TW201029011A - Non-volatile semiconductor storage device - Google Patents

Non-volatile semiconductor storage device Download PDF

Info

Publication number
TW201029011A
TW201029011A TW098140832A TW98140832A TW201029011A TW 201029011 A TW201029011 A TW 201029011A TW 098140832 A TW098140832 A TW 098140832A TW 98140832 A TW98140832 A TW 98140832A TW 201029011 A TW201029011 A TW 201029011A
Authority
TW
Taiwan
Prior art keywords
voltage
wiring
signal
circuit
layer
Prior art date
Application number
TW098140832A
Other languages
Chinese (zh)
Other versions
TWI443663B (en
Inventor
Kiyotaro Itagaki
Yoshihisa Iwata
Hiroyasu Tanaka
Masaru Kidoh
Masaru Kito
Ryota Katsumata
Hideaki Aochi
Akihiro Nitayama
Takashi Maeda
Tomoo Hishida
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Publication of TW201029011A publication Critical patent/TW201029011A/en
Application granted granted Critical
Publication of TWI443663B publication Critical patent/TWI443663B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Abstract

A non-volatile semiconductor storage device includes: a memory string including a plurality of memory cells connected in series; a first selection transistor having one end connected to one end of the memory string; a first wiring having one end connected to the other end of the first selection transistor; a second wiring connected to a gate of the first selection transistor. A control circuit is configured to boost voltages of the second wiring and the first wiring in the erase operation, while keeping the voltage of the first wiring greater than the voltage of the second wiring by a certain potential difference. The certain potential difference is a potential difference that causes a GIDL current.

Description

201029011 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種電可重寫非揮發性半導體儲存裝置。 本申請案係基於2009年1月8曰申請之先前曰本專利申請 案第2009-23 76號,且主張該案之優先權的權利,該案之 全文以引用的方式併入本文中。 【先前技術】 隨著用於改良諸如NAND型快閃記憶體之非揮發性半導 體儲存裝置之位元密度的改進技術被推至極限,存在對記 憶體單元之層疊的不斷增大之需求。作為一實例,已提議 記憶體單元經組態成具有垂直電晶體的此類非揮發性半導 體儲存裝置(參看(例如)日本專利特許公開案第2〇〇7 266143 號)。層疊類型的非揮發性半導體儲存裝置具有:柱狀半 導體層、經形成以包圍柱狀半導體層之觸刪層,及經 形成以包圍MONOS層的傳導層。 對於平坦型非揮發性半導體儲存裝置而言,藉由將對名 於通道之基板電位增大至抹除電麼使得自相關助卿 層移除電子而執行抹除操作。’然而,以上提及之層疊㈣ 非揮發性半導㈣存裝置歸及料其通道料狀半導楚 層。因此,以與平坦型裝置中之方式相同的方式在層疊5 非揮發性半導體儲存裝置中執行抹除操作為 低效且不可布201029011 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to an electrically rewritable non-volatile semiconductor storage device. The present application is based on the prior Japanese Patent Application No. 2009-2376, the entire disclosure of which is incorporated herein by reference. [Prior Art] As an improved technique for improving the bit density of a non-volatile semiconductor storage device such as a NAND type flash memory is pushed to the limit, there is an ever-increasing demand for a stack of memory cells. As an example, it has been proposed that the memory unit be configured as such a non-volatile semiconductor storage device having a vertical transistor (see, for example, Japanese Patent Laid-Open Publication No. 2-7 266143). A stacked type nonvolatile semiconductor storage device has a columnar semiconductor layer, a striking layer formed to surround the columnar semiconductor layer, and a conductive layer formed to surround the MONOS layer. For a flat type non-volatile semiconductor memory device, the erase operation is performed by increasing the substrate potential of the channel to the erase voltage so that the electrons are removed from the associated helper layer. However, the above-mentioned laminated (four) non-volatile semi-conductive (four) storage device is attributed to its channel-like semi-conductive layer. Therefore, performing the erase operation in the stacked 5 non-volatile semiconductor storage device in the same manner as in the flat type device is inefficient and non-distributable

的0 J 類 需要提供在其中可以有效方式執行抹除操作 刑非括mu ^ … J μ负双万 層疊類型非揮發性半導體儲存裝置 144995.doc 201029011 【發明内容】 本發明之ut提供-種非揮發性半導體儲存裝置 包含:-記憶體串,其包括串聯連接之複數個記憶體單 疋;一第一選擇電晶體,其具有連接至該記憶體申之一末 端的-末m線,其具有連接至該第—選擇電晶 體之另-末端的-末端;一第二配線,其連接至該第一選 擇電晶體的-間極’·及-控制電路,其經組態以執行抹除 操作從而自該等記憶體單元抹除資料,該記憶體串包含:’ 第一半導體層,纟具有在—垂直於一基板之方向上延伸 的一柱狀部分;一電荷儲存層,其經形成以 導體層™導層,以圍該電荷儲存層且 该基板而延伸,該第一選擇電晶體包含:一第二半導體 層,其與該柱狀部分之一頂部表面或底部表面接觸且在該 垂直於該基板之方向上延伸;一第一閘極絕緣層,其經形 成以包圍該第二半導體層;及一第二傳導層,其包圍該第 一閘極絕緣層且平行於該基板而延伸,該控制電路經組態 以在該抹除操作中使該第二配線及該第一配線之電壓升 壓’同時保持該第一配線之該電壓比該第二配線的該電壓 大某一電位差,該某電位差係一引起一 GIDL電流的電位 差。 【實施方式】 現將在下文中參看隨附圖式描述根據本發明之非揮發性 半導體儲存裝置的實施例。 [第一實施例] I44995.doc 201029011 (第一實施例中之非揮發性半導體儲存裝置的通用組態) 首先參看圖1 ’下文中將描述根據第一實施例之非揮發 性半導體儲存裝置的通用組態。圖1為第一實施例中之非 揮發性半導體儲存裝置的電路圖。 如圖1中所說明,第一實施例中之非揮發性半導體儲存 裝置包含一記憶體單元陣列AR1及一提供於記憶體單元陣 列AR1周邊上的控制電路AR2。記憶體單元陣列AR1具有 電可重寫之記憶體電晶體MTrl至MTr8(記憶體單元)。控制 電路AR2包括用於控制施加至記憶體電晶體MTrl至MTr8 等之電壓的控制電路。 如圖1中所說明’記憶體單元陣列ARi具有m行記憶體區 塊MB。每一記憶體區塊MB包含η列及2行記憶體串MS、 各自連接至記憶體串MS之一末端的源極側選擇電晶體 SSTr ’及各自連接至記憶體串MS之另一末端的汲極側選 擇電晶體SDTr。請注意,在圖1之實例中,第一行藉由(j) 表示,且第二行藉由(2)表示。 如圖2中所說明’每一記憶體串MS具有記憶體電晶體 MTrl至MTr8及一背閘(back-gate)電晶體BTr。記憶體電晶 體MTrl至MT4串聯連接。記憶體電晶體MTr5至MTr8串聯 連接。背閘電晶體BTr提供於記憶體電晶體MTr4與MTr5之 間。包括MONOS結構之記憶體電晶體MTr 1至MTr8使得電 荷積聚於各別控制閘極中。經由電荷之積聚,第一實施例 中之非揮發性半導體儲存裝置儲存資料。 如圖2中所說明’記憶體電晶體MTrl至MTr8之控制閘極 144995.doc 201029011 連接至字線WL1至WL8。背閘電晶體BTr之控制閘極連接 至背閘線BG。 如圖1中所說明’各別字線WLi(i=l至8)被共同提供至在 列方向上對準之彼等記憶體串MS中之各別記憶體電晶體 MTn(1=1至8)的控制閘極’且經形成以越過記憶體串MS在 列方向上延伸。類似地’每一背閘線BG被共同提供至在 列方向上對準之背閘電晶體BTr的控制閘極,且經形成以 ©越過記憶體串MS在列方向上延伸。 如圖2中所說明’每一源極側選擇電晶體SSTr之一末端 連接至記憶體電晶體MTr8的一末端。每一源極側選擇電晶 體SSTr之另一末端連接至第一源極線SLa。每一源極側選 擇電晶體SSTr之控制閘極連接至源極側選擇閘極線SQS。 如圖1中所說明,每一第一源極線SLA被共同提供至在 列方向上對準之源極側選擇電晶體SSTr的源極,且經形成 以越過複數個記憶體串MS在列方向上延伸。在行方向上 φ 對準之第一源極線SLA被共同連接至在行方向上延伸之單 一第二源極線SLB。每一源極側選擇閘極線SgS被共同提 供至在列方向上對準之源極側選擇電晶體881&gt;的控制閘 極,且經形成以越過複數個記憶體_ MS在列方向上延 伸。 如圖2中所說明,每一汲極側選擇電晶體81)1&gt;之_末端 連接至記憶體電晶體MTrl的一末端。每一汲極側選擇電晶 體SDTr之另一末端連接至位元線BL。每一汲極側選擇電 晶體SDTr之控制閘極連接至汲極側選擇閘極線8(31)。 144995.doc 201029011 如圖1中所說明,每一位元線BL被共同提供至在行方向 上對準之汲極側選擇電晶體SDTr的汲極,且經形成以越過 複數個記憶體區塊MB在行方向上延伸。每一汲極側選擇 閘極線SGD被共同提供至在列方向上對準之没極側選擇電 晶體SDTr的控制閘極,且經形成以越過複數個記憶體串 MS在列方向上延伸。 在抹除操作中,控制電路AR2使源極線乩及源極側選擇 閘極線SGS之電壓升壓,同時保持源極線乩(第一源極線 SLA及第二源極線SLB)之電壓比源極側選擇閘極線sgs的 電壓大某一電位差。該某電位差為引起GIDL電流的電位 差Vth。此係此實施例之特性中的一者。請注意某電位 差並不限於電位差Vth。 如圖1中所說明,控制電路AR2具有:一輸入/輸出電路 100、字線驅動電路110a及110b、選擇閘極線驅動電路 120a及120b、一位址解碼器電路13〇、升壓電路i4〇a至 140C、一感測放大器電路15〇、一源極線驅動電路16〇、一 背閘線驅動電路1 70、一第一列解碼器電路i 8〇a、一第二 列解碼器電路180b,及一序列器190。 如圖1中所說明,輸入/輸出電路100接收來自外部之待 輸入至記憶體單元陣列AR1的資訊,並將該資訊輸入至感 測放大器電路150。此外,輸入/輸出電路1〇〇輸出來自感 測放大器電路150的資訊。 如圖1中所說明,字線驅動電路11〇&amp;輸出用於驅動字線 WL1至WL4的信號乂^〗至vCG4。字線驅動電路n〇b輸出用 144995.doc -10- 201029011 於驅動字線WL5至WL8的信號vCG5至VCG8。 選擇閘極線驅動電路120&amp;輸出信號vsgsi、vSGD2及 vSG0FF。選擇閘極線驅動電路12〇&amp;輸出信號vsgs2、 及vSGOFF。信號vSGS1&amp; vSGS2用於驅動經選擇之記憶體區 塊(其在下文中稱為「所選擇之記憶體區塊MB」)中的源極 侧選擇閘極線SGS。信號VsGD2及VsGDl用於驅動所選擇記 憶體區塊MB中的汲極側選擇閘極線SGD。信號Vsg〇ff用於 驅動未經選擇之記憶體區塊MB(其在下文中稱為「非經選 擇之記憶體區塊MB」)中的源極侧選擇閘極線SGs及汲極 側選擇閘極線SGD。 位址解碼器電路13〇輸出一用於規定區塊位址的信號 Vbad 0 升壓電路140 A使電壓自電源電壓升壓,且將經升壓之電 壓轉移至字線驅動電路11〇&amp;及1101^升壓電路14〇B使電壓 自電源電壓升壓以獲得信號VRDEC,該信號vRDEC輸出至第 一列解碼器電路1 80a及第二列解瑪器電路1 8〇b。升壓電路 140C使電壓自電源電壓升壓以獲得信號vERA,該信號Vera 輸出至源極線驅動電路160。信號VERA用於自記憶體電晶 體MTrl至MTr8抹除資料。 感測放大器電路150基於位元線BL之電壓讀取資訊。此 外,感測放大器電路150為位元線BL提供處於與源極線 SL(第一源極線SLA及第二源極線SLB)之信號VSL之電壓相 同的電壓之信號。此外,感測放大器電路150接收自位址 解碼器電路130輸入的信號VBAD。 144995.doc 201029011 源極線驅動電路1 60輸出用於驅動源極線SL(第一源極線 SLA及第二源極線SLB)的信號VSL。背閘線驅動電路1 70輸 出用於驅動背閘線BG的信號VBG。 分別提供第一列解碼器電路1 8〇a及第二列解碼器電路 1 80b,針對每一記憶體區塊mb有一個列解碼器電路。每 一第一列解碼器電路180a提供於各別記憶體區塊mb之在 列方向上的一末端處。每一第二列解碼器電路丨8〇b提供於 各別記憶體區塊MB之在列方向上的另一末端處。 基於自位址解碼器電路130輸出之信號vBAD,每一第一 列解碼器電路180a將信號VCG1&lt;i&gt;至Vcg4^選擇性地輸入至 記憶體電晶體MTrl至MTr4的閘極。此外,基於信號 VBAD ’第一列解碼器電路180a將信號Vsguo選擇性地輸 入至第二行中之源極側選擇電晶體SSTr的閘極。此外,基 於信號vBAD,第一列解碼器電路180a將信號Vsgd〗〇選擇 性地輸入至第一行中之汲極側選擇電晶體SDTr的閘極。 每一第一列解碼器電路180a具有:一電壓轉換電路 l8〇aa、苐一轉移電晶體igia至i86a,及第二轉移電晶體 187a及188a。電壓轉換電路180aa基於接收到之信號Vbad 及Vrdec產生信號VSELa&lt;i&gt;,該信號vSELa&lt;i&gt;又輸出至第一轉 移電晶體181a至186a的閘極。此外,電壓轉換電路18〇aa 基於接收到之信號vBAD的電壓而控制第二轉移電晶體丨87a 及1 88a的閘極。 第一轉移電晶體181a至184a之閘極接收來自電壓轉換電 路180aa的信號VSELa&lt;i&gt;。第一轉移電晶體181&amp;至184&amp;連接 144995.doc -12- 201029011 於字線驅動電路110a與字線WL1至WL4之間。第一轉移電 晶體181a至l84a基於信號Vc⑴至¥(^及VsELa&lt;i&gt;向字線wu 至WL4輸出信號VcGKi^Vcc^o。此外,第一轉移電晶體 185a連接於選擇閘極線驅動電路12〇a與第二行中的源極側 選擇電晶體SSTr的源極侧選擇閘極線SGS之間。第一轉移 電晶體185a基於信號%仍2及VsELa&lt;i&gt;向源極側選擇閘極線 SGS輸出信號VSGS2&lt;i&gt; 。此外,第一轉移電晶體l86a連接 於選擇閘極線驅動電路1 20a與第一行中的汲極側選擇電晶 ® 體SDTr的汲極侧選擇閘極線SGD之間。第一轉移電晶體 186&amp;基於信號Vsgim及VSELa&lt;i&gt;向汲極側選擇閘極線SGD輸 出4吕號VSGm&lt;i&gt; 〇 第二轉移電晶體187a及188a之閘極接收來自電壓轉換電 路180aa的號。第一轉移電晶體187a的一末端連接至第 二行中的源極側選擇電晶體SSTr之源極侧選擇閘極線 SGS,且信號Vsg〇ff輸入至另一末端。第二轉移電晶體 φ 188&amp;的—末端連接至第一行中的汲極側選擇電晶體SDTr之 汲極侧選擇閘極線SGD,且信號Vsg〇ff輸入至另一末端。 基於自位址解碼器電路13〇輸出之信號Vbad,每一第二 列解碼器電路180b將信號V⑽◊至VCG8◊選擇性地輸入至 記憶體電晶體MTr5至MTr8的閘極。此外,基於信號 VBAD,第二列解碼器電路18〇b將信號VSGS1◊選擇性地輸 入至第—行中之源極側選擇電晶體SSTr的閘極。此外,基 於信號VBAD,第二列解碼器電路18叽將信號選擇 I·生地輸入至第二行中之没極側選擇電晶體的閉極。此 144995.doc •13. 201029011 外,基於信號vBAD ’第二列解碼器電路18〇b將信號Vbg〈卜 選擇性地輸入至背閘電晶體BTr的閘極。 母一第一列解碼器電路180b具有:一電壓轉換電路 180bb、第一轉移電晶體181b至187b,及第二轉移電晶體 188b及189b。電壓轉換電路180bb基於接收到之信號Vbad 及vRDEC的電壓而產生信號VsELb&lt;i&gt;,且將該信號 出至第一轉移電晶體181b至187b的閘極。此外,電麼轉換 電路180bb基於接收到之信號Vbad而控制第二轉移電晶體 188b及189b的閘極。 第一轉移電晶體181b至187b之閘極接收來自電壓轉換電 路180bb的信號vSELb&lt;i&gt;。第一轉移電晶體181b至184b分別 連接於字線驅動電路ll〇b與字線WL5至WL8之間。第一轉 移電晶體1811^至18415基於信號乂(:(35至乂(^8及乂^1^&lt;丨&gt;而向字 線WL5至1WL8輸入信號VCG5&lt;i&gt;至VCG8&lt;i&gt;。此外,第一轉移 電晶體185b連接於選擇閘極線驅動電路i2〇b與第一行中的 源極侧選擇電晶體SSTr的源極側選擇閘極線SGS之間。第 轉移電BB體185b基於信號VsGSl及VsELb&lt;i&gt;而向源極側選 擇閘極線SGS輸出信號v SGSl&lt;i&gt; 。 此外,第一轉移電晶體 186b連接於選擇閘極線驅動電路12〇b與第二行中的汲極側 選擇電晶體SDTr的汲極側選擇閘極線SGD之間。第一轉移 電晶體186b基於信號vSGD2及V SELb&lt;i&gt;而向没極側選擇閘極 線SGD輸出信號乂⑽^,。此外,第一轉移電晶體18713連 接於背閘線驅動電路170與背閘線BG之間。第一轉移電晶 體18八基於信號VBG及VSELb&lt;i&gt;而向背閘線BG輸入信號 H4995.doc • 14· 201029011The class 0 J needs to provide a non-volatile semiconductor storage device in which the erase operation can be performed in an effective manner. The non-volatile semiconductor storage device of the invention is 144995.doc 201029011 [Description of the Invention] The volatile semiconductor storage device comprises: a memory string comprising a plurality of memory cells connected in series; a first selection transistor having a -m-m line connected to one end of the memory body, having Connected to the other end of the first selection transistor; a second wiring connected to the -interpole 'and-control circuit of the first selection transistor, configured to perform an erase operation Thereby erasing data from the memory cells, the memory string comprising: a first semiconductor layer having a columnar portion extending in a direction perpendicular to a substrate; a charge storage layer formed a conductive layer TM guiding layer extending around the charge storage layer and the substrate, the first selective transistor comprising: a second semiconductor layer contacting a top surface or a bottom surface of the columnar portion and Extending perpendicular to the direction of the substrate; a first gate insulating layer formed to surround the second semiconductor layer; and a second conductive layer surrounding the first gate insulating layer and parallel to the substrate Extending, the control circuit is configured to boost the voltage of the second wiring and the first wiring during the erasing operation while maintaining the voltage of the first wiring greater than the voltage of the second wiring The potential difference, which is a potential difference that causes a GIDL current. [Embodiment] An embodiment of a nonvolatile semiconductor storage device according to the present invention will now be described with reference to the accompanying drawings. [First Embodiment] I44995.doc 201029011 (General Configuration of Nonvolatile Semiconductor Storage Device in First Embodiment) Referring first to FIG. 1 ' Hereinafter, a nonvolatile semiconductor storage device according to a first embodiment will be described. General configuration. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a circuit diagram of a nonvolatile semiconductor storage device in a first embodiment. As illustrated in Fig. 1, the nonvolatile semiconductor storage device of the first embodiment comprises a memory cell array AR1 and a control circuit AR2 provided on the periphery of the memory cell array AR1. The memory cell array AR1 has electrically rewritable memory transistors MTrl to MTr8 (memory cells). The control circuit AR2 includes control circuits for controlling voltages applied to the memory transistors MTrl to MTr8 and the like. As described in Fig. 1, the memory cell array ARi has m rows of memory blocks MB. Each memory block MB includes an n-column and a 2-row memory string MS, source-side selection transistors SSTr' each connected to one end of the memory string MS, and each connected to the other end of the memory string MS The transistor SDTr is selected on the drain side. Note that in the example of Figure 1, the first row is represented by (j) and the second row is represented by (2). As illustrated in Fig. 2, each memory string MS has a memory transistor MTrl to MTr8 and a back-gate transistor BTr. The memory dielectric crystals MTrl to MT4 are connected in series. The memory transistors MTr5 to MTr8 are connected in series. The back gate transistor BTr is provided between the memory transistors MTr4 and MTr5. The memory transistors MTr 1 to MTr8 including the MONOS structure cause charges to accumulate in the respective control gates. The non-volatile semiconductor storage device of the first embodiment stores data via accumulation of electric charges. As shown in Fig. 2, the control gates 144995.doc 201029011 of the memory transistors MTrl to MTr8 are connected to the word lines WL1 to WL8. The control gate of the back gate transistor BTr is connected to the back gate line BG. As illustrated in Fig. 1, the respective word lines WLi (i = 1 to 8) are commonly supplied to the respective memory transistors MTn (1 = 1 to) in the memory strings MS aligned in the column direction. The control gate of 8) is formed to extend in the column direction across the memory string MS. Similarly, each of the back gate lines BG is commonly supplied to the control gates of the back gate transistor BTr aligned in the column direction, and is formed to extend in the column direction over the memory string MS. One end of each of the source side selection transistors SSTr is connected to one end of the memory transistor MTr8 as illustrated in Fig. 2 . The other end of each source side selective electro-optic body SSTr is connected to the first source line SLa. The control gate of each source side selection transistor SSTr is connected to the source side selection gate line SQS. As illustrated in FIG. 1, each of the first source lines SLA is commonly supplied to the source of the source side selection transistor SSTr aligned in the column direction, and is formed to cross the plurality of memory strings MS in the column. Extend in the direction. The first source lines SLA aligned in the row direction φ are commonly connected to a single second source line SLB extending in the row direction. Each of the source side selection gate lines SgS is commonly supplied to the control gate of the source side selection transistor 881 &gt; aligned in the column direction, and is formed to extend in the column direction across the plurality of memories _MS . As illustrated in Fig. 2, the end of each of the drain side selection transistors 81) 1 &gt; is connected to one end of the memory transistor MTrl. The other end of each of the drain side selective electro-optic bodies SDTr is connected to the bit line BL. The control gate of each of the drain side selection transistors SDTr is connected to the drain side selection gate line 8 (31). 144995.doc 201029011 As illustrated in FIG. 1, each bit line BL is commonly supplied to the drain of the drain side selection transistor SDTr aligned in the row direction, and is formed to cross a plurality of memory blocks MB Extend in the row direction. Each of the drain side selection gate lines SGD is commonly supplied to the control gates of the gateless selection transistors SDTr aligned in the column direction, and is formed to extend in the column direction across the plurality of memory strings MS. In the erasing operation, the control circuit AR2 boosts the voltages of the source line 乩 and the source side selection gate line SGS while maintaining the source line 乩 (the first source line SLA and the second source line SLB) The voltage is greater than the voltage of the source side selection gate line sgs by a certain potential difference. This potential difference is the potential difference Vth that causes the GIDL current. This is one of the features of this embodiment. Note that a potential difference is not limited to the potential difference Vth. As illustrated in FIG. 1, the control circuit AR2 has an input/output circuit 100, word line drive circuits 110a and 110b, select gate line drive circuits 120a and 120b, a bit address decoder circuit 13A, and a boost circuit i4. 〇a to 140C, a sense amplifier circuit 15A, a source line driver circuit 16A, a back gate line driver circuit 170, a first column decoder circuit i 8〇a, and a second column decoder circuit 180b, and a sequencer 190. As illustrated in Fig. 1, the input/output circuit 100 receives information from the outside to be input to the memory cell array AR1, and inputs the information to the sense amplifier circuit 150. Further, the input/output circuit 1 outputs information from the sense amplifier circuit 150. As illustrated in Fig. 1, the word line drive circuit 11 〇 &amp; outputs signals 乂^ to vCG4 for driving the word lines WL1 to WL4. The word line driver circuit n〇b outputs 144995.doc -10- 201029011 for driving the signals vCG5 to VCG8 of the word lines WL5 to WL8. The gate line driver circuit 120 &amp; output signals vsgsi, vSGD2, and vSG0FF are selected. The gate line driving circuit 12 〇 & output signals vsgs2 and vSGOFF are selected. The signal vSGS1 & vSGS2 is used to drive the source side selection gate line SGS in the selected memory block (hereinafter referred to as "selected memory block MB"). Signals VsGD2 and VsGD1 are used to drive the drain side select gate line SGD in the selected memory block MB. The signal Vsg〇ff is used to drive the source side selection gate line SGs and the drain side selection gate in the unselected memory block MB (hereinafter referred to as "non-selected memory block MB"). Polar line SGD. The address decoder circuit 13 outputs a signal Vbad 0 for specifying the block address. The boost circuit 140 A boosts the voltage from the power supply voltage and transfers the boosted voltage to the word line drive circuit 11 〇 & And the 1101 boost circuit 14 〇 B boosts the voltage from the power supply voltage to obtain a signal VRDEC, which is output to the first column decoder circuit 180a and the second column decimator circuit 18b. The boosting circuit 140C boosts the voltage from the power supply voltage to obtain a signal vERA, which is output to the source line driving circuit 160. The signal VERA is used to erase data from the memory transistor MTrl to MTr8. The sense amplifier circuit 150 reads information based on the voltage of the bit line BL. Further, the sense amplifier circuit 150 supplies the bit line BL with a signal of the same voltage as the voltage of the signal VSL of the source line SL (the first source line SLA and the second source line SLB). In addition, sense amplifier circuit 150 receives signal VBAD input from address decoder circuit 130. 144995.doc 201029011 The source line driver circuit 1 60 outputs a signal VSL for driving the source line SL (the first source line SLA and the second source line SLB). The back gate line driving circuit 1 70 outputs a signal VBG for driving the back gate line BG. A first column of decoder circuits 18a and a second column of decoder circuits 1 80b are provided, respectively, with one column decoder circuit for each memory block mb. Each of the first column decoder circuits 180a is provided at one end of the respective memory block mb in the column direction. Each of the second column decoder circuits 丨8〇b is provided at the other end of the respective memory block MB in the column direction. Based on the signal vBAD output from the address decoder circuit 130, each of the first column decoder circuits 180a selectively inputs the signals VCG1 &lt;i&gt; to Vcg4^ to the gates of the memory transistors MTrl to MTr4. Further, the signal Vsguo is selectively input to the gate of the source side selection transistor SSTr in the second row based on the signal VBAD' first column decoder circuit 180a. Further, based on the signal vBAD, the first column decoder circuit 180a selectively inputs the signal Vsgd to the gate of the drain side selection transistor SDTr in the first row. Each of the first column decoder circuits 180a has a voltage conversion circuit 108a, a transfer transistor igia to i86a, and second transfer transistors 187a and 188a. The voltage conversion circuit 180aa generates a signal VSELa&lt;i&gt; based on the received signals Vbad and Vrdec, which is output to the gates of the first transfer transistors 181a to 186a. Further, the voltage conversion circuit 18Aa controls the gates of the second transfer transistor 丨87a and 188a based on the voltage of the received signal vBAD. The gates of the first transfer transistors 181a to 184a receive the signal VSELa&lt;i&gt; from the voltage conversion circuit 180aa. The first transfer transistor 181 & to 184 & 144995.doc -12- 201029011 is between the word line driver circuit 110a and the word lines WL1 to WL4. The first transfer transistors 181a to 184a output signals VcGKi^Vcc^o to the word lines wu to WL4 based on the signals Vc(1) to ¥(^ and VsELa&lt;i&gt;. Further, the first transfer transistor 185a is connected to the selection gate line driving circuit. 12〇a and the source side selection gate line SGS of the source side selection transistor SSTr in the second row. The first transfer transistor 185a selects the gate to the source side based on the signal %2 and VsELa&lt;i&gt; The pole line SGS output signal VSGS2&lt;i&gt;. Further, the first transfer transistor l86a is connected to the gate line selection circuit 1 20a and the drain side selection gate of the drain side selection transistor XRD in the first row Between the lines SGD, the first transfer transistor 186 & based on the signals Vsgim and VSELa&lt;i&gt; to the drain side select gate line SGD output 4 Lu VSGm&lt;i&gt; 〇Second transfer transistors 187a and 188a gate reception The number from the voltage conversion circuit 180aa. One end of the first transfer transistor 187a is connected to the source side selection gate line SGS of the source side selection transistor SSTr in the second row, and the signal Vsg〇ff is input to the other End. The end of the second transfer transistor φ 188 & The drain side of the first row selects the drain side selection gate line SGD of the transistor SDTr, and the signal Vsg〇ff is input to the other end. Based on the signal Vbad output from the address decoder circuit 13〇, each The two-column decoder circuit 180b selectively inputs the signal V(10) to VCG8◊ to the gates of the memory transistors MTr5 to MTr8. Further, based on the signal VBAD, the second column decoder circuit 18〇b selects the signal VSGS1◊ selectively The ground is input to the gate of the source side selection transistor SSTr in the first row. Further, based on the signal VBAD, the second column decoder circuit 18 输入 inputs the signal selection I·the ground to the bottom side of the second row. The closed pole of the transistor. This 144995.doc •13. 201029011, based on the signal vBAD 'the second column decoder circuit 18〇b selectively inputs the signal Vbg<b to the gate of the back gate transistor BTr. The first column decoder circuit 180b has a voltage conversion circuit 180bb, first transfer transistors 181b to 187b, and second transfer transistors 188b and 189b. The voltage conversion circuit 180bb is generated based on the voltages of the received signals Vbad and vRDEC. Signal VsELb&lt;i&gt; And outputting the signal to the gates of the first transfer transistors 181b to 187b. Further, the power conversion circuit 180bb controls the gates of the second transfer transistors 188b and 189b based on the received signal Vbad. The gates of the crystals 181b to 187b receive the signal vSELb&lt;i&gt; from the voltage conversion circuit 180bb. The first transfer transistors 181b to 184b are connected between the word line drive circuit 11b and the word lines WL5 to WL8, respectively. The first transfer transistors 1811^ to 18415 input signals VCG5&lt;i&gt; to VCG8&lt;i&gt; to the word lines WL5 to 1WL8 based on the signal 乂(:(35 to ^(^8 and 乂^1^&lt;。&gt;). Further, the first transfer transistor 185b is connected between the selection gate line driving circuit i2〇b and the source side selection gate line SGS of the source side selection transistor SSTr in the first row. The first transfer electric BB body 185b The gate line SGS output signal v SGS1 &lt;i&gt; is selected to the source side based on the signals VsGS1 and VsELb&lt;i&gt;. Further, the first transfer transistor 186b is connected to the selection gate line driving circuit 12〇b and the second row. The drain side selects between the drain side select gate lines SGD of the transistor SDTr. The first transfer transistor 186b selects the gate line SGD output signal 没(10) based on the signals vSGD2 and V SELb&lt;i&gt; In addition, the first transfer transistor 18713 is connected between the back gate line driving circuit 170 and the back gate line BG. The first transfer transistor 18 is based on the signals VBG and VSELb&lt;i&gt; and inputs the signal H4995 to the back gate line BG. Doc • 14· 201029011

