TW201029247A - The separator used in electricity storage apparatus - Google Patents

The separator used in electricity storage apparatus Download PDF

Info

Publication number
TW201029247A
TW201029247A TW098102742A TW98102742A TW201029247A TW 201029247 A TW201029247 A TW 201029247A TW 098102742 A TW098102742 A TW 098102742A TW 98102742 A TW98102742 A TW 98102742A TW 201029247 A TW201029247 A TW 201029247A
Authority
TW
Taiwan
Prior art keywords
separator
storage device
energy storage
electrical energy
fluorine
Prior art date
Application number
TW098102742A
Other languages
Chinese (zh)
Other versions
TWI464938B (en
Inventor
James Huang
Sean Chen
Chun-Yin Kuo
Samuel Wu
Chi-Chung Hsiung
Original Assignee
Ef Materials Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ef Materials Ind Inc filed Critical Ef Materials Ind Inc
Priority to TW098102742A priority Critical patent/TWI464938B/en
Publication of TW201029247A publication Critical patent/TW201029247A/en
Application granted granted Critical
Publication of TWI464938B publication Critical patent/TWI464938B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention discloses a separator used in electricity storage apparatus. The provided separator comprises a porous fluoro-based membrane, and at least one hydrophilic polymer located on the top surface of membrane, bottom surface of membrane and surface of pore wall. The equilibrium contact angle of the separator is equal to or less than 90 degree.

