TW201029049A - Process for modifying a substrate - Google Patents

Process for modifying a substrate Download PDF

Info

Publication number
TW201029049A
TW201029049A TW098125948A TW98125948A TW201029049A TW 201029049 A TW201029049 A TW 201029049A TW 098125948 A TW098125948 A TW 098125948A TW 98125948 A TW98125948 A TW 98125948A TW 201029049 A TW201029049 A TW 201029049A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
electromagnetic radiation
modifying
bonding
Prior art date
Application number
TW098125948A
Other languages
Chinese (zh)
Inventor
Bruce Faure
Fabrice Letertre
Jonathan J Wierer Jr
Original Assignee
Soitec Silicon On Insulator
Philips Lumileds Lighting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP08290757A external-priority patent/EP2151856A1/en
Priority claimed from EP08290759.3A external-priority patent/EP2151852B1/en
Application filed by Soitec Silicon On Insulator, Philips Lumileds Lighting Co filed Critical Soitec Silicon On Insulator
Publication of TW201029049A publication Critical patent/TW201029049A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The invention relates to a process for modifying a substrate (10) comprising: (a) providing an initial substrate (10) having a face (10b) for bonding and an opposing face (10r); (b) providing a support substrate (25); wherein either the bonding face (10b) of the initial substrate (10), and/or a face of the support substrate (25), is provided with an electromagnetic radiation absorbing layer (24), wherein the support substrate (25) is substantially transparent to a wavelength of electromagnetic radiation (c) performing bonding to join the bonding face (10b) of the initial substrate (10) to the support substrate (25) via the electromagnetic radiation absorbing layer (24); (e) carrying out irradiation of the electromagnetic radiation absorbing layer (24) through the substantially transparent support substrate (25) to induce separation of the support substrate (25).

Description

201029049 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於改質一基板之方法。特定言之,本發 明提供用於連接及分離半導體層及基板之若干方法舉例 而言,可用於形成三维堆疊「晶片上系統」裝置,或用於 傳送光電子及(光)伏打元件。層材料可選自例如lv族材料 (Si、Ge..·)、lli/ν族材料(GaN、InGaN、111(}仏)且該等 材料可係極性、非極性或半極性,視應用而定。在特定實 施例中,本發明提供促進中間基板移除之方法,其對於製 造特定半導體電子裝置係必需的。本發明進一步提供用於 促進接近半導體層之「前」及 遍重要性,且在特定實施例中 III-N材料層之裝置。 「後」面之方法,其具有普 ,本發明可應用於製造含有 【先前技術】 在半導體製造領域,實務上經常必須連接及/或移除半 導體及/或絕緣材料之薄膜及/或層。一方面,可能需要製 備含有電子、光伏打及/或光電子元件之三維設計之最終 堆疊結構。另一方面,高純度材料之薄膜及高結晶品質可 在支撐基板上適當處理,且必須配置用於將該活性基板自 初始支撐基板傳送至最終支撐基板之有效構件。儘管有發 生晶格失配及/或熱膨脹係數增加之問題,有些種類之半 V體材料無法以塊狀或自立型基板提供,且必須在支撐基 板上處理。需要一種方法可用於自其支撐物移除該機能化 半導體材料層。 141918.doc -4- 201029049 在機能化半導體層(例如♦層)之領域内,可使層傳送之 方法係有㈣。此等半導體層之機能化可涉及電子電路、 光伏打元件(例如,含有Ge種晶層及三接點活性層)及/或光 電子元件。當已處理的該半導體層係在容許—特定類型機 能性改質之-支樓基板上時,可相對容易地暴露、操作及 接合半導體層之「前」&「後」面’使得機能性元件可被 引入,且此等機能性元件如隨後所需將被納入及接著再度 暴露。因&,在有利於此機能化步驟之__初始支撐基板上 的一薄層之一面上,可引入t子電路,且接著經暴露及機 能化的「前」面可接合至一中間基板。移除該初始支撐基 板使得可在該機能化薄層之該「後」面上’製備其他電 路。該暴露的「後」面可被進一步傳送至例如經調適用於 操作該生成的機能化中心之一支撐物上,例如用於散熱。 此外,該專III族至V族材料例如inGaAs ' InP或InAlAs 對於太%能電池應用係極有效的,且在半導體工業中hi族 氮化物材料例如GaN、AlGaN或InGaN對於在發光裝置例 如發光二極體、雷射二極體及相關裝置中使用受到極大關 注。GaN係用於光電應用以及高頻、高功率電子裝置之有 用材料。重要的是可提供顯示低數量結晶缺陷及高品質表 面之GaN或InGaN層。 在此等技術領域中感興趣的是,在多種表面及支樓材料 上提供III-V族及III-N材料之若干方法。在其中在一基板 表面藉蟲晶成長III-V族之技術中,該成長基板之高結晶品 質及適當的晶格參數對於可生長足夠品質III-V族為必要, 141918.doc 201029049 其限制了用於該ΙΙΙ-V族材料之底下種晶支撐基板之選擇。 在預見了由蚀刻技術接近該族層的系統中,此可證 明具有問題且導致該111-¥族材料之降解。 可暴露出III-N基板之特別面亦受到關注,實際上,對於 極性c-平面III-N材料通常具有一特定原子終結表面,使得 一表面係由來自III族之元件而終結,且另一表面係由氮原 子終結。 【發明内容】 為了解決上文出現之該等問題,本發明提出一種用於改 質基板(10)之方法,其包括: Ο)提供一初始基板(1〇),該初始基板(1〇)具有用於接合 之面(l〇b)及一相對面(1〇Γ); (b) 提供一支撐基板(25); 其中該初始基板(10)之該接合面(1〇b)或該支撐基板(25)之 面,设有一電磁輻射吸收層(24),其中該支撐基板(25) 對於電磁輻射(10)之波長實質上為透明; (c) 進行接合以經由該電磁輻射吸收層(24)將該初始基板 (1〇)之該接合面(l〇b)連接至該支撐基板(25);及 (e)透過該實質上透明的支撐基板(25)對該電磁輻射吸收 層(24)進行照射,以引起該支撐基板(25)之分離。 本發明提出用於一種改質基板(1〇)之方法,其包括: (a)提供一基板,該基板包括: a•支律基板(25),該支樓基板(2 5)對於電磁輻射之波 長實質上為透明; 141918.doc -6 · 201029049 b•—層(aa),該層(aa)接合至該支撐基板(25);及 c.電磁輻射吸收層(24),該電磁輻射吸收層(24)位 於該支撐基板與該層(aa)之間; (b)透過該實質上透明的支撐基板(25)對該電磁輻射吸 • 收層(24)進行照射,以引起該支撐基板(25)之分離。 【實施方式】 圖1表示本發明之一般方法之示意圖。 如圖1所不,本發明組合接合步驟(圖1中S1)與具有電磁 輻射(例如可見光及紫外線輻射)之該接合實體之照射步驟 (S2)兩者。 -亥等層之接合可涉及分子、共晶、熱、加壓或陽極性接 口例如,使用一或多個氧化物結合層(在圖丨中未顯示)可 實現接合,其可加入待接合基板之該等面之一面或兩面。 用於氧化物接合層之材料之適當實例係二氧化矽(si〇2)。 用於接合目的之二氧化矽材料可藉熱或藉由化學汽相化學 φ 沉積技術(例如LPCVD或PECVD)以層狀提供。 論及該電磁輻射吸收層(24),此層之組成係以吸收甴例 如選定波長之雷射源發出的電磁輻射且允許在該吸收能量 • 之效果下分離該接合實體之方式加以選取。因此,一般而 -言,在本發明之用於改質一基板(1〇)之該方法中,步驟e) 之忒支撐基板(25)之分離係歸因於在該電磁輻射吸故層 (24)中化學及/或物理變化。 「該接合實體之分離」意味著在施加該電磁輻射之後, 形成戎接合實體之各元件之接合能量比施加電磁輻射之前 141918.doc 201029049 弱。若該等元件彼此確實脫離之此結果係確實所需,則需 要施加額外能量例如機械力。 根據該吸收層之性質,該吸收的能量將引起不同效果, 例如,原子級振動、昇華、特定擴散或形成氣體,如上 述,該吸收的能量本身導致分離或化學反應。因此,涉及 純粹的熱效果及光化學之機制可在該分離機制之後。 在本發明方法中,該吸收層(24)可適當地包括選自由下 列組成之群之至少一種材料:SixNy:H、叫队、、201029049 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for modifying a substrate. In particular, the present invention provides several methods for connecting and separating semiconductor layers and substrates, for example, for forming a three-dimensional stacked "on-wafer system" device, or for transmitting photoelectrons and (optical) voltaic components. The layer material may be selected, for example, from the group lv material (Si, Ge...), the lli/ν family material (GaN, InGaN, 111(}仏) and the materials may be polar, non-polar or semi-polar, depending on the application. In a particular embodiment, the present invention provides a method of facilitating the removal of an intermediate substrate that is necessary for the fabrication of a particular semiconductor electronic device. The present invention further provides for "progress" and ubiquitous importance for facilitating proximity to a semiconductor layer, and The device of the III-N material layer in a specific embodiment. The method of the "back" surface has a general application, and the present invention can be applied to manufacturing. [Prior Art] In the field of semiconductor manufacturing, it is often necessary to connect and/or remove in practice. Films and/or layers of semiconductors and/or insulating materials. On the one hand, it may be necessary to prepare a final stack structure containing three-dimensional designs of electronic, photovoltaic and/or optoelectronic components. On the other hand, films of high purity materials and high crystalline quality It can be properly processed on the support substrate and must be configured to transport the active substrate from the initial support substrate to the final support substrate. Despite the occurrence of lattice mismatch and / Or the problem of increased coefficient of thermal expansion, some types of half-V body materials cannot be provided in a bulk or free-standing substrate and must be processed on a support substrate. A method is needed to remove the functionalized semiconductor material layer from its support. 141918.doc -4- 201029049 In the field of functionalized semiconductor layers (eg layers), layer transfer methods can be used. (4) The functionalization of such semiconductor layers can involve electronic circuits, photovoltaic devices (eg, containing Ge seed layer and three-contact active layer) and/or optoelectronic component. When the processed semiconductor layer is on a support-specific type of functionally modified-support substrate, it can be relatively easily exposed, operated and Bonding the "front" & "back" side of the semiconductor layer allows functional elements to be introduced, and such functional elements will be incorporated and subsequently re-exposed as needed. Because & Steps on one of the thin layers on the initial support substrate may introduce a t sub-circuit, and then the exposed and functional "front" surface may be bonded to an intermediate substrate. Supporting the substrate such that other circuitry can be fabricated on the "back" side of the functional thin layer. The exposed "back" side can be further transferred to a support such as a functionalized center adapted to operate the generation In addition, for example, for heat dissipation. In addition, the Group III to Group V materials such as inGaAs 'InP or InAlAs are extremely effective for solar cell applications, and hi-nitride materials such as GaN, AlGaN or InGaN in the semiconductor industry. It is of great interest for use in illuminating devices such as light-emitting diodes, laser diodes and related devices. GaN is a useful material for optoelectronic applications as well as high-frequency, high-power electronic devices. It is important to provide a low display quantity. A GaN or InGaN layer with crystalline defects and high quality surface. Of interest in these fields of technology are several methods of providing III-V and III-N materials on a variety of surface and support materials. In the technique in which the III-V group is grown on the surface of a substrate, the high crystal quality of the grown substrate and the appropriate lattice parameters are necessary for growing a sufficient quality III-V group, 141918.doc 201029049 which limits The choice of the underlying seed crystal support substrate for the bismuth-V material. In systems where etching techniques are approached to the family of layers, this can prove problematic and result in degradation of the 111-¥ family of materials. The particular surface that can expose the III-N substrate is also of interest. In fact, for a polar c-plane III-N material, there is usually a specific atom-terminated surface, such that one surface is terminated by a component from the III group, and the other The surface is terminated by a nitrogen atom. SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a method for modifying a substrate (10), comprising: providing an initial substrate (1〇), the initial substrate (1〇) Having a surface for bonding (1〇b) and an opposite surface (1〇Γ); (b) providing a supporting substrate (25); wherein the bonding surface (1〇b) of the initial substrate (10) or the The surface of the support substrate (25) is provided with an electromagnetic radiation absorbing layer (24), wherein the support substrate (25) is substantially transparent to the wavelength of the electromagnetic radiation (10); (c) bonding to pass the electromagnetic radiation absorbing layer (24) connecting the bonding surface (10b) of the initial substrate (1) to the supporting substrate (25); and (e) transmitting the electromagnetic radiation absorbing layer through the substantially transparent supporting substrate (25) (24) Irradiation is performed to cause separation of the support substrate (25). The invention provides a method for modifying a substrate (1), comprising: (a) providing a substrate comprising: a • a branch substrate (25), the substrate substrate (25) for electromagnetic radiation The wavelength is substantially transparent; 141918.doc -6 · 201029049 b•-layer (aa), the layer (aa) is bonded to the support substrate (25); and c. electromagnetic radiation absorbing layer (24), the electromagnetic radiation An absorbing layer (24) is located between the support substrate and the layer (aa); (b) illuminating the electromagnetic radiation absorbing layer (24) through the substantially transparent supporting substrate (25) to cause the support Separation of the substrate (25). Embodiments Fig. 1 is a schematic view showing a general method of the present invention. As shown in Fig. 1, the present invention combines the bonding step (S1 in Fig. 1) with the irradiation step (S2) of the bonding entity having electromagnetic radiation (e.g., visible light and ultraviolet radiation). Bonding of layers such as hai may involve molecular, eutectic, thermal, pressurized or anodic interfaces. For example, bonding may be achieved using one or more oxide bonding layers (not shown in the figure), which may be added to the substrate to be bonded One or both sides of the faces. A suitable example of a material for the oxide bonding layer is cerium oxide (si 〇 2). The cerium oxide material for bonding purposes may be provided in layers by heat or by chemical vapor phase chemical φ deposition techniques such as LPCVD or PECVD. The electromagnetic radiation absorbing layer (24) is characterized in that it is selected to absorb electromagnetic radiation emitted by a laser source of a selected wavelength, for example, and to allow separation of the bonded body under the effect of the absorbed energy. Therefore, in general, in the method for modifying a substrate (1) of the present invention, the separation of the crucible supporting substrate (25) of step e) is attributed to the electromagnetic radiation attracting layer ( 24) Chemical and/or physical changes. "Separation of the joined body" means that the bonding energy of the elements forming the 戎-joining entity after application of the electromagnetic radiation is weaker than before the application of electromagnetic radiation 141918.doc 201029049. If the result of the fact that the elements are indeed detached from each other is indeed required, additional energy such as mechanical force is required. Depending on the nature of the absorbing layer, the absorbed energy will cause different effects, such as atomic vibration, sublimation, specific diffusion or formation of a gas, as described above, which itself causes separation or chemical reaction. Therefore, mechanisms involving pure thermal effects and photochemistry can follow this separation mechanism. In the method of the present invention, the absorbing layer (24) may suitably comprise at least one material selected from the group consisting of: SixNy: H, called team,