Vbg&lt;i&gt; 0 第一轉移電晶體188b及189b之閘極自電麗轉換電路 180bb接收信號。第二轉移電晶體188b的一末端連接至第 一行中的源極側選擇電晶體SSTr之源極側選擇閘極線 SGS ’且信號VsGOFF輸入至另一末端。第二轉移電晶體 189b的一末端連接至第二行中的汲極側選擇電晶體 汲極側選擇閘極線SGD,且信號VsG0FF輸入至另一末端。 序列器190向字線驅動電路ii〇a及11 〇b、選擇閘極線驅 動電路120a及120b ’以及源極線驅動電路16〇輸入控制信 號。 如圖3中所說明,每一字線驅動電路110a包括第一字線 驅動電路110A至第四字線驅動電路11 〇D。第一字線驅動 電路110A輸出信號VCG1。第二字線驅動電路110B輸出信號 VcG2。第二字線驅動電路11 0C輸出信號VcG3。第四字線驅 動電路110D輸出信號VCG4。 如圖3中所說明,每一字線驅動電路η 〇b包括第一字線 驅動電路110A至第四字線驅動電路11 〇D。第一字線驅動 電路110A輸出信號VCG5。第二字線驅動電路110B輸出信號 VCG6。第三字線驅動電路110C輸出信號vCG7。第四字線驅 動電路110D輸出信號VCG8。 如圖3中所說明,每一第一字線驅動電路i1〇a具有:電 壓轉換電路111A至111C,及轉移電晶體112A至112C。電 壓轉換電路111 A至111C具有接收自序列器190輸入之控制 信號的輸入端子。電壓轉換電路111A至111C具有連接至轉 144995.doc -15- 201029011 移電晶體112A至112C之閘極的輸出端子。轉移電晶體 112A至112C之輸出端子經共同連接。轉移電晶體112A之 輸入端子連接至升壓電路140A的輸出端子。轉移電晶體 112B之輸入端子連接至接地電壓Vss。轉移電晶體112C之 輸入端子連接至電源電壓Vdd。請注意,第二字線驅動電 路11OB至第四字線驅動電路110D具有與第一字線驅動電 路110 A之組態相同的組態。 如圖4中所說明’每一選擇閘極線驅動電路i20a(120b)包 括第一選擇閘極線驅動電路120A至第三選擇閘極線驅動電 路120C。第一選擇閘極線驅動電路120A輸出信號VSG0FF。 第二選擇閘極線驅動電路120B輸出信號vsgs1(Vsgs2)。第 三選擇閘極線驅動電路120C輸出信號VSGD2(VSGD1)。 如圖4中所說明,第一選擇閘極線驅動電路12〇a具有: 電壓轉換電路121A及121B以及轉移電晶體122A及122B。 電壓轉換電路121A及121B具有接收來自序列器190之信號 的輸入端子。電壓轉換電路121A及12 1B具有連接至轉移 電晶體122A及122B之閘極的輸出端子。轉移電晶體122A 及122B之輸出端子經共同連接。轉移電晶體i22A之輸入 端子連接至接地電壓Vss。轉移電晶體122B之輸入端子連 接至電源電壓Vdd。請注意’第二選擇閘極線驅動電路 120B及第三選擇閘極線驅動電路120C具有與第一選擇閘 極線驅動電路120A之組態相同的組態。 升壓電路140A至140C借助於電容器之充電及放電而產 生高於電源電壓Vdd的電壓。如圖5中所說明,升壓電路 144995.doc -16- 201029011 140A至140C具有二極體143a至143η以及充電及放電電路 144a至1441。請注意,升壓電路140 Α至140C可能具有更 多二極禮以及充電及放電電路。 如圖5中所說明’二極體143a至143e串聯連接。二極體 143f至143η串聯連接。二極體143a之一末端連接至二極體 143f的一末端。二極體I43e之一末端連接至二極體14311的 一末端。 如圖5中所說明’充電及放電電路144a至144d的輸出端 子連接於二極體143a至143e之間。充電及放電電路14牦至 1441的輸出端子連接於二極體143f至143η之間。充電及放 電電路144a垒Μ41中之每一者涉及串聯連接的AND電路 144A、反相器144B及電容器144C。 在充電及放電電路144a至144d中,AND電路144A之一末 端處之輸入端子交替地接收信號φΐ或φ2。在充電及放電電 路144a至144d中,AND電路144Α之另一末端處之輸入端子 接收信號VPASS。 在充電及放電電路144e至1441中,AND電路144A之一末 端處之輸入端子交替地接收信號φΐ或φ2。在充電及放電電 路144e至1441中,AND電路Μ4Α之另一末端處之輸入端子 接收信號VPRCJ。 現參看圖6A及圖6B,下文中將描述升壓電路140A至 140C的操作。圖6A及圖6B為說明升壓電路140A至140C之 操作的時序圖。如圖6A及圖6B中所說明,視所產生之信 號而定’升壓電路14〇A至140C將信號VPASS或信號VpRG設 144995.doc -17- 201029011 定為電源電壓Vdd或接地電壓Vss。 如圖7中所說明,源極線驅動電路16〇具有:電壓轉換電 路161A至161C,及轉移電晶體162A至162C。電壓轉換電 路161A至161C及轉移電晶體162A至162C以與字線驅動電 路110a中之電壓轉換電路iiiA至me及轉移電晶體112A 至112C相同的方式連接。電壓轉換電路161八至161(:具有 接收自序列器190輸入之信號的輸入端子。轉移電晶體 162A之輸入端子連接至升壓電路14〇c的輸出端子。轉移 電晶體162B之輸入端子連接至接地電壓vss。轉移電晶體 162C之輸入端子連接至電源電壓vdd。 如圖8中所說明,感測放大器電路15〇具有:複數個選擇 電路151,及電壓轉換電路152A及152B。每一選擇電路 151將位元線BL選擇性地連接至源極線SL,且將位元線bl 設定為具有與源極線SL之電位相同的電位。 如圖8中所說明’每一選擇電路ι51具有:一頁緩衝器 151a,及電晶體1511:)及151(;。頁緩衝器15U的一末端連接 至電晶體151b之自位元線BL接收信號之一末端,且向輸入/ 輸出電路100及位址解碼器電路130輸入基於該信號的輸 出°電晶體151b的另一末端連接至位元線bl。電晶體151b 亦具有一控制閘極,該控制閘極接收自電壓轉換電路1 52A 輸出的信號VCUT。電晶體151c的一末端連接至位元線 BL °電晶體151c的另一末端連接至源極線sl。電晶體 151c亦具有一控制閘極’該控制閘極接收自電壓轉換電路 152B輸出的信號vrst。 144995.doc •18- 201029011 電壓轉換電路152A接收來自序列器190之信號,且基於 該信號而輸出信號VCUT。電壓轉換電路152B接收來自序 列器190之信號’且基於該信號而輸出信號vrst。 (第一實施例中之非揮發性半導體儲存裝置的層疊結構) 現參看圖9及圖1〇,下文中將描述根據第一實施例之非 揮發性半導體儲存裝置的層疊結構。圖9為說明第一實施 例中之非揮發性半導體儲存裝置中之記憶體單元陣列AR丄 的一部分之示意性透視圖。圖10為圖9之局部橫截面圖。 如圖9中所說明,記憶體單元陣列AR1提供於基板1〇 上。記憶體單元陣列AR1具有:一背閘電晶體層2〇、一記 憶體電晶體層30、一選擇電晶體層40及一配線層5〇。背閑 電aa體層20充當背閘電晶體BTr。記憶體電晶體層3 〇充當 記憶體電晶體MTrl至MTr8(記憶體串MS)。選擇電晶體層 40充當源極側選擇電晶體SSTr及汲極側選擇電晶體SDTr。 配線層50充當源極線SL及位元線BL。 φ 如圖9及圖1〇中所說明,背閘電晶體層20具有一背閘傳 導層21。背閘傳導層21經形成以平行於基板1〇在列及行方 向上以二維方式擴展。背閘傳導層21對於每—記憶體區塊 • 河8為分離的。背閘傳導層21包含多晶矽(p-Si)。每一背閉 - 傳導層21充當一背閘線BG。 如圖10中所說明,背閘電晶體層20具有一背閘孔22。該 背閘孔22經形成以插入至背閘傳導層21中。每一背閑孔22 經形成為大體上矩形形狀,如自上方觀察,且其縱向方向 在行方向上。背閘孔22在列及行方向上形成為矩陣形式。 144995.doc •19· 201029011 如圖9及圖10中所玲^ 說月,§己憶體電晶體層30形成於背閘 電晶體層2G上《•記憶體電晶體層3q具有 31d。字線傳導層3U至3ld與夾於其:專導&amp; μ nn、a *〜此 具之間的層間絕緣層(未 說明)層叠。子線傳導層3咖形成為以行方向上之某 間距在列方向上延伸的條帶圖案。字線傳導層⑴至…包 含多晶誇叫。字線傳導層31a至3U 至 WLS。字線傳導層31&amp;至31(1充去 充田0己憶體電晶體MTrl至 MTr8的控制閘極。 如圖10中所說明,記憶體電晶體層3〇具有一記憶體孔 32。該記憶體孔32經形成以穿透字線傳導層…至w。記 憶體孔32形成於在㈣孔22之行方向上接近每—末端匹配 的位置處。 此外,如圖1〇中所說明’背問電晶體層2〇及記憶體電晶 體層30具有:-區塊絕緣層—電荷儲存層奶一穿 隨絕緣層33c及一 U形本道辦jsu x T . 办牛導體層34。該1^形半導體層34充當 記憶體串MS的本體。 如圖ίο中所說明,區塊絕緣層33a經形成以在背閘孔22 及記憶體孔32之側壁上具有某厚度。電荷儲存層别經形 成以在區塊絕緣層33a之側表面上具有某厚度。穿隧絕緣 層33c經形成以在電荷儲存層33b之側表面上具有某厚度。 U形半導體層34經形成為與穿隧絕緣層33c之侧表面接觸。 U形半導體層34經形成以填滿背閘孔22及記憶體孔32。如 自列方向觀察時’ U形半導體層34形成為U形形狀。u形半 導體層34具有一對在在垂直於基板1〇之方向上延伸之柱狀 144995.doc -20- 201029011 部分34a及一接合該對柱狀部分34a之下部末端的接合部分 34b 〇 區塊絕緣層33a及穿隧絕緣層33C包含二氧化石夕(Si〇2)。 電荷儲存層33b包含氮化石夕(SiN)。u形半導體層34包含多 晶矽(p-Si)。區塊絕緣層33a、電荷儲存層33b、穿隧絕緣 層33c及11开&gt; 半導體層34充當記憶體電晶體MTr丨至μτγ8的 MONOS。 將背閘電晶體層20之以上提及的組態重新陳述如下:穿 隧絕緣層33c經形成以包圍接合部分34b。背閘傳導層21經 形成以包圍接合部分34b。 將記憶體電晶體層30之以上提及的組態重新陳述如下: 穿隧絕緣層33c經形成以包圍柱狀部分34a。電荷儲存層 33b經形成以包圍穿隧絕緣層33c。區塊絕緣層33&amp;經形成 以包圍電荷儲存層33b。字線傳導層31&amp;至31(1經形成以包 圍區塊絕緣層33a及柱狀部分34a。 如圖9及圖10中所說明,選擇電晶體層4〇具有一源極側 傳導層41a及一汲極側傳導層41b。源極側傳導層41&amp;及汲 極側傳導層41b形成為以行方向上之某間距在列方向上延 伸的條帶圖案。一對源極側傳導層4U及一對汲極側傳導 層41b在行方向上交替地定位。每一源極側傳導層4u形成 於包括於一各別17形半導體層34中之柱狀部分34a中的一者 上方,而每一汲極侧傳導層41b形成於包括於該^^^半導體 層34中之柱狀部分34a中的另一者上方。 源極側傳導層41a及汲極侧傳導層41b包含多晶矽(p_ 144995.doc •21 201029011Vbg&lt;i&gt; 0 The gates of the first transfer transistors 188b and 189b receive signals from the galvanic conversion circuit 180bb. One end of the second transfer transistor 188b is connected to the source side selection gate line SGS' of the source side selection transistor SSTr in the first row and the signal VsGOFF is input to the other end. One end of the second transfer transistor 189b is connected to the drain side selection transistor drain side selection gate line SGD in the second row, and the signal VsG0FF is input to the other end. The sequencer 190 inputs control signals to the word line drive circuits ii 〇 a and 11 〇 b, the selection gate line drive circuits 120 a and 120 b ′ and the source line drive circuit 16 。. As illustrated in Fig. 3, each word line driver circuit 110a includes a first word line driver circuit 110A to a fourth word line driver circuit 11A. The first word line driver circuit 110A outputs a signal VCG1. The second word line drive circuit 110B outputs a signal VcG2. The second word line drive circuit 11 0C outputs a signal VcG3. The fourth word line driving circuit 110D outputs a signal VCG4. As illustrated in Fig. 3, each word line drive circuit η 〇b includes a first word line drive circuit 110A to a fourth word line drive circuit 11 〇D. The first word line driver circuit 110A outputs a signal VCG5. The second word line drive circuit 110B outputs a signal VCG6. The third word line drive circuit 110C outputs a signal vCG7. The fourth word line driving circuit 110D outputs a signal VCG8. As illustrated in Fig. 3, each of the first word line drive circuits i1a has: voltage conversion circuits 111A to 111C, and transfer transistors 112A to 112C. The voltage conversion circuits 111 A to 111C have input terminals that receive control signals input from the sequencer 190. The voltage conversion circuits 111A to 111C have output terminals connected to the gates of the transfer 144995.doc -15-201029011 shift transistors 112A to 112C. The output terminals of the transfer transistors 112A to 112C are connected in common. The input terminal of the transfer transistor 112A is connected to the output terminal of the booster circuit 140A. The input terminal of the transfer transistor 112B is connected to the ground voltage Vss. The input terminal of the transfer transistor 112C is connected to the power supply voltage Vdd. Note that the second word line drive circuit 11OB to the fourth word line drive circuit 110D have the same configuration as that of the first word line drive circuit 110 A. As shown in Fig. 4, each of the selection gate line driving circuits i20a (120b) includes a first selection gate line driving circuit 120A to a third selection gate line driving circuit 120C. The first selection gate line driving circuit 120A outputs a signal VSG0FF. The second selection gate line driving circuit 120B outputs a signal vsgs1 (Vsgs2). The third selection gate line driving circuit 120C outputs a signal VSGD2 (VSGD1). As illustrated in FIG. 4, the first selection gate line driving circuit 12A has: voltage conversion circuits 121A and 121B and transfer transistors 122A and 122B. The voltage conversion circuits 121A and 121B have input terminals for receiving signals from the sequencer 190. The voltage conversion circuits 121A and 12 1B have output terminals connected to the gates of the transfer transistors 122A and 122B. The output terminals of the transfer transistors 122A and 122B are connected in common. The input terminal of the transfer transistor i22A is connected to the ground voltage Vss. The input terminal of the transfer transistor 122B is connected to the power supply voltage Vdd. Note that the 'second selection gate line driver circuit 120B and the third selection gate line driver circuit 120C have the same configuration as that of the first selection gate line driver circuit 120A. The boosting circuits 140A to 140C generate a voltage higher than the power supply voltage Vdd by the charging and discharging of the capacitor. As illustrated in Fig. 5, the boosting circuit 144995.doc -16 - 201029011 140A to 140C has diodes 143a to 143n and charging and discharging circuits 144a to 1441. Please note that boost circuits 140 Α to 140C may have more diodes and charging and discharging circuits. The diodes 143a to 143e are connected in series as illustrated in Fig. 5. The diodes 143f to 143n are connected in series. One end of the diode 143a is connected to one end of the diode 143f. One end of the diode I43e is connected to one end of the diode 14311. The output terminals of the charging and discharging circuits 144a to 144d are connected between the diodes 143a to 143e as illustrated in Fig. 5. The output terminals of the charging and discharging circuits 14A to 1441 are connected between the diodes 143f to 143n. Each of the charging and discharging circuit 144a barrier 41 involves an AND circuit 144A, an inverter 144B, and a capacitor 144C connected in series. In the charging and discharging circuits 144a to 144d, the input terminal at one of the ends of the AND circuit 144A alternately receives the signal φ ΐ or φ 2 . In the charging and discharging circuits 144a to 144d, the input terminal at the other end of the AND circuit 144 receives the signal VPASS. In the charging and discharging circuits 144e to 1441, the input terminal at one of the ends of the AND circuit 144A alternately receives the signal φ ΐ or φ 2 . In the charging and discharging circuits 144e to 1441, the input terminal at the other end of the AND circuit Α4Α receives the signal VPRCJ. Referring now to Figures 6A and 6B, the operation of the boosting circuits 140A to 140C will be described hereinafter. 6A and 6B are timing charts illustrating the operation of the boosting circuits 140A to 140C. As shown in Figs. 6A and 6B, the boosting circuits 14A to 140C set the signal VPASS or the signal VpRG to 144995.doc -17-201029011 as the power supply voltage Vdd or the ground voltage Vss depending on the generated signal. As illustrated in Fig. 7, the source line driving circuit 16A has voltage converting circuits 161A to 161C, and transfer transistors 162A to 162C. The voltage converting circuits 161A to 161C and the transfer transistors 162A to 162C are connected in the same manner as the voltage converting circuits iiiA to me and the transfer transistors 112A to 112C in the word line driving circuit 110a. Voltage conversion circuits 161 to 161 (: an input terminal having a signal received from the input of the sequencer 190. The input terminal of the transfer transistor 162A is connected to the output terminal of the booster circuit 14A. The input terminal of the transfer transistor 162B is connected to The grounding voltage vss. The input terminal of the transfer transistor 162C is connected to the power supply voltage vdd. As illustrated in Fig. 8, the sense amplifier circuit 15A has a plurality of selection circuits 151, and voltage conversion circuits 152A and 152B. 151 selectively connects the bit line BL to the source line SL, and sets the bit line b1 to have the same potential as the potential of the source line SL. As illustrated in Fig. 8, 'each selection circuit ι51 has: One page buffer 151a, and transistors 1511:) and 151 (1. One end of the page buffer 15U is connected to one end of the receiving signal from the bit line BL of the transistor 151b, and to the input/output circuit 100 and the bit The address decoder circuit 130 inputs an output based on the signal. The other end of the transistor 151b is connected to the bit line bl. The transistor 151b also has a control gate which is received from the voltage conversion circuit 1 52A. The signal VCUT is output. One end of the transistor 151c is connected to the bit line BL ° The other end of the transistor 151c is connected to the source line sl. The transistor 151c also has a control gate 'The control gate receives the self-voltage conversion The signal vrst is output by the circuit 152B. 144995.doc • 18- 201029011 The voltage conversion circuit 152A receives the signal from the sequencer 190 and outputs a signal VCUT based on the signal. The voltage conversion circuit 152B receives the signal from the sequencer 190' and based thereon Signal and output signal vrst. (Laminated structure of nonvolatile semiconductor storage device in the first embodiment) Referring now to FIGS. 9 and 1B, a cascading of the nonvolatile semiconductor storage device according to the first embodiment will be described hereinafter. Fig. 9 is a schematic perspective view showing a part of the memory cell array AR丄 in the nonvolatile semiconductor storage device in the first embodiment. Fig. 10 is a partial cross-sectional view of Fig. 9. The memory cell array AR1 is provided on the substrate 1. The memory cell array AR1 has a back gate transistor layer 2, a memory transistor layer 30, and a selection. The crystal layer 40 and a wiring layer 5A. The back-charged aa body layer 20 functions as a back gate transistor BTr. The memory transistor layer 3 serves as a memory transistor MTrl to MTr8 (memory string MS). The transistor layer 40 is selected. It functions as a source side selection transistor SSTr and a drain side selection transistor SDTr. The wiring layer 50 serves as a source line SL and a bit line BL. φ As illustrated in FIGS. 9 and 1B, the back gate transistor layer 20 has A back gate conductive layer 21. The back gate conductive layer 21 is formed to expand in a two-dimensional manner in the column and row directions parallel to the substrate 1 . The back gate conductive layer 21 is separate for each memory block • River 8. The back gate conductive layer 21 contains polycrystalline germanium (p-Si). Each of the dorsal-conducting layers 21 acts as a back gate line BG. As illustrated in FIG. 10, the back gate transistor layer 20 has a back gate hole 22. The back gate hole 22 is formed to be inserted into the back gate conductive layer 21. Each of the back free holes 22 is formed into a substantially rectangular shape as viewed from above, and its longitudinal direction is in the row direction. The back gate holes 22 are formed in a matrix form in the column and row directions. 144995.doc •19· 201029011 As shown in Fig. 9 and Fig. 10, the memory layer 30 is formed on the back gate transistor layer 2G. • The memory transistor layer 3q has 31d. The word line conductive layers 3U to 3ld are laminated with an interlayer insulating layer (not shown) sandwiched between them: a dedicated &amp; μ nn, a *~. The sub-line conductive layer 3 is formed as a stripe pattern extending in the column direction at a certain pitch in the row direction. The word line conducting layers (1) to ... contain polycrystalline boasts. Word line conductive layers 31a to 3U to WLS. The word line conducting layers 31 &amp; to 31 (1 charge the control gate of the Tin Tin 0 memory cell MTrl to MTr8. As illustrated in Fig. 10, the memory transistor layer 3 has a memory hole 32. The memory holes 32 are formed to penetrate the word line conductive layers ... to w. The memory holes 32 are formed at positions close to each end in the direction of the (four) holes 22. Further, as illustrated in FIG. The transistor layer 2 and the memory transistor layer 30 have: - a block insulating layer - a charge storage layer, a milk penetrating insulating layer 33c, and a U-shaped main circuit jsu x T. a bovine conductor layer 34. The 1^ The semiconductor layer 34 serves as a body of the memory string MS. As illustrated in Fig., the block insulating layer 33a is formed to have a certain thickness on the sidewalls of the back gate hole 22 and the memory hole 32. The charge storage layer is formed. The gate insulating layer 33c is formed to have a certain thickness on the side surface of the charge storage layer 33b. The U-shaped semiconductor layer 34 is formed to be the tunneling insulating layer 33c. The side surface contacts. The U-shaped semiconductor layer 34 is formed to fill the back gate hole 22 and the memory hole 32. The U-shaped semiconductor layer 34 is formed in a U-shape when viewed from the column direction. The u-shaped semiconductor layer 34 has a pair of pillars 144995.doc -20- 201029011 portion 34a extending in a direction perpendicular to the substrate 1〇. And a bonding portion 34b joining the lower end portions of the pair of columnar portions 34a, the block insulating layer 33a and the tunneling insulating layer 33C containing the SiO2 (Si〇2). The charge storage layer 33b contains the cerium (SiN) The u-shaped semiconductor layer 34 contains polycrystalline germanium (p-Si). The block insulating layer 33a, the charge storage layer 33b, and the tunnel insulating layers 33c and 11 are opened. The semiconductor layer 34 functions as a MONOS of the memory transistor MTr丨 to μτγ8. The above-mentioned configuration of the back gate transistor layer 20 is restated as follows: a tunneling insulating layer 33c is formed to surround the bonding portion 34b. The back gate conducting layer 21 is formed to surround the bonding portion 34b. The configuration mentioned above at 30 is restated as follows: The tunneling insulating layer 33c is formed to surround the columnar portion 34a. The charge storage layer 33b is formed to surround the tunneling insulating layer 33c. The block insulating layer 33 &amp; is formed to surround Charge storage layer 33b. Word line The conductive layers 31 &amp; to 31 (1 are formed to surround the block insulating layer 33a and the columnar portion 34a. As illustrated in FIGS. 9 and 10, the selective transistor layer 4A has a source side conductive layer 41a and a stack The source side conduction layer 41&amp; and the drain side conduction layer 41b are formed in a stripe pattern extending in the column direction at a certain pitch in the row direction. A pair of source side conduction layers 4U and a pair of 汲The pole side conductive layers 41b are alternately positioned in the row direction. Each of the source side conductive layers 4u is formed over one of the columnar portions 34a included in a respective 17-type semiconductor layer 34, and each of the drain side conductive layers 41b is formed to be included in the semiconductor Above the other of the columnar portions 34a in layer 34. The source side conduction layer 41a and the drain side conduction layer 41b contain polysilicon (p_144995.doc • 21 201029011)

