TW201027100A - Test system for testing a signal path and method for testing a signal path - Google Patents

Test system for testing a signal path and method for testing a signal path Download PDF

Info

Publication number
TW201027100A
TW201027100A TW098130924A TW98130924A TW201027100A TW 201027100 A TW201027100 A TW 201027100A TW 098130924 A TW098130924 A TW 098130924A TW 98130924 A TW98130924 A TW 98130924A TW 201027100 A TW201027100 A TW 201027100A
Authority
TW
Taiwan
Prior art keywords
phase
signal
test
signal path
test signal
Prior art date
Application number
TW098130924A
Other languages
Chinese (zh)
Other versions
TWI417561B (en
Inventor
Jochen Rivoir
Original Assignee
Verigy Pte Ltd Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verigy Pte Ltd Singapore filed Critical Verigy Pte Ltd Singapore
Publication of TW201027100A publication Critical patent/TW201027100A/en
Application granted granted Critical
Publication of TWI417561B publication Critical patent/TWI417561B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

A test system for testing a signal path comprises a test signal generator and a signal processing means. The test signal generator comprises a modulator and a phase-locked loop, wherein the phase-locked loop of the test signal generator is configured to provide a test signal and couple it into the signal path under test. The modulator of the test signal generator is configured to enable a phase modulation of the test signal. The signal processing means is configured to receive and process the test signal, wherein the signal path under test extends from the phase-locked loop of the test signal generator to the signal processing means. A method for testing a signal path comprises the steps of generating a test signal by a test signal generator, coupling the test signal into the signal path, receiving the test signal by the signal processing means and assessing the test signal received.

Description

201027100 六、發明說明: 【發明所屬之技術々員域】 根據本發明之實施廳㈣—則 測試系統,其中該測試系統包含— (PLL),及一種·’ - 路徑之方法。 相位經調變之鎖相迴路201027100 VI. Description of the invention: [Technical employee domain to which the invention pertains] According to the invention (4) of the present invention, a test system in which the test system includes - (PLL), and a method of path. Phase-modulated phase-locked loop

之PIX之㈣㈣c=射頻積體電路)之測試。根據本發明之 其它實施例係有關使用PLL之相位變化進行同始立/正交相 位(I/Q)不匹配之測量。 發明背景 測試積體電路之信號路徑的不合理想、非線性、非對稱或 不匹配(舉例)或評估信號路徑的品質乃保證電路操作無誤的 重要因素。因此理由故經常大量致力於努力藉集積式自我測試 或藉部分昂貴外部測試控制來測試積體電路之信號路徑。 RFIC之一種已知測試裝備之實例顯示於第2圖及第3 圖。第2圖顯示RFIC 200之方塊圖,顯示RFIC 200之元件裝 備。此處RFIC 200之發射器210及接收器250分別係於上半 及下半示例說明。發射器210包含一同相位分支212及一正 交相位分支214。發射器210之同相位分支212係由低通渡波 器216 (LPF)通過同相位/正交相位混合器218至組合器 230。發射器210之正交相位分支214係由一額外低通濾波器 216通過該同相位/正交相位混合器218至組合器230。透過 一相移單元222(例如〇度/90度),同相位/正交相位混合器 3 201027100 218被提供以來自鎖相迴路220 (PLL)之一同相位信號及一 相移信號。組合器230將同相位分支212中之信號重疊以正 交相位分支214中之信號,且使已重疊之信號可供可規劃增 益放大器224 (PGA)利用。可規劃增益放大器224係透過一 功率放大器226 (PA)而連結至發射器TX之一輸出端。 於輸入端(RX),該接收器包含耦接至一可規劃增益放 大器264之一低雜訊放大器266 (LNA)。於該可規劃增益放 大器264之後,分裂270成一同相位分支252及一正交相位分 支254 ’其中該同相位分支252及該正交相位分支254包含一 同相位/正交相位混合器258及各自包含一低通濾波器 256。該同相位/正交相位混合器258係透過一相移單元262 而連結至一鎖相迴路260。 適切地,第3圖顯示一種用以測試RFICi信號路徑之已 知測試系統300,其中該信號路徑係由發射器延伸至接收 器。用於此處’需要兩個精密激勵31〇、32〇 (Stiml、Stim2) 諸如函數產生器(AWG=任意波產生器)用以產生測試信 號,及需要兩個精密響應分析器34〇、35〇 (Respl、Resp2) 諸如數位化器(DTZ)用以評估測試信號。此外,於本實例 中’於接收器與發射器間之㈣路徑有—衰減器33〇 (Au) 來將高τχ功率位準(τχ:發射器或發射)調整至低rx功率位 準(RX :接收器或接收)。 ,如此可使用所謂的回送測試例如用於測試評估響應之 及非線性度’非線性度為rfic是否發揮功能至某種 顯著程度的指標。 201027100 使用函數產生器310、320用以產生測試信號及使用精 抢分析器340、350用以評估測試信號表示實施上須付出大 量努力且價格昂貴。如此也適用於將函數產生器及分析器 直接集積入電路,以及適用於藉外部函數產生器控制該積 體電路及/或藉外部分析器評估該等測試信號二者。 舉例言之,於「用於IQ調變RF收發器之集積SBIST解 決辦法」’作者E.S. Erdogan,S. Ozev中,顯示一種方法,假 設集積式同相位/正交相位(I/Q)數位至類比變換器(DAC)及 集積式同相位/正交相位類比至數位變換器(ADC),或假設 (昂貴的)外部儀器設備用來產生用於TX同相位/正交相位 輸入端之精密輸入波形及用來精密數位化該同相位/正交 相位RX輸出波形。 配合第2圖示例說明之RFIC,第4圖顯示RPIC 400之方 塊圖,其中繪圖例如當使用同相位/正交相位架構時可能出 現的不對稱或不匹配。舉例言之,此等非對稱性為同相位 分支212與正交相位分支214間之相位不匹配410、430,以 及同相位分支212與正交相位分支214中之增益不匹配 420、440。例如此等干擾可能各自獨立發生於發射器(Τχ) 及接收器(RX)。 舉例言之,此等同相位/正交相位不匹配造成所發射之 信號或測試信號的失真,因此對用於測試或校正的測量值 相當重要。此種RF收發器中之同相位/正交相位不匹配的測 量例如可無需昂貴儀器設備進行既不似測試標準也非用作 為校正。如第4圖所示,發射器(TX)之相位不匹配、接收器 201027100 (RX)之相位不匹配、發射器(TX)之增益不匹配及接收器(RX) 之增益不匹配例如表示重要數值。 I:發明内容3 發明概要 本發明之目的係提供一種簡單且具成本效益之測試信 號路徑之測試系統及方法。 此項目的可藉如申請專利範圍第1項之裝置及如申請 專利範圍第12項之方法解決。 本發明之實施例提供一種用以測試一信號路徑之測試 系統,包含一測試信號產生器及一信號處理裝置,其中該 測試信號產生器包括一調變器及一鎖相迴路。此處,該測 試信號產生器之鎖相迴路係配置來提供一測試信號及將該 測試信號耦接入待測信號路徑。測試信號產生器之調變器 係耦接至該測試信號產生器之鎖相迴路,及係配置來允許 測試信號之相位調變。信號處理裝置係配置來接收及處理 測試信號。此處待測信號路徑係由該測試信號產生器之鎖 相迴路延伸至該信號處理裝置。 根據本發明之又一實施例提供一種用以測試一信號路 徑之方法,其中首先,藉一測試信號產生器來產生一測試 信號,其中該測試信號產生器包含一調變器及一鎖相迴 路,其中該測試信號產生器之鎖相迴路係配置來提供一測試 信號及將該測試信號耦接入該信號路徑,及其中該測試信號 產生器之調變器係配置來允許該測試信號之相位調變。 隨後發生該測試信號耦接入該信號路徑,接著為藉一 201027100 信號處理裝置來接收該測試信號,其中該信號處理裝置係 配置來接收與處理_魏,及其t該待啦號路徑係由 該測試信舰生n之綱目迴路延伸料錢處理裝置。 然後進行接收自該信號處理裝置之測試信號的評估來 執行信號路徑的評比。 根據本發明之實施例係基於下述中心構想,利用相位 鎖相迴路來提供一測試信號且將此測試信_接Test of PIX (4) (4) c = RF integrated circuit). Other embodiments in accordance with the present invention relate to measurements that use the phase change of the PLL to perform a mismatch with the initial/quadrature phase (I/Q). BACKGROUND OF THE INVENTION Testing the undesirable, non-linear, asymmetrical or mismatched signal paths of an integrated circuit (for example) or evaluating the quality of a signal path is an important factor in ensuring that the circuit operates correctly. For this reason, there is often a lot of effort to test the signal path of the integrated circuit by means of accumulation self-test or by some expensive external test control. An example of a known test equipment for an RFIC is shown in Figures 2 and 3. Figure 2 shows a block diagram of RFIC 200 showing the component equipment of RFIC 200. Here, the transmitter 210 and the receiver 250 of the RFIC 200 are illustrated in the upper and lower halves, respectively. Transmitter 210 includes an in-phase branch 212 and a quadrature phase branch 214. The in-phase branch 212 of the transmitter 210 is passed through the in-phase/quadrature phase mixer 218 to the combiner 230 by a low pass ferrite 216 (LPF). The quadrature phase branch 214 of the transmitter 210 is passed through the in-phase/quadrature phase mixer 218 to the combiner 230 by an additional low pass filter 216. The inphase/quadrature phase mixer 3 201027100 218 is provided with an in-phase signal from a phase-locked loop 220 (PLL) and a phase-shifted signal through a phase shifting unit 222 (e.g., twist/90 degrees). Combiner 230 superimposes the signals in in-phase branch 212 to align the signals in phase branch 214 and allows the overlapped signals to be utilized by programmable gain amplifier 224 (PGA). The programmable gain amplifier 224 is coupled to one of the outputs of the transmitter TX via a power amplifier 226 (PA). At the input (RX), the receiver includes a low noise amplifier 266 (LNA) coupled to a programmable gain amplifier 264. After the programmable gain amplifier 264, the split 270 is formed into an in-phase branch 252 and a quadrature phase branch 254', wherein the in-phase branch 252 and the quadrature phase branch 254 comprise a phase/quadrature phase mixer 258 and each include A low pass filter 256. The in-phase/quadrature phase mixer 258 is coupled to a phase locked loop 260 via a phase shifting unit 262. Suitably, Figure 3 shows a known test system 300 for testing the RFICi signal path, wherein the signal path is extended by the transmitter to the receiver. Used here 'requires two precision excitations 31〇, 32〇 (Stiml, Stim2) such as function generator (AWG=arbitrary wave generator) for generating test signals, and requires two precision response analyzers 34〇, 35 〇 (Respl, Resp2) such as a digitalizer (DTZ) to evaluate the test signal. In addition, in this example, the (four) path between the receiver and the transmitter has an attenuator 33A (Au) to adjust the high τχ power level (τχ: transmitter or transmission) to a low rx power level (RX). : Receiver or Receive). Thus, a so-called loopback test can be used, for example, to test the evaluation response and the degree of non-linearity as an indicator of whether rfic functions to a certain degree of significance. 201027100 The use of function generators 310, 320 for generating test signals and the use of precision analyzers 340, 350 for evaluating test signals indicates that implementation is labor intensive and expensive. This also applies to the direct integration of function generators and analyzers into the circuit, as well as for controlling the integrated circuit by an external function generator and/or evaluating the test signals by an external analyzer. For example, in ES Erdogan, S. Ozev, "Integrated SBIST Solution for IQ Modulated RF Transceivers", a method is shown, assuming in-phase in-phase/quadrature phase (I/Q) digits to Analog converters (DACs) and integrated in-phase/quadrature phase analog to digital converters (ADCs), or hypothetical (expensive) external instrumentation to generate precision inputs for TX in-phase/quadrature phase inputs The waveform is used to accurately digitize the in-phase/quadrature phase RX output waveform. In conjunction with the RFIC illustrated in Figure 2, Figure 4 shows a block diagram of the RPIC 400, such as the asymmetry or mismatch that may occur when using the in-phase/quadrature phase architecture. For example, such asymmetry is a phase mismatch 410, 430 between the in-phase branch 212 and the quadrature phase branch 214, and a gain mismatch 420, 440 in the in-phase branch 212 and the quadrature phase branch 214. For example, such interference may occur independently of the transmitter (Τχ) and the receiver (RX). For example, this equivalent phase/quadrature phase mismatch causes distortion of the transmitted signal or test signal and is therefore of considerable importance for measurements used for testing or calibration. Measurements of in-phase/quadrature phase mismatch in such RF transceivers, for example, can be performed without the need for expensive equipment or calibration. As shown in Figure 4, the phase mismatch of the transmitter (TX), the phase mismatch of the receiver 201027100 (RX), the gain mismatch of the transmitter (TX), and the gain mismatch of the receiver (RX), for example, indicate that Value. I: SUMMARY OF THE INVENTION 3 SUMMARY OF THE INVENTION It is an object of the present invention to provide a test system and method for a simple and cost effective test signal path. This item can be solved by applying the device of the first item of the patent scope and the method of claim 12 of the patent application. Embodiments of the present invention provide a test system for testing a signal path, including a test signal generator and a signal processing device, wherein the test signal generator includes a modulator and a phase locked loop. Here, the phase locked loop of the test signal generator is configured to provide a test signal and couple the test signal to the signal path to be tested. The modulator of the test signal generator is coupled to the phase locked loop of the test signal generator and is configured to allow phase modulation of the test signal. The signal processing device is configured to receive and process test signals. The signal path to be tested here extends from the phase locked loop of the test signal generator to the signal processing device. According to still another embodiment of the present invention, a method for testing a signal path is provided. First, a test signal generator is used to generate a test signal, wherein the test signal generator includes a modulator and a phase locked loop. The phase locked loop of the test signal generator is configured to provide a test signal and couple the test signal to the signal path, and wherein the test signal generator is configured to allow phase of the test signal Modulation. Subsequently, the test signal is coupled to the signal path, and then the test signal is received by a 201027100 signal processing device, wherein the signal processing device is configured to receive and process the signal, and the path of the signal is determined by The test letter of the ship n is an extension of the money processing device. An evaluation of the test signals received from the signal processing device is then performed to perform a signal path evaluation. Embodiments in accordance with the present invention are based on the central concept described below, using a phase-locked loop to provide a test signal and to connect the test signal

