TW201029520A - Controller circuit of inverter using pulse width modulation (PWM) dimming - Google Patents

Controller circuit of inverter using pulse width modulation (PWM) dimming Download PDF

Info

Publication number
TW201029520A
TW201029520A TW98102080A TW98102080A TW201029520A TW 201029520 A TW201029520 A TW 201029520A TW 98102080 A TW98102080 A TW 98102080A TW 98102080 A TW98102080 A TW 98102080A TW 201029520 A TW201029520 A TW 201029520A
Authority
TW
Taiwan
Prior art keywords
low frequency
output
signal
comparator
width modulation
Prior art date
Application number
TW98102080A
Other languages
Chinese (zh)
Other versions
TWI404458B (en
Inventor
Li-Wei Lin
Original Assignee
Top Victory Invest Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Top Victory Invest Ltd filed Critical Top Victory Invest Ltd
Priority to TW98102080A priority Critical patent/TWI404458B/en
Publication of TW201029520A publication Critical patent/TW201029520A/en
Application granted granted Critical
Publication of TWI404458B publication Critical patent/TWI404458B/en

Links

Landscapes

  • Inverter Devices (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

A controller circuit of an inverter using pulse-width modulation (PWM) dimming includes a low-frequency (LF) timing capacitor, an LF oscillator, an LF PWM comparator, a feedback controller and an alternating-current (AC) generator. An output of the LF oscillator is coupled to the LF timing capacitor and an input of the LF PWM comparator, and an output of the LF PWM comparator is coupled to the feedback controller. The AC generator generates an AC current having appropriate magnitude and frequency to charge the LF timing capacitor. The charging current of the LF timing capacitor includes a direct-current (DC) current and the AC current. An LF ramp voltage generated at the output of the LF oscillator is fluctuated according to the magnitude of the AC current; and further, an LF PWM signal generated at the output of the LFPWM comparator is fluctuated according to the fluctuated LF ramp voltage. The fluctuated LF PWM signal is input to the feedback controller, and the spectrum of signal energy of the inverter is expanded to a wider frequency range; therefore, it improves electromagnetic interference (EMI) generated at the transition of an enable period and a disable period of the LF PWM signal.