Si)。每一源極側傳導層41 a充當源極侧選擇閘極線sgs。 每一源極側傳導層41a亦充當源極側選擇電晶體SSTr的控 制閘極。每一汲極側傳導層41b充當汲極側選擇閘極線 SGD。每一汲極側傳導層41b亦充當汲極侧選擇電晶體 SDTr的控制閘極。 如圖10中所說明,選擇電晶體層40具有一源極側孔42a 及一汲極側孔42b。源極側孔42a經形成以穿透源極側傳導 層41a。源極側孔42a形成於與記憶體孔32匹配的位置處。 汲極側孔42b經形成以穿透汲極側傳導層41b。汲極側孔 42b形成於與記憶體孔32匹配的位置處。 如圖10中所說明,選擇電晶體層40具有··一源極側閘極 絕緣層43a、.一源極側柱狀半導體層44a、一;及極側閘極絕 緣層43b及一汲極側柱狀半導體層44b。源極側閘極絕緣層 4 3 a形成於源極侧孔4 2 a的侧壁上。源極側柱狀半導體層 44a經形成為在在垂直於基板1〇之方向上延伸之柱狀形狀 且與源極側閘極絕緣層43a接觸。汲極側閘極絕緣層43b形 成於汲極側孔42b的側壁上。汲極侧柱狀半導體層44b經形 成為在在垂直於基板10之方向上延伸之柱狀形狀且與没極 側閘極絕緣層43b接觸。 源極側閘極絕緣層43a及汲極側閘極絕緣層43b包含二氧 化矽(Si〇2)。源極側柱狀半導體層4乜及汲極側柱狀半導體 層44b包含多晶碎(p-Si)。 將選擇電晶體層40之以上提及組態重新陳述如下:源極 側閘極絕緣層43a經形成以包圍源極側柱狀半導體層。 144995.doc -22- 201029011 源極側傳導層41a經形成以包圍源極側閘極絕緣層43a及源 極側柱狀半導體層44a。汲極側閘極絕緣層43b經形成以包 圍汲極側柱狀半導體層44b。汲極側傳導層41b經形成以包 圍汲極側閘極絕緣層431?及汲極側柱狀半導體層44b。 如圖9及圖10中所說明,配線層50形成於選擇電晶體層 40上。配線層50具有一源極線層51、一插塞層52及一位元 線層53。源極線層51以在列方向上延伸之類板形式形成。 源極線層5 1經形成為與在行方向上相鄰之一對源極側柱狀 半導體層44a的頂部表面接觸。插塞層52經形成以與汲極 側柱狀半導體層44b之頂部表面接觸且在在垂直於基板10 之方向上延伸。位元線層53形成為以列方向上之某間距在 行方向上延伸的條帶圖案。位元線層53經形成為與插塞層 52之頂部表面接觸。源極線層51、插塞層52及位元線層53 包含諸如鎢(W)的金屬。每一源極線層5 1充當源極線sl(第 一源極線SLA)。每一位元線層53充當位元線bl。 (第一實施例中之非揮發性半導體儲存裝置之抹除操作 的概述) 現參看圖11及圖12,下文中將略述根據第一實施例之非 揮發性半導體儲存裝置的抹除操作。圖丨丨為說明第一實施 例中之非揮發性半導體儲存裝置之抹除操作的流程圖。圖 12示意性說明抹除操作。 首先,如藉由圖12中之標籤「sii」所指示,在所選擇 記憶體區塊MB中,控制電路AR2將源極側選擇閘極線SGS 及汲極側選擇閘極線SGD提昇至某一電壓Vdd_Vth,以及 144995.doc -23- 201029011 將源極線SL及位元線BL提昇至電源電壓vdd(步驟sil)。 電源電壓vdd為比某電壓vth且歸因於電位差Vth 引起GIDL電流的電壓。 在此狀況下,如藉由圖13中之標籤「A」所指示,藉由 在源極線層5 1 (源極線SL)側上之源極側傳導層4丨a(源極侧 選擇閘極線SGS)的末端處建立較高電場而引起GIDL電 流。此外,如藉由圖13中之另一標籤rA」所指示,亦藉 由在位元線層53(位元線bl)側上之没極側傳導層4 ib(没極 側選擇閘極線SGD)的末端處建立較高電場而引起GIDL電 流。歸因於GIDL電流,產生電洞η及電子e。 此外,在步驟sii處,如藉由圖12中之標籤「sUj所指 示,控制電路AR2將字線WL1至WL8及背閘線BG提昇至電 源電壓Vdd。 隨後,如藉由圖12中之標蕺「sl2」所指示,控制電路 AR2使源極線SL及位元線BL自電源電壓vdd升壓至抹除電 壓Vera(步驟S12)。請注意,在步驟S12處之操作期間,其 他配線維持於與步驟S11中所描述之受控狀態相同的受控 狀態。然而,將源極侧選擇閘極線SGS、汲極側選擇閘極 線SGD、字線WL1至WL8及背閘線BGs定於浮動狀態。接 著,源極側選擇閘極線SGS、汲極側選擇閘極線sgd、字 線WL1至WL8及背閘線BG之各別電位歸因於與記憶體串 MS之本體的輕合而升高。 更特疋而5,在步驟S12處,執行如下控制:在源極側 選擇閘極線SGS與源極線SL之間產生大於Vth之電位差以 144995.doc •24· 201029011 及在没極側選擇閘極線SGD與位元線BL之間產生大於vth 之電位差。歸因於此電位差,引起GIDL電流且電洞注入 至記憶體串MS之本體中,從而提昇本體的電位。接著, 歸因於與記憶體串MS之本體的耦合,源極側選擇電晶體 SSTr與汲極側選擇電晶體SDTr之各別閘極電位變得高於該 某電壓Vdd-Vth。因此,將源極側選擇閘極線SGs&amp;汲極 側選擇閘極線SGD設定於浮動狀態。一旦此循環開始,記 憶體串MS之本體的電位、源極側選擇閘極線S(5s之電位及 没極侧選擇閘極線SGD之電位隨著源極線Sl及位元線Bl 之電位升高而變得較高。 在執行步驟S12處之操作之後,且當源極線%及位元線 BL達到抹除電壓Vera時’如藉由圖12中之標籤「sl3」所 指示,控制電路AR2將字線WL1至WL8及背閘線BG設定於 接地電壓Vss(步驟S13) ’且將由GIDL電流引起之電洞Η饋 給至§己憶體電晶體MTrl至MTr8的閘極中。以此方式,抹 除資料。 (第一實施例中之非揮發性半導體儲存裝置的特定抹除 操作) 現參看圖14Α及圖14Β,下文中將描述根據第一實施例 之非揮發性半導體儲存裝置的特定抹除操作。圖14Α及圖 14Β為說明抹除操作的時序圖。 首先,在時間til,如圖14Α中所說明將信號vBAD反相。 如圖14B中所說明,歸因於信號Vbad之改變,在時間 111 ’在所選擇記憶體區塊MB中信號VsELa&lt;i&gt;&amp; VsELb&lt;i&gt;自接 144995.doc -25- 201029011 地電壓Vss升咼至電源電壓Vdd。亦即,將第一轉移電晶體 181a至186a(181b至187b)設定於接通狀態。另一方面,將 接地電壓Vss施加至第二轉移電晶體187&amp;及188&amp;(1881)及 189b)的閘極。此允許第二轉移電晶體187&amp;及188&amp;(1881)及 189b)設定於關斷狀態。經由此操作,在所選擇記憶體區 塊MB中,字線WL1至WL4及WL5至WL8經由第一轉移電晶 體181a至184a及181b至184b分別連接至字線驅動電路11〇a 及11 Ob。此外’源極側選擇閘極線sgs及汲極側選擇閘極 線SGD經由第一轉移電晶體185a、186a、185b及186b連接 至選擇閘極線驅動電路120a及120b。此外,背閘線BG經 由第一轉移電晶體1 8 7b連接至背閘線驅動電路170。 相對照地’如圖14B中所說明,歸因於信號Vbad之改 變’在時間111處,在非選擇記憶體區塊mb中將信號 VsELa&lt;x&gt;&amp;VsELb&lt;x&gt;維持於電壓VSS。亦即,將第·一轉移電晶 體181a至186a(181b至187b)維持於關斷狀態。另一方面, 將電壓VDD施加至第二轉移電晶體187a及188a(188b及 189b)的閘極。此允許第二轉移電晶體187a及188a( 188b及 1 89b)設定於接通狀態。經由此操作,在非選擇記憶體區 塊MB中字線WL1至WL4及WL5至WL8設定於浮動狀態。此 外,源極側選擇閘極線SGS及汲極側選擇閘極線SGD經由 第二轉移電晶體188a、187a、188b及189b連接至選擇閘極 線驅動電路120a及120b。此外,背閘線BG設定於浮動狀 態。 接著,如圖14A中所說明,在時間tl2處,信號VSGS1、 144995.doc -26- 201029011Si). Each source side conduction layer 41a serves as a source side selection gate line sgs. Each of the source side conduction layers 41a also functions as a control gate of the source side selection transistor SSTr. Each of the drain side conduction layers 41b serves as a drain side selection gate line SGD. Each of the drain side conductive layers 41b also serves as a control gate of the drain side selection transistor SDTr. As illustrated in FIG. 10, the selective transistor layer 40 has a source side hole 42a and a drain side hole 42b. The source side hole 42a is formed to penetrate the source side conduction layer 41a. The source side hole 42a is formed at a position matching the memory hole 32. The drain side hole 42b is formed to penetrate the drain side conduction layer 41b. The drain side hole 42b is formed at a position matching the memory hole 32. As shown in FIG. 10, the selective transistor layer 40 has a source side gate insulating layer 43a, a source side columnar semiconductor layer 44a, a gate electrode insulating layer 43b, and a drain. The side columnar semiconductor layer 44b. The source side gate insulating layer 4 3 a is formed on the sidewall of the source side hole 4 2 a. The source side columnar semiconductor layer 44a is formed in a columnar shape extending in a direction perpendicular to the substrate 1A and in contact with the source side gate insulating layer 43a. The drain side gate insulating layer 43b is formed on the sidewall of the drain side hole 42b. The drain-side columnar semiconductor layer 44b is formed into a columnar shape extending in a direction perpendicular to the substrate 10 and is in contact with the gateless gate insulating layer 43b. The source side gate insulating layer 43a and the drain side gate insulating layer 43b contain cerium oxide (Si 〇 2). The source side columnar semiconductor layer 4A and the drain side columnar semiconductor layer 44b contain polycrystalline (p-Si). The above-mentioned configuration of the selection of the transistor layer 40 is restated as follows: The source side gate insulating layer 43a is formed to surround the source side columnar semiconductor layer. 144995.doc -22- 201029011 The source side conduction layer 41a is formed to surround the source side gate insulating layer 43a and the source side columnar semiconductor layer 44a. The drain side gate insulating layer 43b is formed to surround the drain side columnar semiconductor layer 44b. The drain side conductive layer 41b is formed to surround the drain side gate insulating layer 431 and the drain side columnar semiconductor layer 44b. As illustrated in FIGS. 9 and 10, the wiring layer 50 is formed on the selective transistor layer 40. The wiring layer 50 has a source line layer 51, a plug layer 52, and a bit line layer 53. The source line layer 51 is formed in the form of a plate extending in the column direction. The source line layer 51 is formed in contact with the top surface of one of the pair of source side columnar semiconductor layers 44a adjacent in the row direction. The plug layer 52 is formed to be in contact with the top surface of the drain-side columnar semiconductor layer 44b and to extend in a direction perpendicular to the substrate 10. The bit line layer 53 is formed as a stripe pattern extending in the row direction at a certain pitch in the column direction. The bit line layer 53 is formed in contact with the top surface of the plug layer 52. The source line layer 51, the plug layer 52, and the bit line layer 53 contain a metal such as tungsten (W). Each of the source line layers 51 serves as a source line sl (first source line SLA). Each bit line layer 53 serves as a bit line bl. (Outline of erasing operation of the nonvolatile semiconductor storage device in the first embodiment) Referring now to Figs. 11 and 12, the erasing operation of the nonvolatile semiconductor storage device according to the first embodiment will be hereinafter described. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 流程图 is a flow chart for explaining the erasing operation of the nonvolatile semiconductor storage device in the first embodiment. Figure 12 schematically illustrates the erase operation. First, as indicated by the label "sii" in FIG. 12, in the selected memory block MB, the control circuit AR2 raises the source side selection gate line SGS and the drain side selection gate line SGD to some A voltage Vdd_Vth, and 144995.doc -23-201029011 boost the source line SL and the bit line BL to the power supply voltage vdd (step sil). The power supply voltage vdd is a voltage that causes a GIDL current due to a certain voltage vth and due to the potential difference Vth. In this case, as indicated by the label "A" in Fig. 13, the source side conduction layer 4a on the source line layer 5 1 (source line SL) side (source side selection) A higher electric field is established at the end of the gate line SGS) to cause a GIDL current. In addition, as indicated by another tag rA" in FIG. 13, the gate electrode layer 4 ib is also provided on the side of the bit line layer 53 (bit line bl). A higher electric field is established at the end of SGD) to cause a GIDL current. Due to the GIDL current, a hole η and an electron e are generated. Further, at step sii, the control circuit AR2 boosts the word lines WL1 to WL8 and the back gate line BG to the power supply voltage Vdd as indicated by the label "sUj" in Fig. 12. Subsequently, as indicated by the reference in Fig. 12. As indicated by "sl2", the control circuit AR2 boosts the source line SL and the bit line BL from the power supply voltage vdd to the erase voltage Vera (step S12). Note that during the operation at step S12, the other wiring is maintained in the same controlled state as the controlled state described in step S11. However, the source side selection gate line SGS, the drain side selection gate line SGD, the word lines WL1 to WL8, and the back gate line BGs are set in a floating state. Then, the respective potentials of the source side selection gate line SGS, the drain side selection gate line sgd, the word lines WL1 to WL8, and the back gate line BG are increased due to the light combination with the body of the memory string MS. . More specifically, at step S12, the following control is performed: a potential difference greater than Vth is generated between the source side selection gate line SGS and the source line SL to 144995.doc • 24· 201029011 and selected on the non-polar side A potential difference greater than vth is generated between the gate line SGD and the bit line BL. Due to this potential difference, the GIDL current is caused and the hole is injected into the body of the memory string MS, thereby raising the potential of the body. Then, due to the coupling with the body of the memory string MS, the respective gate potentials of the source side selection transistor SSTr and the drain side selection transistor SDTr become higher than the certain voltage Vdd-Vth. Therefore, the source side selection gate line SGs &amp; the drain side selection gate line SGD is set to the floating state. Once this cycle starts, the potential of the body of the memory string MS, the source side selection gate line S (the potential of the 5s and the potential of the gate selection SGD of the gate side follow the potential of the source line S1 and the bit line B1). Increases and becomes higher. After the operation at step S12 is performed, and when the source line % and the bit line BL reach the erase voltage Vera, 'as indicated by the label "sl3" in Fig. 12, control The circuit AR2 sets the word lines WL1 to WL8 and the back gate line BG to the ground voltage Vss (step S13)' and feeds the holes caused by the GIDL currents to the gates of the CMOS circuits MTrl to MTr8. In this manner, the data is erased. (Specific erasing operation of the non-volatile semiconductor storage device in the first embodiment) Referring now to FIGS. 14A and 14B, the non-volatile semiconductor storage device according to the first embodiment will be described hereinafter. Specific erase operation. Figure 14A and Figure 14B are timing diagrams illustrating the erase operation. First, at time til, the signal vBAD is inverted as illustrated in Figure 14A. As illustrated in Figure 14B, due to the signal Vbad The change at time 111 'in the selected memory block MB The signal VsELa&lt;i&gt;&amp;VsELb&lt;i&gt; is self-connected 144995.doc -25- 201029011 The ground voltage Vss is boosted to the power supply voltage Vdd. That is, the first transfer transistors 181a to 186a (181b to 187b) are set to be connected. On the other hand, the ground voltage Vss is applied to the gates of the second transfer transistors 187 &amp; and 188 &amp; (1881) and 189b). This allows the second transfer transistors 187 &amp; and 188 &amp; (1881) and 189b) to be set to the off state. By this operation, in the selected memory block MB, the word lines WL1 to WL4 and WL5 to WL8 are connected to the word line drive circuits 11a and 11B1 via the first transfer transistors 181a to 184a and 181b to 184b, respectively. Further, the source side selection gate line sgs and the drain side selection gate line SGD are connected to the selection gate line driving circuits 120a and 120b via the first transfer transistors 185a, 186a, 185b, and 186b. Further, the back gate line BG is connected to the back gate line driving circuit 170 via the first transfer transistor 1 8 7b. In contrast, as illustrated in Fig. 14B, at time 111, the signal VsELa&lt;x&gt;&amp;VsELb&lt;x&gt; is maintained at voltage VSS due to the change of signal Vbad. That is, the first transfer electric crystals 181a to 186a (181b to 187b) are maintained in the off state. On the other hand, a voltage VDD is applied to the gates of the second transfer transistors 187a and 188a (188b and 189b). This allows the second transfer transistors 187a and 188a (188b and 189b) to be set to the on state. By this operation, the word lines WL1 to WL4 and WL5 to WL8 are set in the floating state in the non-selected memory block MB. Further, the source side selection gate line SGS and the drain side selection gate line SGD are connected to the selection gate line driving circuits 120a and 120b via the second transfer transistors 188a, 187a, 188b, and 189b. Further, the back gate line BG is set to a floating state. Next, as illustrated in FIG. 14A, at time t12, the signals VSGS1, 144995.doc -26- 201029011

Vsgs2、VSGD丨、VSGD2、VSG0FF、VCG丨至 VCG8 及 VBG 自接地 電壓Vss提昇至電源電壓Vdd。 如圖14B中所說明,在時間tl2處,歸因於信號VsGsl、 VsGS2、VSGD1、VSGD2、VSG0FF、VCG1 至 VCG8&amp; VBG 之改 變’在所選擇記憶體區塊MB中信號VSGIM&lt;i&gt;、VSGD2&lt;i&gt;、Vsgs2, VSGD丨, VSGD2, VSG0FF, VCG丨 to VCG8 and VBG are boosted from the ground voltage Vss to the supply voltage Vdd. As illustrated in FIG. 14B, at time t12, due to the change of the signals VsGs1, VsGS2, VSGD1, VSGD2, VSG0FF, VCG1 to VCG8&amp; VBG, the signals VSGIM&lt;i&gt;, VSGD2&lt; in the selected memory block MB ;i&gt;,

VsGSl&lt;i&gt;、VSGS2&lt;i&gt;、 VCG丨&lt;i&gt;至Vcgso及VBG&lt;i&gt;提昇至某一電 壓 Vdd-Vth。 另一方面,如圖14B中所說明,在時間ti2,歸因於信號 Vsgsi、VSGS2、VSGD1、VSGD2、VSG0FF、乂(:(}1至¥(;(58及¥8(3 之改變’在非選擇記憶體區塊MB中信號VsGm&lt;x&gt;、 VSgd2&lt;x&gt;、VSGS1&lt;X&gt;&amp; VSGS2&lt;X&gt;提昇至該某電壓 vdd-Vth。 此外,如圖14B中所說明,在時間^2,信號Vsl在源極 線驅動電路1 60處提昇至電源電壓vdd。此外,在時間 tl2,信號VRST在感測放大器電路15〇處提昇至電壓vpp。 歸因於信號VRST之改變,在時間ti 2,信號vBL之電壓設 定於電源電壓Vdd。 隨後,如圖14B中所說明,在時間tl3,信號Vsl在源極 線驅動電路160處開始朝向抹除電壓Vera升高。因此,信 號Vbl亦開始朝向抹除電壓Vera升高。 經由時間113處之以上提及之控制,如藉由圖〗4b中之標 籤「A」及「B」所指示,歸因於與記憶體串MS(本體的 麵合’信號 VSGS1&lt;i&gt;、VSGS2&lt;i&gt;、vSGD1&lt;i&gt;及 vSGD2&lt;i&gt; 之電位 隨著信號VSL及VBL經升壓而變得較高。接著,自時間tl3 起,歸因於信號VsL與信號VsGw、Vsgs2之間以及信號Vbl 144995.doc -27- 201029011 與信號VSGD1、VSGD2之間的電位差而引起GIDL電流。 接著’如圖14B中所說明’在時間tl4處,信號VSL設定 於抹除電壓Vera。因此,如圖14A中所說明,在所選擇記 憶體區塊MB中信號VCG1至VCG8及VBG設定於接地電壓 Vss。亦即,在時間tl4處,將說明於圖3中之轉移電晶體 112B設定於「接通」狀態。 如圖14B中所說明’歸因於信號Vcg丨至Vcg8&amp;vbg的改 變’在時間tl4處,在所選擇記憶體區塊mb中信號vCG1&lt;i&gt; 至Vcgso及VBG&lt;i&gt;設定於接地電壓Vss。經由時間tl4處之 ❹ 控制,由GIDL電流引起之電洞H被饋給至記憶體電晶體 MTrl至MTr8的閘極中,之後抹除操作之執行開始。 隨後,在時間tl5,如圖14A中所說明所有信號設定於接 地電壓Vss。因此,如圖14B中所說明,所有信號在時間 tl5處设定於接地電壓Vss。亦即,抹除操作在時間^结 束。 ❹ (第一實施例中之非揮發性半導體儲存裝置的優點) 現將在下文中描述根據第—實施例之非揮發性半導體儲 存裝置的優點。如上文所描述,第__實施例中之非揮發性 半導體儲存裝置將源極侧選㈣極線SGS及沒極側選擇問 極線咖提昇至某電壓爆杨,以及將源極帆及位元 線提昇至電源電壓Vdd。其後’非揮發性半導體儲存裝 置開始將源極線SL及位元線肌提昇至抹除電壓I。VsGSl&lt;i&gt;, VSGS2&lt;i&gt;, VCG丨&lt;i&gt; to Vcgso and VBG&lt;i&gt; are raised to a certain voltage Vdd-Vth. On the other hand, as illustrated in FIG. 14B, at time ti2, due to the signals Vsgsi, VSGS2, VSGD1, VSGD2, VSG0FF, 乂(:(}1 to ¥(;(58 and ¥8(3 change 'in The signals VsGm &lt;x&gt;, VSgd2&lt;x&gt;, VSGS1&lt;X&gt;&VSGS2&lt;X&gt; in the non-selected memory block MB are boosted to the certain voltage vdd-Vth. Further, as illustrated in Fig. 14B, at time ^ 2. The signal Vs1 is boosted to the power supply voltage vdd at the source line drive circuit 160. Further, at time t12, the signal VRST is boosted to the voltage vpp at the sense amplifier circuit 15A. Due to the change of the signal VRST, at time Ti 2, the voltage of the signal vBL is set to the power supply voltage Vdd. Subsequently, as illustrated in Fig. 14B, at time t13, the signal Vs1 starts to rise toward the erase voltage Vera at the source line drive circuit 160. Therefore, the signal Vbl is also Beginning toward the erase voltage Vera rises. The control mentioned above at time 113, as indicated by the labels "A" and "B" in Figure 4b, is attributed to the memory string MS (ontology) Face 'signal VSGS1&lt;i&gt;, VSGS2&lt;i&gt;, vSGD1&lt;i&gt;, and vSGD2&lt;i&gt; The potential becomes higher as the signals VSL and VBL are boosted. Then, since time t13, due to the signal VsL and the signals VsGw, Vsgs2 and the signal Vbl 144995.doc -27-201029011 and the signal VSGD1 The potential difference between VSGD2 causes a GIDL current. Next, as illustrated in Fig. 14B, at time t14, the signal VSL is set to the erase voltage Vera. Therefore, as illustrated in Fig. 14A, in the selected memory block MB The middle signals VCG1 to VCG8 and VBG are set to the ground voltage Vss. That is, at time t14, the transfer transistor 112B illustrated in FIG. 3 is set to the "on" state. As illustrated in FIG. 14B, 'attributed to The change of the signal Vcg 丨 to Vcg8 &amp; vbg 'at time t14, the signals vCG1 &lt;i&gt; to Vcgso and VBG&lt;i&gt; are set to the ground voltage Vss in the selected memory block mb. After the control at time t14, The hole H caused by the GIDL current is fed into the gates of the memory transistors MTrl to MTr8, and then the execution of the erase operation is started. Subsequently, at time t15, all signals are set to the ground voltage as illustrated in Fig. 14A. Vss. Therefore, as shown in Figure 14B Description, all signals is set to a ground voltage Vss at time tl5. That is, the erase operation ends at time ^. ❹ (Advantages of Nonvolatile Semiconductor Storage Device in First Embodiment) The advantages of the nonvolatile semiconductor storage device according to the first embodiment will now be described hereinafter. As described above, the non-volatile semiconductor storage device of the first embodiment increases the source side select (four) line SGS and the non-polar side select line line to a certain voltage burst, and the source sail and the bit The line is raised to the power supply voltage Vdd. Thereafter, the non-volatile semiconductor storage device starts to raise the source line SL and the bit line muscle to the erase voltage I.

