TW201029070A - Rapid thermal processing chamber with micro-positioning system - Google Patents

Rapid thermal processing chamber with micro-positioning system Download PDF

Info

Publication number
TW201029070A
TW201029070A TW98137624A TW98137624A TW201029070A TW 201029070 A TW201029070 A TW 201029070A TW 98137624 A TW98137624 A TW 98137624A TW 98137624 A TW98137624 A TW 98137624A TW 201029070 A TW201029070 A TW 201029070A
Authority
TW
Taiwan
Prior art keywords
substrate
substrate support
support
chamber
sensor
Prior art date
Application number
TW98137624A
Other languages
Chinese (zh)
Other versions
TWI421945B (en
Inventor
Khurshed Sorabji
Joseph M Ranish
Wolfgang Aderhold
Aaron M Hunter
Blake R Koelmel
Alexander N Lerner
Nir Merry
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201029070A publication Critical patent/TW201029070A/en
Application granted granted Critical
Publication of TWI421945B publication Critical patent/TWI421945B/en

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Methods and apparatus for rapid thermal processing of a planar substrate including axially aligning the substrate with a substrate support or with an empirically determined position are described. The methods and apparatus include a sensor system that determines the relative orientations of the substrate and the substrate support.

Description

201029070 六、發明說明: 【發明所屬之技術領域1 本發明揭示用於快速熱處理基板之方法及相關裝置。 更特定言之,揭示包括微定位系統之用於快速熱處理基 板之裝置及方法。 【先前技術】 ❹ 積體電路已發展成單一晶片上可包括上百萬電晶體、 電谷器及電阻器之複雜器件。晶片設計之發展要求電路 更快、電路密度更大,這些都需要日益精確之製造製程。 决速熱處理(RTP )通常包括自輕射熱源(諸如燈及/ 或電阻性加熱元件)加熱。在習知RTp系統中,將基板 加熱至所要溫度,接著斷開輻射熱源,從而使基板冷卻。 在-些系統中,可使氣體流至基板上以增強冷卻。然而, 隨著製程參數繼續發展,RTP期間之溫度上升幅度及加 熱均勻性需要更精確的監視及控制。 用於處理基板(本文中亦稱作「日日日圓」)之-常用製程 為離子植入。離子植入通常使基板經受在快速熱處理 (Rtp)腔室中執行之熱處理’該熱處理提供分佈均勾 :熱:環而可將基板自室溫加熱至約㈣至約14〇〇 匕。在習知RTP系統中,使用機努,μ 機器人臂將基板移送至將 暴扳支撐於RTP腔室中之一社椹 ^ 社 、,。構。需要將基板置放於該 、4之中心上以利於基板表面上之均句熱分佈。然而, 4 201029070 當將基板移送至該結構上時,常 ^^^ ^^ L *播忒積確地重複基板 於環形,構上之定位。舉例而言 ^ °機器人臂可能無法將 若干連續基板定位於該結構上之同一中心位置上。基板 定位之差異可導致基板表面上 个叼g熟分佈,從而導 致基板之產量減少。 一些快速熱處理裝置使用「邊綾 ,^ 還緣壞」之形式的基板支 樓件以支撐基板或晶圓。顧名田墓 顧名心義,該邊緣環僅沿邊緣201029070 VI. Description of the Invention: [Technical Field 1 of the Invention] The present invention discloses a method and related apparatus for rapidly heat-treating a substrate. More specifically, an apparatus and method for rapidly heat treating a substrate including a micropositioning system is disclosed. [Prior Art] 积 Integral circuits have evolved into complex devices that can include millions of transistors, valleys, and resistors on a single wafer. The development of wafer design requires faster circuits and higher circuit densities, all of which require increasingly precise manufacturing processes. The rate-determining heat treatment (RTP) typically involves heating from a light-emitting heat source such as a lamp and/or a resistive heating element. In a conventional RTp system, the substrate is heated to a desired temperature, and then the radiant heat source is turned off to cool the substrate. In some systems, gas can be flowed onto the substrate to enhance cooling. However, as process parameters continue to evolve, temperature rise and heating uniformity during RTP require more precise monitoring and control. The common process used to process substrates (also referred to herein as "day and day") is ion implantation. Ion implantation typically subjects the substrate to a heat treatment performed in a rapid thermal processing (Rtp) chamber. The heat treatment provides a distribution of heat: the ring can heat the substrate from room temperature to about (four) to about 14 Torr. In the conventional RTP system, the robot arm is used to transfer the substrate to one of the RTP chambers, which is supported by the robot. Structure. The substrate needs to be placed on the center of the 4 to facilitate uniform heat distribution on the surface of the substrate. However, 4 201029070 When the substrate is transferred to the structure, the 忒 忒 确 确 确 确 确 确 确 确 确 确 确 确 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板For example, the ^ ° robotic arm may not be able to position several consecutive substrates at the same center position on the structure. The difference in substrate positioning can result in a fine distribution of the surface of the substrate, resulting in a decrease in the yield of the substrate. Some rapid thermal processing devices use a substrate support in the form of a "side, but also bad" to support the substrate or wafer. Gu Mingtian's tomb, as the name suggests, the edge ring only along the edge

-周固定基板(通常稱作晶圓),以使得最小化與基板之 接觸。若晶圓並未居中於邊緣環或其他晶圓支撐件上, 則晶圓任-側上之不均句重疊都將造成隨晶圓(及晶圓 支撐件)旋轉之側與側間之不均勻性。機器人置放精確 度限於±請7时。然而,對於晶圓偏離晶圓支推件中心 置放的每- 0.’吋’晶圓可經歷rc之侧與侧間之溫 差。因此,為了得到在±2°C範圍内的溫度均勻性,需要 將晶圓置放於晶圓支撐件上以使得晶圓與晶圓支撐件在 同轴±0.002吋内。 因此,在此項技術中,需要在快速熱處理腔室中對晶 圓支揮件上之基板進行微定位或對其進行精確控制之裝 置及方法。 【發明内容】 本發明之態樣包括使用微定位系統以將大體上平坦之 基板與快速熱處理腔室中之基板支撐件同轴對準。此舉 5 201029070 允許處理期間基板上更均勻之加熱。 根據一或多個實施例,可能藉由調整晶圓、基板支樓 件或可選磁浮轉子中之一或多者的位置以使得晶圓與基 板支撐件大體上同軸,而將晶圓居中於基板支撐件上。 相對於基板支撐件之基板位置可由位置感測器系統監 視’該等位置感測器系統可將反饋提供至定位機構以精 確且可再現地達成基板與基板支撐件之同袖對準。 在實施例中’用於處理平坦基板之快速熱處理裝置 包含一具有熱源之腔室及一用於將基板固定於腔室中之 第一位置的第一基板支擇件。位於第二位置之一第二基 板支撐件在腔室中用於固定基板。在一實施例中,該第 一基板支撐件在熱處理期間於周邊處固定基板。該第二 基板支撐件在一方向上可移動以將基板置放為靠近或遠 離熱源。一用以感測基板相對於第二基板支撐件之位置 的感測器與-致動ϋ連通,以改變基板相對於在基板之 平面内之第二基板支撐件之位置的位置。如本文中所使 用,在基板之平面内」係指代一大體上平行於基板之平 坦表面的平面’例如,如笛卡爾座標系統之x-y平面中。 可以多種方式組態感測器。根據一或多個實施例之感 測器包括《學偵測器。該光學偵測器可包括光源以將 光束定向至基板之表面上。該系統亦可包括一偵測器, 其經定位以監視回瓶协止土 口愿於先束而自基板反射之光的強度。 偵測器與基板中之一去赤^ & 有或兩者可移動,以提供偵測器與 基板之間的相對運命j Λ. t運動在一些實施例中,該感測器進一 201029070 步包含一與偵測器連通之電子控制器,其中該控制器自 镇測器所偵測之反射而產生複數個量測,並計算基板表 面上發生反射之位置,包括判定該等量測中之哪個對應 於基板之邊緣。 在一些實施例中,光學偵測器藉由評估第二基板支撐 件在基板上或基板在第二基板支撐件上之投影以偵測 基板相對於第二基板支撐件之位置的位置。 替代感測器包含相機、照明系統及债測第二基板支撐 件及基板之中心的視覺影像分析系統。在其他實施例 中,感測器評估基板支撐件在基板上之或基板在基板支 撐件上之投影,以偵測基板相對於基板支撐件之位置的 位置。 在詳細實施例中,第一基板支撐件係選自機器人葉片 及舉升銷總成且第二基板支撐件為邊緣環。在特定實施 例中,該腔室進一步包含腔室蓋及至少兩個位置感測 器。該至少兩個位置感測器位於腔室蓋上。來自該至少 兩個感測器之反射光束可視需要經由該腔室蓋得以發 射。 在一些實施例中,該腔室進一步包含經定位鄰近於基 板以在複數個方向上移動基板之液體或氣體嘴嘴。 在各種實施例中,該腔室進一步包含在與基板相同之 平面中定向的複數個定位桿,該等定位桿經調適以接觸 基板之邊緣以在基板之平面内的複數個方向上推動基 板。 7 201029070 其他實施例包含經調適以在基板之平面内的複數個方 向上移動基板之機構。在一些實施例中,此由在與基板、 基板支撐件或磁浮轉子相同之平面中定向的複數個定位 桿執行》定位桿經定位以接觸基板、基板支撑件或磁浮 . #子之邊緣。該等桿能夠在複數個方向丨(例如,在平 • 行於基板之平面的複數個方向上)推動基板。 根據一些實施例,基板支撐件耦合至磁浮轉子。在詳 φ 細實施例中’可在基板之平行平面的複數個方向上移動 磁浮轉子。纟—或多個實施例中,磁浮轉子輕合至一包 含磁場產生器件之機構’該麵合至磁浮轉子之機構經調 適以形成磁場,該磁場可變更以在平行於基板之平面的 複數個方向上移動懸浮轉子。 根據一些詳細實施例,該腔室進一步包含耦合至磁浮 轉子之磁場產生器件。該磁場可變更以在基板之平面内 的複數個轴向方向上移動懸浮轉子。 • 在-些詳細實施射,該腔室進-步包含系統控制 器,其用以自感測器獲得位置信號並將信號發送至一或 多個電磁鐵以調整第二基板支撐件相對於基板之位置。 在一些特定實施例中,第二基板支撐件包含邊緣環, 該邊緣環包括位於該基板支撐件之内表面上的對準標 記,其可與基板上之相應對準標記相對準。 在一或多個實施例中,第一基板支撐件包含一用於在 加載葉片與第二基板支撐件之間移送基板的舉升銷。舉 升銷可經調適以穿過基板支撐件中之開口且接觸及舉升 8 201029070 基板。在一些實施例中’併入經調適以在基板支揮件孔 内移動舉升銷而不移動基板支撐件之轴向位置的一機 構。 一或多個詳細實施例之裝置能夠精確且可再現地將基 板支撐件與基板定位於同轴之約±〇.0〇5吋内。在更詳細 實施例中,將基板及基板支撐件定位於同軸約±〇〇〇2时 内,或同轴約土0.001忖内。 本發明之另一態樣針對一種處理基板之方法。該方法 包含將基板移送至處理腔室中。將基板移送至一組舉升 銷。判定基板之邊緣的位置。調整基板相對於基板支撐 件之位置以使得基板與基板支撐件同軸。將基板移送至 基板支撐件。此時’基板隨時可接受處理。 此等步驟之次序視使用之特定實施例而有所變化,且 不應視為嚴格的程序順序。在一些實施例中,在將基板 移送至舉升銷上之前調整基板相對於基板支撐件之相對 位置。在其他實施例中’在將基板移送至舉升銷之後調 整相對於基板支撐件之相對位置。在各種實施例中,藉 由改變基板之位置、邊緣環之位置或舉升銷之位置中的 或多者來調整基板相對於基板支撑件之相對位置。 本發明之一或多個實施例針對處理基板之方法。將具 有邊緣之平坦基板移送至處理腔室中之中間基板支撐件 上。判定基板之邊緣的位置。調整基板相對於第二基板 支撐件之位置以使得基板與第二基板支撐件處於大體上 居中之定向上。將基板移送至第二基板支撐件並處理基 201029070 板0 在詳細實施例中,於機器人葉片上將基板移送至處理 腔室中。中間基板支撐件可包含舉升銷且可在將基板移 送至舉升銷上之前調整基板相對於第二基板支撐件之相 對位置。The substrate is fixed (usually referred to as a wafer) to minimize contact with the substrate. If the wafer is not centered on the edge ring or other wafer support, the unevenness of the overlap on the wafer side will cause unevenness between the side and the side of the wafer (and wafer support). Sex. Robot placement accuracy is limited to ± 7 o'clock. However, for every -0.' 吋' wafer placed off the center of the wafer struts, the temperature difference between the side and the side of rc can be experienced. Therefore, in order to obtain temperature uniformity in the range of ±2 °C, it is necessary to place the wafer on the wafer support so that the wafer and the wafer support are within ±0.002 同轴 coaxial. Accordingly, in the art, there is a need for a device and method for micropositioning or precisely controlling a substrate on a wafer support in a rapid thermal processing chamber. SUMMARY OF THE INVENTION Aspects of the invention include the use of a micropositioning system to coaxially align a substantially flat substrate with a substrate support in a rapid thermal processing chamber. This action 5 201029070 allows for more uniform heating on the substrate during processing. In accordance with one or more embodiments, the wafer may be centered by adjusting the position of one or more of the wafer, substrate slab, or optional maglev rotor such that the wafer is substantially coaxial with the substrate support On the substrate support. The position of the substrate relative to the substrate support can be monitored by the position sensor system. The position sensor system can provide feedback to the positioning mechanism to accurately and reproducibly achieve the same sleeve alignment of the substrate with the substrate support. In an embodiment, the rapid thermal processing apparatus for processing a flat substrate includes a chamber having a heat source and a first substrate support for securing the substrate to the first position in the chamber. A second substrate support located in the second position is used in the chamber to secure the substrate. In one embodiment, the first substrate support secures the substrate at the periphery during the heat treatment. The second substrate support is movable in one direction to position the substrate proximate or remote from the heat source. A sensor for sensing the position of the substrate relative to the second substrate support is in communication with the actuator 以 to change the position of the substrate relative to the position of the second substrate support in the plane of the substrate. As used herein, in the plane of the substrate, refers to a plane that is substantially parallel to the planar surface of the substrate, e.g., in the x-y plane of a Cartesian coordinate system. The sensor can be configured in a variety of ways. A sensor in accordance with one or more embodiments includes a "study detector. The optical detector can include a light source to direct the beam onto the surface of the substrate. The system can also include a detector positioned to monitor the intensity of the light reflected from the substrate by the return bottle. One or both of the detector and the substrate are movable to provide a relative life between the detector and the substrate. In some embodiments, the sensor proceeds to step 201029070. An electronic controller is provided in communication with the detector, wherein the controller generates a plurality of measurements from the reflection detected by the detector, and calculates a position of the reflection on the surface of the substrate, including determining the measurement Which corresponds to the edge of the substrate. In some embodiments, the optical detector detects the position of the substrate relative to the position of the second substrate support by evaluating the projection of the second substrate support on the substrate or the substrate on the second substrate support. The replacement sensor includes a camera, a lighting system, and a visual image analysis system that measures the center of the second substrate support and the substrate. In other embodiments, the sensor evaluates the projection of the substrate support on the substrate or the substrate on the substrate support to detect the position of the substrate relative to the position of the substrate support. In a detailed embodiment, the first substrate support is selected from the group consisting of a robot blade and a lift pin assembly and the second substrate support is an edge ring. In a particular embodiment, the chamber further includes a chamber cover and at least two position sensors. The at least two position sensors are located on the chamber cover. Reflected beams from the at least two sensors can be transmitted via the chamber cover as desired. In some embodiments, the chamber further includes a liquid or gas nozzle positioned adjacent to the substrate to move the substrate in a plurality of directions. In various embodiments, the chamber further includes a plurality of locating rods oriented in the same plane as the substrate, the aligning rods being adapted to contact the edges of the substrate to urge the substrate in a plurality of directions in the plane of the substrate. 7 201029070 Other embodiments include mechanisms adapted to move the substrate in a plurality of directions in the plane of the substrate. In some embodiments, this is performed by a plurality of locating rods oriented in the same plane as the substrate, substrate support or maglev rotor. The locating rod is positioned to contact the edge of the substrate, substrate support or magnetic float. The rods are capable of pushing the substrate in a plurality of directions (e.g., in a plurality of directions that are flat on the plane of the substrate). According to some embodiments, the substrate support is coupled to the maglev rotor. In the detailed embodiment, the magnetic floating rotor can be moved in a plurality of directions parallel to the plane of the substrate. In one or more embodiments, the maglev rotor is lightly coupled to a mechanism comprising a magnetic field generating device. The mechanism that is coupled to the maglev rotor is adapted to form a magnetic field that can be varied to be in a plurality of planes parallel to the plane of the substrate. Move the suspension rotor in the direction. According to some detailed embodiments, the chamber further includes a magnetic field generating device coupled to the maglev rotor. The magnetic field can be varied to move the floating rotor in a plurality of axial directions in the plane of the substrate. • In some detailed implementations, the chamber further includes a system controller for obtaining a position signal from the sensor and transmitting the signal to one or more electromagnets to adjust the second substrate support relative to the substrate The location. In some particular embodiments, the second substrate support comprises an edge ring that includes alignment marks on an inner surface of the substrate support that are aligned with corresponding alignment marks on the substrate. In one or more embodiments, the first substrate support includes a lift pin for transferring the substrate between the loading blade and the second substrate support. The lift pins can be adapted to pass through openings in the substrate support and contact and lift 8 201029070 substrates. In some embodiments, a mechanism adapted to move the lift pins within the substrate support apertures without moving the axial position of the substrate support is incorporated. The apparatus of one or more of the detailed embodiments is capable of accurately and reproducibly positioning the substrate support and the substrate within about ± 〇.0〇5吋 of the coaxial. In a more detailed embodiment, the substrate and substrate support are positioned within about ± 〇〇〇 2 of the coaxial or within about 0.001 同轴 of the coaxial. Another aspect of the invention is directed to a method of processing a substrate. The method includes transferring a substrate into a processing chamber. Transfer the substrate to a set of lift pins. The position of the edge of the substrate is determined. The position of the substrate relative to the substrate support is adjusted such that the substrate is coaxial with the substrate support. Transfer the substrate to the substrate support. At this time, the substrate is acceptable for processing at any time. The order of such steps will vary depending on the particular embodiment used and should not be considered as a strict sequence of procedures. In some embodiments, the relative position of the substrate relative to the substrate support is adjusted prior to transferring the substrate onto the lift pins. In other embodiments, the relative position relative to the substrate support is adjusted after the substrate is transferred to the lift pins. In various embodiments, the relative position of the substrate relative to the substrate support is adjusted by changing the position of the substrate, the position of the edge ring, or the position of the lift pins. One or more embodiments of the present invention are directed to a method of processing a substrate. The flat substrate with the edges is transferred to the intermediate substrate support in the processing chamber. The position of the edge of the substrate is determined. The position of the substrate relative to the second substrate support is adjusted such that the substrate and the second substrate support are in a substantially central orientation. Transferring the substrate to the second substrate support and processing the substrate 201029070 Plate 0 In a detailed embodiment, the substrate is transferred to the processing chamber on the robot blade. The intermediate substrate support can include a lift pin and can adjust the relative position of the substrate relative to the second substrate support prior to transferring the substrate onto the lift pins.