Description

201029520 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種換流器(inverter)的控制電路,且特別是一 種使用脈寬調變(Pulse Width Modulation,簡稱PWM)調光的換流器 的控制電路。 【先前技術】 圖1A為傳統的冷陰極螢光燈(c〇id Cathode Fluorescent Lamp, ❿簡稱CCFL)電源系統之方塊圖。請參照圖1A,交流市電輸入傳統電源 系統 1 後,經過電磁干擾(ElectroMagnetic Interference,簡稱EMI) 濾波器11濾除雜訊,再經過橋式整流器12整流變為直流脈動信號。 為了符合諧波規範,電源系統輸入功率大於75W者其直流脈動信號必 須經過功率因數修正器(power Factor Corrector,簡稱PFC) 13來修 正電流諧波失真’變為穩定的典型值4〇〇Vdc的直流電壓Vbus以供電 給待機電源轉換器14及主電源轉換器15。待機電源轉換器14將直流 電廢Vbus變為典型值5Vdc的電源,其在待機模式下供電給主板(main 的微控器(Micro Controller Unit,簡稱MCU)來維持遙控接收 器的工作,並將PFC 13及主電源轉換器15關閉以降低待機功耗。主 電源轉換器15將直流電壓Vbus變為典型值12Vdc、14Vdc或其它電壓 的電源以供電給音訊、視訊、控制模組或其它模組,並變為典型值 24Vdc的電源以供電給換流器16。換流器16將主電源轉換器15提供 的典型值24Vdc的電源變為典型值1別〇Vac的交流電壓Vlamp以啟動 CCFL,且在啟動後從i8〇〇Vac降為800Vac即足以使CCFL穩定工作。 為了降低製造成本及提升轉換效率,後來發展出一種Lips架構的 CCFL 電源系統’其中 LIPS 為 Led Integrated Power Supply 的簡稱。 圖1B為現有的LIPS架構的CCFL電源系統之方塊圖。請同時參照圖 4 201029520 1A及圖IB,不再像傳統電源系統!的換流器16是由主電源轉換器i5 供電,LIPS f源系統2的換流器26直接由pFC 13提供的典型值4〇齡 的^流電壓Vbus供電’因此驅動CCFL的電能減少了一級能量轉換, 即節省了-級轉換效率的損失’而且可以降低主電源轉換器25的設計 功率及架構複缝,峡魏熱問題且降低製造成本。科,由於ups 電源系統2少了主電源轉換器25的穩壓效果,其穩定性相對地略顯不 足,尤其是換流器26使用脈寬調變(p龍)調光時在pFCi3提供的直流 電壓Vbus上會出現過大的暫態交流變化。 ❹ 圖2為圖1B所示LIPS電源系統2的換流器26輸入輸出信號之波 形圖。請同時參照圖1B及圖2,換流器26使用PWM調光,故接收的 調光信號為低頻PWM信號Vlpwm。PWM調光因調光範圍寬廣、調光線性 度佳且電路實現容易而為目前最普遍的調光方式。低頻pwM信號Vlpwm 的每一個週期T包括一致能期間Τ_0Ν及一禁能期間T_0FF。在致能期 間T—0N,換流器26正常工作’其產生頻率為fh〇sc的交流電壓viamp 以驅動CCFL發光(即變亮);而在禁能期間t_〇FF,換流器26不工作, 此時交流電壓Viamp為零,無法驅動CCFL發光(即變暗)。低頻PWM 信號Vlpwm的頻率f 10SC通常設計高於ι00Ηζ,在人類視覺暫存的影 ® 響下,並不能看到CCFL —下變亮一下變暗,只能看到亮暗的變化,故 通過調整亮暗的比例(即調整致能期間Τ_0Ν及禁能期間T_0FF的比例) 可以達到調光的目的。由於UPS電源系統2少了主電源轉換器25的 穩壓效果,當換流器26使用PWM調光時,在低頻P丽信號Vlpwm的致 能期間Τ_0Ν及禁能期間T_0FF兩者轉換瞬間,換流器26瞬問吃載或 卸載’使得PFC 13提供的直流電壓Vbus會出現過大的暫態交流變化。 直流電壓Vbus過大的暫態交流變化容易通過PFC 13中的電感器映射 該交流變化的頻率,而對該頻段基頻的低頻段頻譜產生EMI的影響。 【發明内容】 5 201029520 本發明的目的就是在提出一種使用脈寬調變調光的換流器的控制 電路,改善換流器在低頻脈寬調變信號的致能期間及禁能期間兩者轉 換瞬間產生的電磁干擾。 為了達成上述目的及其它目的,本發明提出一種使用脈寬調變調 光的換流器的控制電路,其包括低頻定時電路、低頻振盪器、低頻脈 寬調變比較器、回授控制電路及交流信號產生器。低頻定時電路包括 低頻定時電阻器及低頻定時電容器,低頻定時電阻器決定直流電流的 大小而直流電流用來對低頻定時電容器充電,低頻定時電容器具有第 © 一端及第二端且第二端耦接至接地電位。低頻振盪器具有輸出端且輸 出端耦接至低頻定時電阻器及低頻定時電容器第一端,低頻振盪器控 制低頻定時電容器被反覆地充放電而在低頻定時電容器第一端產生低 頻斜坡電壓。低頻脈寬調變比較器具有第一輸入端、第二輸入端及輸 出端’低頻脈寬調變比較器第一輸入端接收直流調光信號,低頻脈寬 調變比較器第二輸入端耦接至低頻定時電容器第一端,在低頻脈寬調 變比較器輸出端產生低頻脈寬調變信號,其中低頻脈寬調變信號每一 週期包括一致能期間及一禁能期間。回授控制電路具有致能端及輸出 ❹端,回授控制電路致能端耦接至低頻脈寬調變比較器輸出端,在致能 期間在回授控制電路輸出端產生驅動信號,在禁能期間在回授控制電 路輸出端不產生驅動信號,其中驅動信號用來驅動換流器中的開關電 路的切換。交流信號產生器具有輸出端且輸出端耦接至低頻定時電容 器第一端,在交流信號產生器輸出端提供交流電流以對低頻定時電容 器充電。 本發明利用適當大小及頻率的交流電流對低頻定時電容器充電, 使低頻定時電容器的充電電流為原先的直流電流加上該交流電流,造 成在低頻振盪器輸出端產生的低頻斜坡電壓會依據該交流電流的大小 產生擾動,進而使低頻脈寬調變信號產生擾動,而將換流器的信號能 201029520 量擴展到一個比較寬的頻率範圍上,因此可改善換流器在低頻脈寬調 變信號的致能期間及禁能期間兩者轉換瞬間產生的電磁干擾。 為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文 特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖3為依照本發明一實施例之使用PWM調光的換流器之方塊圖。 請參照圖3 ’換流器30採用如圖1B所示的LIPS電源系統2之架構, 參故換流器30直接由PFC提供的典型值400Vdc的直流電壓Vbus所供 電’並輸出交流電壓Vlamp以驅動CCFL。在本實施例中,換流器30 包括開關電路31、變壓器32、諸振電路33、電壓感測器34、電流感 測器35及控制電路36。開關電路31例如是全橋式、半橋式開關電路 或其它開關電路,用以將直流電壓Vbus變為方波形式的交流電壓。變 壓器32用以將方波形式的交流電壓升壓。諧振電路33用以將經過升 壓的方波形式的交流電壓濾波變為近似弦波的交流電壓Vlamp,且提 供譜振電壓及電流使開關電路31具備零電壓/零電流切換特性。電壓 感測器34及電流感測器35分別感測CCFL的電壓Vlamp及電流Ilamp ®而輸出電壓感測信號Vvsen及電流感測信號Visen。控制電路36依據 調光信號Vdim使用PWM調光方式以調整^亮度,且依據電流感測 k號Visen輸出驅動信號Vdrv以回授控制開關電路31的切換來穩定 CCFL亮度’又依據電壓感測信號yvsen以保護電路^由於p麵調光可 分成外部PWM調光及内部雨調光,若換流^ 3〇使用外部剛調光, 則調光信號Vdim為低頻pwm信號;而若換流器3〇使用内部pWM調光, 則調光信號Vdim為直流信號,控制電路36祕據此直流信號產生低 頻PWM信號’内部PWM調光因在設計上較為簡單而較常被使用。201029520 VI. Description of the Invention: [Technical Field] The present invention relates to an inverter control circuit, and more particularly to a Pulse Width Modulation (PWM) dimming The control circuit of the flow device. [Prior Art] FIG. 1A is a block diagram of a conventional power supply system of a cold cathode fluorescent lamp (CCFL). Referring to FIG. 1A, after the AC mains input is input to the conventional power supply system 1, the electromagnetic interference (ElectroMagnetic Interference, EMI) filter 11 filters out the noise, and then rectifies by the bridge rectifier 12 to become a DC ripple signal. In order to comply with the harmonic specification, the DC system pulse signal of the power system input power greater than 75W must be corrected by the Power Factor Corrector (PFC) 13 to correct the current harmonic distortion' to become a stable typical value of 4〇〇Vdc. The DC voltage Vbus is supplied to the standby power converter 14 and the main power converter 15. The standby power converter 14 changes the DC waste Vbus to a typical 5Vdc power supply, and supplies power to the main board in the standby mode (main Micro Controller Unit (MCU) to maintain the operation of the remote control receiver, and PFC 13 and the main power converter 15 is turned off to reduce standby power consumption. The main power converter 15 converts the DC voltage Vbus to a typical 12Vdc, 14Vdc or other voltage source for powering audio, video, control modules or other modules. And it becomes a power supply with a typical value of 24Vdc to supply power to the inverter 16. The inverter 16 changes the power supply of the typical value of 24Vdc provided by the main power converter 15 to the AC voltage Vlamp of a typical value of 1V to activate the CCFL, and The reduction from i8〇〇Vac to 800VV after startup is enough to stabilize the CCFL. In order to reduce manufacturing costs and improve conversion efficiency, a CIFL power supply system with Lips architecture was developed, where LIPS is the abbreviation of Led Integrated Power Supply. Block diagram of the CCFL power system for the existing LIPS architecture. Please refer to Figure 4 201029520 1A and Figure IB at the same time, no longer like the traditional power system! The inverter 16 is powered by the main power. The source converter i5 is powered, and the inverter 26 of the LIPS f source system 2 is directly powered by the typical 4 〇 的 电压 V V ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The loss of conversion efficiency 'can reduce the design power of the main power converter 25 and the structure of the joint seam, the wind and heat problem and reduce the manufacturing cost. Since the ups power system 2 has less voltage regulation effect of the main power converter 25, The stability is relatively insufficient, especially when the inverter 26 uses pulse width modulation (p-long) dimming, excessive transient AC changes occur in the DC voltage Vbus provided by the pFCi3. ❹ Figure 2 is shown in Figure 1B. The waveform diagram of the input/output signal of the inverter 26 of the LIPS power supply system 2 is shown. Referring to FIG. 1B and FIG. 2 simultaneously, the inverter 26 uses PWM dimming, so the received dimming signal is the low frequency PWM signal Vlpwm. PWM dimming It is the most common dimming mode due to wide dimming range, good dimming linearity and easy circuit implementation. Each period T of the low-frequency pwM signal Vlpwm includes a uniform energy period Τ_0Ν and an inactive period T_0FF. T-0N, change The device 26 operates normally 'it generates an AC voltage viamp of frequency fh〇sc to drive the CCFL to illuminate (ie, brightens); and during the disable period t_〇FF, the inverter 26 does