TW201029065A - Selective etching and formation of xenon difluoride - Google Patents
Selective etching and formation of xenon difluoride Download PDFInfo
- Publication number
- TW201029065A TW201029065A TW099101850A TW99101850A TW201029065A TW 201029065 A TW201029065 A TW 201029065A TW 099101850 A TW099101850 A TW 099101850A TW 99101850 A TW99101850 A TW 99101850A TW 201029065 A TW201029065 A TW 201029065A
- Authority
- TW
- Taiwan
- Prior art keywords
- chamber
- xef2
- gas
- plasma generator
- plasma
- Prior art date
Links
- 238000005530 etching Methods 0.000 title claims abstract description 43
- BLIQUJLAJXRXSG-UHFFFAOYSA-N 1-benzyl-3-(trifluoromethyl)pyrrolidin-1-ium-3-carboxylate Chemical compound C1C(C(=O)O)(C(F)(F)F)CCN1CC1=CC=CC=C1 BLIQUJLAJXRXSG-UHFFFAOYSA-N 0.000 title description 69
- 230000015572 biosynthetic process Effects 0.000 title description 12
- 238000000034 method Methods 0.000 claims abstract description 93
- 239000000463 material Substances 0.000 claims abstract description 45
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 22
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 17
- 239000011737 fluorine Substances 0.000 claims abstract description 17
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 15
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011733 molybdenum Substances 0.000 claims abstract description 13
- 238000005468 ion implantation Methods 0.000 claims abstract description 10
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 239000010949 copper Substances 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910010380 TiNi Inorganic materials 0.000 claims abstract description 4
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims abstract description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052737 gold Inorganic materials 0.000 claims abstract description 4
- 239000010931 gold Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 53
- 150000002500 ions Chemical class 0.000 claims description 12
- 229910052707 ruthenium Inorganic materials 0.000 claims description 12
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 9
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 8
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 7
- 229910052734 helium Inorganic materials 0.000 claims description 7
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 6
- -1 polyimine Substances 0.000 claims description 5
- 239000004575 stone Substances 0.000 claims description 4
- OPBNKGCNCRNWLP-UHFFFAOYSA-L [Bi](F)F Chemical compound [Bi](F)F OPBNKGCNCRNWLP-UHFFFAOYSA-L 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 238000005121 nitriding Methods 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 2
- 150000003839 salts Chemical class 0.000 claims 2
- 150000001768 cations Chemical class 0.000 claims 1
- QXYJCZRRLLQGCR-UHFFFAOYSA-N molybdenum(IV) oxide Inorganic materials O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000002699 waste material Substances 0.000 claims 1
- 229910052727 yttrium Inorganic materials 0.000 claims 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 40
- 230000008569 process Effects 0.000 abstract description 32
- 230000008021 deposition Effects 0.000 abstract description 28
- 238000004140 cleaning Methods 0.000 abstract description 22
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052715 tantalum Inorganic materials 0.000 abstract description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052719 titanium Inorganic materials 0.000 abstract description 9
- 239000010936 titanium Substances 0.000 abstract description 9
- 229910052758 niobium Inorganic materials 0.000 abstract description 8
- 239000010955 niobium Substances 0.000 abstract description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 abstract description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 abstract description 8
- 239000010937 tungsten Substances 0.000 abstract description 8
- 229910052759 nickel Inorganic materials 0.000 abstract description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052785 arsenic Inorganic materials 0.000 abstract description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052796 boron Inorganic materials 0.000 abstract description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052732 germanium Inorganic materials 0.000 abstract description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 239000011574 phosphorus Substances 0.000 abstract description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 239000011651 chromium Substances 0.000 abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 abstract description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052697 platinum Inorganic materials 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 2
- 239000004642 Polyimide Substances 0.000 abstract description 2
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 2
- 229920001721 polyimide Polymers 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- 239000005360 phosphosilicate glass Substances 0.000 abstract 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract 1
- 229910010271 silicon carbide Inorganic materials 0.000 abstract 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract 1
- IGELFKKMDLGCJO-UHFFFAOYSA-N xenon difluoride Chemical compound F[Xe]F IGELFKKMDLGCJO-UHFFFAOYSA-N 0.000 abstract 1
- 210000002381 plasma Anatomy 0.000 description 50
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 43
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 39
- 238000000151 deposition Methods 0.000 description 32
- 229910052681 coesite Inorganic materials 0.000 description 26
- 229910052906 cristobalite Inorganic materials 0.000 description 26
- 229910052682 stishovite Inorganic materials 0.000 description 26
- 229910052905 tridymite Inorganic materials 0.000 description 26
- RPSSQXXJRBEGEE-UHFFFAOYSA-N xenon tetrafluoride Chemical compound F[Xe](F)(F)F RPSSQXXJRBEGEE-UHFFFAOYSA-N 0.000 description 24
- 239000000758 substrate Substances 0.000 description 18
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000011065 in-situ storage Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 12
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 10
- 239000010453 quartz Substances 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- SPPCMVNDPDQNRG-UHFFFAOYSA-L [F-].[F-].[Sb++] Chemical compound [F-].[F-].[Sb++] SPPCMVNDPDQNRG-UHFFFAOYSA-L 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000004377 microelectronic Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 229910052724 xenon Inorganic materials 0.000 description 4
- 229910010342 TiF4 Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- BCZWPKDRLPGFFZ-UHFFFAOYSA-N azanylidynecerium Chemical compound [Ce]#N BCZWPKDRLPGFFZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- UZBMLWGAEQOROI-UHFFFAOYSA-L difluororuthenium Chemical compound F[Ru]F UZBMLWGAEQOROI-UHFFFAOYSA-L 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 238000010952 in-situ formation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000005365 phosphate glass Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ARUUTJKURHLAMI-UHFFFAOYSA-N xenon hexafluoride Chemical compound F[Xe](F)(F)(F)(F)F ARUUTJKURHLAMI-UHFFFAOYSA-N 0.000 description 2
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KPSZQYZCNSCYGG-UHFFFAOYSA-N [B].[B] Chemical compound [B].[B] KPSZQYZCNSCYGG-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- YZYDPPZYDIRSJT-UHFFFAOYSA-K boron phosphate Chemical compound [B+3].[O-]P([O-])([O-])=O YZYDPPZYDIRSJT-UHFFFAOYSA-K 0.000 description 1
- 229910000149 boron phosphate Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- IAOQICOCWPKKMH-UHFFFAOYSA-N dithieno[3,2-a:3',2'-d]thiophene Chemical compound C1=CSC2=C1C(C=CS1)=C1S2 IAOQICOCWPKKMH-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- GGJOARIBACGTDV-UHFFFAOYSA-N germanium difluoride Chemical compound F[Ge]F GGJOARIBACGTDV-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical group 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/12—Gaseous compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
201029065 六、發明說明: 相關申請的交叉引用 本申請是提交於2005年11月22日的題為 "SELECTIVE ETCHING OF TITANIUM NITRIDE WITH XENON DIFLUORIDE”的U.S.專利申請系列號 No.1 1/285,056的部分延續。 【發明所屬技術領域】 本發明涉及選擇性蝕刻和二氟化氙的形成。 【先前技術】 在電子工業中已開發出各種沉積技術,其中將選定材 料沉積於目標基材上以製造電子元件比如半導體。一種沉 積方法是化學氣相沉積(CVD),其中氣體反應劑被導入至經 加熱的加工腔室(chamber)中得到被沉積於期望基材上的 膜。CVD的一個亞型被稱作電漿增強CVD(PECVD),其中 電漿在CVD加工腔室中建立。 通常,所有沉積方法均造成膜和顆粒材料累積在不同 於目標基材的表面上,即,沉積材料也聚集在沉積方法中 使用的壁、工具表面、基座(susceptor)和其他設備上。任何 聚集在壁、工具表面、基座和其他設備上的材料、膜等均 被認為是污染物,並可能導致電子產品元件中的缺陷。 普遍認同沉積腔室、工具和設備必須定期地清潔以除 去不需要的污染性沉積材料。通常優選的清潔沉積腔室、 201029065 -工具和設備的方法包括使用全氟化的化合物(pFC),例如 ·< c2F6、cf4、c3F8、SF6和NF3來作為蝕刻劑清潔劑。在這 些清潔操作中,正常由過程氣體攜帶的化學活性氟物種 (species)將不需要的污染性殘渣轉化為揮發性產物。然 後’揮發性產物被過程氣體吹掃出反應器。 離子庄入用在積體電路製造中以精確地將控制量的摻 雜劑雜質導入至半導體晶片中,並且其是微電子/半導體生 ❹產中的重要方法。在理想情形中,所有原料分子會被電離 並提取,但實際上卻發生一定量原料的分解,這造成在離 子源區域内的表面上的、或者離子注入工具的部件,比如 低壓絕緣子和高壓元件上的沉積和污染。已知的污染殘潰 疋矽、硼、磷、鍺或砷。將成為離子注入領域的重要進步 的是,提供用於有效地、選擇性除去在注入過程中沉積於 注入機(implanter)各處,特別是離子源區域内的不需要殘渣 的原位清潔方法。該原位清潔會增強工作人員安全並有助 〇 於注入設備的穩定、連續操作。將氣相反應性鹵化物组合 物,例如 XeF2、NF3、F2、XeF6、SF6、C2f6、IFs 或 IF7 導入至被污染的部件以充足的時間並在充分的條件下以從 7G件至少部分地除去殘渣,並且以下述方式進行,即,相 對於構建離子注入機的元件的材料選擇性地除去殘逢。 在微型電動機械系統(MEMS)中,形成犧牲層(通常具 有非晶矽)和保護層的混合物,由此形成器件結構層。選擇 性地除去該犧牲材料是用於結構釋放蝕刻(release etching) 方法的關鍵步驟,其中需要各向同性地除去數微米的犧牲 5 201029065 材料而不損害其他的結構。已瞭解的是該蝕刻方法是不蝕 刻保護層的選擇性蝕刻方法。在MEMS中使用的典型犧牲 材料為:矽、鉬、鎢、鈦、鍅、铪、釩、钽、鈮。曲型保 護材料是鎳、鋁、光阻劑、氧化矽、氮化矽。 為了有效地除去犧牲材料,釋放蝕刻使用蝕刻劑氣 體,其能夠進行犧牲層的自發性化學蝕刻,優選為除去犧 牲層的各向同性蝕刻。因為二氟化氙的各向同性蝕刻效果 強,故使用二氟化氙(XeF2)作為橫向蝕刻方法(hteM etching process)的银刻劑。 然而’二氟化氤昂貴,且是難以處理的材料。二氟化 氣與空氣、光或水蒸氣(濕氣)接觸而不穩定。所有的氟化 氤都必須防止接觸濕氣、光和空氣以避免形成三氧化氤和 氟化氫。三氧化氙是危險的爆炸性無色、非揮發性固體。 