丄—^ ”、、後此心认柄過待測信號路徑,且 由該#號處理装置來接收與處理。 經由使用相位經調變之鎖相 數產生器來提供測試信號二:不再需要昂貴的函 相位經調變之《相迴路,且電路中’已經存在有 於不含任何相位經調變之鎖=_測試信號路徑。 量額外努力即可容易地將1變^積體電路中,使用少 此,經由使用相位經調變之鎖相、^~鎖相迴路集積。如 本效益之測試系統。如此可減少^路’可提供簡單且具成 產生器)之成本。 s郎省測試設備(例如函數 於根據本發明之若干實施 來執行經由評估所接㈣·料1號處理裝置係配置 品質來執行該錢路徑的評tt此判定信號路徑之 於根據本發明之若干實施“ 調變器及一鎖相迴路,其中該俨d仏號處理裝置包含一 配置來提供-參考信號,及其二々理裝置之鎖相迴路係 係配置來允許該信號處理裝裝置之調變器 鎖相趣路之相位調變。 7 201027100 根據本發明之若干額外實施例,包括設置於該信號路 徑之一低通渡波器,此時該低通遽波器包含小於該測試信 號產生器之鎖相迴路之基頻的截止頻率(又稱角頻率)。然後 信號處理裝置例如藉評估已濾波之測試信號來評比信號路 徑的品質。 於根據本發明之若干實施例中,混合器係設置於該信 號路徑,且係配置來將該測試信號與一參考信號混合。然 後信號處理裝置藉例如評估已混合之測試信號而評比該信 號路徑之品質。 圖式簡單說明 後文將參考附圖詳細說明根據本發明之實施例,附圖中: 第1圖為用以測試信號路徑之測試系統之方塊圖; 第2圖為RFIC之方塊圖; 第3圖為用以測試RFIC之信號路徑之已知測試系統之 方塊圖; 第4圖為具有顯著非理想之基於同相位/正交相位RFIC 之方塊圖; 第5圖為已調變之ADPLL (ADPLL=全數位鎖相迴路) 之方塊圖; 第6圖為用於測定信號路徑之頻率相依性非對稱性之 用以測試信號路徑之測試系統之方塊圖; 第7圖為通過理想信號路徑後一測試信號之頻譜; 第8圖為通過具頻率相依性非對稱性之信號路徑後,一 測試信號之頻譜, 201027100 第9圖為具有用以補償時間延遲之裝置之用以測試信 號路徑之測試系統之方塊圖; 第10圖為用於測試信號路徑之非線性度之用以測试仏 號路徑之測試系統之方塊圖; 第11圖為通過具有非線性度之信號路徑後,一測試信 號之頻譜; 第12圖為LINC發射器(LINC=使用非線性組件之線性 放大)之方塊圖; ® 第13圖為用於基於LINC之RFIC於用以測試信號路徑 之測試系統之方塊圖; 第14圖為極性調變發射器之方塊圖; v 第15圖為用於基於極性之RFIC於用以測試信號路徑之 測試系統之方塊圖; 第16圖為用於基於同相位/正交相位之RFIC於用以測 試信號路徑之測試系統之方塊圖; φ 第17圖為具有回送測試配置之基於同相位/正交相位 RFIC之示意模型; 第18圖為用以測定兩個相位經調變之鎖相趣 斜之測試系統之示意模型說明; 丑 第19圖為用以提供相等信號位準之裝置之電. 第2〇圖為用以測試一信號路徑之方法之流程圖。 【實施冷式】 較佳實施例之詳細說明 第1圖顯不根據本發明之-實施例用以測試信銳路押 201027100 102之測試系統100之方塊圖。此處測試系統100包括一測試 信號產生器110及一信號處理裝置140,其中該測試信號產 生器110包含一調變器120及一鎖相迴路130。該測試信號產 生器110之鎖相迴路130係配置來提供一測試信號且將該測 試信號輛接入待測信號路徑1 02。測試信號產生器1 1 〇之調 變器120係耦接至測試信號產生器110之鎖相迴路13〇且係配 置來允許該測試信號之相位調變。信號處理裝置14〇係配置 來接收與處理該測試信號。此處待測信號路徑102係由該測 試信號產生器110之鎖相迴路130延伸至信號處理裝置14〇。 ® 此處,不再需要擁有用以產生測試信號路徑1〇2之測試 信號之函數產生器。如此可容易地且具成本效益地製造或 集積測試系統100。 - 例如於積體電路實施測試系統100容易實現,原因在於 ' 於許多積體電路中,原已存在有相位經調變之鎖相迴路而 可用於測試信號路徑。於不含相位經調變之鎖相迴路之積 體電路中’調變器與鎖相迴路之集積以小量額外努力即變 成可能。 _ 相位經調變之鎖相迴路130例如可配置為ADPLL (全數 位鎖相迴路)。經調變之ADPLL 500之一個實例示例顯示於 第5圖。ADPLL 500包括一調變器120 (Mod)、一相位累加器 510 (phase accum)、一時間至數位變換器520 (TDC)、—低 通濾波器530及一經數位控制之振盪器540 (DCO)。為了於 經數位控制之振盪器540之輸出端542產生測試信號,參考 信號502 (REF)提供予相位累加器510及時間至數位變換器 10 201027100 520。相位累加器510及時間至數位變換器52〇之輸出信號重 疊s周變器120之#號(p(t)’且於進一步重疊調變器12〇之信號 φ⑴之後透過低通濾波器530提供予經數位控制之振盪器 540。此外,經數位控制之振盪器54〇之輸出信號返回時間 至數位變換器520。經由此種配置,允許於經數位控制之振 盪器540之輸出端542提供相位經調變之測試信號(例如 sin(tot+<p(t)) ° 不似習知類比鎖相迴路,ADPLL 5〇〇可經數位相位調 變,原因在於數位控制的振盪器輸入信號及相位誤差為數 位字元,允許簡單但又極為準確且非侵入性的調變(用於測試 目的)。如此也適用於分量-N鎖相迴路至較低程度,於該處穩 態相可精後控制,但動態相調變受類比迴路動力學影響。 第6圖顯不根據本發明之—實施例,用於測定信號路徑 中之頻率相依性非對稱性的用以測試信號路徑之測試系統 600之方塊圖。該測試系統6〇〇包括該調變器12〇 (M〇d)、鎖 相迴路130 (PLL)、一待測電路61〇 (CUT)其係屬該信號路徑 之一部分、一混合器620、一低通濾波器63〇 (LpF)、及一檢 測器640 (Det) ’其中該檢測器64〇屬於該信號處理裝置14〇 之一^卩分。 此處,該信號路徑從鎖相迴路13〇通過待測電路61〇、 通過混合器620及通過低通濾波器63〇延伸至檢測器64〇。進 步,忒鎖相迴路130之輸出端係連結該待測信號路徑,且 係透過一額外路徑602而直接連結混合器62〇之輸入端。 混合器6 2 0係配置來混合順著信號路徑前進且與待測 201027100 電路610互動之該測試信號ψ(ι),與原先測試信號Φ⑴(例如 Φ⑴=cos(0)t+(P⑴)’此處φ⑴係與調變器120之相位調變信號 相對應,該原先測試信號Φ⑴係透過額外路徑6〇2而直接源 自於該鎖相迴路13〇。 混合測試信號X(t)係藉低通濾波器63〇濾波及然後提供 予檢測器640。此處,低通濾波器63〇包含比鎖相迴路13〇之 基頻更小的截止頻率。藉此原先測試信號之頻率部分及較 高頻部分被過濾出。丄—^ ”, after the heart has passed the signal path to be tested, and is received and processed by the ## processing device. The test signal is provided by using a phase-locked phase-locked number generator: no longer needed The expensive phase of the phase is modulated by the "phase loop, and the circuit is already present in the lock signal without any phase modulation = _ test signal path. The extra effort can easily change the 1 integral circuit The use of this is less, through the use of phase-modulated phase-locked, ^~ phase-locked loops. This is the test system of this benefit. This can reduce the cost of providing a simple and versatile generator. A test device (e.g., a function in accordance with a number of implementations of the present invention to perform the evaluation of the money path by evaluating the configuration quality of the processing device to evaluate the signal path to a number of implementations in accordance with the present invention. a transformer and a phase-locked loop, wherein the 仏d仏 processing device includes a configuration to provide a reference signal, and a phase-locked loop system configuration of the second processing device to allow the modulator to lock the signal processing device Interest Phase modulation. 7 201027100 According to several additional embodiments of the present invention, including a low pass ferrite disposed in the signal path, wherein the low pass chopper comprises a base of a phase locked loop that is less than the test signal generator Frequency cutoff frequency (also known as angular frequency). The signal processing device then evaluates the quality of the signal path, for example by evaluating the filtered test signal. In some embodiments according to the invention, the mixer is disposed in the signal path, and Is configured to mix the test signal with a reference signal. The signal processing device then evaluates the quality of the signal path by, for example, evaluating the mixed test signal. BRIEF DESCRIPTION OF THE DRAWINGS The implementation of the present invention will be described in detail hereinafter with reference to the accompanying drawings For example, Figure 1 is a block diagram of a test system for testing signal paths; Figure 2 is a block diagram of an RFIC; Figure 3 is a block diagram of a known test system for testing the signal path of an RFIC. Figure 4 is a block diagram of a significant non-ideal isophase/quadrature-based RFIC; Figure 5 is a modulated ADPLL (ADPLL = full digital phase lock) Block diagram of Figure 6; Figure 6 is a block diagram of a test system for testing the signal path for determining the frequency dependence asymmetry of the signal path; Figure 7 is a spectrum of the test signal after passing the ideal signal path; Figure 8 is a block diagram of a test signal after passing a signal path with frequency dependence asymmetry, 201027100 Figure 9 is a block diagram of a test system for testing a signal path with a device for compensating for time delay; Figure 10 is a block diagram of a test system used to test the nonlinearity of the signal path to test the 仏 path; Figure 11 is a spectrum of a test signal after passing through a signal path with non-linearity; Figure 12 Block diagram for LINC Transmitter (LINC = Linear Amplification with Nonlinear Components); ® Figure 13 is a block diagram of a test system for LINC-based RFICs used to test signal paths; Figure 14 is a polar modulation Block diagram of the transmitter; v Figure 15 is a block diagram of a test system for testing a signal path based on a polarity-based RFIC; Figure 16 is an RFIC for in-phase/quadrature-based phase Block diagram of the test system used to test the signal path; φ Figure 17 is a schematic model of the in-phase/quadrature-phase RFIC with loopback test configuration; Figure 18 is a diagram for determining two phase-modulated locks A schematic model description of a test system with interesting slopes; Figure 19 is an illustration of a device for providing equal signal levels. Figure 2 is a flow chart of a method for testing a signal path. [Implementation of Cold Mode] Detailed Description of the Preferred Embodiments Fig. 1 is a block diagram showing a test system 100 for testing the Cree Parker 201027100 102 according to the embodiment of the present invention. The test system 100 includes a test signal generator 110 and a signal processing device 140. The test signal generator 110 includes a modulator 120 and a phase locked loop 130. The phase locked loop 130 of the test signal generator 110 is configured to provide a test signal and to connect the test signal to the signal path 102 to be tested. The test signal generator 1 1 is coupled to the phase locked loop 13 of the test signal generator 110 and is configured to allow phase modulation of the test signal. Signal processing device 14 is configured to receive and process the test signal. Here, the signal path 102 to be tested is extended by the phase locked loop 130 of the test signal generator 110 to the signal processing device 14A. ® Here, the function generator for generating the test signal for the test signal path 1〇2 is no longer required. The test system 100 can thus be easily or cost effectively manufactured or assembled. - For example, the integrated circuit implementation test system 100 is easy to implement because, in many integrated circuits, a phase-modulated phase-locked loop already exists for testing the signal path. In the integrated circuit without a phase-modulated phase-locked loop, the accumulation of the modulator and the phase-locked loop becomes possible with a small amount of extra effort. The phase-modulated phase-locked loop 130 can be configured, for example, as an ADPLL (all-digital phase-locked loop). An example of an example of a modulated ADPLL 500 is shown in Figure 5. The ADPLL 500 includes a modulator 120 (Mod), a phase accumulator 510 (phase accum), a time to digital converter 520 (TDC), a low pass filter 530, and a digitally controlled oscillator 540 (DCO). . To generate a test signal at output 542 of digitally controlled oscillator 540, reference signal 502 (REF) is provided to phase accumulator 510 and time to digital converter 10 201027100 520. The phase accumulator 510 and the output signal of the time-to-digital converter 52 重叠 overlap the # sign (p(t)' of the s-variant 120 and are provided through the low-pass filter 530 after further overlapping the signal φ(1) of the modulator 12〇. The digitally controlled oscillator 540. In addition, the output signal of the digitally controlled oscillator 54 is returned to the digital converter 520. With this configuration, the output is provided to the output 542 of the digitally controlled oscillator 540. The modulated test signal (eg sin(tot+<p(t)) ° is not like the analog analog phase-locked loop, ADPLL 5〇〇 can be digitally phase-modulated due to the digitally controlled oscillator input signal and The phase error is a digital character, allowing for simple but extremely accurate and non-intrusive modulation (for testing purposes). This also applies to the component-N phase-locked loop to a lower degree where the steady-state phase is fine Post-control, but dynamic phase modulation is affected by analog loop dynamics. Figure 6 shows a test system for testing signal paths for determining frequency dependence asymmetry in signal paths in accordance with the present invention. 600 square The test system 6A includes the modulator 12A (M〇d), a phase locked loop 130 (PLL), a circuit under test 61 (CUT) which is part of the signal path, and a mixer 620, a low pass filter 63 〇 (LpF), and a detector 640 (Det) 'where the detector 64 〇 belongs to the signal processing device 14 。. Here, the signal path from the phase lock The loop 13〇 extends through the circuit under test 61〇, through the mixer 620, and through the low-pass filter 63〇 to the detector 64〇. As a result, the output of the 忒 phase-locked loop 130 is coupled to the signal path to be tested, and is transmitted through An additional path 602 is coupled directly to the input of the mixer 62. The mixer 6200 is configured to mix the test signal ι(ι) that proceeds along the signal path and interacts with the 201027100 circuit 610 to be tested, with the original test signal Φ(1) (for example, Φ(1)=cos(0)t+(P(1))' where φ(1) corresponds to the phase modulation signal of the modulator 120, and the original test signal Φ(1) is directly derived from the lock through the extra path 6〇2. The phase loop 13 〇. The mixed test signal X(t) is filtered by the low pass filter 63 and then Provided to the detector 640. Here, the low pass filter 63A includes a cutoff frequency smaller than the fundamental frequency of the phase locked loop 13A. Thereby, the frequency portion and the higher frequency portion of the original test signal are filtered out.

然後已濾波之測試信號y(t)藉信號處理裝置i 4〇之檢測 器640測試,且可評估來檢測該信號路徑之頻率相依性非對 稱性,如此可做與該信號路徑之品質相關的陳述。The filtered test signal y(t) is then tested by the detector 640 of the signal processing device i4 and can be evaluated to detect the frequency dependence asymmetry of the signal path so as to be related to the quality of the signal path. statement.

於通過理想信號路徑後,測試信號之頻譜7〇〇顯示為第 7圖之實例。當通過理想信號路徑時,測試信號保持不變。 如此,混合器620混合該信號與其本身。此處,DC電壓部 分704除外,只出現於鎖相迴路之基頻73〇雙倍範圍之頻率 部分702。鎖相迴路之基頻720標示為ω。進一步,第7圖中, 示例顯示低通濾波器(LPF)之特性71〇。 屬於信號路徑之一部分之理想信號路徑或理想待測電 路之表現可以數學方式表示如下,例如: ψ⑴=Φ⑴ jc(t)=<I>2(t)=cos2((〇t+cp(t)) =0,5 l + cos(2<yi + 2炉(〇After passing through the ideal signal path, the spectrum 7〇〇 of the test signal is shown as an example of Figure 7. The test signal remains unchanged as it passes through the ideal signal path. As such, the mixer 620 mixes the signal with itself. Here, except for the DC voltage portion 704, only the frequency portion 702 of the double range of the fundamental frequency 73 锁 of the phase locked loop appears. The fundamental frequency 720 of the phase locked loop is labeled ω. Further, in Fig. 7, the example shows the characteristic 71 of the low pass filter (LPF). The ideal signal path or the performance of the ideal circuit under test, which is part of the signal path, can be expressed mathematically as follows, for example: ψ(1)=Φ(1) jc(t)=<I>2(t)=cos2((〇t+cp(t )) =0,5 l + cos(2<yi + 2 furnace (〇

V---—--JV------J

Filtered _〇ut y(t)=0,5 12 201027100 如此,已混合且已濾波之測試信號7⑴只是Dc信號。 第7圖顯示藉低通濾波器濾波前之頻譜具有下列數值: ω=2π·43 φ(〇=0,2·8ΐη(2π·3·ΐ) φ’⑴=cp(t) 適切地,第8圖顯示—測試信號於通過具有頻率相依性 非對稱性之信號路徑後之頻譜謂。換言之,制電路或待 測信號路徑具有非對熟或非平坦頻轉應。如此表示當 通過該信號路徑時,部分或全部測試信號之頻譜之不同頻 率被以不同強度放大或衰減。 具有頻率Ω之相位調變獲得以鎖相·之基頻(也稱作 為載波(頻率))為中心呈對稱之成對調性於頻率①^^及 ω+1ίΩ 0 兩侧不同衰減之待測電路或待測信號路徑破壞此種對 稱性,結果導致於已混合且已濾波之測試信號y(t)中之低頻 内容。 第8圖顯示混合型測試信號又⑴於濾波前之頻譜,例如 若該存測電路為第一級低通巴特沃司(Butterworth)遽波器 具有於載波頻率(鎖相迴路之基頻)之角頻率,或若具有截止 頻率(角頻率)於載波頻率範圍之第二級低通巴特沃司濾波 器係設置於該待測信號路徑。 頻譜800顯示經由混合原先測試信號φ⑴與經非對稱性 地衰減的測試信號ψ⑴,於該鎖相迴路基頻雙倍範圍之頻率 部分802包含如同於理想信號路徑的類似形式。但經由非對 13 201027100 稱性衰減,也獲得低頻頻率部分8〇4。於璩波混合型測試化 號後,信號處理裝置或檢測ϋ可評估低頻解部分俾便ς 比信號路徑的品質。 °Filtered _〇ut y(t)=0,5 12 201027100 As such, the mixed and filtered test signal 7(1) is only the Dc signal. Figure 7 shows that the spectrum before filtering by the low-pass filter has the following values: ω=2π·43 φ(〇=0,2·8ΐη(2π·3·ΐ) φ'(1)=cp(t) aptly, Figure 8 shows the spectrum of the test signal after passing through a signal path with a frequency dependence asymmetry. In other words, the circuit or the signal path to be tested has a non-mature or non-flat frequency response. This means that when passing the signal path When the frequency of the spectrum of some or all of the test signals is amplified or attenuated with different intensities, the phase modulation with the frequency Ω is obtained symmetrically centered on the fundamental frequency of the phase lock (also referred to as the carrier (frequency)). This symmetry is destroyed by the circuit under test or the signal path to be tested with different attenuations on both sides of the frequency 1^^ and ω+1ίΩ 0, resulting in low frequency content in the mixed and filtered test signal y(t) Figure 8 shows the mixed test signal (1) before the filtering, for example, if the stored circuit is a first-stage low-pass Butterworth chopper with carrier frequency (the fundamental frequency of the phase-locked loop) Angle frequency, or if there is a cutoff frequency (angle The second stage low pass Butterworth filter in the carrier frequency range is set in the signal path to be tested. The spectrum 800 shows the test signal ψ(1) asymmetrically attenuated via the mixed test signal φ(1). The frequency portion 802 of the double frequency range of the phase loop fundamental frequency includes a similar form as the ideal signal path. However, the non-pair 13 201027100 weighed attenuation also obtains the low frequency frequency portion 8 〇 4. After the chop hybrid type test number, The signal processing device or detector can evaluate the quality of the low frequency solution part of the stool signal ratio.

如此例如待測信號路徑或待測電路(例如RFIC)之頰: 響應之對齡或平坦度可藉所述測。用於此= 目的’待測信齡贱制電路單純以相位顯變之^ 仏號(相位經調變之載波)錢,通職信號路徑或待剛電略 之測試信縣混合原先測試㈣,已混合_試錢經低 通漉波,及該已混合且已渡波之測試信號之活性係用作為 該待測信號路徑或待測電路之品質之測量值。 W由於已調變之鎖相迴路用作為激勵,故無f外部激 =2如函數產生器。濾波器輸出信號的經濾波之信镜y丨 只含有非對稱性或非理想假信號(DC組分除外),因此比 具有小型非理想的大信號遠更容易測量。此外,動態範 顯著改良’且無需數位化,原因在於單純功率檢測或最 值檢測即足。Thus, for example, the signal path to be tested or the cheek of the circuit under test (eg, RFIC): The age or flatness of the response can be measured. For this = purpose 'tested age-old control circuit is simply phase change ^ ( (phase modulated carrier) money, the general signal path or the test to be just a test of the county mixed test (four), The mixed _ test money passes through the low pass chopping wave, and the activity of the mixed and pulsed test signal is used as the measured value of the quality of the signal path to be tested or the circuit to be tested. Since the phase-locked loop that has been modulated is used as an excitation, there is no external excitation = 2 such as a function generator. The filtered signal mirror y丨 of the filter output signal contains only asymmetrical or non-ideal glitch (except for the DC component) and is therefore much easier to measure than a small, non-ideal, large signal. In addition, the dynamics are significantly improved' and do not need to be digitized because pure power detection or maximum value detection is sufficient.