not operate, and the AC voltage Viamp is zero. CCFL illumination cannot be driven (ie darkening). The frequency f 10SC of the low-frequency PWM signal Vlpwm is usually designed to be higher than ι00Ηζ. Under the shadow of the human visual temporary memory, CCFL cannot be seen. You can see the change of light and dark, so you can achieve the purpose of dimming by adjusting the ratio of light and dark (that is, adjusting the ratio of Τ_0Ν during the enable period to the ratio of T_0FF during the disable period). Since the UPS power supply system 2 has less voltage regulation effect of the main power converter 25, when the inverter 26 uses PWM dimming, during the enable period of the low-frequency P-signal Vlpwm, the transition period Τ_0Ν and the disable period T_0FF are instantaneously changed. The streamer 26 instantaneously loads or unloads 'so that the DC voltage Vbus provided by the PFC 13 will exhibit excessive transient AC changes. The transient AC change of the DC voltage Vbus is easy to map the frequency of the AC change through the inductor in the PFC 13, and the EMI effect on the low frequency spectrum of the fundamental frequency of the band. SUMMARY OF THE INVENTION 5 201029520 The object of the present invention is to propose a control circuit for a converter using pulse width modulation dimming, which improves the conversion of the converter during both the enabling period and the inactive period of the low frequency pulse width modulation signal. Instant electromagnetic interference. In order to achieve the above and other objects, the present invention provides a control circuit for a converter using pulse width modulation dimming, which includes a low frequency timing circuit, a low frequency oscillator, a low frequency pulse width modulation comparator, a feedback control circuit, and an alternating current. Signal generator. The low frequency timing circuit includes a low frequency timing resistor and a low frequency timing capacitor. The low frequency timing resistor determines the magnitude of the direct current and the direct current is used to charge the low frequency timing capacitor. The low frequency timing capacitor has a first end and a second end and the second end is coupled to Ground potential. The low frequency oscillator has an output coupled to the low frequency timing resistor and the first end of the low frequency timing capacitor. The low frequency oscillator control low frequency timing capacitor is repeatedly charged and discharged to generate a low frequency ramp voltage at the first end of the low frequency timing capacitor. The low frequency pulse width modulation comparator has a first input end, a second input end and an output end. The first input end of the low frequency pulse width modulation comparator receives the DC dimming signal, and the low frequency pulse width modulation comparator is coupled to the second input end. Connected to the first end of the low frequency timing capacitor, a low frequency pulse width modulation signal is generated at the output of the low frequency pulse width modulation comparator, wherein the low frequency pulse width modulation signal includes a uniform energy period and an inactive period. The feedback control circuit has an enable end and an output end, and the feedback control circuit enable end is coupled to the output end of the low frequency pulse width modulation comparator, and generates a drive signal at the output of the feedback control circuit during the enable period. During the energy period, no drive signal is generated at the output of the feedback control circuit, wherein the drive signal is used to drive the switching of the switch circuit in the inverter. The AC signal generator has an output coupled to the first end of the low frequency timing capacitor and an alternating current is provided at the output of the AC signal to charge the low frequency timing capacitor. The invention uses the AC current of appropriate size and frequency to charge the low frequency timing capacitor, so that the charging current of the low frequency timing capacitor is the original DC current plus the alternating current, so that the low frequency ramp voltage generated at the output end of the low frequency oscillator is based on the alternating current. The magnitude of the current creates a disturbance, which in turn causes the low-frequency pulse width modulation signal to perturb, and expands the signal energy of the inverter to a relatively wide frequency range, thereby improving the low-frequency pulse width modulation signal of the converter. Electromagnetic interference generated during the transition between the enabling period and the inactive period. The above and other objects, features and advantages of the present invention will become more <RTIgt; Embodiments FIG. 3 is a block diagram of an inverter using PWM dimming according to an embodiment of the present invention. Referring to FIG. 3, the inverter 30 adopts the architecture of the LIPS power supply system 2 as shown in FIG. 1B. The variable inverter 30 is directly powered by the DC voltage Vbus of a typical value of 400 Vdc provided by the PFC and outputs an AC voltage Vlamp. Drive the CCFL. In the present embodiment, the inverter 30 includes a switching circuit 31, a transformer 32, a vibration circuit 33, a voltage sensor 34, a current sensor 35, and a control circuit 36. The switching circuit 31 is, for example, a full bridge type, a half bridge type switching circuit or other switching circuit for converting the direct current voltage Vbus into an alternating current voltage in the form of a square wave. The transformer 32 is used to boost the alternating voltage in the form of a square wave. The resonant circuit 33 is configured to filter the AC voltage in the form of a boosted square wave into an AC voltage Vlamp that approximates a sine wave, and to provide a spectral voltage and current to cause the switching circuit 31 to have a zero voltage/zero current switching characteristic. The voltage sensor 34 and the current sensor 35 respectively sense the voltage Vlamp and the current Ilamp® of the CCFL and output the voltage sensing signal Vvsen and the current sensing signal Visen. The control circuit 36 uses the PWM dimming mode to adjust the brightness according to the dimming signal Vdim, and stabilizes the CCFL brightness according to the current sensing k-number Visen output driving signal Vdrv to feedback the switching of the control switch circuit 31, and according to the voltage sensing signal. Yvsen to protect the circuit ^ due to p-side dimming can be divided into external PWM dimming and internal rain dimming, if the commutation ^ 3 〇 using external just dimming, the dimming signal Vdim is the low frequency pwm signal; and if the converter 3 〇 Using internal pWM dimming, the dimming signal Vdim is a DC signal, and the control circuit 36 generates a low-frequency PWM signal based on the DC signal. Internal PWM dimming is often used because it is relatively simple in design.

