TW201028233A - Method for manufacturing nickel alloy target - Google Patents

Method for manufacturing nickel alloy target Download PDF

Info

Publication number
TW201028233A
TW201028233A TW98102629A TW98102629A TW201028233A TW 201028233 A TW201028233 A TW 201028233A TW 98102629 A TW98102629 A TW 98102629A TW 98102629 A TW98102629 A TW 98102629A TW 201028233 A TW201028233 A TW 201028233A
Authority
TW
Taiwan
Prior art keywords
alloy
nickel
manufacturing
target
nickel metal
Prior art date
Application number
TW98102629A
Other languages
Chinese (zh)
Other versions
TWI387497B (en
Inventor
Rong-Zhi Chen
yin-ting Hong
Jun-Hao Qiu
Hong-Sheng Huang
Qing-Zong Chen
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW98102629A priority Critical patent/TWI387497B/en
Publication of TW201028233A publication Critical patent/TW201028233A/en
Application granted granted Critical
Publication of TWI387497B publication Critical patent/TWI387497B/en

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A method for manufacturing nickel alloy target according to this invention is performing vacuum smelting of nickel metal with at least one alloy element to form an alloy melt; then, nebulizing to form nickel alloy powders; and finally, forming the powders into a nickel alloy target. This invention can produce a nickel alloy target having equiaxed grain structure configuration with no ingredient segregation, without the need of expensive Ni and W powder as raw material, expensive plasma sintering equipment to perform sintering, and cold rolling process and crystallization annealing treatment, so as to be a simple manufacturing method. Furthermore, the manufacturing method of this invention utilizes a mold with specific shape to form a target with specific shape, so that the target needs not to remove head, tail-end, and side material. Therefore, this invention not only has high finished product rate and low target production cost, but is also suitable for manufacturing high-grade round sputtering target used for thin film sputtering process.

Description

201028233 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種靶材之製造方法,詳言之,係關於 . 一種鎳合金把材之製造方法。 【先前技術】 參考中國大陸專利公開第2〇〇51〇1〇4828 2號及第 200610076274.4號’其揭示一種特殊粉末冶金的製造技 術,以製得組織均勻、細緻的鎳-鎢合金》在該等 • 專利中,其係先將純度99.9%以上、粒徑3~6 μιη的Ni粉及 w粉均勻混合後’裝入石墨模具中,在溫度800〜120〇t、 壓力為30〜80MPa的條件下’進行1〇分鐘以内之電漿燒結 (spark plasma sintering, SPS),接著將燒結胚體進行冷 軋,每道次冷軋變形量為5〜丨5%,總變形量小於97%,最 後,將軋延完畢的Ni-W板材在Ar-4% H2氣氛下進行再結晶 退火’退火溫度為900〜1300°C、退火時間為0.5〜3小時。 該等專利指出’經過劇烈的冷軋及再結晶退火處理之後, ❿ 可得到等軸晶的組織型態,其粒徑大小約數十微米(μιη)。 然而’上述二專利之缺點在於,需使用價格較為昂貴之Ni 粉體及W粉體為原料,並且使用相當昂貴的電漿燒結設備 進行Ni、W粉體的燒結’故靶材之製造成本相當昂貴。201028233 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for producing a target, and more particularly to a method for producing a nickel alloy material. [Prior Art] Reference is made to the Chinese Patent Publication No. 2, No. 5, No. 4,828, 2, and No. 200610076274.4, which discloses a special powder metallurgy manufacturing technique for producing a uniform and fine nickel-tungsten alloy. Etc. In the patent, the Ni powder and the w powder with a purity of 99.9% or more and a particle size of 3 to 6 μm are uniformly mixed and then loaded into a graphite mold at a temperature of 800 to 120 Torr and a pressure of 30 to 80 MPa. Under the conditions of 'spark plasma sintering (SPS) within 1 minute, and then the sintered body is cold-rolled, the cold rolling deformation per pass is 5 ~ 5%, the total deformation is less than 97%, Finally, the rolled Ni-W sheet was subjected to recrystallization annealing in an Ar-4% H2 atmosphere. The annealing temperature was 900 to 1300 ° C, and the annealing time was 0.5 to 3 hours. These patents indicate that after intense cold rolling and recrystallization annealing treatment, ❿ can obtain an equiaxed crystal structure having a particle size of about several tens of micrometers (μm). However, the above two patents have the disadvantage that they require the use of relatively expensive Ni powder and W powder as raw materials, and the use of relatively expensive plasma sintering equipment for sintering of Ni and W powders, so the manufacturing cost of the target is equivalent. expensive.