氟化氫不僅危險而且還降低蝕刻效率。 此外一氟化氣疋具有低蒸氣|的固體,這使得難以 將二氟化氙運送至加工腔室。 以下參考文獻舉例說明了用於如下的方法:半導體生 產中的膜沉積,以及沉積腔室、工具和設備的清潔,和基 材的蝕刻、MEMS巾犧牲層的蝕刻,和微電子器件襲造中 所用離子注入系統中的離子源區域的清潔: US 5,421,957公開了用於低溫清潔冷壁cvd腔 的 法。該方法在無㈣料下原位進行。各種材料比如蟲 矽、多晶碎、氮化石夕、氧化石夕和耐火金屬、欽鶴和它 的石夕化物的膜的清潔使㈣刻劑氣體例如三氟化氮三 201029065 -化氣、六氟化硫和四氟化碳來實現。 ' us 6,051,052公開了在離子增強電漿中使用氟化合物 例如NF3和CZF6作為蝕刻劑的導艎材料的各向異性蝕刻。 所述触刻劑由含氟化學製品和選自He、Ar、Xe和Kr的稀 有氣體組成。試驗基材包括與基材連接的積體電路。在一 個實施方案中’將鈦層形成在絕緣層上並與鎢插塞 (tungsten plug)接觸。然後,將鋁_銅合金層形成在該鈦層 _ 之上,並在其上形成氮化鈦層。 US 2003/0047691公開了利用電子束加工來蝕刻或沉 積材料或者修補在光微影遮罩(lith〇graphy mask)中的缺 陷。在一個實施方案中,二氟化氙通過電子束啟動以蝕刻 鶴和氮化组。 GB 2,183,204A公開了利用NF3來原位清潔CVD沉積 硬體、船、管和石英器皿以及半導體晶片。將NF3導入至 超過350°C的經加熱反應器足夠的時間以除去氮化矽、多 Θ 晶矽、矽化鈦、矽化鎢、耐火金屬和矽化物。201029065 VI. INSTRUCTIONS: CROSS-REFERENCE TO RELATED APPLICATIONS This application is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire content BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to selective etching and formation of antimony difluoride. [Prior Art] Various deposition techniques have been developed in the electronics industry in which selected materials are deposited on a target substrate to produce electrons. An element such as a semiconductor. One deposition method is chemical vapor deposition (CVD) in which a gaseous reactant is introduced into a heated processing chamber to obtain a film deposited on a desired substrate. A subtype of CVD is Called plasma enhanced CVD (PECVD), in which plasma is built up in a CVD processing chamber. Typically, all deposition methods cause the film and particulate material to accumulate on surfaces other than the target substrate, ie, the deposited material also accumulates Walls, tool surfaces, susceptors, and other equipment used in deposition methods. Any gathering on walls, tool surfaces, foundations Materials, membranes, etc. on other equipment are considered contaminants and may cause defects in electronic product components. It is generally accepted that deposition chambers, tools, and equipment must be periodically cleaned to remove unwanted contaminating deposition materials. A preferred method of cleaning the deposition chamber, 201029065 - tools and equipment includes the use of perfluorinated compounds (pFC) such as < c2F6, cf4, c3F8, SF6 and NF3 as etchant cleaners. In these cleaning operations Normally, the chemically active fluorine species carried by the process gas convert unwanted unwanted residues into volatile products. The 'volatile products are then purged out of the reactor by process gases. The ions are used in integrated circuit manufacturing. To accurately introduce a controlled amount of dopant impurities into a semiconductor wafer, and it is an important method in microelectronic/semiconductor production. In an ideal situation, all raw material molecules are ionized and extracted, but actually However, a certain amount of decomposition of the raw material occurs, which causes a component on the surface in the ion source region or the ion implantation tool, such as Deposition and contamination on pressure insulators and high voltage components. Known pollution annihilation, boron, phosphorus, antimony or arsenic. An important advance in the field of ion implantation is to provide efficient, selective removal in implantation. The process is deposited in situ throughout the implanter, particularly in the ion source region, without residue residue. This in-situ cleaning enhances worker safety and contributes to stable, continuous operation of the injection equipment. Introducing a gas phase reactive halide composition, such as XeF2, NF3, F2, XeF6, SF6, C2f6, IFs or IF7, into the contaminated component for at least partial time and under sufficient conditions to at least partially remove from the 7G piece The residue is carried out in such a manner that the residue is selectively removed with respect to the material of the element constructing the ion implanter. In a micro electromechanical system (MEMS), a mixture of a sacrificial layer (usually having an amorphous germanium) and a protective layer is formed, thereby forming a device structure layer. Selective removal of the sacrificial material is a critical step in the method of structural release etching, where isotropic removal of a few microns of sacrificial 5 201029065 material without damaging other structures. It is understood that the etching method is a selective etching method that does not etch the protective layer. Typical sacrificial materials used in MEMS are: tantalum, molybdenum, tungsten, titanium, niobium, tantalum, vanadium, niobium, tantalum. The curved protective material is nickel, aluminum, photoresist, tantalum oxide, tantalum nitride. In order to effectively remove the sacrificial material, the release etch uses an etchant gas that is capable of performing a spontaneous chemical etch of the sacrificial layer, preferably an isotropic etch that removes the sacrificial layer. Since the isotropic etching effect of antimony difluoride is strong, xeF2 is used as a silver engraving agent for the hteM etching process. However, bismuth difluoride is expensive and is a difficult material to handle. The difluorinated gas is unstable in contact with air, light or water vapor (moisture). All barium fluoride must be protected from moisture, light and air to avoid the formation of antimony trioxide and hydrogen fluoride. Antimony trioxide is a dangerous, explosive, colorless, non-volatile solid. Hydrogen fluoride is not only dangerous but also reduces etching efficiency. In addition, the monofluorinated gas has a low vapor|solids, which makes it difficult to transport the antimony difluoride to the processing chamber. The following references illustrate methods for film deposition in semiconductor fabrication, as well as cleaning of deposition chambers, tools and equipment, and etching of substrates, etching of sacrificial layers of MEMS towels, and microelectronic device fabrication. Cleaning of the ion source region in an ion implantation system used: US 5,421,957 discloses a method for cryogenic cleaning of a cold wall cvd cavity. The method is carried out in situ without the (four) material. Cleaning of various materials such as worms, polycrystalline granules, nitriding stones, oxidized stone ceremonies and refractory metals, qinghe and its lithographs to make (iv) engraving gases such as nitrogen trifluoride three 201029065 - liquefied gas, six It is achieved by sulfur fluoride and carbon tetrafluoride. ' us 6,051,052 discloses an anisotropic etch of a germanium material using fluorine compounds such as NF3 and CZF6 as etchants in ion-enhanced plasmas. The etchant consists of a fluorochemical and a rare gas selected from the group consisting of He, Ar, Xe and Kr. The test substrate includes an integrated circuit that is connected to the substrate. In one embodiment, the titanium layer is formed on the insulating layer and is in contact with a tungsten plug. Then, an aluminum-copper alloy layer is formed on the titanium layer _, and a titanium nitride layer is formed thereon. US 2003/0047691 discloses the use of electron beam processing to etch or deposit material or to repair defects in a lith〇graphy mask. In one embodiment, the ruthenium difluoride is activated by an electron beam to etch the crane and nitride groups. GB 2,183,204 A discloses the use of NF3 for in situ cleaning of CVD deposition hardware, boats, tubes and quartz vessels, as well as semiconductor wafers. The NF3 is introduced into the heated reactor over 350 °C for a sufficient time to remove tantalum nitride, polycrystalline germanium, titanium telluride, tungsten antimonide, refractory metal and telluride.
Holt,J. R.等,Comparison of the Interactions of XeF2 and F2 with Si (100)(2X1),J. Phys. Chem· B 2002,106, 83 99-8406 公開了在 250K 時 XeF2 與 Si(100)(2Xl)的相互 作用’並提供了與F2的比較。發現XeF2在室溫下快速並 各向同性地與Si反應。Holt, JR et al, Comparison of the Interactions of XeF2 and F2 with Si (100) (2X1), J. Phys. Chem. B 2002, 106, 83 99-8406 discloses XeF2 and Si(100) at 2K (2Xl) The interaction 'and provides a comparison with F2. XeF2 was found to react rapidly and isotropically with Si at room temperature.
Chang, F. I., Gas-Phase Silicon Micromachining WithChang, F. I., Gas-Phase Silicon Micromachining With
Xenon Difluoride,SPIE Vol. 2641/117-127 公開 了利用Xenon Difluoride, SPIE Vol. 2641/117-127 discloses the use
XeF2作為氣相、室溫、各向同性的矽蝕刻劑,並且指出其 201029065 對用於微電動機械系統的許多材料比如鋁、光阻劑和二氧 化珍具有高選擇性。其還在119頁指丨,在$基材上形成 圖案時,XeF2具有對二氧切以及銅、金、欽_鍊合金和丙 烯酸類(acrylic)的大於ι〇00:1的選擇性。XeF2 acts as a gas phase, room temperature, isotropic cerium etchant and indicates that its 201029065 has high selectivity for many materials used in microelectromechanical systems such as aluminum, photoresists and dioxin. It is also indicated on page 119 that when forming a pattern on the substrate, XeF2 has a selectivity to dioxo and copper, gold, chin-chain alloys and acrylics greater than 10:00:1.
Isaac, W.C.#, Gas Phase Pulse Etching 〇f Silicon For MEMS With Xenon Difluoride,1999 IEEE, 1637-1642 公開 了利用XeF2作為用於矽的各向同性氣相蝕刻劑。報導了 XeF2對積體電路製造中的許多金屬、電介質和聚合物具有 高選擇性。該作者也在1637頁指出,XeF2不蝕刻鋁鉻、 氮化鈦、鎢、二氧化矽和碳化矽。還觀測到了分別對於鉬 :矽;以及鈦:矽的顯著蝕刻。Isaac, W.C.#, Gas Phase Pulse Etching 〇f Silicon For MEMS With Xenon Difluoride, 1999 IEEE, 1637-1642 discloses the use of XeF2 as an isotropic vapor phase etchant for ruthenium. XeF2 is reported to have high selectivity for many metals, dielectrics, and polymers in the fabrication of integrated circuits. The author also states on page 1637 that XeF2 does not etch aluminum chromium, titanium nitride, tungsten, germanium dioxide, and tantalum carbide. Significant etchings for molybdenum: tantalum; and titanium: tantalum were also observed.