心此#操作’以下循環將發生:⑴源極線儿及位 ' 升壓,(2)在源極線SL與源極側選擇閘極線SGS 144995.doc •28· 201029011 間以及在位元線BL與汲極側選擇閘極線SGD之間引起 GIDL電流;(3)記憶體串MS之本體的電位升高;及(4)源極 側選擇閘極線SGS及汲極側選擇閘極線SGD之各別電位歸 因於與記憶體串MS之本體的耦合而升高。經由以上提及 之循環(1)至(4),記憶體串MS之本體的電位、源極側選擇 閘極線SGS之電位及汲極侧選擇閘極線SGD的電位亦升 高。 使用由以上提及之操作引起之GIDL電流,第一實施例 中之非揮發性半導體儲存裝置可達成有效資料抹除操作。 此外,因為以上描述之組態,第一實施例中之非揮發性 半導體儲存裝置並不需要與源極線SL及位元線BL經升壓 合拍地(in time with)使相應源極側選擇閘極線S(}S及汲極 側選擇閘極線SGD升壓。亦即,此非揮發性半導體儲存裝 置並不需要用於控制源極側選擇閘極線SGS及汲極侧選擇 閘極線SGD經升壓之時序之任何電路。因此,此非揮發性 ❿ 半導體儲存裝置可抑制其佔用面積的增大。 [第二實施例] (第二實施例中之非揮發性半導體儲存裝置的组離) 現參看圖15及圖16,下文中將描述根據第二實施例之非 揮發性半導體儲存裝置的組態。圖15為根據第二實施例之 非揮發性半導體儲存裝置的電路圖。圖⑽根據第二實施 例之感測放大器電路150a的電路圖。請注意,相同參考數 字表示與第-實施例之組件相同的組件,且其描述在第二 實施例中將被省略》 144995.doc -29· 201029011 如圖15中所說明,第二實施例中之非揮發性半導體儲存 裝置僅在感測放大器電路15〇a方面不同於第一實施例。 如圖16中所說明,與第一實施例之唯一差異為包括於根 據第二實施例中之感測放大器電路15〇a中之每一電晶體 151c的連接。每一電晶體151(;之一末端連接至位元線^^及 另一末端連接至接地端。 (第一實施例中之非揮發性半導體儲存裝置的抹除操作) 現參看圖17及圖18,下文中將描述根據第二實施例之非 揮發性半導體儲存裝置的抹除操作。圖17為根據第二實施 例之用於說明GIDL電流的圖;且圖18為說明其抹除操作 的時序圖。 不同於第一實施例,在第二實施例之抹除操作中,如藉 由圖17中之標籤「A」所指示,藉由在源極線層51(源極線 SL)側上之源極側傳導層41a(源極側選擇閘極線sgs)之末 端處建立較高電場而引起GIDL電流。亦即,根據第二實 施例,如藉由圖1 8中之時間t】2至11 5所指示,僅控制源極 線SL之電壓而無需控制位元線bl的電壓。第二實施例中 之抹除操作在其他方面與第一實施例中所描述之抹除操作 相同。 (第二實施例中之非揮發性半導體儲存裝置的優點) 根據第二實施例之非揮發性半導體儲存裝置具有與第一 實施例之特徵及優點相同的特徵及優點。 [第三實施例] (第三實施例中之非揮發性半導體儲存裝置的組態) 144995.doc -30- 201029011 現參看圖19 ’下文中將描述根據第三實施例之非揮發性 半導體儲存裝置的組態。圖19為第三實施例中之非揮發性 半導體儲存裝置的電路圖。請注意,相同參考數字表示與 第一實施例及第二實施例之組件相同的組件,且其描述在 第三實施例中將被省略。 如圖19中所說明,第三實施例中之非揮發性半導體儲存 裝置具有不同於第一實施例及第二實施例之記憶體單元陣 列及控制電路的記憶體單元陣列AR1 a及控制電路ARa2。 如圖19中所說明,記憶體單元陣列ARla具有m行記憶體 區塊MBa。每一記憶體區塊MBa包含η列及4行記憶體串 MSa、各自連接至記憶體串MSa之一末端的源極侧選擇電 晶體SSTra,及各自連接至記憶體串MSa之另一末端的汲 極側選擇電晶體SDTra。請注意,在圖19之實例中,第一 行藉由(1)表示’第二行藉由(2)表示,第三行藉由(3)表 示’且第四行藉由(4)表示。 如圖20中所說明,每一記憶體串MSa具有記憶體電晶體 MTral至MTra4。記憶體電晶體MTral至MTra4串聯連接。 包括MONOS結構之記憶體電晶體MTral至MTra4使得電荷 積聚於各別控制閘極中。 如圖20中所說明,記憶體電晶體MTral至MTra4之控制 閘極連接至字線WLal至WLa4。字線WLal至WLa4共同提 供至在列方向及行方向上以矩陣形式對準之各別記憶體電 晶體MTral至MTra4的控制閘極。 如圖20中所說明,每一源極側選擇電晶體SSTra之汲極 144995.doc -31- 201029011 連接至記憶體電晶體逍…的源極。每—源極側選擇電晶 體SSTra之源極連接至第-源極视^。每—源極側選二 電晶體SSTra之控制閉極連接至源極側選擇閘極線8咖。 如圖19中所說明,每一第—源極線共同提供至在 列方向上對準之源極側選擇電㈣的源極,且經形 成以越過複數個記憶體串“仏在列方向上延伸。在行方向 上對準之第一源極線SLAa*同連接至在行方向上延伸之 單一第二源極線SLBa ^每一源極側選擇閘極線SGSa共同 提供至在列方向及行方向上以㈣形式對準之源極側選擇 電晶體SSTra的控制閘極。 如圖20中所說明,每一汲極侧選擇電晶體SDTra之一末 端連接至記憶體電晶體厘丁^4的一末端。每一汲極側選擇 電晶體SDTra之另一末端連接至位元線BLa。每一汲極側 選擇電晶體SDTra之控制閘極連接至汲極側選擇閘極線 SGDa 〇 如圖19中所說明,每一位元線BLa共同提供至在行方向 上對準之汲極側選擇電晶體3£)丁]^的一末端,且經形成以 越過複數個記憶體區塊MBa在行方向上延伸。每一汲極側 選擇閘極線SGDa共同提供至在列方向上對準之汲極側選 擇電晶體SDTra的控制閘極,且經形成以越過複數個記憶 體串MSa在列方向上延伸。 如圖19中所說明,控制電路AR2a具有:一輸入/輸出電 路100、一字線驅動電路11〇c、一選擇閘極線驅動電路 120a·、一位址解碼器電路13〇、升壓電路14〇八至14〇c、— 144995.doc -32- 201029011 感測放大器電路150、一源極線驅動電路160、一第一列解 碼器電路180c、一第二列解碼器電路180d及一序列器 190。 如圖19中所說明’字線驅動電路n〇c輸出用於驅動字線 WLal至WLa4的信號VCG1至VCG4。字線驅動電路1 i〇c具有 大體上與第一實施例及第二實施例中之字線驅動電路11〇a 及110b(參看圖3)之組態相同的組態。 選擇閘極線驅動電路120a,輸出信號Vsgs、VsGD1至vSGD4 及VSG0FF。信號Vsgs用於驅動所選擇記憶體區塊MBa中之 源極侧選擇閘極線SGSa。信號VsGDi至Vsgd4用於驅動所選This #operation' following cycle will occur: (1) source line and bit 'boost, (2) between source line SL and source side select gate line SGS 144995.doc •28· 201029011 and in the bit Between the line BL and the drain side selection gate line SGD, the GIDL current is generated; (3) the potential of the body of the memory string MS is increased; and (4) the source side selection gate line SGS and the drain side selection gate The respective potentials of the line SGD are increased due to coupling with the body of the memory string MS. Through the above-mentioned loops (1) to (4), the potential of the body of the memory string MS, the potential of the source side selection gate line SGS, and the potential of the drain side selection gate line SGD also rise. The non-volatile semiconductor storage device of the first embodiment can achieve an effective data erasing operation using the GIDL current caused by the above-mentioned operation. In addition, because of the configuration described above, the non-volatile semiconductor storage device in the first embodiment does not need to be in time with the source line SL and the bit line BL to select the corresponding source side. The gate line S(}S and the drain side select gate line SGD are boosted. That is, the non-volatile semiconductor memory device is not required to control the source side select gate line SGS and the drain side select gate. Any circuit in which the line SGD is boosted. Therefore, the nonvolatile 半导体 semiconductor storage device can suppress an increase in its occupied area. [Second Embodiment] (Non-volatile semiconductor storage device in the second embodiment) The configuration of the non-volatile semiconductor storage device according to the second embodiment will now be described with reference to Fig. 15 and Fig. 16. Fig. 15 is a circuit diagram of the nonvolatile semiconductor storage device according to the second embodiment. (10) A circuit diagram of the sense amplifier circuit 150a according to the second embodiment. Note that the same reference numerals denote the same components as those of the first embodiment, and a description thereof will be omitted in the second embodiment 144995.doc - 29· 20102 9011, the non-volatile semiconductor storage device of the second embodiment is different from the first embodiment only in the sense amplifier circuit 15A as illustrated in Fig. 15. As illustrated in Fig. 16, with the first embodiment The only difference is the connection included in each of the transistors 151c in the sense amplifier circuit 15A according to the second embodiment. Each of the transistors 151 (one end is connected to the bit line and the other end) Connected to the ground. (Erase Operation of Nonvolatile Semiconductor Storage Device in First Embodiment) Referring now to Figures 17 and 18, the erasing of the nonvolatile semiconductor storage device according to the second embodiment will be described hereinafter. Figure 17 is a diagram for explaining the GIDL current according to the second embodiment; and Figure 18 is a timing chart illustrating the erasing operation thereof. Unlike the first embodiment, in the erasing operation of the second embodiment, As indicated by the label "A" in Fig. 17, by the end of the source side conduction layer 41a (source side selection gate line sgs) on the source line layer 51 (source line SL) side Establishing a higher electric field to cause a GIDL current. That is, according to the second embodiment As indicated by time t 2 to 11 5 in FIG. 18, only the voltage of the source line SL is controlled without controlling the voltage of the bit line bl. The erasing operation in the second embodiment is otherwise The erase operation described in one embodiment is the same. (Advantages of the Nonvolatile Semiconductor Storage Device in the Second Embodiment) The nonvolatile semiconductor storage device according to the second embodiment has the features and advantages of the first embodiment. The same features and advantages. [Third Embodiment] (Configuration of Nonvolatile Semiconductor Storage Device in Third Embodiment) 144995.doc -30- 201029011 Referring now to FIG. 19', a third embodiment will be described hereinafter. Configuration of a non-volatile semiconductor storage device. Fig. 19 is a circuit diagram of a nonvolatile semiconductor storage device in the third embodiment. Note that the same reference numerals denote the same components as those of the first embodiment and the second embodiment, and a description thereof will be omitted in the third embodiment. As illustrated in FIG. 19, the nonvolatile semiconductor storage device of the third embodiment has a memory cell array AR1a and a control circuit ARa2 different from the memory cell array and control circuit of the first embodiment and the second embodiment. . As illustrated in Fig. 19, the memory cell array AR1a has m rows of memory blocks MBa. Each of the memory blocks MBa includes an n-column and a 4-row memory string MSa, source-side selection transistors SSTra each connected to one end of the memory string MSa, and each connected to the other end of the memory string MSa. Select the transistor SDTra on the drain side. Note that in the example of FIG. 19, the first line indicates by (1) that 'the second line is represented by (2), the third line is represented by (3)' and the fourth line is represented by (4) . As illustrated in Fig. 20, each memory string MSa has a memory transistor MTral to MTra4. The memory transistors MTral to MTra4 are connected in series. The memory transistors MTral to MTra4 including the MONOS structure allow charge to accumulate in the respective control gates. As illustrated in Fig. 20, the control gates of the memory transistors MTral to MTra4 are connected to the word lines WLal to WLa4. The word lines WLal to WLa4 together provide control gates of the respective memory transistors MTral to MTra4 aligned in a matrix form in the column direction and the row direction. As illustrated in Figure 20, the drain of each source side select transistor SSTra 144995.doc -31 - 201029011 is connected to the source of the memory transistor 逍. The source of each of the source side selection electro-optic bodies SSTra is connected to the first-source view. Each source-source side selects the control transistor of the SSTra to be connected to the source side selection gate line 8 . As illustrated in FIG. 19, each of the first source lines is commonly supplied to the source of the source side selected in the column direction to select the source of the electric (four), and is formed to cross the plurality of memory strings "in the column direction" The first source line SLAa* aligned in the row direction is connected to a single second source line SLBa extending in the row direction. Each source side selection gate line SSa is provided in the column direction and the row direction. The control gate of the transistor SSTra is selected on the source side aligned in the form of (4). As illustrated in Fig. 20, one end of each of the drain side selection transistors SDTra is connected to one end of the memory transistor. The other end of each of the drain side selection transistors SDTra is connected to the bit line BLa. The control gate of each of the drain side selection transistors SDTra is connected to the drain side selection gate line SGDa, as shown in FIG. It is to be noted that each bit line BLa is commonly supplied to one end of the drain side selection transistor 3 aligned in the row direction, and is formed to extend in the row direction across the plurality of memory blocks MBa. Each of the drain side selection gate lines SGDa is provided together in the column direction The upper gate side selects the control gate of the transistor SDTra and is formed to extend in the column direction across the plurality of memory strings MSa. As illustrated in Fig. 19, the control circuit AR2a has: an input/output circuit 100, a word line driving circuit 11〇c, a selection gate line driving circuit 120a·, a bit address decoder circuit 13〇, a boosting circuit 14〇8 to 14〇c, —144995.doc -32- 201029011 Amplifier circuit 150, a source line driver circuit 160, a first column decoder circuit 180c, a second column decoder circuit 180d, and a sequencer 190. As shown in Figure 19, the word line driver circuit n〇c The signals VCG1 to VCG4 for driving the word lines WLal to WLa4 are output. The word line driving circuit 1 i 〇 c has substantially the word line driving circuits 11 〇 a and 110 b in the first embodiment and the second embodiment (see FIG. 3) The same configuration is configured. The gate line driving circuit 120a is selected to output signals Vsgs, VsGD1 to vSGD4 and VSG0FF. The signal Vsgs is used to drive the source side selection gate line SGSa in the selected memory block MBa. Signals VsGDi to Vsgd4 are used to drive the selected

擇記憶體區塊MBa中的汲極侧選擇閘極線SGDal至 SGDa4。# 说 vSG〇FF 用於驅動非選擇記憶體區塊MBa中之 源極側選擇閘極線SGSa及汲極側選擇閘極線sGDal至 SGDa4 〇 分別提供第一列解碼器電路180c及第二列解碼器電路 1 80d ’對於每一記憶體區塊MBa有一列解碼器電路。每一 第一列解碼器電路1 8〇c提供於各別記憶體區塊MBa之在列 方向上的一末端處。每一第二列解碼器電路丨8〇d提供於各 別記憶體區塊MBa之在列方向上的另一末端處。 基於自位址解碼器電路130輸出之信號vBAD,每一第一 列解碼器電路180c將信號選擇性地輸入至 5己憶體電晶體MTral至]ViTra4的閘極。 每一第一列解碼器電路18〇e具有一電壓轉換電路180cc 及第一轉移電晶體181c至184c。電壓轉換電路18〇cc基於 144995.doc -33- 201029011 接收到之信號v BAD及VRDEC產生信號'VsELL&lt;i&gt;,該信號 VSELL◊又輸出至第一轉移電晶體181c至184c的閘極。 第一轉移電晶體181c至184c之閘極接收來自電壓轉換電 路180cc之信號VSELL&lt;i&gt;。第一轉移電晶體181c至184c連接 於字線驅動電路ll〇c與字線WLal至WLa4之間。第一轉移 電晶體181c至184c基於信號VcGl至Vcg4及VsELL&lt;i&gt;向字線 WLal 至 WLa4輸出信號 VCG1&lt;i:^ VCG4&lt;i&gt;。 基於自位址解碼器電路130輸出之信號VBAD,每一第二 列解碼器電路180d向四行源極側選擇電晶體sSTra之閘極 選擇性地共同輸入信號VSGS&lt;i&gt;。此外,基於信號vBAD,第 二列解碼器電路180d將信號VSGD1&lt;i&gt;至VSGD4&lt;i&gt;選擇性地輸 入至第一至第四行中之汲極側選擇電晶體SDTra的閘極。 每一第二列解碼器電路18〇(1具有:一電壓轉換電路 180dd、第一轉移電晶體181d至185d,及第二轉移電晶體 181d'至185d’。電壓轉換電路180dd基於接收到之信號Vbad 及vRDEC的電壓而產生信號VsELR&lt;i&gt;,且將該信號 出至第一轉移電晶體181d至185d的閘極。此外,電壓轉換 電路1 80dd基於接收到之信號Vbad&amp; Vrdec控制第二轉移電 晶體181 d’至185d1的閘極。 第一轉移電晶體181d至185d之閘極自電壓轉換電路 180dd接收信號乂^^少。第一轉移電晶體181d連接於選擇 閘極線驅動電路120a’與源極側選擇閘極線SGSa之間。此 外,第一轉移電晶體182d至185d分別連接於選擇閘極線驅 動電路120a·與在四個行中對準之汲極側選擇閘極線sGDa 144995.doc 34- 201029011 之間。第一轉移電晶體181(}基於信號VsGs&amp;VsELR&lt;i&gt;向源 極侧選擇閘極線SGSa輸入信號VsGS&lt;i&gt;。此外,第一轉移電 b日體182d至185d基於信號vSGD丨至vSGD4&amp;vSELR&lt;i&gt;向在四個 行中對準之汲極側選擇閘極線SGDa輸入信號乂扣!)1&lt;;&gt;至Select the gate line SGDal to SGDa4 on the drain side of the memory block MBa. #说vSG〇FF is used to drive the source side selection gate line SSa and the drain side selection gate line sGDal to SGDa4 in the non-selected memory block MBa to provide the first column decoder circuit 180c and the second column, respectively. The decoder circuit 1 80d' has a column decoder circuit for each memory block MBa. Each of the first column decoder circuits 18c is provided at one end of the respective memory block MBa in the column direction. Each of the second column decoder circuits 丨8〇d is provided at the other end of each memory block MBa in the column direction. Based on the signal vBAD output from the address decoder circuit 130, each of the first column decoder circuits 180c selectively inputs signals to the gates of the 5 memory cells MTral to]ViTra4. Each of the first column decoder circuits 18A has a voltage conversion circuit 180cc and first transfer transistors 181c to 184c. The voltage conversion circuit 18 〇cc generates a signal 'VsELL&lt;i&gt; based on the signals received by 144995.doc -33-201029011, and the signal VSELL is output to the gates of the first transfer transistors 181c to 184c. The gates of the first transfer transistors 181c to 184c receive the signal VSELL&lt;i&gt; from the voltage conversion circuit 180cc. The first transfer transistors 181c to 184c are connected between the word line drive circuit 111c and the word lines WLal to WLa4. The first transfer transistors 181c to 184c output signals VCG1 &lt;i:^ VCG4&lt;i&gt; to the word lines WLal to WLa4 based on the signals VcG1 to Vcg4 and VsELL&lt;i&gt;. Based on the signal VBAD output from the address decoder circuit 130, each of the second column decoder circuits 180d selectively inputs the signal VSGS&lt;i&gt; to the gates of the four rows of source side selection transistors sSTra. Further, based on the signal vBAD, the second column decoder circuit 180d selectively inputs the signals VSGD1 &lt;i&gt; to VSGD4 &lt;i&gt; to the gates of the drain side selection transistors SDTra in the first to fourth rows. Each of the second column decoder circuits 18 (1 has: a voltage conversion circuit 180dd, first transfer transistors 181d to 185d, and second transfer transistors 181d' to 185d'. The voltage conversion circuit 180dd is based on the received signal The voltages of Vbad and vRDEC generate a signal VsELR&lt;i&gt;, and the signal is output to the gates of the first transfer transistors 181d to 185d. Further, the voltage conversion circuit 180d controls the second transfer based on the received signal Vbad&Vrdec The gates of the transistors 181 d' to 185d1. The gates of the first transfer transistors 181d to 185d receive signals from the voltage conversion circuit 180dd. The first transfer transistor 181d is connected to the selection gate line driver circuit 120a'. In addition, the first transfer transistors 182d to 185d are respectively connected to the selection gate line driving circuit 120a and the drain side selection gate line sGDa aligned in the four rows. 144995.doc 34- 201029011. The first transfer transistor 181(} selects the gate line SGSa input signal VsGS&lt;i&gt; based on the signal VsGs&VsELR&lt;i&gt; to the source side. In addition, the first transfer electric b body 182d to 185d base Shu vSGD signal to vSGD4 & vSELR &lt; i &gt; to the drain side select gate are aligned in four rows of source lines of the input signal Yi in SGDa deduction) 1 &lt;; &gt;! To