Zhao等人(先前技術參考文獻[1])也提及以真空熔鑄法製 作Ni-W合金的方式,其選用純度99.9%以上的Ni片及W 片,在真空熔煉爐先澆鑄出Ni-5W或Ni-9W的鑄錠,其中 澆鑄溫度為1500°C,接著將鑄錠進行冷軋製程,每道次冷 136882.doc 201028233 軋變形量為5% ’總變形量約97%,最後,將軋延完畢的 Ni-W板材在Ar-7% H2氣氛下進行再結晶退火,退火溫度為 1100°C、退火時間為1小時,以製得等軸晶組織型態的Ni- W合金。 上述二專利及Zhao等人皆提及,欲得到等軸晶組織型態 之NUW合金’皆需經冷軋製程及在氣氛保護下進行再結晶 退火處理才能製得。再者,軋延後之Ni-W合金必須去除 頭、尾料及邊料後,再裁切成特定形狀(例如:圓形)之靶 材,其成品率往往低於70°/。。因此,生產靶材的成本大幅 提高,更不適合薄膜濺鍍製程所用之高品級圓形濺鍍靶材 之製作。 因此,有必要提供一創新且富有進步性之鎳合金靶材之 製造方法,以解決上述問題。 先前技術麥考文獻: 1. Y. Zhao et al., "Investigation texture in Ni-W alloy substrates for coated conductors", Mater, Sci. Forum, 546-549 (2007) 2015. 【發明内容】 本發明提供一種鎳合金靶材之製造方法,包括以下步 驟:(a)提供鎳金屬及至少一合金元素;(b)進行一真空熔 煉步驟,以形成一合金溶液;(c)霧化該合金溶液,以形成 鎳合金粉體;及(d)成型及緻密化該鎳合金粉體,以形成鎳 合金靶材。 本發明之鎳合金靶材之製造方法不需使用償格較為昂貴 之Ni粉體及W粉體為原料、不需使用相當昂貴的電槳燒結 136882.doc 201028233 設備進行Ni、W粉體的燒結,並且不需經冷軋製程及在氣 氛保護下進行再結晶退火處理,即可製得無成分偏析且等 轴晶組織型態之鎳合金靶材,故製造方法簡單。再者,本 發明之媒合金乾材之製造方法在成型及敏密化步驟中,即 利用特定形狀之棋具形成特定形狀之靶材,故靶材不需再 經去除頭、尾料及邊料’因此不但成品率高(高達95。/〇以 上)、乾材生產成本低’並且適合薄媒賤鍵製程所用之高 品級圓形濺鍍靶材之製作。 【實施方式】 圖1顯示本發明鎳合金靶材之製造方法流程圖。首先, 參考步驟S11 ’提供錄金屬及至少一合金元素〃其尹,該 鎳金屬及該合金元素可為塊狀或條狀》在本實施例令,該 合金元素係為鎢合金元素,並且該鎳金屬及該合金元素之 純度係大於99.9%,其中該鎢合金元素之重量百分比係為 14%至 36%。 在其他應用中,除該鎳金屬及鎢合金元素(第一合金元 素)外,亦可另包括一第二合金元素。該第二合金元素係 選自鐵(Fe)、鈕(Ta)、釩(V)、鈮(Nb)、鉻(Cr)、鉬(Mo)、 鉑(Pt)、鈀(Pd)、銅(Cu)、鋅(Zn)、錯(Zr)其中之一。其 中’該鎳金屬之重量百分比係大於50%,該鎢合金元素之 重量百分比係為14%至36%,其餘之重量百分比係為該第 二合金元素含量。較佳地,該第二合金元素之重量百分比 係不大於27%。 較佳地,在步驟S11之前係另包括以下步驟:利用酸性 i36882.doc 201028233 4液移除該絲金属及該合金元素表面之氧化物及污染物; 取出該錄金屬及該合金元素並移除該鎳金屬及該合金元素 表面之酸性溶液;及乾燥該鎳金屬及該合金元素。其中, 3亥酸性溶液之親積濃度係為95%以上,且係以去離子水移 除遠錄金屬及該合金元素表面之酸性溶液。其中,該酸性 溶液較佳係選自鹽酸或硝酸。 參考步驟S12’進行一真空熔煉步驟,以形成一合金溶 液°在本實施例中’其係於真空感應熔煉爐或真空電弧熔 練爐中進行該真空熔煉步驟β較佳地,該其空熔煉之溫度 係為1650°C至1750。〇 ’該真空熔煉之之真空度係為1〇-3托 (torr)以上。 參考步驟S13 ’霧化該合金溶液,以形成鎳合金粉體。 在本實施例中’其係利用高壓惰性氣體(例如:氬氣)以喷 擊方式霧化該合金溶液。較佳地,該高壓惰性氣體之壓力 係為20至30大氣壓力(atm)。 其令’本發明更在步驟S13之後另包括一冷卻步驟,以 冷卻霧化後之該鎳合金粉體。舉例而言,本發明可利用氮 氣喷擊方式或自然冷卻方式,冷卻霧化後之該鎳合金粉 體。 參考步驟S14,成型及緻密化該鎳合金粉體,以形成鎳 合金粗材,其中,本發明鎳合金靶材可應用於磁記錄產 業 '光電產業或半導體產業之薄膜濺鍍製程。在步驟S14 中’其係以熱壓製程或熱均壓製程進行該成型及緻密化步 驟。較佳地,成型及緻密化之溫度較佳係為900°C至11 00 136882.doc 201028233 °C ’成型及緻密化之時間較佳係為丨至4小時。 茲以下列實例予以詳細說明本發明,准並不意謂本發明 僅侷限於此等實例所揭示之内容。 實例1 : 本實例係以75%鎳-25%鎢(重量百分比,wt,%)合金靶材 製作為例。首先於原料準備步驟中,按照75%鎳-25%鎢之 重量百分比例’準備純度99.9%以上的鎳塊及鎢條,並將 鎳塊及鎢條置於鱧積濃度95%以上的鹽酸溶液中,以超音 波震動方式去除鎳塊及鎢條表面之氧化物及油污後,再置 於去離子水中’以超音波震動方式去除殘留在鎳塊及鎢條 表面的鹽酸溶液,接著予以烘乾❶ 接著’於預合金粉體(鎳合金粉體)製備步驟,先將酸洗 過的鎳塊及鎢條放入一真空感應熔煉爐的坩鍋中並抽真 空,待真空度達到l(T3torr以上後’該感應熔煉爐開始升溫 至1750°C ’待該坩鍋中的鎳塊及鎢條完全熔化後,持溫1〇 分鐘’確保高熔點的鎢條能完全熔解而形成鎳·鎢合金湯 液’並在感應線圈所提供的磁場攪拌下,使熔融的鎳-鶴 合金湯液成分混合更均勻《然後將熔融、成分均勻的鎳· 鎢合金湯液自該真空感應熔煉爐的坩堝中倒出,並利用28 大氣壓力(atm)的高壓氩氣喷擊,使熔融鎳-鎢合金湯液霧 化成粉體後,於該真空感應熔煉爐之腔體中,利用氙氣繼 續喷擊霧化後之鎳-鎢合金粉體,加速冷卻,便可得到成 分均均勻之錄-鶴合金粉艘。 最後,於成型及緻密化步驟中,將75%鎳-25°/。鎢重量百 136882.doc 201028233 分比之預合金粉體放入一石墨棋具中,以熱歷方式,在 1000°c、持溫2小時的條件下,即可將鎳·鎢合金粉嫂壓製 成相對密度為100%、且無成分偏析的鎳-鎢合金靶材。 圊2顯示以本發明製造方法所製得之75y。鎳.25%鎢合金 乾材之顯微組織結構囷,其中右下角之比例尺標為i00 μηι。很明顯地’該媒-轉合金把材之組織相當細緻且分佈 非常均勻,並且在不經冷軋搭配退火熱處理下,即可得到 無成分偏析且等軸晶型態的組織,其中該鎳·鎢合金靶材 之平均晶粒尺寸約9 μιη 〇 實例2 : 本實例係以65°/。鎳-15%鐵-20%鎢(重量百分比)合金靶材 製作為例。首先於原料準備步驟中,按照65%鎳·15%鐵· 20°/〇鶴之重量百分比例’準備純度99 9%以上的鎳塊、鐵 塊以及鎢條’並將鎳塊、鐵塊以及鎢條置於體積濃度95〇/〇 以上的魏酸溶液中’以超音波震動方式去除表面氧彳匕物及 油污後,再置於去離子水中,以超音波震動方式去除殘留 在錄塊、鐵塊及鎢條表面之鹽酸溶液,接著予以烘乾。 接著於預合金粉體製備步驟,將酸洗過的鎳塊、鐵塊及 鹤條置入一真空感應熔煉爐之坩鍋中並抽真空,待真空度 達到103torr以上後’該感應熔煉爐開始升溫至165〇。〇,待 該掛麵中的鎳塊、鐵塊以及鎢條完全熔化之後,持溫5分 鐘’確保高熔點的鎢條能完全熔解而形成鎳-鐵-鎢合金湯 液,並在感應線圈所提供的磁場攪拌下,使熔融的鎳_鐵_ 鎢合金湯液成分混合更均勻。然後將熔融、成分均勻的 136882.doc 201028233 鎳-鐵-鎢合金湯液自該真空感應熔煉爐的坩堝中倒出,並 利用20大氣壓力(atm)的高壓氬氣喷擊,使熔融鎳·鐵·鎢合 金湯液霧化成粉艘後’於該真空感應燦煉遽之腔艘争自然 冷卻’便可得到成分均勻的鎳-鐵·鎢合金粉髏。 最後’於成型及緻密化步驟中,將65%鎳-15%鐵-20%錄 重量百分比之合金粉艘以不鏽鋼封罐(canning)之後,以熱 均壓方式在900°C、持溫4小時的條件下,即可將鎳-鐵-姨 合金粉艘壓製成相對密度為100%、且無成分偏析之鎳·鐵· • 鎢合金靶材。 圖3顯示以本發明製造方法所製得之65%鎳·15%鐵-2〇% 鎢合金靶材之顯微組織結構圈,其中右下角之比例尺標為 1 00 μηι。