舉例言之’對-給定時間積分功率檢測器(二極體)、對 -給定時間abS(.)(數量之絕對值之積分)、或最大值固定檢 測(最大值檢測)皆可能檢測(已混合且已濾波信號之)活 性。使用具有較低要求諸如解析度要求之數位至類比變換 器(ADC)也料可㈣雜,原时於所絲Μ圍及/或 率減夕原因在於無需有關頻譜之細節資訊只要瞭解 不含任何解相紐之非雜度諸如振幅相依性增益 14 201027100 於本實例中不會將其本身暴露於經濾波之信號y(t)。 第9圖顯示根據本發明之一實施例,具有一裝置用於補 償時間延遲或調整通過待測電路之延遲之用以測試信號路 徑之測試系統900之方塊圖。若作為該信號路徑之一部分之 待測信號路徑或待測電路610包含延遲(例如理想上 ψ(〇=Φ(ί-τ)),則該時間延遲可藉參考信號之延遲調變補 償,參考信號Φ’⑴=Φ(ί_τ)(例如<J>’(t)=cos((〇t+cp,(t)),也稱作 第二載波。 此處測試系統900具有如同第6圖所示測試系統的類似 裝備。但混合器620被供給第二鎖相迴路93〇之參考信號, 而非來自於測s式彳§號產生器11〇之鎖相迴路13〇之原先測試 信號,其中麵接至第二鎖相迴路930之第二調變器920允許 該參考信號之相位調變。 若延遲為未知’則變更用於獲得已混合且已濾波信號 y(t)之最低活性之調變延遲可獲得期望的結果(延遲數值)。 第10圖顯不根據本發明之_實施例,用於測定信號路 徑之非線性度之用以測試信號路徑之測試系統丨〇 〇 〇之方塊 圖。測試系統1G_根據第6圖所示測試祕之類似原理建 立。但於待測#號路杈中,並未設置混合器(如此 W=X⑴)°於信號路徑終點’測試信號藉低通滤波器630 直接濾波,且提供予信料理裝置刚之檢測器_。 =切地,第η圖齡1如號通過具非線性度之信 :該非谈之頻譜。此處’例如非線性度為振幅相依性增益, —線性度主要不包含你何頻率相依性 。此處頻譜顯示 15 201027100 於該測試信號產生器之鎖相迴路之基頻720範圍内之原先 信號之頻率部分1120、由非線性度所引起之該鎖相迴路基 頻730加倍之頻率部分1130、及也由該非線性度所引起之低 頻頻率部分1110。由該低通濾波器之特性71〇顯然易知,於 該鎖相迴路基頻720之範圍及鎖相迴路之基頻730之加倍範 圍之頻率部分被過濾出。然後藉信號處理裝置或檢測器檢測 與評估低頻頻率部分1110,因而檢測信號路徑之非線性度。 此處須注意奇次羃非線性度典型並未顯示於低頻。舉 例言之,於信號路徑或於待測電路之偶次羃非線性度於測 試信號之調性(頻率)間產生低頻交互調變乘積,也標示為已 調變之激勵波形φ(ί)。於已濾波之測試信號中為可見。 第11圖顯示測試信號X(t)於藉用於具偶非線性度之信 號路徑或待測電路之低通濾波器濾波前之頻譜實例。 經由使用相位經調變之測試信號(載波)激勵信號路徑 或待測電路,接著於通過信號路徑或待測電路後低通減波 3玄測§式指號,以及使用滤波器輸出活性(已濾波之測試信號 之活性),如此一信號路徑或待測電路之非線性度測量值例 如可用作為該信號路徑或待測電路之品質之測量值。用於理 想信號路徑或理想待測電路,經濾波之測試信號y⑴為零。 第12圖顯示已知LINC發射器12〇〇 (linc=使用非線性 組分線性放大)之一實例。如方塊圖所示,LINC發射器12〇〇 包括兩個相位經調變之鎖相迴路1210、1220連結至一組合 器1230。組合器1230係配置來重疊來自於鎖相迴路121〇、 1220二者之信號,且透過可規劃增益放大器124〇而提供該 201027100 已重疊之信號予一功率放大器1250。 藉該發射器1200之兩個相位經調變之鎖相迴路121〇、 1220’可於—常見模式相位調變中(透過組合器1230)造成相 位經調變之信號。於差異相位調變中,可產生振幅調變。 由於已經存在有相位經調變之鎖相迴路,於包含〇1^(: 發射器之系統中,容易實施用以測試信號路徑之測試系統。 第13圖顯示根據本發明之一實施例,用於基於LINC之 RI?IC之用以測試信號路徑之測試系統1300之方塊圖。該 R FIC之組成係類似第2圖所示原理,其中該發射器部分不含 同相位/正交相位架構,反而含有LINC架構,如第12圖所 示。LINC發射器之兩個相位經調變之鎖相迴路13〇中之一 者係用於產生測試信號。為了測試從第二鎖相迴路122〇至 組合器1230之信號路徑,第二鎖相迴路1220可用於產生測 試信號。 發射器部分之輸出裝置(Τχ)係連結至該接收器部分之 輸入裝置(RX),藉此信號路徑從發射器至接收器,例如藉 此允許基於LINC之RFIC之回送測試。 如第2圖所示,測試系統1300之接收器部分也於同相位 /正父相位架構具禮實施’但替代第2圖所示之鎖相迴路, 使用可藉調變器1310作相位調變之一相位經調變之鎖相迴 路132〇 ’且配置來提供參考信號φ’⑴。 如此’待測信號路徑係從測試信號產生器11〇之相位經 調變之鎖相迴路130,通過一組合器123〇、一可規劃增益放 大器1240、一功率放大器1250、一低雜訊放大器266及一額 17 201027100 外可規劃增益放大器264而延伸至同相位/正交相位混合器 620,及由該處延伸至低通滤波器630,其中一低通濾、波器 630係設置於同相位分支252’及另一低通濾波器63〇係設置 於正交相位分支254。兩個低通濾波器630各自係連結至檢 測器640,檢測器640屬於信號處理裝置140之一部分。相位 經調變之鎖相迴路1320及相關聯之調變器131〇係配置來提 供參考信號,也構成信號處理裝置14〇之一部分。透過相移 單元262,相位經調變之鎖相迴路132〇係連結至同相位/正 交相位混合器620,如此可提供參考信號予同相位/正交相 © 位混合器620。 此外或另外,(信號處理裝置14〇之)相移單元262例如可 直接連結至測試信驗之鎖相迴路13味提供縣 ·— 測試信號予同相位/正交相位混合器62〇。 - 舉例吕之’藉第13圖所述裝備,可實現用以檢測信號 路徑中之頻率相依性非對稱性之測試系統,如第6圖所示。 替代原先3丨試[號’參考信號若包含相同相位調變則#For example, 'pair-time integrated power detector (diode), pair-given time abS(.) (integral of the absolute value of the quantity), or maximum fixed detection (maximum value detection) may detect Activity of (mixed and filtered signals). The use of digital to analog converters (ADCs) with lower requirements, such as resolution requirements, is also expected to be (four) miscellaneous, the original time in the silk and/or the rate is reduced because the details of the spectrum are not needed as long as they do not contain any The unambiguity of the solution phase, such as the amplitude dependence gain 14 201027100, does not expose itself to the filtered signal y(t) in this example. Figure 9 shows a block diagram of a test system 900 for testing signal paths with a means for compensating for time delays or adjusting delays through the circuit under test, in accordance with an embodiment of the present invention. If the signal path to be tested or the circuit under test 610 as part of the signal path contains a delay (for example, ideally ψ(〇=Φ(ί-τ)), the time delay can be compensated by delay modulation of the reference signal, reference Signal Φ '(1) = Φ(ί_τ) (eg <J>'(t)=cos((〇t+cp,(t)), also referred to as the second carrier. Here test system 900 has the same as Figure 6 Similar equipment of the test system shown. However, the mixer 620 is supplied with a reference signal of the second phase-locked loop 93, instead of the original test signal from the phase-locked loop 13 of the sigma generator 11 The second modulator 920, which is coupled to the second phase locked loop 930, allows phase modulation of the reference signal. If the delay is unknown 'the change is used to obtain the lowest activity of the mixed and filtered signal y(t) The modulation delay can obtain the desired result (delay value). Figure 10 shows a test system for testing the signal path for determining the nonlinearity of the signal path according to the embodiment of the present invention. Fig. Test system 1G_ is established according to the similar principle of test secret shown in Figure 6. In the ##路杈, the mixer is not set (so W=X(1))° at the end of the signal path' test signal is directly filtered by the low-pass filter 630, and the detector of the feed device is provided _. Ground, the nth figure 1 is passed through a letter with non-linearity: the non-talking spectrum. Here, for example, the nonlinearity is the amplitude-dependent gain, and the linearity mainly does not contain your frequency dependence. Displaying the frequency portion 1120 of the original signal in the range of the fundamental frequency 720 of the phase-locked loop of the test signal generator of the test signal generator, the frequency portion 1130 of the baseband frequency 730 doubled by the nonlinearity caused by the nonlinearity, and also by The low frequency portion 1110 caused by the nonlinearity is apparently known by the characteristic 71 of the low pass filter, and is in the frequency portion of the range of the baseband 720 of the phase locked loop and the doubling range of the fundamental frequency 730 of the phase locked loop. Filter out. Then the signal processing device or detector detects and evaluates the low frequency frequency portion 1110, thus detecting the nonlinearity of the signal path. It should be noted here that the odd-order nonlinearity is typically not shown in the low frequency. The low-frequency alternating modulation product is generated between the signal path or the even-order nonlinearity of the circuit to be tested and the tonality (frequency) of the test signal, and is also indicated as the modulated excitation waveform φ(ί). The filtered test signal is visible. Figure 11 shows an example of the spectrum of the test signal X(t) before being filtered by the low-pass filter used for the signal path with even nonlinearity or the circuit under test. The test signal (carrier) is excited by the signal path or the circuit to be tested, and then passed through the signal path or the circuit to be tested, and then the low-pass wave-reducing signal is used, and the filter output activity is used (filtered test signal is used). Active), such a signal path or a non-linearity measurement of the circuit under test can be used, for example, as a measure of the quality of the signal path or circuit under test. For the ideal signal path or ideal circuit to be tested, the filtered test signal y(1) is zero. Figure 12 shows an example of a known LINC transmitter 12 〇〇 (linc = linear amplification using nonlinear components). As shown in the block diagram, the LINC transmitter 12A includes two phase-modulated phase-locked loops 1210, 1220 coupled to a combiner 1230. The combiner 1230 is configured to overlap signals from both of the phase locked loops 121A, 1220 and provide the 201027100 overlapped signal to a power amplifier 1250 through the programmable gain amplifier 124A. The two phase-modulated phase-locked loops 121A, 1220' of the transmitter 1200 can cause phase-modulated signals in the common mode phase modulation (through the combiner 1230). In the differential phase modulation, amplitude modulation can be generated. Since there is already a phase-modulated phase-locked loop, in a system including a transmitter, a test system for testing a signal path is easily implemented. Figure 13 shows an embodiment of the present invention, A block diagram of a test system 1300 for testing a signal path based on a LINC-based RI® IC. The R FIC is structured similarly to the principle illustrated in Figure 2, wherein the transmitter portion does not include an in-phase/quadrature phase architecture. Instead, it contains the LINC architecture, as shown in Figure 12. One of the two phase-modulated phase-locked loops 13 of the LINC transmitter is used to generate the test signal. To test from the second phase-locked loop 122 to The signal path of the combiner 1230, the second phase locked loop 1220 can be used to generate a test signal. The output device (Τχ) of the transmitter portion is coupled to the input device (RX) of the receiver portion, whereby the signal path is from the transmitter to the transmitter The receiver, for example, thereby allows a loopback test of the LINC based RFIC. As shown in Fig. 2, the receiver portion of the test system 1300 is also implemented in the in-phase/father-phase architecture, but instead of the one shown in Figure 2 Phase lock back The phase-locked loop 132' is configured to provide a reference signal φ'(1) using the tunable transformer 1310 for phase modulation. Thus, the signal path to be tested is derived from the test signal generator 11. The phase-modulated phase-locked loop 130 extends through a combiner 123, a programmable gain amplifier 1240, a power amplifier 1250, a low noise amplifier 266, and a pre-programmed gain amplifier 264 a phase/quadrature phase mixer 620, and extending therefrom to a low pass filter 630, wherein a low pass filter, wave 630 is disposed in the same phase branch 252' and another low pass filter 63 is provided Quadrature phase branch 254. The two low pass filters 630 are each coupled to a detector 640 that is part of the signal processing device 140. The phase modulated phase locked loop 1320 and associated modulator 131 The configuration is configured to provide a reference signal, which also forms part of the signal processing device 14. Through the phase shifting unit 262, the phase-modulated phase-locked loop 132 is coupled to the in-phase/quadrature phase mixer 620, thus providing The test signal is applied to the in-phase/quadrature phase bit mixer 620. Additionally or alternatively, the (signal processing device 14) phase shifting unit 262 can be directly connected to the phase-locked loop of the test signal, for example, to provide the county test. The signal is fed to the in-phase/quadrature phase mixer 62〇. - For example, the apparatus described in Figure 13 can implement a test system for detecting the frequency dependence asymmetry in the signal path, as shown in Fig. 6. Show. Replace the original 3 丨 test [No. 'If the reference signal contains the same phase modulation, then #