Description

201029247 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種隔離膜,特別係關於一種用於電能 儲存裝置之隔離膜。 【先前技術】 ^近年來,由於在電子產品講求輕薄短小與環境保護意識 ⑩ 抬頭兩大根本因素驅使之下,諸如行動電話、筆記型電腦、掌 上型電腦、及電動車等新世代科技產品便應運而生。為了讓種 種设计精密複雜、能源需求度高的電子產品得以發揮功效,人 們便開始致力於研發更新、效率更佳的高雜的電能儲存裝 置’冀望取代早期之鎳録電池、錯酸電池、乃至於石油的角色。 電能儲存I置内部的隔離膜,乃為最重要的研究項目之 一。一般電能儲存襞置結構10如第一圖所示,包含電流收集 板120A與120B、電極活性材料14〇A與M〇B、電解質18〇a ⑩ 與18〇B、隔離膜160等,隔離膜的功用有兩種:⑴阻隔電池 正負極避免兩者因直接接觸而造成電子流(士血〇此⑶打恤) 的短路,(2)讓離子電流(i〇nic CUfrent)通過,但阻力要盡可 能地小。若要同時符合這兩個要求,「具多孔結構的非導體」 級地歧最佳岐計。目此,_财魏電臟之後所表 現出來的離子導1:度便與⑴隔離膜孔随(p_ity )、(2)孔洞 彎曲度(tortuosity)、⑶電解液導電度、(4)隔離膜厚度、及⑶ 電解液對隔離膜的潤溼程度等因素有關係。 由於電池隔離膜具有多孔性的結構,孔徑範_在〇1 mm或100 nm,所以它的表面積非常大,受到電解液侵独的 201029247 機率也當然跟著提局’因此材料的選擇是相當重要的一環。目 前可供作為隔離膜的材質有很多種,例如塑膠類、玻璃類、和 纖維素(cellulose)類等’但其中以塑膠類為最大宗,最常見 的有聚氣乙烯(poly vinyl chloride; PVC )、聚醯胺(p〇iyamide )、 聚乙烯(polyethylene ; PE)、及聚丙烯(p〇iypropylene ; pp) ' 等。 例如’美國US5, 585, 208號專利以及US5, 830, 601號專 利,揭露以聚乙烯醇(PVA)與鹼性金屬氫氧化物與水共聚合生 ❹ 成固態高分子電解質’可應用為電能儲存裝置的隔離膜,以提 高電能儲存裝置的性能及使用壽命。 美國US6,444, 367號專利,揭露一種高潤濕之不織布, 應用於可充電之電能儲存裝置的隔離膜。 歐洲EP0680107號專利,以合成一面為親水性聚烯烴高 分子,而另一面為部分疏水性聚烯烴高分子的隔離膜,其應用 於錄氫二次電能儲存裝置。 歐洲EP0834938號專利,揭示鹼性電能儲存裝置隔離膜 〇 具有一層不織布’以熱熔融(heat-fusing)和氫糾結法 (hydrogen-entangling)來合成高強度的聚烴不織布,使其電 能儲存裝置之隔離膜具有優異的斷裂強度(breaking stren^h)以及優異的電解質吸附性。 美國US4,862, 328號專利,揭露一種硬幣型電雙層電容 製作方法,電容結構包含一對極化電極、隔離膜與電解質,以 不織布作為隔離膜。 美國US5’ 150, 283號專利,揭露一種硬殼捲繞型電極製 作方法,電容結構包含活性碳極化電極、隔離膜與電解質,以 不織布作為隔離膜。 4 201029247 另’美國專利US6,198, 623揭露-種撓曲式超級電容製 作方法,將碳纖維與電流收集板直接熱壓形成電極/收集板複 合結構,此發明將碳纖維與電流收集板一同熱壓形成電極結 構’正貞電簡紅讎臟浸人電練,其隔轉材質為聚 乙稀。 上述之所見專利為一般電能儲存裝置及其製備方式,其 隔離膜均使用不織布,不織布隔離膜耐熱極限溫度僅約 100 200度’且無法在極限溫度長時間穩定使用,當電容内部 β 溫度過高時隔離膜會熔化收縮導致内部短路,甚至引發電池爆 炸等問題。 【發明内容】 蓉於上述之發明背景中,為了符合產業上之要求,本發 明提供一種用於電能儲存裝置之隔離膜。 * 本發明之-目的在於運㈣紐料作域_,所製成 電能儲存裝置耐熱性佳且耐酸驗,解決一般電能儲存裝置在高 溫操作下易燃燒或爆炸等安全性問題。 發明人提供—種祕電麟存裝置之嶋膜,其包含一 纽含氟基材’以及位於含材之上下表面與孔壁表面之至 少-種親水性高分子’隔離膜表面之平衡接觸角約小於或等於 90度。 發明人又提供於電_存裝置之隔離膜,其包含 -多孔含氟基材,以及位於含氟基材之上下表面飢壁表面之 5 201029247 至少一種親水性高分子,以水溶液潤濕隔離膜後,隔離膜之透 光度提高。 並且,發明人提供一種用於電能儲存裝置之隔離膜,其 包含一多孔含氟基材,以及位於含氟基材之上下表面與孔壁表 面之至少一種親水性高分子,當隔離膜平均孔徑約為〇 . Μ # m ’於過濾㈣〇. 5 bar以及純水條件下,該隔離膜對純水滲 透率大於或等於〇. 5 mL/cin2. min. bar。 © 【實施方式】 本發明在此所探討的方向為一種用於電能儲存裝置之隔 離膜。為了驗底地瞭解本剌,將在下卿贿巾提出詳盡 的_及其域。顯舰,本發_綺並未限定於領域之技 藝者所熟習的特殊細節。另一方面,眾所周知的組成或步驟並 未描述於㈣中,_免造成本發明移要之關。本發明的 較佳實施例會詳細描述如下,然而除了這些詳細描述之外,本 發明還可以廣泛地施行在其他的實施例中,且本發明的範圍不 受限定,其以之後的專利範圍為準。 美國專利US7,170, 739揭露以奈米纖^(_fiber)材料 製備平均直徑為5G〜lGG〇nm之電容隔離膜,此隔離膜可降低因 厚度減少而易產生之短路等缺點,並擁有低離子阻抗,性質較 之傳統電容更加優異。由此可知隔_财、厚度、孔洞大小 影響電能儲存裝置的功率、電容量及穩定性。 一般來說,要降低串連等效電阻(equivalent series resistance ; ESR)可透過減少電極材料厚度及使用水系電解液 6 201029247 °當使用水系電解_,esr可降低至有機系電 膜時雖缺21。然而’使用傳統疏水性含氟基材作為隔離 常見電漿改_親水性含氟基材,也無法 ILsl7、轉液職。上述之疏水性含氟基材、電漿改質後 、,度3氟基材截面結構示意圖如第二A圖與第二B圖所 示,其中,疏水材質部分為白色區域,親水材質部分為斜線區 域0201029247 VI. Description of the Invention: [Technical Field] The present invention relates to a separator, and more particularly to a separator for an electrical energy storage device. [Prior Art] In recent years, new generations of technology products such as mobile phones, notebook computers, palm-sized computers, and electric vehicles have been driven by two fundamental factors: electronic products, light and short, and environmental awareness. It came into being. In order to make all kinds of electronic products with sophisticated design and high energy demand come into play, people have begun to develop new and more efficient electric energy storage devices, which are expected to replace the early nickel-recorded batteries, acid-proof batteries, and even The role of oil. Electrical energy storage I is an internal isolation membrane and is one of the most important research projects. The general electrical energy storage device structure 10, as shown in the first figure, comprises current collecting plates 120A and 120B, electrode active materials 14A and M〇B, electrolytes 18〇a 10 and 18〇B, isolation film 160, etc., isolation film There are two functions: (1) blocking the positive and negative electrodes of the battery to avoid short-circuit between the two due to direct contact (the blood flow (3), (2) let the ion current (i〇nic CUfrent) pass, but the resistance is Be as small as possible. In order to meet both requirements at the same time, the "non-conductor with porous structure" is the best way to determine the difference. Therefore, after the _Wei Wei electric dirty, the ion conduction is 1:1 degree and (1) the separation of the membrane pores with (p_ity), (2) the curvature of the hole (tortuosity), (3) the conductivity of the electrolyte, (4) the separator The thickness, and (3) the degree of wetting of the separator by the electrolyte are related. Due to the porous structure of the battery separator, the pore size is 〇1 mm or 100 nm, so its surface area is very large, and the probability of 201029247 being invaded by the electrolyte is of course followed by the recommendation. Therefore, the choice of materials is quite important. A ring. At present, there are many kinds of materials that can be used as separators, such as plastics, glass, and cellulose. But among them, plastics are the largest, and the most common ones are poly vinyl chloride; ), polypamine (p〇iyamide), polyethylene (PE), and polypropylene (p〇iypropylene; pp)'. For example, 'U.S. Patent No. 5,585, 208, and U.S. Patent No. 5,830,601, the disclosure of which is incorporated herein by reference to U.S. Pat. The isolation membrane of the storage device to improve the performance and service life of the electrical energy storage device. U. European Patent No. EP 0680107 uses a separator which is a hydrophilic polyolefin polymer on one side and a partially hydrophobic polyolefin polymer on the other side, which is applied to a hydrogen storage secondary electric energy storage device. European Patent No. EP0834938 discloses that the separator of the alkaline electric energy storage device has a non-woven fabric 'heat-fusing and hydrogen-entangling to synthesize high-strength polyether non-woven fabric to make its electric energy storage device The separator has excellent breaking strength and excellent electrolyte adsorption. U. U.S. Patent No. 5,150,283 discloses a method of manufacturing a hard-shell wound electrode comprising a activated carbon polarized electrode, a separator and an electrolyte, and a non-woven fabric as a separator. 4 201029247 U.S. Patent No. 6,198, 623 discloses a method for producing a flexible supercapacitor in which a carbon fiber and a current collecting plate are directly hot pressed to form an electrode/collecting plate composite structure, and the invention heats the carbon fiber together with the current collecting plate. Forming the electrode structure 'positive 贞 贞 简 雠 雠 雠 浸 浸 浸 浸 。 。 。 。 。 。 。 。 。 。 。 。 The above-mentioned patents are general electrical energy storage devices and their preparation methods. The isolation membranes are made of non-woven fabric, and the non-woven insulation membrane has a heat-resistant limit temperature of only about 100 200 degrees' and cannot be stably used for a long time at the extreme temperature. When the internal beta temperature of the capacitor is too high When the separator melts and shrinks, it causes an internal short circuit and even causes a battery explosion. SUMMARY OF THE INVENTION In order to meet the requirements of the industry, the present invention provides a separator for an electrical energy storage device. * The purpose of the present invention is to transport (four) the new material as the domain _, and the electrical energy storage device is made to have good heat resistance and acid resistance, and solves the safety problem that the general electric energy storage device is easy to burn or explode under high temperature operation. The inventors provide a ruthenium film of a kind of secret electricity storage device, which comprises a fluorine-containing substrate and an equilibrium contact angle of at least one hydrophilic polymer's surface of the separator on the lower surface of the material and the surface of the pore wall. About less than or equal to 90 degrees. The inventor further provides a separator for the electric storage device, comprising: a porous fluorine-containing substrate, and a surface of the lower surface of the fluorine-containing substrate 5, 201029247 at least one hydrophilic polymer, wetting the separator with an aqueous solution After that, the transparency of the separator is improved. Moreover, the inventors provide a separator for an electrical energy storage device comprising a porous fluorine-containing substrate, and at least one hydrophilic polymer on the lower surface of the fluorine-containing substrate and the surface of the pore wall, when the separator is average The pore size is about 〇. Μ # m 'in filtration (four) 〇. 5 bar and pure water, the permeability of the separator to pure water is greater than or equal to mL. 5 mL / cin2. min. bar. © [Embodiment] The invention is directed to a separator membrane for an electrical energy storage device. In order to thoroughly understand Benedict, the detailed _ and its domain will be presented in the next. The display ship, this hair _ 绮 is not limited to the special details familiar to the skilled person in the field. On the other hand, well-known compositions or steps are not described in (4), and _ avoids the essentials of the present invention. The preferred embodiments of the present invention are described in detail below, but the present invention may be widely practiced in other embodiments, and the scope of the present invention is not limited by the scope of the following patents. . U.S. Patent No. 7,170,739 discloses the use of a nanofiber (_fiber) material to prepare a capacitive isolating film having an average diameter of 5 G to 1 GG 〇 nm. The separator can reduce shortcomings such as short circuits which are easily caused by thickness reduction, and has a low Ion impedance is superior to conventional capacitors. It can be seen that the size, thickness, and hole size affect the power, capacitance, and stability of the electrical energy storage device. In general, to reduce the series equivalent resistance (ESR) by reducing the thickness of the electrode material and using the water-based electrolyte 6 201029247 ° when using water-based electrolysis _, esr can be reduced to the organic film, although lacking 21 . However, the use of a conventional hydrophobic fluorine-containing substrate as a barrier to common plasma change _ hydrophilic fluorine-containing substrate, can not be ILsl7, liquid transfer jobs. After the above-mentioned hydrophobic fluorine-containing substrate and plasma are modified, the schematic diagram of the cross-sectional structure of the 3 fluorine substrate is as shown in the second A diagram and the second diagram B, wherein the hydrophobic material portion is a white region, and the hydrophilic material portion is Slash area 0