很明顯地,該錄-鐵-熱合金把材之組織相當細敏 且分佈非常均勻’並且在不經冷軋搭配退火熱處理細,即 可得到無成分偏析且等軸晶型態的組織,其中該鎳-鐵·热 合金靶材之平均晶粒尺寸約8 μπι。 春 本發明之鎳合金靶材之製造方法不需使用價格較為昂貴 之Ni粉體及w粉體為原料、不需使用相當昂貴的電漿燒結 設備進行Ni、W粉體的燒結,並且不需經冷軋製程及在氣 氛保護下進行再結晶退火處理,即可製得無成分偏析且等 軸晶組織型態之鎳合金靶材,故製造方法簡單。再者,本 發明之鎳合金靶材之製造方法在成型及緻密化步驟中,即 利用特疋形狀之模具形成特定形狀之把材,故把材不需再 經去除頭、尾料及邊料,因此不但成品率高(高達95%以 上)、靶材生產成本低,並且適合薄膜濺鍍製程所用之高 136882.doc 201028233 品級圓形濺鍍靶材之製作。 上述實施例’僅為說明本發明之原理及其功效,並非限制 本發明。因此習於此技術之人士對上述實施例進行修改及 變化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圏式簡單說明】 圖1顯示本發明鎳合金靶材之製造方法流程圓; 圖2顯示以本發明製造方法所製得之鎳·鎢合金靶材之顯 ❿ 微組織結構圓;及 圖3顯示以本發明製造方法所製得之鎳-鐵-鎢合金靶材 之顯微組織結構圖。 136882.docZhao et al. (previous technical reference [1]) also mentions a method of producing a Ni-W alloy by vacuum melting casting, which uses a Ni piece and a W piece having a purity of 99.9% or more, and first casts Ni-5W in a vacuum melting furnace. Or Ni-9W ingot, wherein the casting temperature is 1500 ° C, and then the ingot is subjected to cold rolling, each pass cold 136882.doc 201028233 rolling deformation is 5% 'total deformation is about 97%, and finally, The rolled Ni-W sheet was subjected to recrystallization annealing in an Ar-7% H2 atmosphere at an annealing temperature of 1,100 ° C and an annealing time of 1 hour to obtain an equiaxed crystal structure of the Ni-W alloy. Both of the above patents and Zhao et al. mention that the NUW alloy which is required to obtain an equiaxed crystal structure can be obtained by a cold rolling process and a recrystallization annealing treatment under the atmosphere. Furthermore, the rolled Ni-W alloy must be cut into a specific shape (e.g., a circular shape) after the head, tailings, and trim are removed, and the yield is often less than 70°/. . As a result, the cost of producing targets has increased significantly, making it less suitable for the production of high-grade circular sputter targets for thin film sputtering processes. Therefore, it is necessary to provide an innovative and progressive method of manufacturing nickel alloy targets to solve the above problems. Prior art McCaw literature: 1. Y. Zhao et al., "Investigation texture in Ni-W alloy substrates for coated conductors", Mater, Sci. Forum, 546-549 (2007) 2015. [Invention] A method for producing a nickel alloy target comprising the steps of: (a) providing a nickel metal and at least one alloying element; (b) performing a vacuum melting step to form an alloy solution; (c) atomizing the alloy solution, To form a nickel alloy powder; and (d) to form and densify the nickel alloy powder to form a nickel alloy target. The method for manufacturing the nickel alloy target of the present invention does not require the use of the relatively expensive Ni powder and the W powder as raw materials, and does not require the use of a relatively expensive electric paddle sintering 136882.doc 201028233 equipment for sintering of Ni and W powders Moreover, the nickel alloy target having no component segregation and equiaxed crystal structure can be obtained without performing a recrystallization annealing treatment under a cold rolling process and under the protection of the atmosphere, so that the manufacturing method is simple. Furthermore, in the molding and densification step of the present invention, in the molding and densification step, a specific shape of the target is formed by using a chess piece of a specific shape, so that the target does not need to be removed by the head, the tail material and the edge material. Therefore, it not only has a high yield (up to 95./〇), but also has a low production cost of dry materials, and is suitable for the production of high-grade circular sputtering targets used in the