在詳細實施例中’可藉由改變基板之位置、第二基板 支樓件之位置或中間基板支撐件之位置中的一或多者來 調整基板相對於第二基板支撐件之相對位置。 在一些特定實施例中’該方法進一步包含以下步驟: 經由基板與基板支撐件之間的空間發射來自一個感測器 之反射光束’而判定θ調整值以用於將基板置放於第二 基板支撐件之中心位置上。在其他詳細實施例中,藉由 量測第二基板支撐件與基板之間的至少兩個位置X及γ 之距離來判定0調整值’且使用至少兩個感測器判定用 於β調整之至少兩個位置又及γ之該距離。 在一或多個實施例中,藉由於基板支撐件鄰近處施加 一或多個磁場來調整第二基板支撐件之位置。根據詳細 實施例,-或多個感測器與控制系統連^,該控制系統 與鄰近於基板支撐件之複數個磁鐵連通,且磁場係回應 於由感測器獲得之位置而施加。 述内容談及同轴定位,但本文中所揭示之本發 明不限於同轴定位’且可用以相對於基板支撐件將基板 定位於任何規定量之軸向位置處(例如在W顏内)及 任何較佳規定Μ θ之位置處。基板之幾何中心不一定為 10 201029070 基板之熱中心(thermal center)。此外,歸因於基板支推 件之可變性’即使晶圓並非與基板支撐件實體同軸,亦 可判定具有最佳熱處理再現性之最佳位置(Γ、θ)。因此, 即使該位置並非與基板支撑件實體同轴,本發明之實施 例亦可用以確保最佳地定位晶圓。 【實施方式】 在描述本發明之若干示範性實施例之前,應理解本發 明不限於以下描述中所陳述之構造或製程步驟之細節。 本發明能夠具有其他實施例且能夠以各種方式實踐或執 行。 下文所描述之實施例大體而言針對一種包括用以將基 板軸向地對準於基板之平面内之基板支撐件之微定位系 統的RTP系統。如本文中所使用,快速熱處理或RTp係 指能夠以約50°C /秒及更高速率(例如1〇〇至i5〇ec/秒、 及200至400。〔〕/秒之速率)均勻加熱晶圓的裝置或製 程Rtp腔至中之典型降溫(冷卻)速率在8 秒之範圍中。執行於RTP腔室中之一些製程要求基板上 之溫度變化小於少許攝氏度數。因此,RTP腔室可包括 燈或其他適合之加熱系統及加熱系統控制,其能夠以高 達100至150 °c/秒及200至400。(:/秒之速率進行加熱, 從而區別快速熱處理腔室與不具有能夠以此等速率快速 加熱之加熱系統及加熱控制系統的其他類型之熱腔室。 201029070 在所展示之實施例中,RTP腔室視需要可包括一如下基 板支撐件:其經調適以在腔室内懸浮且旋轉而不與腔室 之内側壁有任何接觸。 現參看第1圖,其展示快速熱處理腔室1〇〇之示範性 實施例。處理腔室100包括基板支撐件1〇4、腔室主體 102,腔室主體102具有界定内部體積12〇之壁1〇8、底 部110及頂部或蓋112。壁1〇8通常包括至少一個基板出 入埠148以便於基板140 (第丨圖中展示了其一部分) 之進出。該出入埠可耦合至移送腔室(未圖示)或負載 鎖定腔室(未圖示)且可用諸如狹縫閥之閥(未圖示) 選擇性地進行密封,該閥密封内部體積12〇而與周圍大 氣隔離。在一實施例中,基板支撐件1〇4係環形的且腔 室100包括安置於基板支撐件1〇4 一内徑上的輻射熱源 106。輻射熱源106通常包含複數個燈。可修改之rtp 腔至及可使用之基板支樓件的實例在美國專利第 M〇0,833號及美國專利申請公開案第2〇〇5/〇191〇44號 中予以描述。In a detailed embodiment, the relative position of the substrate relative to the second substrate support can be adjusted by changing one or more of the position of the substrate, the position of the second substrate support member, or the position of the intermediate substrate support. In some particular embodiments, the method further includes the steps of: determining a θ adjustment value for placing the substrate on the second substrate via a space between the substrate and the substrate support that emits a reflected beam from one of the sensors Center position of the support. In other detailed embodiments, the 0 adjustment value is determined by measuring the distance between the at least two positions X and γ between the second substrate support and the substrate, and the at least two sensors are used to determine the β adjustment. At least two locations are again the distance of gamma. In one or more embodiments, the position of the second substrate support is adjusted by applying one or more magnetic fields adjacent the substrate support. According to a detailed embodiment, - or a plurality of sensors are coupled to the control system, the control system being in communication with a plurality of magnets adjacent to the substrate support, and the magnetic field is applied in response to the position obtained by the sensor. The disclosure relates to coaxial positioning, but the invention disclosed herein is not limited to coaxial positioning 'and can be used to position the substrate relative to the substrate support at any specified amount of axial position (eg, within the W-face) and Any position that is better specified Μ θ. The geometric center of the substrate is not necessarily the thermal center of the 10 201029070 substrate. In addition, due to the variability of the substrate support, the optimum position (Γ, θ) with optimum heat treatment reproducibility can be determined even if the wafer is not coaxial with the substrate support. Thus, even if the location is not coaxial with the substrate support, embodiments of the present invention can be used to ensure optimal positioning of the wafer. [Embodiment] Before describing several exemplary embodiments of the present invention, it is understood that the invention is not limited to the details of the construction or process steps set forth in the following description. The invention is capable of other embodiments and of various embodiments. The embodiments described below are generally directed to an RTP system including a micropositioning system for axially aligning a substrate to a substrate support in a plane of the substrate. As used herein, rapid thermal processing or RTp refers to the ability to uniformly heat at a rate of about 50 ° C / sec and higher (eg, 1 〇〇 to i 5 〇 ec / sec, and 200 to 400. [ ] / sec) The typical cooling (cooling) rate of the wafer device or process Rtp cavity is in the range of 8 seconds. Some processes performed in the RTP chamber require that the temperature change on the substrate be less than a few degrees Celsius. Thus, the RTP chamber can include a lamp or other suitable heating system and heating system control that can be as high as 100 to 150 ° c/sec and 200 to 400. Heating at a rate of (:/sec) distinguishes between a rapid thermal processing chamber and other types of thermal chambers that do not have a heating system and heating control system capable of rapid heating at such rates. 201029070 In the illustrated embodiment, RTP The chamber may optionally include a substrate support that is adapted to float and rotate within the chamber without any contact with the inner sidewall of the chamber. Referring now to Figure 1, a rapid thermal processing chamber is shown. Exemplary Embodiment The processing chamber 100 includes a substrate support 1〇4, a chamber body 102 having a wall 1〇8 defining an interior volume 12〇, a bottom portion 110, and a top or cover 112. Walls 1〇8 Typically, at least one substrate access port 148 is included to facilitate access of the substrate 140 (a portion of which is shown in the figure). The access port can be coupled to a transfer chamber (not shown) or a load lock chamber (not shown) and The seal can be selectively sealed with a valve (not shown) such as a slit valve that seals the internal volume 12 〇 from the surrounding atmosphere. In one embodiment, the substrate support 1 〇 4 is annular and the chamber 100 A radiant heat source 106 disposed on an inner diameter of the substrate support member 1-4. The radiant heat source 106 typically includes a plurality of lamps. An example of a modifiable rtp cavity to and a usable substrate support member is disclosed in U.S. Patent No. M. It is described in U.S. Patent Application Publication No. 2/5/191,144.