GaN、A1N、InN、或匕Ga及一或多種之混合氮化 物、或多晶矽、非晶矽(富氫)或結晶矽。 在-變體中’在該接合層中可引入及包埋數個吸收層 (24),使得可執行用於數個隨後分離之多次輻射。 雷射輻射較佳在本發明之構架内遍及該支擇基板(25)而 執行因此,後者支撐基板(25)對於將用於進行該分離機 制之可見光及/或紫外線輻射之波長必須實質上為透明, 亦即,支撐基板之材料在所用波長具有例如小於約i〇1 cm·, 之弱光譜吸收係數,或具有比該吸收層(24)材料更大之禁 止光學帶。該吸收層(24)可適當地為SixNy:H、非晶形式 、Si為或例如以多晶形式沈積的m_N材料(在工業上 後者比單晶形式更便宜)類型之材料。此等材料可使輻射 在一波長執行,該波長仍高於典型支撐材料之吸收波長。 本發明中另—適當的可能係使用111姆料作為吸收電磁輻 射例如可見光及/或紫外線㈣之該層(24)。若—基板例如 初始基板(1〇)本身係待處理以便引人機能性之m_N材料, I419l8.doc 201029049 較好使用相同III-N材料層作為吸收層p4)進行而該兩個 III-N層(機能化層及犧牲的電磁輻射吸收層)由一接合屑(例 如二氧化矽接合層)分離。在可用作吸收層之ΠΙ_Ν材料 中’其一可引述GaN(由於3.4 eV之該禁止帶,具有低於 360 nm之吸收波長)、A1N(由於6 2 eV之該禁止帶,低於 198 nm)、InN(由於〇·7 eV之該禁止帶,低於230 nm)。GaN, AlN, InN, or 匕Ga and one or more mixed nitrides, or polycrystalline germanium, amorphous germanium (hydrogen-rich) or crystalline germanium. In the variant, a plurality of absorber layers (24) can be introduced and embedded in the tie layer such that multiple passes for several subsequent separations can be performed. The laser radiation is preferably implemented throughout the framework of the present invention throughout the support substrate (25). Thus, the support substrate (25) must be substantially wavelength dependent for the visible and/or ultraviolet radiation to be used to perform the separation mechanism. Transparent, that is, the material of the support substrate has a weak spectral absorption coefficient of, for example, less than about i〇1 cm· at the wavelength used, or a forbidden optical tape having a larger material than the absorption layer (24). The absorbing layer (24) may suitably be of the type NixN material of the SixNy:H, amorphous form, Si or, for example, deposited in a polycrystalline form (the latter being less expensive than the single crystal form in the industry). These materials allow the radiation to be performed at a wavelength that is still above the absorption wavelength of a typical support material. In the present invention, it is also appropriate to use 111 masses as the layer (24) for absorbing electromagnetic radiation such as visible light and/or ultraviolet light (four). If the substrate, for example, the initial substrate (1〇) itself is a m_N material to be treated for inductive function, I419l8.doc 201029049 preferably uses the same III-N material layer as the absorption layer p4) and the two III-N layers (The functionalized layer and the sacrificial electromagnetic radiation absorbing layer) are separated by a bonding scrap (for example, a ceria bonding layer). In the ΠΙ_Ν material that can be used as an absorbing layer, one can quote GaN (the absorption band below 360 nm due to the forbidden band of 3.4 eV), A1N (because of the forbidden band of 6 2 eV, lower than 198 nm) ), InN (because of the banned band of 〇·7 eV, below 230 nm).