Winters 等,The Etching 〇f Silicon with XeF2 Vap〇r, Appl. Phys. Lett. 34⑴ 1979 年 1 月 i 日,70_73 公開了利 用CF4的氟烴電漿誘導離解中產生的F原子和CF3基團來 蝕刻固體矽以製造揮發性Sib物種。該論文訴諸於利用 XeF2以在300K在1.4xl〇_2托下蝕刻矽。其他實驗顯示χπ2 也快速地蝕刻鉬、鈦和或許鎢。Si〇2、S“N4和Sic的蝕刻 使用XeF2並不有效,但在電子或離子轟擊的存在下蝕刻卻 有效。故作者斷定這些材料的蝕刻不僅需要F原子而且還 需要輻射或高溫。 US 6870654和US 7078293兩者均公開了結構釋放蝕 刻方法,其通過使用具有氟基團或氣基團的蝕刻劑來代替 二氟化氣,避免了因使用二氟化氙而造成的困難。然而, 蝕刻效果不如使用二氟化氙時有效。因此,us 687〇654和 201029065 i US 7078293公開了用於促進結構釋放蝕刻方法的特殊結 .構’以使加工時間等與二氟化氙的相當。 US 20060086376公開了在微電子器件的製造中,利用Winters et al, The Etching 〇f Silicon with XeF2 Vap〇r, Appl. Phys. Lett. 34(1) January 1, 1979, 70_73 discloses the use of CF4 fluorocarbon plasma to induce F atoms and CF3 groups generated during dissociation. The solid ruthenium is etched to produce volatile Sib species. The paper appeals to the use of XeF2 to etch ruthenium at 300 x at 1.4 x 1 Torr. Other experiments have shown that χπ2 also rapidly etches molybdenum, titanium and perhaps tungsten. The etching of Si〇2, S"N4 and Sic is not effective using XeF2, but etching is effective in the presence of electron or ion bombardment. Therefore, the authors conclude that the etching of these materials requires not only F atoms but also radiation or high temperature. US 6870654 Both US Pat. No. 7,078,293 discloses a structure release etching method which uses a etchant having a fluorine group or a gas group instead of a difluorinated gas, thereby avoiding the difficulty caused by the use of antimony difluoride. However, etching The effect is not as effective as the use of antimony difluoride. Therefore, us 687 〇 654 and 2010 29 065 i US 7078293 disclose a special structure for promoting the structure release etching method so that the processing time and the like are equivalent to those of germanium difluoride. 20060086376 discloses the use in the manufacture of microelectronic devices
XeF2來從離子注入機的元件清潔殘渣(矽硼、磷鍺或砷)。 具體地,US 20060086370涉及從真空腔室和含於其中 的兀件原位除去殘渣,其通過將所述真空腔室和/或元件與 氣相反應性齒化物組合物例如XeF2接觸充分的時間並在 ❹充刀的條件下,以從元件至少部分地除去殘渣並且以下 述方式進行,即,相對於構建離子注入機的元件的材料選 擇性地除去殘渣。 一個工業目的是找到可用於從經二氧化矽(Si02)和氮 化矽(SiN)塗覆的表面除去難以除去的氮化鈦(TiN)膜的新 聖蝕刻劑。這類表面見於半導體沉積腔室,特別是石英腔 至和石英器皿、半導體工具和設備的壁中。許多傳統的攻 擊ΤιΝ膜的基於氟的蝕刻劑也攻擊μ%和siN表面,因此 ❹不可接受於用於從半導體沉積腔室和設備除去TiN沉積產 物。 另一個工業目的是提供用於從二氧化矽(石英)表面選 擇佳除S梦的方法’所述表面為比如普遍見於半導體沉積 腔室和半導趙工具以及MEMS中的器件中的那些。 個業目的在於提供用於現場(〇n site)生產或形 成二氟化氙的方法’如同降低物主成本所需的。 【發明内容】 201029065 本發明涉及改進的方法,其用於從二氧化矽(石英)表 面比如普遍見於半導體沉積腔室和半導體工具的表面以及 普遍見於半導體工具部件等的氮化矽(SiN)表面,選擇性除 去氮化鈦(ΤιΝ)膜和沉積產物。在除去污染表面的不期望成 分的基礎方法中,將蝕刻劑與所述不期望成分在接觸區接 觸,並將該不期望成分轉化為揮發性物種。然後將該揮發 性物種從接觸區除去。用於從接觸區中選自ΜΑ和“Ν的 表面除去不期望的TiN沉積材料的基礎方法中的改進在於 使用二氟化氙(XeF2)作為蝕刻劑。控制條件以使所述選自 Si〇2和SiN的表面不被轉化為揮發性組份。 就選擇性蝕刻很難從半導體沉積腔室(有時稱作反應 腔室)、工具部件和設備等除去的讀膜和沉積材料而言, 顯著優點包括: 從見於沉積腔室的清潔中的經石英即Si〇2/和㈣塗 覆的表面選擇性除去TiN膜的能力; 在適度溫度下從石英表面除去彻膜的能力;和 啟動遠端電衆(rem〇te Ν . 电眾(remote piasma)中的全氟蝕刻劑以從 ⑽和SiN表面除去TiN膜而沒有正常情況下因遠端電聚 中的氟原子攻擊所引起的不良效果的能力。 本發明也公開用於相對於第二材料選擇性敍刻第一材 料的方法,包含: 在腔室中提供含有第一材料和第二材料的結構; 向所述腔室提供包含氤㈤、惰性氣艘和含氟化學品 的蝕刻劑氣體; 201029065 將所述結構與所述蝕刻劑氣體接觸並將所述第一材料 •選擇性地轉化為揮發性物種;和 從所述腔室除去所述揮發性物種; 其中’所述第一材料選自矽、鉬、鎢、鈦、锆、铪、 釩、鈕、鈮、硼、磷、鍺、砷和它們的混合物;且所述第 一材料選自二氧化矽、氮化矽、鎳、鋁、TiNi合金、光阻 劑、磷矽酸鹽玻璃、硼磷矽酸鹽玻璃、聚醯亞胺、金、銅、 舶、鉻、氧化鋁、碳化矽和它們的混合物。 本發明也公開在腔室中形成二氟化氙的方法,包含: 向所述腔室提供選自nf3、c2F6、cf4、c3f8、SF6、從 上游電漿產生器產生的含F原子的電漿和它們的混合物的 含氟化學品;和 通過在所述腔室中使氤與所述含氟化學品反應而形成 二氟化氙。XeF2 is used to clean the residue (boron boron, phosphonium or arsenic) from the components of the ion implanter. In particular, US 20060086370 relates to the in situ removal of residues from a vacuum chamber and a crucible contained therein by contacting the vacuum chamber and/or element with a gas phase reactive tooth composition, such as XeF2, for a sufficient period of time and The residue is at least partially removed from the element under the condition of a squeegee and is carried out in such a manner that the residue is selectively removed with respect to the material of the element constructing the ion implanter. An industrial objective is to find new etchants that can be used to remove hard-to-remove titanium nitride (TiN) films from the surface coated with cerium oxide (SiO 2 ) and cerium nitride (SiN). Such surfaces are found in semiconductor deposition chambers, particularly quartz chambers and in the walls of quartz vessels, semiconductor tools and equipment. Many conventional fluorine-based etchants that attack the Νι film also attack the μ% and siN surfaces, and thus are not acceptable for removing TiN deposition products from semiconductor deposition chambers and equipment. Another industrial purpose is to provide a method for selecting a S-dream from the surface of a cerium oxide (quartz). The surface is such as those commonly found in semiconductor deposition chambers and semiconductor tools and MEMS devices. The purpose of the industry is to provide a method for producing or forming antimony difluoride on site (as needed to reduce the cost of the owner). SUMMARY OF THE INVENTION 201029065 The present invention relates to an improved method for use from a ceria (quartz) surface such as a surface commonly found on semiconductor deposition chambers and semiconductor tools, and a tantalum nitride (SiN) surface commonly found in semiconductor tool components and the like. The titanium nitride (ΤιΝ) film and the deposited product are selectively removed. In a basic method of removing undesirable components of a contaminated surface, an etchant is contacted with the undesired component at the contact zone and the undesired component is converted to a volatile species. The volatile species is then removed from the contacting zone. An improvement in the basic method for removing undesired TiN deposition material from the surface of the contact zone selected from the group consisting of ruthenium and iridium is to use xenon difluoride (XeF2) as an etchant. The conditions are controlled such that the 2 and the surface of the SiN is not converted to a volatile component. In terms of selective etching, it is difficult to remove the film and deposition material from the semiconductor deposition chamber (sometimes referred to as the reaction chamber), tool parts and equipment, etc. Significant advantages include: the ability to selectively remove TiN films from the quartz-coated Si〇2/ and (iv) coated surfaces seen in the cleaning of the deposition chamber; the ability to remove the film from the quartz surface at moderate temperatures; The fluorescing agent in the remote piasma removes the TiN film from the surface of (10) and SiN without the adverse effects caused by the attack of fluorine atoms in the remote electropolymerization under normal conditions. The present invention also discloses a method for selectively patterning a first material relative to a second material, comprising: providing a structure comprising a first material and a second material in a chamber; providing a chamber comprising the crucible (5), inert An etchant gas with a fluorochemical; 201029065 contacting the structure with the etchant gas and selectively converting the first material to a volatile species; and removing the volatilization from the chamber a first species selected from the group consisting of ruthenium, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, niobium, tantalum, boron, phosphorus, lanthanum, arsenic, and mixtures thereof; and the first material is selected from the group consisting of: Cerium Oxide, Cerium Nitride, Nickel, Aluminum, TiNi Alloy, Photoresist, Phosphate Glass, Boron Phosphate Glass, Polyimide, Gold, Copper, Nickel, Aluminium, Tantalum Carbide And a mixture thereof. The invention also discloses a method of forming ruthenium difluoride in a chamber, comprising: providing said chamber with a composition selected from the group consisting of nf3, c2F6, cf4, c3f8, SF6, produced from an upstream plasma generator a fluorochemical of a plasma of F atoms and a mixture thereof; and bismuth difluoride formed by reacting hydrazine with the fluorochemical in the chamber.