參考L號也可用來合通過該信號路徑之測試信號。此 Q 處》玄測就號與參考信號間之相位延遲也可藉第9圖所述 方法補償。若存在於_位/正交相位混合器62G之相位經 調變之參考信號或原先測試信號係由一常數信號(但不等 於零)所置換,則㈣備將與第⑴圖所示職系統相對應, 且可用於檢測信號路徑中之非線性。 接收器邛刀之相位經調變之鎖相迴路1320如此被佈署 作為激勵發射益之經調變的pLL再度制衡也作為激勵。如 18 201027100 此無需昂責的函數產生器。如前文說明,也無需用於信號 處理的昂貴的分析器,原因在於只可測試測試信號之低頻 部分。 例如替代基於LINC之發射器,可使用具有極性調變之 發射器。第14圖顯示極性調變發射器1400之方塊圖,其中 發射器1400包括一相位經調變之鎖相迴路1410、一可規劃 增益放大器1420及可經調變之一功率放大器1430。振幅及 相位係獨立調變。 適切地,第15圖顯示根據本發明之一實施例,用以測 試用於基於極性之RFIC之一信號路徑之測試系統丨5〇〇之方 塊圖。測試系統15〇〇之裝備及操作模式係與第圖所述測 试系統之裝備及操作模式相對應。唯一差異在於使用不同 的發射器架構。但已經存在之發射器模組之相位經調變之 鎖相迴路130轉而用以產生測試信號。如此用於實現用以測 試信號路徑之測試系統的額外費用保持極低。再度,發射 器之已調變的PLL被用作為激勵來制衡。 另一項可能包含於同相位/正交相位架構實施發射 器。用於此項目的,第16圖顯示根據本發明之一實施例, 用於基於同相位/正交相位RFIC (基於I/Q之RFIC)用以測試 一信號路徑之測試系統1600之方塊圖。測試系統1600之裝 備及操作模式係類似第U圖及第15圖已經顯示及說明者。 差異在於使用如第2圖已經說明之同相位/正交相位發射 益。已經存在的發射器模組之鎖相迴路於此處係以相位經 調變之鎖相迴路130置換,或經延伸因此可提供相位經調變 19 201027100 之測試信號。 待測信號路徑轉而從測試信號產生器110之鎖相迴路 130延伸至信號處理裝置140,其中該信號路徑部分包含同 相位分支及正交相位分支。 同相位分支212之輸入端A 1610及正交相位分支214之 輸入端B 1620被供給常數信號,諸如邏輯〇或邏輯1用來測 試信號路徑。容易維持此等位準且無需任何額外費用,原 因在於信號係於電路中可利用。藉適當選擇於同相位分支 212之輸入端A 1610及正交相位分支214之輸入端B 1620 (舉例),發射模組之同相位分支或正交相位分支214或兩個 分支的組合可經測試。舉例言之,經由施加邏輯1至同相位 分支212之輸入端A 1610及施加邏輯〇至正交相位分支214 之輸入端B 1620,同相位分支212變成作用狀態。此外,經 由評估連結至接收器模組之同相位分支252之低通渡波器 630之輸出端的檢測器642,可測試接收器之同相位分支 252。經由評估連結至正交相位分支254之低通濾波器63〇之 輸出端的檢測器640,可測試接收器之正交相位分支254。 如此根據第6圖及第〖〇圖之原理轉而可實現用以檢測 頻率相依__錢麵性度之職系統。 相位經調變之鎖相迴路13〇係制衡作為激勵來產生一測 試信號’其巾朗試錢補接U部分之同相位/正交相 位混合器_降頻’例如用以败頻率相依性非對稱性,該 混。器62G被供給接收n之相位經調變之鎖相迴路I%之表 考信號(如此係_如第6圖之賴系統㈣應),以及另二 20 201027100 方面’參考信號維持常數(但係屬非零常數),例如用以檢測 非線性度’藉此測試信號未被降頻(如此係與例如第10圖之 測試系統相對應)。 發射器之基頻輸入信號(TX BB input)於輪入端a 1610 之信號及於輸入端B 1620之信號)可包含任何數值。但例如 單純使用邏輯1及/或邏輯〇。藉此方式也可選擇同相位分支 212或正交相位分支214。其它固定數值結果導致測試信號 φ 於不同相位<Kt)。例如,具有數位相位控制之ADPLL (全數 位鎖相迴路)可用於調變。類比鎖相迴路也可發揮功能但 其較難以達成(測試信號產生器110之鎖相迴路之)發射器 (τχ)與(信號處理裝置14〇之鎖相迴路132〇之)接收器的相等 _ - 調變。如前文已述,也可使用一個經調變的(類比)鎖相迴 路,及將其路由通過至兩項用途(一方面將測試信號耦接入 信號路徑,及另一方面提供該測試信號予混合器620作為參 考信號)。用於此項目的,例如也可使用經調變之類比鎖相 • 迴路。舉例言之,NCO (數值控制振盈器)可用作為正弦相 位調變源(調變器)。其它波形也有用,但NC〇較為容易。 此外,同相位分支及正交相位分支所扮演的角色可交 換來驗證同相位及正交相位發射路徑及接收路徑二者。可 測試發射器部分(ΤΧ)及接收器部分(RX)之相位調變路徑之 對稱性。經由調變源間意圖之相位差(不同相位經調變之鎖 相迴路),可證實信號路徑並未死亡。例如,抵消係仰賴相 同調變。 於基於同相位/正交相位電路中例如可能出現非理想 21 201027100 情況,諸如第4圖所述。此種非理想情況例如同相位分支與 正交相位分支間之相位不匹配(相位差)或增益不匹配(增益 差)可藉二分支之小量差異發展出,由於該小量差異導致二 分支之對稱性遭到破壞。 配合第16圖示例顯示之測試系統,第17圖顯示根據本 發明之一實施例,具有回送配置之基於同相位/正交相位 RFIC之示意模型1700。模型1700只包含對用以測量同相位/ 正交相位不匹配相當重要之該等組件。其它組件被忽略或 加總至常數參數。 舉例言之,發射部分之低通濾波器未被列入考慮,原因 在於於信號路徑測試期間,本實例中之輸入信號A 1610及 輸入信號B 1620為固定(時間常數)。進一步,分別設置於鎖 相迴路與同相位/正交相位混合器218、620間之兩個0度/90 度相移單元係被列入考慮,考慮方式係經由對同相位分支 212、252 使用正弦函數(例如 a(t)=sin(Qt+cp(t-T))、 u(t)=sin(Qt+cp(t-T)),此處φ(【-τ)及φ〇Τ)分別表示鎖相迴路 之相位調變信號)’以及對正交相位分支214、254使用餘弦 函數(例如 b⑴=cos(Qt+(p(t-T)、v(t)=cos(Qt+cp(t-T)),此處 φ〇τ)及φ〇Τ)表示鎖相迴路之相位調變信號)。 第17圖中,於發射部分之同相位/正交相位混合器218 前方之發射部分之同相位分支212中之測試信號標示為 a(t),於發射部分之同相位/正交相位混合器218前方之發射 部分之正交相位分支214中之測試信號標示為b(t),於組合 器230後方之發射部分之輸出端的測試信號標示為s(t),於 201027100 接收器部分之同相位/正交相位混合器620前方於接收器部 分之輸入端的測試信號標示為1·⑴,於接收器部分之同相位 /正交相位混合器620前方於接收器部分之同相位分支252 之參考信號標示為u(t),於接收器部分之同相位/正交相位 混合器620前方於接收器部分之正交相位分支之參考信 號標不為v(t),於接收器部分之同相位/正交相位混合器 後方於接收器部分之同相位分支252之測試信號標示為 φ X⑴,及於接收器部分之同相位/正交相位混合器620後方於 接收器部分之正交相位分支254之測試信號標示為y(t)。 增益不平衡1770、1780 (增益不匹配)也可插入另二混 合器埠(輸入端或輸出端)中之任一者。換言之,發射部分之 _ ' 增益差也可插入正交相位分支214之同相位/正交相位 混合器218前方或同相位分支212之同相位/正交相位混合 器218前方或後方。同理,接收器部分之增益差以肋可插入 接收器部分之同相位分支252中之同相位/正交相位混合器 ❿ 620剞方、混合器620後方、或混合器620與信號處理裝置140 之鎖相迴路1320間。 相位不平衡隨著時間的延遲被模型化,原因在於調變 也被延遲。於兩個混合器218中之任一者之後,或混合器218 與測試信號產生器110之鎖相迴路130間,發射器相位不平 衡1750也被模型化。於兩個混合器620中之任一者之前,或 /見s器620與信號處理裝置140之鎖相迴路1320間,接收器 相位不平衡1760也可經模型化。 接收器之低通濾波器630 (L(co),L)係被模型化為理想 23 201027100 帶有角頻率ω/2,完美通過基頻及遏止上影像。 信號路徑增益及回送衰減被堆入增益參數G 1702。信號 路徑及回送延遲被堆入參數γ 1704。 於第16圖所示測試系統相反,信號處理裝置14〇包含一 額外組合器1710於示意模型1700。組合器171〇係配置來重 疊於接收器部分之同相位分支252之低通濾波器630之輸出 端1720之一信號X⑴與正交相位分支254之低通濾波器63〇 之輸出端1730之信號Y(t),以及來提供重疊信號乙於輸出端 1740。 ⑩ 如此’欲測量發射器(TX)之扭斜δ 1750 (相位差)、發射 器(TX)之增益不匹配g 1770、接收器(rx)之扭斜ε 176〇 (相 . 位差)及接收器(RX)之增益不匹配h 1780,其中回送延遲γ 1704及回送增益G 1702為未知。 此處,可控制之輸入量為發射器(精準)之相位τ(以時間 為單位),其係藉測試信號產生器11〇之鎖相迴路13〇 (〇sc) 建立,接收器(精準)之相位T(以時間為單位),其係藉信號 處理裝置140之鎖相迴路丨320 (0sc)建立,於發射器之同相位 參 分支212之輸入端1610之信號A及於發射器之正交相位分支 214之輸入端162〇之信號B (例如可最準確地產生邏輯〇位準 及邏輯1位準)。如此,相位值可換算成相對應之時間值。 於x、Y’、Z’(於兩個低通濾波器630之輸出端1720、 1730及於組合器1710之輸出端1740)之位準或活性量獲得 作為可利用的評估資訊(例如可極為準確地測量「無活性」)。 經由收集於可用輸入信號(τ、T、a、b)之多種組合下之 24 201027100 可用資訊(X、Υ、Z),可算出及/或獲得四個不匹配組分(δ、 g、ε、h)。各項組合結果導致一個不匹配組分之方程式。 經由使用足量的各項組合,可測定全部不匹配組分。 根據本發明之若干實施例係有關一種經由控制相位測 量兩個混合型鎖相迴路間之相位差之方法。用於此項目 的,第18圖顯示用以測定兩個相位經調變之鎖相迴路間之 相位差之測試系統之示意模型說明圖。模型說明圖1800顯 示一第一相位經調變之鎖相迴路1810及一第二相位經調變 之鎖相迴路1820,其輸出信號係藉混合器1830混合。已混 合信號x(t)藉低通濾波器1840濾波,而已濾波信號X⑴係提 供於低通濾波器1840之輸出端。 用於此項目的,首先,於低通濾波器1840輸出端之信 號X⑴必須運算為扭斜a 1850及(第一鎖相迴路1810之)相 位φ⑴及(第二鎖相迴路1820之)相位ψ⑴之函數。 α(ί)=8ΐη(Ωί+φ(ί-τ)) r(t)=a(t-a) r(t)=sin(Qt~n ΑΓ+φ(ί-α-τ)) u(t)=sin(Qt+Y(t)) x(t)=r(t).u(t)The reference L number can also be used to combine test signals through the signal path. The phase delay between the Q and the reference signal can also be compensated by the method described in Figure 9. If the phase-modulated reference signal existing in the _bit/quadrature phase mixer 62G or the original test signal is replaced by a constant signal (but not equal to zero), then (4) will be compared with the system shown in the figure (1). Corresponding, and can be used to detect nonlinearities in the signal path. The phase-locked loop of the receiver, which is modulated by the phase-locked loop 1320, is deployed as a stimulus for the transmission of the modulated pLL. Such as 18 201027100 This does not need to be responsible for the function generator. As explained earlier, there is no need for an expensive analyzer for signal processing because only the low frequency portion of the test signal can be tested. For example, instead of a LINC based transmitter, a transmitter with polarity modulation can be used. Figure 14 shows a block diagram of a polar modulation transmitter 1400, wherein the transmitter 1400 includes a phase modulated phase locked loop 1410, a programmable gain amplifier 1420, and a tunable one power amplifier 1430. The amplitude and phase are independently modulated. Suitably, Fig. 15 shows a block diagram of a test system for testing a signal path of one of the polarity-based RFICs in accordance with an embodiment of the present invention. The equipment and operating modes of the test system 15 are corresponding to the equipment and mode of operation of the test system described in the figures. The only difference is the use of different transmitter architectures. However, the phase-modulated phase-locked loop 130 of the already existing transmitter module is used to generate a test signal. The additional cost of the test system used to implement the test signal path is kept extremely low. Again, the modulated PLL of the transmitter is used as an excitation to check and balance. Another possibility is to implement a transmitter in an in-phase/quadrature phase architecture. For purposes of this project, Figure 16 shows a block diagram of a test system 1600 for testing a signal path based on an in-phase/quadrature phase RFIC (I/Q-based RFIC), in accordance with an embodiment of the present invention. The equipment and operating modes of the test system 1600 are similar to those shown and described in Figures U and 15. The difference is in the use of in-phase/quadrature phase transmission benefits as already explained in Figure 2. The phase-locked loop of the existing transmitter module is here replaced by a phase-modulated phase-locked loop 130, or extended to provide a phase-modulated test signal of 201027100. The signal path to be tested in turn extends from the phase locked loop 130 of the test signal generator 110 to the signal processing device 140, wherein the signal path portion includes an in-phase branch and a quadrature phase branch. The input A 1610 of the in-phase branch 212 and the input B 1620 of the quadrature phase branch 214 are supplied with a constant signal, such as a logical OR or a logic 1 for testing the signal path. It is easy to maintain these levels without any additional cost, as the signal is available in the circuit. By appropriately selecting the input terminal A 1610 of the in-phase branch 212 and the input terminal 16 1620 of the quadrature phase branch 214 (for example), the in-phase branch or the quadrature phase branch 214 of the transmitting module or a combination of two branches can be tested. . For example, by applying logic 1 to input A 1610 of in-phase branch 212 and applying logic 〇 to input B 1620 of quadrature phase branch 214, in-phase branch 212 becomes active. In addition, the in-phase branch 252 of the receiver can be tested by evaluating the detector 642 coupled to the output of the low pass ferrite 630 of the in-phase branch 252 of the receiver module. The quadrature phase branch 254 of the receiver can be tested by evaluating the detector 640 coupled to the output of the low pass filter 63A of the quadrature phase branch 254. In this way, according to the principle of Fig. 6 and the 〇 diagram, the system for detecting the frequency dependence __ face degree can be realized. The phase-modulated phase-locked loop 13 is used as an excitation to generate a test signal. The same phase/quadrature phase mixer _ down-frequency is used to compensate for the frequency dependence. Symmetry, the mix. The 62G is supplied to receive the phase-modulated signal of the phase-modulated phase-locked loop I% of n (such as the system (4) of Figure 6), and the second reference of the reference signal of the 20th 201027100. It is a non-zero constant), for example to detect non-linearity' whereby the test signal is not down-converted (this corresponds to a test system such as Figure 10). The baseband input signal (TX BB input) of the transmitter and the signal at the input terminal a 1610 and the signal at the input terminal B 1620 may contain any value. But for example, simply use logic 1 and / or logic. In-phase branch 212 or quadrature phase branch 214 can also be selected in this manner. Other fixed numerical results result in the test signal φ at a different phase < Kt). For example, an ADPLL (full digital phase-locked loop) with digital phase control can be used for modulation. The analog phase-locked loop can also function but it is more difficult to achieve (the phase-locked loop of the test signal generator 110) the transmitter (τχ) is equal to the receiver of the signal-sense unit 14 (the phase-locked loop 132 of the signal processing device 14) - Modulation. As already mentioned, a modulated (analog) phase-locked loop can also be used and routed through to two purposes (on the one hand, the test signal is coupled to the signal path, and on the other hand the test signal is provided). The mixer 620 serves as a reference signal). For this project, for example, a modified phase-locked loop can also be used. For example, an NCO (Numerical Controlled Invigorator) can be used as a sinusoidal phase modulation source (modulator). Other waveforms are also useful, but NC〇 is easier. In addition, the roles played by the in-phase branch and the quadrature phase branch can be exchanged to verify both the in-phase and quadrature phase transmit and receive paths. The symmetry of the phase modulation path of the transmitter section (ΤΧ) and the receiver section (RX) can be tested. It is possible to verify that the signal path has not died by modulating the phase difference between the sources (the phase-locked loops with different phases). For example, offsets rely on the same modulation. For example, a non-ideal 21 201027100 case may occur in an in-phase/quadrature-based circuit, such as described in FIG. Such non-ideal conditions such as phase mismatch (phase difference) or gain mismatch (gain difference) between the in-phase branch and the quadrature phase branch can be developed by a small difference between the two branches, due to the small difference resulting in two branches The symmetry was destroyed. In conjunction with the test system shown in the example of Figure 16, FIG. 17 shows a schematic model 1700 based on in-phase/quadrature phase RFIC with a loopback configuration, in accordance with an embodiment of the present invention. Model 1700 contains only those components that are important for measuring in-phase/quadrature phase mismatch. Other components are ignored or added to the constant parameters. For example, the low pass filter of the transmitting portion is not taken into consideration because the input signal A 1610 and the input signal B 1620 in this example are fixed (time constant) during the signal path test. Further, two 0 degree/90 degree phase shifting units respectively disposed between the phase locked loop and the inphase/quadrature phase mixers 218, 620 are considered, and the consideration is based on the use of the in-phase branches 212, 252. Sine function (eg a(t)=sin(Qt+cp(tT)), u(t)=sin(Qt+cp(tT)), where φ([-τ) and φ〇Τ) respectively represent the lock The phase modulation signal of the phase loop) and the cosine function for the quadrature phase branches 214, 254 (eg b(1)=cos(Qt+(p(tT), v(t)=cos(Qt+cp(tT))) Where φ 〇 τ) and φ 〇Τ) represent the phase modulation signal of the phase locked loop). In Fig. 17, the test signal in the in-phase branch 212 of the transmitting portion in front of the in-phase/quadrature phase mixer 218 of the transmitting portion is denoted by a(t), and the in-phase/quadrature phase mixer in the transmitting portion The test signal in the quadrature phase branch 214 of the transmit portion in front of 218 is labeled b(t), and the test signal at the output of the transmit portion behind the combiner 230 is labeled s(t), which is in phase with the receiver portion at 201027100. The test signal preceding the input of the quadrature phase mixer 620 at the receiver portion is labeled 1·(1), and the reference signal of the in-phase branch 252 of the receiver portion is in front of the in-phase/quadrature phase mixer 620 of the receiver portion. Labeled as u(t), the reference signal of the quadrature phase branch in front of the receiver/phase quadrature phase mixer 620 at the receiver portion is not v(t), in phase with the receiver portion / The test signal of the in-phase branch 252 of the quadrature phase mixer behind the receiver portion is labeled φ X(1), and the in-phase/quadrature phase mixer 620 of the receiver portion is followed by the quadrature phase branch 254 of the receiver portion. Test signal denoted as y (t). Gain imbalance 1770, 1780 (gain mismatch) can also be inserted into either of the other mixers (input or output). In other words, the _ ' gain difference of the transmit portion can also be inserted in front of or behind the in-phase/quadrature phase mixer 218 of the in-phase/quadrature phase mixer 218 of the quadrature phase branch 214 or the in-phase branch 212. Similarly, the gain difference of the receiver portion can be inserted into the in-phase/quadrature phase mixer 剞 620 、 in the in-phase branch 252 of the receiver portion, behind the mixer 620, or the mixer 620 and the signal processing device 140. The phase locked loop is between 1320. The phase imbalance is modeled over time delays because the modulation is also delayed. Between either of the two mixers 218, or between the mixer 218 and the phase locked loop 130 of the test signal generator 110, the transmitter phase imbalance 1750 is also modeled. The receiver phase imbalance 1760 can also be modeled prior to either of the two mixers 620, or between the s 620 and the phase locked loop 1320 of the signal processing device 140. The receiver's low-pass filter 630 (L(co), L) is modeled as ideal. 23 201027100 with angular frequency ω/2, perfect for passing the fundamental frequency and suppressing the upper image. The signal path gain and the loopback attenuation are stacked into the gain parameter G 1702. The signal path and the loopback delay are stacked in parameter γ 1704. In contrast to the test system shown in Figure 16, the signal processing device 14A includes an additional combiner 1710 for the schematic model 1700. The combiner 171 is configured to overlap the signal of the signal X(1) of one of the output terminals 1720 of the low pass filter 630 of the in-phase branch 252 of the receiver section and the output terminal 1730 of the low pass filter 63 of the quadrature phase branch 254. Y(t), and to provide an overlap signal B to the output 1740. 10 Such a measure of the transmitter (TX) skew δ 1750 (phase difference), the transmitter (TX) gain mismatch g 1770, the receiver (rx) skew ε 176 〇 (phase. The gain of the receiver (RX) does not match h 1780, where the loopback delay γ 1704 and the loopback gain G 1702 are unknown. Here, the controllable input is the phase τ (in time) of the transmitter (precise), which is established by the phase-locked loop 13〇(〇sc) of the test signal generator 11,, the receiver (accurate) The phase T (in units of time) is established by the phase locked loop 丨320 (0sc) of the signal processing device 140, and the signal A at the input terminal 1610 of the same phase reference branch 212 of the transmitter is positive to the transmitter. The signal B at the input 162 of the phase branch 214 (e.g., the most accurate logic level and logic 1 level can be generated). Thus, the phase value can be converted into a corresponding time value. The level or activity of x, Y', Z' (at the outputs 1720, 1730 of the two low pass filters 630 and the output 1740 of the combiner 1710) is obtained as available evaluation information (eg, Accurately measure "inactive"). Four mismatched components (δ, g, ε) can be calculated and/or obtained via 24 201027100 available information (X, Υ, Z) collected under various combinations of available input signals (τ, T, a, b). , h). The result of each combination results in an equation that does not match the component. All mismatched components can be determined by using a sufficient amount of each combination. Several embodiments in accordance with the present invention are directed to a method of measuring the phase difference between two hybrid phase-locked loops via a control phase. For this project, Figure 18 shows a schematic model illustration of a test system for determining the phase difference between two phase-modulated phase-locked loops. The model illustration 1800 shows a first phase modulated phase locked loop 1810 and a second phase modulated phase locked loop 1820 whose output signals are mixed by a mixer 1830. The mixed signal x(t) is filtered by a low pass filter 1840, and the filtered signal X(1) is provided at the output of the low pass filter 1840. For this project, first, the signal X(1) at the output of the low-pass filter 1840 must be calculated as the skew a 1850 and the phase φ(1) (of the first phase-locked loop 1810) and the phase ψ(1) of the second phase-locked loop 1820. The function. α(ί)=8ΐη(Ωί+φ(ί-τ)) r(t)=a(ta) r(t)=sin(Qt~n ΑΓ+φ(ί-α-τ)) u(t) =sin(Qt+Y(t)) x(t)=r(t).u(t)