Nd/YAG或準分子雷射器可用於引起此電磁輻射吸收層(24) 分解或其他效果而可導致分離。 組合紹、鎵及銦之三元或四元氮化物材料亦可用作一電 磁輻射吸收層(24)之材料,舉例而言AlGaN或InGaN。比等 氮化物材料係特別有用,因為其等似乎可分解而產生氣態 氣。其等禁止帶界定吸收波長之一明確閾值,在該點,該 等材料顯示自幾乎完全透明轉變成幾乎完全吸收。此外, 其等炫點遠高於其等分解之溫度,且當熔化時,其等?丨起 對於該周圍基板之最小附帶損傷。 為了使該分離機制可操作,支撐基板(25)必須實質上為 透明或對於將用於輻射該吸收層(24)之該波長區域内之該 電磁輻射例如紫外線及/或可見光具有一高透射度。該吸 收層(24)之較佳最小厚度為1〇奈米。當沈積該吸收層時, 注意避免在該支撐基板之兩側形成(若干)層。甚至,亦在 d支撐基板之該後側上形成的一吸收層可完全地吸I輻 射’干預該包埋的吸收層(24)之吸收及可阻礙該分離步 驟。 對於支撲基板(25),藍寶石(Al2〇3)之使用係一適當選 141918.doc 201029049 擇,因為在高於對應於通常使用雷射源之350 nm之波長 下,可觀測到高透射度。藍寶石亦適於更短波長。對於支 樓基板(25)其他適當的選擇包含由下列種類之至少一者製 成的材料· LiTa〇3(在高於270 nm之波長下實質上透明)、 L!Nb〇3(在高於28〇 nm之波長下實質上透明广在高於 200 nm之波長下實質上透明)或玻璃。其他材料亦適於獲 知該刀離’即使其等未顯示出如上文列出者之相同高透射 度值,但接著需要更高的電磁輻射能量,此在工業環境下 非所欲。 在本發明中,電磁輻射吸收層(24)可能經由一接合層, 例如氧化物接合層而連接至支撐基板(25)。然而,在一有 利實施例中,電磁輻射吸收層(24)係與該支撐基板(25)直 接接觸,無需氧化物接合層作為中間媒介。 在本發明之較佳實施例中,在本發明之用於改質基板 (10)之該方法中’在步驟a)之後且在步驟e)之前,該初始 基板之一部分係經移除以形成一層(a a)。圖2中示意性地說 月此方法之一實例,其中在此實例中該接合步驟s 1之後, 初始基板(1〇)係藉由例如研磨、抛光、SMART CUT®,藉 由雷射剝離技術或蝕刻而部分變薄或燒蝕,以產生源自初 始基板(10)之改質層(aa)。 在本發明中更佳的是,用於改質基板之方法包含將該初 始基板之部分移除以形成一層(aa)之步驟,且接著,在該 上述的方法步驟c)之後於步驟(d)中: -機能化該層(aa);及/或 1419I8.doc 201029049 -將其他層接合至該層(aa)。 在圖3及圖4中示意性地說明此等二個更佳實施例。 在圖3中’(aa),表示一機能化層(aa)(源自初始基板 (1 〇))。在自如圖2所示的步驟S1及步驟S2之後之圖3之步驟 S3中示意說明的實例中顯示之在步驟(❼之機能化,可包 含在該層(aa)中或上形成具有光伏打、光學、光電、電子 及/或機械機能之區域。亦應瞭解機能化步驟可包含改變 該層特性之任何技術性步驟,例如形成材料層、薄層或自 立式之足夠厚層,或形成活性層。 在圖4中’在例如自如圖2所示的步驟S1及步驟S2之後之 步驟S3中,其他基板(3〇)經接合至該實體,該實體包括層 (aa)、電磁輻射吸收層(24)及支撐基板(25)。在圖4中,層 (aa)可被機能化的可能性以符號(aa)/(aa),表示。亦可能的 是,代替層(aa)或除層(aa)之外之支撐基板(25)含有具有光 伏打、光學、光電、電子及/或機械功能之區域。可執行 接合以將源自初始基板〇〇)之層(aa)之暴露面連接至亦經 機此化的最終基板(3 〇)。接合可例如經由上文討論的該等 方法鋪陳二氧化矽接合層而進行。若需要時,此接合亦可 含有用於隨後使支撐基板(30)分離之電磁輻射吸收層。 根據本發明方法之一實施例中,該初始基板(丨0)可為一 塊狀自立式基板。 在一實施例中,該初始基板(10)可包括具有用於接合至 該支撐基板(25)之一面(10b)之表面層(12),及作為模板之 底下支撐基板(U),表面層(12)沈積在該底下支撐基板(u) 141918.doc 201029049 上。該初始基板(10)亦可包括一表面層(12)、一中間.層及 一底下支撐基板(11)。在此等系統中,有或無中間層,該 表面層(12)及洗狀基板(10)(層(aa)形成於該塊狀基板(10) 上),可適當地包括選自下列群組材料之至少一者:GaN、 InGaN、SiC、Si、Si(000) ' Si(lll)、GaAs、ZnO、社曰 AIN、AlGaN、InGaAs、InP、Ge、InAlAs。該層(aa)亦可 形成於來自該IV族材料(例如Si、Ge)、該III/V族材料(極性 或非極性或半極性材料,例如GaN、InGaN、InGaAs)之半 導體材料。 將被用於本發明方法之該初始基板(1〇)可適當地含有用 於就合理膨脹係數匹配及/或在該支撐物與該表面層(12)之 間之晶格參數匹配而選取的—底下支撐基板(1丨),該表面 層(12)包括藍寶石(Al2〇3)、LiTa03、LiNb03、MgO、Si、Nd/YAG or excimer lasers can be used to cause decomposition or other effects of this electromagnetic radiation absorbing layer (24) which can result in separation. A ternary or quaternary nitride material of the combination of gallium and indium may also be used as the material of an electromagnetic radiation absorbing layer (24), such as AlGaN or InGaN. Nitride materials are particularly useful because they appear to be decomposable to produce gaseous gas. The forbidden band defines a clear threshold for one of the absorption wavelengths at which point the material exhibits a transition from almost completely transparent to almost complete absorption. In addition, its glare is much higher than its decomposition temperature, and when it is melted, etc.? Pick up the minimum incidental damage to the surrounding substrate. In order for the separation mechanism to be operable, the support substrate (25) must be substantially transparent or have a high transmission for the electromagnetic radiation, such as ultraviolet and/or visible light, in the wavelength region that will be used to irradiate the absorbing layer (24). . The preferred minimum thickness of the absorbent layer (24) is 1 nanometer. When depositing the absorbing layer, care is taken to avoid forming (several) layers on both sides of the support substrate. Even an absorbing layer formed on the rear side of the d-support substrate can completely absorb the radiation' to interfere with the absorption of the embedded absorbing layer (24) and can hinder the separation step. For the support substrate (25), the use of sapphire (Al2〇3) is appropriately selected 141918.doc 201029049, because high transmittance can be observed at a wavelength higher than 350 nm corresponding to the usual use of a laser source. . Sapphire is also suitable for shorter wavelengths. Other suitable options for the support substrate (25) include materials made of at least one of the following types: LiTa〇3 (substantially transparent at wavelengths above 270 nm), L!Nb〇3 (above It is substantially transparent at a wavelength of 28 〇 nm and is substantially transparent at wavelengths above 200 nm) or glass. Other materials are also suitable for knowing that the knife is away from ' even if it does not exhibit the same high transmission value as listed above, but then requires higher electromagnetic radiation energy, which is undesirable in an industrial environment. In the present invention, the electromagnetic radiation absorbing layer (24) may be connected to the support substrate (25) via a bonding layer, such as an oxide bonding layer. However, in an advantageous embodiment, the electromagnetic radiation absorbing layer (24) is in direct contact with the support substrate (25) without the need for an oxide bonding layer as an intermediate medium. In a preferred embodiment of the invention, in the method of the invention for modifying a substrate (10), after step a) and before step e), a portion of the initial substrate is removed to form One layer (aa). An example of this method is schematically illustrated in Figure 2, wherein after the bonding step s 1 in this example, the initial substrate (1 〇) is by, for example, grinding, polishing, SMART CUT®, by laser stripping technique. Or partially thinned or ablated by etching to produce a modified layer (aa) derived from the initial substrate (10). More preferably, in the present invention, the method for modifying a substrate comprises the step of removing a portion of the initial substrate to form a layer (aa), and then, in the step (d) after the method step c) above In the middle: - functionalize the layer (aa); and / or 1419I8.doc 201029049 - join the other layers to the layer (aa). These two preferred embodiments are schematically illustrated in Figures 3 and 4. In Fig. 3, '(aa), a functional layer (aa) (derived from the initial substrate (1 〇)). In the example illustrated in step S3 of FIG. 3 after step S1 and step S2 shown in FIG. 2, the step shown in the step (the function of the layer may be included in or formed on the layer (aa) with photovoltaic Areas of optics, optoelectronics, electronics and/or mechanical functions. It should also be understood that the functionalization step may comprise any technical step of altering the properties of the layer, such as forming a layer of material, a thin layer or a sufficiently thick layer of free standing, or forming an active In Fig. 4, in step S3, e.g., from step S1 and step S2 as shown in Fig. 2, other substrates (3〇) are bonded to the entity, the entity comprising a layer (aa), an electromagnetic radiation absorbing layer. (24) and the supporting substrate (25). In Fig. 4, the possibility that the layer (aa) can be functionalized is represented by the symbol (aa) / (aa). It is also possible to replace the layer (aa) or divide The support substrate (25) other than the layer (aa) contains regions having photovoltaic, optical, optoelectronic, electronic, and/or mechanical functions. The bonding can be performed to expose the exposed layer of the layer (aa) from the initial substrate Connect to the final substrate (3 〇) that has also been machined. Bonding can be performed, for example, by laminating the ceria bonding layer via the methods discussed above. If desired, the joint may also contain an electromagnetic radiation absorbing layer for subsequently separating the support substrate (30). According to an embodiment of the method of the present invention, the initial substrate (丨0) may be a bulk self-standing substrate. In an embodiment, the initial substrate (10) may include a surface layer (12) having a surface (10b) for bonding to the support substrate (25), and a bottom support substrate (U) as a template, the surface layer (12) deposited on the bottom support substrate (u) 141918.doc 201029049. The initial substrate (10) may also include a surface layer (12), an intermediate layer, and a bottom support substrate (11). In such systems, with or without an intermediate layer, the surface layer (12) and the wash substrate (10) (layer (aa) formed on the bulk substrate (10)) may suitably comprise a group selected from the group consisting of At least one of the group materials: GaN, InGaN, SiC, Si, Si(000) 'Si(lll), GaAs, ZnO, 曰AIN, AlGaN, InGaAs, InP, Ge, InAlAs. The layer (aa) may also be formed from a semiconductor material from the Group IV material (e.g., Si, Ge), the Group III/V material (polar or non-polar or semi-polar material such as GaN, InGaN, InGaAs). The initial substrate (1〇) to be used in the method of the present invention may suitably contain selected for matching a reasonable expansion coefficient and/or matching lattice parameters between the support and the surface layer (12). - a bottom support substrate (1), the surface layer (12) comprising sapphire (Al2〇3), LiTa03, LiNb03, MgO, Si,