本發明之第一實施例揭露用於電能儲存裝置之隔離膜, 其厚度約介於G. G25mm至G. 5mm ’上述嶋膜包含_多孔含氟 基材’以及位於含氟基材之上下表面與孔壁表面之至少一種親 水性咼分子,隔離膜表面之平衡接觸角約小於或等於90度, 其截面結構示意圖如第二C圖,其中,疏水材質部分為白色 區域,親水材質部分為斜線區域。於本實施例之一範例中,其 平衡接觸角約小於或等於45度。上述之含氟基材具有氟碳結 構,且含氟基材選自下列之一者或其任意組合:膨體聚四氟乙 烯(expanded polytetrafluoroethylene ; ePTFE)、聚偏氟乙 烯(polyvinylidene fluoride ; PVDF)、聚氟乙烯(polyvinyl fluoride ; PVF)、四氟乙烯-六氟丙烯共聚物 (poly(tetrafluoroethylene~co-hexafluoropropylene) ϊ FEP)、乙烯-四氟乙烯共聚物 (poly(ethylene-co-tetrafluoroethylene); ETFE)、聚三氟 氣乙烯(polychlorotrifluoroethylene; PCTFE)以及偏氟乙 烯-六氟丙烯共聚物(?〇1乂0丨1^1丨(16此{11101^(16-〇)-hexafluoropropylene); P(VDF-HFP)) ° 7 201029247 上述之含氟基材孔徑大小約介於0.01 至l〇#m之 間。於本實施例之另一範例中,孔徑大小約介於〇. 至 1·5#ιη之間。上述之至少一種親水性高分子可以化學鍵結於 含氟基材之上下表面與孔壁表面,親水性高分子係部分交聯或 凡全交聯於含氟基材上,且親水性高分子係選自下列之一者或 其任意組合··丙烯酸羥基丙酯(Ι^Γ〇χϊΓρΓ〇ργ1 acrylate)、 聚乙二醇二丙烯酸酯(Polyethylene glycol diacrylate)、 二乙二醇二丙烯酸酯(triethylene glyc〇1 diacrylate)、三 ❹ 丙二醇二丙烯酸酯(tripropylene glycol diacrylate)、四 乙二醇二丙烯酸酯(tetraethylene glycol diacrylate)、 2-(2-乙氧基乙氧基)乙基丙烯酸酯 (2-(2-ethoxyethoxy)ethyl acrylat)、聚乙烯醇(p〇lyvinyi alcohol)以及聚乙婦醋酸乙稀Wnyi acetate)。 此外’上述之電能儲存裝置之隔離膜,更包含一多孔高 分子膜材,其係與多孔含氟基材貼合,以形成一複合隔離膜。 β 上述之。於本實施例之又一範例中,所述之高分子膜材係為聚 對苯二甲酸乙二醇酯(p〇lyethylene terephthalate ; ρΕΤ)。 本發明之第二實施例揭露用於電能儲存裝置之隔離膜, 其厚度約介於0· 025mm至0· 5mm,上述隔離膜包含一多孔含氟 基材,以及位於含氟基材之上下表面與孔壁表面之至少一種親 水性高分子,以水溶液潤濕隔離膜後,隔離膜之透光度提高。 於本實施例之一範例中,上述之隔離膜以水溶液潤濕隔離膜 後,隔離膜呈現半透明。上述之含氟基材的選擇與第一實施例 相同。 8 201029247 上述之含氟基材孔徑大小約介於〇. 至10/zm之 間。於本實施例之另一範例中,孔徑大小約介於〇 〇1 至 L5/zm之間。上述之至少一種親水性高分子可以化學鍵結於 含氟基材之上下表面與孔壁表面。親水性高分子係部分交聯或 完全交聯於含氟基材上,且親水性高分子的選擇與第一實施例 相同。 此外,上述之電能儲存裝置之隔離臈,更包含一多孔高 分子膜材,其係與多孔含氟基材貼合,以形成一複合隔離膜。 上述之。於本實施例之又一範例中,上述之高分子膜材係為聚 對本一曱酸乙一醇S旨(polyethylene terephthalate ; PET)。 本發明之第三實施例揭露用於電能儲存裝置之隔離膜, 其厚度約介於0. 025mm至〇. 5mm,上述隔離膜包含-多孔含氟 基材’以及位於含氟基材之上下表面與孔壁表面之至少一種親 水性高分子,當隔離膜平均孔徑約為〇. 14 ,於過濾壓力 0· 5 bar以及純水條件下,隔離膜對純水滲透率大於或等於〇. 5 mL/cm2. min. bar。上述之含氟基材的選擇與第一實施例相同。 上述之含氟基材孔徑大小約介於〇. 〇1#m至之 間。於本實施例之另一範例中,孔徑大小約介於〇 〇1以爪至 1.5ym之間。上述之至少一種親水性高分子可以化學鍵結於 含氟基材之上下表面與孔壁表面,親水性高分子係部分交聯或 元全交聯於含氟基材上。上述之親水性高分子的選擇與第一實 施例相同。 此外,上述之電能儲存裝置之隔離膜,更包含一多孔高 分子膜材,其係與多孔含氟基材貼合,以形成一複合隔離膜。 201029247 實施例之再一範例中,上述之高分子膜材係為聚 乙一醇酯(polyethylene terephthalate ; PET)。 f存供用於齡裝置之隔離膜,所應用之電 <=*裝置可叫下狀—者:雜電池、驗性電池、銀電池、 ,電,、鉛蓄電池、鋰電池、鋰聚合物電池、鎳鎘充電電池 (Ni Cd)、鎳氫充電電池(Ni,)以及電化學電容器。 ❿制- 雜聚四氟乙烯(expandedpolytetrafluoiOethylene ; ePTFE)具有耐酸驗、熱安定性達25忙以上且機械強度高等 優點’可應帛於開發高安全性、高功率型電容,提供更高能量、 功率、穩定且安定的儲能元件。 本發明揭露一種用於電能儲存裝置之隔離膜,其中,隔 離膜為於水溶液中呈半透明之親水性氟碳結構(例如:膨體聚 四氟乙烯)’其孔洞或表面含有至少一種水溶性高分子,而此 © 高分子至少有一部份為非水溶性。上述之高分子已部分或全部 交聯’尚分子結構可為自下列之-者或其任意組合:丙烯酸經 基丙酯(hydroxypropyl acrylate)、聚乙二醇二丙烯酸酯 (polyethylene glycol diacrylate)、三乙二醇二丙烯酸醋 (triethylene glycol diacrylate)、三丙二醇二丙烯酸酯 (tripropylene glycol diacrylate)、四乙二醇二丙烯酸酯 (tetraethylene glycol diacrylate)、2-(2-乙氧基乙氧基) 乙基丙烯酸酯(2-(2-ethoxyethoxy)ethyl acrylat)、聚乙烯 醇(polyvinyl alcohol)以及聚乙烯醋酸乙烯(polyethylene 201029247 vinyl acetate) ° 參閱表一所示,原本疏水性之膨體聚四氟乙烯(ePTFE)膜 材經過本發明改質後成為親水性之膨體聚四氟乙烯膜材,其孔 /同及表面含有至少一種水溶性高分子。由表可知,當兩者孔洞 約〇. U vm,操作壓力為2 bar時,親水性ePTFE:膜的純水 通量可達8. 2 mL/cm /min以及滲透率約4.1 mL/cm2. min. bar, 反之,相同操作條件下疏水性ePTFE膜對純水則無滲透率。A first embodiment of the present invention discloses a separator for an electrical energy storage device having a thickness of about G. G25 mm to G. 5 mm 'the above-mentioned tantalum film comprises a porous fluorine-containing substrate and a lower surface on the fluorine-containing substrate And at least one hydrophilic 咼 molecule on the surface of the pore wall, the equilibrium contact angle of the surface of the separator is about 90 degrees or less, and the cross-sectional structure diagram is as shown in the second C diagram, wherein the hydrophobic material portion is a white region, and the hydrophilic material portion is a slanted line. region. In an example of this embodiment, the equilibrium contact angle is less than or equal to 45 degrees. The fluorine-containing substrate has a fluorocarbon structure, and the fluorine-containing substrate is selected from one of the following or any combination thereof: expanded polytetrafluoroethylene (ePTFE), polyvinylidene fluoride (PVDF) , polyvinyl fluoride (PVF), tetrafluoroethylene-co-hexafluoropropylene (FEP), ethylene-tetrafluoroethylene copolymer (poly(ethylene-co-tetrafluoroethylene); ETFE), polychlorotrifluoroethylene (PCTFE) and vinylidene fluoride-hexafluoropropylene copolymer (?〇1乂0丨1^1丨(16this{11101^(16-〇)-hexafluoropropylene); P (VDF-HFP)) ° 7 201029247 The above-mentioned fluorine-containing substrate has a pore size of about 0.01 to 1 〇 #m. In another example of this embodiment, the aperture size is between about 〇. to 1. 5#ιη. The at least one hydrophilic polymer may be chemically bonded to the lower surface of the fluorine-containing substrate and the surface of the pore wall, and the hydrophilic polymer portion may be partially crosslinked or fully crosslinked on the fluorine-containing substrate, and the hydrophilic polymer is One of the following or any combination thereof, hydroxy propyl acrylate, polyethylene glycol diacrylate, triethylene glyc Di1 diacrylate), tripropylene glycol diacrylate, tetraethylene glycol diacrylate, 2-(2-ethoxyethoxy)ethyl acrylate (2-( 2-ethoxyethoxy)ethyl acrylat), p〇lyvinyi alcohol, and Wnyi acetate. Further, the separator of the above electric energy storage device further comprises a porous high molecular film which is bonded to the porous fluorine-containing substrate to form a composite separator. β above. In still another example of the embodiment, the polymer film material is polyethylene terephthalate (pΕΤlyethylene terephthalate; ρΕΤ). A second embodiment of the present invention discloses a separator for an electrical energy storage device having a thickness of about 0. 025 mm to 0.5 mm. The separator includes a porous fluorine-containing substrate and is disposed above the fluorine-containing substrate. At least one hydrophilic polymer on the surface and the surface of the pore wall, after the separator is wetted by the aqueous solution, the transparency of the separator is improved. In an example of the embodiment, after the separator is wetted with an aqueous solution by an aqueous solution, the separator is translucent. The selection of the above fluorine-containing substrate is the same as that of the first embodiment. 8 201029247 The above-mentioned fluorine-containing substrate has a pore size of between about 〇. and 10/zm. In another example of this embodiment, the aperture size is between about 〇1 to L5/zm. The at least one hydrophilic polymer described above may be chemically bonded to the lower surface of the fluorine-containing substrate and the surface of the pore wall. The hydrophilic polymer is partially crosslinked or completely crosslinked on the fluorine-containing substrate, and the hydrophilic polymer is selected in the same manner as in the first embodiment. In addition, the above-mentioned isolation device of the electrical energy storage device further comprises a porous high molecular film which is bonded to the porous fluorine-containing substrate to form a composite separator. Above. In still another example of the present embodiment, the polymer film is a polyethylene terephthalate (PET). A third embodiment of the present invention discloses a separator for an electrical energy storage device having a thickness of about 0.025 mm to 〇5 mm, wherein the separator comprises a porous fluorobase and a lower surface of the fluorine-containing substrate. The at least one hydrophilic polymer with the surface of the pore wall, when the average pore diameter of the separator is about 14. 14, at a filtration pressure of 0.5 bar and pure water, the permeability of the separator to pure water is greater than or equal to 〇. 5 mL /cm2. min. bar. The selection of the above fluorine-containing substrate is the same as in the first embodiment. The above-mentioned fluorine-containing substrate has a pore size of about 〇1#m to between. In another example of this embodiment, the aperture size is between about 〇 1 and about 1.5 ym. The at least one hydrophilic polymer may be chemically bonded to the lower surface of the fluorine-containing substrate and the surface of the pore wall, and the hydrophilic polymer portion may be partially crosslinked or completely crosslinked on the fluorine-containing substrate. The selection of the above hydrophilic polymer is the same as in the first embodiment. In addition, the above-mentioned separator of the electrical energy storage device further comprises a porous high molecular film which is bonded to the porous fluorine-containing substrate to form a composite separator. In another example of the embodiment, the polymer film is a polyethylene terephthalate (PET). f deposit for the isolation membrane for the ageing device, the applied electric <=* device can be called the following - the: miscellaneous battery, calibrated battery, silver battery, electricity, lead storage battery, lithium battery, lithium polymer battery , Ni-Cd rechargeable battery (Ni Cd), nickel-metal hydride rechargeable battery (Ni,) and electrochemical capacitors. Tanning - PTFE (expanded polytetrafluoi Oethylene; ePTFE) has the advantages of acid resistance, thermal stability up to 25 busy and high mechanical strength. It can be used to develop high-safety, high-power capacitors to provide higher energy and power. Stable and stable energy storage components. The invention discloses a separator for an electric energy storage device, wherein the separator is a translucent hydrophilic fluorocarbon structure (for example, expanded polytetrafluoroethylene) in an aqueous solution, and the pore or surface thereof contains at least one water-soluble substance. Polymer, and at least part of this polymer is not water soluble. The above-mentioned polymer has been partially or completely crosslinked. The molecular structure may be from the following or any combination thereof: hydroxypropyl acrylate, polyethylene glycol diacrylate, three Triethylene glycol diacrylate, tripropylene glycol diacrylate, tetraethylene glycol diacrylate, 2-(2-ethoxyethoxy)ethyl 2-(2-ethoxyethoxy)ethyl acrylat), polyvinyl alcohol, and polyethylene 201029247 vinyl acetate ° See Table 1 for the original hydrophobic expanded polytetrafluoroethylene ( The ePTFE) film is modified by the present invention to become a hydrophilic expanded polytetrafluoroethylene film, and the pores/same and surface thereof contain at least one water-soluble polymer. It can be seen from the table that when the pores are about U. U vm, the operating pressure is 2 bar, the hydrophilic ePTFE: the pure water flux of the membrane can reach 8.2 mL/cm /min and the permeability is about 4.1 mL/cm 2 . Min. bar, conversely, the hydrophobic ePTFE membrane has no permeability to pure water under the same operating conditions.