【實施方式】 氮化鈦(TiN)的沉積普遍實踐於製造積體電路、電器元 件等的電子工業中。在沉積方法中,—些训沉積在不同 於目標基材表面的表面i ’例如在沉積腔室内的壁和表面 上。已發現XeF2作為用於TiN污染的二氧化碎和氮 化邦iN)表面的選擇性钕刻劑有效。基於該發現,人們可 以使用二氟化氙(XeF2)作為蝕刻劑來除去不需要的Tm膜 和沉積材料污染的表面,所述表面為比如見於塗覆有或内 襯有二氧切(石英)或1化麵半導體反應器或沉積腔 11 201029065 室、工具、設備、部件和晶片中的那些。 - 在從Si〇2和SiN表面比如沉積腔室中的表面除去不需 要的TiN殘渣時’在接觸區中在用於將TiN轉化為揮發性 TiF4然後再從所述接觸區除去該揮發性物種的條件下將 XeF2與所述表面接觸。經常,將XeF2與惰性氣體例如、[Embodiment] The deposition of titanium nitride (TiN) is generally practiced in the electronics industry for manufacturing integrated circuits, electrical components, and the like. In the deposition method, some are deposited on a surface i' different from the surface of the target substrate, for example, on walls and surfaces in the deposition chamber. XeF2 has been found to be effective as a selective squeegee for the surface of the oxidized and nitriding iN) contaminated with TiN. Based on this finding, one can use xenon difluoride (XeF2) as an etchant to remove unwanted Tm films and surfaces contaminated by deposited materials, such as those found to be coated or lined with dioxin (quartz). Or one of the facet semiconductor reactors or deposition chambers 11 201029065 chambers, tools, equipment, components, and wafers. - when removing unwanted TiN residues from surfaces in Si〇2 and SiN surfaces, such as deposition chambers, 'in the contact zone for converting TiN to volatile TiF4 and then removing the volatile species from the contact zone XeF2 is brought into contact with the surface under the conditions. Often, XeF2 and inert gases, for example,
Ar、和He等一起添加。 在進行從SiN和Si〇2表面除去TiN沉積材料的方法 t ’ XeF2可以在導入至接觸區之前預形成,或者為了本發 明的目的’且由此處定義,XeF2可通過兩種方法形成^ ❹ 在一個原位形成XeF2的實施方案中,將氙(Xe)添加至 含氟化學品並裝入遠蟑電漿產生器。在該處,Xe與存在於 所得遠端電漿中的F原子反應而形成xep2。 在另一個實施方案,即所述原位實施方案的變形中, 將含氟化學品添加至遠端電漿產生器,然後再將Xe和含F 原子的遠端電漿添加至遠端電漿產生器下游的腔室。在該 處’Xe與F原子反應而在腔室中形成XeF2。所述腔室可以 ❹ 疋任意類型的腔室,比如但不限定於加工腔室、沉積腔室、 清潔腔室、反應器和電漿產生器。 該用於形成XeF2的含氟化學品的例示包括&,Nf3, 全氟化碳如CJ6、CF4、C3FS ’硫衍生物比如Sf6,和產生 於上游電漿產生器的含F原子的遠程電漿。在優選實施方 案中,使用NF3作為用於形成XeF2的含氟化學品。 所述含氟化學品可以就地產生。例如,使用鹵素產生 器就地產生F2,然後再將該&導入至方法。這將成為減輕 12 201029065 • 氟操作相關危險的可能手段。 • 在形成XeF2的原位方法中可以使用寬範圍的Xe對含 氟化學品的比。Xe對含氟化學品的摩爾比依賴於相比於所 述遠端電漿中的F原子的濃度所形成的xeF2的量。 並不受理論的束缚’但人們相信遠端電漿充當著用於 激發和離解被作為氟源導入的含氟化學品的源。然後氟基 團與存在於電漿發生區段緊後面的區段中的Xe反應。除用 於激發含氟物種的能量以及Xe之外,該區段的路徑長度也 被認為是平衡對於XeF2的優選和xeF4的減少中的重要參 數。 此外,人們相信如果Xe被導入到電漿激發區段緊後面 的空間中,則由於Xe還未被激發而能夠導致XeF4形成的 更進一步減少。熟知氙具有極低的亞穩能態。該亞穩態的 形成能夠導致形成在該區段内的XeF2分子之間另外的碰 撞反應。這些碰撞可造成XeF2離解為XeF和F基團。然後 © 這些物種可導致與其他XeF2分子的進一步反應以形成 XeF4 °因此’通過在電漿激發後導入Xe,不形成亞穩 態。因此XeF4的形成會降低。這公開在第二實施方案,即 原位實施方案的變形中,其中Xe被添加至產生於電漿產生 器上游的含有F原子的遠程電漿。Ar, and He are added together. The method t 'XeF2 for removing the TiN deposition material from the surface of SiN and Si〇2 may be preformed prior to introduction into the contact region, or for the purposes of the present invention' and as defined herein, XeF2 may be formed by two methods. In an embodiment in which XeF2 is formed in situ, xenon (Xe) is added to the fluorochemical and loaded into a remote plasma generator. Here, Xe reacts with the F atoms present in the resulting far-end plasma to form xep2. In another embodiment, a variation of the in situ embodiment, a fluorochemical is added to the remote plasma generator, and then Xe and the far plasma containing the F atom are added to the remote plasma. a chamber downstream of the generator. At this point, 'Xe reacts with the F atom to form XeF2 in the chamber. The chamber can be any type of chamber such as, but not limited to, a processing chamber, a deposition chamber, a cleaning chamber, a reactor, and a plasma generator. Examples of the fluorochemical used to form XeF2 include &, Nf3, perfluorocarbons such as CJ6, CF4, C3FS 'sulfur derivatives such as Sf6, and F atoms containing remote electricity generated from upstream plasma generators. Pulp. In a preferred embodiment, NF3 is used as the fluorochemical for forming XeF2. The fluorochemical can be produced in situ. For example, a halogen generator is used to generate F2 in situ, and then the & is introduced to the method. This will be a possible means of mitigating the risks associated with fluorine operations. • A wide range of Xe to fluorinated chemical ratios can be used in in situ methods of forming XeF2. The molar ratio of Xe to fluorochemical depends on the amount of xeF2 formed compared to the concentration of F atoms in the distal plasma. Without being bound by theory, it is believed that the far-end plasma acts as a source of fluorochemicals that are introduced as a source of fluorine for excitation and dissociation. The fluoro group then reacts with Xe present in the zone immediately after the plasma generation zone. In addition to the energy used to excite the fluorine-containing species and Xe, the path length of the segment is also considered to be an important parameter in the balance of XeF2 and xeF4 reduction. Furthermore, it is believed that if Xe is introduced into the space immediately behind the plasma excitation section, XeF4 formation can be further reduced since Xe has not been excited. It is well known that 氙 has a very low metastable energy state. The formation of this metastable state can result in an additional collision reaction between the XeF2 molecules formed within the segment. These collisions can cause XeF2 to dissociate into XeF and F groups. Then © these species can cause further reaction with other XeF2 molecules to form XeF4° so that by introducing Xe after plasma excitation, no metastable state is formed. Therefore, the formation of XeF4 is lowered. This is disclosed in a second embodiment, a variation of the in-situ embodiment, in which Xe is added to a remote plasma containing F atoms that is generated upstream of the plasma generator.