SiC或含有Cr、Ni、Mo及W之一或多種之金屬合金。在具 有此最終基板的實施例中,此等材料亦可用於該最終基板 (30)中。 在該初始基板⑽包括在—底下支揮基板⑴)上成長的 表面層⑽之情況下,較好確保在初始種晶支撐基板⑼ 與該表面層(12)之間之合理晶格匹配,由此形成待引人機 能性之該層(aa)。例如,1中兮矣;a ^〆 八甲这表面層(12)係一 ΠΙ_Ν材 料’適當初始種晶支撐材料可句合SiC or a metal alloy containing one or more of Cr, Ni, Mo, and W. In embodiments having such a final substrate, such materials can also be used in the final substrate (30). In the case where the initial substrate (10) includes a surface layer (10) grown on the underlying supporting substrate (1), it is better to ensure a reasonable lattice matching between the initial seed supporting substrate (9) and the surface layer (12), This forms the layer (aa) to be introduced. For example, 1 兮矣; a ^ 〆 八 甲 这 这 这 这 这 这 表面 表面 表面 ’ ’ ’ 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当

Tt J包3例如:藍寶石(αι2ο3)、Tt J package 3 for example: sapphire (αι2ο3),

SiC、Si(lll)、GaAs、Ζη〇、結晶Am。 在根據本發明之較佳方法奢尬也,士 忐實粑例中’在包含使初始基板 (10)變薄以生成層(aa)之方法挺怒击 7忐框条中,作為機能化步驟之 141918.doc 201029049 遙晶可例如在層㈣上執行,以獲得用於接著製成之層之 一足夠厚度以變成自立式基板。 在另一較佳實施例中,在步驟⑷中經由該轄射吸收層 合至該支撐基板(25)之前,在該初始基_咐執行 料植入,以便提供界定該基板⑽之上部區域之薄弱截 面,及由在該薄弱截面分裂而移除該上部區域。 因此,如圖5示意性地顯示,在根據本發明方法之第—SiC, Si (lll), GaAs, Ζη〇, crystalline Am. In the preferred method according to the present invention, in the example of the gentry, the method of thinning the initial substrate (10) to form the layer (aa) is used as a functionalization step. 141918.doc 201029049 The telecrystals can be performed, for example, on a layer (four) to obtain a thickness sufficient for one of the layers to be subsequently formed to become a free standing substrate. In another preferred embodiment, the implant is implanted at the initial substrate to provide a region defining the upper portion of the substrate (10) prior to lamination to the support substrate (25) via the absorbing absorption in step (4). A weak section, and the upper region is removed by splitting in the weak section. Thus, as shown schematically in Figure 5, in accordance with the method of the present invention -

較佳實施例中,使用8_⑽技術,自初始供體基板抽 回III-N材料層。亦即,該m_N材料(圖5中⑺起初可存在 於塊狀供體基板(圖4中U)上。如圖!所示,在此實财, 顯示m-N材料可係在「模板」(例如藍寶石)上蟲晶成長的In a preferred embodiment, the III-N material layer is withdrawn from the initial donor substrate using the 8-(10) technique. That is, the m_N material ((7) in Fig. 5 may initially exist on the bulk donor substrate (U in Fig. 4). As shown in Fig.!, in this case, it is shown that the mN material can be attached to the "template" (for example) Sapphire)