thin-film process. [Embodiment] Fig. 1 is a flow chart showing a method of manufacturing a nickel alloy target of the present invention. First, referring to step S11 'providing a metal and at least one alloying element, the nickel metal and the alloying element may be in the form of a block or a strip." In this embodiment, the alloying element is a tungsten alloying element, and The purity of the nickel metal and the alloying element is greater than 99.9%, wherein the weight percentage of the tungsten alloying element is from 14% to 36%. In other applications, in addition to the nickel metal and tungsten alloy elements (first alloy elements), a second alloying element may be included. The second alloying element is selected from the group consisting of iron (Fe), button (Ta), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo), platinum (Pt), palladium (Pd), copper ( One of Cu), zinc (Zn), and (Zr). Wherein the weight percentage of the nickel metal is more than 50%, and the weight percentage of the tungsten alloy element is 14% to 36%, and the remaining weight percentage is the content of the second alloying element. Preferably, the weight percentage of the second alloying element is not more than 27%. Preferably, before step S11, the method further comprises the steps of: removing the silk metal and the oxides and contaminants on the surface of the alloy element by using the acid i36882.doc 201028233 4 liquid; removing the recorded metal and the alloying element and removing The nickel metal and an acidic solution on the surface of the alloy element; and drying the nickel metal and the alloying element. Among them, the concentration concentration of the 3H acidic solution is 95% or more, and the deionized water is used to remove the far-recorded metal and the acidic solution on the surface of the alloy element. Among them, the acidic solution is preferably selected from hydrochloric acid or nitric acid. Referring to step S12', a vacuum melting step is performed to form an alloy solution. In the present embodiment, the vacuum melting step is performed in a vacuum induction melting furnace or a vacuum arc melting furnace. Preferably, the vacuum melting step is performed. The temperature is from 1650 ° C to 1750. 〇 'The vacuum degree of the vacuum melting is 1 〇 -3 torr (torr) or more. The alloy solution is atomized by referring to step S13' to form a nickel alloy powder. In the present embodiment, the alloy solution is atomically sprayed by a high pressure inert gas (e.g., argon gas). Preferably, the pressure of the high pressure inert gas is from 20 to 30 atmospheres (atm). The invention further includes a cooling step after step S13 to cool the atomized nickel alloy powder. For example, the present invention can cool the atomized nickel alloy powder by means of a nitrogen gas blasting method or a natural cooling method. Referring to step S14, the nickel alloy powder is formed and densified to form a nickel alloy coarse material, wherein the nickel alloy target of the present invention can be applied to a thin film sputtering process of the photoelectric industry or the semiconductor industry. In step S14, the molding and densification steps are carried out by a hot press process or a hot press process. Preferably, the temperature for forming and densification is preferably from 900 ° C to 1 00 136 882. doc 201028233 ° C. The time for forming and densification is preferably from 4 to 4 hours. The present invention is illustrated by the following examples, which are not intended to limit the invention. Example 1: This example is exemplified