G G = yC〇s(y(i)-^?(i-a-r) + Qa)+^· cos(2QQ + …) X(t) = ^2 cos(^(0-φ{ί-α-τ) + Ωα) 使用此項結果,經由控制其相位^t)及ψ(ί),可以兩種 不同方式測量兩個相位經調變之鎖相迴路間之扭斜(X (相也 25 201027100 差)。 測量載波(信號)間之扭斜的可能包含使用靜態相位調整。 φ(〇=Ωτ, ψ(ί)=ΩΤ 如此已濾波之輸出信號X為DC電壓信號。若Τ及/或τ係 經調整使得已濾波之輸出信號X達到最大值,則將獲得相位 差(X 1850。 ex = Τ - τ 另外,已濾波之輸出信號X也可調整為最小值,或調整 至 χ=ο。 測量相位調變間之扭斜之又一項可能包含使用動態相 位調節。 ψ(ί)=φ(〇 X (〇 = y cos(^i) ~φ{ΐ-α-τ) + αα) 如此已慮波之輸出仏號χ為動態信號。對變成靜 態。如此扭斜(X 1850可藉調整τ測定,其中τ係經調整使得 已;慮波輸出彳s號X之活性達到最小值(或零)。另外,τ也可 經調整用於獲得輸出信號X之最大活性。 此處,例如可探勘ADPLL允許經由數位控制達成極為 準確的相位調整及極為準確的相位調變之事實。但該方法 也可應用至類比鎖相迴路。 第18圖所示配置也出現於第17圖所示測試系統模型 1700’其中第-相位經調變之鎖相迴路mG係與測試信號 產生器11〇之鎖相迴路130相對應、,第二相位經調變之鎖相° 迴路1820係與信號處理裝置14〇之鎖相㈣132〇相對應,混 201027100 合器1830係與接收器部分之同相位/正交相位混合器620相 對應,及低通濾波器1840係與同相位分支252及正交相位分 支254之低通濾波器630相對應。如此,藉所述方法可測定 回送延遲γ 1704。 根據本發明之若干實施例係有關一種測量基於同相位 /正交相位之RFIC中之相位不平衡之方法,諸如示意顯示於 第17圖。於接收器部分(RX)之同相位/正交相位混合器630 ▲ 之發射器(ΤΧ)與接收器(RX)相位調變(測試信號與參考信 號)間之扭斜,且係於(同相位分支252之低通濾波器630之輸 出端1720)信號X及(正交相位分支254之低通濾波器630之 ' 輸出端1730)信號Y測得者取決於發射器(TX)與接收器(RX)GG = yC〇s(y(i)-^?(iar) + Qa)+^· cos(2QQ + ...) X(t) = ^2 cos(^(0-φ{ί-α-τ) + Ωα) Using this result, by controlling its phase ^t) and ψ(ί), the skew between the two phase-modulated phase-locked loops can be measured in two different ways (X (phase also 25 201027100 difference). Measuring the skew between carriers (signals) may involve using a static phase adjustment. φ(〇=Ωτ, ψ(ί)=ΩΤ The filtered output signal X is a DC voltage signal. If Τ and / or τ are adjusted If the filtered output signal X reaches the maximum value, the phase difference will be obtained (X 1850. ex = Τ - τ. In addition, the filtered output signal X can also be adjusted to the minimum value, or adjusted to χ = ο. Another item of skewing of the transition may involve the use of dynamic phase adjustment. ψ(ί)=φ(〇X (〇= y cos(^i) ~φ{ΐ-α-τ) + αα) The output 仏 is 动态 is the dynamic signal. The pair becomes static. So skewed (X 1850 can be determined by adjusting τ, where τ is adjusted so that the activity of the wave output 彳s X reaches the minimum value (or zero). In addition, τ can also be adjusted for The maximum activity of the signal X. Here, for example, the fact that the ADPLL allows for extremely accurate phase adjustment and extremely accurate phase modulation via digital control is possible. However, the method can also be applied to analog phase-locked loops. The configuration also appears in the test system model 1700' shown in Fig. 17, wherein the phase-modulated phase-locked loop mG system corresponds to the phase-locked loop 130 of the test signal generator 11〇, and the second phase is modulated. The phase lock loop 1820 corresponds to the phase lock (four) 132〇 of the signal processing device 14〇, and the hybrid 201027100 combiner 1830 corresponds to the in-phase/quadrature phase mixer 620 of the receiver portion, and the low pass filter 1840. Corresponding to the low pass filter 630 of the in-phase branch 252 and the quadrature phase branch 254. Thus, the loopback delay γ 1704 can be determined by the method. According to several embodiments of the present invention, a measurement is based on in-phase/positive A method of phase imbalance in a phased RFIC, such as shown schematically in Figure 17. Emitter (ΤΧ) and receiver of the in-phase/quadrature phase mixer 630 ▲ at the receiver portion (RX) (RX) skew between phase modulation (test signal and reference signal) and tied to signal X (output 1720 of low pass filter 630 of phase branch 252) and low pass filtering of quadrature phase branch 254 The output Y of the 630 'output 1730' depends on the transmitter (TX) and the receiver (RX).

. 之相位不平衡、回送延遲、同相位分支212之輸入信號A 1610及正交相位分支214之輸入信號B 1620,其中可控制同 相位分支212之輸入信號A 1610及正交相位分支214之輸入 信號B 1620而與發射器(TX)調變(測試信號)係採同相位分 φ 支212或正交相位分支214或二分支的組合獨立無關。 對輸入信號A 1610及B 1620之多個設定值,於低通濾 波器630之輸出端1720、1730 (X及Y)之調變扭斜之測量允 許運算發射器(TX)與接收器(RX)相位不平衡(於不同分支 中測試信號與參考信號之相位差)。 舉例言之,比較於相同低通濾波器630之輸出端(於接 收器之相同分支,例如輸出信號X 1720)測量得之發射器同 相位分支212 (A=l、B=0)與發射器正交相位分支214 (A=0、B= 1)間之調變扭斜顯示發射器之相位不平衡175〇 27 201027100 (發射器部分之同相位分支212與正交相位分支214間之相 位不平衡1750)。 以類似方式,經由比較接收器之同相位分支252 (輸出 信號X 1720)與接收器之正交相位分支254 (輸出信號γ 1730)間之調變扭斜,可顯示對任何發射器相位調變之接收 益之相位不平衡1760。 根據本發明之額外實施例係有關一種用於測量增益不 平衡之方法。例如如第Π圖之示意說明,此種方法可用於 基於同相位/正交相位RFIC。 接收器之載波相位(到達接收器之測試信號)取決於發 射器(TX)之同相位分支212之輸入信號a 1620之權重、發射 器(TX)之正交相位分支214之輸入信號b丨620之權重、發射 器(TX)之正交相位分支214之增益不平衡g 1770、及發射器 (TX)之相位不平衡δ 1750。 對同相位分支212之輸入信號A 1610及正交相位分支 214之輸入信號B 1620之二設定值,於接收器部分之同相位 分支之輸出信號X 1720或於正交相位分支之輸出信號γ 1730之載波杻斜(測試信號扭斜)之測量,允許對發射器(τχ) 之已知相位不平衡δ 1750運算發射器(TX)之增益不平衡g 1770。 例如理想上’具輸入信號A=1及B=0之狀態與具輸入信 號A=1及B=1之狀態間之載波相位差係等於45度。偏差係取 決於發射器(TX)之相位及取決於發射器(τχ)之增益不平衡 g 1770。發射器(ΤΧ)之增益不平衡g Π70可對發射器(τχ) 201027100 之已知相位不平衡δ 1750算出。 於接收器之同相位分支252 (RX 1}與接收器之正交相 位分支254 (RX Q)之載波扭斜測量值理想上差⑽度,偏差 係由接收器之相位及增益不平衡所引起。 對任何輸入載波相位(測試信號相位)測量於接收器之 同相位分支252及正交相位分支254之輸出信號172〇 ' 173〇 之載波扭斜,允許對已知之接收器(RX)之相位不平衡ε 1760運算接收器(rx)之增益不平衡h 178〇。 舉例言之理想上,45度載波扭斜導致於組合器^川輸 出端1740之信號Z=X-Y=〇。調整接收器(rx)之相位(參考信 號之相位)至輸出信號Ζ=0,允許對該接收器(rx)之已知相 位不平衡ε 1760運算接收器(RX)之增益不平衡h 1780。 根據本發明之若干實施例係有關一種用以測定相位不 平衡及增益不平衡之演繹法則或方法,包含: -測定回送延遲; -測定發射器部分(TX)之相位不平衡; -測定接收器部分(RX)之相位不平衡; -運算發射器部分(TX)之增益不平衡; -運算接收器部分(RX)之增益不平衡。 根據本發明之若干實施例係有關一種用以測定基於同 相位/正交相位之RFIC中之回送延遲γ 1704之方法’諸如示 意顯示於第17圖。 此處,於第一步驟中,設定輸入信號(例如A=1、Β=〇、 非常數(p(t)、\|/(t)=(p(t)、Τ=0) 0 29 201027100 隨後τ經調整直到接收器部分之同相位分支252之輸出 端1720之輸出信號?^+τ=τι為常數為止。則γ= τι。 數學上可以公式表示如下: s(t)=sin(Qt+9(t-x)) r(t)=G · s(t~Y) r(t)= G · sin(Qt-QY+cp(t-y—τ)) u(t)=sin(Qt+9(t)) x(t)=r(t) · u(t)Phase imbalance, loopback delay, input signal A 1610 of in-phase branch 212, and input signal B 1620 of quadrature phase branch 214, wherein input of input signal A 1610 and quadrature phase branch 214 of in-phase branch 212 can be controlled Signal B 1620 and transmitter (TX) modulation (test signal) are independent of the combination of the same phase division φ branch 212 or the quadrature phase branch 214 or the two branches. For the set values of the input signals A 1610 and B 1620, the measurement of the modulation skew at the output terminals 1720, 1730 (X and Y) of the low pass filter 630 allows the operation of the transmitter (TX) and the receiver (RX). Phase imbalance (the phase difference between the test signal and the reference signal in different branches). For example, the emitter in-phase branch 212 (A=l, B=0) and the transmitter measured at the output of the same low-pass filter 630 (on the same branch of the receiver, such as the output signal X 1720). The phase shift imbalance between the quadrature phase branches 214 (A = 0, B = 1) shows the phase imbalance of the transmitter 175 〇 27 201027100 (the phase between the in-phase branch 212 and the quadrature phase branch 214 of the transmitter portion is not Balance 1750). In a similar manner, the phase modulation of any transmitter can be displayed by comparing the modulation skew between the in-phase branch 252 (output signal X 1720) of the receiver and the quadrature phase branch 254 (output signal γ 1730) of the receiver. The phase difference of receiving benefits is 1760. An additional embodiment in accordance with the present invention is directed to a method for measuring gain imbalance. For example, as illustrated schematically in the figure, such an approach can be used for in-phase/quadrature phase based RFICs. The carrier phase of the receiver (the test signal arriving at the receiver) depends on the weight of the input signal a 1620 of the in-phase branch 212 of the transmitter (TX), and the input signal b 620 of the quadrature phase branch 214 of the transmitter (TX). The weight, the gain imbalance of the quadrature phase branch 214 of the transmitter (TX) g 1770, and the phase imbalance of the transmitter (TX) δ 1750. The input signal A 1610 of the in-phase branch 212 and the input signal B 1620 of the quadrature phase branch 214 are set to a value, and the output signal X 1720 of the same phase branch of the receiver section or the output signal of the quadrature phase branch γ 1730 The measurement of the carrier skew (test signal skew) allows a gain imbalance of the transmitter (TX) g 1770 for the known phase imbalance δ 1750 of the transmitter (τχ). For example, the carrier phase difference between the state having the input signals A = 1 and B = 0 and the state having the input signals A = 1 and B = 1 is equal to 45 degrees. The deviation depends on the phase of the transmitter (TX) and on the gain imbalance of the transmitter (τχ) g 1770. The gain imbalance of the transmitter (ΤΧ) g Π 70 can be calculated for the known phase imbalance δ 1750 of the transmitter (τχ) 201027100. The carrier skew measurement of the in-phase branch 252 (RX 1} of the receiver and the quadrature phase branch 254 (RX Q) of the receiver is ideally (10) degrees, and the deviation is caused by the phase and gain imbalance of the receiver. The carrier skew of any input carrier phase (test signal phase) measured at the receiver's in-phase branch 252 and quadrature phase branch 254 output signal 172〇' 173〇 allows for the phase of the known receiver (RX) Unbalanced ε 1760 arithmetic receiver (rx) gain imbalance h 178 〇 For example, 45 degree carrier skew causes the signal Z=XY=〇 of the combiner output 1740. Adjust the receiver ( The phase of rx) (phase of the reference signal) to the output signal Ζ = 0, allowing the known phase imbalance ε 1760 of the receiver (rx) to operate the gain imbalance of the receiver (RX) h 1780. According to the invention Several embodiments relate to a deductive rule or method for determining phase imbalance and gain imbalance, comprising: - determining a loopback delay; - determining a phase imbalance of a transmitter portion (TX); - determining a receiver portion (RX) Unbalanced phase; - calculating the gain imbalance of the transmitter portion (TX); - calculating the gain imbalance of the receiver portion (RX). Several embodiments according to the invention relate to an RFIC for determining in-phase/quadrature phase based The method of returning the delay γ 1704 is shown, for example, in Figure 17. Here, in the first step, the input signal is set (for example, A=1, Β=〇, non-constant (p(t), \|/(t = (p(t), Τ = 0) 0 29 201027100 Then τ is adjusted until the output signal ?^ + τ = τι of the in-phase branch 252 of the receiver portion is constant. Then γ = τι. Mathematically, it can be expressed as follows: s(t)=sin(Qt+9(tx)) r(t)=G · s(t~Y) r(t)= G · sin(Qt-QY+cp(ty —τ)) u(t)=sin(Qt+9(t)) x(t)=r(t) · u(t)

G Q =y COs{(p{t) ~(p{t-Y-z) + ay) + ~ c〇s(2Q t-¥...) x (0 = -jC〇s(<p(t) ~φ(ί-γ-τ) + Ωγ) X(t)=const=>Ti=-y 根據本發明之額外實施例係有關一種用以測定基於同 相位/正交相位之RFIC中之相位不平衡δ1750之方法,諸如 示意顯示於第17圖。 此處,首先,設定輸入信號(例如A=0、B=1、cp(t)、τ=-γ、GQ = y COs{(p{t) ~(p{tYz) + ay) + ~ c〇s(2Q t-¥...) x (0 = -jC〇s(<p(t) ~φ (ί-γ-τ) + Ωγ) X(t)=const=>Ti=-y An additional embodiment according to the present invention relates to a phase imbalance in an RFC based on in-phase/quadrature phase The method of δ 1750, such as shown schematically in Figure 17. Here, first, the input signal is set (for example, A = 0, B = 1, cp (t), τ = - γ,

ψ(〇=φ(ί))。 隨後,信號處理裝置140之鎖相迴路I320之相位Τ係調 整直至於接收器部分之同相位分支252之輸出端1720之輸 出信號X對Τ=Τ2為常數為止。則δ=Τ2 ° 數學上可以公式表示如下: s(t)=g cos(Qt-Q5+9(t-S+Y)) r(t)=Gs(t-y) r(t)=G.g.sin(Qt-Q5-QY+ 如卜δ)) 3〇 201027100 u(t)=sin(Qt+ φ(ί-Τ)) x(t)=r(t) · u(t)ψ(〇=φ(ί)). Subsequently, the phase of the phase locked loop I320 of the signal processing device 140 is adjusted until the output signal X of the output 1720 of the in-phase branch 252 of the receiver portion is constant for Τ = Τ 2 . Then δ=Τ2 ° can be expressed mathematically as follows: s(t)=g cos(Qt-Q5+9(t-S+Y)) r(t)=Gs(ty) r(t)=Ggsin( Qt-Q5-QY+ 如卜δ)) 3〇201027100 u(t)=sin(Qt+ φ(ί-Τ)) x(t)=r(t) · u(t)

G G =cos(^?(i— 2^)— (pit — S) + Ω,ό + Ω^1) + cos(20 ? + ...) X(t) = cos(ff>(t — T) — φ(ί — S) -\r Ωό + Ω^)GG =cos(^?(i— 2^)—(pit — S) + Ω,ό + Ω^1) + cos(20 ? + ...) X(t) = cos(ff>(t — T ) — φ( ί — S) -\r Ωό + Ω^)

X(t)=const=>T2=S 根據本發明之若干實施例係有關一種用以測定基於同X(t)=const=>T2=S According to several embodiments of the present invention, a method for determining

相位/正交相位之RFIC中之相位不平衡ε1760之方法,諸如 示意顯示於第17圖。 此處,首先,設定輸入信號(例如A=1、Β=0、非常數 cp(t)、τ=-γ、ψ(〇=φ(〇)。 隨後,信號處理裝置140之鎖相迴路1320之相位Τ係調 整直至於接收器部分之正交相位分支254之輸出端1730之 輸出信號Υ對Τ=Τ3為常數為止。則ε=-Τ3。A method of phase imbalance ε 1760 in the phase/orthogonal phase RFIC, such as shown schematically in Figure 17. Here, first, an input signal is set (for example, A=1, Β=0, a very cp(t), τ=-γ, ψ(〇=φ(〇). Subsequently, the phase locked loop 1320 of the signal processing device 140 The phase is adjusted until the output signal Υ = Τ 3 of the output terminal 1730 of the quadrature phase branch 254 of the receiver portion is constant. Then ε = - Τ 3.