VsGD4&lt;i&gt; ° 第二轉移電晶體181d’至185d,之閘極接收來自電壓轉換 電路180dd的信號。第二轉移電晶體181d,連接於選擇閘極 線驅動電路120a'與源極侧選擇閘極線SGSa之間。此外, ® 第二轉移電晶體丨82(1’至185d,連接於選擇閘極線驅動電路 120a’與在四個行中對準之汲極側選擇閘極線sGDa之間。 第二轉移電晶體181d’基於信號vSG0FF向源極側選擇閘極線 SGSa輸入信號VSGS&lt;i&gt;。此外,基於信號Vsg〇ff,第二轉移 電晶體182d'至185d,向在四個行中對準之汲極側選擇閘極 線 SGDa輸入信號 VsGD1&lt;id VsGD4&lt;i&gt;。 (第三實施例中之非揮發性半導體儲存裝置的層疊結構) 參 現參看圖21及圖22,下文中將描述根據第三實施例之非 揮發性半導體儲存裝置的層疊結構。圖21為說明根據第三 實施例之非揮發性半導體儲存裝置中之記憶體單元陣列 ARla的一部分之示意性透視圖。圖22為圖21之局部橫載 面圖。 如圖21中所說明,記憶體單元陣列ARla提供於基板1〇a 上。記憶體單元陣列ARla具有:一源極側選擇電晶體層 60、一記憶體電晶體層70、一汲極側選擇電晶體層8〇及— 配線層90。基板i〇a充當第_源極線SLAa(源極線此勾。源 144995.doc •35- 201029011 極側選擇電晶體層60充當源極側選擇電晶體SSTra。記憶 體電晶體層70充當記憶體電晶體MTral至MTra4(記憶體串 MSa)。汲極侧選擇電晶體層80充當汲極侧選擇電晶體 SDTra。配線層90充當位元線BLa〇 如圖21及圖22中所說明’不同於第一實施例,基板i〇a 在其表面上具有一擴散層11a。擴散層lla充當第一源極線 SLAa(源極線 SLa)。 如圖21及圖22中所說明,源極側選擇電晶體層60具有源 極側傳導層61。每一源極側傳導層61以平行於基板1 〇&amp;在 列方向及行方向上擴展之類板形式形成。源極側傳導層6) 對於每一記憶體區塊MBa為分離的。 源極側傳導層61包含多晶妙(p-Si)。每一源極側傳導層 6 1充當一源極側選擇閘極線s G S a。每一源極側傳導層6 i亦 充當源極侧選擇電晶體SSTra的閘極。 如圖22中所說明,源極側選擇電晶體層6〇亦具有一源極 侧孔62。該源極側孔62經形成以穿透源極側傳導層6丨。源 極側孔62在列方向及行方向上以矩陣形式形成於與擴散層 11 a匹配的位置處。 如圖22中所說明,源極側選擇電晶體層6〇亦具有一源極 側閘極絕緣層6 3及一源極側柱狀半導體層6 4。源極側閘極 絕緣層63經形成以在源極側孔62之側壁上具有某厚度。源 極侧柱狀半導體層6 4經形成以與源極側閘極絕緣層6 3之側 表面接觸且填滿源極側孔62 ^源極側柱狀半導體層64經形 成為在在垂直於基板1〇a之方向上延伸之柱狀形狀且與擴 144995.doc -36 - 201029011 散層1 la接觸。 源極側閘極絕緣層63包含二氧化矽(Si〇2)。源極側柱狀 半導體層64包含多晶矽(p-Si)。 將源極側選擇電晶體層60之以上提及的組態重新陳述如 下··源極側閘極絕緣層63經形成以包圍源極側柱狀半導體 層64 ^此外,每一源極側傳導層61經形成以包圍源極側閘 極絕緣層63。 如圖21及圖22中所說明,記憶體電晶體層7〇具有經層疊 之字線傳導層71a至71d。字線傳導層7la至71d中之每一者 以平行於基板10a在列方向及行方向上擴展之類板形式形 成。字線傳導層71a至71d對於每一記憶體區塊MBa為分離 的。 字線傳導層71a至71d包含多晶矽(p_si) »字線傳導層71a 至71«1充當字線1\^1^1至胃1^4。字線傳導層71&amp;至71(1亦充 當記憶體電晶體MTral至MTra4的閘極。 如圖22中所說明,記憶體電晶體層70亦具有一記憶體孔 72。該記憶體孔72經形成以穿透字線傳導層71 a至71d。記 憶體孔72在列方向及行方向上以矩陣形式形成於與源極侧 孔62匹配的位置處。 記憶體電晶體層70亦具有:一區塊絕緣層73a、一電荷 儲存層73b、一穿隧絕緣層73c,及一記憶體柱狀半導體層 74。記憶體柱狀半導體層74充當記憶體串MSa的本體。 區塊絕緣層7 3 a經形成以在源極側孔7 2之側壁上具有某 厚度。電荷儲存層73b經形成以在區塊絕緣層73a之側壁上 144995.doc -37· 201029011 具有某厚度。穿隧絕緣層73c經形成以在電荷儲存層73b之 側壁上具有某厚度。記憶體柱狀半導體層74經形成以與穿 随絕緣層73c之側壁接觸且填滿記憶體孔72。記憶體柱狀 半導體層74經形成以與下文中描述之源極側柱狀半導體層 64之頂部表面及汲極側柱狀半導體層84的底部表面接觸, 並在在垂直於基板10之方向上延伸a。 區塊絕緣層73a及穿隧絕緣層73c包含二氧化矽(Si〇2)。 電荷儲存層73b包含氮化矽(SiN)。記憶體柱狀半導體層74 包含多晶矽(p-Si)。 _ 將記憶體電晶體層70之以上提及組態重新陳述如下:穿 隧絕緣層73c經形成以包圍記憶體柱狀半導體層74。電荷 儲存層73b經形成以包圍穿隧絕緣層73c。區塊絕緣層乃汪 經形成以包圍電荷儲存層73b。字線傳導層713至71(1經形 成以包圍區塊絕緣層73a。 如圖21及圖22中所說明,汲極側選擇電晶體層8〇具有汲 極側傳導層81。汲極側傳導層81經形成為以行方向上之某 間距在列方向上延伸的條帶圖案。 _ 及極側傳導層81包含多晶石夕(p_si)。每一汲極側傳導層 81充當汲極側選擇閘極線SGDa。每一汲極側傳導層81亦 充當没極側選擇電晶體SDTra的閘極。 如圖22中所說明,汲極側選擇電晶體層8〇亦具有一汲極 側孔82。該汲極側孔82經形成以穿透汲極侧傳導層8 1。汲 極侧孔82在歹1J方向及行方向上以矩陣形式形成於與記憶體 孔7 2匹配的位置處。 144995.doc -38 - 201029011 如圖22中所說明,汲極側選擇電晶體層8〇亦具有一汲極 側閘極絕緣層83及一汲極側柱狀半導體層84。沒極侧閘極 絕緣層83經形成以在汲極側孔82之側壁上具有某厚度。汲 極侧柱狀半導體層84經形成為與汲極侧閘極絕緣層83之側 壁接觸’以便填滿沒極側孔82。没極側柱狀半導體層84經 开&gt; 成以在在垂直於基板1 〇a之方向上延伸,以便與記憶體 柱狀半導體層74之頂部表面接觸。 没極側閘極絕緣層83包含二氧化矽(Si〇2p汲極侧柱狀 半導體層84包含多晶矽(p_si)。 如圖21及圖22中所說明,配線層90具有一位元線層91。 位元線層91經形成為以列方向上之某間距在行方向上延伸 的條帶圖案。位元線層91經形成為與汲極側柱狀半導體層 84之頂部表面接觸。 位元線層9 1包含多晶石夕(p_ si)。每一位元線層91充當一 位元線BLa。 (第三實施例中之非揮發性半導體儲存裝置的抹除操作) 現參看圖23,下文中將描述根據第三實施例之非揮發性 半導體儲存裝置的抹除操作。 在根據第三實施例之抹除操作中,如藉由圖23中之標籤 「A」所指示,藉由在擴散層lla(源極線SLa)側上之源極 侧傳導層61(源極側選擇閘極線SGSa)的末端處建立較高電 場而引起GIDL電流。亦藉由在位元線層91(位元線BLa)側 上之沒極側傳導層81(汲極側選擇閘極線SGDa)的末端處建 立較高電場而引起GIDL電流,第三實施例中之抹除操作 144995.doc •39- 201029011 在其他方面與第一實施例中所描述之抹除操作相同。 (第三實施例中之非揮發性半導體儲存裝置的優點) 根據第三實施例之非揮發性半導體儲存裝置具有與第一 實施例之特徵及優點相同的特徵及優點。 [第四實施例] (第四實施例中之非揮發性半導體儲存裝置的組態) 現參看圖24,下文中將描述根據第四實施例之非揮發性 半導體儲存裝置的組態。圖24為第四實施例中之非揮發性 半導體儲存裝置的電路圖。請注意,相同參考數字表示與 第一實施例至第三實施例之組件相同的組件,且其描述在 第四實施例中將被省略。 如圖24中所說明,第四實施例中之非揮發性半導體儲存 裝置具有一不同於第一實施例至第三實施例之控制電路的 控制電路AR2b。 替代第一實施例至第三實施例中之選擇閘極線驅動電路 120a及120b、升壓電路140C、源極線驅動電路160及第一 列解碼器電路18〇a及第二列解碼器電路180b,控制電路 AR2b具有:選擇閘極線驅動電路120c及120d、一升屢電 路140D、一源極線驅動電路160a,及第一列解碼器電路 180e及第二列解碼器電路18〇f。控制電路AR2b除第二實施 例之組態外亦具有一升壓電路140E。在此方面,根據第四 實施例之控制電路AR2b不同於第一實施例至第三實施例 的控制電路。 如圖25中所說明,每一選擇閘極線驅動電路12〇c(12〇d) I44995.doc •40- 201029011 具有第一選擇閘極線驅動電路120D至第三選擇閘極線驅動 電路120F。第一選擇閘極線驅動電路120D輸出信號 VSG0FF。第二選擇閘極線驅動電路120E輸出信號 Vsgsi(Vsgs2)。第三選擇閘極線駆動電路120F輸出信號VsGD4 &lt;i&gt; ° The second transfer transistors 181d' to 185d, the gate receives a signal from the voltage conversion circuit 180dd. The second transfer transistor 181d is connected between the selection gate line driving circuit 120a' and the source side selection gate line SSa. Further, the second transfer transistor 丨 82 (1' to 185d is connected between the selection gate line driving circuit 120a' and the drain side selection gate line sGDa aligned in the four rows. The crystal 181d' selects the gate line SSa input signal VSGS&lt;i&gt; to the source side based on the signal vSG0FF. Further, based on the signal Vsg〇ff, the second transfer transistors 182d' to 185d are aligned in four rows. The pole side selection gate line SGDa input signal VsGD1 &lt; id VsGD4 &lt;i&gt;. (Layer structure of the nonvolatile semiconductor storage device in the third embodiment) Referring to FIG. 21 and FIG. 22, the following will be described according to the third Fig. 21 is a schematic perspective view showing a part of the memory cell array AR1a in the nonvolatile semiconductor memory device according to the third embodiment. Fig. 22 is a view of Fig. 21. A partial cross-sectional surface view. As illustrated in Fig. 21, a memory cell array AR1a is provided on a substrate 1a. The memory cell array AR1a has a source side selective transistor layer 60 and a memory transistor layer 70. One side The transistor layer 8〇 and the wiring layer 90 are selected. The substrate i〇a serves as the source-source line SLAa (source line this hook. Source 144995.doc • 35- 201029011 Polar-side selection transistor layer 60 serves as the source side selection The transistor SSTra. The memory transistor layer 70 functions as a memory transistor MTral to MTra4 (memory string MSa). The drain side selection transistor layer 80 serves as a drain side selection transistor SDTra. The wiring layer 90 serves as a bit line BLa. As illustrated in FIGS. 21 and 22, 'different from the first embodiment, the substrate i〇a has a diffusion layer 11a on its surface. The diffusion layer 11a serves as the first source line SLAa (source line SLa). As shown in Fig. 21 and Fig. 22, the source side selective transistor layer 60 has a source side conduction layer 61. Each of the source side conduction layers 61 is expanded in the column direction and the row direction in parallel with the substrate 1 &amp; Formed in the form of a plate. The source side conductive layer 6) is separated for each memory block MBa. The source side conductive layer 61 comprises polycrystalline (p-Si). Each source side conductive layer 61 acts as a The source side selects the gate line s GS a. Each source side conduction layer 6 i also serves as a gate of the source side selection transistor SSTra As illustrated in Fig. 22, the source side selective transistor layer 6A also has a source side hole 62. The source side hole 62 is formed to penetrate the source side conduction layer 6A. The source side hole 62. Formed in a matrix form at a position matching the diffusion layer 11 a in the column direction and the row direction. As illustrated in FIG. 22 , the source side selection transistor layer 6 〇 also has a source side gate insulating layer 63 and A source side columnar semiconductor layer 64. The source side gate insulating layer 63 is formed to have a certain thickness on the side wall of the source side hole 62. The source side columnar semiconductor layer 64 is formed to be in contact with the side surface of the source side gate insulating layer 63 and fills the source side hole 62. The source side columnar semiconductor layer 64 is formed to be perpendicular to The columnar shape extending in the direction of the substrate 1〇a is in contact with the diffusion layer 1 la of 144995.doc -36 - 201029011. The source side gate insulating layer 63 contains hafnium oxide (Si〇2). The source side columnar semiconductor layer 64 contains polycrystalline germanium (p-Si). The above-mentioned configuration of the source side selection transistor layer 60 is restated as follows: The source side gate insulating layer 63 is formed to surround the source side columnar semiconductor layer 64. Further, each source side conducts The layer 61 is formed to surround the source side gate insulating layer 63. As illustrated in Figures 21 and 22, the memory transistor layer 7A has stacked word line conductive layers 71a to 71d. Each of the word line conductive layers 71a to 71d is formed in the form of a plate which is expanded in the column direction and the row direction in parallel with the substrate 10a. The word line conductive layers 71a to 71d are separated for each memory block MBa. The word line conductive layers 71a to 71d include polysilicon (p_si) » word line conductive layers 71a to 71«1 function as word lines 1\^1^1 to the stomach 1^4. The word line conductive layers 71 &amp; to 71 (1 also serve as gates of the memory transistors MTral to MTra4. As illustrated in Fig. 22, the memory transistor layer 70 also has a memory hole 72. The memory hole 72 is Formed to penetrate the word line conductive layers 71a to 71d. The memory holes 72 are formed in a matrix form at a position matching the source side holes 62 in the column direction and the row direction. The memory transistor layer 70 also has: a region The block insulating layer 73a, a charge storage layer 73b, a tunneling insulating layer 73c, and a memory columnar semiconductor layer 74. The memory columnar semiconductor layer 74 serves as a body of the memory string MSa. The block insulating layer 7 3 a It is formed to have a certain thickness on the sidewall of the source side hole 7.2. The charge storage layer 73b is formed to have a certain thickness on the sidewall of the block insulating layer 73a 144995.doc -37· 201029011. The tunneling insulating layer 73c is The memory is formed to have a certain thickness on the sidewall of the charge storage layer 73b. The memory columnar semiconductor layer 74 is formed to be in contact with the sidewall of the via insulating layer 73c and fill the memory hole 72. The memory columnar semiconductor layer 74 is formed. With the source side columnar semi-derivation described below The top surface of the layer 64 is in contact with the bottom surface of the drain-side columnar semiconductor layer 84, and extends a in a direction perpendicular to the substrate 10. The block insulating layer 73a and the tunneling insulating layer 73c contain germanium dioxide (Si〇). 2) The charge storage layer 73b contains tantalum nitride (SiN). The memory pillar semiconductor layer 74 contains polysilicon (p-Si). _ The above mentioned configuration of the memory transistor layer 70 is re-stated as follows: tunneling The insulating layer 73c is formed to surround the memory columnar semiconductor layer 74. The charge storage layer 73b is formed to surround the tunneling insulating layer 73c. The block insulating layer is formed to surround the charge storage layer 73b. The word line conductive layer 713 to 71 (1 is formed to surround the block insulating layer 73a. As illustrated in FIGS. 21 and 22, the drain side selective transistor layer 8A has a drain side conductive layer 81. The drain side conductive layer 81 is formed to A strip pattern in which a certain pitch in the row direction extends in the column direction. _ and the pole side conductive layer 81 include polycrystalline stone (p_si). Each of the drain side conductive layers 81 functions as a drain side selective gate line SGDa. A drain side conductive layer 81 also serves as a gateless selection transistor SDTra. As illustrated in Fig. 22, the drain side selective transistor layer 8A also has a drain side hole 82. The drain side hole 82 is formed to penetrate the drain side conductive layer 81. 82 is formed in a matrix form at a position matching the memory hole 7 2 in the 歹1J direction and the row direction. 144995.doc -38 - 201029011 As illustrated in FIG. 22, the drain side selection transistor layer 8 〇 also has a The drain side gate insulating layer 83 and the drain side pillar type semiconductor layer 84. The gate side gate insulating layer 83 is formed to have a certain thickness on the sidewall of the drain side hole 82. The 极 pole side columnar semiconductor layer 84 is formed in contact with the side wall of the drain side gate insulating layer 83 to fill the gate side hole 82. The electrodeless side columnar semiconductor layer 84 is opened to extend in a direction perpendicular to the substrate 1a to contact the top surface of the memory columnar semiconductor layer 74. The gate electrode insulating layer 83 includes cerium oxide (the Si 〇 2p 侧 柱 columnar semiconductor layer 84 includes polysilicon (p_si). As illustrated in FIGS. 21 and 22, the wiring layer 90 has a bit line layer 91. The bit line layer 91 is formed into a stripe pattern extending in the row direction at a certain pitch in the column direction. The bit line layer 91 is formed in contact with the top surface of the drain side columnar semiconductor layer 84. The layer 9 1 contains polycrystalline spine (p_si). Each bit line layer 91 serves as a one-dimensional line BLa. (Erasing operation of the non-volatile semiconductor storage device in the third embodiment) Referring now to Fig. 23, The erasing operation of the nonvolatile semiconductor storage device according to the third embodiment will be described hereinafter. In the erasing operation according to the third embodiment, as indicated by the label "A" in Fig. 23, A higher electric field is generated at the end of the source side conduction layer 61 (source side selection gate line SSa) on the diffusion layer 11a (source line SLa) side to cause a GIDL current. Also by the bit line layer 91 ( Higher power is established at the end of the non-polar side conduction layer 81 (drain side selection gate line SGDa) on the side of the bit line BLa) While causing the GIDL current, the erasing operation 144995.doc • 39- 201029011 in the third embodiment is otherwise identical to the erasing operation described in the first embodiment. (Non-volatile semiconductor storage in the third embodiment) Advantages of the Device The non-volatile semiconductor storage device according to the third embodiment has the same features and advantages as those of the first embodiment. [Fourth Embodiment] (Non-volatile semiconductor storage in the fourth embodiment) Configuration of Apparatus Referring now to Figure 24, the configuration of the non-volatile semiconductor storage device according to the fourth embodiment will be described hereinafter. Figure 24 is a circuit diagram of the non-volatile semiconductor storage device in the fourth embodiment. The same reference numerals denote the same components as those of the first to third embodiments, and the description thereof will be omitted in the fourth embodiment. As illustrated in Fig. 24, the non-volatile in the fourth embodiment The semiconductor storage device has a control circuit AR2b different from the control circuits of the first to third embodiments. Instead of the selection gate lines in the first to third embodiments The driving circuits 120a and 120b, the boosting circuit 140C, the source line driving circuit 160, the first column decoder circuit 18a and the second column decoder circuit 180b, and the control circuit AR2b have the selection gate line driving circuits 120c and 120d. a one-liter circuit 140D, a source line driver circuit 160a, and a first column decoder circuit 180e and a second column decoder circuit 18〇f. The control circuit AR2b has a liter in addition to the configuration of the second embodiment. The voltage circuit 140E. In this regard, the control circuit AR2b according to the fourth embodiment is different from the control circuits of the first to third embodiments. As illustrated in Fig. 25, each of the selection gate line driving circuits 12〇c (12〇d) I44995.doc • 40- 201029011 has a first selection gate line driving circuit 120D to a third selection gate line driving circuit 120F. The first selection gate line driving circuit 120D outputs a signal VSG0FF. The second selection gate line driving circuit 120E outputs a signal Vsgsi (Vsgs2). The third selection gate line flicking circuit 120F outputs a signal

VsGD2(VsgD1)。信號VsGOFF、VsGSl(VsGS2)及VsGD2(VSGJDl)分 別具有與接地電壓Vss、電源電壓Vdd及信號Ve2相同的電 位。 如圖25中所說明,每一第一選擇閘極線驅動電路120D具 有一第一電路121D及一第二電路122D。 如圖;25中所說明,第一電路121D之輸出端子連接至第二 電路122D的輸出端子。第一電路121D接收來自升壓電路 l4〇D之信號Ve2及來自序列器190的信號ERASE。若信號 ERASE係處於「高」狀態,貝,J第一電路121D輸出接收到的 信號Ve2。在執行抹除操作時信號ERASE設定於「高」狀 態。 第二電路122D接收來自序列器190之信號READ、SAi、 ERASE及PROGRAM。在執行讀取操作時信號READ設定 於「高」狀態。在執行寫入操作時信號PROGRAM設定於 「向」狀態。VsGD2 (VsgD1). The signals VsGOFF, VsGS1 (VsGS2), and VsGD2 (VSGJD1) have the same potential as the ground voltage Vss, the power supply voltage Vdd, and the signal Ve2, respectively. As illustrated in FIG. 25, each of the first selection gate line driving circuits 120D has a first circuit 121D and a second circuit 122D. As illustrated in Fig. 25, the output terminal of the first circuit 121D is connected to the output terminal of the second circuit 122D. The first circuit 121D receives the signal Ve2 from the booster circuit 104D and the signal ERASE from the sequencer 190. If the signal ERASE is in the "high" state, the J first circuit 121D outputs the received signal Ve2. The signal ERASE is set to the "High" state when the erase operation is performed. The second circuit 122D receives the signals READ, SAi, ERASE and PROGRAM from the sequencer 190. The signal READ is set to the "High" state when the read operation is performed. The signal PROGRAM is set to the "on" state when a write operation is performed.

第二電路122D基於接收到之信號輸出處於電源電壓Vdd 或接地電壓Vss的信號。若信號READ、SAi及ERASE係處 於「高」狀態,則第二電路122D輸出處於電源電壓Vdd的 信號。若信號PROGRAM及ERASE係處於「低」狀態,且 若信號READ及SAi係處於「高」狀態,則第二電路122D 144995.doc -41 - 201029011 輸出處於接地電壓vss的信號。 如圖26A中所說明,每一升壓電路i4〇D具有:一振盪電 路141D、一第一信號產生電路1UD、一第二信號產生電 路143D及一第三信號產生電路144D。 如圖26B中所說明,振盪電路141D為包括一 NOR電路 141Da及反相器電路14iDb至141De的環形振盪器。振盪電 路141D基於來自第三信號產生電路144D之信號bEN輸出振 盪信號Vos。振盪電路141D僅當信號bEN係處於「低」狀 態時輸出振盪信號Vos ’且在信號bEN係處於「高」狀態 時並不輸出振盪信號Vos。 如圖26A中所說明,第一信號產生電路i42d基於來自振 盪電路141D之振盪信號Vos使信號Vel之電壓升壓。此外, 基於信號bEN(差動信號),第一信號產生電路142D視來自 振盪電路141D之振盪信號Vos而在操作狀態與停止狀態之 間切換。信號Vel之電壓設定於接地電壓Vss或電源電壓 Vdd。此外’信號Vel之電壓自電源電壓vdd升壓至抹除電 壓Vera 1。信號Vel輸出至源極線驅動電路i6〇a。 如圖26A中所說明,第一信號產生電路142D具有一電荷 杲電路142Da及一電晶體142Db。電荷泵電路i42Da基於振 盪信號Vos使信號Ve 1自電源電磨Vdd升壓至抹除電壓 Veral。電源電壓Vdd供應至電晶體i42Db的一末端。此 外’信號RST1自序列器190輸入至電晶體142Db的閘極, 及電晶體142Db的另一末端連接至電荷栗電路i42Da之輸 出端子。若信號RST1係處於「局」狀態,則電晶艘142Db 144995.doc -42 - 201029011 轉至「接通」狀態。結果,信號Ve 1固定於電源電壓vdd。 如圖26A中所說明,第二信號產生電路143D基於來自第 —信號產生電路142D之信號Vel而產生信號Ve2。此外, 第一信號產生電路143D視來自第三信號產生電路144D之 信號bEN在操作狀態與非操作狀態之間切換。信號Ve2之 電壓設定於接地電壓Vss或電源電壓Vdd。此外,在自信號 Ve 1經升壓起已流逝某延遲時間之後,信號Ve2之電壓自電 源電壓Vdd升壓至電壓Vera2(Vera2&lt;Veral)。視信號Vel之 升壓而將信號Ve2升壓。信號Ve2輸出至選擇閘極線驅動電 路 120c及120d。 如圖26A中所說明’第二信號產生電路i43d具有:一延 遲電路143Da、一切換電路143Db及一電晶體143Dc。 延遲電路143Da將信號Vel延遲某時間週期,且將信號 Ve 1之電壓減小某量’藉此產生信號。切換電路143Db基於 第三信號產生電路144D之輸出信號bEN而控制是否將來自 延遲電路143Da的信號輸出作為信號Ve2。 如圖26A中所說明,切換電路i43Db具有一位準偏移器 電路143Dbl及一電晶體143Db2。如圖26C中所說明,當信 號bEN係處於「低」狀態時,位準偏移器電路i43Dbi輸出 接收到的彳§说Vel。電晶體143Db2的一末端連接至延遲電 路143Da之輸出端子。電晶體143Db2的一閘極連接至位準 偏移器電路143Dbl之輸出端子。當來自位準偏移器電路 143 Dbl之信號係處於「高」狀態時,電晶體m3 Db2轉至 「接通j狀態。 144995.doc -43- 201029011 如圖26A中所說明,電晶體143〇0的源極連接至切換電 路143Db之輸出端子(電晶體143Db2的源極)。電源電壓 Vdd施加至電晶體143Dc之汲極,及電晶體143£)(:具有接收 自序列器190輸入之信號RST2的閘極。若信號RST2係處於 「高j狀態,則電晶體143Dc轉至「接通」狀態。結果, 切換電路143Db之輸出端子的電壓固定於電源電壓V(id。 如圖26A中所說明,第三信號產生電路i44D輸出信號 bEN。第三信號產生電路144D基於信號Ve2產生信號%。 信號Va具有一由將信號Ve2之電壓減小某量而產生的電 壓。此外’第三信號產生電路144D比較信號Va之電壓與參 考電位(參考電壓)Vref以輸出信號bEN。信號Va具有與信 號Vel的某關係。 如圖26A中所說明,第三信號產生電路M4D具有:一電 壓降電路144Da、一參考電位產生電路i44Db及一差動放 大器電路144Dc。 如圖26A中所說明,電壓降電路i44Da產生一處於由將 k號Ve2之電壓減小某量產生之電壓的信號Va。如圖26A 中所說明’電壓降電路144Da之輸入端子連接至第二信號 產生電路143D中之切換電路l43Db之輸出端子(電晶體 143Db2的源極)。電壓降電路144Da之輸出端子連接至差動 放大器電路144Dc的一輸入端子。 如圖26A中所說明,參考電位產生電路144Db產生一待 輸入至差動放大器電路144Dc之另一端子的參考電位 Vref。 144995.doc -44 - 201029011 如圖26A中所說明,差動放大器電路i44Dc比較信號化 與信號Vref以輸出信號bEN。 升壓電路140E產生一由將電源電壓vdd升壓至某電壓而 產生的信號Vhh。如圖24中所說明,升壓電路140E將信號The second circuit 122D outputs a signal at the power supply voltage Vdd or the ground voltage Vss based on the received signal. If the signals READ, SAi, and ERASE are in the "high" state, the second circuit 122D outputs a signal at the power supply voltage Vdd. If the signals PROGRAM and ERASE are in the "low" state, and if the signals READ and SAi are in the "high" state, the second circuit 122D 144995.doc -41 - 201029011 outputs a signal at the ground voltage vss. As illustrated in Fig. 26A, each boosting circuit i4〇D has an oscillating circuit 141D, a first signal generating circuit 1UD, a second signal generating circuit 143D, and a third signal generating circuit 144D. As illustrated in Fig. 26B, the oscillation circuit 141D is a ring oscillator including a NOR circuit 141Da and inverter circuits 14iDb to 141De. The oscillating circuit 141D outputs the oscillating signal Vos based on the signal bEN from the third signal generating circuit 144D. The oscillation circuit 141D outputs the oscillation signal Vos' only when the signal bEN is in the "low" state and does not output the oscillation signal Vos when the signal bEN is in the "high" state. As illustrated in Fig. 26A, the first signal generating circuit i42d boosts the voltage of the signal Vel based on the oscillating signal Vos from the oscillating circuit 141D. Further, based on the signal bEN (differential signal), the first signal generating circuit 142D switches between the operating state and the stop state depending on the oscillating signal Vos from the oscillating circuit 141D. The voltage of the signal Vel is set to the ground voltage Vss or the power supply voltage Vdd. Further, the voltage of the signal Vel is boosted from the power supply voltage vdd to the erase voltage Vera 1. The signal Vel is output to the source line driving circuit i6〇a. As illustrated in Fig. 26A, the first signal generating circuit 142D has a charge buffer circuit 142Da and a transistor 142Db. The charge pump circuit i42Da boosts the signal Ve1 from the power supply grind Vdd to the erase voltage Veral based on the wobble signal Vos. The power supply voltage Vdd is supplied to one end of the transistor i42Db. Further, the signal RST1 is input from the sequencer 190 to the gate of the transistor 142Db, and the other end of the transistor 142Db is connected to the output terminal of the charge pump circuit i42Da. If the signal RST1 is in the "local" state, the electric crystal boat 142Db 144995.doc -42 - 201029011 goes to the "on" state. As a result, the signal Ve 1 is fixed to the power supply voltage vdd. As illustrated in FIG. 26A, the second signal generating circuit 143D generates the signal Ve2 based on the signal Vel from the first signal generating circuit 142D. Further, the first signal generating circuit 143D switches between the operational state and the non-operating state depending on the signal bEN from the third signal generating circuit 144D. The voltage of the signal Ve2 is set to the ground voltage Vss or the power supply voltage Vdd. Further, after a certain delay time elapses since the signal Ve 1 is boosted, the voltage of the signal Ve2 is boosted from the power source voltage Vdd to the voltage Vera2 (Vera2 &lt; Veral). The signal Ve2 is boosted by the boost of the signal Vel. The signal Ve2 is output to the selection gate line driving circuits 120c and 120d. The second signal generating circuit i43d as illustrated in Fig. 26A has a delay circuit 143Da, a switching circuit 143Db, and a transistor 143Dc. The delay circuit 143Da delays the signal Vel for a certain period of time and reduces the voltage of the signal Ve1 by a certain amount, thereby generating a signal. The switching circuit 143Db controls whether or not the signal from the delay circuit 143Da is output as the signal Ve2 based on the output signal bEN of the third signal generating circuit 144D. As illustrated in Fig. 26A, the switching circuit i43Db has a one-bit shifter circuit 143Db1 and a transistor 143Db2. As illustrated in Fig. 26C, when the signal bEN is in the "low" state, the level shifter circuit i43Dbi outputs the received 彳 § Vel. One end of the transistor 143Db2 is connected to the output terminal of the delay circuit 143Da. A gate of the transistor 143Db2 is connected to the output terminal of the level shifter circuit 143Dbl. When the signal from the level shifter circuit 143 Dbl is in the "high" state, the transistor m3 Db2 is switched to the "on j state. 144995.doc -43- 201029011, as illustrated in Fig. 26A, the transistor 143" The source of 0 is connected to the output terminal of the switching circuit 143Db (the source of the transistor 143Db2). The power supply voltage Vdd is applied to the drain of the transistor 143Dc, and the transistor 143£) (: has the signal received from the input of the sequencer 190) Gate RST2. If the signal RST2 is in the "high j state", the transistor 143Dc is turned to the "on" state. As a result, the voltage of the output terminal of the switching circuit 143Db is fixed to the power supply voltage V (id. As shown in Fig. 26A Note that the third signal generating circuit i44D outputs the signal bEN. The third signal generating circuit 144D generates the signal % based on the signal Ve2. The signal Va has a voltage generated by reducing the voltage of the signal Ve2 by a certain amount. The circuit 144D compares the voltage of the signal Va with the reference potential (reference voltage) Vref to output a signal bEN. The signal Va has a relationship with the signal Vel. As illustrated in Fig. 26A, the third signal generating circuit M4D has: The voltage drop circuit 144Da, a reference potential generating circuit i44Db, and a differential amplifier circuit 144Dc. As illustrated in Fig. 26A, the voltage drop circuit i44Da generates a signal Va at a voltage which is reduced by a certain amount by the voltage of the k number Ve2. As shown in Fig. 26A, the input terminal of the voltage drop circuit 144Da is connected to the output terminal of the switching circuit 132Db in the second signal generating circuit 143D (the source of the transistor 143Db2). The output terminal of the voltage drop circuit 144Da is connected to the difference. An input terminal of the amplifier circuit 144Dc. As illustrated in Fig. 26A, the reference potential generating circuit 144Db generates a reference potential Vref to be input to the other terminal of the differential amplifier circuit 144Dc. 144995.doc -44 - 201029011 As described, the differential amplifier circuit i44Dc compares the signalized AND signal Vref to output the signal bEN. The boosting circuit 140E generates a signal Vhh generated by boosting the power supply voltage vdd to a certain voltage. As illustrated in Fig. 24, Voltage circuit 140E will signal