Xe對含氟化學品的優選摩爾比是ι:1〇至1〇:1。任選 地’可將惰性氣體例如氬包括於XeFz的遠端電漿發生中, 作為調節相對於Si〇2而蝕刻TiN,相對於si〇2和siN而蝕 刻SiN或Si的選擇性的手段。 13 201029065 適於從Si〇2和SiN表面除去TiN的壓力為〇 5至5〇 托,優選為1至10托。實現從二氧化矽表面(石英)和SiN 表面選擇性蝕刻TiN膜的溫度主要取決於進行該方法的方 法。由此,這意味著如果預先形成Xeh並直接添加至接觸 區,溫度應當升高至至少lOOt,例如1〇〇至80(rc,優選 150至500。〇。用於XeF2的壓力應當為至少〇」托例如 0,1至20托,優選0.2至10托。與其中蝕刻速率(Si蝕刻) 隨溫度增高而減少的現有技術方法相反,此處,蝕刻速率 隨溫度增商而增加。認為該溫度增加增大了 TiN餘刻的比 ❹ 率,因為TiF4在這些條件下是揮發性的且容易從以〇2和 SiN表面除去❶較低溫度使得TiF4物種留在Si〇2和siN表 面的附近,阻礙XeF2的進攻。 在形成XeF2的原位方法中,清潔或蝕刻在遠端電漿的 存在下進行。溫度在存在遠端電漿時可以為環境溫度至5〇〇 °C ’優選為環境溫度至300°C。 公開的形成XeF2的方法為所述原位清潔方法提供了 ❹ 顯著的進步。因為,它們不僅提供以低成本製造XeF2的方 法,它們也提供不需要殘渣的有效的選擇性除去同時不需 大的停工,進而降低維護成本。另外,該公開的方法使用高 蒸氣壓乳體而不使用低蒸氣壓固體。由於更高的氣體流量 因而這改善生產率,並因而可得到更高的蝕刻速率。 源於使用該公開的形成Xei?2的方法的進一步的利益 在於,除了 XeFz之外還提供一些可能有助於促進除去僅與 XeF2接觸時可能不反應的殘渣的游離氟自由基。這對所有 14 201029065 .選擇性清潔/钮刻應用都是有利的,所述應用比如清潔塗覆 有在其上沉積有某些不需要殘渣的Si〇2的部件和半導體工 具;MEMS中犧牲層的蝕刻,以及在微電子器件的製造中 使用的離子注入系統的離子源區域中的殘渣清潔。 以下實施例被提供以例示本發明的各種實施方案,而 不欲限制其範圍。 實施例1 ❹ 在各種溫度和壓力下XeF2在沉積材料的蝕刻中的效 力 在本實施例中,使用XeF2作為餘刻劑,在各種溫度和 壓力下測定了對於TiN、Si02和SiN的钮刻速率。試驗樣 品由塗覆有TiN、Si〇2和SiN薄膜的矽晶片製備。蝕刻速 率通過所述薄膜厚度在初始膜厚度和定時暴露於蝕刻或加 工條件後的膜厚度之間的變化來計算。 © 為了實施姓刻’將大量XeF2氣體從氣瓶經由從未用過 的遠端電漿產生器導入反應器腔室。該XeF2氣體在反應器 腔室中的壓力通過一經達到期望壓力就關閉來自所述氣瓶 的氣流而保持恒定。 將試驗試樣置於用來維持不同基材溫度的基座加熱器 (pedestal heater)的表面上。結果示於以下表1〇 15 201029065 表i 使用XeF2對於各種材料的蝕刻速率 材料 溫度(°C) 壓力(托) Γ — 餘刻速率(nm/min) TiN 25 1 0 ------- TiN 100 1 0 TiN 150 1 —------ 8 TiN 200 1 13 TiN 300 0.5 20 Si02 300 0.5 0 SiN 100 1 0 SiN 150 1 0 SiN 300 1 0 以上結果表明在0.5至1托的壓力下,XeF2有效於在 150至300 C的升高溫度下蝕刻TiN膜,而在25°C的室溫 下無效。令人意外的是,XeF2在所採用的溫度和壓力的任 一下並不蚀刻Si〇2或SiN表面,卻在這些溫度下蚀刻TiN 膜。因為XeF2在這些升高的溫度下不能蝕刻si〇2和SiN 表面,卻餘刻TiN膜,故斷定XeF2可被用作從si〇2和sm 表面選擇性蝕刻TiN膜和顆粒的試劑。 實施例2 矽相對於Si〇2的選擇性蝕刻 在該實施例中’將MKS Astron遠端電漿產生器安裝在 201029065 .反應器腔室的頂部。該Astron產生器的出口和樣品試樣間 •的距離約為六英寸。打開遠端電衆產生器’但關閉反應器 腔室中的基座加熱器。將該腔室保持於室溫。對使用遠端 電漿情況下Si和Si〇2基材兩者的钱刻速率進行測量。 針對所述遠端電漿的過程氣體是NF3,並且其和各種 量的第二氣體物流進行混合。所述第二氣體物流包括χβ、 氬(Ar)或它們的組合。將流至反應器腔室的總氣體流率固 ❹ 定於40〇sccm,且將Nf3流率固定於8〇sccm。一邊將第二 氣體物流的總流率保持於32〇sccm,一邊將Xe流率相對於 第二氣體物流總流率的比率(Xe/(Ar+Xe))在〇(僅Ar作為所 述另外的過程氣體)和丨(僅Xe作為所述另外的過程氣體) 之間進行變化。將si基材蝕刻的結果示於表!,並將Si〇2 基材蝕刻的結果示於表2。 如圖1所示,Xe添加至所述過程氣體NF3中,提高了 si蝕刻速率。令人意外的是,又6與NFs 一起添加至遠端電 〇 漿產生器會產生提高Si蝕刻的電漿。 圖2顯不Xe添加至NFS/氬電漿抑制了 Si〇2基材蝕刻 速率,這是令人意外的。存在於遠端電漿中的?原子通常 進攻以Si02為基礎的基材。 連同圖1的分析,推測Xe添加至電漿導致了 §丨基材 蝕刻的提高,但卻如實施例!所指出,減少或抑制了 si〇2 基材敍刻。 圖3被提供來比較添加Xe至過程氣體對於以相 對於si〇2的蝕刻選擇性的影響。如通過比較圖1和2中的 17 201029065 結果可見,圖3顯示Si相對於Si〇2的蝕刻選擇性隨著Xe 在過程氣體中的量的增加而增大。特別地,該選擇性隨著The preferred molar ratio of Xe to fluorochemical is ι: 1 〇 to 1 〇: 1. Optionally, an inert gas such as argon may be included in the far-end plasma generation of XeFz as a means of adjusting the selectivity of etching TiN relative to Si〇2, etching SiN or Si relative to si〇2 and siN. 13 201029065 The pressure suitable for removing TiN from the surface of Si〇2 and SiN is 〇 5 to 5 Torr, preferably 1 to 10 Torr. The temperature at which the TiN film is selectively etched from the ceria surface (quartz) and SiN surface is mainly determined by the method of carrying out the method. Thus, this means that if Xeh is formed in advance and added directly to the contact zone, the temperature should be raised to at least 100t, for example 1 〇〇 to 80 (rc, preferably 150 to 500. 〇. The pressure for XeF2 should be at least 〇 For example, 0, 1 to 20 Torr, preferably 0.2 to 10 Torr. Contrary to prior art methods in which the etch rate (Si etch) decreases with increasing temperature, where the etch rate increases with temperature quotient. The increase increases the specific enthalpy of the TiN residue because TiF4 is volatile under these conditions and is easily removed from the surface of 〇2 and SiN. The lower temperature causes TiF4 species to remain near the surface of Si〇2 and siN. Blocking the attack of XeF2. In the in-situ method of forming XeF2, cleaning or etching is performed in the presence of the far-end plasma. The temperature may be ambient temperature to 5 °C in the presence of the far-end plasma 'preferably ambient temperature Up to 300 ° C. The disclosed method of forming XeF 2 provides a significant advancement in the in-situ cleaning process because they not only provide a means of manufacturing XeF 2 at low cost, they also provide effective selectivity without residue. At the same time, no major downtime is required, which in turn reduces maintenance costs. In addition, the disclosed method uses a high vapor pressure emulsion instead of a low vapor pressure solid. This improves productivity due to higher gas flow, and thus can be made higher. Etch rate of etch. A further benefit stemming from the use of the disclosed method of forming Xei 2 , is that in addition to XeFz, there are some free fluorine radicals that may be helpful in facilitating the removal of residues that may not react when only in contact with XeF 2 . This is advantageous for all 14 201029065. Selective cleaning/button applications, such as cleaning and coating of components and semiconductor tools on which Si〇2, which does not require residue, is deposited; Etching of the layers, as well as residue cleaning in the ion source region of the ion implantation system used in the fabrication of microelectronic devices. The following examples are provided to illustrate various embodiments of the invention and are not intended to limit the scope thereof.效力 Efficacy of XeF2 in etching of deposited materials at various temperatures and pressures In this example, XeF2 is used as a remnant, in various The squeezing rate for TiN, SiO 2 and SiN was determined under temperature and pressure. The test samples were prepared from ruthenium wafers coated with TiN, Si 〇 2 and SiN films. The etch rate was exposed at the initial film thickness and timing by the film thickness. The change between the film thicknesses after etching or processing conditions is calculated. © In order to implement the surname, a large amount of XeF2 gas is introduced from the cylinder into the reactor chamber via an unused remote plasma generator. The XeF2 gas The pressure in the reactor chamber is kept constant by closing the gas flow from the cylinder as soon as the desired pressure is reached. The test specimen is placed on the surface of a pedestal heater used to maintain the temperature of the different substrates. on. The results are shown in Table 1 below. 15 201029065 Table i Etching rate for various materials using XeF2 Material temperature (°C) Pressure (Torr) Γ — Residual rate (nm/min) TiN 25 1 0 ------- TiN 100 1 0 TiN 150 1 —------ 8 TiN 200 1 13 TiN 300 0.5 20 Si02 300 0.5 0 SiN 100 1 0 SiN 150 1 0 SiN 300 1 0 The above results indicate that the pressure is 0.5 to 1 Torr. XeF2 is effective for etching TiN films at elevated temperatures of 150 to 300 C, and is ineffective at room temperature of 25 °C. Surprisingly, XeF2 does not etch the Si〇2 or SiN surface at any of the temperatures and pressures employed, but etches the TiN film at these temperatures. Since XeF2 cannot etch the Si〇2 and SiN surfaces at these elevated temperatures, but the TiN film remains, it is concluded that XeF2 can be used as a reagent for selectively etching TiN films and particles from the si〇2 and sm surfaces. Example 2 Selective Etching of 矽 Relative to Si〇2 In this example, the MKS Astron remote plasma generator was mounted at the top of the reactor chamber at 201029065. The distance between the outlet of the Astron generator and the sample sample is approximately six inches. Turn on the remote power generator' but turn off the pedestal heater in the reactor chamber. The chamber was kept at room temperature. The rate of money engraving for both Si and Si〇2 substrates in the case of remote plasma was measured. The process gas for the remote plasma is NF3 and it is mixed with various amounts of the second gas stream. The second gas stream comprises χβ, argon (Ar), or a combination thereof. The total gas flow rate to the reactor chamber was fixed at 40 〇 sccm and the Nf3 flow rate was fixed at 8 〇 sccm. While maintaining the total flow rate of the second gas stream at 32 〇sccm, the ratio of the Xe flow rate to the total flow rate of the second gas stream (Xe/(Ar+Xe)) is at 〇 (Ar only as the additional The process gas) and helium (Xe only as the additional process gas) vary. The results of etching the si substrate are shown in the table! The results of etching the Si〇2 substrate are shown in Table 2. As shown in Figure 1, Xe is added to the process gas NF3, increasing the si etch rate. Surprisingly, the addition of 6 to the remote plasmonics generator along with the NFs produces a plasma that enhances the Si etch. Figure 2 shows that the addition of Xe to NFS/argon plasma suppresses the Si〇2 substrate etch rate, which is surprising. Exist in the remote plasma? Atoms usually attack SiO2-based substrates. In conjunction with the analysis of Figure 1, it is speculated that the addition of Xe to the plasma results in an increase in the etching of the § substrate, but as in the embodiment! It is pointed out that the si〇2 substrate characterization is reduced or suppressed. Figure 3 is provided to compare the effect of adding Xe to the process gas for etch selectivity relative to si 〇 2 . As can be seen by comparing the results of 17 201029065 in Figures 1 and 2, Figure 3 shows that the etch selectivity of Si relative to Si 〇 2 increases as the amount of Xe in the process gas increases. In particular, the selectivity follows