圖4為圖3所示控制電路36的一具體實施例之電路圖,其中CMP 201029520 為比較器(CoMParator)的簡稱,EA為誤差放大器(Err〇r 的簡稱。請參照圖4 ’控制電路46包括低頻振盪器461、低頻定時電 路462、低頻PWM比較器463、回授控制電路464及交流信號產生器 465。低頻定時電路462包括低頻定時電阻器R1及低頻定時電容器 C1,在本實施例中,低頻定時電阻器ri第一端耦接至直流電源Vdd, 低頻疋時電阻器R1第一端耗接至低頻震蘯器461輸出端及低頻定時電 容器C1第一端,低頻定時電容器C1第二端耦接至接地電位Vgnd。直 流電源Vdd通過低頻定時電阻器R1產生直流電流ic以便用來對低頻 φ定時電容器C1充電,而低頻定時電阻器R1將決定直流電流Ic的大 小。低頻振盪器461控制在其輸出端或低頻定時電容器C1第一端上的 電壓被充電到第一設定電壓Vpl時停止充電並開始放電,且在放電到 第二設定電壓Vp2時停止放電並開始充電。因此,低頻振盪器461輸 出端或低頻定時電容器C1第一端上的電壓會反覆地上升及下降,形成 波形為三角波或鋸齒波的低頻斜坡電壓Vlst,其波峰電壓為第一設定- 電壓Vp卜波谷電壓為第二設定電壓Vp2,其頻率為fl〇sc且與1/(R1 xCl)成比例。 ❹ 在本實施例中’換流器30使用内部PWM調光,故調光信號Vdim 為直流信號。低頻PWM比較器463第一輸入端接收直流調光信號 Vdim,其第二輸入端耦接至低頻定時電容器α第一端以接收低頻斜坡 電壓Vlst ’通過比較直流調光信號Vdim及低頻斜坡電壓vlst而在其 輸出端產生低頻PWM信號。低頻p麗信號的一實施例如 圖2所示,其每一週期T (=l/fl〇sc)包括一致能期間TJ)N及一禁能 期間T_0FF。回授控制電路464致能端耦接至低頻PWM比較器463輸 出^以接收低頻PWM信號。在低頻p龍信號Vipwm的致能期間 TJ)N’在回授控制電路464輸出端產生驅動信號vdry以驅動開關電路 31 ’使換流器30正常工作而產生頻率為fh〇sc的交流電壓viamp以驅 8 201029520 動CCFL發光;而在低頻PWM信號Vlpwm的禁能期間TJ)FF,在回授控 制電路464輸出端不產生驅動信號Vdrv,即驅動信號Vdrv為零而無 法驅動開關電路31 ’使換流器30不工作,此時交流電壓Vlamp為零^ 無法驅動CCFL發光(即變暗)。交流信號產生器465輸出端耦接至低頻 疋時電谷器C1第一端’在父流信號產生器465輸出端提供交流電流 la。所以,彳氏頻定時電容器C1的充電電流為原先的直流電流比加上 交流電流la ’使得在低頻振盡器461輸出端或低頻定時電容器ci第 一端產生的低頻斜坡電壓Vlst會依據交流電流ia的大小產生擾動, 參造成低頻雨比較器463輸出端產生的低頻pwm信號Vlpwm產生擾動。 擾動的低頻PWM信號Vlpwm通過回授控制電路464將換流器30的信號 能量擴展到一個比較寬的頻率範圍上,因此可改善換流器3〇在低頻 PWM信號Vlpwm的致能期間T一0N及禁能期間T_OFF兩者轉換瞬間產生 的電磁干擾。 回授控制電路464包括誤差放大器4641、高頻振盪器4642、高頻 定時電路4643、高頻PWM比較器4644、控制邏輯電路4645及輸出驅 動電路4646。誤差放大器4641致能端(即回授控制電路464致能端) ^接收低頻PWM信號Vlpwm ’在致能期間T_0N,誤差放大器4641正常工 作而得以產生驅動信號Vdrv ;而在禁能期間T_0FF,誤差放大器4641 不工作而無法產生驅動信號Vdrv或驅動信號Vdrv為零。當誤差放大 器4641正常工作時’誤差放大器4641通過比較電流回授信號Visen 及參考電壓Vref在其輸出端產生誤差電壓Vea。高頻振盪器4642產 生斜坡電壓的方式與低頻振盪器461 —樣,即高頻振盪器4642輸出端 耦接至高頻定時電路4643 (其包括高頻定時電阻器R2及高頻定時電 容器C2) ’在其輸出端產生高頻斜坡電壓vhst,其頻率為fhosc且與 l/(R2xC2)成比例。接著,高頻1^觀比較器4644通過比較高頻斜坡電 壓Vhst及誤差電壓Vea在其輸出端產生高頻PWM信號Vhpwm,控制邏 9 201029520 輯電路4645依據高頻PWM信號Vhpwm產生驅動信號Vdrv以控制開關 電路31的切換,以便如圖2所示在致能期間T__〇N產生頻率為fhosc 的交流電壓Vlamp。一般驅動信號Vdrv會通過如開沒極、開集極或圖 騰柱等架構的輸出驅動電路4646來加強其驅動能力。另外,低頻振蘯 器461、低頻PWM比較器463、誤差放大器4641、高頻振蘯器4642、 高頻PWM比較器4644、控制邏輯電路4645及輸出驅動電路4646可被 組合封裝成積體電路,如0Z9938,以便簡化設計。4 is a circuit diagram of a specific embodiment of the control circuit 36 of FIG. 3, wherein CMP 201029520 is an abbreviation of a comparator (CoMParator), and EA is an error amplifier (abbreviation of Err〇r. Please refer to FIG. 4 'control circuit 46 includes The low frequency oscillator 461, the low frequency timing circuit 462, the low frequency PWM comparator 463, the feedback control circuit 464, and the alternating current signal generator 465. The low frequency timing circuit 462 includes a low frequency timing resistor R1 and a low frequency timing capacitor C1, in this embodiment, The first end of the low frequency timing resistor ri is coupled to the DC power supply Vdd, and the first end of the low frequency 疋 resistor R1 is connected to the output of the low frequency oscillator 461 and the first end of the low frequency timing capacitor C1, and the second end of the low frequency timing capacitor C1. It is coupled to the ground potential Vgnd. The DC power supply Vdd generates a DC current ic through the low frequency timing resistor R1 for charging the low frequency φ timing capacitor C1, and the low frequency timing resistor R1 determines the magnitude of the DC current Ic. The low frequency oscillator 461 controls Stopping charging and starting discharge at the output or the voltage on the first end of the low frequency timing capacitor C1 is charged to the first set voltage Vpl, and is discharged to When the second set voltage Vp2 is set, the discharge is stopped and charging is started. Therefore, the voltage at the output end of the low frequency oscillator 461 or the low frequency timing capacitor C1 rises and falls repeatedly, forming a low frequency ramp voltage Vlst whose waveform is a triangular wave or a sawtooth wave. The peak voltage is the first setting - the voltage Vp is the second set voltage Vp2, and the frequency is fl 〇 sc and is proportional to 1 / (R1 x Cl). ❹ In the present embodiment, the 'inverter 30 is used. The internal PWM is dimmed, so the dimming signal Vdim is a DC signal. The first input of the low frequency PWM comparator 463 receives the DC dimming signal Vdim, and the second input is coupled to the first end of the low frequency timing capacitor α to receive the low frequency ramp voltage. Vlst ' generates a low frequency PWM signal at its output by comparing the direct current dimming signal Vdim with the low frequency ramp voltage vlst. An embodiment of the low frequency p-signal is shown in Figure 2, each period T (= l / fl 〇 sc) It includes a consistent energy period TJ)N and a disable period T_0FF. The feedback control circuit 464 is coupled to the low frequency PWM comparator 463 to receive the low frequency PWM signal. During the enable period of the low frequency p-long signal Vipwm, TJ)N' generates a drive signal vdry at the output of the feedback control circuit 464 to drive the switch circuit 31' to operate the inverter 30 to generate an AC voltage viamp having a frequency of fh〇sc. In the disable period TJ) FF of the low frequency PWM signal Vlpwm, the drive signal Vdrv is not generated at the output of the feedback control circuit 464, that is, the drive signal Vdrv is zero and the switch circuit 31' cannot be driven. The inverter 30 does not operate, and the AC voltage Vlamp is zero at this time. The CCFL cannot be driven to emit light (i.e., dimmed). The output of the AC signal generator 465 is coupled to the low frequency, and the first end of the battery C1 provides an alternating current la at the output of the parent signal generator 465. Therefore, the charging current of the frequency capacitor C1 is the original DC current ratio plus the alternating current la' such that the low frequency ramp voltage Vlst generated at the output of the low frequency 461 or the low frequency timing capacitor ci is dependent on the alternating current. The size of the ia is disturbed, and the low frequency pwm signal Vlpwm generated at the output of the low frequency rain comparator 463 is disturbed. The disturbed low frequency PWM signal Vlpwm extends the signal energy of the inverter 30 to a relatively wide frequency range by the feedback control circuit 464, thereby improving the converter 3 致 during the enable period of the low frequency PWM signal Vlpwm T_0N And the electromagnetic interference generated when the T_OFF is converted during the disable period. The feedback control circuit 464 includes an error amplifier 4641, a high frequency oscillator 4642, a high frequency timing circuit 4643, a high frequency PWM comparator 4464, a control logic circuit 4645, and an output driving circuit 4646. The error amplifier 4641 enable terminal (ie, the feedback control circuit 464 enable terminal) ^ receives the low frequency PWM signal Vlpwm ' during the enable period T_0N, the error amplifier 4641 operates normally to generate the drive signal Vdrv; and during the disable period T_0FF, the error The amplifier 4641 does not operate and cannot generate the drive signal Vdrv or the drive signal Vdrv is zero. When the error amplifier 4641 operates normally, the error amplifier 4641 generates an error voltage Vea at its output by comparing the current feedback signal Visen with the reference voltage Vref. The high frequency oscillator 4642 generates a ramp voltage in a manner similar to the low frequency oscillator 461, that is, the output of the high frequency oscillator 4642 is coupled to the high frequency timing circuit 4643 (which includes the high frequency timing resistor R2 and the high frequency timing capacitor C2). 'Generate a high frequency ramp voltage vhst at its output with a frequency of fhosc and proportional to l/(R2xC2). Then, the high frequency comparator 4464 generates a high frequency PWM signal Vhpwm at its output by comparing the high frequency ramp voltage Vhst and the error voltage Vea, and the control logic 994529520 circuit 4645 generates the driving signal Vdrv according to the high frequency PWM signal Vhpwm. The switching of the switching circuit 31 is controlled so as to generate an alternating voltage Vlamp having a frequency fhosc during the enabling period T__〇N as shown in FIG. The general drive signal Vdrv will enhance its drive capability through an output drive circuit 4646 such as an open dipole, open collector or totem pole. In addition, the low frequency oscillator 461, the low frequency PWM comparator 463, the error amplifier 4641, the high frequency oscillator 4642, the high frequency PWM comparator 4644, the control logic circuit 4645, and the output driving circuit 4646 can be combined and packaged into an integrated circuit, such as 0Z9938. In order to simplify the design.