GaN。-替代的實施例可使用經由中間接合層附接至支撐 基板的III-N材料’此配置可表示GaN〇s(藍寶石上接合的 GaN) 〇 執行離子植入(圖5令步驟Si),且接著執行至一第二基 板之接合(圖5中步驟S2),透過一接合材料層(23)將該 表面(12)連接至在支揮基板(25)上之電磁輻射吸收層⑼。 該接合亦可在無該接合材料層(23)下進行,而直接在該支 撐基板、該吸收層(24)與該ΙΙΙ-Ν材料層(12)之間進行。接 著可實現在由離子植入產生的該薄弱截面之分裂(圖5_步 驟S3)。以對於熟習本技術者已知的方式,可執行氫離子 植入、氫及氦離子共同植入及更一般是輕離子植入。在1〇 keV至210 keV範圍之植入能量,用於GaN之一般適當氫離 子植入劑量介於lxlO】7與6xl017原子/cm2之間。植入通常 141918.doc •13· 201029049 在介於20°C至400°C之間’較佳在5〇。(:至150°C之間之溫度 執行。該熟習本技藝者已知如何調整該植入以便獲得在5 〇 奈米至1000奈米之間之該薄弱截面深度,且根據植入條 件’且尤其是植入離子劑量,用於弓|起關於該薄弱截面之 分離及分裂之該熱製程之溫度及持續時間已知可變化。 在圖5步驟S4中,由關於該薄弱截面分裂而暴露的該表 面經接合至一最終基板(30),在此情況下選擇包括一最終 支撐基板(31)及一接合層(33)。隨後,在圖5步驟S5中,所 付之含有來自各初始、第二及第三基板之元素之該實體透 過透明支撐基板(25)導引進行電磁輻射,該輻射具有選擇 的波長以便由電磁輻射吸收層(24)吸收並導致基板(25)分 離。 在例如圖5示意性顯示的方法中,可在薄層(12f)上執行 遙晶成長(在圖5中未顯示)’以便生產具有一足夠厚度(例 如’大於100微米)之基板以使其在關於該薄弱截面斷裂之 前,成為自立式。因此,可在步驟S2之前執行磊晶成長, 在該處經由表面層(12f)將第二基板接合至該初始基板。在 此情況下’由於磊晶成長之熱處理必須低於引起該薄弱截 面分裂之加熱製程。亦可在該薄弱截面分離之步驟S3之 後’或在由輻射吸收而分離之步驟S5之後,在該暴露層上 執行蟲晶成長。並且’在圖5中未顯示’機能化可在對應 於層(aa)之區域(12f)内形成,以便形成在其中或其上具有 光伏打、光學、光電、電子及/或機械作用之區域。 在圖5之該例示性方法之最終步驟S6中,先前已藉該吸 141918.doc 14- 201029049 收層(24)連接該m-N材料層(12f)之該接合層(23)可坡移 除。若該接合層(23)包括二氧化矽,此層可適當地藉甴乾 蝕刻或協同化學蝕刻例如使用氫氟酸(HF)之稀釋水溶液 (谷量10%)之機械抛光而移除。 III-N材料,如在一模板例如藍寶石上成長的材 料,其顯示一 0平面纖鋅礦結構,具有一鎵及一氮面。上 部面通常係該鎵面,而底部面(鄰近於該成長基板)、該初 始供體支樓基板(1)係一氮面。 以根據本發明之上述第一較佳實施例作為施加於IIIN材 料之方法,執行一雙重傳送以在該最終產品暴露該鎵面, 亦即,在該初始產品中起初暴露一樣。因此,關於其护企 圖自該氮面開始磊晶之情況,在此階段,由於限制錯位及 龜裂之危險,可能在該ΠΙ_Ν材料上再次開始磊晶。 在本發明中,可操作任何特定直徑之晶圓,而無任何特 定限制。 在一有利的實施例中,本發明方法中,在步驟(e)之後, 可在由步驟(e)中電磁輻射吸收層(24)之照射而釋放的该初 始基板(10)之該接合面(1〇b)上執行磊晶或進一步機能化。 在本發明之第二較佳實施例中,可用於本發明方法之該 、、·=構係由在一基板中例如塊狀GaN中進行離子植入雨獲 得繼而磊晶ΠΙ~Ν材料例如inGaN,其係以不超出沿著由 離子植入生成的該薄弱截面分裂該基板需要的能量輸人之 方式進行,繼而將該GaN/InGaN材料接合至在一中間基板 上之吸收層,及接著沿著該薄弱截面(類似於圖5中资驟 141918.doc 15 201029049 S3)執行斷裂。亦可能在該In(}aN層蟲晶之後且在由一 _ 層覆蓋之前執行植入,使得蟲晶熱預算不受限制。為了確 保關於該薄弱截面之成功斷裂,如在與該第二實施例有關 之圖5之步驟S2中顯示,較佳的是首先將該植入的III-N村 料接合至一中間支撐物,其硬化及強化該堆疊實體。本第 二實施例可因inGaN繼續磊晶而受到關注,例如在LED應 用中受到關注。 例如,一 InGaN層可藉由在一 GaN〇s基板上磊晶成長, 且接著可在該inGaN中執行離子植入。在該InGaN層中之 該暴露的上部面(其具有鎵極性),接合至具有一接合層 (23)及一吸收層(24)之中間基板。在由離子植入生成的該 薄弱區域分裂之後,包括該犧牲中間支撐、該UV及/或可 見光吸收層、該接合層及該InGaN層之該結構可經接合至 一最終支撐基板(見圖5之步驟S4),該基板可例如係一藍 寶石基板。接著可使用輻射經由該中間基板之該支撐基板 (25)而執行分離,且一 InGaN〇s基板在該上部面上獲得所 需極性以供開始繼續進一步磊晶。 在本發明—些有利實施例中,如前文提到的,在該初始 基板(1 0)與該第二基板(25)之間之接合可使用一或多個二 氧化石夕接合層而執行。 在一有利實施例中,與其使該電磁輻射吸收層為遍及該 待製備的堆疊實體之長度及寬度而延伸之完全區別層(使 得該整個截面如附圖所示),不如可使一個或多個該(等)接 合層例如氧化物接合層含有電磁輻射吸收材料之至少一植 141918.doc 201029049 入區,該電磁輻射吸收材料包括:队①、SixNy:H、GaN. An alternative embodiment may use a III-N material attached to the support substrate via an intermediate bonding layer 'this configuration may represent GaN 〇s (bonded GaN on sapphire) 〇 performing ion implantation (Fig. 5, step Si), and Subsequent bonding to a second substrate (step S2 in Fig. 5) is performed to connect the surface (12) to the electromagnetic radiation absorbing layer (9) on the supporting substrate (25) through a bonding material layer (23). This bonding can also be carried out without the bonding material layer (23), directly between the supporting substrate, the absorbing layer (24) and the ruthenium-iridium material layer (12). The splitting of the weak section produced by ion implantation can then be achieved (Fig. 5 - step S3). Hydrogen ion implantation, hydrogen and helium ion co-implantation, and more generally light ion implantation, may be performed in a manner known to those skilled in the art. For implant energies ranging from 1 ke keV to 210 keV, a typical suitable hydrogen ion implantation dose for GaN is between lxlO 7 and 6 x 1 017 atoms/cm 2 . Implantation is usually 141918.doc •13· 201029049 between 20 ° C and 400 ° C 'better 5 〇. (: is performed at a temperature between 150 ° C. It is known to those skilled in the art how to adjust the implant to obtain the weak cross-sectional depth between 5 〇 nm and 1000 nm, and depending on the implantation conditions' In particular, the implanted ion dose is known to vary the temperature and duration of the thermal process with respect to the separation and splitting of the weak section. In step S4 of Figure 5, the exposure is due to the weak section splitting. The surface is bonded to a final substrate (30), in which case a final support substrate (31) and a bonding layer (33) are selected. Subsequently, in step S5 of Figure 5, the inclusion is from each initial, The entity of the elements of the second and third substrates is guided through the transparent support substrate (25) for electromagnetic radiation having a selected wavelength for absorption by the electromagnetic radiation absorbing layer (24) and causing the substrate (25) to separate. In the method schematically shown in Fig. 5, telecrystal growth (not shown in Fig. 5) can be performed on the thin layer (12f) to produce a substrate having a sufficient thickness (e.g., 'greater than 100 micrometers) to make it The weak cut Before the surface breaks, it becomes self-standing. Therefore, epitaxial growth can be performed before step S2, where the second substrate is bonded to the initial substrate via the surface layer (12f). In this case, the heat treatment due to epitaxial growth It must be lower than the heating process that causes the weak section to split. It is also possible to perform the growth of the crystal on the exposed layer after the step S3 of the weak section separation or after the step S5 of being separated by radiation absorption. It is not shown in Fig. 5 that "functionalization" can be formed in the region (12f) corresponding to the layer (aa) in order to form an area having photovoltaic, optical, photoelectric, electronic and/or mechanical action therein or thereon. In the final step S6 of the exemplary method, the bonding layer (23) of the mN material layer (12f) which has been previously layered (24) by the suction 141918.doc 14-201029049 can be removed in a slope. The layer (23) comprises cerium oxide, which layer may be suitably removed by dry etching or synergistic chemical etching, for example mechanical polishing using a dilute aqueous solution of hydrofluoric acid (HF) (10% of the grain). III-N material , such as in a template such as blue a stone-grown material exhibiting a zero-plane wurtzite structure having a gallium and a nitrogen plane. The upper surface is usually the gallium surface, and the bottom surface (adjacent to the growth substrate), the initial donor support substrate ( 1) is a nitrogen surface. In accordance with the above first preferred embodiment of the present invention as a method of applying to a IIIN material, a dual transfer is performed to expose the gallium surface in the final product, that is, at the beginning of the initial product The exposure is the same. Therefore, in the case where the protection target starts to be epitaxial from the nitrogen surface, at this stage, due to the risk of limiting the misalignment and cracking, it is possible to start the epitaxy again on the ΠΙ_Ν material. In the present invention, it is operable Any wafer of a specific diameter without any specific restrictions. In an advantageous embodiment, in the method of the invention, after the step (e), the joint surface of the initial substrate (10) which can be released by the irradiation of the electromagnetic radiation absorbing layer (24) in the step (e) Perform epitaxial or further functionalization on (1〇b). In a second preferred embodiment of the present invention, the structure of the method of the present invention can be obtained by ion implantation rain in a substrate such as bulk GaN, followed by epitaxial germanium-germanium materials such as inGaN. , which is carried out in a manner that does not exceed the energy required to split the substrate along the weak section generated by ion implantation, and then joins the GaN/InGaN material to an absorber layer on an intermediate substrate, and then along The weak section (similar to the 141918.doc 15 201029049 S3 in Figure 5) performs the fracture. It is also possible to perform implantation after the In(}aN layer of worms and before being covered by a layer, so that the worm crystal thermal budget is not limited. To ensure successful fracture with respect to the weak section, as in the second implementation For example, in step S2 of Figure 5, it is preferred to first join the implanted III-N compound to an intermediate support which hardens and strengthens the stacked body. This second embodiment can continue with inGaN Epitaxy has received attention, for example, in LED applications. For example, an InGaN layer can be epitaxially grown on a GaN germanium substrate, and then ion implantation can be performed in the inGaN. In the InGaN layer The exposed upper surface (which has gallium polarity) is bonded to an intermediate substrate having a bonding layer (23) and an absorbing layer (24). After the weak region created by ion implantation is split, the sacrificial intermediate is included The structure supporting the UV and/or visible light absorbing layer, the bonding layer and the InGaN layer may be bonded to a final supporting substrate (see step S4 of FIG. 5), which may be, for example, a sapphire substrate. Radiation through the middle Separation is performed by the support substrate (25) of the board, and an InGaN(R) substrate obtains a desired polarity on the upper surface for beginning further epitaxy. In an advantageous embodiment of the invention, as previously mentioned The bonding between the initial substrate (10) and the second substrate (25) can be performed using one or more layers of the SiO2 bonding layer. In an advantageous embodiment, the electromagnetic radiation absorbing layer is provided therewith. In order to extend the fully distinct layer extending over the length and width of the stacking entity to be prepared (so that the entire section is as shown in the drawings), one or more of the (etc.) bonding layers, such as oxide bonding layers, may be electromagnetically contained. At least one of the radiation absorbing materials is 141918.doc 201029049, and the electromagnetic radiation absorbing material comprises: team 1, SixNy: H,