Xe在所述氣體物流中從〇%增加至100%,而從3〇增大至 250(> 8 倍)。 MEMS中的曲型犧牲材料是:矽、鉬、鎢、鈦、錯、 铪、釩、鈕、鈮。曲型的保護材料是鎳、鋁、光阻劑、氧 化石夕、氮化碎。 實施例3 ❹ ϋ (Mo)相對於Si〇2的選擇性蝕刻 使用長2.5m直徑25cm的大圓柱形SS蝕刻腔室來測 定MEMS應用中的另一普通犧牲材料:鉬(M〇)的蝕刻速 率。使用水冷MKS Astron AX 7670 6 slpm單元(unit)產生 遠端電衆。將該電漿源通過l〇cm長的内徑4cin的輸送管 與所述腔室連接。將樣品置於距該管的載入/卸載端2英尺 處。 ❹ 在 2.75 托、NF3 流量 275sccm 和 Xe 或 Ar 流量 600sccm 下,Mo的蝕刻速率=1」微米/分鐘。si〇2的蝕刻速率對於 NF3/Ar氣體混合物為82nm/min ,而對於NF3/Xe混合物為 26nm/min。因此’ Xe/NF3混合物的選擇性是Ar/NF3混合物 的選擇性的至少3倍。請注意Mo钱刻速率被表面氧化物 所限制。在採用表面準備處理以破壞其固有的氧化物的情 況下’ M〇的蚀刻速率能夠提高至> 2.7微米/分鐘。 18 201029065 .實施例4 經由Xe和NF3的反應原位形成XeF2 該實施例中沿行了實施例2的步驟。將備有6slpm MKS Astron eX 遠端電槳_產生器的 Applied Materials P5000 DxZ2 PECVD腔室用於傅裏葉變換紅外光譜(FTIR)研究。 在環境壓力下在該腔室泵的下游進行了 FTIR測量。使用了 150°C的路徑長度5.6m的室。儀器解析度為2cm·1。 圖4顯示在與實施例2中相同的條件下收集到的FTIR 光譜:4托的壓力,400sccm的總氣體流量,80sccm的NF3 流量,320sccm的Xe和Ar的總流量。在Xe/NF3光譜中的 SOOdOOcnr1範圍内觀察到清楚顯著的峰,而Ar/NF3光譜 卻在該區域未顯示峰。551.5cm_1和570.3cm_1處的兩個主 鋒被鑒定為XeF2峰。來自 XeF3廠商的對照光譜在位於 550.8和566.4cm·1處顯示峰。 圖5顯示,存在Xe和NF3的情況下,在551、570和 φ 590(^^1處觀察到了 3個明顯的峰。XeF2通過在55146701^1 處的峰而被鑒定,而XeF4在580、590(?111“處被檢出。因而 567cm-1處的峰是567和580cm-1峰的組合。所以XeF2和 XeF4兩者均形成於Xe/NF3混合物中。從FTIR光譜中沒有 發現XeF6或XeOF4形成的證據。 表II顯示壓力從0.5至5托進行變化,Xe流速在 200-1000sccm進行變化,且NF3.流速從50至500sccm進行 變化的幾個條件。在所有情形中,均檢出XeF2峰。此處記 錄了峰值。 19 201029065 表II 壓力(托) 0.5 4 5 2.75 5 2 NF3 (seem) 50 80 200 275 50 500 Xe (seem) 200 320 500 600 1000 1000 峰值(530.1 cm·1) 0.06 0.07 0.16 0.22 0.09 0.33 峰值(570.3 cm·1) 1.01 1.18 1.35 1.35 1.36 1.42 峰值(590 cm·1) 0.43 0.43 1.63 1.42 0.18 1.58 峰值(603.1 cm·1) 0.07 0.07 0.44 0.27 0.04 0.31 Ο 所述峰在一些條件下容易飽和,因此還分析了 520.1cm·1處的XeF2峰的前沿和603.1cm·1處的XeF4峰的 後沿。XeF2/XeF4比被定義為530cm_1和603CHT1處的峰高 值的比。 使用回應表面回歸的實驗結果總結在以下表III中。Xe increases from 〇% to 100% in the gas stream and from 3〇 to 250 (> 8 times). The curved sacrificial materials in MEMS are: bismuth, molybdenum, tungsten, titanium, erbium, niobium, vanadium, niobium, niobium. The curved protective material is nickel, aluminum, photoresist, oxidized stone, and nitrided. Example 3 选择性 ϋ (Mo) selective etching with respect to Si〇2 A large cylindrical SS etching chamber with a length of 2.5 m and a diameter of 25 cm was used to determine another common sacrificial material in MEMS applications: etching of molybdenum (M〇) rate. The remote power was generated using a water cooled MKS Astron AX 7670 6 slpm unit. The plasma source was connected to the chamber through a 10 cm long inner diameter 4 cin delivery tube. Place the sample 2 feet from the loading/unloading end of the tube. Mo Mo etch rate = 1" micron / min at 2.75 Torr, NF3 flow 275sccm and Xe or Ar flow 600sccm. The etching rate of si〇2 was 82 nm/min for the NF3/Ar gas mixture and 26 nm/min for the NF3/Xe mixture. Thus the selectivity of the 'Xe/NF3 mixture is at least 3 times greater than the selectivity of the Ar/NF3 mixture. Please note that the Mo money engraving rate is limited by surface oxides. The etching rate of 'M〇' can be increased to > 2.7 μm/min in the case where the surface preparation treatment is used to destroy its intrinsic oxide. 18 201029065. Example 4 Formation of XeF2 in situ via reaction of Xe and NF3 The procedure of Example 2 was followed in this example. An Applied Materials P5000 DxZ2 PECVD chamber equipped with a 6slpm MKS Astron eX remote paddle generator was used for Fourier Transform Infrared Spectroscopy (FTIR) studies. FTIR measurements were taken downstream of the chamber pump at ambient pressure. A chamber having a path length of 5.6 m at 150 ° C was used. The instrument resolution is 2 cm·1. 4 shows the FTIR spectrum collected under the same conditions as in Example 2: a pressure of 4 Torr, a total gas flow rate of 400 sccm, an NF3 flow rate of 80 sccm, and a total flow rate of Xe and Ar of 320 sccm. A clearly significant peak was observed in the range of SOOdOOcnr1 in the Xe/NF3 spectrum, while the Ar/NF3 spectrum showed no peak in this region. Two main fronts at 551.5 cm_1 and 570.3 cm_1 were identified as XeF2 peaks. The control spectra from the XeF3 manufacturer showed peaks at 550.8 and 566.4 cm·1. Figure 5 shows that in the presence of Xe and NF3, three distinct peaks were observed at 551, 570 and φ 590 (^^1. XeF2 was identified by the peak at 55146701^1, while XeF4 was at 580, 590 (?111" was detected. Thus the peak at 567 cm-1 is a combination of 567 and 580 cm-1 peaks. So both XeF2 and XeF4 are formed in the Xe/NF3 mixture. No XeF6 was found from the FTIR spectrum or Evidence for XeOF4 formation. Table II shows several conditions in which the pressure changes from 0.5 to 5 Torr, the Xe flow rate varies from 200 to 1000 sccm, and the NF3. flow rate changes from 50 to 500 sccm. In all cases, XeF2 is detected. Peak. The peak is recorded here. 19 201029065 Table II Pressure (Torr) 0.5 4 5 2.75 5 2 NF3 (seem) 50 80 200 275 50 500 Xe (seem) 200 320 500 600 1000 1000 Peak (530.1 cm·1) 0.06 0.07 0.16 0.22 0.09 0.33 Peak (570.3 cm·1) 1.01 1.18 1.35 1.35 1.36 1.42 Peak (590 cm·1) 0.43 0.43 1.63 1.42 0.18 1.58 Peak (603.1 cm·1) 0.07 0.07 0.44 0.27 0.04 0.31 Ο The peak is in some It is easy to saturate under conditions, so the XeF2 peak at 520.1 cm·1 is also analyzed. The trailing edge of the XeF4 peak at and between 603.1 cm·1. The XeF2/XeF4 ratio is defined as the ratio of the peak heights at 530 cm_1 and 603 CHCT1. The experimental results using response surface regression are summarized in Table III below.
表III 峰 尚 530.1 551.5 592 603.1 比率 603.1/530.1 意 義 前沿XeF2信 號 XeF2最大 值 XeF4最大 值 後沿XeF4信 號 XeF2/XeF4 Xe 弱 中 弱 弱 強增 (strong up) nf3 強 強 強 強 強降 (strong - down) P 弱 中 強 強 強降 (strong down) 20 201029065 請注意:在此處所有條件下Xe的流量> NF3的流量, 故NF3是更強的因數。更高的NF3流量增大XeF2和XeF4 峰兩者,且Xe對於所述峰有弱影響(由於存在過量Xe)。 壓力對XeF2峰有弱影響,而對XeF4峰有強影響。Astron 工作壓力典型為1-10托。 因此,壓力是控制XeF4形成的關鍵參數。XeF4可以水 解製造Xe03,其是爆炸性和對衝擊敏感的化合物。在當前 試驗條件下,XeF2/XeF4比可以在高Xe、低NF3和低壓力 條件下最大化。例如,Xe的流速為1000seem,NF3的流速 為50sccm,壓力為〇·5托。 圖6顯示作為Xe/(Xe+Ar)的函數的XeF2 FTIR峰高和 XeF4 FTIR峰高》峰高的單位是任意的。隨著Xe流量份數 增加,製造的XeF2增加而XeF4份數降低。期望高Xe流量 以相對於XeF4最大化XeF2的形成。圖7顯示作為Xe/NF3 流速比率的函數的XeF2/XeF4 FTIR峰高的比率。清楚地’ 期望Xe/NF3的高比率以相對於XeF*最大化XeF2的形成。 圖8顯示作為Xe/(Xe+Ar)的函數的XeF2 FTIR峰高(右 γ_軸)和Si/Si〇2的蝕刻選擇性(左Y-轴)。Si/Si〇2的蝕刻選 擇性清楚地與XeF<2的原位形成相關。 使用電漿激發來製造XeF2也可以用於生產XeF2,用 於在與其製造地點不直接相關的方法中用作蝕刻劑。資料 顯示存在下述條件’其明顯有助於XeF2的生產並最小化 XeF4 的生產。由於XeF4若在之後反應形成χe03的爆炸性, 21 201029065 故非常期望最小化XeF4生產。由於XeI?2形成在電漿產生 器之後的反應區段中,故其可通過使用冷涑捕集(cry〇genic trapping)以將材料冷凝在冷表面上而從所述區段除去。然 後可從加工腔室將固體XeI?2提出,並再裝填至傳送氣瓶中 用於蝕刻方法中。由於導入了過量的氙來減少XeF*形成, 因而非常有幫助的是利用氙回收或將氙再循環至方法中以 確保所需用於XeFz生產的全部氙的有生產價值的使用。Table III Peak still 530.1 551.5 592 603.1 Ratio 603.1/530.1 Meaning Front edge XeF2 signal XeF2 Maximum value XeF4 Maximum value Trailing edge XeF4 Signal XeF2/XeF4 Xe Weak, weak, strong (strong up) nf3 Strong, strong, strong and strong (strong - Down) P weak medium strong strong down (strong down) 20 201029065 Please note: under all conditions here, the flow of Xe > NF3 flow, so NF3 is a stronger factor. Higher NF3 flux increases both XeF2 and XeF4 peaks, and Xe has a weak effect on the peak (due to the excess Xe). The pressure has a weak influence on the XeF2 peak and a strong influence on the XeF4 peak. Astron's working pressure is typically 1-10 Torr. Therefore, pressure is a key parameter in controlling the formation of XeF4. XeF4 can be hydrolyzed to produce Xe03, an explosive and impact sensitive compound. Under current test conditions, the XeF2/XeF4 ratio can be maximized at high Xe, low NF3 and low pressure conditions. For example, the flow rate of Xe is 1000 seem, the flow rate of NF3 is 50 sccm, and the pressure is 〇·5 Torr. Figure 6 shows that the unit of peak height of XeF2 FTIR and XeF4 FTIR peak height as a function of Xe/(Xe+Ar) is arbitrary. As the Xe flow fraction increases, the manufactured XeF2 increases and the XeF4 fraction decreases. High Xe flow is expected to maximize the formation of XeF2 relative to XeF4. Figure 7 shows the ratio of XeF2/XeF4 FTIR peak height as a function of Xe/NF3 flow rate ratio. It is clear that a high ratio of Xe/NF3 is expected to maximize the formation of XeF2 relative to XeF*. Figure 8 shows the XeF2 FTIR peak height (right gamma_axis) and the etch selectivity (left Y-axis) of Si/Si〇2 as a function of Xe/(Xe+Ar). The etching selectivity of Si/Si〇2 is clearly related to the in-situ formation of XeF<2. The use of plasma excitation to make XeF2 can also be used to produce XeF2 for use as an etchant in processes not directly related to its manufacturing location. The data shows the presence of the following conditions' which significantly contribute to the production of XeF2 and minimize the production of XeF4. Since XeF4 reacts to form the explosiveness of χe03 afterwards, 21 201029065, it is highly desirable to minimize XeF4 production. Since XeI?2 is formed in the reaction zone after the plasma generator, it can be removed from the zone by using cryogenic trapping to condense the material on the cold surface. The solid XeI?2 can then be lifted from the processing chamber and refilled into a transfer cylinder for use in the etching process. Since the introduction of excess hydrazine reduces XeF* formation, it is very helpful to recycle the hydrazine or recycle hydrazine into the process to ensure the productive use of all hydrazine required for XeFz production.