Vhh輸入至第一列解碼器電路18〇e及第二列解碼器電路 180f。 如圖27中所說明’基於來自序列器19〇之信號erase及 READ,源極線驅動電路16〇a接收自升壓電路m〇d輸入之 信號Vel ’且控制待提供至源極線SL的信號vsl。若信號 READ係處於「高」狀態’則源極線驅動電路丨6〇b將信號 vSL設定於接地電壓Vss。此外,若信號erase係處於 「局」狀態,則源極線驅動電路i 6〇b向源極線Sl提供信號 Vel作為信號vSL〇 如圖24中所說明,第一列解碼器電路18〇e及第二列解碼 器電路180f分別具有轉移電路1866及185f,而非根據第一 實施例的第一轉移電晶體1 86a及1 85b。 如圖28A中所說明’轉移電路186e&amp;185f中之每一者具 有一電壓轉換電路185A及一電晶體185B。如圖28A及圖 28B中所說明’電壓轉換電路i85A自升壓電路140D接收信 號 Vredc2及 VSELa&lt;i&gt;(VSELb&lt;j&gt;)。此外’轉移電路 1866及185^ 自升壓電路140E接收信號Vhh »電壓轉換電路185A基於信 號VsELa&lt;i&gt;(VSELb&lt;i&gt;)輸出信號vn〇dei,且控制電晶體1 mb 的接通/關斷。 如圖28A中所說明,電晶體185B之一末端連接至選擇閘 144995.doc •45- 201029011 極線驅動電路120c(120d)且另一末端連接至源極側選擇閘 極線SGS。 (第四實施例中之非揮發性半導體儲存裝置的抹除操作 之概述) 現參看圖29及圖30,下文中將略述根據第四實施例之非 揮發性半導體儲存裝置的抹除操作。圖29為說明第四實施 例中之非揮發性半導體儲存裝置之抹除操作的流程圖。圖 30示意性說明抹除操作。 首先,如藉由圖30中之標籤「s3i」所指示,控制電路 AR2b在所選擇記憶體區塊Mb中將源極側選擇閘極線sgs 及源極線SL提昇至電源電壓vdd(步驟S31)。請注意,字線 WL1至WL8及背閘線BG提昇至某電壓Vdd-Vth。 隨後,如藉由圖30中之標籤「S32」所指示,控制電路 AR2b開始在所選擇記憶體區塊MB中將源極線sl升壓至抹 除電壓Vera 1 ’同時將由將施加至該源極線sl之電壓延遲 某時間週期且將施加至該源極線SL之該電壓減小某量(該 電壓為至抹除電壓Vera2之電壓升壓的開始)而產生的此電 I供應至源極侧選擇閘極線SGS(步驟S32)。亦即,控制電 路AR2b與源極線SL被升壓合拍地開始使源極側選擇閘極 線SGS升壓。此引起GIDL電流。此外,字線霤以至霤“、 貪閘線BG及汲極側選擇閘極線sgd設定於浮動狀態。 接著’控制電路AR2b判定在所選擇記憶體區塊mb中源 極線SL之電壓是否達到抹除電壓Veral(步驟S33)。在此點 上’若判定源極線SL之電壓達到抹除電壓Veral(步驟S33 144995.doc •46- 201029011 處之「Υ」),則控制電路AR2b停止使該電壓升壓(步驟 S34)。在步驟S34處,控制電路AR2b亦停止使源極側選擇 閘極線SGS升壓。請注意,在停止點處,源極側選擇閘極 線SGS具有低於源極線sl之電位的電位。 在執行步驟S34處之操作之後,如藉由圖3〇中之標籤 「s35j所指示’控制電路AR2b將字線WL1至WL8及背閘 線BG設定於接地電壓Vss(步驟S35) ’且將由GIDl電流引 起之電洞Η饋給至記憶體電晶體河丁^至河丁“的閘極中。以 此方式’資料被抹除。 (第四實施例中之非揮發性半導體儲存裝置的特定抹除 操作) 現參看圖31Α及圖31Β,下文中將描述根據第四實施例 之非揮發性半導體儲存裝置的特定抹除操作。 圖31Α及圖 31Β為說明抹除操作的時序圖。 首先,如圖31Α中所說明,在時間m,使信號Vbad反 相。 如圖31A中所說明,歸因於信號Vbad之改變,在時間 忉1,信號RST1及RST2自電源電壓Vdd下降至接地電壓 Vss亦即,升壓電路140D中之電晶體i42Db及143Dc經設 疋於關斷狀態,且自升壓電路14〇D輸出之信號%丨及 經設定於浮動狀態。 此外,如圖31B中所說明,歸因於信號Vbad之改變,在 時間⑴處’在所選擇記憶體區塊MB中信號Vsel心及 vSELb&lt;i&gt;自接地電壓Vss升高至電源電壓vdd。亦即,第一 144995.doc •47· 201029011 轉移電晶體181a至185a( 181b至184b、186b及187b)設定於 接通狀態。另一方面,將接地電壓Vss施加至第二轉移電 晶體l87a及188a(188b及189b)的閘極。此允許藉此將第二 轉移電晶體187a及188a(188b及189b)設定於關斷狀態。經 由此操作,在所選擇記憶體區塊MB中,字線WL1至WL4 及WL5至WL8經由第一轉移電晶體i81a至184a及181b至 1 84b分別連接至字線驅動電路11 〇a及丨丨ot^此外,汲極側 選擇閘極線SGD經由第一轉移電晶體185a及186b分別連接 至選擇閘極線驅動電路120c及120d。此外,背閘線BG經 由第一轉移電晶體187b連接至背閘線驅動電路170。 此外’如圖31B中所說明,歸因於信號Vbad之改變,在 時間t3 1處’在所選擇記憶體區塊mb中轉移電晶體i86e及 185f之信號VnodeA升高至電壓Vpp。亦即,在所選擇記憶 體區塊MB中’轉移電晶體1 86e及1 85f將源極侧選擇閘極 線SGS連接至選擇閘極線驅動電路12(^及12〇d。 另一方面,如圖31B中所說明,歸因於信號Vbad之改 變,在時間t3 1處’在非選擇記憶體區塊mb中使信號 VsELa&lt;x&gt;&amp;VsELb&lt;x&gt;維持於電壓VSS。亦即,第一轉移電晶體 181a至186a(181b至187b)維持於關斷狀態。另一方面,將 電壓VDD施加至第二轉移電晶體187&amp;及188&amp;(18此及189b) 的閘極。此允許第一轉移電晶體18以及188&amp;〇881)及1891)) 設定於接通狀態。經由此操作,在非選擇記憶體區塊…^ 中字線WL1SWL4及WL5至WL8設定於浮動狀態。此外, 源極側選擇閘極線SGS及汲極側選擇閘極線SGD經由第二 144995.doc -48· 201029011 轉移電晶體188a、187a、188b及189b分別連接至選擇閘極 線驅動電路120c及120d。此外’背閘線BG設定於浮動狀 態。 此外,如圖3 1B中所說明,在時間t3 1,在非選擇記憶體 區塊MB中轉移電晶體186e&amp; 185f之信號vnodeA維持於接 地電壓Vss。亦即,在非選擇記憶體區塊mb中,轉移電晶 體186e及185f使源極側選擇閘極線SGS保持斷開於選擇閘 極線驅動電路120c及120d。Vhh is input to the first column decoder circuit 18〇e and the second column decoder circuit 180f. As illustrated in FIG. 27, based on the signals erase and READ from the sequencer 19, the source line driver circuit 16A receives the signal Vel' input from the booster circuit m〇d and controls the supply to the source line SL. Signal vsl. If the signal READ is in the "high" state, the source line driver circuit 丨6〇b sets the signal vSL to the ground voltage Vss. In addition, if the signal erase is in the "local" state, the source line driving circuit i 6〇b supplies the signal Vel to the source line S1 as the signal vSL. As illustrated in FIG. 24, the first column decoder circuit 18〇e And the second column decoder circuit 180f has transfer circuits 1866 and 185f, respectively, instead of the first transfer transistors 1 86a and 1 85b according to the first embodiment. Each of the transfer circuits 186e & 185f as illustrated in Fig. 28A has a voltage conversion circuit 185A and a transistor 185B. As shown in Figs. 28A and 28B, the voltage conversion circuit i85A receives the signals Vredc2 and VSELa&lt;i&gt;(VSELb&lt;j&gt;) from the booster circuit 140D. Further, the 'transfer circuits 1866 and 185' receive the signal Vhh from the boosting circuit 140E. » The voltage converting circuit 185A outputs the signal vn〇dei based on the signal VsELa&lt;i&gt;(VSELb&lt;i&gt;), and controls the on/off of the transistor 1 mb. Broken. As illustrated in Fig. 28A, one end of the transistor 185B is connected to the selection gate 144995.doc • 45 - 201029011 the pole line driving circuit 120c (120d) and the other end is connected to the source side selection gate line SGS. (Outline of erasing operation of nonvolatile semiconductor storage device in the fourth embodiment) Referring now to Figs. 29 and 30, the erasing operation of the nonvolatile semiconductor storage device according to the fourth embodiment will be hereinafter described. Fig. 29 is a flow chart for explaining the erasing operation of the nonvolatile semiconductor storage device in the fourth embodiment. Figure 30 schematically illustrates the erase operation. First, as indicated by the label "s3i" in FIG. 30, the control circuit AR2b boosts the source side selection gate line sgs and the source line SL to the power supply voltage vdd in the selected memory block Mb (step S31). ). Note that the word lines WL1 to WL8 and the back gate line BG are boosted to a certain voltage Vdd-Vth. Subsequently, as indicated by the label "S32" in FIG. 30, the control circuit AR2b starts boosting the source line sl to the erase voltage Vera 1 ' in the selected memory block MB while being applied to the source. The voltage of the pole line sl is delayed for a certain period of time and the voltage applied to the source line SL is decreased by a certain amount (this voltage is the start of the voltage boost to the erase voltage Vera2). The gate line SGS is selected on the pole side (step S32). That is, the control circuit AR2b and the source line SL are boosted to start boosting the source side selection gate line SGS. This causes a GIDL current. In addition, the word line is slid to "slip", the sluice gate line BG and the drain side selection gate line sgd are set in a floating state. Then the 'control circuit AR2b determines whether the voltage of the source line SL in the selected memory block mb reaches The voltage Veral is erased (step S33). At this point, if it is determined that the voltage of the source line SL reaches the erase voltage Veral ("Υ" at step S33 144995.doc • 46 - 201029011), the control circuit AR2b stops This voltage is boosted (step S34). At step S34, the control circuit AR2b also stops boosting the source side selection gate line SGS. Note that at the stop point, the source side selection gate line SGS has a potential lower than the potential of the source line sl. After the operation at step S34 is performed, the word lines WL1 to WL8 and the back gate line BG are set to the ground voltage Vss (step S35)' by the control circuit AR2b indicated by the label "s35j" in FIG. 3 and will be operated by GID1. The current-induced hole is fed into the gate of the memory transistor He Ding ^ to He Ding. In this way, the data was erased. (Specific erasing operation of the nonvolatile semiconductor storage device in the fourth embodiment) Referring now to Figures 31A and 31B, a specific erasing operation of the nonvolatile semiconductor storage device according to the fourth embodiment will be described hereinafter. Figure 31A and Figure 31B are timing charts illustrating the erase operation. First, as illustrated in Figure 31, at time m, the signal Vbad is inverted. As illustrated in FIG. 31A, due to the change of the signal Vbad, at time 忉1, the signals RST1 and RST2 are dropped from the power supply voltage Vdd to the ground voltage Vss, that is, the transistors i42Db and 143Dc in the boosting circuit 140D are set. In the off state, the signal %丨 output from the booster circuit 14〇D is set to a floating state. Further, as illustrated in Fig. 31B, due to the change of the signal Vbad, the signal Vsel heart and the vSELb&lt;i&gt; from the ground voltage Vss rise to the power supply voltage vdd at the selected memory block MB at time (1). That is, the first 144995.doc • 47· 201029011 transfer transistors 181a to 185a (181b to 184b, 186b, and 187b) are set to the on state. On the other hand, the ground voltage Vss is applied to the gates of the second transfer transistors l87a and 188a (188b and 189b). This allows the second transfer transistors 187a and 188a (188b and 189b) to be set to the off state. By this operation, in the selected memory block MB, the word lines WL1 to WL4 and WL5 to WL8 are respectively connected to the word line drive circuits 11a and 经由 via the first transfer transistors i81a to 184a and 181b to 184b, respectively. In addition, the drain side selection gate line SGD is connected to the selection gate line driving circuits 120c and 120d via the first transfer transistors 185a and 186b, respectively. Further, the back gate line BG is connected to the back gate line driving circuit 170 via the first transfer transistor 187b. Further, as illustrated in Fig. 31B, the signal VnodeA of the transfer transistors i86e and 185f in the selected memory block mb rises to the voltage Vpp at time t3 1 due to the change of the signal Vbad. That is, the transfer transistor 186e and 185f connect the source side selection gate line SGS to the selection gate line driving circuit 12 (^ and 12 〇d) in the selected memory block MB. On the other hand, As illustrated in Fig. 31B, due to the change of the signal Vbad, the signal VsELa &lt;x&gt;&amp;VsELb&lt;x&gt; is maintained at the voltage VSS in the non-selected memory block mb at time t3 1. That is, The first transfer transistors 181a to 186a (181b to 187b) are maintained in an off state. On the other hand, a voltage VDD is applied to the gates of the second transfer transistors 187 &amp; and 188 &amp; (18 and 189b). The first transfer transistor 18 and 188 &amp; 881) and 1891)) are set to the on state. By this operation, the word lines WL1SWL4 and WL5 to WL8 are set in the floating state in the non-selected memory block. In addition, the source side selection gate line SGS and the drain side selection gate line SGD are respectively connected to the selection gate line driving circuit 120c via the second 144995.doc -48·201029011 transfer transistors 188a, 187a, 188b and 189b, respectively. 120d. In addition, the back gate line BG is set to a floating state. Further, as illustrated in Fig. 31B, at time t3 1, the signal vnodeA of the transfer transistor 186e &amp; 185f in the non-selected memory block MB is maintained at the ground voltage Vss. That is, in the non-selected memory block mb, the transfer transistors 186e and 185f keep the source side selection gate line SGS off the selection gate line driving circuits 120c and 120d.

接著,如圖31A中所說明,在時間t32,信號^叫及 VSGS2自接地電壓Vss提昇至電源電壓vdd。此外,在時間 t32 ’ 信號 VSGDI、VsGD2、Vsg〇ff、Vcgi 至 VcG8及 Vbg 自接 地電壓Vss提昇至某電壓vdd-Vth。 如圖31B中所說明,在時間t32 ’歸因於信號%⑽及 Vsgs2之改變,在所選擇記憶體區塊?^8中信號及 Vsgszo提昇至電源電壓Vdd。此外,在時間t32,歸因於Next, as illustrated in Fig. 31A, at time t32, the signal VSGS and VSGS2 are boosted from the ground voltage Vss to the power supply voltage vdd. Further, at time t32', signals VSGDI, VsGD2, Vsg〇ff, Vcgi to VcG8, and Vbg are grounded to a certain voltage vdd-Vth. As illustrated in Fig. 31B, at time t32' due to changes in signals %(10) and Vsgs2, in the selected memory block? The signal in ^8 and Vsgszo are boosted to the supply voltage Vdd. Also, at time t32, due to

信號VsGDl VSGD2、VCG丨至VCG8&amp;VBG之改變,在所選擇記 線驅動電路1 60處提昇至電源電壓Vdd。 憶體區塊MB中信號vSGDi&lt;i&gt;、 VBG&lt;i&gt;提昇至某電壓Vdd-Vth 〇 此外,如圖31B中所說明, VSGD2&lt;i&gt;、 在時間t32,信號VSL在源極 隨後’如圖31B中所說明,在時間⑴,信號Vref在升壓 電路1柳處提昇至電鮮㈣。目此,在時間⑴,振盈電 路141D開始其操作,且第—信號產生電路⑷D開始使信 號Vel升麼。接著,在自時間⑴起已流逝某時間週期之 I44995.doc -49- 201029011 後,第二信號產生電路143D開始使信號Ve2升壓。 此外’如圖3 1B中所說明,在時間t33,回應於以上提及 之升壓電路140D的操作,信號vSGS1&amp;VSGS2的電壓根據信 號Ve2開始升高。結果,在所選擇記憶體區塊mb中信號 之電壓開始升高。信號VsL之電壓根據信 號Ve I亦開始升高。 隨後’如圖31A中所說明,在時間t34,升壓電路14〇D基 於h號bEN判定’信號Va升麼至電壓Vera3(亦即,信號Vel 升壓至某電壓)。接著,信號Vel及Ve2之升壓被停止,且 信號Vel及Ve2設定於抹除電壓veral&amp; Vera2。 此外,如圖31B中所說明,在時間t34,回應於以上提及 之升麼電路140D的操作,信號Vsgsi&amp;vSGS2之升壓被停 止’且信號VSGS1及VSGS2設定於抹除電壓vera2。結果,在 所選擇記憶體區塊MB中,信號vSGS1&lt;i&gt;&amp;VsGs2&lt;i&gt;2升壓被 停止’且#號VSGS1&lt;i&gt;&amp;VsGSki〉設定於抹除電壓Vera2。信 號VSL之升壓亦被停止,且信號VsL設定於抹除電壓Veral。 接著,如圖31A中所說明,在時間t35,信號%⑴至Vcg8 及vBGs定於接地電壓Vss。經由時間t35處之控制,由 GIDL電流引起之電洞η被饋給至記憶體電晶體MTrl至 MTr8的閘極中,之後抹除操作之執行開始。 接著,如圖31A及圖31B所說明,抹除操作在時間t36結 束。 (第四實施例中之非揮發性半導體儲存裝置的優點) 現將在下文中描述根據第四實施例之非揮發性半導鳢儲 I44995.doc -50· 201029011 存裝置的優點。如上文所描述,第四實施例中之非揮發性 半導體儲存裝置具有一升壓電路140D。該升壓電路14〇D 產生信號Vel及Ve2。在自信號Vel被升壓起已流逝某時間 週期之後信號Ve2經升壓,同時保持與信號Vei的某電位 差。此外’信號Vel被供應至源極線SL,且信號Ve2被供應 至源極側選擇閘極線SGS。使用升壓電路140D之信號Vel 及Ve2 ’如同在第一實施例至第三實施例中一般,第四實 施例中之非揮發性半導體儲存裝置可用GIDL電流達成有 ® ^:的資料抹除操作。 亦請注意,不同於上文所描述之第一實施例至第三實施 例,第四實施例中之非揮發性半導體儲存裝置並不使用記 憶體串MS之本體與源極線SL之間的耦合比來產生GmL電 流。亦即,第四實施例中之非揮發性半導體儲存裝置直接 規疋源極側選擇電晶體SSTr及源極線SL的電位以產生 GIDL電流。此允許第四實施例中之非揮發性半導體儲存 φ 裝置獨立於裝置參數(諸如,耦合比或配線電容)來執行抹 除操作。此外,與第一實施例至第三實施例相比較,第四 實施例中之非揮發性半導體儲存裝置可減輕源極側選擇電 晶體SSTr之閘極上的應力。 [其他實施例] 雖然已描述非揮發性半導體儲存裝置之實施例,但本發 月並不思欲限於所揭示之實施例,且在不偏離本發明的精 神的If况下可對所揭示實施例進行各種其他改變、添加、 替換或其類似者。 144995.doc -51· 201029011 【圖式簡單說明】 圖1為根據本發明之第一實施例之非揮發性半導體儲存 裝置的電路圖; 圖2為根據第一實施例之一記憶體串MS的電路圖; 圖3為根據第一實施例之字線驅動電路110a(110b)的電路 圖; 圖4為根據第一實施例之選擇閘極線驅動電路120a( 120b) 的電路圖; 圖5為根據第一實施例之升壓電路140A至140C的電路 © 圖; 圖6A為說明升壓電路140A至140C之操作的時序圖; 圖6B為說明升壓電路140A至140C之操作的時序圖; 圖7為根據第一實施例之源極線驅動電路16〇的電路圖; 圖8為根據第一實施例之感測放大器電路丨5 〇的電路圖; 圖9為說明根據第一實施例之非揮發性半導體儲存裝置 中之記憶體單元陣列AR1的一部分的示意性透視圖;The change of the signal VsGD1 VSGD2, VCG丨 to VCG8 &amp; VBG is boosted to the supply voltage Vdd at the selected line drive circuit 160. The signal vSGDi&lt;i&gt;, VBG&lt;i&gt; is raised to a certain voltage Vdd-Vth in the memory block MB. Further, as illustrated in Fig. 31B, VSGD2&lt;i&gt;, at time t32, the signal VSL is subsequently at the source As illustrated in Fig. 31B, at time (1), the signal Vref is boosted to the boost (1) at the booster circuit 1. Therefore, at time (1), the oscillation circuit 141D starts its operation, and the first signal generating circuit (4) D starts to raise the signal Vel. Next, after a period of time I44995.doc -49 - 201029011 has elapsed since time (1), the second signal generating circuit 143D starts to boost the signal Ve2. Further, as illustrated in Fig. 31B, at time t33, in response to the operation of the above-mentioned booster circuit 140D, the voltage of the signal vSGS1 &amp; VSGS2 starts to rise in accordance with the signal Ve2. As a result, the voltage of the signal in the selected memory block mb starts to rise. The voltage of the signal VsL also starts to rise according to the signal Ve I. Subsequently, as illustrated in Fig. 31A, at time t34, the boosting circuit 14A determines whether the signal Va rises to the voltage Vera3 based on the h-number bEN (i.e., the signal Vel is boosted to a certain voltage). Then, the boosting of the signals Vel and Ve2 is stopped, and the signals Vel and Ve2 are set to the erase voltage veral &amp; Vera2. Further, as illustrated in Fig. 31B, at time t34, in response to the operation of the above-mentioned boost circuit 140D, the boost of the signal Vsgsi &amp; vSGS2 is stopped' and the signals VSGS1 and VSGS2 are set to the erase voltage vera2. As a result, in the selected memory block MB, the signal vSGS1&lt;i&gt;&VsGs2&lt;i&gt;2 boost is stopped&apos; and ##VSGS1&lt;i&gt;&amp;VsGSki> is set to the erase voltage Vera2. The boost of the signal VSL is also stopped, and the signal VsL is set to the erase voltage Veral. Next, as illustrated in FIG. 31A, at time t35, signals %(1) to Vcg8 and vBGs are set to the ground voltage Vss. Via the control at time t35, the hole η caused by the GIDL current is fed into the gates of the memory transistors MTrl to MTr8, after which the execution of the erase operation is started. Next, as illustrated in Figs. 31A and 31B, the erase operation ends at time t36. (Advantages of Nonvolatile Semiconductor Storage Device in Fourth Embodiment) The advantages of the nonvolatile semiconductive storage I44995.doc -50·201029011 storage device according to the fourth embodiment will now be described hereinafter. As described above, the nonvolatile semiconductor storage device of the fourth embodiment has a boosting circuit 140D. The booster circuit 14A generates signals Vel and Ve2. The signal Ve2 is boosted after a certain period of time since the signal Vel is boosted, while maintaining a certain potential difference from the signal Vei. Further, the signal Vel is supplied to the source line SL, and the signal Ve2 is supplied to the source side selection gate line SGS. Using the signals Vel and Ve2' of the boosting circuit 140D as in the first to third embodiments, the non-volatile semiconductor storage device of the fourth embodiment can achieve a data erasing operation with a ^:: using the GIDL current. . Please also note that unlike the first to third embodiments described above, the non-volatile semiconductor storage device of the fourth embodiment does not use between the body of the memory string MS and the source line SL. The coupling ratio is used to generate a GmL current. That is, the nonvolatile semiconductor storage device of the fourth embodiment directly regulates the potentials of the source side selection transistor SSTr and the source line SL to generate a GIDL current. This allows the non-volatile semiconductor storage φ device in the fourth embodiment to perform an erase operation independently of device parameters such as a coupling ratio or a wiring capacitance. Further, the nonvolatile semiconductor storage device of the fourth embodiment can alleviate the stress on the gate of the source side selection transistor SSTr as compared with the first to third embodiments. [Other Embodiments] While the embodiments of the non-volatile semiconductor storage device have been described, the present disclosure is not intended to be limited to the disclosed embodiments, and the disclosed embodiments may be practiced without departing from the spirit of the invention. For example, various other changes, additions, substitutions, or the like are made. 144995.doc -51· 201029011 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a nonvolatile semiconductor storage device according to a first embodiment of the present invention; FIG. 2 is a circuit diagram of a memory string MS according to a first embodiment. 3 is a circuit diagram of a word line driver circuit 110a (110b) according to the first embodiment; FIG. 4 is a circuit diagram of a selection gate line driver circuit 120a (120b) according to the first embodiment; FIG. 6A is a timing diagram illustrating the operation of the boosting circuits 140A to 140C; FIG. 6B is a timing chart illustrating the operation of the boosting circuits 140A to 140C; FIG. 7 is a diagram illustrating the operation of the boosting circuits 140A to 140C; FIG. 8 is a circuit diagram of a sense amplifier circuit 丨5 根据 according to the first embodiment; FIG. 9 is a diagram illustrating a non-volatile semiconductor storage device according to the first embodiment; a schematic perspective view of a portion of the memory cell array AR1;