表一 I疏水性聚四_乙稀膜材與親水性聚四氟乙稀膜材比較表 薄膜 薄膜純水通量(flux) (mL/cm2/min) 滲透率(permeabUity> (mL/cm2.min.bar) 平均孔徑(/zm) 疏水性ePTFE膜 0 0 0.143 親水性ePTFE膜 8.2 4.1 0.146 φ 參閱表二所示’疏水性ePTFE膜無法使用於水系電解液 電容,所以無法取得測試數據。比較本發明與一般電漿改質後 ePTFE膜應用在相同的電容上之數據,可以發現本發明所提供 之親水性ePTFE膜,無論在電容量(F)或内電阻(Ω)都較電漿 改質ePTFE膜性能較為優異。此外,參閱表三所示,本發明 之親水性ePTFE膜可以另外再與一多孔高分子膜材貼合,以形 成一複合隔離膜。對下列不同多孔高分子材質進行比較:聚丙 烯膜材(polypropylene ; PP)、聚乙烯膜材(polyethylene ; PE)、高密度聚乙烯(high density polyethylene ; HDPE)、聚 11 201029247 對本一甲酸乙二醇g旨(polyethylene terephthalate ; PET)0 由表三可知’本發明之親水性ePTFE膜與一多孔高分子膜材貼 合後’不會因膜厚增加而影響電容效能,而且,多孔高分子膜 材能夠提供額外的機械強度、增加膜材加工便利性。 表二、不同規&PTFE膜比鲂蛊: 隔離膜規格 厚度 ePTFE膜孔 測試結果 備註 電容量 (F) 内電阻 (Ω) 比較例1 疏水性ePTFE膜 0.025 mm 0.2 μιη — 疏水性ePTFE膜 無法使用於水系 電解液電容 比較例2 電漿表面改質ePTFE膜 0.025 mm 0.2 μπι 195 4.82 工作例Γ1 親水性ePTFE膜 0.025 mm 0.2 μηι 293 0.25 表三、不同規格ePTFE膜比較表: 規格 厚度 ePTFE膜孔 測試結果 電容量(F) 内電阻(Ω) 工作例1 親水性ePTFE膜 0.025 mm 0.2 μιη 293 0.25 工作例2 親水性ePTFE膜 貼合HDPE 0.19 mm 0.2 μιη 243 0.26 工作例3 親水性ePTFE膜 貼合PP 〇_12iran 0.2 μιη 225 0.23 工作例4 親水性ePTFE膜 貼合PET 0.5 mm 1.0 μιη 285 0.08 由於市售PP隔離膜約在165°C左右閉孔,當電池内部溫 度高過材質之熔點時,隔離膜會熔化收縮導致極板接觸短路, 同時引發極板與電解液間之劇烈放熱反應,造成電池爆炸。因 此,隔離膜於高溫下之負載測試是安全性的重要參考指標。參 12 201029247 閱表四所示’本發明之親水性ePTFE膜與聚對苯二曱酸乙二 醇酯(polyethylene terephthalate ; PET)貼合後應用於電 容上’可通過攝氏80度連續運轉1〇〇小時的高溫負載測試, 但市售PP隔離膜於相同的條件下測試,電容量下降至原先效 能的近40%,且内電阻上升至原先的1M3倍,並不能通過 1¾溫負載測試。 表四、不同規格ePTFE膜比鮫轰:Table I I Hydrophobic polytetraethylene film and hydrophilic polytetrafluoroethylene film comparison Table film film pure water flux (mL / cm2 / min) permeability (permeabUity) (mL / cm2. Min.bar) Average pore diameter (/zm) Hydrophobic ePTFE membrane 0 0 0.143 Hydrophilic ePTFE membrane 8.2 4.1 0.146 φ Refer to Table 2, 'The hydrophobic ePTFE membrane cannot be used in water-based electrolyte capacitors, so test data cannot be obtained. The present invention and the general plasma modified ePTFE film applied to the same capacitance data, it can be found that the hydrophilic ePTFE film provided by the present invention, whether in the capacitance (F) or internal resistance (Ω) is compared with the plasma The performance of the ePTFE membrane is excellent. Further, as shown in Table 3, the hydrophilic ePTFE membrane of the present invention can be additionally bonded to a porous polymer membrane to form a composite separator. The following porous polymer materials are available. Comparison: polypropylene film (polypropylene; PP), polyethylene film (polyethylene; PE), high density polyethylene (HDPE), poly 11 201029247 for the purpose of polyethylene terephthalate (polyethylene terephthalate; PET)0 It can be seen from Table 3 that 'the hydrophilic ePTFE film of the present invention is bonded to a porous polymer film' does not affect the capacitance efficiency due to the increase of the film thickness, and the porous polymer film can provide additional mechanical strength and increase. Membrane processing convenience. Table 2, different gauge & PTFE membrane ratio: separator thickness gauge ePTFE membrane hole test results remarks capacitance (F) internal resistance (Ω) Comparative example 1 hydrophobic ePTFE membrane 0.025 mm 0.2 μιη — Hydrophobic ePTFE membrane cannot be used in water-based electrolytes. Comparative Example 2 Plasma surface modification ePTFE membrane 0.025 mm 0.2 μπι 195 4.82 Working example 亲水1 Hydrophilic ePTFE membrane 0.025 mm 0.2 μηι 293 0.25 Table 3. Comparison of different specifications of ePTFE membrane : Specification thickness ePTFE film hole test result Capacitance (F) Internal resistance (Ω) Working example 1 Hydrophilic ePTFE film 0.025 mm 0.2 μηη 293 0.25 Working example 2 Hydrophilic ePTFE film bonding HDPE 0.19 mm 0.2 μιη 243 0.26 Working example 3 Hydrophilic ePTFE film bonded PP 〇_12iran 0.2 μιη 225 0.23 Working Example 4 Hydrophilic ePTFE film-bonded PET 0.5 mm 1.0 μιη 285 0.08 Since the commercially available PP separator is about 1 When the internal temperature of the battery is higher than the melting point of the material, the separator will melt and shrink, causing the contact of the plate to be short-circuited, and at the same time, causing a violent exothermic reaction between the plate and the electrolyte, causing the battery to explode. Therefore, the load test of the separator at high temperatures is an important reference for safety. Reference 12 201029247 See Table 4, 'The hydrophilic ePTFE film of the present invention is applied to the capacitor after being bonded to polyethylene terephthalate (PET) and can be continuously operated at 80 degrees Celsius. 〇 hours of high temperature load test, but the commercial PP isolation film tested under the same conditions, the capacitance dropped to nearly 40% of the original performance, and the internal resistance rose to the original 1M3 times, and can not pass the 13⁄4 warm load test. Table 4, different specifications of ePTFE membrane than smash:

工作例5 親水性ePTFE膜 貼合PET 0.5 1.0 μιη ------- (ePTFE 膜)174 0.39 Pass 184 0.24Working Example 5 Hydrophilic ePTFE film Bonding PET 0.5 1.0 μιη ------- (ePTFE film) 174 0.39 Pass 184 0.24

Pass 169 0.42Pass 169 0.42

比較例3 PP隔離膜 0.12 mm 21邮 (PP 膜) 186 ~76~ 181 0.19 ΐ〇5 0.18 FailComparative Example 3 PP separator 0.12 mm 21 post (PP film) 186 ~ 76~ 181 0.19 ΐ〇 5 0.18 Fail

顯然地,依照上面實施例中的描述,本發明可能有許多 的修正與差異。因此需要在細加的權利要求項之範圍内加以 理解’除了上述詳細的描述外,本發明還可以廣泛地在其他的 實施例中施行。上述僅為本發明之較佳實_㈣,並非用以 限定本發明之t請專纖圍;凡其它未雌本购所揭示之精 =下所域的等效改贱修飾,均應包含在下述申請專利範圍 13 201029247 【圖式簡單說明】 第一圖顯示一般電能儲存裝置結構示意圖;與 第二圖顯示疏水性含氟基材、電漿改質後的親水性含氟 基材以及本發明所提供親水性含氟基材結構示意圖。Obviously, many modifications and differences may be made to the invention in light of the above description. It is therefore to be understood that within the scope of the appended claims, the invention may be The above is only the preferred embodiment of the present invention (4), and is not intended to limit the t-special design of the present invention; any other equivalent modification of the fine field of the sub-purchase disclosed in the original purchase should be included Patent Application No. 13 201029247 [Simplified Schematic] The first figure shows a schematic diagram of a general electrical energy storage device; and the second figure shows a hydrophobic fluorine-containing substrate, a plasma-modified hydrophilic fluorine-containing substrate, and the present invention. A schematic diagram of the structure of a hydrophilic fluorine-containing substrate is provided.

14 201029247 【主要元件符號說明】 ίο電能儲存裝置結構 120A電流收集板 120B電流收集板 140A電極活性材料 140B電極活性材料 160隔離膜 φ 180A電解質 180B電解質14 201029247 [Description of main component symbols] ίο Electrical energy storage device structure 120A current collecting plate 120B current collecting plate 140A electrode active material 140B electrode active material 160 isolating film φ 180A electrolyte 180B electrolyte

Claims (1)