數學上可以公式表示如下: r(t)=G· sin(Qt-Qy+9(t)) v(t)=h cos(Qt+9(t-T)) y(t)=r(t)-h-v(t-8) =r(t) .h.cos(Dt—Ωε+φ(ί_Τ_ε)) =sin(—Ω γ + 挪)+ Ωε —抑—Γ — £)) +sin(2i2 ί + …) Y (t) — 2 sin(^?(f) — φ(ί -7^-^) + — Ω 31 201027100 Y(t)=const=^T3=-£ 根據本發明之額外實施例係有關一種用以測定基於同 相位/正交相位之RHC中之增益不平衡g 1770之方法,諸如 示意顯示於第17圖。 此處,首先,設定輸入信號(例如Α=:ι、Β=1、φ⑴=Ωγ、 ψ⑴=ψ,某係與不含(相位)調變之信號相對應)。Mathematically, the formula can be expressed as follows: r(t)=G· sin(Qt-Qy+9(t)) v(t)=h cos(Qt+9(tT)) y(t)=r(t)- Hv(t-8) = r(t) .h.cos(Dt—Ωε+φ(ί_Τ_ε)) = sin(—Ω γ + ))+ Ωε — Γ—Γ — £)) +sin(2i2 ί + ...) Y (t) — 2 sin(^?(f) — φ(ί -7^-^) + — Ω 31 201027100 Y(t)=const=^T3=-£ According to an additional embodiment of the present invention A method for determining gain imbalance g 1770 in an RHC based on in-phase/quadrature phase, such as shown schematically in Figure 17. Here, first, an input signal is set (eg, Α=: ι, Β=1) , φ(1)=Ωγ, ψ(1)=ψ, a certain system corresponds to a signal that does not contain (phase) modulation).

隨後,調整ψ直到於接收器部分之同相位分支252之輸 出端1720之輸出信號X包含對Ψ=Ψ4之最大值。然後可運算 增益不平衡g 1770。 例如,此處,首先存在於同相位/正交相位混合器620 之測試信號r(t)之相位p被運算為增益不平衡g 1770之函 數,數學上以公式表示為: s(t)=sin(Qt+Qy)+g cos(Qt-Q5+Qy) r(t)=Gs(t-y) =G sin(Qt)+Gg cos(Qt-Q5)Subsequently, the output signal X of the output 1720 of the in-phase branch 252 of the receiver portion is adjusted to include the maximum value of Ψ = Ψ 4. The gain imbalance g 1770 can then be calculated. For example, here, the phase p of the test signal r(t) first present in the in-phase/quadrature phase mixer 620 is computed as a function of the gain imbalance g 1770, mathematically expressed as: s(t)= Sin(Qt+Qy)+g cos(Qt-Q5+Qy) r(t)=Gs(ty) =G sin(Qt)+Gg cos(Qt-Q5)

=G sin(Qt)+Gg cos(Q6)cos(Qt)+Gg sin(Q6)sin(Qt) = [G+Gg sin(Q6)]sin(Qt)+Gg cos(Q6)cos(Qt) =R sin(Qt+p)=G sin(Qt)+Gg cos(Q6)cos(Qt)+Gg sin(Q6)sin(Qt) = [G+Gg sin(Q6)]sin(Qt)+Gg cos(Q6)cos(Qt) =R sin(Qt+p)

P =arctan g cos(QS) 1 + gsin(Q^) 隨後’可測定Ψ4,其中於接收器部分之同相位分支252之 輸出端172〇之輸出信號X包含最大值。數學上可公式化如下: r(t)=R sin(Qt+p) u(t)=sin(iit+y) 32 201027100 x(t)=r(t)-u(t) =R sin(Qt+p)sin(Qt+\)/)P = arctan g cos (QS) 1 + gsin (Q^) Then ' can be determined Ψ 4, where the output signal X at the output 172 of the in-phase branch 252 of the receiver portion contains the maximum value. Mathematically, it can be formulated as follows: r(t)=R sin(Qt+p) u(t)=sin(iit+y) 32 201027100 x(t)=r(t)-u(t) =R sin(Qt +p)sin(Qt+\)/)

R R =-J cos(p -ψ)-^· cos(2Q i + · ·)R R =-J cos(p -ψ)-^· cos(2Q i + · ·)

R X(〇 = ycos(p-^) ψ4 = arg max X = p ψ 然後發射器之增益不平衡g 1770可透過ψ4運算,數學 上可公式化如下:R X(〇 = ycos(p-^) ψ4 = arg max X = p ψ Then the gain imbalance of the transmitter g 1770 can be calculated by ψ4, which can be mathematically formulated as follows:

tan ψ4Tan ψ4

cos(Q5) + sin(Q6) g = cos(Q6) tan\|i4 1_ -sin(Q5)Cos(Q5) + sin(Q6) g = cos(Q6) tan\|i4 1_ -sin(Q5)

根據本發明之若干實施例係有關一種用以測定基於同 相位/正交相位之RFIC中之增益不平衡h 1780之方法,諸如 示意顯示於第17圖。 此處,首先,設定輸入信號(例如A=1、B=0、 φ(ί)=π/4+Ωγ、ψ⑴=ψ,其係與未經(相位)調變之信號相對 應)。 隨後,ψ係調整直到於組合器1710之輸出端1740之輸出 信號Z於ψ=ψ5為零為止。然後可運算增益不平衡h Π80。 用於此項目的,例如首先測定於組合器171〇之輸出端 33 201027100 1740之輸出信號z為ψ之函數’其於數學上可公式化如下: s(t) = sini Qt + ^ +Several embodiments in accordance with the present invention are directed to a method for determining gain imbalance h 1780 in an in-phase/quadrature-phase based RFIC, such as shown schematically in Figure 17. Here, first, an input signal is set (for example, A = 1, B = 0, φ (ί) = π / 4 + Ω γ, ψ (1) = ψ, which corresponds to a signal that is not (phase) modulated). Subsequently, the tether is adjusted until the output signal Z at the output 1740 of the combiner 1710 is zero = ψ 5 is zero. The gain imbalance h Π 80 can then be calculated. For this project, for example, firstly measured at the output 33 of the combiner 171〇, the output signal z of 201027100 1740 is a function of ’, which can be mathematically formulated as follows: s(t) = sini Qt + ^ +

r(t) = G · s(t - γ) =G sin〔Qt + | x⑴=r(t) · u(t) =G sin^Qt + sin(Qt + ψ) _G f π] G —2 cos Ψ —耳 j 一了 〇〇δ(2Ωί Η—)r(t) = G · s(t - γ) = G sin[Qt + | x(1)=r(t) · u(t) =G sin^Qt + sin(Qt + ψ) _G f π] G —2 Cos Ψ — ear j 一 δ (2Ω ί Η —)

^(0 = r(t) -h-v(t-E) 4 ψ-Ωε- =Gh siJ Ωί + ^ I cos(Qi - Ωε+ψ)^(0 = r(t) -h-v(t-E) 4 ψ-Ωε- =Gh siJ Ωί + ^ I cos(Qi - Ωε+ψ)

GhGh

Gh . ZW = jC〇s ψ —旬-誓 sin〔\|f - Ωε - * 對ψ=ψ5,Z係等於零: 〇 =寻。。如5 -1) _ 苧 s+5 一 Ωε — !、Gh . ZW = jC〇s ψ 旬 旬 誓 sin[\|f - Ωε - * For ψ = ψ 5, Z is equal to zero: 〇 = seek. . Such as 5 -1) _ 苎 s+5 Ωε — !,

如此再度可基於Ψ5運算接收器之增益不平衡h 1780 數學上表示如下:So again based on the gain imbalance of the Ψ5 arithmetic receiver h 1780 mathematically expressed as follows:

sin^5-n£-|J 於根據本發明之若干實施例令,測量發射器(τχ)之增 益不平衡仰賴輸入信號Α及輸入信號Β係等於!。(輸入信號 A與輸入錢B)相等可藉施加㈣信號至輸人信號八及^ 34 201027100 入信號B而改良。用於此項目的,第19圖顯示用於提供相等 信號位準之裝置之電路圖。此處,邏輯〇或邏輯丨之位準可 藉四個開關1910施加至裝置之輸出信號a及/或輸出信號B。 根據本發明之若干實施例係有關一種用以測試信號路 從之方法,其中該方法也可應用於帶有類比基頻之RFIc。 根據本發明之若干額外實施例係有關一種用以測試信 號路徑之方法,其中既無需外部波形產生器也無需外部波 形分析器。 根據本發明之額外實施例係有關一種用以測試信號路 徑之測試系統及一種用以測試信號路徑之方法,其中測量 精度既不受晶片上數位至類比變換器(DAC)或類比至數位 變換器(ADC)之不準確度所限’也不會受外部波形產生器或 外部波形分析器之不準確度所限。 判定何時數值為零/最小值/最大值或判定最小活性/最 大活性例如不要求線性度或(高)準確度,而只要求單一調 性。只有相位調整必須儘可能地線性及精準,此點例如對 ADPLL特別為真。 根據本發明之若干實施例係有關一種用以測試一信號 路徑之方法,其中同相位/正交相位不平衡可藉下述測量, (測試信號產生器之)發射器之鎖相迴路相位及/或(信號處 理裝置之)接收器之鎖相迴路相位之變化組合多個基頻輸 入信號組合A、B而測定。為了達成此項目的,例如可測量 輸出量(X、Y、Z),靜態相位可經調整來獲得最小或最大輸 出信號χ、υ、ζ,或輸出k说專於零;或相位調變之延遲 35 201027100 可經調整來獲得輸出量X、Υ、Z之最小或最大活性。 根據本發明之若干實施例係有關一種方法,其中輸入 信號A、B之其它數值組合用來替代0及1。例如可使用動態 輸入信號A、B而非靜態信號。 根據本發明之額外實施例係有關一種方法,其中輸入 信號係經調整來獲得輸出信號X、Y、Z之最大活性而非最 小活性。調整輸出信號X、Y、Z至最小值、最大值或等於 零可能相等。舉例言之,可測量輸出信號X、Y、Z而非調 整至最小值、最大值或零,如此較快,但要求精度測量值。 此外,靜態發射器相位調整等於靜態接收器相位調整。 為了計算相位差或相位不平衡及增益不平衡,使用下 列三角公式作為基礎: sin x sin y (cos(x - y)- cos(x + y)) sin x · cos y = ^ (sin(;c - y)- sin(x + y)) sinx-sin, = 2cos^sin^ cos(x - y) = cos x cos y + sin x sin y s + arctan — aSin^5-n£-|J In accordance with several embodiments of the present invention, the gain imbalance of the measurement transmitter (τχ) depends on the input signal Α and the input signal 等于 is equal! . (Input signal A and input money B) can be improved by applying (4) signal to input signal VIII and ^ 34 201027100 into signal B. For this item, Figure 19 shows a circuit diagram of a device for providing equal signal levels. Here, the level of logic or logic can be applied to the output signal a and/or the output signal B of the device by four switches 1910. Several embodiments in accordance with the present invention are directed to a method for testing signal paths, wherein the method is also applicable to RFIc with analog fundamental frequencies. Several additional embodiments in accordance with the present invention are directed to a method for testing a signal path in which neither an external waveform generator nor an external waveform analyzer is required. An additional embodiment in accordance with the present invention is directed to a test system for testing a signal path and a method for testing a signal path, wherein measurement accuracy is not limited to digital to analog converters (DACs) or analog to digital converters on a wafer. (ADC) inaccuracy is limited to the inaccuracy of the external waveform generator or external waveform analyzer. Determining when the value is zero/minimum/maximum or determining the minimum activity/maximum activity, for example, does not require linearity or (high) accuracy, but requires only a single tone. Only phase adjustments must be as linear and precise as possible, which is especially true for ADPLL. Several embodiments in accordance with the present invention relate to a method for testing a signal path in which the in-phase/quadrature phase imbalance can be measured by the phase-locked loop phase of the transmitter (of the test signal generator) and/or Or the phase change of the phase-locked loop of the receiver (of the signal processing device) is combined with a plurality of fundamental frequency input signal combinations A and B. To achieve this, for example, measurable output (X, Y, Z), the static phase can be adjusted to obtain the minimum or maximum output signal χ, υ, ζ, or the output k is said to be specific to zero; or phase modulation The delay 35 201027100 can be adjusted to obtain the minimum or maximum activity of the output X, Υ, Z. Several embodiments in accordance with the present invention relate to a method in which other combinations of values of input signals A, B are used in place of 0 and 1. For example, dynamic input signals A, B can be used instead of static signals. An additional embodiment in accordance with the present invention is directed to a method wherein the input signal is adjusted to obtain maximum activity of the output signals X, Y, Z rather than minimum activity. Adjust the output signal X, Y, Z to the minimum, maximum or equal to zero may be equal. For example, the output signals X, Y, Z can be measured instead of being adjusted to a minimum, maximum or zero, which is faster, but requires an accuracy measurement. In addition, the static transmitter phase adjustment is equal to the static receiver phase adjustment. To calculate the phase difference or phase imbalance and gain imbalance, use the following trigonometric formula as the basis: sin x sin y (cos(x - y)- cos(x + y)) sin x · cos y = ^ (sin(; c - y)- sin(x + y)) sinx-sin, = 2cos^sin^ cos(x - y) = cos x cos y + sin x sin ys + arctan — a