by a 75% nickel to 25% tungsten (wt%, wt, %) alloy target. First, in the raw material preparation step, according to the weight percentage of 75% nickel to 25% tungsten, 'prepare nickel blocks and tungsten bars with a purity of 99.9% or more, and place the nickel block and the tungsten bar in a hydrochloric acid solution having a concentration of more than 95%. In the ultrasonic wave vibration method, the oxide and oil on the surface of the nickel block and the tungsten strip are removed, and then placed in deionized water to remove the hydrochloric acid solution remaining on the surface of the nickel block and the tungsten strip by ultrasonic vibration, and then dried. ❶ Next, in the preparation step of pre-alloyed powder (nickel alloy powder), the acid-washed nickel block and tungsten strip are placed in a crucible of a vacuum induction melting furnace and vacuumed until the vacuum reaches l (T3torr) After the above, the induction melting furnace starts to heat up to 1750 ° C. After the nickel block and the tungsten bar in the crucible are completely melted, the temperature is maintained for 1 minute to ensure that the high melting point tungsten strip can be completely melted to form a nickel tungsten alloy. The soup liquid 'and the molten nickel-he alloy alloy liquid mixture is more evenly mixed under the stirring of the magnetic field provided by the induction coil. Then, the molten and uniform nickel-tungsten alloy soup solution is poured into the crucible of the vacuum induction melting furnace. Pour out and use 28 Gas pressure (atm) high-pressure argon gas jet, after atomizing the molten nickel-tungsten alloy soup into powder, in the cavity of the vacuum induction melting furnace, the helium gas is used to continue spraying the atomized nickel-tungsten alloy Powder, accelerated cooling, you can get a uniform composition of the composition - crane alloy powder. Finally, in the forming and densification steps, 75% nickel -25 ° / tungsten weight 136,882.doc 201028233 The alloy powder is placed in a graphite chess piece, and the nickel-tungsten alloy powder can be pressed into a relative density of 100% and no component segregation by a thermal calendar method at 1000 ° C for 2 hours. Nickel-tungsten alloy target. 圊2 shows the microstructure of 75y produced by the manufacturing method of the present invention. The microstructure of the nickel. 25% tungsten alloy dry material, wherein the scale of the lower right corner is i00 μηι. Obviously ' The medium-transfer alloy material has a fine structure and a very uniform distribution, and the composition without segregation and equiaxed crystal form can be obtained without cold rolling and annealing heat treatment, wherein the nickel-tungsten alloy target The average grain size is about 9 μηη. Example 2: This example is based on 65 ° /. Nickel - 15% iron - 20% tungsten (% by weight) alloy target production as an example. First in the raw material preparation step, according to the percentage of 65% nickel · 15% iron · 20 ° / 〇 crane weight ' Prepare nickel blocks, iron blocks and tungsten bars with a purity of more than 99 9% ' and place nickel blocks, iron blocks and tungsten bars in a solution of fluoric acid with a volume concentration of 95 〇 / ' or more to remove surface oximes by ultrasonic vibration. After the dirt and oil are stained, it is placed in deionized water to remove the hydrochloric acid solution remaining on the surface of the recording block, the iron block and the tungsten strip by ultrasonic vibration, and then dried. Then, the acid is prepared in the pre-alloyed powder preparation step. The washed nickel block, iron block and crane bar are placed in a crucible of a vacuum induction melting furnace and vacuumed. After the vacuum reaches 103 torr or more, the induction melting furnace starts to heat up to 165 Torr. 