在本實施例中’控制電路46更包括比較器466及開關467。比較 器466第一輸入端接收直流調光信號Vdim,其第二輸入端接收第一設 定電壓Vpl,此第一設定電壓為低頻斜坡電壓vist的波峰電壓。開關 467例如是PNP雙載子接面電晶體,其第一端(或射極端)耦接至交流 信號產生器465輸出端,其第二端(或集極端)耦接至低頻定時電容器In the present embodiment, the control circuit 46 further includes a comparator 466 and a switch 467. The first input terminal of the comparator 466 receives the DC dimming signal Vdim, and the second input terminal receives the first set voltage Vpl. The first set voltage is the peak voltage of the low frequency ramp voltage vist. The switch 467 is, for example, a PNP bipolar junction transistor having a first end (or emitter terminal) coupled to the output of the AC signal generator 465 and a second end (or collector terminal) coupled to the low frequency timing capacitor.

ci第一端’其控制端(或基極端)耦接至比較器466輸出端。當直流調 光信號Vdim大於或等於第一設定電壓Vpl時,即直流調光^號&amp;址 大於或等於低頻斜坡電壓Vlst的波峰電壓,此時低頻p觀信號Vlp職 的致能期間TJM為最大(即τ—0N=T)而不存在禁能期間TJ)FF,並不 會有致能期間Τ_0Ν及禁能期間T_0FF兩者轉換瞬間產生電磁干擾的問 題^因此為了節能可由比較器466輸出端輸出信號控制開關467斷開°, 使交流信號產生器465輸出端及低頻定時電容器α第一端斷開。反 之’當直流調光信號Vdim小於第一設定電壓Vpl時,比較器46g 端輸出信號控制開關467導通,使交流信號產生器伽輸 ^ ^定時電容n α第-端。糾,如果交流職產&quot; 仏就倒流的設計,則必須在開w 467及低頻㈣電容器ci之間二 =體di提供單向導通功能,如圖4所示,二極體 D1 _端減至低蚁時電容器 或者’在開關467及交流信號產生器之間設置二極體(未弟會示) 201029520 201029520 二極體陰極端耦接 一極體陽極端耦接至交流信號產生器465輸出端, 至開關467第一端。 圖5為圖3所示控制電路36的另一具體實施例之電路圖。請同時 ^圖f及圖5 ’控制電路56與控制電路46的差異僅在於控制是否 字乂流信號la提供到低頻定時電容器C1的實施方式。控制電路洸 利用比,器466比較直流調光信號Vdiffl及第一設定電壓Vpl,以便輸 出控制信號控制開關567。開關567例如是圆雙載子接面電晶體,j ,第-端(或集極端)麵接至交流信號產生$ 輸出端及二極體跄 罾1^極端’其第二端(或射極端)輪至接地電位Vgnd,其控制端(或基 接至比較H 466輸出端。當直流調光信號Vdim大於或等於第 =疋電壓Vpi時,比較器466輪出端輸出信號控制開關567導通, 5二極體?陽極端轉接至接地電位_,故二極體D2截止而使交流 ^號產生器465輸出端與低頻定時電容器C1帛一端斷開。反之,當直 =調光仏號¥(11111小於第一設定電壓Vpl時,比較器466輸出端輸出信 ^控制開關567斷開,交流信號產生器465輸出端當錄接至低頻定 時電容器ci第一端。 - ❹I昭圖6為圖3所示控制電路36的又—具體實施例之電路圖。請同時 *’、、圖4及圖6 ,控制電路66與控制電路46的差異僅在於低頻振盪 山及低頻定時電路的實施方式。控制電路66的低頻振盈器661的輸出 有第一輪出端及第二輸出端。控制電路66的低頻定時電路662 =低敏時電阻11 R1及低頻定時電容H G1,低献時電阻器R1第 至,輕接低巧震盪$ 661第-輪出端,低頻定時電容器C1帛-端耗接 ^頻震i器661第二輸出端,低敏時電阻器R1及低頻定時電容器 π/ 7均耦接至接地電位Vgn(^低頻振盪器661提供直流電流Ic 的氏頻疋時電容 C1充電’而低頻定時電阻器R1決定直流電流Ic 大小°此時低頻PWM比較器463第二輸入端及交流信號產生器465 201029520 輸出補接至低頻振盪H 661第二輸出端及麵定時電容器C1第一 端’而不祕至低頻振盪器661帛—輸出端及低頻定時電阻器耵。 。圖7為圖4所示交流信號產生器465的一具體實施例之電路圖。 請參照圖7’交流信號產生器765包括一韋恩橋式振盈器㈤邊 oscillator) 765卜其中韋恩橋式振盪器7651由操作放大器〇pA、電 阻器R4〜R7及電容器C3〜C6所組成。韋恩橋式振盈器7651輸出端轉 接至電阻器R3 ’故其輸出端輸出的弦波電壓信號通過電阻器r 交流電流la。 。綜上所述,本發明之使用PWM調光的換流器的控制電路利用交流 信號產生器產生適當大小及頻率的交流電流對低頻定時電容器充電, 故低頻糾電容_充電電流為縣流電流加上該錢電流在 低頻振盪器輸出端產生的低頻斜坡電壓會依據該交流電流的大小產生 擾動,使低頻PWM比較器輸出端產生的低頻pwM信號產生擾動。擾動 的低頻PWM信號通過回授控制電路將換流器的信號能量擴展到一個比 較寬的頻率範圍上,因此可改善換流器在低頻酬信號的致能期間及 禁能期間兩者轉換瞬間產生的電磁干擾。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發 明,任何熟習此技藝者,在不脫離本發明之精神和範圍内,當可作些 許之更動與潤飾’因此本發明之保護範圍當視後附之申請專利範圍所 界定者為準。 【圖式簡單說明】 圖1A為傳統的冷陰極螢光燈電源系統之方塊圖。 圖1B為現有的LIPS架構的冷陰極螢光燈電源系統之方塊圖。 圖2為圖1B所示LIPS電源系統的換流器輸入輸出信號之波形圖。 12 201029520 圖3為依照本發明一實施例之使用PWM調光的換流器之方塊圖。 圖4為圖3所示控制電路的—具體實施例之電路圖。 圖5為圖3所示控制電路的另一具體實施例之電路圖。 圖6為圖3所示控制電路的又一具體實施例之電路圖。 圖7為圖4所示父流彳§號產生器的—具體實施例之電路圖。 【主要元件符號說明】The first end of ci's control terminal (or base terminal) is coupled to the output of comparator 466. When the DC dimming signal Vdim is greater than or equal to the first set voltage Vpl, that is, the DC dimming number & address is greater than or equal to the peak voltage of the low frequency ramp voltage Vlst, and the enabling period TJM of the low frequency p-view signal Vlp is Maximum (ie τ—0N=T) without the disable period TJ) FF, there is no problem of electromagnetic interference generated during the transition between the enable period Τ_0Ν and the disable period T_0FF. Therefore, the output of the comparator 466 can be used for energy saving. The output signal control switch 467 is turned off to disconnect the output of the AC signal generator 465 and the first end of the low frequency timing capacitor a. When the DC dimming signal Vdim is smaller than the first set voltage Vpl, the comparator 46g terminal output signal control switch 467 is turned on, so that the AC signal generator galvanically supplies the timing capacitor n α to the first end. Correction, if the exchange of professional production &quot; 仏 backflow design, you must provide a one-way conduction function between the open w 467 and the low frequency (four) capacitor ci, two body di, as shown in Figure 4, the diode D1 _ end reduction At the low ant time capacitor or 'set the diode between the switch 467 and the AC signal generator (not shown) 201029520 201029520 The cathode end of the diode is coupled to the anode end of the pole and coupled to the output of the AC signal generator 465 End, to the first end of the switch 467. FIG. 5 is a circuit diagram of another embodiment of the control circuit 36 of FIG. At the same time, the difference between the control circuit 56 and the control circuit 46 is only to control whether or not the word trickle signal la is supplied to the low frequency timing capacitor C1. The control circuit 洸 compares the DC dimming signal Vdiff1 and the first set voltage Vpl with a ratio 466 to output a control signal control switch 567. The switch 567 is, for example, a circular bipolar junction transistor, j, the first end (or collector terminal) is connected to the AC signal to generate the output terminal and the diode 跄罾1^ extreme 'the second end (or the emitter end) Turning to the ground potential Vgnd, its control terminal (or base is connected to the comparison H 466 output. When the DC dimming signal Vdim is greater than or equal to the first 疋 voltage Vpi, the comparator 466 round-trip output signal control switch 567 is turned on, 5 diode? The anode end is switched to the ground potential _, so the diode D2 is turned off and the output of the AC generator 465 is disconnected from the low frequency timing capacitor C1 。. Conversely, when the straight = dimming 仏 ¥ ¥ (11111 is smaller than the first set voltage Vpl, the comparator 466 output output control switch 567 is turned off, and the output of the AC signal generator 465 is recorded to the first end of the low frequency timing capacitor ci. - ❹I is shown in Fig. 6 3 is a circuit diagram of a specific embodiment of the control circuit 36. Please simultaneously *', 4 and 6, the difference between the control circuit 66 and the control circuit 46 is only the implementation of the low frequency oscillation mountain and the low frequency timing circuit. The output of the low frequency oscillator 661 of circuit 66 has a first round Terminal and second output. Low-frequency timing circuit 662 of control circuit 66 = low-sensitivity resistor 11 R1 and low-frequency timing capacitor H G1, low-voltage resistor R1 first, lightly connected and low-oscillation $ 661 first-round The low-frequency timing capacitor C1帛-end consumes the second output end of the frequency-shocking device 661, and the low-sensitivity resistor R1 and the low-frequency timing capacitor π/7 are all coupled to the ground potential Vgn (the low-frequency oscillator 661 provides the DC current) Ic's frequency 疋Chip capacitor C1 is charged' and the low frequency timing resistor R1 determines the DC current Ic size. At this time, the low frequency PWM comparator 463 second input terminal and the AC signal generator 465 201029520 output is supplemented to the low frequency oscillation H 661 second The output terminal and the surface timing capacitor C1 have a first end 'not secret to the low frequency oscillator 661 帛 - the output terminal and the low frequency timing resistor 耵. Fig. 7 is a circuit diagram of a specific embodiment of the AC signal generator 465 shown in Fig. 4. Please refer to FIG. 7 'AC signal generator 765 includes a Wayne bridge vibrator (5) side oscillator) 765 of which Wayne bridge oscillator 7651 is operated amplifier 〇pA, resistors R4 R R7 and capacitors C3 ~ C6 The composition. Wayne bridge vibrator 765 1 output is switched to resistor R3 'so the sine wave voltage signal outputted from its output terminal passes through resistor r ac current la. In summary, the control circuit of the inverter using PWM dimming of the present invention utilizes AC The signal generator generates an alternating current of appropriate size and frequency to charge the low frequency timing capacitor, so the low frequency correction capacitor _ charging current is the current of the county current plus the low frequency ramp voltage generated by the current at the output of the low frequency oscillator according to the alternating current The size creates a disturbance that causes the low frequency pwM signal generated at the output of the low frequency PWM comparator to be disturbed. The disturbed low-frequency PWM signal extends the signal energy of the inverter to a relatively wide frequency range through the feedback control circuit, thereby improving the instantaneous conversion of the converter during the enabling period and the disable period of the low-frequency compensation signal. Electromagnetic interference. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a block diagram of a conventional cold cathode fluorescent lamp power supply system. FIG. 1B is a block diagram of a conventional cold cathode fluorescent lamp power supply system of the LIPS architecture. 2 is a waveform diagram of an input and output signal of an inverter of the LIPS power supply system shown in FIG. 1B. 12 201029520 FIG. 3 is a block diagram of an inverter using PWM dimming in accordance with an embodiment of the present invention. 4 is a circuit diagram of a specific embodiment of the control circuit of FIG. Figure 5 is a circuit diagram of another embodiment of the control circuit of Figure 3. Figure 6 is a circuit diagram of still another embodiment of the control circuit of Figure 3. Figure 7 is a circuit diagram of a specific embodiment of the parent flow generator shown in Figure 4. [Main component symbol description]