a sin x-\-b cos x = 第20圖顯示根據本發明之一實施例,一種用以測試信 號路徑之方法2000之流程圖。此處首先,藉測試信號產生 器來產生一測試信號2010,其中該測試信號產生器包含一 調變器及一鎖相迴路。該測試信號產生器之該鎖相迴路係 配置來提供一測試信號且將該測試信號耦接入該信號路 徑,其中該測試信號產生器之調變器係配置來允許測試信 36 201027100 號之相位調變。 隨後,測試信號耦接2020入信號路徑,於通過待測信 號路徑後’由信號處理裝置來接收2030測試信號。此處, 該信號處理裝置係配置來接收及處理測試信號,其中該待 測信號路徑係由該測試信號產生器之鎖相迴路延伸至該信 號處理裝置。 隨後,評估2040由信號處理裝置所接收之測試信號, φ 因而執行信號路徑的評比。 根據本發明之若干實施例係有關一種用以測試信號路 徑之方法,其中低通濾波器設置於該信號路徑。該低通濾 . 波器包含小於該測試信號產生器之鎖相迴路之基頻之截止 ' 頻率。如此’只有測試信號之低頻部分到達信號處理裝置。 例如,經由評估已濾波之測試信號’可檢測於該信號路徑 之非線性度。 根據本發明之額外實施例係有關一種測試信號路徑之 φ 方法,其中該信號路徑包含一混合器及一低通濾波器。該 昆合器係設置於信號處理方向中該低通濾波器上游的信號 路徑’且係配置來混合順著信號路徑傳播之測試信號與參 考信號,及提供於輸出端該已混合之測試信號。低通濾波 器又包含比該測試信號產生器之鎖相迴路之基頻更小的截 止頻率。 混合器混合已經順著信號路徑傳播之測試信號與參考 信號,其中該參考信號係與由該測試信號產生器之鎖相迴 路所提供之原先測試信號相對應。混合型測試信號隨後藉 37 201027100 低通濾波器過濾且提供予該信號處理裝置。經由評估已混 合且已濾波之測試信號,例如可檢測信號路徑之頻率相依 性非對稱性。 根據本發明之若干實施例係有關一種用以測試一信號 路徑之方法,其中該信號處理裝置包含一調變器及一鎖相 迴路,其中該信號處理裝置之鎖相迴路係配置來提供一參 考信號,及其中該信號處理裝置之調變器係配置來允許該 參考信號之相位調變。 此外,該信號路徑包令—同相位分支、一正交相位分 支、一第一同相位/正交相位混合器、一第二同相位/正交相 位混合器、一第一低通濾波器及一第二低通濾波器。此處 該第一同相位/正交相位混合器包括一同相位輸入端、一正 交相位輸入端、一用於測試信號之輸入端及一用於相移測 試信號之輸入端,且係設置於該信號路徑。該第二同相位/ 正交相位混合器包括一參考信號之輸入端及一相移參考信 號之輸入端。第一低通濾波器係設置於同相位分支,且包 含小於該測試信號產生器之鎖相迴路之基頻之一截止頻 率。該第二低通濾波器係設置於該正交相位分支,及也包 含小於該測試信號產生器之鎖相迴路之基頻之一截止頻 率。第一同相位/正交相位混合器係設置於第二同相位/正交 相位混合器上游之信號路徑,及該第一及第二低通濾波器 係設置於信號處理方向中該第二同相位/正交相位混合器 下游。 用於測試信號路徑,信號係施加至第一同相位/正交相 201027100 位混合器之同相位輸入端及正交相位輸入端,參考信號係 施加至第二同相位/正交相位混合器,及測試信號係耦接至 該信號路徑。隨後,於通過測試路徑後,評估測試信號來 執行該信號路徑的評比。 信號路徑之評比例如包括測定非理想性程度、非線性 度、頻率相依性非對稱性、相位差、相位不平衡、增益差、 增益不平衡、相位不匹配或增益不匹配。 例如,信號路徑之此等性質可由測試信號、參考信號、 第一同相位/正交相位混合器之同相位輸入端之信號及/或 第一同相位/正交相位混合器之正交相位輸入端之信號之 變化區別及評估。 藉由相位調變或測試信號及/或參考信號之相位變 化,例如可於第一低通濾波器之輸出端或第二低通濾波器 之輸出端產生一信號或一靜態信號之最大值或最小值,藉 此可測定該信號路徑之性質數量諸如非理想性程度、非線 性度、頻率相依性非對稱性、相位差、相位不平衡、增益 差、增益不平衡、相位不匹配或增益不匹配。 此處例如應用靜態(時間常數)信號至第一同相位/正交 相位混合器之同相位輸入端及正交相位輸入端即足。 根據本發明之若干實施例係有關包含發射器部分及接 收器部分之RFIC。但所述測試系統可整合入用以測試信號 路徑之任何電路。 根據本發明之若干額外實施例係有關RFIC,其中接收 器部分包含一同相位分支及一正交相位分支,但用於接收 39 201027100 器p刀-有個刀支之非同相位/正交相位架構亦屬可能。 於^據本發明之若干實施财,測試信號產生器及信 號處理裝置係整合於透過待測信號路徑彼此輕接之不同裝 置上例如域路徑部分也可為鱗鏈路或光連社。 於根據本發明之若干實施射,信號職為裝置:一部 分,其中該裝置已經包含經調變之鎖相迴路。因此最小化 用於實施該測試系統之額外努力。 根據本發明之若干實施例係有關可應用於電荷取樣接a sin x-\-b cos x = Figure 20 shows a flow chart of a method 2000 for testing a signal path in accordance with an embodiment of the present invention. First, a test signal generator is generated by the test signal generator, wherein the test signal generator includes a modulator and a phase locked loop. The phase locked loop of the test signal generator is configured to provide a test signal and couple the test signal to the signal path, wherein the test signal generator is configured to allow the phase of the test signal 36 201027100 Modulation. Subsequently, the test signal is coupled to the 2020 in-signal path, and the 2030 test signal is received by the signal processing device after passing through the signal path to be tested. Here, the signal processing device is configured to receive and process a test signal, wherein the signal path to be tested is extended by the phase locked loop of the test signal generator to the signal processing device. Subsequently, the test signal received by the signal processing device 2040 is evaluated, φ thus performing a comparison of the signal paths. Several embodiments in accordance with the present invention are directed to a method for testing a signal path in which a low pass filter is disposed. The low pass filter includes a cutoff 'frequency that is less than the fundamental frequency of the phase locked loop of the test signal generator. Thus, only the low frequency portion of the test signal reaches the signal processing device. For example, the non-linearity of the signal path can be detected via evaluation of the filtered test signal'. An additional embodiment in accordance with the present invention is directed to a φ method for testing a signal path, wherein the signal path includes a mixer and a low pass filter. The kiln is disposed in the signal processing direction of the signal path ' upstream of the low pass filter and configured to mix the test signal and the reference signal propagating along the signal path, and the mixed test signal is provided at the output. The low pass filter in turn contains a cutoff frequency that is less than the fundamental frequency of the phase locked loop of the test signal generator. The mixer mixes the test signal and the reference signal that have propagated along the signal path, wherein the reference signal corresponds to the original test signal provided by the phase locked loop of the test signal generator. The hybrid test signal is then filtered by the 2010 2010100 low pass filter and supplied to the signal processing device. By evaluating the mixed and filtered test signals, for example, the frequency dependence asymmetry of the detectable signal path. A number of embodiments in accordance with the present invention are directed to a method for testing a signal path, wherein the signal processing device includes a modulator and a phase locked loop, wherein the phase locked loop of the signal processing device is configured to provide a reference The signal, and the modulator of the signal processing device, are configured to allow phase modulation of the reference signal. In addition, the signal path packet-in-phase branch, a quadrature phase branch, a first in-phase/quadrature phase mixer, a second in-phase/quadrature phase mixer, a first low-pass filter, and A second low pass filter. Here, the first in-phase/quadrature phase mixer includes a same phase input terminal, a quadrature phase input terminal, an input terminal for a test signal, and an input terminal for a phase shift test signal, and is disposed on The signal path. The second in-phase/quadrature phase mixer includes an input of a reference signal and an input of a phase shift reference signal. The first low pass filter is disposed in the same phase branch and includes a cutoff frequency that is less than a fundamental frequency of the phase locked loop of the test signal generator. The second low pass filter is disposed in the quadrature phase branch and also includes a cutoff frequency that is less than a fundamental frequency of the phase locked loop of the test signal generator. The first in-phase/quadrature phase mixer is disposed on a signal path upstream of the second in-phase/quadrature phase mixer, and the first and second low-pass filters are disposed in the signal processing direction. Downstream of the phase/quadrature phase mixer. For testing the signal path, the signal is applied to the in-phase input and the quadrature-phase input of the first in-phase/quadrature phase 201027100-bit mixer, and the reference signal is applied to the second in-phase/quadrature phase mixer. And the test signal is coupled to the signal path. Subsequently, after passing the test path, the test signal is evaluated to perform the evaluation of the signal path. The evaluation of the signal path includes, for example, measurement of degree of non-ideality, non-linearity, frequency dependence asymmetry, phase difference, phase imbalance, gain difference, gain imbalance, phase mismatch, or gain mismatch. For example, such properties of the signal path may be from a test signal, a reference signal, a signal at the same phase input of the first in-phase/quadrature phase mixer, and/or a quadrature phase input of the first in-phase/quadrature phase mixer The difference in the signal of the end and the assessment. By phase modulation or phase change of the test signal and/or the reference signal, for example, a signal or a static signal may be generated at the output of the first low pass filter or the output of the second low pass filter or Minimum value by which the number of properties of the signal path such as degree of non-ideality, non-linearity, frequency dependence asymmetry, phase difference, phase imbalance, gain difference, gain imbalance, phase mismatch, or gain is not determined match. Here, for example, a static (time constant) signal is applied to the in-phase input and the quadrature phase input of the first in-phase/quadrature phase mixer. Several embodiments in accordance with the present invention relate to RFICs that include a transmitter portion and a receiver portion. However, the test system can be integrated into any circuit used to test the signal path. Several additional embodiments in accordance with the present invention are related to RFICs in which the receiver portion includes an in-phase branch and a quadrature phase branch, but is used to receive 39 201027100 p-knife - a non-inverting/quadrature phase architecture with a knife It is also possible. According to some implementations of the present invention, the test signal generator and the signal processing device are integrated on different devices that are lightly connected to each other through the signal path to be tested, for example, the domain path portion may also be a scale link or a light link. In accordance with several embodiments of the present invention, the signal is a device: a portion in which the device already includes a phase-locked loop that is modulated. This minimizes the extra effort required to implement the test system. Several embodiments in accordance with the present invention are applicable to charge sampling

收器之测試系統’其中電荷取樣接收器包含混合器與低通 遽波器之組合。 、於根據本發明之奸實施射,信號處理裝置包含一鎖 =迴路’其中該信號處理裝置之鎖相迴路之基頻係與測試 信號產生器之鎖相迴路之基頻相對應,具有公差土5%。 若無相位調變,則相位經調變之鎖相迴路之基頻係與鎖 相迴路之信號輸出頻率相對應。The test system of the receiver' wherein the charge sampling receiver comprises a combination of a mixer and a low pass chopper. In the invention according to the present invention, the signal processing device includes a lock = loop 'where the base frequency system of the phase locked loop of the signal processing device corresponds to the fundamental frequency of the phase locked loop of the test signal generator, and has a tolerance soil 5%. If there is no phase modulation, the fundamental frequency of the phase-modulated phase-locked loop corresponds to the signal output frequency of the phase-locked loop.

於根據本發明之若干實施例中,待剛信號路徑包含—同 相位分支及一正交相位分支。 於根據本發明之若干額外實施例中,信號波形諸如正弦 或餘弦係指示信號諸如測試信號或參考信號。但只意圖作 為可能的信號波形之實例。 於所述測試系統中,測試測試信號產生器之鎖相迴路 與信號處理裝置間之信號路徑。但如若干實施例指示,例 如右已知不含待測電路之信號路徑表現,則也可測試設置 於該信號路徑之電路。 40 201027100 於本案中,相同元件符號用於呈有 能性質之物件及功能單元。〃相_或類似的功In several embodiments in accordance with the invention, the signal path to be included includes an in-phase branch and a quadrature phase branch. In several additional embodiments in accordance with the invention, the signal waveform is, for example, a sinusoidal or cosine-based indicator signal such as a test signal or a reference signal. However, it is only intended as an example of a possible signal waveform. In the test system, the signal path between the phase locked loop of the test signal generator and the signal processing device is tested. However, as indicated by several embodiments, e.g., the right is known to be free of signal path representation of the circuit under test, the circuitry disposed on the signal path can also be tested. 40 201027100 In this case, the same component symbols are used for objects and functional units of the nature. Prime _ or similar work

特別,須注意視情況而定,本發明體系也可 ^實施可於餘贿魏上執行,特㈣具有可電子= =制信號之碟片或CD,該等信號可與可規劃電腦系統交 :用因而執行相對應之方法。大致上,如此本發明包含 ^有程式碼之電腦程式產品,該程式碼儲存於機器可讀取 载具上用於當該電腦程式產品於電腦上跑時執行本發明方 去。換言之,當該電腦程式產品於電腦上跑時本發明可實 現為具有程式碼用以執行該方法之_種電腦程式。 【圖式簡單說明】 第1圖為用以測試信號路徑之測試系統之方塊圖; 第2圖為RFIC之方塊圖; 第3圖為用以測試RFIC之信號路徑之已知測試系統之 方塊圖; 第4圖為具有顯著非理想之基於同相位/正交相位rfk 之方塊圖; 第5圖為已調變之ADPLL (ADpLL:^數位鎖相迴路) 之方塊圖; 第6圖為用於測定信號路徑之頻率相依性非對稱性之 用以測試信號路徑之測試系統之方塊圖; 第7圖為通過理想信號路徑後一測試信號之頻譜; 第8圖為通過具頻率相依性非對稱性之信號路徑後,一 測試信號之頻譜; 41 201027100 第9圖為具有用以補償時間延遲之裝置之用以測試信 號路徑之測試系統之方塊圖; 第10圖為用於測試信號路徑之非線性度之用以測試信 號路徑之測試系統之方塊圖; 第11圖為通過具有非線性度之信號路徑後,一測試信 號之頻譜; 第12圖為LINC發射器(LINC=使用非線性組件之線性 放大)之方塊圖; 第13圖為用於基於LINC之RFIC於用以測試信號路徑 之測試系統之方塊圖; 第14圖為極性調變發射器之方塊圖; 第15圖為用於基於極性之RFIC於用以測試信號路徑之 測試系統之方塊圖; 第16圖為用於基於同相位/正交相位之RFIC於用以測 試信號路徑之測試系統之方塊圖; 第17圖為具有回送測試配置之基於同相位/正交相位 RFIC之示意模型; 第18圖為用以測定兩個相位經調變之鎖相超路間之扭 斜之測試系統之示意模型說明; 第19圖為用以提供相等信號位準之裝置之電路圖;及 第2〇圖為用以測試一信號路徑之方法之流程圖。 【主要元件符號說明】 100··.測試系統 110…測試信號產生器 102...¼號路徑 120...Mod、調變器 42 201027100In particular, it should be noted that depending on the situation, the system of the present invention can also be implemented on a bribe, and (4) has a disc or CD that can be electronically == signals, which can be communicated with a planable computer system: The corresponding method is thus executed. In general, the invention thus comprises a computer program product having a program code stored on a machine readable carrier for performing the invention when the computer program product runs on a computer. In other words, the present invention can be implemented as a computer program having a program code for executing the method when the computer program product is run on a computer. [Simple diagram of the diagram] Figure 1 is a block diagram of the test system used to test the signal path; Figure 2 is a block diagram of the RFIC; Figure 3 is a block diagram of a known test system for testing the signal path of the RFIC. Figure 4 is a block diagram with significant non-ideal isophase/quadrature phase rfk; Figure 5 is a block diagram of the modulated ADPLL (ADpLL: ^ digital phase-locked loop); Figure 6 is for A block diagram of the test system used to test the signal path for determining the frequency dependence asymmetry of the signal path; Figure 7 is the spectrum of the test signal after passing the ideal signal path; Figure 8 is the asymmetry through the frequency dependence. After the signal path, the spectrum of a test signal; 41 201027100 Figure 9 is a block diagram of a test system for testing the signal path with a device to compensate for the time delay; Figure 10 is a non-linearity for testing the signal path A block diagram of the test system used to test the signal path; Figure 11 is the spectrum of a test signal after passing through a signal path with non-linearity; Figure 12 is a LINC transmitter (LINC = using a nonlinear line) Block diagram of linear amplification of components; Figure 13 is a block diagram of a test system for testing signal paths based on LINC-based RFICs; Figure 14 is a block diagram of polar modulation transmitters; Figure 15 is a diagram of A block diagram of a polarity-based RFIC for testing a test signal path; Figure 16 is a block diagram of an in-phase/quadrature-based RFIC for testing a signal path; Figure 17 A schematic model of an in-phase/quadrature-phase RFIC with a loopback test configuration; Figure 18 is a schematic model illustration of a test system for determining the skew between two phase-modulated phase-locked paths; A circuit diagram of a device for providing equal signal levels; and a second diagram is a flow chart of a method for testing a signal path. [Main component symbol description] 100··.Test system 110...test signal generator 102...1⁄4 path 120...Mod, modulator 42 201027100

13(X“PLL、鎖相迴路 140……信號處理裝置 200—RFIC、射頻積體電路 210.. .發射器 212···同相位分支 214…正交相位分支 216…LPF、低通濾波器 218.. .同相位/正交相位混合器 220.. .PLL、鎖相迴路 222…相移單元 224…PGA、可規劃增益放大器 226.. .PA、功率放大器 230.. .組合器 250.. .接收器 252.. .同相位分支 254.. .正交相位分支 256…低通濾波器 258.. .同相位/正交相位混合器 260.. .PLL、鎖相迴路 262…相移單元 264…PGA、可規劃增益放大器 266.. .LNA、低雜訊放大器 270.. .分裂 300…已知測試系統 310··.激勵1、函數產生器 320…激勵2、函數產生器 330.. .Att、衰減器 340…精密響應分析器1 350…精密響應分析器2 400.. .RFIC、射頻積體電路 410…發射器相位不匹配 420…發射器增益不匹配 430·.·接收器相位不匹配 440···接收器增益不匹配 500…已調變之ADPLL、已調變 之全數位鎖相迴路 502…REF、參考信號 510…相位累加器 520…TDC、時間至數位變換器 530.. .LPF、低通濾波器 540…DCO、經數位控制之振盈器 542…輸出信號 600…測試系統 602··.額外路徑 610—CUT、待測電路 620···混合|§、同相位/正交相 位混合器 630.. .LPF、低通濾波器 640··.檢測器 700…頻譜 702…頻率部分 704.. . DC電壓部分 43 201027100 710.. ·低通滤波器特性 720.. .基頻 730.··加倍基頻 800.. .頻譜 802…頻率部分 804…低頻頻率部分 900.. .測試系統 920…第二調變器 930·..第二鎖相迴路 1000…測試系統 1110…低頻頻率部分 1120··.頻率部分 1130···頻率部分 1200.. .LINC 發射器 1210·.·相位經調變之鎖相迴路 1220…相位經調變之鎖相迴路 1230.. .組合器 1240…可規劃增益放大器 1250…功率放大器 1300…測試系統 1310…調變器 1320…相位經調變之鎖相迴路 1400…極性調變發射器 141(X“PLL、鎖相迴路 1420…PGA、可規劃增益放大器 1430.. .PA '功率放大器 1500…測試系統13 (X "PLL, phase-locked loop 140 ... signal processing device 200 - RFIC, RF integrated circuit 210.. transmitter 212 · · · phase branch 214 ... quadrature phase branch 216 ... LPF, low-pass filter 218.. Isophase/quadrature phase mixer 220.. PLL, phase-locked loop 222... phase shifting unit 224...PGA, programmable gain amplifier 226.. PA, power amplifier 230.. combiner 250. . Receiver 252.. In-phase branch 254.. Orthogonal phase branch 256... Low pass filter 258.. In-phase/quadrature phase mixer 260.. PLL, phase-locked loop 262...phase shift Unit 264...PGA, programmable gain amplifier 266..LNA, low noise amplifier 270.. split 300...known test system 310·.1, function generator 320...excitation 2, function generator 330. .Att, attenuator 340...Precision response analyzer 1 350...Precision response analyzer 2 400.. .RFIC, RF integrated circuit 410...Transmitter phase mismatch 420...Transmitter gain mismatch 430·.·Receiver Phase mismatch 440··· Receiver gain mismatch 500... ADPLL modulated, fully modulated digital phase-locked loop 502 ... REF, reference signal 510... phase accumulator 520...TDC, time to digital converter 530.. LPF, low pass filter 540...DCO, digitally controlled vibrator 542...output signal 600...test system 602· Additional path 610 - CUT, circuit under test 620 · Hybrid | §, in-phase / quadrature phase mixer 630.. LPF, low-pass filter 640 · · detector 700 ... spectrum 702 ... frequency part 704.. DC voltage section 43 201027100 710.. Low-pass filter characteristic 720.. Fundamental frequency 730.··Double fundamental frequency 800.. Spectrum 802... Frequency part 804... Low frequency part 900.. Test System 920...second modulator 930·.. second phase locked loop 1000...test system 1110...low frequency portion 1120··.frequency portion 1130···frequency portion 1200.. LINC transmitter 1210·.·phase Modulated phase-locked loop 1220... phase-modulated phase-locked loop 1230.. combiner 1240... programmable gain amplifier 1250... power amplifier 1300... test system 1310... modulator 1320... phase-modulated lock Phase loop 1400...polar modulation transmitter 141 (X "PLL, phase-locked loop 1420...PGA , can plan the gain amplifier 1430.. .PA 'power amplifier 1500... test system

1600.. .測試系統 1610·.·輸入信號A 1620…輸入信號B 1700…基於同相位/正交相位 之RFIC之示意模型 1702…增益參數、回送增益g 1704…增益參數γ 1710.. .組合器 1720…輸出端 1730…輸出端 1740.··輸出端 1750.. .發射相位不平衡、扭斜 1760…接收器相位不平衡ε、扭斜 1770…增益差、增益不平衡g 1780.. .增益差、增益不平衡h 1800···方法模型 1810…第一相位經調變之鎖相_ 1820…第4目位經調變之鎖相迴路 1830.. .混合器、同相位/正交相 位混合器 1840…低通渡波器 1850…扭斜α、相位差α 1900…裝置電路圖 1910···開關 2000.. .方法 2010-2040…步驟1600.. Test system 1610·. Input signal A 1620... Input signal B 1700... Schematic model 1702 of RFIC based on in-phase/quadrature phase... Gain parameter, loopback gain g 1704... Gain parameter γ 1710.. combination 1720...output terminal 1730...output terminal 1740.··output terminal 1750.. transmit phase imbalance, skew 1760...receiver phase imbalance ε, skew 1770...gain difference, gain imbalance g 1780.. . Gain difference, gain imbalance h 1800···Method model 1810... First phase modulated phase lock _ 1820... 4th bit modulated phase-locked loop 1830.. Mixer, in-phase/orthogonal Phase Mixer 1840... Low Pass Ferrule 1850... Skew α, Phase Difference α 1900... Device Circuit Diagram 1910···Switch 2000.. . Method 2010-2040...Step