實施例5 遠端電漿和溫度對TiN和SiCh的蝕刻速率的影響 在該實施例中,除了將遠端電漿產生器和基座加熱器 均打開以允許在各種基材溫度下使用遠端電漿來測定 和si〇2兩者的蝕刻速率之外,沿行了實施例2的步驟。 ❹ 在第組實驗申,TiN和Si〇2的姓刻速率使用nf3和 Xe的混合物作為過程氣體來進行測量。xe的流速固定於 32〇SCCm。溫度在1〇〇它至15〇<)(:之間變化。這些實驗的結 果刀別作為對於TiN和Si〇2的方形點示於圖9和1〇中。 在第二組實驗中,TiN和si〇2的蝕刻速率使用NF3和 氬(Ar)的混合物作為過程氣體來進行測量的流速固定 於32〇Sccm。溫度在1〇〇。〇至15〇。〇之間變化。這些實驗的 結果分別作為對於TiN和Si〇2的菱形點示於圖4和5中。 如圖9所示,Xe添加至過程氣體在一般高於i3〇<>c的 溫度提高了 TiN蝕刻速率。圖1〇顯示相比⑨Ar添加至 NF3, Xe添加至NFs在所有研究溫度下抑制了以〇2蝕刻速 22 201029065 .率。Xe添加至過程氣體對蝕刻選擇性的影響通過比較圖9 和10中的結果可見。 圖11顯示ΤιΝ相對於Si〇2的蝕刻選擇性,且該圖表 顯示在Xe相對於入1'添加至]^173過程氣體時,11]^選擇性 在溫度高於約ii〇°c時開始增大,且在高於120〇c時快速增 大0 總之,實施例1顯示,當該蚀刻在升高的溫度下進行 時,XeF2是相對於二氧化矽和氮化矽基材的對於TiN臈的 @選擇性蚀刻劑。 實施例2和3顯示將Xe添加至遠端電漿產生器中(或 反應器或腔室)的NF3過程氣體,與僅將Nf3用作過程氣體 時的蝕刻選擇性比較,可以增大Si或M〇相對於Si〇2的蝕 刻選擇性。 實施例4顯示將氙和含氟氣體比如NI?3導入至電漿產 生器(或反應器或腔室)時,觀測到XeF2的原位形成。組合 © 氙與含氟氣體比如NF3而不將XeFz直接用於清潔方法具有 經濟優勢(即,更低的物主的成本)。源自使用該公開的形 成XeFz的方法的進一步的好處在於,除了 XeF2之外它們 還提供一些游離氟自由基,所述游離氟自由基有助於促進 去除當僅與XeF2接觸時可能不是反應性的殘渣。 實施例5顯示’與僅NF3用作過程氣體時的钱刻選擇 性相比,Xe添加至遠端電漿中的NFS過程氣體可以在高(升 高的)溫度下增大TiN相對於si%的蝕刻選擇性。增大的 TiN相對於Si〇2的選擇性在石英管爐應用中重要並對塗 23 201029065 覆有其上具有TiN沉積的Si〇2的部件和半導體工具重要。 該方法可以通過將遠端下游電漿單元連接至方法反應器上 並通入過程氣體’而促進沉積循環間的沉積反應器的清 潔。組合氙與含氟氣體比如N&而不將XeF2用於該清潔方 法具有經濟優勢(即,更低的物主的成本)。 記載於實施例中的清潔方法也可用在離線方法反應器 中,其唯一目的是在它們重新使用之前清潔方法反應器部 件。此處’會將遠端下游電漿反應器連接到離線方法反應 器上,在所述離線方法反應器中放置有部件(來自沉積反應 © 器的元件)處。隨後,會在過程氣體進氣至含有待清潔部件 的腔室之前,將氤和含氟氣體比如NF3導入該遠端下游單 元》 增大的Si、Mo或TiN相對於Si〇2的選擇性,以及公 開的形成XeF2的方法在許多應用中重要:比如清潔塗復有 其上具有不需要的Si、Mo或TiN沉積的Si02的部件和半 導體工具;MEMS中犧牲層的蝕刻;以及微電子器件製造 中使用的離子注入系統的離子源區域中的殘渔清潔。. 所述應用可以擴展至從Si3N4、Al、Al2〇3、Au、Ga、Example 5 Effect of Far End Plasma and Temperature on the Etching Rate of TiN and SiCh In this embodiment, except that the remote plasma generator and pedestal heater are both turned on to allow remote use at various substrate temperatures The procedure of Example 2 was followed by plasma to determine the etch rate of both si and 2. ❹ In the first set of experiments, the surname rates of TiN and Si〇2 were measured using a mixture of nf3 and Xe as process gases. The flow rate of xe is fixed at 32 〇 SCCm. The temperature varies from 1 〇〇 to 15 〇 (): the results of these experiments are shown as square points for TiN and Si〇2 in Figures 9 and 1〇. In the second set of experiments, The etch rate of TiN and si〇2 is measured using a mixture of NF3 and argon (Ar) as the process gas. The flow rate is fixed at 32 〇 Sccm. The temperature varies from 1 〇〇 to 15 〇. The results are shown as diamond points for TiN and Si〇2, respectively, in Figures 4 and 5. As shown in Figure 9, the addition of Xe to the process gas increases the TiN etch rate at temperatures generally above i3 〇 <>c. Figure 1A shows that compared to 9Ar added to NF3, Xe addition to NFs inhibited etch rate at 研究2 etch rate 22 201029065 at all study temperatures. The effect of Xe addition to process gas on etch selectivity was compared by comparing Figures 9 and 10. The results are visible. Figure 11 shows the etch selectivity of ΤιΝ relative to Si〇2, and the graph shows that when Xe is added to the process gas of 1' to 173, the selectivity is at a temperature above about ii〇. Starts increasing at °c and increases rapidly above 120〇c. In summary, Example 1 shows that when When carried out at elevated temperatures, XeF2 is a @selective etchant for TiN臈 relative to the ceria and tantalum nitride substrates. Examples 2 and 3 show the addition of Xe to the far end plasma generator The NF3 process gas in the middle (or reactor or chamber) can be compared to the etch selectivity when only Nf3 is used as the process gas, which can increase the etch selectivity of Si or M 〇 relative to Si 〇 2. Example 4 shows In-situ formation of XeF2 is observed when helium and a fluorine-containing gas such as NI?3 are introduced into the plasma generator (or reactor or chamber). Combination © 氙 with a fluorine-containing gas such as NF3 without using XeFz directly The cleaning method has an economic advantage (ie, a lower cost to the owner). A further benefit derived from the use of the disclosed method of forming XeFz is that in addition to XeF2 they also provide some free fluorine radicals, said free fluorine The free radicals help to promote the removal of residues that may not be reactive when only in contact with XeF2. Example 5 shows that Xe is added to the far-end plasma as compared to the selective selectivity of NF3 alone as a process gas. NFS process gas can be high (liter Increasing the etch selectivity of TiN relative to si% at elevated temperatures. The increased selectivity of TiN relative to Si〇2 is important in quartz tube furnace applications and coating 23 201029065 with Si〇 with TiN deposition thereon The components and semiconductor tools of 2 are important. The method can facilitate the cleaning of the deposition reactor between deposition cycles by connecting the remote downstream plasma unit to the process reactor and introducing process gas. N& does not have the economic advantage of using XeF2 for this cleaning method (ie, the lower cost of the owner). The cleaning methods described in the examples can also be used in off-line process reactors, the sole purpose of which is to clean the process reactor components before they are reused. Here, the distal downstream plasma reactor is connected to an off-line process reactor in which components (from the components of the deposition reaction) are placed. Subsequently, the helium and fluorine-containing gases, such as NF3, are introduced into the remote downstream unit before the process gas is introduced into the chamber containing the component to be cleaned. The increased selectivity of Si, Mo or TiN relative to Si〇2, And the disclosed methods of forming XeF2 are important in many applications, such as cleaning components and semiconductor tools coated with SiO2 having unwanted Si, Mo or TiN deposition thereon; etching of sacrificial layers in MEMS; and fabrication of microelectronic devices The residual fishing in the ion source region of the ion implantation system used in the cleaning is clean. The application can be extended to from Si3N4, Al, Al2〇3, Au, Ga,