1、2:CCFL電源系統 12 :橋式整流器 14 ·待機電源轉換器 16、26 :換流器 31 :開關電路 33 .譜振電路 35 :電流感測器 46卜661 :低頻振盪器 463 :低頻PWM比較器 4641 :誤差放大器 4643 :高頻定時電路 4645 :控制邏輯電路 465、765 :交流信號產生器 467、567 :開關 11 :電磁干擾(EMI)濾波器 13 :功率因數修正器(pfC) 15、25 :主電源轉換器 30 :換流器 32 :變壓器 34 :電壓感測器 36、46、56、66 :控制電路 462、662 :低頻定時電路 464 :回授控制電路 4642 ·局頻振盈器 4644 :高頻PWM比較器 4646 :輸出驅動電路 466 :比較器 7651 :韋恩橋式振盪器 13 2010295201, 2: CCFL power system 12: bridge rectifier 14 · standby power converter 16, 26: inverter 31: switching circuit 33. Spectral circuit 35: current sensor 46 661: low frequency oscillator 463: low frequency PWM comparator 4641: error amplifier 4643: high frequency timing circuit 4645: control logic circuit 465, 765: AC signal generator 467, 567: switch 11: electromagnetic interference (EMI) filter 13: power factor corrector (pfC) 15 25: main power converter 30: inverter 32: transformer 34: voltage sensor 36, 46, 56, 66: control circuit 462, 662: low frequency timing circuit 464: feedback control circuit 4642 · local frequency vibration 4644: high frequency PWM comparator 4646: output drive circuit 466: comparator 7651: Wayne bridge oscillator 13 201029520