Claims (1)

201027100 七、申請專利範圍: 1. 一種用以測試一信號路徑之測試系統,包含: 一測試信號產生器其係包含一調變器及一鎖相迴 路,其中該測試信號產生器之該鎖相迴路係配置來提供 一測試信號且將該測試信號耦接入該待測信號路徑,及 其中該測試信號產生器之調變器係耦接至該測試信號 產生器之鎖相迴路,且係配置來允許該測試信號之相位 調變;及 一信號處理裝置其係配置來接收與處理該測試信 號,其中該待測信號路徑係由該測試信號產生器之該鎖 - 相迴路延伸至該信號處理裝置。 - 2.如申請專利範圍第1項之用以測試一信號路徑之測試系 統,其中該信號處理裝置係配置來基於所接收之測試信 號而執行信號路徑的評估。 3.如申請專利範圍第1或2項之用以測試一信號路徑之測 ©試系統,其中該信號路徑包括一低通濾波器,其中該低 通濾波器包含比該測試信號產生器之該鎖相迴路之基 頻更小的截止頻率。 4.如申請專利範圍第1至3項中任一項之用以測試一信號 路徑之測試系統,其中該信號路徑包含一混合器,其中 該混合器係配置來將該測試信號與一參考信號混合。 5.如申請專利範圍第4項之用以測試一信號路徑之測試系 統,其中該信號路徑包含一同相位分支及一正交相位分 支及該混合器為一同相位/正交相位混合器。 45 201027100 6. 如申請專利範圍第4或5項之用以測試一信號路徑之測 試系統,其中該信號處理裝置包含一調變器及一鎖相迴 路,其中該信號處理裝置之該鎖相迴路係配置來於該混 合器之一輸入端提供一參考信號,及其中該信號處理裝 置之該調變器係配置來允許該信號處理裝置之鎖相迴 路之相位調變。 7. 如申請專利範圍第5或6項之用以測試一信號路徑之測 試系統,其中該信號處理裝置包含一組合器,其中該組 合器係配置來將於該同相位分支中之一信號重疊於該 正交相位分支中之一信號及輸出該重疊之信號。 8. 如申請專利範圍第5至7項中任一項之用以測試一信號 路徑之測試系統,其中該信號路徑包含一第二同相位/ 正交相位混合器,其係設置於該第一同相位/正交相位 混合器於該信號處理方向上游的信號路徑中,及其包含 一同相位輸入端及一正交相位輸入端且係配置來混合 該測試信號與存在於該同相位輸入端之一信號,以及配 置來混合該測試信號與存在於該正交相位輸入端之一 信號。 9. 如申請專利範圍第1至7項中任一項之用以測試一信號 路徑之測試系統,包含一額外相位經調變之鎖相迴路及 一組合器,其中該額外相位經調變之鎖相迴路係配置來 提供一額外測試信號,及其中該組合器係設置於該信號 路徑且係配置來重疊該測試信號與該額外測試信號以 及輸出重疊之信號。 201027100 10. 如申請專利範圍第1至7項中任一項之用以測試一信號 路徑之測試系統,其中該信號路徑包含配置來允許該測 試信號之調幅之一放大器。 11. 一種射頻積體電路(RFIC),具有如申請專利範圍第1至 10項中任一項之測試系統。 12. —種用以測試一信號路徑之方法,包含: 藉一測試信號產生器來產生一測試信號,其中該測 試信號產生器包含一調變器及一鎖相迴路,其中該測試 信號產生器之該鎖相迴路係配置來提供一測試信號且 將該測試信號耦接入該信號路徑,及其中該測試信號產 生器之該調變器係配置來允許該測試信號之相位調變; 將該測試信號耦接入該信號路徑; 藉一信號處理裝置來接收該測試信號,其中該信號 處理裝置係配置來接收與處理該測試信號,及其中該待 測信號路徑係由該測試信號產生器之該鎖相迴路延伸 至該信號處理裝置; 評估由該信號處理裝置所接收之該測試信號,因而 執行該信號路徑之評比。 13. 如申請專利範圍第12項之用以測試一信號路徑之方 法,其中該測試信號係藉設置於該信號路徑中之一低通 濾波器濾波,及該已濾波之測試信號之評估係執行用來 評比該信號路徑。 14. 如申請專利範圍第13項之用以測試一信號路徑之方 法,其中設置於該低通濾波器之於該信號處理方向上游 47 201027100 的信號路徑中之一混合器混合該測試信號與一參考信 號,其中該已混合之測試信號係藉該低通濾波器濾波, 及其中該已混合且已濾波之測試信號係藉該信號處理 裝置評估來執行該信號路徑之評比。 15.如申請專利範圍第12項之用以測試一信號路徑之方 法,其中該信號處理裝置包含一調變器及一鎖相迴路, 其中該信號處理裝置之該鎖相迴路係配置來提供一參 考信號,及其中該信號處理裝置之該調變器係配置來允許 該參考信號之相位調變,及其中該待測信號路徑包含: 一同相位分支; 一正交相位分支; 一第一同相位/正交相位混合器其包Ί —同相位輸 入端、一正交相位輸入端、一用於測試信號之輸入端及 一用於相移測試信號之輸入端; 一第二同相位/正交相位混合器其包含用於該參考 信號之一輸入端及用於相移參考信號之一輸入端; 設置於該同相位分支之一第一低通濾波器及其包 含小於該測試信號產生器之該鎖相迴路之基頻之截止 頻率;及 設置於該正交相位分支之一第二低通濾波器,及其 包含小於該測試信號產生器之鎖相迴路之基頻之截止 頻率,其中該第一同相位/正交相位混合器係設置於該 第二同相位/正交相位混合器上游之信號路徑,及該第 一低通濾波器及該第二低通濾波器係設置於該第二同 201027100 相位/正交相位混合器於該信號處理方向之下游; 該方法進一步包含: 施加一第一輸入信號至該第一同相位/正交相位 混合器之該同相位輸入端; 施加一第二輸入信號至該第一同相位/正交相位 混合器之正交相位輸入端;以及 施加該參考信號至該第二同相位/正交相位混合器。 16. 如申請專利範圍第15項之用以測試一信號路徑之方 法,其中於該同相位輸入端之該第一輸入信號及於該正 交相位輸入端之該第二輸入信號為靜態信號。 17. 如申請專利範圍第15或16項之用以測試一信號路徑之 方法,其中該測試信號、參考信號、於該第一同相位/ 正交相位混合器之該同相位輸入端之第一輸入信號、於 該第一同相位/正交相位混合器之該同相位輸入端之第 二輸入信號之變化或此等信號之變化之組合係用來區 別與評估該信號路徑之不同性質。 18. 如申請專利範圍第15至17項中任一項之用以測試一信 號路徑之方法,其中該測試信號之相位變化或該參考信 號之相位變化產生於該第一低通濾波器之輸出端或於 該第二低通濾波器之輸出端之一信號或一靜態信號之最 大值或最小值藉此允許測定該信號路徑之性質之數量。 19. 如申請專利範圍第15至18項中任一項之用以測試一信 號路徑之方法,其中於該測試信號通過該信號路徑後重 複執行耦接該測試信號、施加二輸入信號、施加該參考 49 201027100 信號及評估該測試信號等步驟係以耦接信號及施加信 號之不同變化進行俾便測定該信號路徑之多個不同性 質用以評估該信號路徑。 20. —種具有一程式碼之電腦程式,當該電腦程式於一電腦 或一微控制器上跑時,該程式碼係用以執行如申請專利 範圍第12至19項中任一項之方法。201027100 VII. Patent application scope: 1. A test system for testing a signal path, comprising: a test signal generator comprising a modulator and a phase locked loop, wherein the phase lock of the test signal generator The loop is configured to provide a test signal and couple the test signal to the signal path to be tested, and the modulator of the test signal generator is coupled to the phase locked loop of the test signal generator, and is configured To allow phase modulation of the test signal; and a signal processing device configured to receive and process the test signal, wherein the signal path to be tested is extended by the lock-phase loop of the test signal generator to the signal processing Device. - 2. A test system for testing a signal path as claimed in claim 1 wherein the signal processing means is configured to perform an evaluation of the signal path based on the received test signal. 3. The test system for testing a signal path according to claim 1 or 2, wherein the signal path comprises a low pass filter, wherein the low pass filter comprises the test signal generator The cutoff frequency of the base frequency of the phase-locked loop is smaller. 4. The test system for testing a signal path according to any one of claims 1 to 3, wherein the signal path comprises a mixer, wherein the mixer is configured to use the test signal with a reference signal mixing. 5. A test system for testing a signal path as in claim 4, wherein the signal path comprises a phase branch and a quadrature phase branch and the mixer is a phase/quadrature phase mixer. 45 201027100 6. The test system for testing a signal path according to claim 4 or 5, wherein the signal processing device comprises a modulator and a phase locked loop, wherein the phase locked loop of the signal processing device A configuration is provided to provide a reference signal to an input of the mixer, and wherein the modulator of the signal processing device is configured to allow phase modulation of a phase locked loop of the signal processing device. 7. The test system for testing a signal path as claimed in claim 5 or 6, wherein the signal processing device comprises a combiner, wherein the combiner is configured to overlap one of the signals in the in-phase branch One of the orthogonal phase branches signals and outputs the overlapped signal. 8. The test system for testing a signal path according to any one of claims 5 to 7, wherein the signal path comprises a second in-phase/quadrature phase mixer disposed at the first The in-phase/quadrature phase mixer is in a signal path upstream of the signal processing direction, and includes a syn-phase input terminal and a quadrature-phase input terminal configured to mix the test signal and exist at the in-phase input terminal a signal, and configured to mix the test signal with a signal present at the quadrature phase input. 9. The test system for testing a signal path according to any one of claims 1 to 7, comprising an additional phase modulated phase-locked loop and a combiner, wherein the additional phase is modulated The phase locked loop is configured to provide an additional test signal, and wherein the combiner is disposed in the signal path and configured to overlap the test signal and the additional test signal and the output overlap signal. A test system for testing a signal path, as in any one of claims 1 to 7, wherein the signal path includes an amplifier configured to allow amplitude modulation of the test signal. A radio frequency integrated circuit (RFIC) having a test system according to any one of claims 1 to 10. 12. A method for testing a signal path, comprising: generating a test signal by a test signal generator, wherein the test signal generator includes a modulator and a phase locked loop, wherein the test signal generator The phase locked loop is configured to provide a test signal and couple the test signal to the signal path, and wherein the modulator of the test signal generator is configured to allow phase modulation of the test signal; The test signal is coupled to the signal path; the signal processing device is configured to receive the test signal, wherein the signal processing device is configured to receive and process the test signal, and wherein the signal path to be tested is determined by the test signal generator The phase locked loop extends to the signal processing device; the test signal received by the signal processing device is evaluated, and thus the evaluation of the signal path is performed. 13. The method for testing a signal path according to claim 12, wherein the test signal is filtered by a low pass filter disposed in the signal path, and the evaluation of the filtered test signal is performed. Used to evaluate the signal path. 14. The method for testing a signal path according to claim 13 wherein one of the signal paths disposed in the signal path upstream of the signal processing direction 47 201027100 mixes the test signal with a test signal a reference signal, wherein the mixed test signal is filtered by the low pass filter, and wherein the mixed and filtered test signal is evaluated by the signal processing device to perform the evaluation of the signal path. 15. The method for testing a signal path according to claim 12, wherein the signal processing device comprises a modulator and a phase locked loop, wherein the phase locked loop of the signal processing device is configured to provide a a reference signal, and wherein the modulator of the signal processing device is configured to allow phase modulation of the reference signal, and wherein the signal path to be tested comprises: a phase branch; a quadrature phase branch; a first in phase / Quadrature phase mixer with its package - the same phase input, a quadrature phase input, an input for the test signal and an input for the phase shift test signal; a second in phase / orthogonal a phase mixer comprising an input for one of the reference signals and an input for a phase shift reference signal; a first low pass filter disposed in the one of the in-phase branches and comprising less than the test signal generator a cutoff frequency of a fundamental frequency of the phase locked loop; and a second low pass filter disposed in the quadrature phase branch, and a base of the phase locked loop smaller than the test signal generator a cutoff frequency, wherein the first in-phase/quadrature phase mixer is disposed in a signal path upstream of the second in-phase/quadrature phase mixer, and the first low pass filter and the second low pass filter The device is disposed downstream of the second and 201027100 phase/quadrature phase mixers in the signal processing direction; the method further comprising: applying a first input signal to the first in-phase/quadrature phase mixer a phase input terminal; applying a second input signal to the quadrature phase input of the first in-phase/quadrature phase mixer; and applying the reference signal to the second in-phase/quadrature phase mixer. 16. A method for testing a signal path as in claim 15 wherein the first input signal at the in-phase input and the second input signal at the quadrature phase input are static signals. 17. The method for testing a signal path according to claim 15 or 16, wherein the test signal, the reference signal, and the first phase input of the first in-phase/quadraphase phase mixer are first The combination of the input signal, the change in the second input signal at the non-inverting input of the first in-phase/quadrature phase mixer, or the change in the signals is used to distinguish and evaluate different properties of the signal path. 18. The method for testing a signal path according to any one of claims 15 to 17, wherein a phase change of the test signal or a phase change of the reference signal is generated from an output of the first low pass filter. The maximum or minimum value of the signal or a static signal at one of the outputs of the second low pass filter or the like thereby allows the number of properties of the signal path to be determined. 19. The method for testing a signal path according to any one of claims 15 to 18, wherein the test signal is repeatedly coupled to the test signal, the two input signals are applied, and the test signal is applied after the test signal passes through the signal path. Reference 49 201027100 Signals and evaluation of the test signal and the like are performed by measuring different characteristics of the signal path and the different changes of the applied signal to evaluate the signal path. 20. A computer program having a code for executing a method as claimed in any one of claims 12 to 19 when the computer program is run on a computer or a microcontroller . ❿ 50❿ 50
TW098130924A 2008-09-17 2009-09-14 Test system for testing a signal path and method for testing a signal path TWI417561B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/007777 WO2010031412A1 (en) 2008-09-17 2008-09-17 Test system for testing a signal path and method for testing a signal path

Publications (2)

Publication Number Publication Date
TW201027100A true TW201027100A (en) 2010-07-16
TWI417561B TWI417561B (en) 2013-12-01

Family

ID=40886099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098130924A TWI417561B (en) 2008-09-17 2009-09-14 Test system for testing a signal path and method for testing a signal path

Country Status (2)

Country Link
TW (1) TWI417561B (en)
WO (1) WO2010031412A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594464A (en) * 2011-01-07 2012-07-18 鸿富锦精密工业(深圳)有限公司 Wireless network system and method for testing electronic device
US9866336B2 (en) * 2015-06-17 2018-01-09 Google Llc Phased array antenna self-calibration
TWI632386B (en) * 2017-12-22 2018-08-11 和碩聯合科技股份有限公司 Test signal processing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI85083C (en) * 1990-05-25 1992-02-25 Telenokia Oy Device for forming a radio test loop in a transmitter receiver
DE4333391C1 (en) * 1993-09-30 1995-02-09 Siemens Ag Test system for a regenerator device
DE4442531A1 (en) * 1994-11-30 1996-06-05 Alcatel Mobile Comm Deutsch Method for testing a radio device
US5793822A (en) * 1995-10-16 1998-08-11 Symbios, Inc. Bist jitter tolerance measurement technique
KR100294021B1 (en) * 1998-09-08 2001-07-12 윤종용 Memory module test device
DE102005013497B4 (en) * 2005-03-23 2007-07-12 Infineon Technologies Ag Controllable frequency divider circuit, transceiver with controllable frequency divider circuit and method for performing a loop-back test
US20080205571A1 (en) * 2007-02-27 2008-08-28 Khurram Muhammad System and Method for Time Aligning Signals in Transmitters

Also Published As

Publication number Publication date
WO2010031412A1 (en) 2010-03-25
TWI417561B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
US8224269B2 (en) Vector modulator calibration system
EP1620940B1 (en) Quadrature modulator and calibration method
CN102857311B (en) For producing the device of the vectorial broadband RF signal of correction
US7813444B2 (en) Measurement method and arrangement for amplitude and phase synchronization in a polar transmitter
US20060235638A1 (en) Method and an apparatus for measuring high-frequency intermodulation products
TW201125321A (en) Apparatus comprising a recursive delayer and method for measuring a phase noise
WO2007038143A3 (en) Method and apparatus to measure differential phase and frequency modulation distortions for audio equipment
JP2007206053A (en) Frequency synthesizer
TW201027100A (en) Test system for testing a signal path and method for testing a signal path
US11372035B2 (en) Measurement system and method for matching and/or transmission measurements
US7505141B2 (en) Interferometric apparatus for producing an output signal characteristic of phase and/or amplitude noise of a device
RU2377591C1 (en) Method of certification of amplitude-phase error of devices for measurement of complex coefficients of transmitting and reflecting of four-pole shf
AU2007289139B2 (en) Automated interferometric noise measurement
JP5776495B2 (en) Gain measuring circuit, gain measuring method and communication apparatus
Watson et al. Frequency downconversion and phase noise in MIT
JP3647756B2 (en) Semiconductor integrated circuit
Barkley Two-tone IMD measurement techniques
US9608743B2 (en) Methods and devices for determining intermodulation distortions
KR20130056395A (en) I/q imbalance measurnng apparatus and method for direct ub-conversion system
US8060045B2 (en) Method for compensating the non-linear distortions of high-frequency signals and device for carrying out said method
EP1367402A1 (en) Method and arrangement for phase measurement of a modulated RF signal
Webster et al. Novel BiST methods for parametric test in wireless transceivers
US11796635B2 (en) Radar transceiver
JP2005128014A (en) Tracking generator and test signal generation method
JP2014163941A (en) System using local oscillator as calibration signal source