201029247 七、申請專利範圍: 1_ 一種用於電鏡存裝置福雜,其包含—纽錢基材,以 及錄該含氟紐之上下表面無縣面之至少-種親水性汽 分子’該隔離膜表面之平衡接觸角約小於或等於9〇度。 2·如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之含氟基材具有氟碳結構。 3. 如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之含氟基材選自下列之一者或其任意組合:膨體聚四氟乙烯 (expanded polytetrafluoroethylene ; ePTFE)、聚偏氟乙稀 (polyvinylidene fluoride ; PVDF)、聚氟乙烯(polyvinyl fluoride ; PVF)、四氟乙烯-六氟丙烯共聚物 (P〇ly(tetrafluoroethylene-co-hexafluoropropylene); FEP)、 乙烯-四氟乙烯共聚物 ❿ (poly(ethylene-co-tetrafluoroethylene); ETFE)、聚三氟氣 乙烯(polychlorotrifluoroethylene; PCTFE)以及偏氨乙烯-六氟丙烯共聚物(poly(vinylidene fluoride-co-hexafluoropropylene); P(VDF-HFP)) ° 4. 如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之含氟基材孔徑大小約介於〇. 01/^ιη至10//m之間。 5. 如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之含氟基材孔徑大小約介於βπι至1.5/zm之間。 16 201029247 6.如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之至少一種親水性高分子係化學鍵結於該含氟基材之上下表 面與孔壁表面。 ' 7.如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之親水性高分子係部分交聯或完全交聯。 φ 8.如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之親水性高分子係選自下列之一者或其任意組合:丙豨酸經 基丙酯(hydroxypropyl acrylate)、聚乙二醇二丙烯酸酯 (polyethylene glycol diacrylate)、三乙二醇二丙烯酸g旨 (triethylene glycol diacrylate)、三丙二醇二丙晞酸g旨 (tripropylene glycol diacrylate)、四乙二醇二丙烯酸酯 (tetraethylene glycol diacrylate)、2-(2-乙氧基乙氧基) 乙基丙烯酸醋(2-(2-ethoxyethoxy)ethyl acrylat)、聚乙烯醇 ❹ (Polyvinyl alcohol)以及聚乙稀醋酸乙稀(polyethylene vinyl acetate)。 9.如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之平衡接觸角約小於或等於45度。 10·如申請專利範圍第1項之用於電能儲存裝置之隔離膜,其中上 述之隔離膜厚度介於0. 025mm至0. 5mm。 17 201029247 11. 如申請專利範圍第1項之用於電能儲存裝置之隔離膜,更包含 一多孔高分子膜材,其係與該多孔含氟基材貼合,以形成一複 合隔離膜》 12. 如申請專利範圍第11項之用於電能儲存裝置之隔離膜,該高 • 分子膜材係為聚對苯二曱酸乙二醇酯(p〇iyethylene terephthalate ; PET)。 ❹ 13. —種用於電能儲存裝置之隔離膜,其包含一多孔含氟基材,以 及位於該含氟基材之上下表面與孔壁表面之至少一種親水性高 分子,以水溶液潤濕該隔離膜後,該隔離膜之透光度提高。 14_如申請專利範圍第13項之用於電能儲存裝置之隔離膜,以水 溶液潤濕該隔離膜後,該隔離膜呈現半透明。 15·如申請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 ^ 上述之含氟基材具有氟碳結構。 16.如申請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 上述之含氟基材選自下列之一者或其任意組合:膨體聚四氟乙 稀(expanded polytetrafluoroethylene ; ePTFE)、聚偏氟乙蝉 (polyvinylidene fluoride ; PVDF)、聚氟乙稀(polyvinyl fluoride ; PVF)、四氟乙烯-六氟丙烯共聚物 (po1y(tetraf1uoroethy1ene-co-hexaf1uoropropy1ene); FEP ) 乙烯-四氟乙烯共聚物 (poly(ethylene-co-tetrafluoroethylene); ETFE)、聚三氟氣 201029247 乙烯(卩〇1丫〇111〇1'〇1;1^111〇1'〇61;11716116;?0^)以及偏氟乙婦-六氟丙稀共聚物(0〇17(>^1^1地1^{111〇1'丨(16-(2〇- hexafluoropropylene); P(VDF-HFP)) ° 17.如申請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 • 上述之含氟基材孔徑大小約介於0.01 至10#m之間。 18·如申請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 ❹ 上述之含氟基材孔徑大小約介於0· 01//in至1. 5/im之間。 19·如申請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 上述之至少一種親水性高分子係化學鍵結於該含氟基材之上下 表面與孔壁表面。 20. 如申請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 上述之親水性高分子係部分交聯或完全交聯。 21. 如申請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 上述之親水性高分子係選自下列之一者或其任意組合:丙烯酸 羥基丙酯(hydroxypropy 1 aery late)、聚乙二醇二丙烯酸酯 (polyethylene glycol diacrylate)、三乙二醇二丙烯酸酯 (triethylene glycol diacrylate)、三丙二醇二丙烯酸酯 (tripropylene glycol diacrylate)、四乙二醇二丙烯酸酯 (tetraethylene glycol diacrylate)、2-(2-乙氧基乙氧基) 乙基丙稀酸酯(2-(2-ethoxyethoxy)ethyl acrylat)、聚乙烯 醇(polyvinyl alcohol)以及聚乙烯醋酸乙烯(polyethylene 201029247 vinyl acetate)。 22. 如申請專利範圍第13項之驗電能儲存裝置之隔離膜,其中 上述之隔離膜的平衡接觸角約小於或等於45度。 23. 如中請專利範圍第13項之用於電能儲存裝置之隔離膜,其中 上述之隔離膜厚度介於〇· 〇25mm至〇. 5mm。 e μ·如中請專利範圍第13項之用於電能儲存裝置之隔離膜,更包 含一多孔高分子膜材,其係與該多孔含氟基材貼合,以形成一 複合隔離膜。 25·如申請專利範圍第24項之用於電能儲存裝置之隔離膜,該高 刀子膜材係為聚對本一甲酸乙二醇醋(polyethylene terephthalate ; PET)。 ⑬ 26. —種用於電能儲存裝置之隔離膜’其包含一多孔含氟基材,以 及位於該含氟基材之上下表面與孔壁表面之至少一種親水性高 分子’當該隔離膜平均孔徑約為0.14 //m,於過濾壓力0.5 bar 以及純水條件下,該隔離膜對純水滲透率大於或等於0.5 mL/cm2. min· bar 〇 27·如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之含氟基材具有氟碳結構。 20 201029247 28.如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之含氟基材選自下列之一者或其任意組合:膨體聚四氟乙 烯(expanded polytetrafluoroethylene ; ePTFE)、聚偏氟乙烯 (polyvinylidene fluoride ; PVDF)、聚氟乙烯(polyvinyl fluoride ; PVF)、四氟乙烯-六氟丙烯共聚物 (ρο1y(tetra f1uoroethy1ene-co-hexa f1uoropropy1ene); FEP)、 乙烯-四氟乙烯共聚物 (poly(ethylene-co-tetrafluoroethylene); ETFE)、聚三氟氣 乙烯(ρο 1 ych 1 orotri f 1 uoroethy 1 ene; PCTFE)以及偏氟乙烯-六氟丙浠共聚物(poly(vinylidene fluoride-co-hexaf1uoropropy1ene); P(VDF-HFP)) ° 29.如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之含氟基材孔徑大小約介於〇. 〇1 #πι至10/zm之間。 30·如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之含氟基材孔徑大小約介於0.01/zm至1.5ym之間。 31. 如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之至少一種親水性高分子係化學鍵結於該含氟基材之上下 表面與孔壁表面。 32. 如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之親水性高分子係部分交聯或完全交聯。 21 201029247 33·如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之親水性高分子係選自下列之一者或其任意組合:丙婦酸 羥基丙酯(hydroxypropyl acrylate)、聚乙二醇二丙烯酸酯 (polyethylene glycol diacrylate)、三乙二醇二丙烯酸酯 (triethylene glycol diacrylate)、三丙二醇二丙烯酸酯 ' (tripropylene glycol diacrylate)、四乙二醇二丙烯酸酯 (tetraethylene glycol diacrylate)、2-(2-乙氧基乙氧基) 乙基丙烯酸酯(2-(2-ethoxyethoxy)ethyl acrylat)、聚乙烯醇 ❹ (Polyvinyl alcohol)以及聚乙烯醋酸乙烯(p〇iyethylene vinyl acetate) 〇 34.如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之隔離膜的平衡接觸角約小於或等於45度。 35·如申請專利範圍第26項之用於電能儲存裝置之隔離膜,其中 上述之隔離膜厚度介於0. 025mm至0. 5mm。 36. 如申請專利範圍第26項之用於電能儲存裝置之隔離膜,更包 含一多孔高分子膜材,其係與該多孔含氟基材貼合,以形成一 複合隔離膜。 37. 如申請專利範圍第36項之用於電能儲存裝置之隔離膜,該高 分子膜材係為聚對苯二甲酸乙二醇酯(polyethylene terephthalate ; PET)。 22201029247 VII. Patent application scope: 1_ A kind of electron mirror storage device is rich, which includes - Newton substrate, and at least one kind of hydrophilic vapor molecule that has no county surface on the upper surface of the fluorine-containing nucleus. The equilibrium contact angle is less than or equal to 9 degrees. 2. The separator for an electrical energy storage device according to claim 1, wherein the fluorine-containing substrate has a fluorocarbon structure. 3. The separator for an electrical energy storage device according to claim 1, wherein the fluorine-containing substrate is selected from one of the following or any combination thereof: expanded polytetrafluoroethylene (ePTFE), Polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), tetrafluoroethylene-co-hexafluoropropylene (FEP), ethylene-tetrafluoroethylene Poly(ethylene-co-tetrafluoroethylene; ETFE), polychlorotrifluoroethylene (PCTFE), and poly(vinylidene fluoride-co-hexafluoropropylene; P( VDF-HFP)) 4. The separator for an electrical energy storage device according to claim 1, wherein the fluorine-containing substrate has a pore size of about 01. 01/^ιη to 10//m . 5. The separator for an electrical energy storage device according to claim 1, wherein the fluorine-containing substrate has a pore size of between about βπι and 1.5/zm. 6. The separator for an electrical energy storage device according to claim 1, wherein the at least one hydrophilic polymer is chemically bonded to the lower surface of the fluorine-containing substrate and the surface of the pore wall. 7. The separator for an electrical energy storage device according to claim 1, wherein the hydrophilic polymer is partially crosslinked or completely crosslinked. Φ 8. The separator for an electrical energy storage device according to claim 1, wherein the hydrophilic polymer is selected from one of the following or any combination thereof: hydroxypropyl acrylate; , polyethylene glycol diacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate, tetraethylene glycol diacrylate (triethylene glycol diacrylate) Tetraethylene glycol diacrylate), 2-(2-ethoxyethoxy)ethyl acrylate, polyvinylvinyl alcohol, and polyethylene Vinyl acetate). 