〇 After the nickel block, iron block and tungsten strip in the noodle are completely melted, hold the temperature for 5 minutes to ensure that the high melting point tungsten strip can be completely melted to form a nickel-iron-tungsten alloy soup solution, which is provided in the induction coil. The magnetic field is stirred to make the molten nickel-iron-tungsten alloy soup mixture more uniform. Then, the molten, uniform composition of 136882.doc 201028233 nickel-iron-tungsten alloy soup solution is poured out from the crucible of the vacuum induction melting furnace, and is sprayed with high pressure argon gas at 20 atmospheres (atm) to melt the nickel· After the iron-tungsten alloy soup is atomized into a powder ship, the nickel-iron-tungsten alloy powder powder with uniform composition can be obtained by the vacuum-sensing of the vacuum-sensing furnace. Finally, in the forming and densification step, 65% nickel-15% iron-20% by weight of the alloy powder is canned with stainless steel, and then heated at 900 ° C, holding temperature 4 Under the conditions of an hour, the nickel-iron-bismuth alloy powder can be pressed into a nickel, iron, and tungsten alloy target having a relative density of 100% and no component segregation. Fig. 3 shows a microstructure structure of a 65% nickel·15% iron-2〇% tungsten alloy target obtained by the manufacturing method of the present invention, wherein the scale of the lower right corner is marked as 100 μηι. Obviously, the structure of the recorded-iron-hot alloy material is quite fine and the distribution is very uniform' and the microstructure without component precipitation and equiaxed crystal form can be obtained without the cold rolling and annealing heat treatment. The nickel-iron/hot alloy target has an average grain size of about 8 μm. The manufacturing method of the nickel alloy target of the invention of the invention does not require the use of the relatively expensive Ni powder and the w powder as raw materials, and does not require the use of a relatively expensive plasma sintering equipment for sintering of Ni and W powders, and does not require After the cold rolling process and the recrystallization annealing treatment under the atmosphere protection, a nickel alloy target having no component segregation and equiaxed crystal structure can be obtained, so the manufacturing method is simple. Furthermore, the method for manufacturing a nickel alloy target according to the present invention forms a material of a specific shape in a molding and densification step by using a mold having a special shape, so that the material does not need to be removed from the head, the tail material and the edge material. Therefore, not only the high yield (up to 95%), the target production cost is low, but also suitable for the production of the 136882.doc 201028233 grade circular sputtering target used in the film sputtering process. The above-described embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the manufacturing method of a nickel alloy target of the present invention; FIG. 2 is a view showing a microstructure of a nickel-tungsten alloy target obtained by the method of the present invention; and FIG. The microstructure of the nickel-iron-tungsten alloy target obtained by the production method of the present invention is shown. 136882.doc