Si3N4、GaN、AIN、InN、或In、以及…之一或多種之混 合氮化物。 在本發明之第三有利實施之實施例中’在圖6中示意性 纟示,-InGaN層係使用分子接合方法轉移且藉由本發明 之電磁輻射吸收層而釋放。提供一初始基板,在其中由在 一模板上藉由磊晶形成待轉移的一 InGaN層(12t),顯示由 在例如藍寶石支撐基板(11)上磊晶成長的一 GaN種晶層 (12s)。此係如圖6中步驟S1所示,在該處於上之該 InGaN層一起表示為層(12),且該底下支撐基板(ιι)係藍寶 石。在用於執行本發明之適當方法中,該111<3&]^層之該厚 度將約為100奈米且銦含量將為5%至15%之等級。在該層 中該錯位密度較佳係低於5xl〇8/cm2。由在一 c平面藍寳石 上磊晶成長的GaN係一極性材料且該上部自由面係一鎵 (Ga)面。此極性係藉由其上成長的該111(?3?^而保存。 翁 在隨後的步驟S2中,氧化物接合層(si〇2,在圖中層 (13))係由一 LPCVD技術鋪陳在該InGaN層上。一適當厚度 約為300奈米。 在隨後的步驟S3中,由離子例如氫及/或氦之植入可透 過該氧化物層(13)及透過該InGaN而執行,以產生深度約 500奈米之一薄弱區域,該薄弱區域係位於該QaN種晶層 中。對於此植入,4χ1017原子/cm2等級之劑量係適當的。 在隨後的步驟S4中,提供一中間基板,其依序包括:一 支撐基板(例如藍寶石(25))、一吸收劑層例如具有厚 141918.doc 201029049 度約100奈米且由PECVD技術鋪陳的SixNy)及二氧化矽接合 層(23)(具有厚度約500奈米)。分子接合係用於經由接觸的 5亥等氧化物接合層(13與23)而連接初始及中間基板實體。 在步驟(S5)中,熱處理接著可使該實體產生斷裂,移除 該初始底下初始支撐基板(11)及該GaN種晶層之一部分。 接著使用該熟習本技藝者已知的姓刻技術以移除該殘留的A mixed nitride of one or more of Si3N4, GaN, AIN, InN, or In, and... In an embodiment of the third advantageous embodiment of the invention, it is schematically illustrated in Figure 6 that the -InGaN layer is transferred using a molecular bonding method and released by the electromagnetic radiation absorbing layer of the present invention. Providing an initial substrate in which an InGaN layer (12t) to be transferred is formed by epitaxy on a template, showing a GaN seed layer (12s) grown by epitaxial growth on, for example, a sapphire support substrate (11) . This is shown in step S1 of Fig. 6, in which the InGaN layers are collectively represented as a layer (12), and the bottom support substrate (Im) is sapphire. In a suitable method for carrying out the invention, the thickness of the 111 <3&> layer will be about 100 nm and the indium content will be on the order of 5% to 15%. The dislocation density in this layer is preferably less than 5 x 1 〇 8 / cm 2 . A GaN-based one-polar material epitaxially grown on a c-plane sapphire and the upper free surface is a gallium (Ga) plane. This polarity is preserved by the 111 (?3?^) grown thereon. In the subsequent step S2, the oxide bonding layer (si〇2, layer (13) in the figure) is laid out by an LPCVD technique. On the InGaN layer, a suitable thickness is about 300 nm. In a subsequent step S3, implantation of ions such as hydrogen and/or germanium can be performed through the oxide layer (13) and through the InGaN to generate a weak region of about 500 nm in depth, the weak region being located in the QaN seed layer. For this implantation, a dose of 4χ1017 atoms/cm2 is appropriate. In the subsequent step S4, an intermediate substrate is provided, The sequence includes: a support substrate (such as sapphire (25)), an absorber layer such as SixNy having a thickness of 141918.doc 201029049 and about 100 nm and deposited by PECVD technology, and a ruthenium dioxide bonding layer (23) ( Has a thickness of about 500 nm). The molecular bonding system is used to connect the initial and intermediate substrate entities via the contacted oxide layers (13 and 23). In the step (S5), the heat treatment may then cause the solid to be broken, removing the initial underlying initial support substrate (11) and a portion of the GaN seed layer. The surviving technique known to those skilled in the art is then used to remove the residual

GaN(在步驟S5與S6之間,且在圖6中未顯示),且此暴露出 具有N極性之該inGaN層(12t或aa)之該面。在隨後的步驟 S6中’藉由PECVD技術鋪陳厚度約5〇奈米之sixNy層。此 進一步的電磁輻射吸收層及/或黏附層於圖6中以層(34)表 示。接著藉由一LPCVD或PECVD技術鋪陳具有厚度約5〇〇 奈米至3微米之二氧化矽接合層(步驟S7_該二氧化矽層以 33表示)。在製備用於接合之該等表面(平坦化、CMp、刷 光及可選擇的電漿活化)之後,在步驟S7中獲得的結構與 標記為(31)之藍寶石之最終支撐基板接觸(步驟S8)。可執 行接合增強熱處理,包含在數小時期間自3〇〇°c加熱至 950〇C。 隨後,在步驟S9中,電磁輻射吸收層(24)可藉由例如在 該基板之該表面掃描波長193 nm之雷射電子束而進行照 射,以引起該中間支撐物(25與24組合)之分解及分離,可 食b需外加機械能量。 隨後藉由例如乾蝕刻或協同與稀氫氟酸接觸的機械拋光 而移除可能的吸收層殘餘物p4)及該等氧化物接合層 (13+23),接著使具有Ga極性之該InGaN表面(12t或aa)暴露 141918.doc 201029049 出。接著此可用作—基底,供InGaN及/或其他活性層之進 一步磊晶。若需要時,該吸收層(34)可用作一分離層,用 於在該最終實體之隨後使用中分離該支撐基板(31)。 【圖式簡單說明】 圖1表不本發明之一般方法之示意圖; 圖2表示本發明之實例方法之示意圖,其中初始基板 (1 〇)之一部分係經移除以形成一新層(aa); 圖3及圖4表示本發明之實例方法之示意圖,其中,該層 (aa)係經機能化以生產一層(aa)l,及/或進一步層係接合至 該層(aa); 圖5係本發明之實例方法之示意圖,其中使用離子植入 並接合至一最終基板;及 圖6係本發明之其他實例方法之示意圖,其中使用離子 植入並接合至一最終基板。 【主要元件符號說明】 10 初始基板 10b 接合面 10r 相對面 12 表面層 12f 薄層 12s GaN種植層 12t InGaN 層 23 接合材料層 24 電磁輻射吸收層 141918.doc -19- 201029049 25 支撐基板 30 最終基板 31 支撐基板 33 接合層 34 吸收層 aa 層 aa' 層 141918.docGaN (between steps S5 and S6, and not shown in Fig. 6), and this exposes the face of the inGaN layer (12t or aa) having an N polarity. In the subsequent step S6, a six Ny layer having a thickness of about 5 Å was deposited by PECVD. This further electromagnetic radiation absorbing layer and/or adhesion layer is represented in Figure 6 by layer (34). A cerium oxide bonding layer having a thickness of about 5 Å to 3 μm is then deposited by an LPCVD or PECVD technique (step S7_the cerium oxide layer is indicated by 33). After preparing the surfaces for bonding (planarization, CMp, brushing, and optional plasma activation), the structure obtained in step S7 is contacted with the final support substrate of sapphire labeled (31) (step S8) ). Bonding enhanced heat treatment can be performed, including heating from 3 ° C to 950 ° C over a period of hours. Subsequently, in step S9, the electromagnetic radiation absorbing layer (24) can be irradiated by, for example, scanning a laser beam having a wavelength of 193 nm on the surface of the substrate to cause the intermediate support (25 and 24 combination) Decomposition and separation, edible b requires additional mechanical energy. The possible absorber layer residue p4) and the oxide bonding layer (13+23) are then removed by mechanical polishing such as dry etching or synergistic contact with dilute hydrofluoric acid, followed by the InGaN surface having Ga polarity (12t or aa) exposed 141918.doc 201029049 out. This can then be used as a substrate for further epitaxy of InGaN and/or other active layers. If desired, the absorbent layer (34) can be used as a separate layer for separating the support substrate (31) in subsequent use of the final entity. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a general method of the present invention; FIG. 2 is a schematic view showing an exemplary method of the present invention, in which a portion of an initial substrate (1 〇) is removed to form a new layer (aa). 3 and 4 are schematic views of an exemplary method of the present invention, wherein the layer (aa) is functionalized to produce a layer (aa) 1, and/or further layer bonded to the layer (aa); A schematic of a method of the present invention in which ion implantation and bonding to a final substrate are used; and Figure 6 is a schematic illustration of another example method of the present invention in which ion implantation is used and bonded to a final substrate. [Main component symbol description] 10 Initial substrate 10b Joint surface 10r Opposite surface 12 Surface layer 12f Thin layer 12s GaN planting layer 12t InGaN layer 23 Bonding material layer 24 Electromagnetic radiation absorbing layer 141918.doc -19- 201029049 25 Support substrate 30 Final substrate 31 support substrate 33 bonding layer 34 absorption layer aa layer aa' layer 141918.doc