Rtp腔室1〇〇亦包括鄰近於、耦合至頂部112或形成 於頂部112中之冷卻區塊丨8〇。通常,冷卻區塊18〇與 輕射熱源106間隔開且彼此相對。冷卻區塊18〇包含輕 〇至入口 181Α及出口 18ιβ之一或多個冷卻劑通道 184»冷卻區塊180可由製程阻抗性材料製成,諸如不銹 鋼、鋁、聚合物或陶瓷材料。冷卻劑通道184可包含螺 旋圖案、矩形圖案、圓形圖案或其組合,且可(例如) 12 201029070 藉由自兩個或兩個以上零件鑄鑄冷卻區塊18〇及/或製造 冷卻區塊180並接合該等零件,而將通道184整體形成 於冷卻區塊180内》另外或替代地,可將冷卻劑通道184 鑽入冷卻區塊180中。 入口 181A及出口 181B可由閥及適合管件耦合至冷卻 劑源1 82 ’且冷卻劑源丨82與控制器丨24連通以便於對 置於其中之流體之壓力及/或流量進行控制。該流體可為 水、乙二醇、氣(N2)、氦(He),或用作熱交換介質之 其他流體。 在所展示之實施例中’基板支撐件1〇4視需要可經調 適以在内部體積12〇内磁力地懸浮及旋轉。所展示之基 板支樓件104能夠在處理期間旋轉同時垂直地升高及降 低’且亦可在處理之前、期間或之後不旋轉之情況下被 升高或降低》此磁懸浮及/或磁旋轉可防止或最小化粒子 之產生,因為其缺乏或減少了通常升高/降低及/或旋轉基 板支撐件所必需之移動部件。 腔至100亦包括由對熱及各種波長之光(其可包括紅 外線(IR)光譜中之光)透明之材料製成的窗σ 114, 來自輻射熱源106之光子可經由窗口 U4加熱基板14〇。 在實施例令’窗口 i 14由石英材料製成,然而亦可使 :對熱及光透明之其他材料,諸如藍寶石。窗D 114亦 *包括耦合至肉口 i丨4之上表面的複數個舉升銷!料, 舉升销144經調適以選擇性地接觸及支撐基& 14〇,以 ;移送基板進出腔室1〇〇。複數個舉升鎖丨中之每 13 201029070 一者經組態以最小化來自輻射熱源1〇6之能量吸收,且 可由用於與窗口 114之相同材料(諸如石英材料)製成。 複數個舉升銷144可經定位及彼此徑向地間隔以便於耦 合至移送機器人(未圖示)之端效器的通行。或者,端 效器及/或機器人能夠水平及垂直運動以便於移送基板 140。 在一實施例中,輻射熱源106包括一如下形成之燈總 成:其中一外殼包括複數個位於一冷卻劑總成(未圖示) 中的蜂窩狀管1 60,該冷卻劑總成耗合至冷卻劑源丨83。 冷卻劑源183可為水、乙二醇、氮(n2)及氦(He)中 之一者或組合。外殼壁108、11()可由銅材料或其他適合 材料製成’並具有形成於其中之適當冷卻劑通道以便來 自冷卻劑源1 83之冷卻劑之流動。該冷卻劑冷卻腔室1 〇〇 之外殼以使得外殼比基板丨4〇更涼。每一管丨6〇可含有 反射器及高強度燈總成或IR發射器,而形成似蜂窩狀之 管配置°此緊密堆積的六邊形管配置為輻射能源提供高 功率雅度及良好空間解析度。在一實施例中,輻射熱源 106提供充足輻射能以熱處理基板,例如,對安置於基 板140上之矽層進行退火。輻射熱源106可進一步包含 環形區域,其中由控制器124供應至複數個管160之電 壓可有變化以增強來自管160之能量的徑向分佈。加熱 基板140之動態控制可受一或多個溫度感測器丨17的影 響’溫度感測器117經調適以在基板14〇處量測溫度。 在所展示之實施例中,可選擇性將定子總成i丨8外接 201029070 於腔室主體102之壁i〇8且耦合至一或多個致動器總成 122 ’致動器總成122沿腔室主體1 〇2之外部而控制定子 總成118之高程。在一實施例(未圖示)中,腔室1〇〇 包括徑向地安置於腔室主體周圍(例如,在腔室主體1〇2 周圍約呈120。角)之三個致動器總成122。定子總成U8 磁耗合至安置於腔室主體102之内部體積12〇内的基板 支揮件104。基板支撐件104可包含或包括用以充當轉 . 子之磁性部分,從而形成用以舉升及/或旋轉基板支撐件 104之磁性軸承總成。在一實施例中,基板支撑件1 〇4 之至少一部分為一耦合至流體源186之槽(未圖示)所 部分地包圍’流體源1 8 6可包括適合做為基板支樓件之 熱交換介質之水、乙二醇、氮(N2)、氦(He)或其組合。 定子總成118亦可包括外殼190以封閉定子總成118之 各種部件及組件。在一實施例中,定子總成丨〗8包括堆 疊於懸吊線圈總成170上之驅動線圈總成ι68。驅動線 Φ 圈總成丨68經調適以旋轉及/或升高/降低基板支撐件 104 ’而懸吊線圈總成170可經調適以將基板支撐件i 〇4 被動地居中於處理腔室100内。或者,旋轉及居中功能 可由具有單一線圈總成之定子來執行。 大氣控制系統164亦耦合至腔室主體1〇2之内部艘積 120。大氣控制系統164通常包括節流閥及真空汞以用於 控制腔室壓力。大氣控制系統164可額外地包括用於將 製程或其他氣體提供至内部體積120之氣體源。大氣控 制系統164亦可適於傳遞用於熱沈積製程、熱蝕刻製程 15 201029070 及原位清潔腔室組件之製程氣體。 腔室100亦包括控制器i24,其通常包括中央處理單 元(CPU) 130、支援電路128及記憶體126。cpu u〇 可為可用於控制各種行動及子處理器之工業配置中的任 何形式之電腦處理器中之一者。記憶體126或電腦可讀 媒艎可為易獲得之記憶體中的一或多者,諸如隨機存取 記憶體(RAM )、唯讀記憶體(ROM )、軟碟、硬碟或任 何其他形式之數位儲存器(本地或遠端),且其通常耦合 至CPU 130。支援電路ι28耦合至CpiJ 13〇以用於以習 知方式支援控制器124。此等電路包括快取記憶體、電 源、時鐘電路、輸入/輸出電路、子系統及其類似物。 在一實施例中,致動器總成122中之每一者通常包含 耦合於自腔室主體1〇2之壁1〇8延伸出之兩個凸緣ι34 之間的精密導螺栓132。導螺栓132具有在螺栓旋轉時 沿導螺检132軸向地行進之螺帽158。耦合器136耦合 於定子118與螺帽158之間以使得在導螺栓132旋轉 時’叙合器136沿導螺栓132移動以將定子118之高程 控制在與耦合器136之界面處。因此,當使致動器122 中之一者的導螺栓132旋轉以產生其他致動器122之螺 中目158之間的相對位移時,定子118之水平面將相對於 腔室主體102之中心軸而改變。 在一實施例中’馬達138 (諸如步進或伺服馬達)耦 〇至導螺桂:132以回應於控制器124之信號而提供可控 旋轉或者,可用其他類型之致動器丨22控制定子118 16 201029070 之線性位置’諸如氣壓缸 線性致動器及凸輪隨動件 液壓缸、滚珠螺栓、螺線管、 ’及其他。 在包括可選定子總成118之實施例中,腔室1〇〇亦可 包括-或多個感測器116,其通常經調適以偵測腔室主 體m之内部體積120内之基板支撐件ι〇4(或基板⑽) 的尚程感測ϋ 116可耦合至處理腔室1〇〇之腔室主體 及/或其他分’且經調適以提供指示基板支擇件⑽ 與腔室主體102之頂部112及/或底部11〇之間的距離之 輸出,且亦可偵測基板支撐件1〇4及/或基板14〇之未對 準。The Rtp chamber 1〇〇 also includes a cooling block 丨8〇 adjacent to, coupled to, or formed in the top 112. Typically, the cooling blocks 18A are spaced apart from the light source heat source 106 and are opposite each other. The cooling block 18A includes one or more coolant passages from the inlet 181 Α and the outlet 18 ι. The cooling block 180 can be made of a process resistive material such as stainless steel, aluminum, polymer or ceramic material. The coolant passage 184 may comprise a spiral pattern, a rectangular pattern, a circular pattern, or a combination thereof, and may, for example, 12 201029070 cast a cooling block 18 from two or more parts and/or manufacture a cooling block 180 and joining the parts, the channel 184 is integrally formed within the cooling block 180. Additionally or alternatively, the coolant channel 184 can be drilled into the cooling block 180. Inlet 181A and outlet 181B may be coupled to a coolant source 1 82 ' by a valve and a suitable tube and the coolant source 连通 82 is in communication with the controller 丨 24 to control the pressure and/or flow of the fluid disposed therein. The fluid can be water, glycol, gas (N2), helium (He), or other fluids used as a heat exchange medium. In the illustrated embodiment, the substrate support 1 4 can be adapted to magnetically suspend and rotate within the internal volume 12 视 as desired. The substrate support member 104 is shown to be rotatable during processing while being vertically raised and lowered 'and can also be raised or lowered without rotation before, during or after processing." This magnetic levitation and/or magnetic rotation can be The generation of particles is prevented or minimized because it lacks or reduces the moving parts necessary to generally raise/lower and/or rotate the substrate support. Cavity 100 also includes a window σ 114 made of a material that is transparent to heat and light of various wavelengths (which may include light in the infrared (IR) spectrum), and photons from radiant heat source 106 can heat substrate 14 via window U4. . In the embodiment, the window i 14 is made of a quartz material, but it is also possible to make other materials transparent to heat and light, such as sapphire. Window D 114 also includes a plurality of lift pins coupled to the upper surface of the meat port i丨4! The lift pin 144 is adapted to selectively contact and support the base & 14 〇 to transfer the substrate into and out of the chamber 1 . Each of the plurality of lift locks 13 201029070 is configured to minimize energy absorption from the radiant heat source 1〇6 and may be made of the same material (such as quartz material) used for the window 114. A plurality of lift pins 144 are positionable and radially spaced from one another to facilitate coupling to an end effector of a transfer robot (not shown). Alternatively, the emulator and/or the robot can move horizontally and vertically to facilitate transfer of the substrate 140. In one embodiment, radiant heat source 106 includes a lamp assembly formed as follows: one of the outer casings includes a plurality of honeycomb tubes 1600 located in a coolant assembly (not shown), the coolant assembly being constrained To the coolant source 丨83. Coolant source 183 can be one or a combination of water, ethylene glycol, nitrogen (n2), and helium (He). The outer casing walls 108, 11() may be made of a copper material or other suitable material' and have suitable coolant passages formed therein for the flow of coolant from the coolant source 183. The coolant cools the outer casing of the chamber 1 以 such that the outer casing is cooler than the substrate 丨4〇. Each tube 丨6〇 can contain reflectors and high-intensity lamp assemblies or IR emitters to form a honeycomb-like tube configuration. This closely packed hexagonal tube configuration provides high power elegance and good space for radiant energy. Resolution. In one embodiment, the radiant heat source 106 provides sufficient radiant energy to heat treat the substrate, e.g., to anneal the layer of germanium disposed on the substrate 140. The radiant heat source 106 can further include an annular region in which the voltage supplied by the controller 124 to the plurality of tubes 160 can be varied to enhance the radial distribution of energy from the tubes 160. Dynamic control of the heated substrate 140 can be effected by one or more temperature sensors ’ 17 'temperature sensor 117 is adapted to measure temperature at substrate 14 〇. In the illustrated embodiment, the stator assembly i 8 can be selectively circumscribed 201029070 to the wall 〇 8 of the chamber body 102 and coupled to one or more actuator assemblies 122 ′ actuator assembly 122 The elevation of the stator assembly 118 is controlled along the exterior of the chamber body 1 〇2. In an embodiment (not shown), the chamber 1 includes three actuators that are radially disposed about the chamber body (eg, approximately 120 degrees around the chamber body 1〇2). Into 122. The stator assembly U8 is magnetically coupled to the substrate support 104 disposed within the interior volume 12 of the chamber body 102. The substrate support 104 can include or include a magnetic portion to act as a transducer to form a magnetic bearing assembly for lifting and/or rotating the substrate support 104. In one embodiment, at least a portion of the substrate support 1 〇 4 is partially enclosed by a slot (not shown) coupled to the fluid source 186. The fluid source 186 may include heat suitable for use as a substrate support member. The exchange medium is water, ethylene glycol, nitrogen (N2), helium (He) or a combination thereof. The stator assembly 118 can also include a housing 190 to enclose various components and assemblies of the stator assembly 118. In one embodiment, the stator assembly 8 includes a drive coil assembly ι 68 stacked on the suspension coil assembly 170. The drive line Φ ring assembly 丨 68 is adapted to rotate and/or raise/lower the substrate support 104 ′ and the suspension coil assembly 170 can be adapted to passively center the substrate support i 〇 4 in the processing chamber 100 Inside. Alternatively, the rotation and centering functions may be performed by a stator having a single coil assembly. The atmosphere control system 164 is also coupled to the internal reservoir 120 of the chamber body 1〇2. Atmospheric control system 164 typically includes a throttle valve and vacuum mercury for controlling chamber pressure. Atmospheric control system 164 may additionally include a source of gas for providing a process or other gas to internal volume 120. Atmospheric control system 164 may also be adapted to deliver process gases for thermal deposition processes, thermal etch processes 15 201029070, and in-situ cleaning chamber components. The chamber 100 also includes a controller i24, which typically includes a central processing unit (CPU) 130, a support circuit 128, and a memory 126. The cpu u〇 can be one of any form of computer processor that can be used in an industrial configuration that can control various actions and sub-processors. The memory 126 or the computer readable medium can be one or more of the readily available memory, such as random access memory (RAM), read only memory (ROM), floppy disk, hard disk, or any other form. The digital storage (local or remote) is typically coupled to the CPU 130. Support circuit ι28 is coupled to CpiJ 13〇 for supporting controller 124 in a conventional manner. These circuits include cache memory, power supplies, clock circuits, input/output circuits, subsystems, and the like. In one embodiment, each of the actuator assemblies 122 generally includes a precision guide bolt 132 coupled between two flanges ι 34 extending from the wall 1〇8 of the chamber body 1〇2. The guide bolt 132 has a nut 158 that travels axially along the guide screw 132 as the bolt rotates. The coupler 136 is coupled between the stator 118 and the nut 158 such that the recloser 136 moves along the guide bolt 132 as the guide bolt 132 rotates to control the elevation of the stator 118 at the interface with the coupler 136. Thus, when the guide bolt 132 of one of the actuators 122 is rotated to produce a relative displacement between the solenoids 158 of the other actuators 122, the horizontal plane of the stator 118 will be relative to the central axis of the chamber body 102. And change. In one embodiment, a 'motor 138 (such as a stepper or servo motor) is coupled to the guide screw 132 to provide controllable rotation in response to signals from the controller 124. Alternatively, the stator can be controlled by other types of actuators 22 118 16 201029070 Linear position 'such as pneumatic cylinder linear actuators and cam follower hydraulic cylinders, ball bolts, solenoids, 'and others. In embodiments including the optional stator assembly 118, the chamber 1〇〇 may also include one or more sensors 116 that are typically adapted to detect substrate supports within the interior volume 120 of the chamber body m The 感 感 116 of the 〇 4 (or substrate (10)) can be coupled to the chamber body and/or other sub-portions of the processing chamber 1 且 and adapted to provide the indicator substrate support (10) and the chamber body 102 The output of the distance between the top 112 and/or the bottom 11〇 can also detect misalignment of the substrate support 1〇4 and/or the substrate 14〇.

一或多個感測器116耦合至控制器124,該控制器124 自感測器116接收輸出量度,且將—信號或多個信號提 供至一或多個致動器總成122以升高或降低基板支撐件 104之至少一部分。控制器124可利用自感測器ιΐ6獲 得之位置量度以調整每一致動器總成122處之定子ιΐ8 之回程,以使得可相對於RTP腔室100及/或輻射熱源 106之中心軸來調整基板支撐件104及固定於其上之基 板14〇的高程與平面度。舉例而言,控制器124可提供 多個信號以藉由一個致動器丨22之行動來升高基板支撐 件從而校正基板支撐件104之軸向未對準,或該控制器 可將一個信號提供至所有致動器122以便基板支撐件 104同時垂直運動。 一或多個感測器116可為能夠偵測腔室主體102内之 基板支撐件104之接近度的超音波、雷射、電感性、電 17 201029070 之感測器。感測器11 6可耦合至腔室主 112處或耦合至壁1〇8,然而腔室主體 容性或其他類型 體102鄰近頂部 1〇2内及周圍之苴他 ,、他位置亦可適合,諸如耦合至腔室100One or more sensors 116 are coupled to a controller 124 that receives an output metric from the sensor 116 and provides a signal or signals to one or more actuator assemblies 122 to rise Or reducing at least a portion of the substrate support 104. The controller 124 can utilize the position metric obtained from the sensor ι 6 to adjust the return stroke of the stator ι 8 at each actuator assembly 122 such that it can be adjusted relative to the central axis of the RTP chamber 100 and/or the radiant heat source 106. The elevation and flatness of the substrate support 104 and the substrate 14 固定 fixed thereto. For example, the controller 124 can provide a plurality of signals to raise the substrate support by action of an actuator 22 to correct axial misalignment of the substrate support 104, or the controller can send a signal All actuators 122 are provided for simultaneous vertical movement of the substrate support 104. The one or more sensors 116 can be ultrasonic, laser, inductive, electrical 17 201029070 sensors capable of detecting the proximity of the substrate support 104 within the chamber body 102. The sensor 116 can be coupled to or coupled to the chamber main 112, however the chamber body capacitive or other type of body 102 is adjacent to and within the top 1〇2, and its position can also be adapted , such as being coupled to the chamber 100

外部之定子118。龙 杳A 在-實施例中,一或多個感測器116 可耦合至定子a 8且'纟二調適以穿過壁108感測基板支撐 牛(或基板140)之高程及/或位置。在此實施例中, 壁8可匕括較薄橫截面以便進行穿過壁—之位置感 測0External stator 118. In one embodiment, one or more of the sensors 116 can be coupled to the stator a 8 and the second is adapted to sense the elevation and/or position of the substrate supporting the bull (or substrate 140) through the wall 108. In this embodiment, the wall 8 can include a thinner cross section for the positional sensing through the wall.

腔至100亦包括-或多個溫度感測器117,其可經調 適以在處理之前、期間及之後感測基板14〇之溫度。在 第1圖中所描繪之實施例中,溫度感測器】i 7經穿置頂 部112,然而亦可使用腔室主體102内及周圍之其他位 置。溫度m 117可為光學高溫計,例如具有光纖探 頭之尚溫计。感測器117可經調適以按感測基板之整個 直徑或基板之一部分的組態耦合至頂部112。感測器117 可包含界疋大體上等於基板之直徑之感測區域,或大體 上等於基板之半徑之感測區域的圖案。舉例而言,複數 個感測器117可按徑向或線性組態耦合至頂部112以實 現一覆蓋基板之半徑或直徑的感測區域。在一實施例(未 圖示)中複數個感測器117可安置於一自頂部112之 中心附近徑向延伸至頂部112之周邊部分的直線上。以 此方式’基板之半徑可由感測器117監視,感測器U7 將能在旋轉期間實現對基板之直徑的感測。 如本文中所描述,腔室100經調適以接收「面朝上 201029070 定向之基板,其中使基板之沈積物接收側或面側朝向頂 部112且基板之「背側」面向輻射熱源1〇6。「面朝上」 定向可允許來自輻射熱源106之能量被基板14〇更迅速 地吸收’因為視所涉及之處理(亦即Ni塗佈)而定,基 板之背側有時比基板之正面較低之反射性。通常,未經 圖案化之「面朝上」定向將更均勻吸收之面呈現至輻射 源。 儘管將冷卻區塊1 80及輻射熱源1 〇6描述為分別定位 於内部體積120之上部部分及下部部分中,但可顛倒冷 卻區塊180及輻射熱源1 〇6之位置。舉例而言,冷卻區 塊180可經定尺寸且經組態以定位於基板支撐件1〇4之 内部直徑内,且輻射熱源106可耦合至頂部在此 配置中,石英窗口 114可安置於輻射熱源1〇6與基板支 撲件104之間’諸如鄰近於腔室1 之上部部分中的輕 射熱源106。儘管在背側面向輻射熱源1〇6時,基板14〇 • 可更容易地吸收熱且確實能更均勻地吸收輻射能,但在 任一組態中基板140可定向為面朝上定向或面朝下定 向。 根據一或多個實施例,藉由使用位置感測器系統22〇 偵測基板位置來達成基板相對於基板支撐件丨〇4之定 位’該位置感測器系統220用於藉由(例如)偵測大趙 平坦基板之邊緣而感測基板相對於第二基板支擇件之位 置。可以多種方式實現基板之邊緣的彳貞測。下文所論述 之實例並非意欲限制本發明之範疇。其他基板位置感測 201029070 器系統220在本發明之範'^内。舉例而言,特定基板位 置感測器系統可利用能夠偵測基板相對於基板支撐件之 位置的超音波、雷射、電感性、電容性或其他類型之感 測器。 示範性基板位置感測器系統220在美國專利第The cavity to 100 also includes - or a plurality of temperature sensors 117 that can be adapted to sense the temperature of the substrate 14A before, during, and after processing. In the embodiment depicted in Figure 1, the temperature sensor i 7 passes through the top portion 112, although other locations within and around the chamber body 102 can also be used. The temperature m 117 can be an optical pyrometer, such as a thermometer with a fiber optic probe. The sensor 117 can be adapted to couple to the top 112 in a configuration that senses the entire diameter of the substrate or a portion of the substrate. The sensor 117 can include a sensing region that is substantially equal to the diameter of the substrate, or a pattern of sensing regions that are substantially equal to the radius of the substrate. For example, a plurality of sensors 117 can be coupled to the top portion 112 in a radial or linear configuration to achieve a sensing region that covers the radius or diameter of the substrate. In an embodiment (not shown) a plurality of sensors 117 may be disposed on a line extending radially from the center of the top 112 to a peripheral portion of the top portion 112. In this manner, the radius of the substrate can be monitored by the sensor 117, which will be able to sense the diameter of the substrate during rotation. As described herein, the chamber 100 is adapted to receive a substrate that is oriented upwards toward 201029070, with the deposit receiving side or face side of the substrate facing the top portion 112 and the "back side" of the substrate facing the radiant heat source 1-6. The "face up" orientation allows the energy from the radiant heat source 106 to be absorbed more quickly by the substrate 14 because of the processing involved (i.e., Ni coating), the back side of the substrate sometimes being larger than the front side of the substrate. Low reflectivity. Typically, the unpatterned "face up" orientation presents a more evenly absorbed surface to the radiation source. Although the cooling block 180 and the radiant heat source 1 〇 6 are described as being positioned in the upper and lower portions of the inner volume 120, respectively, the position of the cooling block 180 and the radiant heat source 1 〇 6 can be reversed. For example, the cooling block 180 can be sized and configured to be positioned within the inner diameter of the substrate support 1〇4, and the radiant heat source 106 can be coupled to the top. In this configuration, the quartz window 114 can be placed in radiant heat Between the source 1〇6 and the substrate baffle 104 is a light-emitting heat source 106 such as adjacent to the upper portion of the chamber 1. Although the substrate 14 can more easily absorb heat and indeed absorb the radiant energy more evenly when the back side faces the radiant heat source 1 基板, the substrate 140 can be oriented face up or facing in either configuration. Orientation. According to one or more embodiments, the position of the substrate relative to the substrate support 4 is achieved by detecting the position of the substrate using the position sensor system 22. The position sensor system 220 is used by, for example, The edge of the flat substrate of the Da Zhao is detected to sense the position of the substrate relative to the second substrate support. The edge of the substrate can be measured in a variety of ways. The examples discussed below are not intended to limit the scope of the invention. Other substrate position sensing The 201029070 system 220 is within the scope of the present invention. For example, a particular substrate position sensor system can utilize ultrasonic, laser, inductive, capacitive, or other types of sensors that are capable of detecting the position of the substrate relative to the substrate support. Exemplary substrate position sensor system 220 in U.S. Patent

7,153,185號(「185專利」)中予以詳細地描述。在第2A 囷中展示基板位置偵測或感測器系統22〇之實例。光源 225用以將光束227定向至基板200之表面上,光束227 被反射為反射束229。偵測器23 1經定位以監視自基板 2〇〇反射之光束229的強度。偵測器23丨及基板2〇〇中 之一者或兩者可移動以提供偵測器23丨與基板2〇〇之間 的相對運動。感測器系統220可進一步包括與偵測器連 通之電子控制器235,其中控制器235可操作以自偵測 器23 1所偵測之反射產生複數個量測。 電子控制器235可包括一自光學感測器系統接收信號 之通用可程式化數位電腦或與該通用可程式化數位電腦 連通。可接著藉由使用笛卡爾x_y座標系統之基板平面 使量測與徑向位置相關聯。 藉由演算法及/或依實驗確定之量測,電子控制器235 可計算基板表面上發生反射之位置。基於自基板表面反 射之性質,控制器可判定哪個量測對應於基板之邊緣。 此可藉由偵測來自基板之弱反射或根本無反射來判定。 儘管將感測器系統220展示為定位於基板之下方,但應 瞭解組件可有利地定位於基板之上方,以便不干擾由燈 20 201029070 或用以加熱基板之其他加熱元件所傳遞的輻射。另外, 感測器系統220之組件應經定位以避免干擾光管及可包 括馬溫計之溫度偵測系統。 系統220之特定實施例可包括下列特徵結構中之一或 多者。光束227可在基板之表面上具有小於約一毫米之 光斑尺寸。該系統可進一步包括射束聚焦光學器件,其 包括折射光學元件(例如透鏡)、反射光學元件(例如反 射鏡)、繞射光學元件(例如光栅)及/或全像光學元件 (例如全像光柵)。該裝置可進一步包括一經定位以在反 射光被偵測器偵測之前使自基板表面反射之光準直的準 直光學器件。 在光學偵測器系統之另一實施例中,如第2B圖中所 不,光學偵測系統可包括光源及偵測器252,且經組態 以評估第二基板支撐件在基板上或基板在第二基板支撐 件上之投影以偵測基板相對於第二基板支撐件之位置的 位置。在第2B圖中所示之實施例中,顯然是偵測器252 經定位以摘測基板支撐件(邊緣環)206在基板200上 之投影。應瞭解,光源250及偵測器252可定位於基板 200及基板支撐件206之上方以偵測基板200在基板支 撐件206上之投影。 在光學偵測系統之另一變化中,光源或其他適當照明 系統250可與偵測器252合作’其可為一相機且與視覺 分析系統254連通。可包括實驗資料及/或查表且包括通 用電腦之視覺分析系統254可用以偵測基板支撐件2〇6 21 201029070 及基板200之中心。 上文所描述之光學系統中之每一者或其他任何用於偵 測或感測基板與晶圓支樓件之相對位置的適當方法,皆 可與一用於移動基板支撐件及基板中之一者或兩者的系 統結合起來使用。下文將進一步描述此類系統之示範性 實施例。No. 7,153,185 (the "185 patent") is described in detail. An example of a substrate position detection or sensor system 22 is shown in Section 2A. Light source 225 is used to direct beam 227 onto the surface of substrate 200, which is reflected as a reflected beam 229. The detector 23 1 is positioned to monitor the intensity of the beam 229 reflected from the substrate 2 . One or both of the detector 23 and the substrate 2 can be moved to provide relative motion between the detector 23 and the substrate 2A. The sensor system 220 can further include an electronic controller 235 in communication with the detector, wherein the controller 235 is operable to generate a plurality of measurements from the reflections detected by the detector 23 1 . Electronic controller 235 can include or be coupled to a general purpose programmable digital computer that receives signals from an optical sensor system. The measurement can then be correlated to the radial position by using the substrate plane of the Cartesian x_y coordinate system. The electronic controller 235 can calculate the position at which the reflection occurs on the surface of the substrate by algorithm and/or experimentally determined measurements. Based on the nature of the reflection from the substrate surface, the controller can determine which measurement corresponds to the edge of the substrate. This can be determined by detecting weak reflections from the substrate or no reflection at all. Although the sensor system 220 is shown positioned below the substrate, it will be appreciated that the assembly can advantageously be positioned above the substrate so as not to interfere with the radiation delivered by the lamp 20 201029070 or other heating elements used to heat the substrate. Additionally, the components of sensor system 220 should be positioned to avoid interference with the light pipe and temperature sensing system that can include a thermometer. Particular embodiments of system 220 can include one or more of the following features. Light beam 227 can have a spot size of less than about one millimeter on the surface of the substrate. The system can further include beam focusing optics including refractive optical elements (eg, lenses), reflective optical elements (eg, mirrors), diffractive optical elements (eg, gratings), and/or holographic optical elements (eg, holographic gratings) ). The apparatus can further include a collimating optic positioned to collimate light reflected from the surface of the substrate before the reflected light is detected by the detector. In another embodiment of the optical detector system, as shown in FIG. 2B, the optical detection system can include a light source and detector 252 and is configured to evaluate the second substrate support on the substrate or the substrate Projection on the second substrate support to detect the position of the substrate relative to the position of the second substrate support. In the embodiment shown in Fig. 2B, it is apparent that the detector 252 is positioned to extract the projection of the substrate support (edge ring) 206 on the substrate 200. It should be understood that the light source 250 and the detector 252 can be positioned above the substrate 200 and the substrate support 206 to detect the projection of the substrate 200 on the substrate support 206. In another variation of the optical detection system, a light source or other suitable illumination system 250 can cooperate with the detector 252, which can be a camera and in communication with the visual analysis system 254. A visual analysis system 254, which may include experimental data and/or look-up tables and includes a general purpose computer, may be used to detect the substrate support 2〇6 21 201029070 and the center of the substrate 200. Each of the optical systems described above or any other suitable method for detecting or sensing the relative position of the substrate and the wafer slab can be used in a substrate support and substrate One or both systems are used in combination. Exemplary embodiments of such systems are described further below.

I 上文所描述之位置感測器系統2 2 0的個別組件可安裝 於處理腔室之頂部或蓋112中。感測器組件可定位於沿 腔室之X及Y軸的不同位置以協助偵測晶圓之中心位 置。或者,感測器系統220之組件可置放於處理腔室之 側壁中。 第3A圖及第3B圖亦展示定位機構之實施例。在第3A 圖中,於加載葉片202 (亦稱作機器人葉片2〇2)上將基 板200裝載至腔室中。複數個舉升銷2〇4可穿過反射板 214突出且舉升基板2〇〇離開加载葉片。其實現方法係 • 藉由將舉升銷定位於反射板214之外周邊上並最小化機 器人葉片202之平坦區域,以使得基板2⑽之邊緣懸於 機器人葉片202之至少一部分以外從而允許舉升銷接觸 基板之外周邊邊緣以舉升基板離開機器人葉片鐵。因 此’機器人葉片202可在處於伸展狀態的諸舉升鎖204 之間延伸穿越,從而使機器人葉片2〇2能夠在銷綱已 舉升基板200離開機器人葉片加之後縮回。在另一變 化中’機器人葉片2G2可在與舉升銷之位置對準的預 位置具有狹槽或切口(未圖示)以舉升基板離開機器人 22 201029070 葉片。達成自機器人葉片升離基板之適合方法可在美國 專利第6,722,834號及第6,709,218號中找到。擴大反射 板214中之孔,從而允許銷既能在與邊緣環2〇6形式之 基板支撐件垂直之方向(箭頭212所示),亦能在與邊緣 環206相同之χ_γ平面21〇内移動。於是加載葉片2〇2 可自腔室抽取出來。基板位置感测器系統可判定將基板 200位置移動至一預選位置所必需的特定調整,該預選 位置可預先依實驗判定。該預選定向為使基板2〇〇相對 於腔室中心居中的定向,其可由基板與χ_γ平面中之基 板支撐件206之相對位置來判定。通常,若基板2〇〇與 基板支撐件206處於居中定向同時基板支撐件2〇6相對 於腔至中心居中’則基板200應居中於腔室中。隨後舉 升鎖204可在反射板214中之擴大孔208内移動直至基 板200與邊緣環206同轴。一旦基板200處於理想位置, 舉升銷204便可縮回,從而將基板2〇〇降低至邊緣環 206’如第3Β圖中所示。儘管有時可能需要,但在舉升 銷204不與邊緣環206相交時無需將孔鑽入或鑿入邊緣 環206中。 或者’舉升銷214可固定在反射板214中。於是該反 射板可在與邊緣環206相同之平面210内以及垂直212 於邊緣環206移動。從而允許將基板200定位於邊緣環 206 上。 第3C圖展示邊緣環206及反射板214之橫截面圖。由 圖可見,反射板214中之孔208比舉升銷204之直徑大。 23 201029070 此舉允許舉升銷204在三維中移動以調整基板之位置。I The individual components of the position sensor system 220 described above can be mounted in the top of the processing chamber or in the cover 112. The sensor assembly can be positioned at different locations along the X and Y axes of the chamber to assist in detecting the center position of the wafer. Alternatively, components of sensor system 220 can be placed in the sidewalls of the processing chamber. Figures 3A and 3B also show an embodiment of a positioning mechanism. In Figure 3A, the substrate 200 is loaded into the chamber on the loading blade 202 (also referred to as the robot blade 2〇2). A plurality of lift pins 2〇4 can protrude through the reflector 214 and lift the substrate 2〇〇 away from the loading blade. The method of accomplishing is: by positioning the lift pin on the outer periphery of the reflector 214 and minimizing the flat area of the robot blade 202 such that the edge of the substrate 2 (10) is suspended beyond at least a portion of the robot blade 202 to allow the lift pin The outer peripheral edge of the substrate is contacted to lift the substrate away from the robot blade iron. Thus, the robot blade 202 can extend between the lift locks 204 in an extended state, thereby enabling the robot blade 2〇2 to be retracted after the pinned lifted substrate 200 has been removed from the robot blade. In another variation, the robot blade 2G2 may have a slot or slit (not shown) at a pre-position aligned with the position of the lift pin to lift the substrate away from the robot 22 201029070 blade. A suitable method for achieving a lift-off of a substrate from a robot blade can be found in U.S. Patent Nos. 6,722,834 and 6,709,218. The holes in the reflector 214 are enlarged to allow the pin to move both in the direction perpendicular to the substrate support in the form of the edge ring 2〇6 (shown by arrow 212) and in the same χγ plane 21〇 as the edge ring 206. . The loading blade 2〇2 can then be extracted from the chamber. The substrate position sensor system can determine the particular adjustments necessary to move the substrate 200 position to a preselected position, which can be determined experimentally in advance. The preselected orientation is an orientation that centers the substrate 2 〇〇 relative to the center of the chamber, which can be determined by the relative position of the substrate to the substrate support 206 in the χ γ plane. Typically, substrate 200 should be centered in the chamber if substrate 2 and substrate support 206 are in a centered orientation while substrate support 2〇6 is centered relative to the cavity to the center. The lift lock 204 can then be moved within the enlarged aperture 208 in the reflector 214 until the base plate 200 is coaxial with the edge ring 206. Once the substrate 200 is in the desired position, the lift pins 204 can be retracted to lower the substrate 2 to the edge ring 206' as shown in FIG. Although sometimes may be required, there is no need to drill or dig the hole into the edge ring 206 when the lift pin 204 does not intersect the edge ring 206. Alternatively, the lift pin 214 can be secured in the reflector 214. The reflector can then move within the same plane 210 as the edge ring 206 and perpendicularly 212 to the edge ring 206. This allows the substrate 200 to be positioned on the edge ring 206. Figure 3C shows a cross-sectional view of the edge ring 206 and the reflector 214. As can be seen, the aperture 208 in the reflector 214 is larger than the diameter of the lift pin 204. 23 201029070 This action allows the lift pin 204 to move in three dimensions to adjust the position of the substrate.

第4圖展不利用定位機構之腔室的示範性實施例。於 加載葉片318上將基板3〇2經由開口 32〇裝載至腔室3〇〇 中且支樓基板3 2〇之加載葉片318保留在腔室中直至 獲得下文所述之最佳位置。基板位置感測器系統3〇4 (例 如上文中所描述之類型)可判定是否必需調整基板3〇2 相對於第二基板支撐件3〇6之位置,其中第二基板支撐 件306圖示為在基板3〇2之邊緣處支撐基板之邊緣環。 於疋可使用一與基板感測器定位系統3〇4連通且與定位 機構連通之電腦或其他適當處理器調整基板3G2相對於 基板支撐件3G6之位置。可藉由使用—徑向定位機構施 力疋向力而進行對邊緣環3 〇6之調整,該徑向定位機構 包括在所要徑向方向上推動或移動邊緣環306之推動器 31〇。或者,推動器31〇將定向力施加至磁浮轉子3⑽以 在所要方向上移動基板支撐件3〇卜一旦基板支撐件3〇6 與基板302同軸定位,舉升銷312 自加載葉片舉升基 板302。在移除加載葉片之後,舉升銷312可接著將基 板302降低至基板支撐件3〇6,從而得到同轴對準之基 板支撐件306與基板302。 可以各種其他方式實現藉由施加定向力使邊緣環或磁 浮轉子移動。徑向定位機構之非限制實例包括―系列推 動邊緣環306或轉子308之定位桿31〇;推動邊緣環或 轉子之氣體或液體噴嘴;或使用定子316施加磁場以引 起邊緣環306或轉子308移動。任何適合之推動器機構, 24 201029070 諸如螺栓啟動、液壓啟動或氣壓啟動之推動器機構皆可 用以驅動定位桿3 1 0。 在另一實施例中,如第5圖中所示,於加載葉片4〇4 上將基板402裝載至腔室400中。基板位置感測器系統 406 (例如上文所描述之類型)可判定同軸定位基板4〇2 與邊緣環408所必需之調整。加載葉片4〇4可由推動機 構410或馬達412移動以定位基板4〇2,該推動機構41〇 或馬達412經由一處理器或電腦與基板位置感測器系統 406連通。舉升銷414自加載葉片404舉升基板4〇2。移 除加載葉片404後,舉升銷414即降低,從而以同軸關 係將基板402下放於邊緣環408上。 在又一實施例中’如第6圖中所示,於加載葉片5〇4 上將基板5 02帶進腔室5 00中。上文所描述之類型的基 板位置感測器系統506判定以同軸關係置放基板5〇2與 邊緣環508所必需之調整。基板位置感測器系統與一處 理器或電腦及一定位機構連通。接著,當基板5〇2在加 載葉片504上時,使用選自馬達驅動定位桿、液壓或氣 壓定位桿、液體或氣體喷嘴或其他類似構件51〇中之一 或多者的定位機構將基板502推動到位。此等定位機構 可甚至位於葉片自身上。一旦對準,舉升銷512即舉升 基板502離開加載葉片504。加載葉片504縮回且舉升 銷512以同軸關係將基板502降低至邊緣環508上。 在另一實施例中,如第7圖中所示,當基板6〇〇在舉 升銷604上時,基板600可與邊緣環602同轴對準。在 25 201029070 此等實施例中’可藉由紅y A a θ由任何適合之構件自側部推動基板 600’包括(但不限於、 ')馬達驅動定位桿606、液壓或氣 壓驅動疋位#及/或經嘴嘴_之氣體或液體喷嘴之壓 力。一旦對準,舉升鎖604即縮回,從而以同轴對準關 係將基板600降低至邊緣環602。 第8Α圖及第8Β圖中所+ +甘从由 固甲所不之其他實施例甲,允許在已 將基板700置放於邊绫瑗 、運緣環702上之後,將基板7〇〇與邊 ❹ 緣環702同軸對準。1 M y λ + 了藉由任何適合之構件實現此對 準’包括(但不限於)馬達駆動定位桿704、液壓或氣 壓驅動定位桿或經喷嘴7〇6之氣體或液體噴嘴之壓办。 一旦與邊緣環702同軸對準,基板7〇〇隨時可接受處理。 =或多個詳細實施例之裝置能夠精確且可再現地將邊 緣環與基板定位於同軸之約±G⑼5 _内。在更詳細實施 例中,將基板與邊緣環定位於同轴約±0 002吋内或同 抽約±〇·〇〇1叶内。 • 因此,本發明之一或多個實施例針對用於處理基板之 快速熱處理裝置。該裝置包含一包括熱源之腔室/該裝 置包括通常採用舉升銷或機器人葉片之形式,用於將腔 室t之基板固定於第一位置之第一基板支撺件,及用於 將基板固定於第二位置之第二基板支撐件(例如邊緣 環)。第二基板支撐件(在特定實施例中包含—在基板邊 緣處支撐基板之邊緣環)經調適以在熱處理期間固定基 板’且其在一方向上可移動以將基板置放為靠近或遠離 熱源。亦包括一用於感測基板之軸向位置的感測器系 26 201029070 統該感測器系統與-致動器連通,該致動器可操作以 引起基板相對於第二基板支撐件之轴向纟置的轴向位置 發生改變°第—基板支律件可充當且可稱為臨時基板支 樓件。 第9A圖為基板支撐件9〇〇之一實施例的俯視圖。第 • 9B圖為基板支推件9GG之橫截面®。基板支撑件900由 • 包含邊緣環91〇、支料920及支擇圓柱930之多個部 φ 件的總成形成。邊緣環910具有便於置放基板902之環 形形狀。如第9B圖中所示,邊緣環91〇包括外表面912 及平行於外表面912且自外表面912凹入之内表面914。 外表面912藉此位於比内表面914更高之水平處,内表 面9 14具有由側壁91 5分隔之外邊界。侧壁9丨5可稍高 於基板902之厚度以便於將其置放於内表面914上。邊 緣環910亦可包括自外表面912向下延伸之外凸緣916。 間隙918界定於外凸緣916與側壁915之間以便於將邊 • 緣環910組裝於支撐環920上。在一實施例中,邊緣環 910可簡單地安置於支撐環920上而無需附著構件以便 容易移除及替換。在詳細實施例中,第二基板支撐件可 為薄型固體凹入圓盤。 支樓環920包含一薄型扁平區段,且具有向上延伸之 内凸緣922及向下延伸之外凸緣924。向上延伸之内凸 緣922耦合至邊緣環910之外凸緣916。向下延伸之外 凸緣924耦合至支撐圓柱930。支撐圓柱93〇將垂直支 撐·^:供至支樓環920。如第9A圖中所示,支標圓柱930 27 201029070 之底部932可包含一允許空氣流入支撑圓柱93〇中之錯 齒狀輪廓。 在第9C圖中圖示邊緣環91()之替代實施例。在此實施 例中,内表面914亦可包括對準標記919,其可用作促 進與基板902上之相應對準標記9()4相對準的參考。在 -實施例中’内表面914上之對準標記919可形成為突 起且基板9〇2之輪緣上的對準標記9〇4可為凹槽。邊 緣環910上之基板9G2的恰當的對準及定向可藉此防止 由於漏光造成之不均勻的熱分佈,且改良熱傳遞。 如第10A圖之俯視圖及第刚圖之側視圖中所示,位 置感測S ΗΠ4及1016亦可用以破保基板1〇〇2相對於處 理腔至1001内之基板支撐件1〇〇4之邊緣環恰當地 居中。在一實施例中,可將位置感測器1014及1016置 放於基板支撐件1004上方,例如將位置感測器1〇14及 1016安裝於鄰近腔室蓋。位置感測器1014及1016可包 • 括能夠偵測基板1002之邊緣1006與邊緣環1003之側壁 1005之間的距離之超音波感測器、光學感測器、電感性 感測器、電容性感測器或其他類型之位置感測器。在另 一實施例中’位置感測器1〇14及1〇16可發射光東以偵 測基板1002相對於邊緣環1〇〇3之任何不恰當居中。 如第10B圖中所示,可藉由降低支撐銷1〇〇7而將基板 1002置放於邊緣環1003上。為了為基板 1002提供基板 表面上之均勻熱處理,可將基板1002定位於邊緣環1003 之中心上。藉由在义及γ軸之方向上移動基板支撐件 28 201029070 1004 ’可將邊緣環1003調整為與基板1002相接。為了 為待定位之基板1 002找到邊緣環1 003之中心位置可 將位置感測器1014及1016定位於不同位置以助偵測中 心位置。在一實施例申,位置感測器1〇14可安裝於腔室 蓋1015上且相對於一位於基板1〇〇2之邊緣1〇〇6與邊緣 環1003之侧壁1〇〇5之間的光斑,如第1〇B圖中所示。 在每一光斑中為基板1002之邊緣1006與邊緣環1〇〇3之 參 側壁1005之間的距離1008。每一光斑可對應於一轴及 與該特定軸相關之距離。舉例而言,位置感測器1〇14之 光斑可對應於X轴且位置感測器1016之光斑可對應於γ 軸。每一光斑可含有可由位置感測器1〇14及1〇16量測 之距離1008。在一實施例中,位置感測器1〇14及1〇16 可發射光束1011以偵測光斑内之距離丨008。在另一實 施例中,反射光束1011可為圓點或線。在又一實施例 中’該圓點或線之光斑尺寸可不小於4.5 mm。在再一實 • 施例中,可發射之反射光束1011在約25-50mm之範圍 内。可比較在每一光斑處量測之距離1〇〇8以找到一 θ調 整值。在一實施例中,所量測距離之精確度可具有約± J 〇 μπι之範圍或更高之精確度。該θ調整值含有X轴之可調 距離及Υ軸之可調距離。可調距離為將邊緣環丨〇〇3移動 至X及Y軸之中心位置所需的調整。在已獲得θ調整值 之後’接著可調整邊緣環1003以將其移動至恰當位置。 接著’可將信號發送至機器人臂以自支撐銷1007拾取基 板1002並將基板1002移送至基板支撐件1004上之恰當 29 201029070 位置以便進行熱處理。在一實施例中,基板至邊緣環之 距離具有約0至4.342 _之範圍。在特定實施例中基 板至邊緣環之距離處於約2.171mm。在詳細實施例中, Θ調整值與可由垂直運動調整之2位置之相關調整資訊 相關聯。 第10C圖為根據本發明之另一實施例之處理腔室 内之基板支撐件1052的俯視圖。或者,亦可藉由將感測 器置放於處理腔室1〇5〇之内部側壁處來量測邊緣環 10%與基板1〇54之間的距離10〇8。在一實施例中’第 一光發射器1 068可耦合至内部側壁之一側,且第一光接 收器1070可輕合至第-光發射器1〇68所在之侧壁的鄰 近側壁以量測對應於X轴之距離1〇58。第二光發射器 1072可耦合至另一内部侧壁,且第二光接收器1〇74可 耦合至第二光發射器1072所在之内部侧壁的鄰近側壁 以量測對應於Y轴之距離1 〇59。距離1 〇58及1 〇59之量 • 測可藉由由光發射器1068及1072發射之經由光管1〇78 之光束1076。光束1076可穿過邊緣環1〇56與基板1〇54 之間的距離1058及1059,且可由光接收器1〇7〇及1〇74 接收。在已獲得距離1058及1〇59且將其送回至系統控 制器1124之後,現可計算Θ調整值且接著可根據θ調整 值調整邊緣環1003,即在又及丫軸之方向上移動至基板 可定位之中心位置。 第11圖展示快速熱處理腔室1100之詳細實施例的簡 化等角視圖。處理腔室1100包括第1圖所描述之組件, 30 201029070 且等效組件之元件符號一致。腔室U〇〇包括一或多個感 測器116’感測器116通常位於腔室之外部且經調適以偵 測腔室主體102之内部體積120内之基板支撐件1〇<或 基板140)的高程。感測器116可經由如所示之管狀埠 麵合至腔室主體102及/或處理腔室1100之其他部分, 且經調適以提供一指示基板支撐件1〇4與腔室主體1〇2 之頂部112及/或底部11〇之間的距離之輸出,且亦可镇 測基板支稽·件104及/或基板140之未對準。在另一實施 例(未圖示)中’可將感測器116置放於定子外殼119〇 之内部’定子外殼1190將允許感測器3丨6與定子J丨8 一 起上下移動。此實施例將允許感測器丨丨6獲得一位於環 區段192上之參考點。在此實施例中,信號將很可能恒 定且將尋找信號偏差,且可依據來自馬達138之反饋判 定垂直位置。 一或多個感測器116可耦合至控制器124,該控制器 124自感測器11 6接收輸出量度並將一個信號或多個信 號提供至一或多個致動器總成122以升高或降低基板支 揮件104。控制器124可利用自感測器116獲得之位置 量度,調整每一致動器總成122處之定子118之高程, 以使得基板支撐件104及固定於其上之基板14〇的高程 與平面度皆可相對於腔室100及/或輻射熱源1〇6之中心 軸作調整。舉例而言,控制器124可提供多個信號以藉 由致動器122之行動來升高基板支樓件從而校正基板支 撐件104之軸向未對準,或該控制器可將一個信號提供 31 201029070 至所有致動器122以便基板支撐件1〇4同時垂直運動。 感測器116可搞合至壁1〇8’然而腔室主體1〇2内及 周圍之其他位置亦為適合的,諸如耦合至腔室11〇〇之外 部的定子118。在一實施例中,一或多個感測器116可耦 合至定子118且經調適以穿過壁1〇8感測基板支撐件ι〇4 (或基板140 )之高程及/或位置。在此等實施例中,壁 108可包括較薄橫截面以便進行穿過壁1〇8之位置感測。Figure 4 shows an exemplary embodiment of a chamber that does not utilize a positioning mechanism. The substrate 3〇2 is loaded into the chamber 3〇〇 via the opening 32〇 on the loading blade 318 and the loading blade 318 of the branch substrate 3 2 remains in the chamber until the optimum position as described below is obtained. The substrate position sensor system 3〇4 (such as the type described above) can determine whether it is necessary to adjust the position of the substrate 3〇2 relative to the second substrate support 3〇6, wherein the second substrate support 306 is illustrated as The edge ring of the substrate is supported at the edge of the substrate 3〇2. The position of the substrate 3G2 relative to the substrate support 3G6 can be adjusted using a computer or other suitable processor in communication with the substrate sensor positioning system 3〇4 and in communication with the positioning mechanism. Adjustment of the edge ring 3 〇 6 can be performed by applying a yaw force using a radial positioning mechanism that includes a pusher 31 推动 that pushes or moves the edge ring 306 in a desired radial direction. Alternatively, the pusher 31 施加 applies an orientation force to the maglev rotor 3 (10) to move the substrate support 3 in a desired direction. Once the substrate support 3〇6 is positioned coaxially with the substrate 302, the lift pin 312 lifts the substrate 302 from the loading blade. . After the loading blade is removed, the lift pin 312 can then lower the substrate 302 to the substrate support 3〇6, resulting in a coaxially aligned substrate support 306 and substrate 302. The edge ring or the magnetic floating rotor can be moved by applying a directional force in various other ways. Non-limiting examples of radial positioning mechanisms include a series of pusher ring 306 or a locating bar 31 of rotor 308; a gas or liquid nozzle that pushes the edge ring or rotor; or a magnetic field is applied using stator 316 to cause edge ring 306 or rotor 308 to move . Any suitable pusher mechanism, 24 201029070 A pusher mechanism such as a bolt start, hydraulic start or pneumatic start can be used to drive the positioning rod 310. In another embodiment, as shown in FIG. 5, the substrate 402 is loaded into the chamber 400 on the loading blade 4〇4. Substrate position sensor system 406 (such as the type described above) can determine the adjustments necessary for coaxial positioning substrate 4〇2 and edge ring 408. The loading blade 4〇4 can be moved by the pushing mechanism 410 or the motor 412 to position the substrate 4〇2, which is in communication with the substrate position sensor system 406 via a processor or computer. The lift pin 414 lifts the substrate 4〇2 from the loading blade 404. After the loading blade 404 is removed, the lift pin 414 is lowered to lower the substrate 402 onto the edge ring 408 in a coaxial relationship. In yet another embodiment, as shown in Fig. 6, the substrate 502 is brought into the chamber 5 00 on the loading blade 5〇4. The substrate position sensor system 506 of the type described above determines the adjustments necessary to place the substrate 5〇2 and the edge ring 508 in a coaxial relationship. The substrate position sensor system is in communication with a processor or computer and a positioning mechanism. Next, when the substrate 5〇2 is on the loading blade 504, the substrate 502 is moved using a positioning mechanism selected from one or more of a motor-driven positioning rod, a hydraulic or pneumatic positioning rod, a liquid or gas nozzle, or other similar member 51. Push in place. These positioning mechanisms can even be located on the blade itself. Once aligned, the lift pin 512 lifts the substrate 502 away from the loading blade 504. The loading vanes 504 are retracted and the lift pins 512 lower the substrate 502 to the edge ring 508 in a coaxial relationship. In another embodiment, as shown in FIG. 7, the substrate 600 can be coaxially aligned with the edge ring 602 when the substrate 6 is hung on the lift pins 604. In 25 201029070, in these embodiments, the substrate 600' can be pushed from the side by any suitable member by red y A a θ including (but not limited to, ') motor-driven positioning rod 606, hydraulic or pneumatic drive clamp # And / or the pressure of the gas or liquid nozzle through the mouth. Once aligned, the lift lock 604 is retracted to lower the substrate 600 to the edge ring 602 in a coaxial alignment. In the eighth and eighth figures, the other embodiment A is not allowed by the solid armor, and the substrate 7 is allowed to be placed after the substrate 700 has been placed on the edge and the edge ring 702. The edge ring 702 is coaxially aligned. 1 M y λ + This alignment is achieved by any suitable means including, but not limited to, motor tilting of the positioning rod 704, hydraulic or pneumatic drive of the positioning rod or press of a gas or liquid nozzle through the nozzle 7〇6. Once coaxially aligned with the edge ring 702, the substrate 7 is ready for processing. The device of a plurality of detailed embodiments is capable of accurately and reproducibly positioning the edge ring and the substrate within about ±G(9)5 _ of the coaxial. In a more detailed embodiment, the substrate and edge ring are positioned within about ±0 002 同轴 of the coaxial or within the same ± 〇·〇〇1 leaf. • Accordingly, one or more embodiments of the present invention are directed to a rapid thermal processing apparatus for processing substrates. The apparatus includes a chamber including a heat source, the apparatus including a first substrate support member for securing a substrate of the chamber t to the first position, and a substrate for use in the form of a lift pin or robot blade A second substrate support (eg, an edge ring) that is secured to the second location. The second substrate support (in particular embodiments comprising - the edge ring supporting the substrate at the edge of the substrate) is adapted to secure the substrate ' during heat treatment and is movable in one direction to place the substrate near or away from the heat source. Also included is a sensor system 26 for sensing the axial position of the substrate. 201029070 The sensor system is in communication with an actuator that is operable to cause an axis of the substrate relative to the second substrate support The axial position of the device is changed. The first substrate member can function as and can be referred to as a temporary substrate branch. Figure 9A is a top plan view of one embodiment of a substrate support member 9''. Fig. 9B is a cross section of the substrate support member 9GG. The substrate support 900 is formed of an assembly including a plurality of φ pieces including an edge ring 91 〇, a support 920, and a support cylinder 930. The edge ring 910 has an annular shape for facilitating the placement of the substrate 902. As shown in FIG. 9B, the edge ring 91A includes an outer surface 912 and an inner surface 914 that is parallel to the outer surface 912 and recessed from the outer surface 912. The outer surface 912 is thereby located at a higher level than the inner surface 914, and the inner surface 914 has an outer boundary separated by the side walls 91 5 . The side walls 9丨5 may be slightly above the thickness of the substrate 902 to facilitate placement on the inner surface 914. The edge ring 910 can also include a flange 916 that extends downwardly from the outer surface 912. A gap 918 is defined between the outer flange 916 and the side wall 915 to facilitate assembly of the edge ring 910 onto the support ring 920. In an embodiment, the edge ring 910 can be simply disposed on the support ring 920 without the need for attachment members for easy removal and replacement. In a detailed embodiment, the second substrate support can be a thin solid recessed disk. The branch ring 920 includes a thin flat section with an upwardly extending inner flange 922 and a downwardly extending outer flange 924. The upwardly extending inner flange 922 is coupled to the outer flange 916 of the edge ring 910. The flange 924 is coupled to the support cylinder 930 outside of the downward extension. The support cylinder 93〇 will be vertically supported and supplied to the branch ring 920. As shown in Figure 9A, the bottom 932 of the support cylinder 930 27 201029070 can include an erroneous tooth profile that allows air to flow into the support cylinder 93. An alternative embodiment of the edge ring 91() is illustrated in Figure 9C. In this embodiment, inner surface 914 may also include alignment marks 919 that may serve as a reference to facilitate alignment with corresponding alignment marks 9() 4 on substrate 902. In the embodiment, the alignment mark 919 on the inner surface 914 may be formed to protrude and the alignment mark 9〇4 on the rim of the substrate 9〇2 may be a groove. The proper alignment and orientation of the substrate 9G2 on the edge ring 910 can thereby prevent uneven heat distribution due to light leakage and improve heat transfer. As shown in the top view of FIG. 10A and the side view of the first diagram, the position sensing S ΗΠ 4 and 1016 can also be used to break the substrate 1 〇〇 2 relative to the processing chamber to the substrate support 1 〇〇 4 in the 1001. The edge ring is properly centered. In one embodiment, position sensors 1014 and 1016 can be placed over substrate support 1004, such as position sensors 1 〇 14 and 1016 mounted adjacent the chamber cover. The position sensors 1014 and 1016 can include an ultrasonic sensor, an optical sensor, an inductive sensor, and a capacitive sensing capable of detecting the distance between the edge 1006 of the substrate 1002 and the sidewall 1005 of the edge ring 1003. Or other type of position sensor. In another embodiment, the position sensors 1〇14 and 1〇16 can emit light to detect any improper centering of the substrate 1002 relative to the edge ring 1〇〇3. As shown in Fig. 10B, the substrate 1002 can be placed on the edge ring 1003 by lowering the support pins 1?. In order to provide uniform heat treatment on the substrate surface for the substrate 1002, the substrate 1002 can be positioned on the center of the edge ring 1003. The edge ring 1003 can be adjusted to interface with the substrate 1002 by moving the substrate support 28 201029070 1004 ' in the direction of the sense and gamma axes. In order to find the center position of the edge ring 1 003 for the substrate 1 002 to be positioned, the position sensors 1014 and 1016 can be positioned at different positions to help detect the center position. In one embodiment, the position sensor 1〇14 can be mounted on the chamber cover 1015 and is located between a side edge 1〇〇6 of the substrate 1〇〇2 and a side wall 1〇〇5 of the edge ring 1003. The spot is as shown in Figure 1B. In each spot is the distance 1008 between the edge 1006 of the substrate 1002 and the side wall 1005 of the edge ring 1〇〇3. Each spot may correspond to an axis and a distance associated with the particular axis. For example, the spot of position sensor 1 可 14 may correspond to the X axis and the spot of position sensor 1016 may correspond to the γ axis. Each spot may contain a distance 1008 that may be measured by position sensors 1〇14 and 1〇16. In one embodiment, position sensors 1〇14 and 1〇16 can emit light beam 1011 to detect the distance 丨008 within the spot. In another embodiment, the reflected beam 1011 can be a dot or a line. In still another embodiment, the spot size of the dot or line may be no less than 4.5 mm. In still another embodiment, the reflected beam 1011 that can be emitted is in the range of about 25-50 mm. The distance 1 〇〇 8 measured at each spot can be compared to find a θ adjustment value. In an embodiment, the accuracy of the measured distance may have an accuracy in the range of about ± J 〇 μπι or higher. The θ adjustment value includes an adjustable distance of the X-axis and an adjustable distance of the Υ-axis. The adjustable distance is the adjustment required to move the edge ring 3 to the center of the X and Y axes. After the θ adjustment value has been obtained, the edge ring 1003 can then be adjusted to move it to the proper position. The signal can then be sent to the robotic arm to pick up the substrate 1002 from the support pin 1007 and transfer the substrate 1002 to the appropriate 29 201029070 position on the substrate support 1004 for heat treatment. In one embodiment, the distance from the substrate to the edge ring has a range of from about 0 to about 4.342 _. In a particular embodiment the distance from the substrate to the edge ring is about 2.171 mm. In a detailed embodiment, the Θ adjustment value is associated with the associated adjustment information of the 2 positions that can be adjusted by the vertical motion. Figure 10C is a top plan view of a substrate support 1052 in a processing chamber in accordance with another embodiment of the present invention. Alternatively, the distance 10 〇 8 between the edge ring 10% and the substrate 1 54 can also be measured by placing the sensor at the inner side wall of the processing chamber 1〇5〇. In an embodiment, the first light emitter 1 068 can be coupled to one side of the inner sidewall, and the first light receiver 1070 can be lightly coupled to the adjacent sidewall of the sidewall where the first light emitter 1 〇 68 is located. The distance corresponding to the X axis is measured as 1〇58. The second light emitter 1072 can be coupled to another inner sidewall, and the second light receiver 1 74 can be coupled to an adjacent sidewall of the inner sidewall of the second light emitter 1072 to measure the distance corresponding to the Y axis 1 〇 59. The distance between 1 〇 58 and 1 〇 59 • The light beam 1076 transmitted through the light pipe 1 〇 78 by the light emitters 1068 and 1072 can be measured. The beam 1076 can pass through the distances 1058 and 1059 between the edge ring 1 〇 56 and the substrate 1 〇 54 and can be received by the light receivers 1 〇 7 〇 and 1 〇 74. After the distances 1058 and 1〇59 have been obtained and sent back to the system controller 1124, the Θ adjustment value can now be calculated and then the edge ring 1003 can be adjusted according to the θ adjustment value, ie in the direction of the 丫 axis and then moved to The center position at which the substrate can be positioned. Figure 11 shows a simplified isometric view of a detailed embodiment of a rapid thermal processing chamber 1100. Processing chamber 1100 includes the components depicted in Figure 1, 30 201029070 and the equivalent component symbols are identical. The chamber U〇〇 includes one or more sensors 116' that are typically located outside of the chamber and adapted to detect substrate support 1<or substrate within the interior volume 120 of the chamber body 102 140) elevation. The sensor 116 can be coupled to the chamber body 102 and/or other portions of the processing chamber 1100 via a tubular jaw as shown, and adapted to provide an indication substrate support 1〇4 and chamber body 1〇2 The output of the distance between the top 112 and/or the bottom 11〇 can also be used to track the misalignment of the substrate support member 104 and/or the substrate 140. In another embodiment (not shown), the sensor 116 can be placed inside the stator housing 119'. The stator housing 1190 will allow the sensor 3丨6 to move up and down with the stator J丨8. This embodiment will allow the sensor 丨丨6 to obtain a reference point on the ring segment 192. In this embodiment, the signal will likely be constant and will find signal deviations, and the vertical position can be determined based on feedback from motor 138. One or more sensors 116 may be coupled to controller 124, which receives output metrics from sensor 116 and provides one or more signals to one or more actuator assemblies 122 to liter The substrate support 104 is raised or lowered. The controller 124 can utilize the position metric obtained from the sensor 116 to adjust the elevation of the stator 118 at each actuator assembly 122 such that the substrate support 104 and the elevation and flatness of the substrate 14 固定 affixed thereto Both can be adjusted relative to the central axis of the chamber 100 and/or the radiant heat source 〇6. For example, the controller 124 can provide a plurality of signals to raise the substrate slab by the action of the actuator 122 to correct axial misalignment of the substrate support 104, or the controller can provide a signal 31 201029070 to all actuators 122 so that the substrate support 1〇4 is simultaneously moved vertically. The sensor 116 can be fitted to the wall 1 〇 8'. However, other locations within and around the chamber body 1 〇 2 are also suitable, such as the stator 118 coupled to the outside of the chamber 11 。. In one embodiment, one or more of the sensors 116 can be coupled to the stator 118 and adapted to sense the elevation and/or position of the substrate support ι4 (or substrate 140) through the wall 〇8. In such embodiments, the wall 108 can include a relatively thin cross section for sensing the position through the wall 1〇8.

第11圖之基板支撐件104包括一環形主體1191,其内 徑經定尺寸以接收輻射熱源1〇6及其他硬體(未圖示)。 基板支撐件104至少部分地包含磁環區段1192及支撐區 段Π94。磁環區段1192可至少部分地包含磁性材料(諸 如含鐵材料)以便於將基板支撐件104磁耦合至定子 該a鐵材料包括低碳鋼、不錄鋼其可包括電鍵, 諸如錄。在—實施例中,磁環區段1192包含環繞中心轴 乂極陡陣列女置之複數個永久磁鐵。磁環區段1192可額 外地包括—裏面形成有—或多個通道的外表面。在-實 施例中,磁環區段1192包括成形輪廓,諸如其中形成有 一或多個通道的「E」形狀或「c」形狀。 根據一或多個實施例,可能藉由調整磁浮基板支撐件 1〇4之位置而將基板140居中於邊緣環104上,所以在 舉升基板14G之前使基板支撲件1G4與舉升銷144上之 同軸。可使用一包括一組光學感測器丨16之反 績系統或η與系統控制@ 124連通之視覺系統達成基板 之居中。可使用來自此系統之反饋來執行基板14〇之置 32 201029070 放。定子ι18可用以以高精密度(例如〇 〇〇1 &quot;或更高) 使邊緣環104居中於基板140之下,且可補償高達〇 〇1〇&quot; 之移位。 本發明之一或多個實施例具有將基板14〇帶進腔室 1100中之機器人(未圖示),在腔室11〇〇中基板14〇移 . €至舉升銷144_L。使用由定子118產生之可變磁場將 • I板支撐件H)4居中於基14〇之下,定子118改變腔 ❹ 室中之基板支撐件刚的位置。帛12圖展示具有已移除 之外殼之定子總成118之實施例的俯視圖。可調整與系 統控制器連通之一系列電磁鐵12〇〇的磁場強度以形成 電磁偏壓,該電磁偏壓可推/拉腔室内之基板支撐件。可 偏壓至少一個電磁鐵以推動基板支撐件,且可偏壓至少 一個電磁鐵以拉動基板支撐件。藉由調整位於定子118 周圍各種位置處的電磁鐵丨200之磁場強度,可正確地定 位基板支撐件。與系統控制器124連通之感測器i 202(其 肇 可為渦流感測器)可用以偵測腔室内之基板支撐件的位 置,從而將採用了位置信號之形式的反饋提供至系統控 制器124。來自此等感測器12〇2之反饋可由系統控制器 124評估’其又可提供信號以偏壓電磁鐵中之一或多者 以調整基板支撐件之位置。 第12圖展示在相隔約12〇。之位置處定位的電磁鐵 1200及感測器1202 «此僅為說明性的,且不應視為限制 本發明。可使用任何適合數目之感測器及電磁鐵。舉例 而言’系統控制器124可使用源於三個感測器之反饋來 33 201029070 控制六個電磁鐵。 本發明之其他實施例針對處理基板之方法。該方法包 含將基板移送至處理腔室中。將基板移送至中間基板支 樓件’該中間基板讀件可為(例如)—組舉升銷。例 .如,藉由债測-或多個基板邊緣來判定基板之位置。調 I基板相對於基板支㈣之位置錢得基板與基板支樓 件相對準於㈣㈣定向。基板位置感測以統經由中 • 央處理單元(例如通用電腦)與定位機構連通,該定位 機構對基板相對於基板支撑件之位置進行所要調整。反 鎮控制系統可用以確保最優化基板與基板支撐件之相對 位置直至基板與基板支撐件處於大體同轴對準。將基板 移送至第二基板支撐件,該第二基板支禮件可為邊緣 環。此時基板隨時可接受處理。規定的相對定向可為基 板與邊緣環之軸向對準,或基板與邊緣環基於一依經驗 判定之位置之對準。舉例而言,該依經驗判定之位置可 春能並非同軸地對準基板與邊緣環,但可對準基板質量之 熱中心與邊緣環之中 心〇 可使用機器人葉片將基板移送至處理腔室中。中間支 撐件可為位於舉升銷總成上之複數個舉升銷❶將基板引 入腔至及提供中間支撐件之其他方法亦在本發明之範疇 内。 此等步驟之次序視使用之特定實施例而有所變化且不 應視為嚴格的程序順序。在一些實施例中,在將基板移 送至舉升銷上之前調整基板相對於邊緣環之相對位置。 34 201029070 在其他實施例中,在將基板移送至舉升銷之後調整相對 於邊緣環之相對位置。在各種實施例中,藉由改變基板 之位置、邊緣環之位置或舉升銷之位置中的一或多者來 調整基板相對於邊緣環之相對位置。 詳細實施例針對同中心定位基板於懸浮基板支撐件上 之方法。將基板移送至處理腔室中且置放於臨時支撐元 件上。使用感測器量測相對於基板支撐件之基板位置。 調整基板支撐件之位置以使基板支撐件達到與基板之同 中心對準。將基板自臨時支撐元件移送至基板支撐件。 在特定實施例中,基板於支撐件上之同中心定位包含 如下步驟:偏壓至少一個磁鐵以拉動基板支撐件或推動 基板支撐件。 其他特定實施例針對一種包含腔室、基板支撐件、位 置感測器及系統控制器之基板處理裝置。基板支撐件安 置於腔至中且包含—環形主體,其經組態以支撐其上表 面上之基板。基板支撐件磁耦合至經安置鄰近於基板支 撐件之複數個電磁鐵。位置感測器可偵測相對於基板支 撐件之基板位置。系統控制器與電磁鐵連通且可操作以 偏壓至少一個電磁鐵,從而相對於基板移動(即推動或 拉動)基板支撐件。 「貫穿此說明書之參考「一個實施例」、「特定實施例」、 「:或多個實施例」或「一實施例」意謂結合該實施例 描述之特疋特徵結構、結構、材料或特徵均包括在本發 明之至少—個實施例中。因此,貫穿此說明書各處之諸 35 201029070 如在—或多個會始例Φ Γ ^ ^ 實施例中」、在特定實施例中」、「在一 個實施例中」或「 .在實施例中j之措辭的出現未必指 r發月之同—實施例。此外’可以任何適合方式在一 或多個實施例中組合特定特徵結構、結構、材料或特徵。 儘管在本文中已參考特定實施例描述本發明,但應理 解此等實施例僅僅為了說明本發明之原理及應用。熟習 此項技術者將易於瞭解,右尤盼秘丄 在不脫離本發明之精神及範疇 之情況下可對本發明之方法賠 4 f /3之万法及裝置進行各種修改及變 化。因此,預期本發明句括展热 个嗯β Ο栝屬於附加申請專利範圍及其 等效物之範_内的修改及變化。 【圖式簡單說明】 第1圖展示根據本發明之實施例之快速熱處理腔室的 簡化等角視圖; 第2A圖展示根據一實施例之具有用於感測基板之位 置之感測器系統之定位系統的局部側視圖. 第2B圖展示根據一實施例之具有用於戌 另用於感測基板之位 置之感測器系統之定位系統的局部側視圖; 第3A圖展示根據一實施例之定位系絲 糸統的局部側視圖 第3B圖展示根據一實施例之定位系絲认 糸統的局部側視圖 第3C圖展示根據一實施例之定位系始从ρ α 糸統的局部透視圖, 第4圖展示根據本發明之實施例之 4&lt;腔至的局部透視 團, 36 201029070 第5圖展示根據本發明之實施例之腔室的局部透視 rag · 圃, 第6圖展示根據本發明之實施例之腔室的局部透視 ran · 團, 第7圖展示根據本發明之一或多個實施例之定位機構 的側視圖; 第8A圖展示定位機構之實施例的侧視圖; 第8B圖展示定位機構之實施例的側視圖; 第9A圖為根據本發明之一或多個實施例之基板支撲 件的俯視圖; 第9B圖為根據本發明之一或多個實施例之基板支撐 件的橫截面圖; 第9C圖為根據本發明之一或多個實施例之邊緣環的 不意圖, 第10A圖為根據本發明之一或多個實施例之處理腔室 φ 内之基板支撐件的俯視圖; 第10B圖為根據本發明之一或多個實施例之基板支樓 件之邊緣環與基板之間的橫截面圖; 第10C圖為根據本發明之一或多個實施例之處理腔室 内之基板支撐件的俯視圖; 第11圖為根據本發明之一或多個實施例之快速熱處 理腔室的簡化等角視圖;及 第12圖為根據本發明之一或多個實施例之外殼已經 移除之定子總成的俯視圖。 37 201029070 【主要元件符號說明】 100 腔室 102 腔室主體 104 基板支撐件/邊緣環 106 輻射熱源 108 壁 110 底部The substrate support member 104 of Fig. 11 includes an annular body 1191 whose inner diameter is sized to receive the radiant heat source 〇6 and other hardware (not shown). The substrate support 104 at least partially includes a magnetic ring segment 1192 and a support segment Π94. The magnetic ring segment 1192 can at least partially comprise a magnetic material (such as a ferrous material) to facilitate magnetic coupling of the substrate support 104 to the stator. The a ferrous material comprises low carbon steel, non-recorded steel, which can include electrical bonds, such as recording. In an embodiment, the magnetic ring segment 1192 includes a plurality of permanent magnets arranged around the central axis. The magnetic ring segment 1192 may additionally include an outer surface having - or a plurality of channels formed therein. In an embodiment, the magnetic ring segment 1192 includes a contoured profile, such as an "E" shape or a "c" shape in which one or more channels are formed. According to one or more embodiments, it is possible to center the substrate 140 on the edge ring 104 by adjusting the position of the magnetic floating substrate support 1〇4, so the substrate splicing member 1G4 and the lift pin 144 are raised before lifting the substrate 14G. Coaxial on. The centering of the substrate can be achieved using a retrospective system comprising a set of optical sensors 丨16 or a vision system in which η is connected to system control @124. The feedback from the system can be used to perform the placement of the substrate 14 201029070. The stator ι 18 can be used to center the edge ring 104 below the substrate 140 with high precision (e.g., 〇 1 &quot; or higher) and can compensate for shifts up to 〇 1〇&quot;. One or more embodiments of the present invention have a robot (not shown) that carries the substrate 14 into the chamber 1100, in which the substrate 14 is moved. To the lift pin 144_L. The I-plate support H) 4 is centered under the base 14 使用 using a variable magnetic field generated by the stator 118 which changes the position of the substrate support in the chamber. Figure 12 shows a top view of an embodiment of a stator assembly 118 having a removed outer casing. The magnetic field strength of a series of electromagnets 12 连通 in communication with the system controller can be adjusted to form an electromagnetic bias that can push/pull the substrate support within the chamber. At least one electromagnet can be biased to push the substrate support and at least one electromagnet can be biased to pull the substrate support. The substrate support can be properly positioned by adjusting the magnetic field strength of the electromagnet 丨 200 at various locations around the stator 118. A sensor i 202 (which may be a vortex ray detector) in communication with the system controller 124 may be used to detect the position of the substrate support within the chamber, thereby providing feedback in the form of a position signal to the system controller 124. Feedback from such sensors 12A can be evaluated by system controller 124, which in turn can provide a signal to bias one or more of the electromagnets to adjust the position of the substrate support. Figure 12 shows about 12 inches apart. The electromagnet 1200 and the sensor 1202 positioned at the position are merely illustrative and should not be construed as limiting the invention. Any suitable number of sensors and electromagnets can be used. For example, system controller 124 can control six electromagnets using feedback from three sensors 33 201029070. Other embodiments of the invention are directed to methods of processing substrates. The method includes transferring a substrate into a processing chamber. Transferring the substrate to the intermediate substrate support member 'The intermediate substrate reading member can be, for example, a set of lift pins. For example, the position of the substrate is determined by debt measurement or multiple substrate edges. Adjusting the position of the I substrate relative to the substrate support (4) is equivalent to the (4) (four) orientation of the substrate and the substrate support. The substrate position sensing is in communication with a positioning mechanism via a central processing unit (e.g., a general purpose computer) that adjusts the position of the substrate relative to the substrate support. The inverse control system can be used to ensure that the relative position of the substrate to the substrate support is optimized until the substrate is substantially coaxially aligned with the substrate support. The substrate is transferred to a second substrate support, which may be an edge ring. At this point the substrate is ready for processing. The specified relative orientation may be the axial alignment of the substrate with the edge ring, or the alignment of the substrate and edge ring based on an empirically determined position. For example, the empirically determined position of the spring energy is not coaxially aligned with the substrate and the edge ring, but can be aligned with the center of the substrate and the center of the edge ring. The robot blade can be used to transfer the substrate to the processing chamber. . Other methods of introducing the intermediate support members into the plurality of lift pins on the lift pin assembly, introducing the substrate into the cavity, and providing the intermediate support are also within the scope of the present invention. The order of such steps will vary depending on the particular embodiment used and should not be considered a strict sequence of procedures. In some embodiments, the relative position of the substrate relative to the edge ring is adjusted prior to transferring the substrate onto the lift pins. 34 201029070 In other embodiments, the relative position relative to the edge ring is adjusted after the substrate is transferred to the lift pin. In various embodiments, the relative position of the substrate relative to the edge ring is adjusted by changing one or more of the position of the substrate, the position of the edge ring, or the position of the lift pins. The detailed embodiment is directed to a method of positioning a substrate on a suspended substrate support in a concentric manner. The substrate is transferred to the processing chamber and placed on the temporary support member. The position of the substrate relative to the substrate support is measured using a sensor. The position of the substrate support is adjusted to bring the substrate support into alignment with the center of the substrate. The substrate is transferred from the temporary support element to the substrate support. In a particular embodiment, the concentric positioning of the substrate on the support comprises the step of biasing at least one magnet to pull the substrate support or to push the substrate support. Other particular embodiments are directed to a substrate processing apparatus including a chamber, a substrate support, a position sensor, and a system controller. The substrate support is placed in the cavity to the center and includes an annular body configured to support the substrate on its upper surface. The substrate support is magnetically coupled to a plurality of electromagnets disposed adjacent to the substrate support. The position sensor can detect the position of the substrate relative to the substrate support. A system controller is in communication with the electromagnet and is operable to bias the at least one electromagnet to move (i.e., push or pull) the substrate support relative to the substrate. "The reference to "an embodiment", "an embodiment", "an" or "an embodiment" or "an embodiment" means the features, structures, materials or features described in connection with the embodiments. All are included in at least one embodiment of the invention. Thus, 35 201029070 throughout the specification, as in the <RTI ID=0.0> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; The appearance of the wording of j does not necessarily mean the same as the embodiment. In addition, the specific features, structures, materials or features may be combined in one or more embodiments in any suitable manner. Although reference has been made herein to specific embodiments. The present invention has been described, but it is to be understood that the embodiments of the present invention are intended to be illustrative of the present invention. The method of claim 4 f / 3 million and the device to carry out various modifications and changes. Therefore, it is expected that the invention includes the modification and variation of the scope of the additional patent application and its equivalent. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a simplified isometric view of a rapid thermal processing chamber in accordance with an embodiment of the present invention; Figure 2A shows a location for sensing a substrate in accordance with an embodiment. Partial side view of the positioning system of the sensor system. Figure 2B shows a partial side view of a positioning system having a sensor system for sensing the position of the substrate, according to an embodiment; Figure 3A shows Partial side view of a positioning tether according to an embodiment FIG. 3B shows a partial side view of a positioning tether system according to an embodiment. FIG. 3C shows a positioning system starting from ρ α 根据 according to an embodiment. Partial perspective view, FIG. 4 shows a partial cavity of a cavity according to an embodiment of the present invention, 36 201029070. FIG. 5 shows a partial perspective of a chamber according to an embodiment of the present invention, FIG. A partial perspective ran group of a chamber in accordance with an embodiment of the present invention is shown, and FIG. 7 shows a side view of a positioning mechanism in accordance with one or more embodiments of the present invention; FIG. 8A shows a side view of an embodiment of a positioning mechanism 8B is a side view showing an embodiment of a positioning mechanism; FIG. 9A is a plan view of a substrate member according to one or more embodiments of the present invention; FIG. 9B is a view of one or more embodiments according to the present invention; A cross-sectional view of the substrate support; FIG. 9C is a schematic view of an edge ring according to one or more embodiments of the present invention, and FIG. 10A is a view of the processing chamber φ according to one or more embodiments of the present invention. a top view of the substrate support; FIG. 10B is a cross-sectional view between the edge ring of the substrate support member and the substrate in accordance with one or more embodiments of the present invention; FIG. 10C is a diagram of one or more implementations in accordance with the present invention A top view of a substrate support in a processing chamber; FIG. 11 is a simplified isometric view of a rapid thermal processing chamber in accordance with one or more embodiments of the present invention; and FIG. 12 is a view of one or more of the present invention in accordance with one or more embodiments of the present invention; A top view of the stator assembly with the outer casing of the embodiment removed. 37 201029070 [Major component symbol description] 100 chamber 102 chamber body 104 substrate support / edge ring 106 radiant heat source 108 wall 110 bottom

112 頂部 114 窗口 116 感測器 117 感測器 118 定子 120 内部體積 122 致動器 124 控制器 126 記憶體 128 支援電路 130 中央處理單元(CPU) 132 導螺栓 134 凸緣 136 耦合器 138 馬達 38 201029070112 Top 114 Window 116 Sensor 117 Sensor 118 Stator 120 Internal Volume 122 Actuator 124 Controller 126 Memory 128 Support Circuit 130 Central Processing Unit (CPU) 132 Guide Bolt 134 Flange 136 Coupler 138 Motor 38 201029070

140 基板 144 舉升銷 148 基板出入埠 158 螺帽 160 管 164 大氣控制系統 168 驅動線圈總成 170 懸吊線圈總成 180 冷卻區塊 181A 入口 181B 出口 182 冷卻劑源 183 冷卻劑源 184 通道 186 流體源 190 外殼 192 環區段 200 基板 202 加載葉片 204 銷 206 基板支撐件 208 孔 210 平面 212 箭頭 39 201029070 214 反射板 220 感測器系統 22 5 光源 227 光束 229 光束 231 偵測器 235 控制器 25 0 光源140 Substrate 144 Lifting pin 148 Substrate access 埠 158 Nut 160 Tube 164 Atmospheric control system 168 Drive coil assembly 170 Suspension coil assembly 180 Cooling block 181A Inlet 181B Outlet 182 Coolant source 183 Coolant source 184 Channel 186 Fluid Source 190 Housing 192 Ring Section 200 Substrate 202 Loading Blade 204 Pin 206 Substrate Support 208 Hole 210 Plane 212 Arrow 39 201029070 214 Reflector 220 Sensor System 22 5 Light Source 227 Beam 229 Beam 231 Detector 235 Controller 25 0 light source

252 偵測器 254 視覺分析系統 300 腔室 302 基板 304 基板位置感測器系統 306 基板支撐件 308 轉子 3 1 0 推動器 312 舉升銷 316 感測器 318 加載葉片 320 基板 400 腔室 402 基板 404 加載葉片 406 基板位置感測器系統 40 201029070252 detector 254 visual analysis system 300 chamber 302 substrate 304 substrate position sensor system 306 substrate support 308 rotor 3 1 pusher 312 lift pin 316 sensor 318 loading blade 320 substrate 400 chamber 402 substrate 404 Loading blade 406 substrate position sensor system 40 201029070

408 邊緣環 410 機構 412 馬達 414 銷 500 腔室 502 基板 504 加載葉片 506 基板位置感測器系統 508 邊緣環 510 相似構件 512 舉升銷 600 基板 602 邊緣環 604 舉升銷 606 桿 608 喷嘴 700 基板 702 邊緣環 704 桿 706 喷嘴 900 基板支撐件 902 基板 904 對準標記 910 邊緣環 201029070 912 表面 914 表面 915 侧壁 916 凸緣 918 間隙 919 對準標記408 Edge ring 410 mechanism 412 motor 414 pin 500 chamber 502 substrate 504 loading blade 506 substrate position sensor system 508 edge ring 510 similar member 512 lift pin 600 substrate 602 edge ring 604 lift pin 606 rod 608 nozzle 700 substrate 702 Edge ring 704 rod 706 nozzle 900 substrate support 902 substrate 904 alignment mark 910 edge ring 201029070 912 surface 914 surface 915 side wall 916 flange 918 gap 919 alignment mark

920 支撐環 922 凸緣 924 凸緣 930 支撐氣缸 932 底部 1001處理腔室 1002基板 1003邊緣環 1004基板支撐件 1005側壁 1006邊緣 1007支撐銷 1008距離 1011光束 1014位置感測器 1015腔室蓋 1016位置感測器 1050處理腔室 42 201029070920 support ring 922 flange 924 flange 930 support cylinder 932 bottom 1001 processing chamber 1002 substrate 1003 edge ring 1004 substrate support 1005 side wall 1006 edge 1007 support pin 1008 distance 1011 beam 1014 position sensor 1015 chamber cover 1016 position sense Detector 1050 processing chamber 42 201029070

1052 基板支撑'件 1054 基板 1056 邊緣環 1058 距離 1059 距離 1068 光發射器 1070 光接收器 1072 光發射器 1074 光接收器 1076 光束 1078 光管 1100 腔室 1124 系統控制器 1190 定子外殼 1191 環形主體 1192 環區段 1194 支撐區段 1200 電磁鐵 1202 感測器 431052 Substrate Support 'Part 1054 Substrate 1056 Edge Ring 1058 Distance 1059 Distance 1068 Light Emitter 1070 Light Receiver 1072 Light Emitter 1074 Light Receiver 1076 Light Beam 1078 Light Pipe 1100 Chamber 1124 System Controller 1190 Stator Housing 1191 Ring Body 1192 Ring Section 1194 Support Section 1200 Electromagnet 1202 Sensor 43

Claims (1)

201029070 七、申請專利範圍: 1. 一種用於處理—平坦基板之快速熱處理裝置,該裝置 包含: 一腔至’其包括—熱源; 一第一基板支揮件,其用於將該基板固定於該腔室中之 一第一位置; 一第一基板支撐件,其位於一第二位置,用於在熱處理 期間固定該基板,該第二基板支撐件在一方向上可移動 β 以將該基板置放為靠近或遠離該熱源;及 一感測器,其用以感測該基板相對於該第二基板支撐件 之位置,該感測器與一致動器連通以改變該基板相對於 第二基板支擇件之軸向位置的位置。 2. 如申請專利範圍第丨項之裝置,其中該感測器包括一 光學偵測器。 3. 如申請專利範圍第2項之裝置,其中該感測器包含: φ 一光源’其用以將一光束定向至該基板之一表面上;及 一镇測器’其經定位以監視自該基板反射之光的強度, 其中該偵測器與該基板中之一者或兩者可移動,以提供 該债測器與該基板之間的相對運動。 4. 如申請專利範圍第3項之裝置,其中該感測器進一步 包含與該偵測器連通之一電子控制器,其中該控制器自 該偵測器所偵測之反射產生複數個量測並計算該基板表 面上發生一反射的一位置’包括判定該等量測中之哪個 對應於該基板之一邊緣。 44 201029070 5. 如申請專利範圍第2項之裝置,其中該感測器藉由評 估該第一基板支撐件在該基板上之或該基板在該第二基 板支撐件上之一投影,以偵測該基板相對於該第二基板 支撐件之位置的位置。 6. 如申請專利範圍第2項之裝置,其中該感測器包含一 相機、一照明系統及一視覺影像分析系統,其偵測該第 二基板支撐件及該基板之中心。201029070 VII. Patent application scope: 1. A rapid thermal processing device for processing a flat substrate, the device comprising: a cavity to 'including a heat source; a first substrate support member for fixing the substrate to a first position in the chamber; a first substrate support member positioned in a second position for fixing the substrate during the heat treatment, the second substrate support member being movable in a direction β to place the substrate Putting it close to or away from the heat source; and a sensor for sensing the position of the substrate relative to the second substrate support, the sensor being in communication with the actuator to change the substrate relative to the second substrate The position of the axial position of the support member. 2. The device of claim 3, wherein the sensor comprises an optical detector. 3. The device of claim 2, wherein the sensor comprises: φ a light source 'for directing a light beam onto a surface of the substrate; and a detector' positioned to monitor The intensity of the light reflected by the substrate, wherein one or both of the detector and the substrate are movable to provide relative motion between the detector and the substrate. 4. The device of claim 3, wherein the sensor further comprises an electronic controller in communication with the detector, wherein the controller generates a plurality of measurements from the reflection detected by the detector And calculating a position at which a reflection occurs on the surface of the substrate includes determining which of the measurements corresponds to an edge of the substrate. The apparatus of claim 2, wherein the sensor is configured to detect by projecting the first substrate support member on the substrate or the substrate on the second substrate support member The position of the substrate relative to the position of the second substrate support is measured. 6. The device of claim 2, wherein the sensor comprises a camera, an illumination system, and a visual image analysis system that detects the second substrate support and the center of the substrate. 7. 如申請專利範圍第1項之裝置,其中該第一基板支撐 件係選自一機器人葉片及一舉升銷總成且該第二基板支 撐件為一邊緣環。 8. 如申請專利範圍第2項之裝置,其進一步包含一腔室 蓋及至少兩個位置感測器,該至少兩個位置感測器位於 該腔室蓋上,且來自該至少兩個感測器之一反射光束可 視需要經由該腔室蓋得以發射。 9. 如申請專利範圍第1項之裝置,其進一步包含經定位 鄰近於該基板之液體或氣體喷嘴以在複數個軸向方向上 移動該基板。 10·如申請專利範圍第丨項之裝置,其進一步包含複數個 定位桿,其在與該基板相同之平面中定向,該等定位桿 經調適以接觸該基板之該邊緣以在該基板之該平面内的 複數個方向上推動該基板。 u.如申請專利範圍第丨項之裝置,其中該第二基板支樓 件輪合至一磁浮轉子。 12.如申請專利範圍第^項之裝置,其進一步包含複數 45 201029070 個定位桿,該等定位桿經定位以接觸該第二基板支撐件 或該磁浮轉子以在平行於該基板之平面之複數個方向上 推動該第二基板支撐件或該磁浮轉子。 13.如申請專利範圍第11項之裝置,其進一步包含一磁 場產生器件,其耦合至該磁浮轉子,該磁場可變更以在 該基板之平面内的複數個軸向方向上移動該懸浮轉子。 ' I4.如申請專利範圍第Π項之裝置,其進一步包含一系 統控制器,該系統控制器用以自該感測器獲得位置信號 及將一k號發送至一或多個電磁鐵以調整該第二基板支 撐件相對於該基板之位置。 15. 如申請專利範圍第!項之裝置,其中第二基板支撐件 包含一邊緣環,該邊緣環包括位於該基板支撐件之一内 表面上的一對準標記,該對準標記可與該基板上之一相 應對準標記相對準。 16. —種處理一基板之方法,其包含以下步驟 • 將具有一邊緣之一平坦基板移送至-處理腔室中之中間 基板支樓件上; 判定該基板之該邊緣的位置; 調整該基板相料-第二基板切件之位置以使得該基 板與該第二基板支撲件處於大體上居中之定向. 將該基板移送至該第二基板支撐件;及 熱處理該基板。 17.如申請專利範圍第16項之方法,其中於一機器人葉 片上將該基板移送至該處理腔室中,該中間基板支撐件 46 201029070 包含舉升銷且在將該基板移送至該等舉升銷上之前調整 該基板相對於該第二基板支撐件之相對位置。 18. 如申明專利範圍第16項之方法其中該基板相對於 該第二基板支撐件之相對位置係藉由改變該基板之一或 多個位置、該第二基板支撐件之位置或該中間基板支撐 件之位置得以調整。7. The device of claim 1, wherein the first substrate support member is selected from the group consisting of a robot blade and a lift pin assembly and the second substrate support member is an edge ring. 8. The device of claim 2, further comprising a chamber cover and at least two position sensors, the at least two position sensors being located on the chamber cover and from the at least two senses One of the reflected beams of the detector can be emitted via the chamber cover as needed. 9. The device of claim 1, further comprising a liquid or gas nozzle positioned adjacent to the substrate to move the substrate in a plurality of axial directions. 10. The device of claim 3, further comprising a plurality of locating rods oriented in the same plane as the substrate, the locating rods being adapted to contact the edge of the substrate for the substrate The substrate is pushed in a plurality of directions in the plane. U. The device of claim 3, wherein the second substrate support is rotated to a maglev rotor. 12. The device of claim 2, further comprising a plurality of 45 201029070 positioning rods positioned to contact the second substrate support or the maglev rotor to be in a plurality parallel to a plane of the substrate The second substrate support or the maglev rotor is pushed in one direction. 13. The apparatus of claim 11 further comprising a magnetic field generating device coupled to the maglev rotor, the magnetic field being changeable to move the floating rotor in a plurality of axial directions in a plane of the substrate. The apparatus of claim 2, further comprising a system controller for obtaining a position signal from the sensor and transmitting a k to one or more electromagnets to adjust the The position of the second substrate support relative to the substrate. 15. If you apply for a patent scope! The device of claim 2, wherein the second substrate support comprises an edge ring, the edge ring comprising an alignment mark on an inner surface of the substrate support, the alignment mark being alignable with a mark on the substrate Aligned. 16. A method of processing a substrate, comprising the steps of: transferring a flat substrate having one edge to an intermediate substrate support member in a processing chamber; determining a position of the edge of the substrate; adjusting the substrate The second substrate is cut to position the substrate and the second substrate member in a substantially central orientation. The substrate is transferred to the second substrate support; and the substrate is heat treated. 17. The method of claim 16, wherein the substrate is transferred to the processing chamber on a robot blade, the intermediate substrate support 46 201029070 includes a lift pin and the substrate is transferred to the lift The relative position of the substrate relative to the second substrate support is adjusted prior to the lifting. 18. The method of claim 16, wherein the relative position of the substrate relative to the second substrate support is by changing one or more positions of the substrate, the position of the second substrate support, or the intermediate substrate The position of the support is adjusted. 19. 如申請專利範圍第16項之方法,其進一步包含以下 步驟:通過該基板與該基板支撐件之間的一空間發射來 自-個感測器之一反射光束’以判定一 β調整值以用於 將該基板置放於該第二基板支撐件之一中心位置上。 如申請專利範圍第16項之方法,其中該第二基板支 揮件之位置係藉由於該基板支揮件鄰近處使用—或多個 磁場而得以調整。 21. 如申請專利範圍第2〇項之方法,其中一或多個感測 器與-控制系統連通’該控制系統與鄰近於該基板支撐 件之複數個磁鐵連通,且該等磁場係回應於由—感測器 獲得之一位置而施加。 22. 如申請專利範圍第19項之方法,其中該e調整值係 藉由量測該第二基板支撐件與該基板之間的至少兩個位 置及之距離而判定,且使用至少兩個感測器判 定用於θ調整之該至少兩個位置之X及γ之該距離。 4719. The method of claim 16, further comprising the step of: transmitting a reflected beam from one of the sensors through a space between the substrate and the substrate support to determine a beta adjustment value to The substrate is placed on a central position of the second substrate support. The method of claim 16, wherein the position of the second substrate support member is adjusted by using - or a plurality of magnetic fields adjacent to the substrate support member. 21. The method of claim 2, wherein the one or more sensors are in communication with the control system, the control system is in communication with a plurality of magnets adjacent to the substrate support, and the magnetic fields are responsive to Applied by a position obtained by the sensor. 22. The method of claim 19, wherein the e adjustment value is determined by measuring at least two locations and distances between the second substrate support and the substrate, and using at least two senses The detector determines the distance of X and γ for the at least two positions of the θ adjustment. 47
TW98137624A 2008-11-06 2009-11-05 Rapid thermal processing chamber with micro-positioning system TWI421945B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11200808P 2008-11-06 2008-11-06
US11201508P 2008-11-06 2008-11-06

Publications (2)

Publication Number Publication Date
TW201029070A true TW201029070A (en) 2010-08-01
TWI421945B TWI421945B (en) 2014-01-01

Family

ID=44853918

Family Applications (2)

Application Number Title Priority Date Filing Date
TW102122200A TWI505370B (en) 2008-11-06 2009-11-05 Rapid thermal processing chamber with micro-positioning system
TW98137624A TWI421945B (en) 2008-11-06 2009-11-05 Rapid thermal processing chamber with micro-positioning system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW102122200A TWI505370B (en) 2008-11-06 2009-11-05 Rapid thermal processing chamber with micro-positioning system

Country Status (1)

Country Link
TW (2) TWI505370B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751221A (en) * 2011-04-19 2012-10-24 硅电子股份公司 Susceptor for supporting a semiconductor wafer and method for depositing a layer on a front side of a semiconductor wafer
TWI559984B (en) * 2011-12-23 2016-12-01 Lam Res Ag Device and method for treating surfaces of wafer-shaped articles
TWI587366B (en) * 2011-06-02 2017-06-11 應用材料股份有限公司 Apparatus and methods for supporting and controlling a substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11375584B2 (en) * 2019-08-20 2022-06-28 Applied Materials, Inc. Methods and apparatus for processing a substrate using microwave energy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563798A (en) * 1994-04-05 1996-10-08 Applied Materials, Inc. Wafer positioning system
JPH10223732A (en) * 1996-12-02 1998-08-21 Toyota Autom Loom Works Ltd Positional deviation detecting device and method
US7378618B1 (en) * 2006-12-14 2008-05-27 Applied Materials, Inc. Rapid conductive cooling using a secondary process plane
US7860379B2 (en) * 2007-01-15 2010-12-28 Applied Materials, Inc. Temperature measurement and control of wafer support in thermal processing chamber
JP2008188727A (en) * 2007-02-06 2008-08-21 Joyo Kogaku Kk Alignment method and its apparatus
US8057602B2 (en) * 2007-05-09 2011-11-15 Applied Materials, Inc. Apparatus and method for supporting, positioning and rotating a substrate in a processing chamber
US20090181553A1 (en) * 2008-01-11 2009-07-16 Blake Koelmel Apparatus and method of aligning and positioning a cold substrate on a hot surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751221A (en) * 2011-04-19 2012-10-24 硅电子股份公司 Susceptor for supporting a semiconductor wafer and method for depositing a layer on a front side of a semiconductor wafer
TWI587366B (en) * 2011-06-02 2017-06-11 應用材料股份有限公司 Apparatus and methods for supporting and controlling a substrate
TWI559984B (en) * 2011-12-23 2016-12-01 Lam Res Ag Device and method for treating surfaces of wafer-shaped articles
US9548223B2 (en) 2011-12-23 2017-01-17 Lam Research Ag Apparatus for treating surfaces of wafer-shaped articles

Also Published As

Publication number Publication date
TWI505370B (en) 2015-10-21
TW201342481A (en) 2013-10-16
TWI421945B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
KR101613527B1 (en) Rapid thermal processing chamber with micro-positioning system
TWI401746B (en) Rapid conductive cooling using a secondary process plane
JP5615276B2 (en) Rapid thermal processing chamber with showerhead
US7371997B2 (en) Thermal processing apparatus and thermal processing method
TWI515796B (en) Spike anneal residence time reduction in rapid thermal processing chambers
JP6578352B2 (en) Light pipe structure window for low pressure heat treatment
KR102272314B1 (en) Light pipe window structure for thermal chamber applications and processes
TW201029070A (en) Rapid thermal processing chamber with micro-positioning system
JP4346208B2 (en) Temperature measuring method, heat treatment apparatus and method, and computer-readable medium
TW201503262A (en) Diffuser for lamp heating assembly