Claims (1)

201028233 七、申請專利範園: 1· 一種鎳合金靶材之製造方法,包括以下步驟: (a) 提供鎳金屬及至少一合金元素; (b) 進行一真空熔煉步驟,以形成一合金溶液; . (c)霧化該合金溶液’以形成鎳合金粉髋;及 (d)成型及緻密化該鎳合金粉體,以形成鎳合金靶材。 2,如請求項1之製造方法,其中在步驟(&)之前另包括以下 步驟: • (al)利用酸性溶液移除該鎳金屬及該合金元素表面之氧 化物及污染物; (a2)取出該鎳金屬及該合金元素並移除該鎳金屬及該合 金元素表面之酸性溶液;及 (a3)乾燥該鎳金屬及該合金元素。 3. 如請求項2之製造方法,其中在步驟(al)中,該酸性溶液 之體積濃度係為95%以上。 4. 如5青求項2之製造方法’其中在步驟(ai)中,該睃性溶液 ® 係選自鹽酸或硝酸。 5. 如請求項2之製造方法,其中在步驟(a2)中係以去離子水 移除該鎳金屬及該合金元素表面之酸性溶液。 6. 如凊求項1之製造方法,其中在步驟(a)中該鎳金屬及 該合金元素之純度係大於99.9%。 7. 如請求項1之製造方法,其中在步驟(昀中,該合金元素 係為鶊合金元素。 8. 如請求項7之製造方法,其中該鎢合金元素之重量百分 136882.doc 201028233 比係為14°/。至36%。 9.如請求項1之製造方法,其中在步驟(a)中係提供該鎳金 屬、鶴合金元素及一第二合金元素。 10·如請求項9之製造方法,其中該第二合金元素係選自鐵 (Fe)、鈕(Ta)、釩(v)、鈮(Nb)、鉻(c〇、鉬(M〇)、鉑 (Pt)、鈀(Pd)、銅(Cu)、鋅(Zn)、锆(Zr)其中之一。 11 ·如請求項9之製造方法,其中該鎳金屬之重量百分比係 大於50%,該鎢合金元素之重量百分比係為14%至3 6%, 其餘之重量百分比係為該第二合金元紊含量。 12.如請求項丨〖之製造方法,其中該第二合金元素之重量百 分比係不大於27%。 13·如請求項丨之製造方法,其中在步驟(…中係於其空感應 爆煉爐或真空電弧熔煉爐中進行該真空熔練步驟β 14.如請求項丨之製造方法,其中在步驟_,真空熔煉之 溫度係為1650°C至175(TC。 15·如请求項丨之製造方法,其中在步驟(b)_,真空熔煉之 之真空度係為1〇·3托(t〇rr)以上。 16. 如請求項丨之製造方法,其中在步驟(c)中係利用高壓惰 性乳趙以喷擊方式霧化該合金溶液。 17. 如請求項16之製造方法,其中該惰性氣體係為氩氣 (Ar)。 18. 如請求項16之製造方法,其中在步驟(c)中該惰性氣體係 以20至30大氣壓力(atm)喷擊霧化該合金溶液。 19. 如請求項〖之製造方法,其中在步驟(〇之後另包括一冷 I36882.doc 201028233 卻步驟,以冷卻霧化後之該鎳合金粉體。 20. 如請求項19之製造方法,其中在該冷卻 r刊用氮氣 以喷擊方式冷卻霧化後之該鎳合金粉體。 21. 如請求項19之製造方法,其中在該冷卻步驟令利用自然 冷卻方式冷卻霧化後之該媒合金粉體。 22. 如請求項:之製造方法,其中在步驟(d)中係以熱壓製程 或熱均壓製程進行該成型及緻密化步驟。 23·如请求項1之製造方法,其中在步驟(d)中,成型及敏密 化之温度係為9001至llOOt,成型及緻密化之時間係 為1至4小時θ 24·如請求項1之製造方法,其係應用於磁記錄產業、光電 產業或半導體產業之薄膜濺鍍製程, 136882.doc201028233 VII. Application for Patent Park: 1. A method for manufacturing a nickel alloy target, comprising the steps of: (a) providing a nickel metal and at least one alloying element; (b) performing a vacuum melting step to form an alloy solution; (c) atomizing the alloy solution 'to form a nickel alloy powder hip; and (d) forming and densifying the nickel alloy powder to form a nickel alloy target. 2. The method of claim 1, wherein the step (&) further comprises the following steps: • (al) removing the nickel metal and oxides and contaminants on the surface of the alloy element with an acidic solution; (a2) Extracting the nickel metal and the alloying element and removing the nickel metal and an acidic solution on the surface of the alloying element; and (a3) drying the nickel metal and the alloying element. 3. The method of claim 2, wherein in the step (al), the volume concentration of the acidic solution is 95% or more. 4. The manufacturing method according to 5, wherein the inert solution ® is selected from the group consisting of hydrochloric acid or nitric acid. 5. The method of claim 2, wherein in step (a2), the nickel metal and the acidic solution on the surface of the alloying element are removed by deionized water. 6. The method of claim 1, wherein the nickel metal and the alloying element are more than 99.9% pure in the step (a). 7. The method of claim 1, wherein in the step (the alloy element is a tantalum alloy element. 8. The method of claim 7, wherein the weight percentage of the tungsten alloy element is 136882.doc 201028233 The method of claim 1, wherein the nickel metal, the crane alloy element and the second alloy element are provided in the step (a). The manufacturing method, wherein the second alloying element is selected from the group consisting of iron (Fe), button (Ta), vanadium (v), niobium (Nb), chromium (c〇, molybdenum (M〇), platinum (Pt), palladium ( The method of claim 9, wherein the weight percentage of the nickel metal is greater than 50%, and the weight percentage of the tungsten alloy element is 1%. The weight percentage is 14% to 3 6%, and the remaining weight percentage is the second alloy element turbulent content. 12. The manufacturing method of claim 1, wherein the weight percentage of the second alloying element is not more than 27%. · The manufacturing method of the request item, wherein in the step (... in its empty induction blast furnace or vacuum arc smelting furnace) The vacuum smelting step β 14. The manufacturing method of the claim ,, wherein in the step _, the vacuum melting temperature is from 1650 ° C to 175 (TC. 15) as claimed in the manufacturing method, wherein in the step ( b)_, the vacuum degree of vacuum melting is 1〇·3 Torr (t〇rr) or more. 16. The manufacturing method of claim ,, wherein in step (c), the high pressure inert milk is used to spray 17. The method of claim 16, wherein the inert gas system is argon (Ar). 18. The method of claim 16, wherein the inert gas system in step (c) Spray the atomized solution at a pressure of 20 to 30 atmospheres (atm) 19. As in the manufacturing method of the request item, in the step (after the addition of a cold I36882.doc 201028233 but the steps to cool the atomized The method of claim 19, wherein the method of claim 19, wherein the atomized nickel alloy powder is cooled by a spray method with nitrogen gas. 21. The method of claim 19, wherein After the cooling step is cooled by atomization using natural cooling 22. The method of claim 1, wherein the forming and densifying steps are carried out in step (d) by a hot press or a hot press. 23. The method of claim 1, Wherein in the step (d), the temperature for molding and densification is 9001 to llOOt, and the time for molding and densification is 1 to 4 hours θ 24 · The manufacturing method of claim 1 is applied to magnetic recording Thin film sputtering process for industry, optoelectronics or semiconductor industry, 136882.doc
TW98102629A 2009-01-22 2009-01-22 Manufacturing method of nickel alloy target TWI387497B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98102629A TWI387497B (en) 2009-01-22 2009-01-22 Manufacturing method of nickel alloy target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98102629A TWI387497B (en) 2009-01-22 2009-01-22 Manufacturing method of nickel alloy target