Claims (1)

201029049 七、申請專利範圍: 1· 一種用於改質基板(ίο)之方法,其包括: (a) 提供一初始基板(1〇),該初始基板(1〇)具有用於接 合之面(10b)及一相對面(l〇r); (b) 提供一支撐基板(25); 其中該初始基板(10)之該接合面(1〇b)及/或該支撐基板 (25)之一面,設有一電磁輻射吸收層(24) ’其中該支撐 基板(25)對於電磁輻射之波長實質上為透明; (c) 進行接合以經由該電磁輻射吸收層(24)將該初始基 板(10)之該接合面(l〇b)連接至該支撐基板(25); (e)透過該實質上透明的支撐基板(25)對該電磁輻射吸 收層(24)進行照射,以引起該支撐基板(25)之分離。 2·如請求項1之用於改質基板(1〇)之方法,其中步驟e)lj3該 支撐基板(25)之分離係歸因於在該電磁輻射吸收層(24) 中化學及/或物理變化。 3. 如請求項1或2之用於改質基板(ίο)之方法,其中在步驟 a)之後且較佳地在步驟幻之前該初始基板之部分係經移 除以形成一層(aa)。 4. 如請求項3之用於改質基板(1〇)之方法,其在步驟c)之後 進步包括步驟(d)之在使該層(aa)機能化及/或將其他層 或基板接合至該層(aa)。 月求項4之用於改質基板(1〇)之方法,其中步驟⑷包 含在該層(aa)中或上形成具有光伏打、光學、光電、電 子的及/或機械機能之區域。 141918.doc 201029049 6. 如請求項3之用於改質基板(10)之方法,其中層(aa)及/或 支撐基板(25)包含具有光伏打、光學、光電、電子及/或 機械機能之區域。 7. 如請求項4至6中任一項之用於改質基板(1〇)之方法,其 中步驟⑷包含執行接合以將該基板(1())之該暴露面連接 至一最終基板(30)。 8. 如請求項1至7中任一項之用於改質基板(1〇)之方法,其 中該初始基板(10)係大型自立式基板。 9. 如請求項1至7中任一項之用於改質基板(1〇)之方法,其 中該初始基板⑽包括-表面層(12)及—底下支樓基板 (11)’該表面層U2)具有用於接合至該支律基板⑼之— 面(1〇b),該底下支撲基板⑴)作為-模板其上沈積有表 面層(12)。 10. 如請求項1至7中任一項之用於改質基板⑽之方法,其 中該初始基板⑽包括一表面層〇2)、一中間層及一底 下支撐基板(11)。 _ 11. 如請求項4至1()_任-項之用於改質基板⑽之方法其 t在層㈣上執行W謂得成為自立讀料的足夠厚 度。 12.如請求項中任—項之用於改f基板⑽之方法,宜 中在步驟⑷中經由該電磁輻射吸收層⑼接合 二 基板⑼之前,在該初始基板⑽中穿透該面⑽1 離子植人,以提供—薄職面,該薄㈣面以該 ⑽之-上部區域’且藉由在該薄弱截面之分裂而㈣ 141918.doc 201029049 該上部區域。 13_如請求項1至12中任一項之用於改質基板(10)之方法,其 中該初始基板(10)包括選自下列群組之至少—種材料: GaN、InGaN、SiC、Si、Si(000)、Si(lll)、GaAs、 ZnO、結晶 AIN、AlGaN、InGaAs、InP、Ge、lnAIAs。 14·如請求項1至13中任一項之用於改質基板(1〇)之方法,其 中該實質上透明的支撐基板(25)係藍寶石(Al2〇3)、 LiTa03、LiNb03、MgO或玻璃。 ^ 丨5.如請求項1至14中任一項之用於改質基板(10)之方法,其 中該底下支撐基板(11)及/或最終基板(3〇)含有一支撐基 板’該支撐基板包括藍寶石(Al2〇3)、LiTa03、LiNb03、 MgO、Si、SiC或含有Cr、Ni、Mo及W之一或多種之金 屬合金。 16·如請求項1至15中任一項之用於改質基板(1〇)之方法,其 中電磁輻射吸收層(24)及/或層(34)包括:礼化、 • SixNy:H、Si3N4、GaN ' AIN、InN 或、In、Ga及 A1 之一 或多種之混合氮化物或多晶矽、非晶矽(富氫)或單晶 石夕。 17.如請求項1至16中任一項之用於改質基板(1〇)之方法,其 中在該初始基板(10)與該支撐基板(25)之間之該接合, 係使用一或多個二氧化矽接合層而進行。 18·如請求項17之用於改質基板(1〇)之方法,其中一個或多 個該(等)氧化物接合層含有電磁輻射吸收材料之至少一 包埋區’該電磁輻射吸收材料包括:SixNy:H、SixNy、 141918.doc 201029049 Si3N4、GaN、AIN、InN、或 In、Ga及 A1之一或多種之混 合氮化物、或多晶矽、非晶矽(富氫)或單晶石夕。 19·如請求項1至18中任一項之用於改質基板(1〇)之方法,其 中電磁輻射吸收層(24)係與該支撐基板(25)直接接觸, 而無需一氧化物接合層作為中間媒介。 20. 如請求項4至18中任一項之用於改質基板(10)之方法,其 中在步驟(e)之後,在該初始基板(1〇)之該接合面(1〇b)上 進行磊晶或進一步機能化’在步驟(e)中該初始基板(1〇) 藉由電磁輻射吸收層(24)之照射而釋放。 21. —種用於改質基板(1〇)之方法,其包括: (A) 提供一基板,該基板包括: a. 支撐基板(25),該支撐基板(25)對於電磁輻射之波 長實質上為透明; b. —層(aa) ’該層(aa)接合至該支撐基板(25);及 c· 一電磁輻射吸收層(24),該電磁輻射吸收層(24)在 該支撐基板與該層(aa)之間; (B) 透過該實質上透明的支撐基板(25)對該電磁輻射吸收 層(24)進行照射’以引起該支撐基板(25)之分離。 141918.doc201029049 VII. Patent Application Range: 1. A method for modifying a substrate, comprising: (a) providing an initial substrate (1〇) having a surface for bonding (1〇) 10b) and an opposite surface (l〇r); (b) providing a supporting substrate (25); wherein the bonding surface (1〇b) of the initial substrate (10) and/or one side of the supporting substrate (25) Provided with an electromagnetic radiation absorbing layer (24) 'where the support substrate (25) is substantially transparent to the wavelength of the electromagnetic radiation; (c) engaging to pass the initial substrate (10) via the electromagnetic radiation absorbing layer (24) The bonding surface (10b) is connected to the support substrate (25); (e) the electromagnetic radiation absorbing layer (24) is irradiated through the substantially transparent supporting substrate (25) to cause the supporting substrate ( 25) Separation. 2. The method of claim 1, wherein the separation of the support substrate (25) in steps e) lj3 is due to chemistry and/or in the electromagnetic radiation absorbing layer (24). Physical changes. 3. The method of claim 1 or 2 for modifying a substrate, wherein a portion of the initial substrate is removed after step a) and preferably before the step of the step to form a layer (aa). 4. The method of claim 3 for modifying a substrate (1〇), which progresses after step c) comprises the step (d) of functionalizing the layer (aa) and/or bonding other layers or substrates To this layer (aa). A method for modifying a substrate (1), wherein the step (4) is included in or on the layer (aa) to form a region having photovoltaic, optical, optoelectronic, electronic, and/or mechanical functions. 141918.doc 201029049 6. The method of claim 3, wherein the layer (aa) and/or the support substrate (25) comprises photovoltaic, optical, optoelectronic, electronic, and/or mechanical functions. The area. 7. The method for modifying a substrate (1) according to any one of claims 4 to 6, wherein the step (4) comprises performing bonding to connect the exposed face of the substrate (1()) to a final substrate ( 30). 8. The method for modifying a substrate (1) according to any one of claims 1 to 7, wherein the initial substrate (10) is a large free-standing substrate. 9. The method for modifying a substrate (1) according to any one of claims 1 to 7, wherein the initial substrate (10) comprises a surface layer (12) and a bottom substrate (11) 'the surface layer U2) has a face (1〇b) for bonding to the branch substrate (9), and the bottom support substrate (1) is deposited as a template on which a surface layer (12) is deposited. 10. The method for modifying a substrate (10) according to any one of claims 1 to 7, wherein the initial substrate (10) comprises a surface layer 2), an intermediate layer and a bottom support substrate (11). 11. The method for modifying the substrate (10) of claim 4 to 1 () is used to perform a sufficient thickness on the layer (4) to be a self-standing reading. 12. The method for modifying a substrate (10) according to any one of the claims, wherein the surface (10)1 ion is penetrated in the initial substrate (10) before the two substrates (9) are joined via the electromagnetic radiation absorbing layer (9) in the step (4). Planting a person to provide a thin face, the thin (four) face with the (10)-upper region' and by splitting in the weak section (4) 141918.doc 201029049 the upper region. The method for modifying a substrate (10) according to any one of claims 1 to 12, wherein the initial substrate (10) comprises at least one material selected from the group consisting of: GaN, InGaN, SiC, Si , Si (000), Si (lll), GaAs, ZnO, crystalline AIN, AlGaN, InGaAs, InP, Ge, lnAIAs. The method for modifying a substrate (1) according to any one of claims 1 to 13, wherein the substantially transparent support substrate (25) is sapphire (Al2〇3), LiTa03, LiNb03, MgO or glass. The method for modifying a substrate (10) according to any one of claims 1 to 14, wherein the bottom support substrate (11) and/or the final substrate (3) comprises a support substrate 'the support The substrate includes sapphire (Al2〇3), LiTa03, LiNb03, MgO, Si, SiC, or a metal alloy containing one or more of Cr, Ni, Mo, and W. The method for modifying a substrate (1) according to any one of claims 1 to 15, wherein the electromagnetic radiation absorbing layer (24) and/or the layer (34) comprises: ritual, • SixNy: H, Si3N4, GaN 'AIN, InN or a mixed nitride or polycrystalline germanium of one or more of In, Ga and A1, amorphous germanium (hydrogen-rich) or single crystal. The method for modifying a substrate (1) according to any one of claims 1 to 16, wherein the bonding between the initial substrate (10) and the supporting substrate (25) is performed using one or The plurality of cerium oxide bonding layers are carried out. 18. The method of claim 17, wherein the one or more oxide bonding layers comprise at least one embedding region of the electromagnetic radiation absorbing material, the electromagnetic radiation absorbing material comprising :SixNy:H, SixNy, 141918.doc 201029049 Si3N4, GaN, AIN, InN, or a mixed nitride of one or more of In, Ga, and A1, or polycrystalline germanium, amorphous germanium (hydrogen-rich), or single crystal. The method for modifying a substrate (1) according to any one of claims 1 to 18, wherein the electromagnetic radiation absorbing layer (24) is in direct contact with the support substrate (25) without an oxide bonding The layer acts as an intermediate medium. 20. The method for modifying a substrate (10) according to any one of claims 4 to 18, wherein after the step (e), on the bonding surface (1〇b) of the initial substrate (1〇) Epitaxial or further functionalization is performed. In step (e), the initial substrate (1) is released by irradiation of the electromagnetic radiation absorbing layer (24). 21. A method for modifying a substrate, comprising: (A) providing a substrate comprising: a. a support substrate (25), the wavelength of the wavelength of the electromagnetic radiation Upper layer is transparent; b. layer (aa) 'this layer (aa) is bonded to the support substrate (25); and c. an electromagnetic radiation absorbing layer (24) on which the electromagnetic radiation absorbing layer (24) is Between the layer (aa); (B) illuminating the electromagnetic radiation absorbing layer (24) through the substantially transparent support substrate (25) to cause separation of the support substrate (25). 141918.doc
TW098125948A 2008-08-06 2009-07-31 Process for modifying a substrate TW201029049A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08290757A EP2151856A1 (en) 2008-08-06 2008-08-06 Relaxation of strained layers
EP08290759.3A EP2151852B1 (en) 2008-08-06 2008-08-06 Relaxation and transfer of strained layers
PCT/IB2008/003101 WO2010015878A2 (en) 2008-08-06 2008-09-08 Process for modifying a substrate