Ni、Pt、Cu、Cr、TiNi合金、SiC、光阻劑、攝矽酸鹽玻璃、 硼磷矽酸鹽玻璃、聚醯亞胺、金、銅、鉑、鉻、氧化鋁、 碳化矽和它們的組合,清潔其他不需要的材料比如:鎢、 鈦、锆、铪、釩'钽、鈮、硼、磷、鍺、砷和混合物。 【圖式簡單說明】 24 201029065 圖1是矽基材的蝕刻速率作為Νί?3遠端電漿中Xe相比 於Ar的濃度的函數圖。 圖2是Si〇2的蝕刻速率作為Nf3遠端電漿中Xe相比於 Ar的濃度的函數圖。 圖3是比較矽相對於二氧化矽的蝕刻選擇性作為NF3 遠端電漿中Xe相比於Ar的濃度的函數圓。 圖4疋來自NF3遠端電漿中的Αγ/νι?3和Xe/NF3的傅裏 葉變換紅外光譜(FTIR)光譜圖。 圖5是來自NF3遠端電漿中的Xe/NF3的傅裏葉變換紅 外光譜(FTIR)光譜圖、 圖6疋XeF2和XeF4傅襄葉變換紅外光譜(FTIR)峰高作 為NF3遠端電衆中的Xe/(xe+Ar)的函數圖。 圖7是XeF2和XeF4傅裏葉變換紅外光譜(pTIR)峰高作 為NF3遠端電漿中的Xe/NF3流量比率的函數圖。 圖8是XeFz傅裏葉變換紅外光譜(FTIR)峰高和矽相對 〇 於二氧化矽的蝕刻選擇性作為NF3遠端電漿中的 Xe/(Xe+Ar)的函數圖。 圖9是TiN的蝕刻速率作為Μ。遠端電漿中的溫度和 Xe相比於Ar濃度的,函數圖。 圖10是二氧化矽的蝕刻速率作為NFS遠端電漿中的溫 度和Xe相比於Ar.的濃度的函數圖。 圖11是比較TiN相對於二氧化矽的蝕刻選擇性作為 NF;遠端電聚中Xe相比於Ar的濃度的函數圖。 25Ni, Pt, Cu, Cr, TiNi alloy, SiC, photoresist, photosilicate glass, borophosphonite glass, polyimine, gold, copper, platinum, chromium, aluminum oxide, tantalum carbide and their The combination of other unwanted materials such as: tungsten, titanium, zirconium, hafnium, vanadium 'niobium, tantalum, boron, phosphorus, antimony, arsenic and mixtures. [Simple description of the figure] 24 201029065 Figure 1 is a plot of the etch rate of the tantalum substrate as a function of the concentration of Xe in the far-end plasma compared to Ar. Figure 2 is a graph of the etch rate of Si 〇 2 as a function of the concentration of Xe versus Ar in the Nf3 far end plasma. Figure 3 is a comparison of the etch selectivity of ruthenium relative to ruthenium dioxide as a function of the concentration of Xe in the far end plasma of NF3 compared to Ar. Figure 4 is a Fourier transform infrared (FTIR) spectrum of Αγ/νι?3 and Xe/NF3 from the far end plasma of NF3. Figure 5 is a Fourier transform infrared (FTIR) spectrum of Xe/NF3 from the far-end plasma of NF3, Fig. 6疋XeF2 and XeF4 Fourier transform infrared spectroscopy (FTIR) peak heights as NF3 remotes A graph of the function of Xe/(xe+Ar). Figure 7 is a plot of XeF2 and XeF4 Fourier Transform Infrared Spectroscopy (pTIR) peak height as a function of Xe/NF3 flow ratio in NF3 distal plasma. Figure 8 is a graph of the XeFz Fourier Transform Infrared Spectroscopy (FTIR) peak height and the etch selectivity of ruthenium relative to ruthenium dioxide as a function of Xe/(Xe+Ar) in the NF3 far end plasma. Figure 9 is an etch rate of TiN as Μ. The temperature and Xe in the far-end plasma are compared to the Ar concentration, a function graph. Figure 10 is a graph of etch rate of cerium oxide as a function of temperature in NFS remote plasma and concentration of Xe compared to Ar. Figure 11 is a graph comparing the etch selectivity of TiN to cerium oxide as NF; the concentration of Xe in the far-end electropolymer compared to Ar. 25
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/360,588 US8278222B2 (en) | 2005-11-22 | 2009-01-27 | Selective etching and formation of xenon difluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201029065A true TW201029065A (en) | 2010-08-01 |
TWI475611B TWI475611B (en) | 2015-03-01 |
Family
ID=42371448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099101850A TWI475611B (en) | 2009-01-27 | 2010-01-22 | Selective etching and formation of xenon difluoride |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2010177666A (en) |
KR (1) | KR20100087678A (en) |
CN (2) | CN102592994A (en) |
CA (1) | CA2690697A1 (en) |
TW (1) | TWI475611B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI683028B (en) * | 2015-03-20 | 2020-01-21 | 荷蘭商Asm國際私人有限公司 | Method for cleaning deposition apparatus |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5627990B2 (en) * | 2010-10-25 | 2014-11-19 | Hoya株式会社 | Method for producing imprint mold |
JP6408396B2 (en) * | 2015-02-17 | 2018-10-17 | 三井化学株式会社 | Pellicle film manufacturing method, pellicle manufacturing method, and photomask manufacturing method |
CN105537207B (en) * | 2015-12-11 | 2018-09-25 | 上海交通大学 | A kind of cleaning method of high temperature quartz ampoule |
CN109463005B (en) * | 2016-06-03 | 2023-12-15 | 恩特格里斯公司 | Vapor phase etching of hafnium dioxide and zirconium dioxide |
JP6957252B2 (en) * | 2017-07-20 | 2021-11-02 | 岩谷産業株式会社 | Cutting method |
JP7066263B2 (en) * | 2018-01-23 | 2022-05-13 | 株式会社ディスコ | Machining method, etching equipment, and laser processing equipment |
CN110718459A (en) * | 2018-07-13 | 2020-01-21 | 北京北方华创微电子装备有限公司 | Non-plasma etching method and etching equipment |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5002632A (en) * | 1989-11-22 | 1991-03-26 | Texas Instruments Incorporated | Method and apparatus for etching semiconductor materials |
US5384009A (en) * | 1993-06-16 | 1995-01-24 | Applied Materials, Inc. | Plasma etching using xenon |
US6018065A (en) * | 1997-11-10 | 2000-01-25 | Advanced Technology Materials, Inc. | Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor |
US6355181B1 (en) * | 1998-03-20 | 2002-03-12 | Surface Technology Systems Plc | Method and apparatus for manufacturing a micromechanical device |
US6736987B1 (en) * | 2000-07-12 | 2004-05-18 | Techbank Corporation | Silicon etching apparatus using XeF2 |
US6818566B2 (en) * | 2002-10-18 | 2004-11-16 | The Boc Group, Inc. | Thermal activation of fluorine for use in a semiconductor chamber |
US20070117396A1 (en) * | 2005-11-22 | 2007-05-24 | Dingjun Wu | Selective etching of titanium nitride with xenon difluoride |
SG171606A1 (en) * | 2006-04-26 | 2011-06-29 | Advanced Tech Materials | Cleaning of semiconductor processing systems |
-
2010
- 2010-01-21 CA CA2690697A patent/CA2690697A1/en not_active Abandoned
- 2010-01-22 TW TW099101850A patent/TWI475611B/en active
- 2010-01-26 JP JP2010013751A patent/JP2010177666A/en active Pending
- 2010-01-27 KR KR1020100007532A patent/KR20100087678A/en not_active Application Discontinuation
- 2010-01-27 CN CN2012100285454A patent/CN102592994A/en active Pending
- 2010-01-27 CN CN2010101044846A patent/CN101847570B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI683028B (en) * | 2015-03-20 | 2020-01-21 | 荷蘭商Asm國際私人有限公司 | Method for cleaning deposition apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2010177666A (en) | 2010-08-12 |
CA2690697A1 (en) | 2010-07-27 |
CN101847570B (en) | 2012-11-07 |
CN102592994A (en) | 2012-07-18 |
CN101847570A (en) | 2010-09-29 |
KR20100087678A (en) | 2010-08-05 |
TWI475611B (en) | 2015-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8278222B2 (en) | Selective etching and formation of xenon difluoride | |
TW201029065A (en) | Selective etching and formation of xenon difluoride | |
CN111052318B (en) | Chemical process for etching multiple stacked layers | |
EP1788120A1 (en) | Removal of titanium nitride with xenon difluoride | |
JP6280143B2 (en) | Production method of micro electro mechanical system | |
KR100656770B1 (en) | Method for etching high dielectric constant materials and for cleaning deposition chambers for high dielectric constant materials | |
KR100667723B1 (en) | Method for etching high dielectric constant materials and for cleaning deposition chambers for high dielectric constant materials | |
JP2006041523A (en) | Method of increasing fluorine utilization factor | |
EP0647163A1 (en) | A plasma cleaning method for removing residues in a plasma treatment chamber | |
JP2009033202A (en) | Method of removing high dielectric constant material from deposition chamber | |
WO1999031718A1 (en) | Method for high temperature etching of patterned layers using an organic mask stack | |
TWI284370B (en) | Use of hypofluorites, fluoroperoxides, and/or fluorotrioxides as oxidizing agent in fluorocarbon etch plasmas | |
WO2018180655A1 (en) | Dry etching method, semiconductor element manufacturing method, and chamber cleaning method | |
WO2016181723A1 (en) | Dry etching method, dry etching agent and method for manufacturing semiconductor device | |
JP7396355B2 (en) | Metal removal method, dry etching method, and semiconductor device manufacturing method | |
WO2012124726A1 (en) | Etching gas and etching method | |
TW201103972A (en) | Process for the manufacture of etched items | |
EP4341204A1 (en) | Method of manufacturing a microstructure | |
EP3075003A1 (en) | Etching process |