Publications (2)

Publication Number Publication Date
TW201028233A true TW201028233A (en) 2010-08-01
TWI387497B TWI387497B (en) 2013-03-01

Family

ID=44853483

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98102629A TWI387497B (en) 2009-01-22 2009-01-22 Manufacturing method of nickel alloy target

Country Status (1)

Country Link
TW (1) TWI387497B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102398035A (en) * 2011-11-25 2012-04-04 宁波江丰电子材料有限公司 Nickel target blank and target method manufacturing methods
TWI410393B (en) * 2010-08-31 2013-10-01 Jx Nippon Mining & Metals Corp Oxide sintered body and oxide semiconductor thin film
TWI622661B (en) * 2013-12-20 2018-05-01 攀時歐洲公司 W-ni sputtering target as well as the production process and use thereof
CN115415523A (en) * 2022-09-15 2022-12-02 河南东微电子材料有限公司 Preparation method of nickel-platinum alloy target

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410393B (en) * 2010-08-31 2013-10-01 Jx Nippon Mining & Metals Corp Oxide sintered body and oxide semiconductor thin film
CN102398035A (en) * 2011-11-25 2012-04-04 宁波江丰电子材料有限公司 Nickel target blank and target method manufacturing methods
CN102398035B (en) * 2011-11-25 2013-07-31 宁波江丰电子材料有限公司 Nickel target blank and target manufacturing methods
TWI622661B (en) * 2013-12-20 2018-05-01 攀時歐洲公司 W-ni sputtering target as well as the production process and use thereof
CN115415523A (en) * 2022-09-15 2022-12-02 河南东微电子材料有限公司 Preparation method of nickel-platinum alloy target
CN115415523B (en) * 2022-09-15 2024-04-30 河南东微电子材料有限公司 Preparation method of nickel-platinum alloy target

Also Published As

Publication number Publication date
TWI387497B (en) 2013-03-01

Similar Documents

Publication Publication Date Title
Agrawal et al. Methods of fabricating Cu-Al-Ni shape memory alloys
JP5064611B2 (en) Nickel-based metal material and method for producing the same
KR101376074B1 (en) Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
WO2017076369A1 (en) High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof
US11634333B2 (en) Boron-containing titanium-based composite powder for 3D printing and method of preparing same
JP2007031827A (en) Enhanced sputter target manufacturing method
CN112322933B (en) High-performance near-alpha high-temperature titanium alloy and powder metallurgy preparation method thereof
TWI387661B (en) Manufacturing method of nickel alloy target
WO2007111342A1 (en) High-strength high-toughness magnesium alloy and method for producing the same
JP6215329B2 (en) Production method of rare earth powder or sputtering target mainly composed of neodymium, iron and boron, thin film for rare earth magnet mainly composed of neodymium, iron and boron, or production method thereof
CN106756372B (en) A kind of high-performance aluminizing-preparation method of rare earth alloy and its product of preparation
JP5877517B2 (en) Sputtering target for rare earth magnet and manufacturing method thereof
JP2009074127A (en) Sintered sputtering target material and manufacturing method therefor
CN103710577B (en) Nickel-vanadium alloy magnetron sputtering rotary target material containing trace rare-earth element and preparation method
CN104704139B (en) Cu Ga alloy sputtering targets and its manufacture method
CN111485207A (en) Fine-grain homogeneous high-scandium-content aluminum-scandium alloy sintering target material and preparation method and application thereof
CN110629218A (en) High-entropy alloy fine grain in-situ additive manufacturing method
TW201028233A (en) Method for manufacturing nickel alloy target
CN105385966B (en) A kind of Al-based Amorphous Alloys and its preparation method and application
TWI437114B (en) Manufacture of cobalt - cobalt alloy target
Kim et al. Microstructure and martensitic transformation characteristics of gas-atomized Ti–Ni–Cu powders
KR101452879B1 (en) Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
CN115572849A (en) Ultrafine-grained nickel titanium-based alloy and preparation method and application thereof
WO2015034121A1 (en) Method for producing platinum-rhodium-oxide-based alloy
CN111250693B (en) High-entropy alloy powder for additive remanufacturing and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees