals of the adjacent battery portions in the graph. Due to the fast response time, the scanning speed v is quite high when measuring the V〇c (L) signal, and the shunt information for each battery can be collected in only one scan per module. When the solar cell module 1 is scanned at a different position X along the longitudinal axis of a solar cell module 10 (scanning direction y), a three-dimensional pattern including information on the shunt position can be obtained. ❹ Fig. 3 is a cross-sectional view of a solar cell module 1 similar to that shown in Fig. 2. According to the present invention, a laser scoring apparatus 20 is provided that includes at least one laser source 21. The laser source 21 can generate a laser beam 22 to score the insulated wire 19 (see Figure 2) and/or the battery wires i2a, 12b...; 13a, 13b... 14a, 14b ... to form a patterned solar cell module 1 . There may be more than one laser 21 for simultaneous laser scribing processes and/or for different scoring processes, such as pp2 and/or P3 » 16 201030999 laser 21 may emit a beam 23 for A spot 24 is created on the surface of the solar cell module. The beam 23 is adjustable compared to the beam 22 used in the scribing process. A specific portion of the solar cell active region 18 can be illuminated by the spot 24, and the voltage voc(1) can also be measured by the voltage measuring device 25. The voltage measuring device 25 is connected between the negative electrode contact region B of the solar cell module 1 and the positive electrode contact region 16. The measured voltage v〇c(1) depends on the position of the laser spot 24 on the solar cell module 10 and the intensity of the laser spot 24. Since the strip-shaped battery portions 18a, 18b, 18e, ..... are linearly changed between the contact regions i5 and 16', the voltages generated in the battery portions..., (10), 18C, ... are collectively - the battery module Voltage. According to the present invention, if only one or several of the eight parts are irradiated, the conclusion about the battery portion of the (equal) illumination can be obtained. The scoring device 20 of the present invention may have a laser for generating a laser scoring beam 22 and a measuring laser beam 23' or the scoring device 2 may have two or more The laser 21 of the more private 01 is used to generate a laser scribed beam 22 and/or a measuring laser beam 23. The measuring device integrated in the scoring device 2 can be used for checking, monitoring and 'or controlling a scribing process', especially the ρ3 scribing process, and/or for evaluating the manufactured solar cell module Road resistance. In accordance with the present invention, any other suitable source of light can be integrated into the scoring device = in place of a laser beam 23 that produces a laser spot 24. For example, a single source of light source or a source of narrow wavelength band (Example 17 201030999 such as an LED) can be used instead of a laser source. When different wavelengths are used, the spectral information about the solar cell module and the effect of the battery portion can be obtained. BRIEF DESCRIPTION OF THE DRAWINGS Other features and advantages of the present invention will be apparent from the description of the preferred embodiments and the accompanying drawings. ❿ Figure 1 is a process step for fabricating a thin film solar cell module using a scribing device in accordance with the present invention. Figure 2 is a plan view of a thin film solar cell module and a scribing device in accordance with the present invention. Figure 3 is a side elevational view of a thin film solar cell module and a scribing device in accordance with the present invention. [Main component symbol description] 10 thin film solar cell module / solar cell module 11 glass plate / glass substrate 12 TCO (transparent conductive oxide) layer / first electrode layer 12a, Ub gap / scribe line / battery line 13 Fragment/semiconductor layer 13a, 13b gap/battery line 14 second electrode layer/electrode layer/layer 14a, 14b gap/underline/battery line 201030999 15 negative contact/contact area/contact/negative contact area/ First contact electrode 16 positive contact/contact area/contact/positive contact area/second contact electrode 17 edge portion 18 electrical active area/active area 18a ' 18b ' 18c ' 18d position / strip battery part 19 insulated wire 20 Laser scoring device / scoring device / scoring tool 21 Laser light source / laser / light source 22 Laser beam / beam / laser scribed beam 23 Laser beam / beam / measuring laser beam 24 area / Laser point / spot 25 voltage measuring device / measuring device V〇c (L) open circuit voltage 19

Claims (1)

201030999 七、申請專利範圍: 1. 一種刻劃裝置(20),其用於劃分具有一第一接觸電 極(15)及一第二接觸電極(16)之一太陽能電池模組 (1 〇 )之至少一個層(丨4 ),其中該刻劃裝置包含至少一 個光源(2 1 ),其適用於局部地照射該太陽能電池模組 (10)之不同區域(24), 其特徵在於: 該刻劃裝置(20 )包含至少一量測裝置(25 ),其用於量 ® 測在該太陽能電池模組之該第一接觸電極(15)與該第 二接觸電極(16 )之間,對經該光源(21 )照射之該太 陽能電池模組(10)之該區域(24)之位置(L)有反應 之信號。 2. 如申請專利範圍第丨項之刻劃裝置,其特徵在於: 該刻劃裝置(20 )包含至少一刻劃工具,其用於形成該 層(14 )之電絕緣區域。 φ 3.如申請專利範圍第2項之刻劃裝置(20),其特徵在 於: 該光源(21 )經組態以提供光照射該太陽能電池模組(10) 之不同區域(24),及藉由一光刻劃製程劃分該太陽能電 池模組(10)之該層(14)。 4. 如上述申請專利範圍中任一項之刻劃裝置(2〇 ),其 特徵在於: 該光源(21)包含至少一雷射光源》 5. 如上述申請專利範圍中任一項之刻劃裝置(2〇),其 20 201030999 特徵在於: 該刻劃工具經組態為一雷射刻劃工具。 6. 如上述申請專利範圍中任一項之刻劃裝置(20 ),其 特徵在於: 該刻劃裝置(20)經組態以藉由自該光源(21 )發出之 光束(24)相對於該太陽能電池模組(1〇)表面之相對 移動,照射該太陽能電池模組(1〇 )之不同區域(24 )。 7. 如上述申請專利範圍中任一項之刻劃裝置(2〇 ),其 特徵在於: ' 該刻劃裝置包含複數個光源(21),該等光源(21)經排 列以藉由選擇性地變換該等光源(21 )來照射該太陽能 電池模組(10)之不同區域。 8·如上述申請專利範圍中任一項之刻劃裝置(2〇 ),其 特徵在於: 該量測裝置(25 )包含一電壓量測裝置,其用於量測在 _ 該太陽能電池模組(10)之該第一接觸電極(15)與該 第二接觸電極(16)間之一電壓。 9. 一種製造具有一第一接觸電極(15)及一第二接觸電 極(16)之一太陽能電池模組(10)之方法,其包含以 下步驟: a)在一襯底上沈積一層(14);以及 b )藉由一刻劃工具(20 )劃分沈積於該襯底上之該層 (14) ’以形成該層(14)之電絕緣部分; 其特徵在於: 21 201030999 該方法進一步包含一步驟: C)藉由用一光源(21)發出之光,局部且選擇性地照射 該太陽能電池模組(10)之一表面的至少一個特定區域 (24)’以監視及/或控制該製程步驟b),且藉由與該第 一接觸電極(15)及該第二接觸電極(16)相連接之一 量測裝置(25 )量測一對於該太陽能電池模組(丨〇 )之 該照射區域(24)之位置(L)有反應之信號。 ❿ 10.如申請專利範圍第9項之方法,其特徵在於: 該光源(21 )藉由該光源(21 )發出之一光束用以移除 該劃分步驟b)中之材料,以及 該光源(21)在該製程步驟c)中用於照射該太陽能電 池模組(10)之至少在特定區域。 11. 如申請專利範圍第9項或第1〇項之方法,其特徵在 於: 當該光源(21)之該光用於該製程步驟b)及該製程步 參 驟c)時’該光源(21)之該光可調整之。 12. 如上述申請專利範圍第9項至第12項中任一項之方 法,其特徵在於: 該製程步驟b)包括刻劃一絕緣線,該絕緣線使該太陽 能電池模組(10 )之一主動區域(18 )之至少一部分自 該太陽能電池模組(10 )之一邊緣部分(17 )電絕緣。 13. 如上述申請專利範圍第9項至第13項中任一項之 法’其特徵在於: 該製程步驟b)包括刻劃電池線 (14a' 14b......), 22 201030999 該層(14)之-第—區域自該層(⑷之相鄰區域電絕 緣。 14.如上述申請專利範圍第9項至第14項中任一項之方 法,其特徵在於: 該製程步驟〇)包括掃描該太陽能電池模組(1〇)之該 表面。 14項中任一項之方201030999 VII. Patent application scope: 1. A scribing device (20) for dividing a solar cell module (1 〇) having a first contact electrode (15) and a second contact electrode (16) At least one layer (丨4), wherein the scoring device comprises at least one light source (2 1 ) adapted to locally illuminate different regions (24) of the solar cell module (10), characterized in that: the scribing The device (20) includes at least one measuring device (25) for measuring the amount between the first contact electrode (15) and the second contact electrode (16) of the solar cell module. The position (L) of the region (24) of the solar cell module (10) illuminated by the light source (21) is a signal of a reaction. 2. A scoring device according to the scope of the patent application, characterized in that the scoring device (20) comprises at least one scoring tool for forming an electrically insulating region of the layer (14). Φ 3. The scoring device (20) of claim 2, characterized in that the light source (21) is configured to provide light to illuminate different regions (24) of the solar cell module (10), and The layer (14) of the solar cell module (10) is divided by a photolithography process. 4. The scoring device (2) according to any one of the preceding claims, wherein: the light source (21) comprises at least one laser light source. 5. The characterization according to any one of the above patent claims. Device (2〇), 20 201030999 Features: The scoring tool is configured as a laser scoring tool. 6. A scoring device (20) according to any of the preceding claims, characterized in that the scoring device (20) is configured to be illuminated by a light beam (24) emitted from the light source (21) The relative movement of the surface of the solar cell module (1 〇) illuminates different regions (24) of the solar cell module (1 。). 7. The scoring device (2) according to any one of the preceding claims, wherein: the scoring device comprises a plurality of light sources (21) arranged to be selective The light sources (21) are transformed to illuminate different regions of the solar cell module (10). 8. The scoring device (2) according to any one of the preceding claims, wherein the measuring device (25) comprises a voltage measuring device for measuring the solar cell module. (10) A voltage between the first contact electrode (15) and the second contact electrode (16). 9. A method of fabricating a solar cell module (10) having a first contact electrode (15) and a second contact electrode (16), comprising the steps of: a) depositing a layer on a substrate (14) And b) dividing the layer (14)' deposited on the substrate by a scribing tool (20) to form an electrically insulating portion of the layer (14); characterized in that: 21 201030999 the method further comprises a step: C) locally and selectively illuminating at least one specific region (24) of the surface of one of the solar cell modules (10) by light emitted by a light source (21) to monitor and/or control the Process step b), and measuring a solar cell module (丨〇) by measuring device (25) connected to the first contact electrode (15) and the second contact electrode (16) The position (L) of the illuminated area (24) is a signal of a reaction. 10. The method of claim 9, characterized in that: the light source (21) emits a light beam by the light source (21) for removing the material in the dividing step b), and the light source ( 21) illuminating at least a specific area of the solar cell module (10) in the process step c). 11. The method of claim 9 or claim 1, wherein: the light source (21) is used for the process step b) and the process step c) 21) The light can be adjusted. 12. The method according to any one of the preceding claims, wherein the process step b) comprises scribing an insulated wire, the insulated wire causing the solar cell module (10) At least a portion of an active region (18) is electrically insulated from an edge portion (17) of the solar cell module (10). 13. The method of any one of the above-mentioned claims, wherein the process step b) comprises scribing the battery line (14a' 14b...), 22 201030999 The method of the layer (14) is electrically insulated from the layer (the adjacent region of (4). The method of any one of the preceding claims, wherein the process step 〇 ) includes scanning the surface of the solar cell module (1〇). One of the 14 items 15.如上述申請專利範圍第9項至第 法’其特徵在於: 該方法進—步包括以下製程步驟: 。平價該量測之信號;以及 ^製程步驟W以產生另—刻劃線及/或重複 称㈧以改善一產生之刻劃線時,改變該刻割 丹之一輸入參數。15. The method of claim 9 to claim </ RTI> wherein: the method further comprises the following process steps: The signal is measured at a parity; and the process step W is used to generate another scribe line and/or repeat (8) to improve the input line of one of the etch marks when the scribe line is improved. 23twenty three
TW098140428A 2009-01-29 2009-11-26 Scribing device and method of producing a thin-film solar cell module TW201030999A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/362,281 US20100190275A1 (en) 2009-01-29 2009-01-29 Scribing device and method of producing a thin-film solar cell module
EP09151595A EP2214215A1 (en) 2009-01-29 2009-01-29 Scribing Device and Method of Producing a Thin-Film Solar Cell Module

Publications (1)

Publication Number Publication Date
TW201030999A true TW201030999A (en) 2010-08-16

Family

ID=41559018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098140428A TW201030999A (en) 2009-01-29 2009-11-26 Scribing device and method of producing a thin-film solar cell module

Country Status (2)

Country Link
TW (1) TW201030999A (en)
WO (1) WO2010086042A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146673A (en) * 1977-10-27 1979-03-27 E. I. Du Pont De Nemours And Company Process of film resistor laser trimming and composition of removable coating used therein
JPH04167986A (en) * 1990-11-01 1992-06-16 Nec Corp Laser beam machining apparatus
DE4324318C1 (en) * 1993-07-20 1995-01-12 Siemens Ag Method for series connection of an integrated thin-film solar cell arrangement
JPH09260695A (en) * 1996-03-19 1997-10-03 Canon Inc Manufacture of photovoltaic device array
JPH11126916A (en) * 1997-10-24 1999-05-11 Sharp Corp Integrated-type thin film solar cell and its manufacture
JP4222736B2 (en) * 2000-02-25 2009-02-12 三洋電機株式会社 Photovoltaic device and manufacturing method thereof
JP3810365B2 (en) * 2002-12-20 2006-08-16 京セラ株式会社 Laser trimming device
JP4660354B2 (en) * 2005-01-18 2011-03-30 新光電気工業株式会社 Method and apparatus for processing conductive thin film
US20090104342A1 (en) * 2007-10-22 2009-04-23 Applied Materials, Inc. Photovoltaic fabrication process monitoring and control using diagnostic devices

Also Published As

Publication number Publication date
WO2010086042A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4660354B2 (en) Method and apparatus for processing conductive thin film
TWI429925B (en) Test equipment for automated quality control of thin film solar modules
CN101345247B (en) Photovoltaic apparatus and method of manufacturing the same
US20110250709A1 (en) Method and apparatus for manufacturing thin film photoelectric conversion module
JPH0472392B2 (en)
US20100190275A1 (en) Scribing device and method of producing a thin-film solar cell module
JP3618865B2 (en) Photovoltaic element characteristic inspection apparatus and manufacturing method
TW200933916A (en) Photovoltaic fabrication process monitoring and control using diagnostic devices
TW200929413A (en) Process testers and testing methodology for thin-film photovoltaic devices
TW201021233A (en) Method for manufacturing solar battery
JP4625941B2 (en) Solar cell performance evaluation system
JP2001135835A (en) Defect recovery method of thin film photoelectric conversion cell, manufacturing method of thin film photoelectric conversion module and defect recovery device of thin film photoelectric conversion module
JP2005197432A (en) Method for measuring solar cell characteristics
CN109087882B (en) Preparation method of flexible electronic device, product and system thereof
WO2012036197A1 (en) Device for evaluating and method for evaluating solar cell
TW201030999A (en) Scribing device and method of producing a thin-film solar cell module
JP2009060062A (en) Thin-film solar cell, and its manufacturing method
JPH06101592B2 (en) Light emission output measuring device for semiconductor light emitting element
EP2214215A1 (en) Scribing Device and Method of Producing a Thin-Film Solar Cell Module
JP3755551B2 (en) Method for removing short circuit part of solar cell and apparatus for removing short circuit part
JP4272320B2 (en) Defect repair method for thin film photoelectric conversion module and method for manufacturing thin film photoelectric conversion module
JP3521268B2 (en) Method for manufacturing photovoltaic device
JP2011029271A (en) Thin-film characteristic measuring device and method, and thin-film processing device and method
JPH0555612A (en) Manufacture of integrated amorphous solar battery
JP2001156306A (en) Method for recovering defect of thin film photoelectric conversion module and method for manufacturing thin film photoelectric conversion module