Vbus :直流電壓 Vvsen :電壓感測信號 Vdrv :驅動信號 Vlpwm :低頻PWM信號 Vlst :低頻斜坡電壓 Vref :參考電壓 Vpl :第一設定電壓 Vgnd :接地電位 Ic ·直流電流 R1 :低頻定時電阻器 R3〜R7 :電阻器 C2 :南頻定時電容|§Vbus : DC voltage Vvsen : Voltage sensing signal Vdrv : Drive signal Vlpwm : Low frequency PWM signal Vlst : Low frequency ramp voltage Vref : Reference voltage Vpl : First set voltage Vgnd : Ground potential Ic · DC current R1 : Low frequency timing resistor R3 ~ R7: Resistor C2: South Frequency Timing Capacitor|§

Dl、D2 :二極體 Τ_0Ν :低頻PWM信號致能期間 flosc :低頻PWM信號頻率Dl, D2: Diode Τ_0Ν : Low frequency PWM signal enable period flosc : Low frequency PWM signal frequency

Vlamp:交流電壓(或CCFL電壓)Vlamp: AC voltage (or CCFL voltage)

Vi sen :電流感測信號Vi sen : current sensing signal

Vdim :調光信號Vdim: dimming signal

Vhpwra :高頻PWM信號Vhpwra: high frequency PWM signal

Vhst :高頻斜坡電壓Vhst : high frequency ramp voltage

Vea :誤差電壓Vea: error voltage

Vdd :直流電源Vdd: DC power supply

Ilamp : CCFL 電流 la :交流電流 R2 :高頻定時電阻器 C1 :低頻定時電容器 C3〜C6 :電容器 T :低頻PWM信號週期 T_0FF :低頻PWM信號禁能期間 fhosc :高頻PWM信號頻率Ilamp : CCFL current la : AC current R2 : High frequency timing resistor C1 : Low frequency timing capacitor C3 ~ C6 : Capacitor T : Low frequency PWM signal period T_0FF : Low frequency PWM signal disable period fhosc : High frequency PWM signal frequency

Claims (1)

201029520 七、申請專利範圍·· 1. 一種使用脈寬調變調光的換流器的控制電路,包括: 一低頻定時電路,包括一低頻定時電阻器及一低頻定時電容器,該 低頻定時電阻器決定一直流電流的大小,該直流電流對該低頻定 時電容器充電’該低頻定時電容器具有一第一端及一第二端,該 低頻定時電容器第二端輕接至一接地電位; 一低頻振盪器,具有一輸出端,該低頻振盪器輸出端耦接至該低頻 響 疋時電阻器及該低頻定時電容器第一端,控制該低頻定時電容器 被反覆地充放電而在該低頻定時電容器第一端產生一低頻斜坡 電壓; 一低頻脈寬調變比較器’具有一第一輸入端、一第二輸入端及一輸 出端’該低頻脈寬調變比較器第一輸入端接收一直流調光信號, 該低頻脈寬調變比較器第二輸入端耦接至該低頻定時電容器第 一端’在該低頻脈寬調變比較器輸出端產生一低頻脈寬調變信 號’該低頻脈寬調變信號每一週期包括一致能期間及一禁能期 φ 間; 一回授控制電路’具有一致能端及一輸出端,該回授控制電路致能 端麵接至該低頻脈寬調變比較器輸出端,在該致能期間在該回授 控制電路輸出端產生一驅動信號,在該禁能期間在該回授控制電 路輸出端不產生該驅動信號;以及 —交流信號產生器,具有一輸出端,該交流信號產生器輸出端耦接 至該低頻定時電容器第一端,在該交流信號產生器輸出端提供一 交流電流。 2·如申請專利範圍第1項所述之使用脈寬調變調光的換流器的控制 15 201029520 電路,更包括: 一比較器,具有一第一輸入端、一第二輸入端及一輸出端,該比較 器第一輸入端接收該直流調光信號,該比較器第二輸入端接收一 設定電壓,該設定電壓為該低頻斜坡電壓的波峰電壓;以及 一開關,具有一第一端、一第二端及一控制端,該開關第一端耦接 至該交流信號產生器輸出端,該開關第二端耦接至該低頻定時電 容器第一端,該開關控制端耦接至該比較器輸出端, 其中,當該直流調光信號大於或等於該設定電壓時,該比較器輸出 端輸出信號控制該開關斷開,使該交流信號產生器輸出端及該低 頻定時電容器第一端斷開,當該直流調光信號小於該設定電壓 時’該比較器輸出端輸出信號控制該開關導通,使該交流信號產 生器輸出端耦接至該低頻定時電容器第一端。 3. 如申請專利範圍第2項所述之使用脈寬調變調光的換流器的控制 電路,更包括: 一二極體,具有一陽極端及一陰極端,該二極體陽極端耦接至該開 關第二端,該二極體陰極端耦接至該低頻定時電容器第一端。 4. 如申請專利範圍第2項所述之使用脈寬調變調光的換流器的控制 電路,更包括: 一二極體,具有一陽極端及一陰極端,該二極體陽極端耦接至該交 流信號產生器輸出端,該二極體陰極端耦接至該開關第一端。 5. 如申請專利範圍第1項所述之使用脈寬調變調光的換流器的控制 電路,更包括: 一比較器,具有一第一輸入端、一第二輸入端及一輸出端,該比較 器第一輸入端接收該直流調光信號,該比較器第二輸入端接收一 201029520 叹定電藝’亂支定電歷為該低頻斜坡電廢的波峰電屢;以及 一二極體,具有一陽極端及一陰極端, 頻定時電容器第一端;以及 該二極體陰極端耗接至該低 開關’具有一第一端、一第二端及一控制端,該開關第一 ^亥交流信號產生ϋ輸出端及該二極體陽極端,·關第二 接至該接地電位,該開關控制端搞接至該比較器輸出端, 其中,當該直流調光信號大於或等於該設定電壓時,該比較器輸出 ❿ 端輸出信號控制該開關導通’使該二極體陽極端耦接至該接地電 位,當該直流調光信號小於該設定電壓時,該比較器輸出端輸出 信號控制該開關斷開》 6·如申請專利範圍第1項所述之使用脈寬調變調光的換流器的控制 電路,其中該低頻定時電阻器具有一第一端及一第二端,該低頻定 時電阻器第一端搞接至一直流電源,該低頻定時電阻器第二端搞接 至該低頻震盪器輸出端及該低頻定時電容器第一端。 7.如申請專利範圍第1項所述之使用脈寬調變調光的換流器的控制 ❹ 電路,其中該低頻震盪器輸出端包括一第一輸出端及一第二輸出 端,該低頻定時電阻器具有一第一端及一第二端,該低頻定時電阻 器第一端耦接至該低頻震盪器第一輸出端,該低頻定時電阻器第二 端耦接至該接地電位,該低頻定時電容器第一端耦接至該低頻震盪 器第二輸出端。 17201029520 VII. Patent Application Range·· 1. A control circuit for an inverter using pulse width modulation dimming, comprising: a low frequency timing circuit comprising a low frequency timing resistor and a low frequency timing capacitor, the low frequency timing resistor determining a DC current that charges the low frequency timing capacitor. The low frequency timing capacitor has a first end and a second end, and the second end of the low frequency timing capacitor is connected to a ground potential; a low frequency oscillator, An output end coupled to the low frequency ringing resistor and the first end of the low frequency timing capacitor, controlling the low frequency timing capacitor to be repeatedly charged and discharged to generate at the first end of the low frequency timing capacitor a low frequency ramp voltage comparator; a low frequency pulse width modulation comparator 'having a first input terminal, a second input terminal and an output terminal'; the first input end of the low frequency pulse width modulation comparator receives the DC current dimming signal, The second input end of the low frequency pulse width modulation comparator is coupled to the first end of the low frequency timing capacitor 'in the low frequency pulse width modulation comparison a low-frequency pulse width modulation signal is generated at the output end of the low-frequency pulse width modulation signal. Each period includes a uniform energy period and a disable period φ; a feedback control circuit 'having a uniform energy end and an output end, a feedback control circuit enabling end is connected to the output of the low frequency pulse width modulation comparator, and during the enabling period, a driving signal is generated at the output of the feedback control circuit, during the disable period, the feedback control circuit The output signal is not generated at the output end; and the AC signal generator has an output end coupled to the first end of the low frequency timing capacitor, and an alternating current is provided at the output of the alternating current signal generator . 2. The control of the inverter using pulse width modulation dimming as described in claim 1 of the patent scope 15 201029520 circuit, further comprising: a comparator having a first input terminal, a second input terminal and an output The first input end of the comparator receives the DC dimming signal, the second input end of the comparator receives a set voltage, the set voltage is a peak voltage of the low frequency ramp voltage, and a switch has a first end, a second end and a control end, the first end of the switch is coupled to the output of the AC signal generator, the second end of the switch is coupled to the first end of the low frequency timing capacitor, and the switch control end is coupled to the comparison The output end of the comparator, wherein when the DC dimming signal is greater than or equal to the set voltage, the output signal of the comparator output controls the switch to be turned off, so that the output of the AC signal generator and the first end of the low frequency timing capacitor are broken. When the DC dimming signal is less than the set voltage, the output signal of the comparator output controls the switch to be turned on, so that the output of the AC signal generator is coupled to the low frequency A first end of the capacitor. 3. The control circuit of the inverter using pulse width modulation dimming as described in claim 2, further comprising: a diode having an anode end and a cathode end, the anode end of the diode being coupled To the second end of the switch, the cathode end of the diode is coupled to the first end of the low frequency timing capacitor. 4. The control circuit of the inverter using pulse width modulation dimming as described in claim 2, further comprising: a diode having an anode end and a cathode end, the anode end of the diode being coupled To the output of the AC signal generator, the cathode end of the diode is coupled to the first end of the switch. 5. The control circuit of the inverter using pulse width modulation dimming as described in claim 1, further comprising: a comparator having a first input terminal, a second input terminal, and an output terminal; The first input end of the comparator receives the DC dimming signal, and the second input end of the comparator receives a 201029520 singular electric skill 'chaotic electric calendar for the peak of the low frequency slope electric waste; and a diode Having an anode end and a cathode end, the first end of the frequency timing capacitor; and the cathode end of the diode is connected to the low switch 'having a first end, a second end and a control end, the switch first ^ The alternating current signal generates a chirp output end and the diode anode end, the second is connected to the ground potential, and the switch control end is connected to the comparator output end, wherein when the direct current dimming signal is greater than or equal to the When the voltage is set, the comparator output terminal outputs an output signal to control the switch to conduct 'couples the anode end of the diode to the ground potential, and when the DC dimming signal is less than the set voltage, the comparator output output signal control The control circuit of the inverter using pulse width modulation dimming as described in claim 1, wherein the low frequency timing resistor has a first end and a second end, the low frequency The first end of the timing resistor is connected to the DC power source, and the second end of the low frequency timing resistor is connected to the low frequency oscillator output end and the first end of the low frequency timing capacitor. 7. The control circuit of the inverter using pulse width modulation dimming as described in claim 1, wherein the low frequency oscillator output comprises a first output end and a second output end, the low frequency timing The resistor has a first end and a second end, the first end of the low frequency timing resistor is coupled to the first output end of the low frequency oscillator, and the second end of the low frequency timing resistor is coupled to the ground potential, the low frequency timing The first end of the capacitor is coupled to the second output of the low frequency oscillator. 17
TW98102080A 2009-01-20 2009-01-20 Controller circuit of inverter using pulse width modulation (pwm) dimming TWI404458B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98102080A TWI404458B (en) 2009-01-20 2009-01-20 Controller circuit of inverter using pulse width modulation (pwm) dimming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98102080A TWI404458B (en) 2009-01-20 2009-01-20 Controller circuit of inverter using pulse width modulation (pwm) dimming