圖10為圖9之局部橫截面圖; G 圖11為說明根據第一實施例之抹除操作的流程圖; 圖12為說明根據第一實施例之抹除操作的示意圖; · 圖13為用於說明根據第一實施例之GIDL電流的圖; 圖14A為說明根據第一實施例之抹除操作的時序圖; 圖14B為說明根據第-實施例之抹除操作的時序圖; 圖15為根據第二實施例之非揮發性半導體儲存裝置的電 路圖; 144995.doc -52- 201029011 圖16為根據第二實施例之感測放大器電路15〇&amp;的電路 Γ5*ί · 園, 圖17為用於說明根據第二實施例之GIDL電流的圖; 圖18為說明根據第二實施例之抹除操作的時序圖; 圖19為根據第三實施例之非揮發性半導體儲存裝置的電 路圖; 圖20為根據第三實施例之一記憶體串MSa的電路圖; 圖21為說明根據第三實施例之非揮發性半導體儲存裝置 中之δ己憶體早元陣列AR1 a的一部分的示意性透視圖; 圖22為圖21之局部橫截面圖; 圖23為用於說明根據第三實施例之gidl電流的圖; 圖24為根據第四實施例之非揮發性半導體儲存裝置的電 路圖; 圖25為根據第四實施例之選擇閘極線驅動電路 120c(120d)的電路圖; 圖26A為根據第四實施例之升壓電路14OD的電路圖; 圖26B為根據第四實施例之振盪電路141D的電路圖; 圖26C為根據第四實施例之位準偏移器i43Dbl的電路 圖; 圖27為根據第四實施例之源極線驅動電路160a的電路 圖; 圖28A為根據第四實施例之轉移電路186e及185f的電路 tgl · 圃, 圖28B為根據第四實施例之轉移電路186e及185f的電路 144995.doc -53- 201029011 圖; 圖29為說明根據第四實施例之抹除操作的流程圖. 圖30為說明根據第四實施例之抹除操作的示意圖. 圖31A為說明根據第四實施例之抹除操作的拉 、J崎序圖; 圖31B為說明根據第四實施例之抹除操作的日 【主要元件符號說明】 '夺序圖。 10 基板 10a 基板 11a 擴散層 20 背閘電晶體層 21 背閘傳導層 22 背閘孔 30 記憶體電晶體層 3 la〜3Id 字線傳導層 32 記憶體孔 33a 區塊絕緣層 33b 電荷儲存層 33c 穿隧絕緣層 34 U形半導體層 34a 柱狀部分 34b 接合部分 40 選擇電晶體層 41a 源極側傳導層 41b &gt;及極側傳導層 144995.doc -54- 201029011 參 42a 源極側孔 42b 汲極側孔 43a 源極側閘極絕緣層 43b 汲極侧閘極絕緣層 44a 源極側柱狀半導體層 44b 汲極側柱狀半導體層 50 配線層 51 源極線層 52 插塞層 53 位元線層 60 源極側選擇電晶體層 61 源極侧傳導層 62 源極侧孔 63 源極側閘極絕緣層 64 源極侧柱狀半導體層 70 記憶體電晶體層 71a〜71d 字線傳導層 72 記憶體孔 73a 區塊絕緣層 73b 電荷儲存層 73c 穿隧絕緣層 74 記憶體柱狀半導體層 80 汲極侧選擇電晶體層 81 汲極側傳導層 144995.doc -55- 201029011 82 汲極側孔 83 没極側閘極絕緣層 84 汲極側柱狀半導體層 90 配線層 91 位元線層 100 輸入/輸出電路 110A 第一字線驅動電路 110a 字線驅動電路 110B 第二字線驅動電路 110b 字線驅動電路 110C 第三字線驅動電路 110c 字線驅動電路 110D 第四字線驅動電路 111A〜111C 電壓轉換電路 112A-112C 轉移電晶體 120A 第一選擇閘極線驅動電路 120a 選擇閘極線驅動電路 120a' 選擇閘極線驅動電路 120B 第二選擇閘極線驅動電路 120b 選擇閘極線驅動電路 120C 第三選擇閘極線驅動電路 120c 選擇閘極線驅動電路 120D 第一選擇閘極線驅動電路 120d 選擇閘極線驅動電路 144995.doc - 56 - 201029011 120E 第一選擇閘極線驅動電路 120F 第三選擇閘極線驅動電路 121A 電壓轉換電路 121B 電壓轉換電路 121D 第一電路 122A 轉移電晶體 122B 轉移電晶體 122D 第二電路 ® 130 位址解碼器電路 140A-140C 升壓電路 MOD 升壓電路 140E 升壓電路 141D 振盪電路 141Da NOR電路 141Db 〜141De 反相器電路 A 142D 參 第一信號產生電路 142Da 電荷泵電路 142Db 電晶體 143a~143n 二極體 143D 第二信號產生電路 143Da 延遲電路 143Db 切換電路 143Dbl 位準偏移器電路 143Db2 電晶體 144995.doc -57- 201029011 143Dc 電晶體 144a〜1441 充電及放電電路 144A AND電路 144B 反相器 144C 電容器 144D 第三信號產生電路 144Da 電壓降電路 144Db 參考電位產生電路 144Dc 差動放大器電路 150 感測放大器電路 150a 感測放大器電路 151 選擇電路 151a 頁緩衝器 151b 電晶體 151c 電晶體 152A 電壓轉換電路 152B 電壓轉換電路 160 源極線驅動電路 160a 源極線驅動電路 161A-161C 電壓轉換電路 162A-162C 轉移電晶體 170 背閘線驅動電路 180a 第一列解碼器電路 1 80aa 電壓轉換電路 144995.doc -58- 201029011 180b 第二列解碼器電路 180bb 電壓轉換電路 180c 第一列解碼器電路 1 80cc 電壓轉換電路 180d 第二列解碼器電路 180dd 電壓轉換電路 180e 第一列解碼器電路 180f 第二列解碼器電路 ® 181a〜186a 第一轉移電晶體 181b〜187b 第一轉移電晶體 181c~184c 第一轉移電晶體 181d~185d 第一轉移電晶體 181d'〜185d' 第二轉移電晶體 185A 電壓轉換電路 185B 電晶體 A 185f 轉移電路 186e 轉移電路 187a 第二轉移電晶體 188a 第二轉移電晶體 188b 第二轉移電晶體 189b 第二轉移電晶體 190 序列器 AR1 記憶體單元陣列 AR1 a 記憶體單元陣列 144995.doc -59- 201029011 AR2 控制電路 AR2a 控制電路 AR2b 控制電路 bEN 信號 BG 背閘線 BL 位元線 BLa 位元線 BTr 背閘電晶體 E 電子 ERASE 信號 H 電洞 MB 記憶體區塊 MBa 記憶體區塊 MS 記憶體串 MSa 記憶體串 MTrl 〜MTr8 記憶體電晶體 MTral ~MTra4 記憶體電晶體 PROGRAM 信號 READ 信號 RST1 信號 RST2 信號 Sai 信號 SDTr 汲極側選擇電晶體 SDTra 汲極側選擇電晶體 144995.doc -60- 201029011 SGD 汲極側選擇閘極線 SGDa 汲極側選擇閘極線 SGDal 〜SGDa4 汲極側選擇閘極線 SGS 源極側選擇閘極線 SGSa 源極側選擇閘極線 SLA 第一源極線 SLAa 第一源極線 SLB 第—源極線 ® SLBa 第一源極線 SSTr 源極側選擇電晶體 SSTra 源極側選擇電晶體 til 時間 tl2 時間 tl3 時間 tl4 時間 A tl5 時間 t31 時間 t32 時間 t33 時間 t34 時間 t35 時間 t36 時間 Va 信號 Vbad 信號 I44995.doc -61 - 201029011Figure 10 is a partial cross-sectional view of Figure 9; Figure 11 is a flow chart illustrating the erasing operation according to the first embodiment; Figure 12 is a schematic view illustrating the erasing operation according to the first embodiment; FIG. 14A is a timing chart illustrating an erase operation according to the first embodiment; FIG. 14B is a timing chart illustrating an erase operation according to the first embodiment; FIG. 15 is a timing chart illustrating the erase operation according to the first embodiment; Circuit diagram of a non-volatile semiconductor storage device according to a second embodiment; 144995.doc - 52 - 201029011 FIG. 16 is a circuit diagram of a sense amplifier circuit 15 〇 &amp; FIG. 18 is a timing chart illustrating an erasing operation according to a second embodiment; FIG. 19 is a circuit diagram of a nonvolatile semiconductor storage device according to a third embodiment; 20 is a circuit diagram of a memory string MSa according to a third embodiment; FIG. 21 is a schematic perspective view illustrating a portion of the δ-remembered early-earth array AR1 a in the non-volatile semiconductor storage device according to the third embodiment. Figure 22 is a diagram 21 is a partial cross-sectional view of FIG. 23; FIG. 23 is a circuit diagram for explaining a gidl current according to a third embodiment; FIG. 24 is a circuit diagram of a nonvolatile semiconductor storage device according to a fourth embodiment; FIG. 26A is a circuit diagram of a booster circuit 14OD according to a fourth embodiment; FIG. 26B is a circuit diagram of an oscillating circuit 141D according to a fourth embodiment; FIG. 27 is a circuit diagram of the source line driving circuit 160a according to the fourth embodiment; FIG. 28A is a circuit tgl of the transfer circuits 186e and 185f according to the fourth embodiment. 28B is a circuit diagram of 144995.doc-53-201029011 of the transfer circuits 186e and 185f according to the fourth embodiment; FIG. 29 is a flowchart illustrating an erase operation according to the fourth embodiment. FIG. FIG. 31A is a diagram showing the erasing operation of the fourth embodiment; FIG. 31B is a diagram illustrating the erasing operation according to the fourth embodiment. ] 'Sequence wins FIG. 10 substrate 10a substrate 11a diffusion layer 20 back gate transistor layer 21 back gate conduction layer 22 back gate hole 30 memory transistor layer 3 la~3Id word line conduction layer 32 memory hole 33a block insulating layer 33b charge storage layer 33c Tunneling insulating layer 34 U-shaped semiconductor layer 34a Columnar portion 34b Bonding portion 40 Selecting a transistor layer 41a Source-side conductive layer 41b &gt; and a pole-side conductive layer 144995.doc -54 - 201029011 Reference 42a Source side hole 42b 汲Polar side hole 43a Source side gate insulating layer 43b Side side gate insulating layer 44a Source side columnar semiconductor layer 44b Side side columnar semiconductor layer 50 Wiring layer 51 Source line layer 52 Plug layer 53 bits Line layer 60 Source side selection transistor layer 61 Source side conduction layer 62 Source side hole 63 Source side gate insulating layer 64 Source side columnar semiconductor layer 70 Memory transistor layer 71a to 71d Word line conduction layer 72 memory hole 73a block insulating layer 73b charge storage layer 73c tunneling insulating layer 74 memory columnar semiconductor layer 80 drain side selective transistor layer 81 drain side conductive layer 144995.doc -55- 201029011 82 汲Side hole 83, no-pole side gate insulating layer 84, drain side columnar semiconductor layer 90, wiring layer 91, bit line layer 100, input/output circuit 110A, first word line driver circuit 110a, word line driver circuit 110B, second word line driver circuit 110b word line driver circuit 110C third word line driver circuit 110c word line driver circuit 110D fourth word line driver circuit 111A to 111C voltage conversion circuit 112A-112C transfer transistor 120A first selection gate line driver circuit 120a select gate line Drive circuit 120a' select gate line drive circuit 120B second select gate line drive circuit 120b select gate line drive circuit 120C third select gate line drive circuit 120c select gate line drive circuit 120D first select gate line drive Circuit 120d selects gate line driver circuit 144995.doc - 56 - 201029011 120E first selection gate line driver circuit 120F third selection gate line driver circuit 121A voltage conversion circuit 121B voltage conversion circuit 121D first circuit 122A transfer transistor 122B Transfer transistor 122D second circuit ® 130 address decoder circuit 140A-140C liter Circuit MOD Boost Circuit 140E Boost Circuit 141D Oscillation Circuit 141Da NOR Circuit 141Db to 141De Inverter Circuit A 142D Reference First Signal Generation Circuit 142Da Charge Pump Circuit 142Db Transistor 143a to 143n Diode 143D Second Signal Generation Circuit 143Da Delay circuit 143Db switching circuit 143Dbl level shifter circuit 143Db2 transistor 144995.doc -57- 201029011 143Dc transistor 144a~1441 charging and discharging circuit 144A AND circuit 144B inverter 144C capacitor 144D third signal generating circuit 144Da voltage drop Circuit 144Db reference potential generating circuit 144Dc differential amplifier circuit 150 sense amplifier circuit 150a sense amplifier circuit 151 selection circuit 151a page buffer 151b transistor 151c transistor 152A voltage conversion circuit 152B voltage conversion circuit 160 source line driver circuit 160a source Polar line drive circuit 161A-161C voltage conversion circuit 162A-162C transfer transistor 170 back gate drive circuit 180a first column decoder circuit 1 80aa voltage conversion circuit 144995.doc -58- 201029011 180b second column decoder circuit 18 0bb voltage conversion circuit 180c first column decoder circuit 1 80cc voltage conversion circuit 180d second column decoder circuit 180dd voltage conversion circuit 180e first column decoder circuit 180f second column decoder circuit ® 181a to 186a first transfer transistor 181b to 187b first transfer transistors 181c to 184c first transfer transistors 181d to 185d first transfer transistors 181d' to 185d' second transfer transistor 185A voltage conversion circuit 185B transistor A 185f transfer circuit 186e transfer circuit 187a Two transfer transistor 188a second transfer transistor 188b second transfer transistor 189b second transfer transistor 190 sequencer AR1 memory cell array AR1 a memory cell array 144995.doc -59- 201029011 AR2 control circuit AR2a control circuit AR2b Control circuit bEN signal BG back gate line BL bit line BLa bit line BTr back gate transistor E electron ERASE signal H hole MB memory block MBa memory block MS memory string MSa memory string MTrl ~MTr8 memory Body transistor MTral ~MTra4 memory transistor PROGRAM signal READ letter RST1 signal RST2 signal Sai signal SDTr drain side selection transistor SDTra drain side selection transistor 144995.doc -60- 201029011 SGD drain side selection gate line SGDa drain side selection gate line SGDal ~SGDa4 side selection Gate line SGS Source side selection gate line SSa Source side selection gate line SLA First source line SLAa First source line SLB First source line ® SLBa First source line SSTr Source side selection Crystal SSTra Source side selection transistor til time tl2 time tl3 time tl4 time A tl5 time t31 time t32 time t33 time t34 time t35 time t36 time Va signal Vbad signal I44995.doc -61 - 201029011

Vbg 信號 VbG&lt;i&gt; 信號 Vbl 信號 VcGl〜VcG4 信號 VcG 1 &lt;i&gt;〜Vcg4&lt;i&gt; 信號 VCG5 〜VCG8 信號 VcG5&lt;i&gt;〜Vcg8&lt;i&gt; 信號 VCUT 信號 Vdd 電源電壓 Vdd-Vth 電壓 Vel 信號 Ve2 信號 Verl 抹除電壓 Ver2 抹除電壓 Vera 抹除電壓 V era 信號 Vera3 抹除電壓 Vhh 信號 Vnode 1 信號 VnodeA 信號 Vos 振盪信號 V PASS 信號 Vpp 電壓 V PRO 信號 144995.doc -62- 201029011Vbg signal VbG&lt;i&gt; signal Vbl signal VcG1 to VcG4 signal VcG 1 &lt;i&gt;~Vcg4&lt;i&gt; signal VCG5 to VCG8 signal VcG5&lt;i&gt;~Vcg8&lt;i&gt; signal VCUT signal Vdd power supply voltage Vdd-Vth voltage Vel signal Ve2 signal Verl erase voltage Ver2 erase voltage Vera erase voltage V era signal Vera3 erase voltage Vhh signal Vnode 1 signal VnodeA signal Vos oscillation signal V PASS signal Vpp voltage V PRO signal 144995.doc -62- 201029011

V rdec 信號 V REDC2 信號 Vref 參考電位 VRST 信號 V SELa&lt;i&gt; 信號 V SELb&lt;i&gt; 信號 V SELL&lt;i&gt; 信號 V SELR&lt;i&gt; 信號 V SGDl~VsGD4 信號 V SGDl&lt;i&gt;~VsGD4&lt;i&gt; 信號 VsGOFF 信號 V SGS 信號 V SGS&lt;i&gt; 信號 VsGS 1 信號 VsGS2 信號 VsGS2&lt;i&gt; 信號 VSL 信號 Vss 接地電壓 Vth 電位差 WL1 〜WL8 字線 WLal 〜WLa4 字線 φΐ 信號 φ2 信號 144995.doc -63-V rdec signal V REDC2 signal Vref reference potential VRST signal V SELa &lt; i &gt; signal V SELb &lt; i &gt; signal V SELL &lt; i &gt; signal V SELR &lt; i &gt; signal V SGD1 ~ VsGD4 signal V SGDl &lt; i &gt; ~ VsGD4 &lt; i &gt; Signal VsGOFF signal V SGS signal V SGS &lt; i &gt; signal VsGS 1 signal VsGS2 signal VsGS2 &lt; i &gt; signal VSL signal Vss ground voltage Vth potential difference WL1 ~ WL8 word line WLal ~ WLa4 word line φ 信号 signal φ2 signal 144995.doc -63-

Claims (1)

201029011 七、申請專利範圍: 1. 一種非揮發性半導體儲存裝置,其包含: -記憶體串’其包括串聯連接之複數個記憶體單元; -第-選擇電晶體’其具有連接至該記憶體串中之一 • 各別者之一末端的一末端; • -第一配線’其具有連接至該第-選擇電晶體之另-末端的一末端; -第二配線,其連接至該第—選擇電晶體的—閘極;及 ⑩ -控制電路,其經組態以執行抹除操作從而自該等記 憶體單元抹除資料, 該記憶體串包含: 一第一半導體層,其具有在一φ亩於 ^ 垂直於一基板之方向 上延伸的一柱狀部分; -電荷儲存層,其經形成以包圍該第—半導體層;及 -第-傳導層’其包圍該電荷儲存層且平行於該基 板而延伸,201029011 VII. Patent application scope: 1. A non-volatile semiconductor storage device comprising: - a memory string 'which comprises a plurality of memory cells connected in series; - a -selective transistor ' having a connection to the memory One of the strings • one end of one end of each individual; • a first wiring 'having an end connected to the other end of the first selection transistor; a second wiring connected to the first Selecting a gate of the transistor; and a 10-control circuit configured to perform an erase operation to erase data from the memory cells, the memory string comprising: a first semiconductor layer having a a columnar portion extending in a direction perpendicular to a substrate; a charge storage layer formed to surround the first semiconductor layer; and a first conductive layer surrounding the charge storage layer and parallel to Extending the substrate, 該第一選擇電晶體包含: 一第二半導體層,其與該柱狀部分之_頂部表面或 底部表面接觸且在該垂直於該基板之方向上延伸; -第-閘極絕緣層’其經形成以包圍該第二半導體 層;及 一第一傳導層,其包圍該第 ^ 閘極絕緣層且平行於 該基板而延伸, 該控制電路經組態以在該抹除操作中使該第二配線及 144995.doc 201029011 該第一配線之電壓升壓,同時伴样兮笛 ’j吁保得該第—配線之該電壓 比該第一配線的該電慶大某一電位差, 該某電位差為引起一 GIDL電流的—電位差。 2. 如請求項1之非揮發性半導體儲存裝置,其中 在該抹除操作中,該控制電路將該第一配線提昇至一 第一電壓且將該第二配線提昇至―第二電壓,使得在該 第-電壓與該第二電壓之間維持該某電位差,且接著開 始使該第-配線自該第-電壓升壓,同時將該第二配線 設定於一浮動狀態。 3. 如請求項1之非揮發性半導體儲存裝置,其中 該控制電路包含: 一第一電壓產生電路,其經組態以向該第一配線供 應待升壓的一第一電壓; 一第二電壓產生電路,其經組態以向該第二配線供 應一第二電壓,該第二電壓由使該第一電壓延遲某一 時間週期且將該第一電壓減小該某電位差而產生;及 第二電壓產生電路,其經組態以比較一第三電壓 與一參考電壓以輸出一差動信號,該第三電壓具有與 該第一電壓的某一關係, 該第一電壓產生電路基於該差動信號而在一操作狀態 與一停止狀態之間切換,及 ”亥第—電壓產生電路基於該差動信號而在一操作狀態 與一停止狀態之間切換。 4·如請求項3之非揮發性半導體儲存裝置,其中 144995.doc • 1· 201029011 ^控制電路包含_振蘯電路’該振i電路經組態以基 於该差動信號而輸出-振堡信號,及 該第一電廢產生電路包含一升壓電路,該升麼電路經 組態以基於該振盪信號而使某_電壓升壓至該第一電 壓。 5. 如請求項3之非揮發性半導體儲存裝置,其中 該第二電壓為由減小該第二電壓產生的一電壓。 6. 如請求項1之非揮發性半導體儲存裝置,其中 該控制電路在向該第一傳導層施加一接地電壓之前使 該第一配線及該第二配線升壓。 7. 如請求項1之非揮發性半導體儲存裝置,其_ β亥控制电路在使s亥第二配線及該第一配線之電壓升壓 時將該第一傳導層設定於一浮動狀態。 8_如請求項1之非揮發性半導體儲存裝置,其包含 一第二選擇電晶體,其具有連接至該記憶體串之另一 末端的一末端; 一第三配線,其具有連接至該第二選擇電晶體之另一 末端的一末端;及 一第四配線,其連接至該第二選擇電晶體之一閘極, 其中 該第二選擇電晶體包含: 一第三半導體層’其在該垂直於該基板之方向上延 伸; 一第二閘極絕緣層’其經形成以包圍該第三半導體 144995.doc 201029011 層;及 第一傳導層,其包圍該第二閉極絕緣層且平行於 該基板而延伸, 該第-半導體層包含一接合該等柱狀部分中之一對柱 狀部分的下部末端的接合部分, 該第二半導體層經形成為與藉由該接合部分接合之該 專柱狀部分中之一者的-頂部表面接觸,及 9. 該第三半導體層經形成為與藉由該接合部分接合之該 等柱狀部分中之另—者的-頂部表面接觸。 如請求項8之非揮發性半導體儲存裝置,其中 在該抹除操作中,該控制電路使該第三配線及該第四 配線之電壓升壓,同時保持該第三配線之該電麼比該第 四配線之該電壓大該某電位差。 10. 如請求項9之非揮發性半導體儲存裝置,其中 該控制電路選擇性地將該第三配線連接至該第一配 線,且將該第三配、線設^為具有與該第—配線之電位相 同的電位。 11. 如請求項9之非揮發性半導體儲存裝置,其中 在該抹除操作中,該控制電路將該第一配線提昇至一 第一電壓且將該第二配線提昇至—第二電壓,使得在該 第-電壓與該第二《之間維持該某電位差,且接著^ 始使該第-配線自該第一電壓升壓,同時將該第二配: 設定於一浮動狀態》 12. 如請求項11之非揮發性半導體儲存裝置,其中 144995.doc -4- 201029011 在該抹除操作中,該控制電路將該第三配線提昇至一 第-電壓且將言亥第四配線提昇至一第二㈣,使得在該 第一電磨貞該第三電壓之間維持該某電位i,且接著開 . 始使該第三配線自該第—電壓升壓,同時將該第四配線 設定於一浮動狀態。 - 13·如請求項9之非揮發性半導體儲存裝置,其中 該控制電路包含: -第-電塵產生電路,其經組態以向該第—配線供 應待升壓的一第一電漫; 一第二電壓產生電路,其、經組態以向該第二配線供 應一第二電壓’該第二電壓由使該第一電壓延遲某一 時間週期且將該第一電壓減小該某電位差而產生;及 一第三電壓產生電路,其經組態以比較一第三電壓 與一參考電壓以輸出一差動信號,該第三電壓具有與 該第一電壓的某一關係, • ㈣一電壓產生電路基於該差動信號而在-操作狀態 與一停止狀態之間切換,及 該第二電屋產生電路基於該差動信號而在一操作狀態 與一停止狀態之間切換。 14.如請求項9之非揮發性半導體儲存裝置,其中 該控制電路在向該第一傳導層施加一接地電壓之前使 該第S&amp;線、該第二配線、該第三配線及該第四配線升 壓。 15.如請求項1之非揮發性半導體儲存裝置,其中 144995.doc 201029011 一第二選擇電晶體的一末端連接至該記憶體串之該另 一末端; 一第三配線的一末端連接至該第二選擇電晶體之該另 一末端;及 一第四配線連接至該第二選擇電晶體之一閘極,其中 該第二選擇電晶體包含: 一第三半導體層’其在該垂直於該基板之方向上延 伸; 一第二閘極絕緣層,其經形成以包圍該第三半導體 層;及 -第三傳導層’其包圍該第二閘極絕緣層且平行於 該基板而延伸, 該第二半導體層經形成為與該柱狀部分之一底部表面 接觸,及 該第三半導體層經形成為與該柱狀部分之一頂部表面 接觸。 16. 17. 如請求項15之非揮發性半導體儲存裝置,其中 在該抹除操作中,該控制電路經組態以使該第三配線 及該第四se*線之電壓升壓,同時保持該第三配線之該電 壓比該第四配線之該電壓大該某電位差。 如請求項16之非揮發性半導體儲存裝置,其中 該控制電路選擇性地將該第三配線連接至該第一配 線’且將該第三配線設定為具有與該第一配線之電位相 同的電位。 144995.doc • 6 - 201029011 18. 如請求項16之非揮發性半導體儲存袈置,其中 在該抹除操作中,該控制電路 ^•岭將該第一配線提 一 第一電壓且將該第二配線提昇至一 ^ _ 第—電壓’使得在該 第一電壓與該第二電壓之間維持 两付忑系電位差,且接荖開 始使該第一配線自該第一電壓井 —λ €料壓,同時將該第二配線 §又疋於一浮動狀態。 19. 如請求項18之非揮發性半導體儲存裝置,其中 在該抹除操作中,該控制電路將該第三配線提昇至― 第-電Μ且將該第四配線提昇至—第二電壓,使得在該 第一電壓與該第二錢之間維持該某電位差,且接著開 始使該第三配線自該第—電壓升壓,同時將該第四配線 設定於一浮動狀態。 20. 如咕求項15之非揮發性半導體儲存裝置,其中 :6亥控制電路在向言亥第一料層施加-接地電壓之前使 該第配線、該第二配線、該第三配線及該第四配線升 ❹ 壓。 144995.docThe first selection transistor comprises: a second semiconductor layer in contact with a top surface or a bottom surface of the columnar portion and extending in a direction perpendicular to the substrate; - a first gate insulating layer Formed to surround the second semiconductor layer; and a first conductive layer that surrounds the second gate insulating layer and extends parallel to the substrate, the control circuit configured to cause the second in the erase operation Wiring and 144995.doc 201029011 The voltage of the first wiring is boosted, and at the same time, the voltage of the first wiring is maintained at a certain potential difference from the electric current of the first wiring, and the potential difference is A potential difference that causes a GIDL current. 2. The non-volatile semiconductor storage device of claim 1, wherein in the erasing operation, the control circuit boosts the first wiring to a first voltage and the second wiring to a second voltage, such that The potential difference is maintained between the first voltage and the second voltage, and then the first wiring is boosted from the first voltage, and the second wiring is set to a floating state. 3. The non-volatile semiconductor storage device of claim 1, wherein the control circuit comprises: a first voltage generating circuit configured to supply a first voltage to be boosted to the first wiring; a voltage generating circuit configured to supply a second voltage to the second wiring, the second voltage being generated by delaying the first voltage for a period of time and decreasing the first voltage by the potential difference; a second voltage generating circuit configured to compare a third voltage and a reference voltage to output a differential signal, the third voltage having a relationship with the first voltage, the first voltage generating circuit is based on The differential signal is switched between an operating state and a stopped state, and the "Hid-voltage generating circuit switches between an operating state and a stopped state based on the differential signal. 4. If the request item 3 is not Volatile semiconductor storage device, wherein 144995.doc • 1· 201029011 ^ control circuit includes _vibrating circuit 'the vibrating i circuit is configured to output based on the differential signal - the vibrating signal, and the first The waste generating circuit includes a boosting circuit configured to boost a certain voltage to the first voltage based on the oscillating signal. 5. The non-volatile semiconductor storage device of claim 3, wherein the The second voltage is a voltage generated by reducing the second voltage. 6. The non-volatile semiconductor storage device of claim 1, wherein the control circuit causes the first one before applying a ground voltage to the first conductive layer The wiring and the second wiring are boosted. 7. The non-volatile semiconductor storage device of claim 1, wherein the first control circuit is configured to boost the voltage of the second wiring and the voltage of the first wiring The conductive layer is set in a floating state. The non-volatile semiconductor storage device of claim 1, comprising a second selection transistor having an end connected to the other end of the memory string; a wiring having an end connected to the other end of the second selection transistor; and a fourth wiring connected to one of the gates of the second selection transistor, wherein the second selection transistor comprises: a third semiconductor layer 'extending in a direction perpendicular to the substrate; a second gate insulating layer 'which is formed to surround the third semiconductor 144995.doc 201029011 layer; and a first conductive layer surrounding the first a second closed insulating layer extending parallel to the substrate, the first semiconductor layer including a bonding portion joining the lower ends of one of the columnar portions, the second semiconductor layer being formed and borrowed a top surface contact of one of the dedicated pillar portions joined by the joint portion, and 9. the third semiconductor layer is formed to be the other of the pillar portions joined by the joint portion The non-volatile semiconductor storage device of claim 8, wherein in the erasing operation, the control circuit boosts a voltage of the third wiring and the fourth wiring while maintaining the third wiring The electric power is greater than the voltage of the fourth wiring by a certain potential difference. 10. The non-volatile semiconductor storage device of claim 9, wherein the control circuit selectively connects the third wiring to the first wiring, and the third wiring is provided with the first wiring The potential of the same potential. 11. The non-volatile semiconductor storage device of claim 9, wherein in the erasing operation, the control circuit boosts the first wiring to a first voltage and the second wiring to a second voltage, such that Maintaining the potential difference between the first voltage and the second ", and then boosting the first wiring from the first voltage while setting the second wiring to a floating state". The non-volatile semiconductor storage device of claim 11, wherein 144995.doc -4- 201029011, in the erasing operation, the control circuit boosts the third wiring to a first voltage and boosts the fourth wiring to one a second (four), wherein the certain potential i is maintained between the third voltage of the first electric grinder, and then the third wiring is boosted from the first voltage, and the fourth wiring is set at A floating state. The non-volatile semiconductor storage device of claim 9, wherein the control circuit comprises: - a first electric dust generating circuit configured to supply a first electric diffuser to be boosted to the first wiring; a second voltage generating circuit configured to supply a second voltage to the second wiring. The second voltage is delayed by the first voltage by a certain period of time and the first voltage is decreased by the potential difference And generating a third voltage generating circuit configured to compare a third voltage with a reference voltage to output a differential signal, the third voltage having a relationship with the first voltage, (4) a The voltage generating circuit switches between the -operating state and a stopped state based on the differential signal, and the second electric house generating circuit switches between an operating state and a stopped state based on the differential signal. 14. The non-volatile semiconductor storage device of claim 9, wherein the control circuit causes the S&amp; line, the second wiring, the third wiring, and the fourth before applying a ground voltage to the first conductive layer. Wiring boost. 15. The non-volatile semiconductor storage device of claim 1, wherein an end of a second selection transistor is connected to the other end of the memory string; an end of a third wiring is connected to the end a second terminal of the second selection transistor; and a fourth wiring connected to one of the gates of the second selection transistor, wherein the second selection transistor comprises: a third semiconductor layer 'which is perpendicular to the Extending in a direction of the substrate; a second gate insulating layer formed to surround the third semiconductor layer; and a third conductive layer surrounding the second gate insulating layer and extending parallel to the substrate, the The second semiconductor layer is formed in contact with a bottom surface of one of the columnar portions, and the third semiconductor layer is formed in contact with a top surface of one of the columnar portions. 17. The non-volatile semiconductor storage device of claim 15, wherein in the erasing operation, the control circuit is configured to boost the voltage of the third wiring and the fourth se* line while maintaining The voltage of the third wiring is greater than the voltage of the fourth wiring by a certain potential difference. The non-volatile semiconductor storage device of claim 16, wherein the control circuit selectively connects the third wiring to the first wiring 'and sets the third wiring to have the same potential as a potential of the first wiring . 144995.doc • 6 - 201029011 18. The non-volatile semiconductor storage device of claim 16, wherein in the erasing operation, the control circuit raises the first wiring to a first voltage and the first The second wiring is raised to a voltage _ _ first voltage to maintain a two lanthanum potential difference between the first voltage and the second voltage, and the junction begins to make the first wiring from the first voltage well - λ Pressing, while the second wiring § is in a floating state. 19. The non-volatile semiconductor storage device of claim 18, wherein in the erasing operation, the control circuit boosts the third wiring to a "first" and raises the fourth wiring to a second voltage, The potential difference is maintained between the first voltage and the second money, and then the third wiring is started to be boosted from the first voltage, and the fourth wiring is set to a floating state. 20. The non-volatile semiconductor storage device of claim 15, wherein: the 6-Hai control circuit causes the second wiring, the second wiring, the third wiring, and the first to apply a ground voltage to the first layer of Yanhai The fourth wiring is raised and pressed. 144995.doc
TW098140832A 2009-01-08 2009-11-30 Non-volatile semiconductor storage device TWI443663B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002376A JP5275052B2 (en) 2009-01-08 2009-01-08 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
TW201029011A true TW201029011A (en) 2010-08-01
TWI443663B TWI443663B (en) 2014-07-01

Family

ID=42311605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098140832A TWI443663B (en) 2009-01-08 2009-11-30 Non-volatile semiconductor storage device

Country Status (4)

Country Link
US (2) US8189391B2 (en)
JP (1) JP5275052B2 (en)
KR (1) KR101098616B1 (en)
TW (1) TWI443663B (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275052B2 (en) * 2009-01-08 2013-08-28 株式会社東芝 Nonvolatile semiconductor memory device
JP2011138579A (en) * 2009-12-28 2011-07-14 Toshiba Corp Non-volatile semiconductor memory device
KR101691092B1 (en) 2010-08-26 2016-12-30 삼성전자주식회사 Nonvolatile memory device, operating method thereof and memory system including the same
KR101691088B1 (en) 2010-02-17 2016-12-29 삼성전자주식회사 Nonvolatile memory device, operating method thereof and memory system including the same
US9324440B2 (en) 2010-02-09 2016-04-26 Samsung Electronics Co., Ltd. Nonvolatile memory devices, operating methods thereof and memory systems including the same
KR101658479B1 (en) 2010-02-09 2016-09-21 삼성전자주식회사 Nonvolatile memory device, operating method thereof and memory system including the same
US9378831B2 (en) 2010-02-09 2016-06-28 Samsung Electronics Co., Ltd. Nonvolatile memory devices, operating methods thereof and memory systems including the same
US8923060B2 (en) 2010-02-17 2014-12-30 Samsung Electronics Co., Ltd. Nonvolatile memory devices and operating methods thereof
JP5788183B2 (en) 2010-02-17 2015-09-30 三星電子株式会社Samsung Electronics Co.,Ltd. Nonvolatile memory device, method of operating the same, and memory system including the same
US8908431B2 (en) 2010-02-17 2014-12-09 Samsung Electronics Co., Ltd. Control method of nonvolatile memory device
US8792282B2 (en) * 2010-03-04 2014-07-29 Samsung Electronics Co., Ltd. Nonvolatile memory devices, memory systems and computing systems
US8553466B2 (en) 2010-03-04 2013-10-08 Samsung Electronics Co., Ltd. Non-volatile memory device, erasing method thereof, and memory system including the same
JP2011198435A (en) 2010-03-23 2011-10-06 Toshiba Corp Nonvolatile semiconductor memory device
JP2012069606A (en) 2010-09-21 2012-04-05 Toshiba Corp Nonvolatile semiconductor memory device
JP2012069205A (en) * 2010-09-22 2012-04-05 Toshiba Corp Nonvolatile semiconductor memory
JP5259666B2 (en) 2010-09-22 2013-08-07 株式会社東芝 Nonvolatile semiconductor memory device
JP5502773B2 (en) * 2011-02-01 2014-05-28 株式会社東芝 Nonvolatile semiconductor memory device
WO2012039511A1 (en) * 2010-09-24 2012-03-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
KR101177215B1 (en) * 2010-10-26 2012-08-24 에스케이하이닉스 주식회사 Semiconductor memory apparatus and method of operating the same
JP2012119013A (en) 2010-11-29 2012-06-21 Toshiba Corp Nonvolatile semiconductor memory device
US8431961B2 (en) * 2011-02-03 2013-04-30 Micron Technology, Inc. Memory devices with a connecting region having a band gap lower than a band gap of a body region
KR101771619B1 (en) 2011-02-09 2017-08-28 삼성전자주식회사 Nonvolatile memory device and driving method thereof
JP5002719B1 (en) 2011-03-10 2012-08-15 株式会社東芝 Information processing device, external storage device, host device, relay device, control program, and information processing device control method
JP5405513B2 (en) 2011-03-22 2014-02-05 株式会社東芝 MEMORY SYSTEM, NONVOLATILE MEMORY DEVICE, NONVOLATILE MEMORY DEVICE CONTROL METHOD, AND PROGRAM
KR101762828B1 (en) 2011-04-05 2017-07-31 삼성전자주식회사 Nonvolatile memory device and operating method of nonvolatile memory device
JP2012252740A (en) * 2011-06-02 2012-12-20 Toshiba Corp Nonvolatile semiconductor memory device
JP2013004629A (en) * 2011-06-14 2013-01-07 Toshiba Corp Semiconductor storage device
JP5524134B2 (en) 2011-06-14 2014-06-18 株式会社東芝 Nonvolatile semiconductor memory device
JP2013004128A (en) * 2011-06-14 2013-01-07 Toshiba Corp Nonvolatile semiconductor memory device
JP2013012553A (en) * 2011-06-28 2013-01-17 Toshiba Corp Semiconductor storage device
JP5593283B2 (en) * 2011-08-04 2014-09-17 株式会社東芝 Semiconductor memory device and manufacturing method thereof
JP2013080535A (en) 2011-10-03 2013-05-02 Toshiba Corp Semiconductor memory device
JP5112566B1 (en) 2011-12-16 2013-01-09 株式会社東芝 Semiconductor memory device, nonvolatile semiconductor memory inspection method, and program
JP5740296B2 (en) 2011-12-16 2015-06-24 株式会社東芝 Semiconductor memory device, semiconductor memory device control method, and control program
US8908435B2 (en) * 2011-12-21 2014-12-09 Sandisk Technologies Inc. Erase operation with controlled select gate voltage for 3D non-volatile memory
KR101959846B1 (en) 2012-03-02 2019-03-20 삼성전자주식회사 Resistive memory device
KR101989850B1 (en) 2012-04-03 2019-06-18 삼성전자주식회사 Non-volatile memory device, memory system, and program method of the same
US8787094B2 (en) 2012-04-18 2014-07-22 Sandisk Technologies Inc. Soft erase operation for 3D non-volatile memory with selective inhibiting of passed bits
US9019775B2 (en) 2012-04-18 2015-04-28 Sandisk Technologies Inc. Erase operation for 3D non-volatile memory with controllable gate-induced drain leakage current
KR101915719B1 (en) 2012-04-26 2019-01-08 삼성전자주식회사 Nonvolatile memory device and program operation method thereof
JP2013254537A (en) * 2012-06-06 2013-12-19 Toshiba Corp Semiconductor memory and controller
JP5586718B2 (en) 2012-06-19 2014-09-10 株式会社東芝 CONTROL PROGRAM, HOST DEVICE CONTROL METHOD, INFORMATION PROCESSING DEVICE, AND HOST DEVICE
JP2014038670A (en) 2012-08-13 2014-02-27 Toshiba Corp Nonvolatile semiconductor memory device
US8958244B2 (en) 2012-10-16 2015-02-17 Conversant Intellectual Property Management Inc. Split block decoder for a nonvolatile memory device
US9704580B2 (en) 2012-10-22 2017-07-11 Conversant Intellectual Property Management Inc. Integrated erase voltage path for multiple cell substrates in nonvolatile memory devices
US9030879B2 (en) 2012-11-15 2015-05-12 Conversant Intellectual Property Management Incorporated Method and system for programming non-volatile memory with junctionless cells
US10403766B2 (en) 2012-12-04 2019-09-03 Conversant Intellectual Property Management Inc. NAND flash memory with vertical cell stack structure and method for manufacturing same
CN103021447B (en) * 2012-12-21 2016-06-08 上海华虹宏力半导体制造有限公司 Word line biasing circuit and memorizer
US9007834B2 (en) 2013-01-10 2015-04-14 Conversant Intellectual Property Management Inc. Nonvolatile memory with split substrate select gates and hierarchical bitline configuration
US8824211B1 (en) * 2013-02-14 2014-09-02 Sandisk Technologies Inc. Group word line erase and erase-verify methods for 3D non-volatile memory
US9202931B2 (en) 2013-03-14 2015-12-01 Conversant Intellectual Property Management Inc. Structure and method for manufacture of memory device with thin silicon body
US9025382B2 (en) 2013-03-14 2015-05-05 Conversant Intellectual Property Management Inc. Lithography-friendly local read circuit for NAND flash memory devices and manufacturing method thereof
JP6005566B2 (en) 2013-03-18 2016-10-12 株式会社東芝 Information processing system, control program, and information processing apparatus
US9214235B2 (en) 2013-04-16 2015-12-15 Conversant Intellectual Property Management Inc. U-shaped common-body type cell string
WO2015013689A2 (en) 2013-07-25 2015-01-29 Aplus Flash Technology, Inc. Nand array hiarchical bl structures for multiple-wl and all -bl simultaneous erase, erase-verify, program, program-verify, and read operations
US9293205B2 (en) 2013-09-14 2016-03-22 Aplus Flash Technology, Inc Multi-task concurrent/pipeline NAND operations on all planes
KR102242022B1 (en) 2013-09-16 2021-04-21 삼성전자주식회사 Nonvolatile memory device and program method using thereof
JP2015060602A (en) * 2013-09-17 2015-03-30 株式会社東芝 Nonvolatile semiconductor storage device
US8929141B1 (en) * 2013-10-02 2015-01-06 Sandisk Technologies Inc. Three-dimensional NAND memory with adaptive erase
US9362293B2 (en) * 2013-12-20 2016-06-07 Cypress Semiconductor Corporation CT-NOR differential bitline sensing architecture
WO2015100434A2 (en) 2013-12-25 2015-07-02 Aplus Flash Technology, Inc A HYBRID NAND WITH ALL-BL m-PAGE OPERATION SCHEME
WO2016014731A1 (en) 2014-07-22 2016-01-28 Aplus Flash Technology, Inc. Yukai vsl-based vt-compensation for nand memory
KR20160031907A (en) * 2014-09-15 2016-03-23 에스케이하이닉스 주식회사 Semiconductor apparatus
US20170117036A1 (en) * 2015-10-22 2017-04-27 Sandisk Technologies Llc Source line driver for three dimensional non-volatile memory
US10853233B2 (en) 2016-10-18 2020-12-01 Toshiba Memory Corporation Reconstruction of address mapping in a host of a storage system
US10622089B2 (en) 2016-10-18 2020-04-14 Toshiba Memory Corporation Storage system having a host that manages physical data locations of storage device
US10373921B2 (en) * 2017-06-20 2019-08-06 Micron Technology, Inc. Power gate circuits for semiconductor devices
US10659045B2 (en) 2017-06-27 2020-05-19 Silicon Laboratories Inc. Apparatus with electronic circuitry having reduced leakage current and associated methods
KR102581331B1 (en) 2018-05-31 2023-09-25 삼성전자주식회사 Memory device and operating method thereof
US11227660B2 (en) 2018-05-31 2022-01-18 Samsung Electronics Co., Ltd. Memory device and operating method thereof
US11289170B2 (en) 2018-06-01 2022-03-29 Samsung Electronics Co., Ltd. Nonvolatile memory device with capability of determing degradation of data erase characteristics
KR102545044B1 (en) 2018-06-01 2023-06-19 삼성전자주식회사 Method of erasing data in nonvolatile memory device and nonvolatile memory device performing the same
KR102549622B1 (en) 2018-07-03 2023-06-28 삼성전자주식회사 Semiconductor package
US10910064B2 (en) * 2018-11-06 2021-02-02 Sandisk Technologies Llc Location dependent impedance mitigation in non-volatile memory
US11934480B2 (en) * 2018-12-18 2024-03-19 Macronix International Co., Ltd. NAND block architecture for in-memory multiply-and-accumulate operations
KR20200104669A (en) 2019-02-27 2020-09-04 삼성전자주식회사 Integrated circuit devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132323B2 (en) * 1998-12-17 2008-08-13 富士通株式会社 Nonvolatile semiconductor memory device and internal operation method of nonvolatile semiconductor memory device
JP3954245B2 (en) * 1999-07-22 2007-08-08 株式会社東芝 Voltage generation circuit
JP3987418B2 (en) * 2002-11-15 2007-10-10 株式会社東芝 Semiconductor memory device
US7072217B2 (en) * 2004-02-24 2006-07-04 Micron Technology, Inc. Multi-state memory cell with asymmetric charge trapping
JP5016832B2 (en) 2006-03-27 2012-09-05 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
JP2007317874A (en) * 2006-05-25 2007-12-06 Toshiba Corp Non-volatile semiconductor storage device
JP4908238B2 (en) * 2007-01-11 2012-04-04 株式会社東芝 Nonvolatile semiconductor memory device
JP2008172164A (en) * 2007-01-15 2008-07-24 Toshiba Corp Semiconductor device
JP5142692B2 (en) 2007-12-11 2013-02-13 株式会社東芝 Nonvolatile semiconductor memory device
JP5086959B2 (en) 2008-09-26 2012-11-28 株式会社東芝 Nonvolatile semiconductor memory device
JP2010118580A (en) * 2008-11-14 2010-05-27 Toshiba Corp Non-volatile semiconductor memory device
JP5275052B2 (en) * 2009-01-08 2013-08-28 株式会社東芝 Nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
US8189391B2 (en) 2012-05-29
KR101098616B1 (en) 2011-12-23
TWI443663B (en) 2014-07-01
KR20100082319A (en) 2010-07-16
JP5275052B2 (en) 2013-08-28
JP2010161199A (en) 2010-07-22
US20100172189A1 (en) 2010-07-08
US8605508B2 (en) 2013-12-10
US20120218821A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
TW201029011A (en) Non-volatile semiconductor storage device
US11742032B2 (en) Semiconductor memory device
TWI546941B (en) Non-volatile semiconductor storage device and method of controlling the same
US8520440B2 (en) Semiconductor memory device and method of operating the same
JP4856203B2 (en) Nonvolatile semiconductor memory device
TWI447737B (en) Nonvolatile semiconductor memory device and method of data read therein
TWI450270B (en) Nonvolatile semiconductor memory device
US7778083B2 (en) Program and erase methods for nonvolatile memory
TWI418019B (en) Non-volatile semiconductor storage device
US7813183B2 (en) Program and erase methods for nonvolatile memory
US20150294726A1 (en) Nand-type flash memory device and method of programming the same
US10803952B2 (en) Vertical memory device having improved electrical characteristics and method of operating the same
KR20060048355A (en) Non-volatile semiconductor memory device
US8971120B2 (en) Semiconductor memory device
JP5305856B2 (en) Nonvolatile semiconductor memory
US11450386B2 (en) Nonvolatile memory device performing two-way channel precharge
US11250916B2 (en) Vertical memory device having improved electrical characteristics and method of operating the same
JP2009295259A (en) Nonvolatile semiconductor storage device and method of writing data therefor
US9935115B2 (en) Nonvolatile semiconductor storage device and method of manufacturing nonvolatile semiconductor storage device
KR102424409B1 (en) U-shpaed three dimensional flash memory supporting bulk erase operation