Publications (1)

Publication Number Publication Date
TW201029049A true TW201029049A (en) 2010-08-01

Family

ID=41546881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125948A TW201029049A (en) 2008-08-06 2009-07-31 Process for modifying a substrate

Country Status (2)

Country Link
TW (1) TW201029049A (en)
WO (1) WO2010015878A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970045B2 (en) 2011-03-31 2015-03-03 Soitec Methods for fabrication of semiconductor structures including interposers with conductive vias, and related structures and devices
FR2975222A1 (en) * 2011-05-10 2012-11-16 Soitec Silicon On Insulator PROCESS FOR PRODUCING A SEMICONDUCTOR SUBSTRATE
EP2645429A1 (en) 2012-03-28 2013-10-02 Soitec Manufacture of multijunction solar cell devices
EP2645428A1 (en) 2012-03-28 2013-10-02 Soitec Manufacture of multijuntion solar cell devices
EP2645431A1 (en) 2012-03-28 2013-10-02 Soltec Manufacture of multijuntion solar cell devices
EP2645430A1 (en) 2012-03-28 2013-10-02 Soitec Manufacture of multijunction solar cell devices
TWI499078B (en) * 2013-01-31 2015-09-01 Just Innovation Corp Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof
EP3311422A4 (en) * 2015-06-19 2019-06-12 Qmat, Inc. Bond and release layer transfer process
TWI606611B (en) * 2016-08-30 2017-11-21 光磊科技股份有限公司 Substrate with li2nh layer, led with li2nh layer and associated manufacturing method
IL253085B (en) * 2017-06-20 2021-06-30 Elta Systems Ltd Gallium nitride semiconductor structure and process for fabricating thereof
US20210066547A1 (en) 2019-08-28 2021-03-04 Tslc Corporation Semiconductor Components And Semiconductor Structures And Methods Of Fabrication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640594B4 (en) * 1996-10-01 2016-08-04 Osram Gmbh module
US6071795A (en) * 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JP4085459B2 (en) * 1998-03-02 2008-05-14 セイコーエプソン株式会社 Manufacturing method of three-dimensional device
KR100649763B1 (en) * 2005-12-09 2006-11-27 삼성전기주식회사 A method of producing vertical nitride light emitting devices

Also Published As

Publication number Publication date
WO2010015878A3 (en) 2010-04-15
WO2010015878A2 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
TW201029049A (en) Process for modifying a substrate
TWI527099B (en) Process for recycling a substrate
US9991414B2 (en) Method of forming a composite substrate
JP5031365B2 (en) Method for forming epitaxial growth layer
JP5031364B2 (en) Method for forming epitaxial growth layer
US8093686B2 (en) Process for obtaining a hybrid substrate comprising at least one layer of a nitrided material
TW201021125A (en) Relaxation and transfer of strained layers
KR20080078679A (en) Method for the manufacture of substrates, in particular for the optical, electronic or optoelectronic areas, and the substrate obtained in accordance with the said method
JP2019528225A (en) Seed wafer for GaN thickening using gas phase or liquid phase epitaxy
CN102246267A (en) Method for manufacturing composite substrate on which wide bandgap semiconductor is laminated
KR20090093887A (en) Method of prepairing a substrate having near perfect crystal thin layers
KR20100103617A (en) A method of fabricating a composite structure with a stable bonding layer of oxide
US9070818B2 (en) Methods and structures for bonding elements
US8785293B2 (en) Adaptation of the lattice parameter of a layer of strained material
TW201413783A (en) Silicon carbide lamina
US8642443B2 (en) Process for the realization of islands of at least partially relaxed strained material
EP2636075A1 (en) Iii-nitride layer grown on a substrate
KR101055763B1 (en) Separation of nitride semiconductor layer from substrate using ion implantation layer