9. The separator for an electrical energy storage device according to claim 1, wherein the equilibrium contact angle is less than or equal to 45 degrees. 5 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17 201029247 11. The separator for an electrical energy storage device according to claim 1, further comprising a porous polymer membrane bonded to the porous fluorine-containing substrate to form a composite separator 12. The barrier film for electrical energy storage device according to claim 11 of the patent scope is polyethylene terephthalate (PET). ❹ 13. A separator for an electrical energy storage device, comprising a porous fluorine-containing substrate, and at least one hydrophilic polymer on a lower surface of the fluorine-containing substrate and a surface of the pore wall, wetted with an aqueous solution After the separator, the transparency of the separator is improved. 14_ The separator for an electrical energy storage device according to claim 13 of the patent application, wherein the separator is translucent after the separator is wetted with a water solution. 15. The separator for an electrical energy storage device according to claim 13, wherein the fluorine-containing substrate has a fluorocarbon structure. 16. The separator for an electrical energy storage device according to claim 13, wherein the fluorine-containing substrate is selected from one of the following or any combination thereof: expanded polytetrafluoroethylene (ePTFE) , polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), tetrafluoroethylene-hexafluoropropylene copolymer (po1y(tetraf1uoroethy1ene-co-hexaf1uoropropy1ene); FEP) ethylene-tetrafluoroethylene Copolymer (poly(ethylene-co-tetrafluoroethylene); ETFE), polytrifluorocarbon 201029247 ethylene (卩〇1丫〇111〇1'〇1; 1^111〇1'〇61;11716116;?0^) and Partial fluoride-hexafluoropropylene copolymer (0〇17(>^1^11^{111〇1'丨(16-(2〇- hexafluoropropylene); P(VDF-HFP)) ° 17 The separator for electric energy storage device according to claim 13 wherein: the above-mentioned fluorine-containing substrate has a pore size of about 0.01 to 10 #m. 18· as claimed in claim 13 5之间之间。 The separator of the electrical energy storage device, wherein ❹ the above-mentioned fluorine-containing substrate pore size is about 0. 01 / / in to 1. 5 / im. 19. The separator for use in an electrical energy storage device according to claim 13, wherein the at least one hydrophilic polymer is chemically bonded to the lower surface of the fluorine-containing substrate and the surface of the pore wall. The separator for use in an electrical energy storage device according to the item 13, wherein the hydrophilic polymer is partially crosslinked or completely crosslinked. 21. The separator for use in an electrical energy storage device according to claim 13 The above hydrophilic polymer is selected from one of the following or any combination thereof: hydroxypropy 1 aery late, polyethylene glycol diacrylate, triethylene glycol diacrylate ( Triethylene glycol diacrylate), tripropylene glycol diacrylate, tetraethylene glycol diacrylate, 2-(2-ethoxyethoxy)ethyl acrylate (2- (2-ethoxyethoxy)ethyl acrylat), polyvinyl alcohol, and polyethylene 201029247 vinyl acetate. 22. The separator of the electrical energy storage device of claim 13 wherein said separator has an equilibrium contact angle of less than or equal to 45 degrees. 23. The separator for an electrical energy storage device according to the scope of claim 13 wherein the thickness of the separator is from 〇25 mm to 〇5 mm. e μ· The separator for electric energy storage device of claim 13 of the patent scope further comprises a porous polymer film which is bonded to the porous fluorine-containing substrate to form a composite separator. 25. The separator for an electrical energy storage device according to claim 24, wherein the high knife film is polyethylene terephthalate (PET). 13 26. A separator for an electrical energy storage device comprising a porous fluorine-containing substrate, and at least one hydrophilic polymer on the lower surface of the fluorine-containing substrate and the surface of the pore wall, as the separator The average pore diameter is about 0.14 //m. Under the filtration pressure of 0.5 bar and pure water, the permeability of the separator to pure water is greater than or equal to 0.5 mL/cm2. min·bar 〇27·If the scope of claim 26 is A separator for an electrical energy storage device, wherein the fluorine-containing substrate has a fluorocarbon structure. The method of claim 26, wherein the fluorine-containing substrate is selected from one of the following or any combination thereof: expanded polytetrafluoroethylene (ePTFE) ), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), tetrafluoroethylene-hexafluoropropylene copolymer (ρο1y(tetra f1uoroethy1ene-co-hexa f1uoropropy1ene); FEP), ethylene-four Poly(ethylene-co-tetrafluoroethylene; ETFE), polytrifluoroethylene (ρο 1 ych 1 orotri f 1 uoroethy 1 ene; PCTFE) and vinylidene fluoride-hexafluoropropane copolymer (poly( A separator for an electrical energy storage device according to claim 26, wherein the fluorine-containing substrate has a pore size of about 〇. 〇. 〇. 〇. 1 #πι to 10/zm. 30. The separator for an electrical energy storage device according to claim 26, wherein the fluorine-containing substrate has a pore size of between about 0.01/zm and 1.5 ym. 31. The separator for an electrical energy storage device according to claim 26, wherein the at least one hydrophilic polymer is chemically bonded to the upper surface of the fluorine-containing substrate and the surface of the pore wall. 32. The separator for use in an electrical energy storage device according to claim 26, wherein the hydrophilic polymer is partially crosslinked or completely crosslinked. The method of claim 26, wherein the hydrophilic polymer is selected from one of the following or any combination thereof: hydroxypropyl acrylate; , polyethylene glycol diacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate, tetraethylene glycol diacrylate , 2-(2-ethoxyethoxy)ethyl acrylat, polyvinylvinyl alcohol, and p〇iyethylene vinyl acetate A separator for use in an electrical energy storage device according to claim 26, wherein said separator has an equilibrium contact angle of less than or equal to 45 degrees. 5 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36. The separator for an electrical energy storage device according to claim 26, further comprising a porous polymeric membrane bonded to the porous fluorine-containing substrate to form a composite separator. 37. The barrier film for an electrical energy storage device according to claim 36, wherein the polymeric film is polyethylene terephthalate (PET). twenty two
TW098102742A 2009-01-23 2009-01-23 Isolation film for electrical energy storage device TWI464938B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098102742A TWI464938B (en) 2009-01-23 2009-01-23 Isolation film for electrical energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098102742A TWI464938B (en) 2009-01-23 2009-01-23 Isolation film for electrical energy storage device

Publications (2)

Publication Number Publication Date
TW201029247A true TW201029247A (en) 2010-08-01
TWI464938B TWI464938B (en) 2014-12-11

Family

ID=44853961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098102742A TWI464938B (en) 2009-01-23 2009-01-23 Isolation film for electrical energy storage device

Country Status (1)

Country Link
TW (1) TWI464938B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500507B (en) * 2014-04-08 2015-09-21 Benq Materials Corp Porous separator and method for manufacturing thereof
CN114024089A (en) * 2020-07-16 2022-02-08 湖南农业大学 Hydrophilic modified polymer composite membrane and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060205301A1 (en) * 2005-03-11 2006-09-14 Bha Technologies, Inc. Composite membrane having hydrophilic properties and method of manufacture
JP5148093B2 (en) * 2005-09-28 2013-02-20 東レバッテリーセパレータフィルム株式会社 Polyethylene multilayer microporous membrane, method for producing the same, and battery separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500507B (en) * 2014-04-08 2015-09-21 Benq Materials Corp Porous separator and method for manufacturing thereof
CN114024089A (en) * 2020-07-16 2022-02-08 湖南农业大学 Hydrophilic modified polymer composite membrane and preparation method and application thereof

Also Published As

Publication number Publication date
TWI464938B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP6764468B2 (en) Composite separation membrane for electrochemical device including adhesive layer and electrochemical device provided with this
JP5655088B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
JP4540607B2 (en) Polyolefin microporous membrane
JP5497245B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
TWI423502B (en) Electrode having porous active coating layer, and manufacturing method thereof and electrochemical device containing the same
JP5164413B2 (en) Composite microporous membrane, battery separator, and method of manufacturing composite microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
TW200849695A (en) Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
WO2013044545A1 (en) Coated separator with compressible elasticity, thermal shutdown and high temperature resistance
JP2007048738A (en) Separator for electronic part and its manufacturing method
TW201203667A (en) Porous multi-layer film with improved thermal properties
TW200808547A (en) Polyolefin microporous film
JP2010111096A (en) Laminated porous film, separator for lithium ion cell utilizing the same, and cell
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
CN111433940A (en) Porous film, secondary battery separator, and secondary battery
JPWO2017010480A1 (en) Laminated porous film, separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing laminated porous film
JP6316417B2 (en) Porous separation membrane for electrochemical device comprising porous substrate with inverted opal structure and method for producing the same
JPWO2019176290A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP7054997B2 (en) A method for manufacturing a separator for a non-aqueous secondary battery, a non-aqueous secondary battery, a separator for a non-aqueous secondary battery, and a coating composition for a non-aqueous secondary battery.
JP6248459B2 (en) Fluorine resin porous body
JPWO2020137336A1 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP2012226921A (en) Porous laminate film
JPWO2018021398A1 (en) Stacked wound body
TW201029247A (en) The separator used in electricity storage apparatus
TW560101B (en) Electrochemical cell comprising lamination of electrode and paper separator members