Publications (2)

Publication Number Publication Date
TW201029520A true TW201029520A (en) 2010-08-01
TWI404458B TWI404458B (en) 2013-08-01

Family

ID=44854055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98102080A TWI404458B (en) 2009-01-20 2009-01-20 Controller circuit of inverter using pulse width modulation (pwm) dimming

Country Status (1)

Country Link
TW (1) TWI404458B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507084B (en) * 2013-02-05 2015-11-01 Univ Nat Kaohsiung Applied Sci Zero current switching module
TWI573411B (en) * 2011-12-02 2017-03-01 珊泰克公司 Circuit, module and method of closed loop optical modulation amplitude control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI252062B (en) * 2005-04-20 2006-03-21 Himax Tech Inc Method for driving a fluorescent lamp and inverter circuit for performing such a method
TW200707362A (en) * 2005-08-09 2007-02-16 Coretronic Corp Control circuit of backlight source and its method
TWI302808B (en) * 2006-04-14 2008-11-01 Gigno Technology Co Ltd Digital control circuit and system for lighting module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573411B (en) * 2011-12-02 2017-03-01 珊泰克公司 Circuit, module and method of closed loop optical modulation amplitude control
TWI507084B (en) * 2013-02-05 2015-11-01 Univ Nat Kaohsiung Applied Sci Zero current switching module

Also Published As

Publication number Publication date
TWI404458B (en) 2013-08-01

Similar Documents

Publication Publication Date Title
CN101099417B (en) Lighting ballast having boost converter with on/off control and method of ballast operation
Chiu et al. A high-efficiency dimmable LED driver for low-power lighting applications
Cheng et al. Design and implementation of a high-power-factor LED driver with zero-voltage switching-on characteristics
Poorali et al. A single-stage single-switch soft-switching power-factor-correction LED driver
US8427064B2 (en) Electronic ballast circuit for fluorescent lamps
US9338843B2 (en) High power factor, electrolytic capacitor-less driver circuit for light-emitting diode lamps
TW200915922A (en) Supply circuit, in particular for LEDs
JP2006519577A (en) Single-stage power factor correction and power conversion circuit
Cheng et al. A novel high-power-factor AC/DC LED driver with dual flyback converters
JP2003513602A (en) Electronic ballast circuit
US8362704B2 (en) Capacitance reducing method for a pulsed activated device and associated devices
Liang et al. Two-stage high-power-factor electronic ballast for metal–halide lamps
TWI448205B (en) Single stage electronic ballast with power factor correction
Jiang et al. A novel single stage single switch PFC converter with constant power control for ballast for medium HID lamps
TW201029520A (en) Controller circuit of inverter using pulse width modulation (PWM) dimming
TWI418253B (en) A novel single-stage high-power-factor square-wave electronic ballast
CN101420810A (en) Lighting device and illumination apparatus
Tao et al. A critical-conduction-mode single-stage power-factor-correction electronic ballast
US6225755B1 (en) High power factor electronic ballast with simplified circuit topology
De Prado et al. A unity power factor electronic ballast for fluorescent lighting
CA2684256C (en) Power converter and power conversion method with reduced power consumption
Mohamadi et al. A single-stage high power factor LED driver in continuous conduction mode
CN201352879Y (en) Control circuit of inverter applying pulse-width modulation dimming
Shen et al. Dual-output single-stage bridgeless SEPIC with power factor correction
Liang et al. Analysis and design of single-stage electronic ballast with bridgeless PFC configuration

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees