TW201024739A - Test arrangement, pogo-pin and method for testing a device under test - Google Patents

Test arrangement, pogo-pin and method for testing a device under test Download PDF

Info

Publication number
TW201024739A
TW201024739A TW098136658A TW98136658A TW201024739A TW 201024739 A TW201024739 A TW 201024739A TW 098136658 A TW098136658 A TW 098136658A TW 98136658 A TW98136658 A TW 98136658A TW 201024739 A TW201024739 A TW 201024739A
Authority
TW
Taiwan
Prior art keywords
test
impedance
spring
under test
matching circuit
Prior art date
Application number
TW098136658A
Other languages
Chinese (zh)
Other versions
TWI414791B (en
Inventor
Bernd Laquai
Original Assignee
Verigy Pte Ltd Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verigy Pte Ltd Singapore filed Critical Verigy Pte Ltd Singapore
Publication of TW201024739A publication Critical patent/TW201024739A/en
Application granted granted Critical
Publication of TWI414791B publication Critical patent/TWI414791B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56016Apparatus features
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06766Input circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C2029/5602Interface to device under test
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2421Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using coil springs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

A test arrangement comprises an interface for a device under test, the interface comprising an impedance matching circuit comprising a resistance (R) and an inductance (L) connected in parallel.

Description

201024739 六、發明說明: 【明所屬々貝】 本發明之實施例有關於一配置裝置、一彈簧銷針,及 一用以測試受測元件之方法。 在晶片測試技術的設置狀態中,一受測元件(DUT)之輪 入/銷針(pi η)透過測試器之測試頭之銷針連接到測試電 φ 路。有時,使用受測元件特定電路板將信號由受測元件路 由至測試頭之銷針或由測試頭之銷針路由至受測元件。進 - 一步’多個受測元件(DUT)的對應的輸入可被連接到測試頭 ; 的一共用的銷針。所有的這些配置裝置會帶來測試設計中 的問題,因為由一個阻抗域到另一阻抗域的傳輸會發生反 射,這個問題在測試信號資料速率較高的情況下會變得更 加嚴重。這些反射接著會阻礙可靠測試的性能。 【發^明内容^】 φ 依據本發明之一實施例,係特地提出一種測試配置裝 置,其包含:用於一受測元件的一介面,該介面包含一阻 抗匹配電路,該阻抗匹配電路包含並聯的一電阻(r)及一電 感(L)。 圖式簡單說明 本發明可以參考附圖進行說明: 第1圖顯示了一光束圖,圖中光被-光學材才斗反射或通 過該光學材料,視該光學材料的一光學抗反射塗層而定, 以說明下文所述本發明之該等實施例之基礎的主要想法其 3 201024739 中之一; 第2a圖顯示了第1圖之情景的一示意圖’即光傳輸過〆 具有與周圍空氣的反射指數不同的反射指數的光學介質; 第2b圖根據第2a圖所示的該光學配置裝置,顯示連换 到一受測元件的一電傳輸線的一示意圖,該受測元件具有 一與該傳輸線的阻抗不同的阻抗; 第3a圖顯示了一受測元件之輸入阻抗的一等效電路 圖’包括一電阻性的“内置於晶片之終端,’及一電容性的輸 入電容; 第3b圖顯示了一表示第3a圖中的輸入阻抗的奈奎斯特 Ε| · 園, 第4a圖顯示一受測元件的一輸入阻抗的一等效電路 圖’該輸入阻抗包含具有説明性的具體電阻及電感量值的 一電阻性内置於晶片之終端及一閘極以及一ESD(靜電放電) 電容; 第41)圖顯示了說明第4a圖中的輸入阻抗的一奈奎斯特 園, 第5圖說明性地顯示了一GDDR5記憶體的輸入阻抗的 一 TDR(時域反射)圖; 第6圖依據一比較實施例顯示一電路彈簧銷針之截面 圖, 第7a圖顯示另一對比實施例的彈簧銷針的内部構件及 用於將内部構件和外部套筒相互分開處於鬆開狀態的彈簧 之俯視圖; 201024739 第7b圖顯示第7a圖中處於壓縮狀態之一配置裝置的俯 視圖, 第8圖顯示第7a圖及第7b圖所示彈簧銷針的一外部套 筒之一俯視圖; 第9圖顯示了透過第7a圖到第8圖中的彈簧銷針的一短 路的受測元件(DUT)的一輸入銷針處量測得到的一時域反 射(TDR)圖; 第10圖顯示一直方圖,該直方圖說明了使用第7a圖至 第8圖所示之彈簧銷針的一彈簧銷針量測的可重複性; 第11圖顯示了一TDR圖,該TDR圖由用於量測一受測 元件(DUT)的比較測試配置裝置量測得到; 第12圖顯示了在一用於量測一阻抗失配的受測元件之 測試配置裝置中的一TDR接收器處所接收的一信號的眼 圖, 第13a圖顯示一 SMA(超小A型(sub-miniature-A))配接 器纜線以一 ODT負載仿真為終端之示意性截面圖; 第13b圖顯示了如第13a圖所示的以由該内置於晶片之 終端(ODT)負載終端為終端的該SMA配接器纜線的一等效 電路圖; 第14圖顯示了以如第13a圖所示的以該ODT負載終端 作為終端的該SMA配接器纜線的一輸入阻抗的一極點圖; 第15圖顯示了一無元件加載的菊鏈測試配置裝置測得 的一 TDR圖; 第16圖顯示了使用已於所有位點加載DDR2元件的菊 5 201024739 鏈測試配置裝置測得的一 TDR圖; 第17圖顯示了用於將一測試銷針連接至兩個受測元件 上的一分支的電路圖,該分支包含—共用線及透過一分支 節點連接的兩支線; 第18圖顯示了如第π圖所示的該分支的一電路圖,其 中該等分支線的阻抗及該等DUT的輸入阻抗為特定值; 第19圖顯示了-如第17圖所示的習知的分支電路圖, 其中指出了發生的反射; 第20a圖顯示了用於在一共用測試通道中量測dut的 菊鏈測試配置裝置之一電路圖; 第20b圖顯示了使用第2〇項所示測試配置裝置進行量 測得到的一TDR圖; 第圖顯示了施加於一菊鏈配置裝置的測試信號之 一階躍響應時序圖; 第2lb圖顯示了如第21am & 丨弟21a圖所示的該測試信號的一眼 圖; 第22a圖顯示了一傳輸通過如第&圖所示的光學介質 當該光學介質包含由抗反㈣層材料製成的—光學薄膜時 光的波圖; 第22b圖顯示了與第22a圖類似的一信號圖,依據本發 明之一實關,該㈣圖為第電傳輸線並具有一連 接在該傳輸線及該終端阻抗之間的抗反射電路(阻抗匹配 電路); 第23a圖依據本發明之—實施例,顯示了—測試配置裝 201024739 置之一示意圖; 第23b圖依據本發明之另一實施例,顯示了一測試配置 裝置之一示意圖; 第23c圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖; 第23d圖顯示了依據本發明之一實施例的一測試配置 裝置的示意圖,該測試配置裝置包含一裝置測試器、一測 試介面及用於多數個受測元件的多數個介面; ® 第2 3 e圖顯示了說明如第2 3 a圖所示的測試配置裝置的 輸入阻抗的理論上的一奈奎斯特圖; 第24a圖顯示了對應於第4a圖所示的GDDR5記憶體元 件的說明性的例子之一測試配置裝置的等效電路圖,具有 一依據本發明之一實施例,連接在該傳輸線及受測元件之 間的阻抗匹配電路; 第2 4 b圖顯示了如第2 4 a圖所示的該測試配置裝置的一 理論上的奈奎斯特圖; 參 第25圖顯示了使用如第24a圖所示的該測試配置裝置 量測的一理論上的TDR圖; 第26圖顯示如第24 a圖所示的該測試配置裝置的受測 元件處的電壓與在第4a圖的情況下生成的該受測元件的輸 入阻抗處的電壓相比較的一階躍響應時序圖; 第2 7圖顯示了依據本發明之一實施例的一彈簧銷針的 一示意性的截面圖; 第2 8圖顯示了依據本發明之另一實施例的一彈簧銷針 7 201024739 之一示意性的截面圖; 第29a圖顯示了依據本發明之一實施例的一彈簧銷針 的一空間視圖; 第2 9 b圖顯示了依據本發明之另一實施例的一彈簧銷 針的一空間視圖; 第29c圖顯示了依據本發明之一實施例的一測試配置 裝置的一俯視圖; 第30圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖,該測試配置裝置包含一阻抗匹配電 路、一TDR發送器及一TDR接收器; 第31圖顯示了使用如第3 0圖所示的該測試配置裝置量 測的一TDR圖; 第32圖依據本發明之一實施例,顯示了 一測試配置裝 置的一等效電路圖,該測試配置裝置包含一阻抗匹配電 路、一TDR發送器、一微帶線及一量測探針; 第3 3圖顯示了如第3 2圖所示的該測試配置裝置的TD R 接收器接收的一信號的一眼圖; 第34a圖依據本發明之一實施例,顯示了 一測試配置裝 置之一示意性截面圖,該測試配置裝置包含一SMA配接器 纜線,其以一ODT負載仿真及一阻抗匹配電路的串聯作為 終端; 第34b圖顯示了如第34a圖所示的該測試配置裝置之一 等效電路圖; 第35圖顯示了如第34a圖所示的該測試配置裝置的一 201024739 反射係數量測的一史密斯圖; 第36圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖,該測試配置裝置包含兩個阻抗匹配電 路,每一個阻抗匹配電路與一受測元件、一長度失配的Y-分支纜線、一TDR發送器及一量測探針相關聯; 第3 7圖顯示了使用如第3 6圖所示的該測試配置裝置測 得的一信號圖; 第38圖依據本發明之一實施例,顯示了 一測試配置裝 ® 置之一等效電路圖,該測試配置裝置包含兩個阻抗匹配電 路,每一個阻抗匹配電路與一受測元件、一長度失配的Y-分支纜線、一測試信號發送器及一測試信號接收器相關聯; % 第3 9圖顯示了使用如第3 8圖所示的該測試配置裝置測 得的一眼圖; 第40圖依據本發明之一實施例,顯示了 一測試配置裝 置的電路圖,該測試配置裝置包含如第17圖所示的該分 支,及連接在各自的輸出線和該受測元件的各自的阻抗之 間的阻抗匹配電路; 第41圖依據本發明之一實施例,顯示了 一測試配置裝 置的等效電路圖,該測試配置裝置包含兩個受測元件; 第42圖顯示了如第41圖所示的該測試配置裝置的模擬 的一第一輸入信號的一模擬的眼圖; 第43圖依據本發明之一實施例,顯示了 一測試配置裝 置的等效電路圖,該測試配置裝置包含四個受測元件; 第44圖顯示了如第43圖所示的一測試配置裝置的一模 9 201024739 擬的四個輸入信號的一信號圖; 第45圖顯示了如第44圖所一 不的該測試配置裝置的模擬 的第一輸入信號的一眼圖; 第46圖顯示了一測試配置 %罝裝置之一示意圖,該測試配 置裝置包含一阻抗匹配電路, 叫該阻抗匹配電路透過一第一 傳輸線耗接到一第一受測元件 1千且透過一第二傳輸線耦接到 :第二受測元件,該第1輪線具有比—測試信號的載波201024739 VI. Description of the Invention: [Brief of the present invention] Embodiments of the present invention relate to a configuration device, a spring pin, and a method for testing a device under test. In the set state of the wafer test technique, the wheel/pin (pi η) of a device under test (DUT) is connected to the test circuit by a pin of the test head of the tester. Sometimes, the signal is transmitted from the device under test to the pin of the test head or the pin of the test head to the device under test using the device-specific board under test. The corresponding input of the one-step multiple DUTs can be connected to a common pin of the test head; All of these configuration devices introduce problems in the test design because the transmission from one impedance domain to the other is reflected, which becomes more severe at higher test signal rates. These reflections then hinder the performance of reliable testing. [Description of Contents] φ According to an embodiment of the present invention, a test configuration apparatus is specifically provided, comprising: an interface for a device under test, the interface comprising an impedance matching circuit, the impedance matching circuit comprising A resistor (r) and an inductor (L) are connected in parallel. BRIEF DESCRIPTION OF THE DRAWINGS The invention may be described with reference to the accompanying drawings: Figure 1 shows a beam diagram in which light is reflected by or through an optical material, depending on an optical anti-reflective coating of the optical material. The main idea of the basis of the embodiments of the invention described below is one of 3 201024739; Figure 2a shows a schematic view of the scenario of Figure 1 'that the light is transmitted through the raft with ambient air An optical medium having a different index of reflection index; FIG. 2b is a schematic diagram showing an electrical transmission line connected to a device under test according to the optical arrangement device shown in FIG. 2a, the device under test having a transmission line The impedance of the impedance is different; Figure 3a shows an equivalent circuit diagram of the input impedance of a device under test' including a resistive "terminal built into the chip," and a capacitive input capacitor; Figure 3b shows One represents the Nyquist of the input impedance in Figure 3a. · Figure 4a shows an equivalent circuit diagram of an input impedance of a device under test. The input impedance is illustrative. A specific resistance and inductance value is built into the terminal of the wafer and a gate and an ESD (electrostatic discharge) capacitor; Figure 41) shows a Nyquist field illustrating the input impedance in Figure 4a. Figure 5 is a diagram showing a TDR (time domain reflection) of the input impedance of a GDDR5 memory; Figure 6 shows a cross-sectional view of a circuit spring pin according to a comparative embodiment, and Figure 7a shows another comparison. A top view of the inner member of the spring pin of the embodiment and a spring for separating the inner member and the outer sleeve from each other; 201024739 Fig. 7b shows a plan view of a device in a state of compression in Fig. 7a, Figure 8 shows a top view of an outer sleeve of the spring pin shown in Figures 7a and 7b; Figure 9 shows a short-circuited test element through the spring pin of Figures 7a through 8 ( A time domain reflection (TDR) map measured at an input pin of the DUT); FIG. 10 shows a histogram illustrating a spring using the spring pin shown in FIGS. 7a to 8 Repeatability of pin measurement; 11th A TDR map is shown, which is measured by a comparative test configuration device for measuring a DUT; Figure 12 shows a device under test for measuring an impedance mismatch. Testing the eye diagram of a signal received at a TDR receiver in the configuration device, Figure 13a shows an SMA (sub-miniature-A) adapter cable terminated by an ODT load simulation Schematic cross-sectional view; Figure 13b shows an equivalent circuit diagram of the SMA adapter cable terminated by the end-of-wafer terminal (ODT) load terminal as shown in Figure 13a; Figure 14 shows A pole diagram of an input impedance of the SMA adapter cable with the ODT load terminal as the terminal as shown in Fig. 13a; Figure 15 shows a componentless daisy chain test configuration device measured A TDR diagram; Figure 16 shows a TDR diagram measured using the Chrysanthemum 5 201024739 chain test configuration device that has loaded DDR2 components at all locations; Figure 17 shows the connection of one test pin to two a circuit diagram of a branch on the component under test, the branch containing - a shared line And two branches connected through a branch node; Figure 18 shows a circuit diagram of the branch as shown in Figure π, wherein the impedance of the branch lines and the input impedance of the DUTs are specific values; Figure 19 shows - a conventional branch circuit diagram as shown in Figure 17, which indicates the reflection that occurs; Figure 20a shows a circuit diagram of a daisy chain test configuration device for measuring dut in a shared test channel; The figure shows a TDR diagram measured using the test configuration device shown in item 2; the figure shows a step response timing diagram of the test signal applied to a daisy chain configuration device; the 2 lb diagram shows An eye diagram of the test signal shown in Figure 21a &21a; Figure 22a shows a transmission through an optical medium as shown in the & Figure when the optical medium is made of an anti-reverse (four) layer material - a wave pattern of the optical film time; Figure 22b shows a signal diagram similar to Figure 22a, in accordance with one embodiment of the present invention, the (four) picture is a first electrical transmission line and has a connection between the transmission line and the impedance of the terminal Resistance a circuit (impedance matching circuit); FIG. 23a shows a schematic diagram of a test configuration package 201024739 according to an embodiment of the present invention; and FIG. 23b shows a test configuration device according to another embodiment of the present invention. FIG. 23c is a diagram showing an equivalent circuit diagram of a test configuration apparatus according to an embodiment of the present invention; and FIG. 23d is a schematic diagram showing a test configuration apparatus according to an embodiment of the present invention, the test configuration apparatus Includes a device tester, a test interface, and a number of interfaces for most of the components under test; ® Figure 2 3 e shows the theoretical input impedance of the test configuration device as shown in Figure 2 3 a a Nyquist diagram; Figure 24a shows an equivalent circuit diagram of one of the illustrative configurations of the GDDR5 memory component shown in Figure 4a, having an embodiment in accordance with an embodiment of the present invention An impedance matching circuit between the transmission line and the device under test; Figure 24b shows a theoretical Nyquist of the test configuration device as shown in Figure 24a Figure 25 shows a theoretical TDR diagram measured using the test configuration device as shown in Figure 24a; Figure 26 shows the measured component of the test configuration device as shown in Figure 24a A step response timing diagram comparing the voltage at the voltage to the voltage at the input impedance of the device under test generated in the case of Figure 4a; Figure 27 shows a spring pin in accordance with an embodiment of the present invention A schematic cross-sectional view of the needle; Figure 28 shows a schematic cross-sectional view of a spring pin 7 201024739 in accordance with another embodiment of the present invention; Figure 29a shows an embodiment in accordance with the present invention A spatial view of a spring pin; Figure 29b shows a spatial view of a spring pin in accordance with another embodiment of the present invention; Figure 29c shows a test in accordance with an embodiment of the present invention A top view of a configuration device; FIG. 30 shows an equivalent circuit diagram of a test configuration device according to an embodiment of the present invention, the test configuration device comprising an impedance matching circuit, a TDR transmitter and a TDR receiver; 31 shows A TDR diagram measured using the test configuration device as shown in FIG. 30; FIG. 32 is an equivalent circuit diagram showing a test configuration device according to an embodiment of the present invention, the test configuration device including a An impedance matching circuit, a TDR transmitter, a microstrip line, and a measuring probe; FIG. 3 3 shows an eye diagram of a signal received by the TD R receiver of the test configuration device as shown in FIG. Figure 34a shows a schematic cross-sectional view of a test configuration device including an SMA adapter cable emulated with an ODT load and an impedance matching circuit, in accordance with an embodiment of the present invention Connected as a terminal; Figure 34b shows an equivalent circuit diagram of the test configuration device as shown in Figure 34a; Figure 35 shows a 201024739 reflection coefficient measurement of the test configuration device as shown in Figure 34a A Smith chart; Figure 36 shows an equivalent circuit diagram of a test configuration device according to an embodiment of the present invention, the test configuration device comprising two impedance matching circuits, each impedance matching circuit and a The device under test, a length mismatched Y-branch cable, a TDR transmitter, and a measurement probe are associated; Figure 37 shows the measurement using the test configuration device as shown in Figure 36. A signal diagram; Figure 38 shows an equivalent circuit diagram of a test configuration apparatus according to an embodiment of the present invention, the test configuration apparatus comprising two impedance matching circuits, each impedance matching circuit and a device under test a length mismatched Y-branch cable, a test signal transmitter, and a test signal receiver; % Figure 39 shows an eye measured using the test configuration device as shown in Figure 38 Figure 40 is a circuit diagram showing a test configuration device including the branch as shown in Figure 17 and connected to respective output lines and the device under test, in accordance with an embodiment of the present invention. An impedance matching circuit between respective impedances; Figure 41 shows an equivalent circuit diagram of a test configuration device comprising two components under test in accordance with an embodiment of the present invention; Figure 42 shows 41 picture A simulated eye diagram of a simulated first input signal of the test configuration device; FIG. 43 shows an equivalent circuit diagram of a test configuration device in accordance with an embodiment of the present invention, the test configuration device comprising four The device under test; Fig. 44 shows a signal diagram of four input signals of a model 9 201024739 of a test configuration device as shown in Fig. 43; Fig. 45 shows the image as shown in Fig. 44. Testing an eye diagram of the simulated first input signal of the configuration device; Figure 46 shows a schematic diagram of a test configuration %罝 device, the test configuration device including an impedance matching circuit called the impedance matching circuit through a first transmission line Receiving a first device under test and coupling to a second transmission line via a second transmission line: the second device under test having a carrier of the ratio test signal

.刀之;皮長小的長度且第二傳輸線具有比該測試信號 的該載波的四分之一波長大的長度;及 第47圖顯示了在如第46圖所示的在該第一受測元件量 測所得及該第二受測元件晋屯丨抓〜 千重測所得的信號的一時序圖。 【貧施方式3 下面,本發明中存在的一主要的想法被加以說明透 過參考光學中的反射問題,顯示了起㈣類似_的_a length of the skin length and the second transmission line has a length greater than a quarter wavelength of the carrier of the test signal; and FIG. 47 shows the first acceptance in the first image as shown in FIG. The measurement component is measured and the second component under test is a timing diagram of the signal obtained by the thousand retest. [Poverty Mode 3] Next, a main idea existing in the present invention is explained by the reflection problem in the reference optics, which shows that (4) is similar to _

的發生,在電學量測測試配置敦置中,引入了光學中的對 反射問題的職且隨後,將這些對策以本發狀多數個實 施例的形式轉換到電學量測測試配置裝置中。 第1圖顯* 了-光相,圖巾光被-光學材料反射或通 過光學材料。如第1圖所示,該反射與透射之間的比依賴於 該光學材料的-習知的抗反射塗層是轉在。該光學材料 的上部10沒有塗抗反射塗層,而該光學材料的下部12塗有 抗反射塗層。該光學材料可為一透鏡14且抗反射塗層可被 施敷於該透鏡14的遠離觀察者(未顯示)的外表面以降低傳 入光的反射。該反射的光可能干擾該觀察者。例如,該反 10 201024739 射降低了透射量。進一步,該反射光可能到達不希望有光 之對光敏感的區域。在複雜的系統諸如一望遠鏡中,例如’ 該反射的下降可透過消除雜散光而提高影像的對比度。在 其他的應用中,例如諸如在眼鏡鏡片上塗抗反射塗層,主 要的好處為消除其自身的反射,因此導致一更好的視覺及 一更明亮的視景。 在第1圖中,例如,該光學材料14不包含抗反射塗層的 上部,一束光16大部分可由透鏡14反射回來,而只有已強 w 烈衰減的一部分上部光16通過了透鏡14。在光學材料14塗 / 有抗反射塗層的下部,一束光18大部分通過透鏡14。當光 學材料14包含一尺寸適當的抗反射塗層時,第1圖中該束光 18中多達99%通過光學材料14。 第2a圖顯示了光傳輸過一具有與周圍空氣的反射指數 不同的反射指數的習知的光學介質。光束2〇由一光學介質 諸如空氣移動到另一光學介質玻璃22諸如玻璃中,其中該 _ 玻璃22具有反射指數ηι大於空氣的反射指數恥,其中η()=ι ’ 即ηι>η0。該光束2〇的某部分r由該玻璃22的表面反射,而 該光束20的另一部分b傳過該玻璃22。該反射的強度依賴於 兩介質的反射指數恥及⑴和該表面與該光束20所成的角 度。確切的值可利用菲淫耳公式(Fresnel equations)計算。 最簡單形式的抗反射塗層由瑞利(L〇rd Rayleigh)於 1886年發現。一在玻璃22的表面上的薄膜抗反射塗層(ARC) 可減低反射。一具有折射指數〜队之材料的薄膜在具有折 射指數nQ的空氣及具有折射指數〜的玻璃之間,可導致該光 11 201024739 束反射兩次,即從空氣與該薄ARC層的介面處反射,及從 該薄ARC層與玻璃的介面處反射。 第2b圖顯示一信號圖,該信號圖為一習知的電傳輸 線’以—由一受測元件形成的終端阻抗為終端,該終端阻 抗與該傳輸線的阻抗不同。一電信號24經過第2b圖中所標 不“走線(trace)”的該傳輸線。該傳輸線具有一阻抗z0。該傳 輸線以受測元件DUT為終端,該受測·元件DUT接著具有一 阻抗Zin。若該受測元件dut的阻抗Zin不匹配於該傳輸線的 阻抗ZQ ’則該電波24的一部分r由該受測元件DUT反射且該 電波24的另—部分b傳入該受測元件DUT。“匹配”的情況在 如果該受測元件DUT的阻抗Zin等於該傳輸線的阻抗2〇即 Zin=Z〇時會發生,例如為5〇歐姆。在該匹配狀態下,該電波 24會全部傳送給該受測元件dut。該電波24的反射部分Γ會 達到0%,而該電波24的傳送部分b會達到1〇〇%。 第2a圖及第2b圖,因此,說明了電波及光波的相似, 其中電線或元件之阻抗對應於光學材料之折射指數。 第3a圖顯示了一習知的受測元件dut之輸入阻抗之一 等效電路圖,該輸入阻抗包含電阻性的“内置於晶片之終端 (〇n-die termination)”RODT及一電容性的輸入電容&並聯。 在第3a圖的情況下,該Rodt&Cin的並聯連接在用於連接傳 輪線的終端與從外部被施加到該DUT的電位Vddq之間。誃 梵測元件DUT可對應於第2b圖中所述的受測元件〇11丁。第 知圖中的該受測元件的輸入阻抗Z可對應於第21)圖中所述 的受測元件DUT的輸入阻抗zin。該輸入阻抗z由電容Cm及 201024739 電阻RODT的並聯形成。當該受測元件DUT包含一晶片時, 該電阻R〇dt可由實施在該DUT的晶片上的一内置於晶片之 終端電阻形成。該電容CIN可由一閘極電容或該DUT的一 ESD保護電路,諸如一積體電路的ESD銷針電路形成,如果 該受測元件DUT包含一積體電路的話。 第3b圖顯示了一說明第3a圖中的該輸入阻抗z的奈奎 斯特(Nyquist)圖。該奈奎斯特圖顯示了該受測元件〇11丁對 於不同頻率的阻抗Z。對於不同頻率的該阻抗z(f)繪製在一 ❹ 具有水平轴為Re(Z)及一垂直軸為Im(Z)的座標系中,沿該 . 水平軸繪製該輸入阻抗Z的實部,沿該垂直軸繪製該輸入阻 抗Z的虛部。對於零頻率或直流的情況,該輸入阻抗Z等於 R〇DT,其可為120 Ohm。對於頻率接近無限大的情況,由於 s亥電谷Cin,該輸入阻抗z接近〇 〇hm。對於頻率在零頻率 與無限大之間的情況,Z(f)描述了 一曲線形推移…财代 passing),對於一頻率fl,阻抗z的虛部等於實部。 φ 第4a圖顯示一受測元件DUT的一輸入阻抗的等效電路 圖,該受測元件包含一電阻性内置於晶片之終端〇DT及形 成電容C的閘極和ESD電路。該受測元件DUT由表示為一6〇 Ohm的電阻R的該内置於晶片之終端電阻器與形成1邛的 電容c的該閘極和ESD電路並聯而形成。該受測元件dut被 連接到-傳輸線,該傳輸線示範性地具有—⑻〇hm的阻抗 z〇。因此,該輸入阻抗Zin對應於如第%圖中所述的阻抗z, 其中在第4a圖中該内置於晶片之終端電阻器R與該閉極和 ESD電谷具有離散的值。 13 201024739 第4b圖顯示了說明如第4a圖所示的該輸入阻抗的一奈 · 奎斯特圖。r表示該反射係數且b表示該折射係數。在直流 頻率’該等阻抗Z〇及Zin匹配,即r=0%且b=100%。換言之, 在直流頻率’該受測元件DUT之輸入阻抗Zin等於6〇 〇hm, 匹配該傳輸線的為6〇 〇hm的阻抗。對於較高的頻率,該輸 入阻抗zin的虛部的幅值增大。例如,對於一在1〇1^到2〇1^ 之間的頻率,該輸入阻抗對應於Zin=(3〇_3〇j)〇hm。對於接 近無限大的頻率,一電波由受測元件DUT完全反射,即 r=100%且b=〇%。對於接近無限大的頻率,該電作用如 · 同一遮蔽電路將流過該傳輸線的電波的能量完全反射。 與上文所述光學的情況類似,該等電反射會帶來問 · 題。這會在下面被概述。 ‘ 例如,第5圖說明了在一傳輸線及一DUT之間的一阻抗 失配介面會導致傳輸信號中的電能再次到達傳輸線的發送 源(像一回聲)。特別地,第5圖顯示了使用-GDDR5記憶體 元件量測得到的輸入阻抗的一時域反射(TDR)圖。The occurrence of the electrical measurement test configuration introduced the role of the reflection problem in optics and then converted these measures into the electrical measurement test configuration device in the form of most of the embodiments of the present invention. Figure 1 shows the optical phase, which is reflected by the optical material or passed through the optical material. As shown in Figure 1, the ratio between reflection and transmission depends on the optical material - the conventional anti-reflective coating is a turn. The upper portion 10 of the optical material is not coated with an anti-reflective coating and the lower portion 12 of the optical material is coated with an anti-reflective coating. The optical material can be a lens 14 and an anti-reflective coating can be applied to the outer surface of the lens 14 remote from the viewer (not shown) to reduce reflection of the transmitted light. This reflected light may interfere with the observer. For example, the inverse 10 201024739 shot reduces transmission. Further, the reflected light may reach an area where light is not desired to be sensitive to light. In complex systems such as a telescope, for example, the drop in reflection can increase the contrast of the image by eliminating stray light. In other applications, such as, for example, applying an anti-reflective coating to an eyeglass lens, the primary benefit is to eliminate its own reflections, thus resulting in a better vision and a brighter view. In Fig. 1, for example, the optical material 14 does not include an upper portion of the anti-reflective coating, a beam of light 16 is mostly reflected back by the lens 14, and only a portion of the upper light 16 that has been strongly attenuated passes through the lens 14. At the lower portion of the optical material 14 coated with an anti-reflective coating, a beam of light 18 passes mostly through the lens 14. When the optical material 14 comprises an appropriately sized anti-reflective coating, up to 99% of the beam 18 in Figure 1 passes through the optical material 14. Figure 2a shows a conventional optical medium in which light is transmitted through a reflection index having a different index of reflection than ambient air. The beam 2 is moved by an optical medium such as air into another optical medium glass 22 such as glass, wherein the glass 22 has a reflection index ηι greater than the reflection index of the air, where η() = ι η, ie ηι > η0. A portion r of the beam 2 is reflected by the surface of the glass 22, and another portion b of the beam 20 passes through the glass 22. The intensity of this reflection depends on the reflection index of the two media as (1) and the angle between the surface and the beam 20. The exact value can be calculated using Fresnel equations. The simplest form of anti-reflective coating was discovered by L〇rd Rayleigh in 1886. A thin film anti-reflective coating (ARC) on the surface of the glass 22 reduces reflection. A film having a refractive index ~ team material between the air having a refractive index nQ and the glass having a refractive index ~ can cause the light 11 201024739 beam to be reflected twice, that is, from the interface between the air and the thin ARC layer. And reflecting from the interface of the thin ARC layer and the glass. Figure 2b shows a signal diagram which is a conventional electrical transmission line 'with a terminal impedance formed by a device under test, the terminal impedance being different from the impedance of the transmission line. An electrical signal 24 passes through the transmission line labeled "trace" in Figure 2b. The transmission line has an impedance z0. The transmission line is terminated by the device under test DUT, which in turn has an impedance Zin. If the impedance Zin of the device under test does not match the impedance ZQ' of the transmission line, a portion r of the wave 24 is reflected by the device under test DUT and another portion b of the wave 24 is transmitted to the device under test DUT. The case of "matching" occurs if the impedance Zin of the DUT under test is equal to the impedance of the transmission line 2, i.e., Zin = Z, which is, for example, 5 ohms. In this matching state, the radio wave 24 is all transmitted to the device under test dut. The reflected portion 该 of the electric wave 24 will reach 0%, and the transmitting portion b of the electric wave 24 will reach 1%. 2a and 2b, therefore, the similarity of the electric wave and the optical wave is explained, wherein the impedance of the electric wire or the element corresponds to the refractive index of the optical material. Figure 3a shows an equivalent circuit diagram of one of the input impedances of a conventional device under test, which includes a resistive "〇n-die termination" RODT and a capacitive input. Capacitor & parallel. In the case of Fig. 3a, the parallel connection of the Rodt & Cin is between the terminal for connecting the transfer line and the potential Vddq applied to the DUT from the outside.梵 The Vatican component DUT can correspond to the device under test described in Figure 2b. The input impedance Z of the device under test in the first figure may correspond to the input impedance zin of the device under test DUT as described in Fig. 21). The input impedance z is formed by the parallel connection of the capacitor Cm and the 201024739 resistor RODT. When the device under test DUT includes a wafer, the resistor R 〇 dt can be formed by a termination resistor built into the wafer implemented on the wafer of the DUT. The capacitor CIN may be formed by a gate capacitor or an ESD protection circuit of the DUT, such as an integrated circuit ESD pin circuit, if the device under test DUT includes an integrated circuit. Figure 3b shows a Nyquist plot illustrating the input impedance z in Figure 3a. The Nyquist plot shows the impedance Z of the device under test for different frequencies. The impedance z(f) for different frequencies is plotted in a coordinate system having a horizontal axis of Re(Z) and a vertical axis of Im(Z), along which the real part of the input impedance Z is plotted. The imaginary part of the input impedance Z is plotted along the vertical axis. For zero frequency or DC conditions, the input impedance Z is equal to R 〇 DT, which can be 120 Ohm. For the case where the frequency is close to infinity, the input impedance z is close to 〇 〇hm due to the Cin valley. For the case where the frequency is between zero frequency and infinity, Z(f) describes a curved transition... for a given frequency, for a frequency fl, the imaginary part of the impedance z is equal to the real part. φ Figure 4a shows an equivalent circuit diagram of an input impedance of a DUT under test, the device under test comprising a resistive built-in terminal DT of the chip and a gate and ESD circuit forming capacitor C. The device under test DUT is formed by connecting the terminal resistor of the chip, which is a resistor R of 6 〇 Ohm, in parallel with the gate and ESD circuit forming the capacitor c of 1 。. The device under test dut is connected to a transmission line exemplarily having an impedance z — of - (8) 〇hm. Therefore, the input impedance Zin corresponds to the impedance z as described in the %th figure, wherein the terminal resistor R built in the wafer and the closed-pole and ESD electric valley have discrete values in the 4a. 13 201024739 Figure 4b shows a Nyquist diagram illustrating the input impedance as shown in Figure 4a. r represents the reflection coefficient and b represents the refractive index. At the DC frequency, the impedances Z〇 and Zin match, i.e., r = 0% and b = 100%. In other words, the input impedance Zin of the DUT at the DC frequency is equal to 6 〇 〇hm, matching the impedance of the transmission line to 6 〇 〇hm. For higher frequencies, the magnitude of the imaginary part of the input impedance zin increases. For example, for a frequency between 1〇1^ and 2〇1^, the input impedance corresponds to Zin=(3〇_3〇j)〇hm. For frequencies close to infinity, a wave is completely reflected by the DUT under test, i.e., r = 100% and b = 〇%. For frequencies close to infinity, the electrical action such as the same masking circuit completely reflects the energy of the electric wave flowing through the transmission line. Similar to the case of optics described above, such electrical reflections can cause problems. This will be outlined below. ‘ For example, Figure 5 illustrates an impedance mismatch interface between a transmission line and a DUT that causes the power in the transmitted signal to reach the transmission source (like an echo) again. In particular, Figure 5 shows a time domain reflectance (TDR) plot of the input impedance measured using the -GDDR5 memory component.

GDDR5(圖形雙倍資料率’版本5)為一高速動態隨機存取記 QGDDR5 (Graphic Double Data Rate 'Version 5) is a high speed dynamic random access code Q

It體’ wf·用於需要高頻寬的應用中。時域反射計(丁⑽) 為用於決定及分析電磁波和電磁信號運行時長及反射特 徵的程序。在TDR測試中,—脈衝產生器產生一系列上升 時間約為例如2G奈秒的报短的信號轉態(階躍(卿》,其等 f盾這樣的一時間間隔’以使得下-個轉態開始的時候先 別轉態的回波已完全安定了。一示波器可被用來量測該等 階躍響應。該等轉態被施加於該受測元件,該受測元件依 14 201024739 據於它的輸入阻抗反射該等脈衝。若該受測元件的輸入阻 抗匹配於該傳輸線的阻抗,那麼沒有脈衝被反射且沒有回 波可藉由示波器觀測到。 第5圖說明了一不匹配的情況。該丁〇尺圖包含—幅度軸 A及時間軸t。該圖表示了繪製在時間t上的一反射信號轉態 (階躍)的一幅度A。t=Os表示一轉態開始的時間。在仁㈨及 100ps(皮秒)之間,一與該等方波信號脈衝的上升時間有關 的暫態出現。在l〇〇ps及400ps之間,該TDR圖表示了該接收 的h號之一怪定的幅度,其說明了該信號脈衝的一部分直 接到達連接到傳輸線之與該脈衝產生器同一端的該TDR接 收器/示波器。400ps之後,該信號脈衝的反射到達該接收 器,藉此該接收信號的能量初步減少。第5圖中,該減少示 範性地由500毫伏到345毫伏。此後,在5〇〇ps到750ps之間 該接收的電壓再次上升,由345毫伏上升至全波幅550毫 伏。反射的負效應在750ps之後終止,該750ps為指明連接 到該阻抗線的該受測元件之暫態時間的一時間且為該DUT 的一特徵值。第5圖顯示出用於第5圖的一使用GDDR5記憶 體元件的測試量測應該在決定一測試信號結果之前等待至 少750ps以保證沒有不想要的對量測品質具有負面影響的 失真。 到現在為止’以上的討論僅僅集中在該DUT的輸入阻 抗上,使該阻抗適應於該傳輸的線阻抗。然而,在測試頭 的情況下’用於電接觸該DUT之銷針的銷針也會構成該測 試配置裝置設計中的阻抗匹配的問題。 15 201024739 第6圖顯示一可能的彈簧銷針之截面圖,該彈簧銷針可 用作在一插座板(socket board)上的BGA(球格陣列)墊34與 該DUT(受測元件)3 8之一球格陣列中一球36之間之介面。_ 彈簧銷針為用於電子電路中一裝置,用於在兩個電子裝置 之間(諸如印刷電路板(PCB)之間或一 PCB與一 1C之間或類 似裝置之間)建立一通常為暫時的連接。 彈簧銷針可被應用於測試系統中。一測試系統包含一 測試頭’一銷針-電子模組以及相應的驅動器位於該測試頭 中。該銷針-電子模組透過纜線連接到一彈簧-連接器,該彈 φ 簧-連接器被安排在該測試頭的上邊。一介面配接在該測試 _ 頭上藉此彈簧銷針透過低邊接觸到該介面。該介面包含適 於接觸該等彈簀銷針之接觸墊,其中,接觸塾透過介面缓 " 線連接到該介面。這些介面瘦線結束於該介面的上邊以連 接該等插座板。該等插座板可為(小的)PCB(印刷電路板), 也包含用來連接DUT插座32的接觸區域。該等DUT插座32 可方疋擰到(或連接到)該等插座板的接觸區域。該等DUT插座 32包含如第6圖所示(小的)彈簧銷針3〇。它們具有大約為2_3 ® nun的長度。該等DUT 38被壓入這些DUT插座32,藉此該 球格陣列封裝38的該等球36由彈簧銷針30接觸。這樣的一 接觸在DUT與測試驅動器或DUT與測試接收器之間分別提 供了一元整的信號路徑連接。第ό圖所示的該彈簧銷針3〇可 具有一大約2-3 mm的相對短的長度,而配置在該介面上的 該欖線具有一大約40 cm的長度。 第6圖所示的該彈簧銷針包含兩個導電材料製成的管 16 201024739 筒或外殼40及42,其中-個40插入在另—個42中,所以沿 著它們的共有轴線以滑動的方式相對之間為可移動的。一 些連鎖(—ki權置(未在第六圖巾顯示)可被提供以 防止外殼40自外殼42脫落。—彈簧44被置於由該科㈣ 及42圍成的内部區域中以從内部彈簧承載該等外殼獅42 之配置裝置以將外殼40及42分開。沿彈簧鎖針的縱向轴諸 如在兩個電氣電路之卩後_彈簧鎖針,會導致 藉由-力相對於電氣電路推動外殼做42,該力的大小取 決於壓縮的程度’從而在兩電路之間建立了—安全的電接 觸。第6圖中的該彈簧銷針可與其他彈菁銷針一起配置在一 密集陣列上,將該等電氣電路的多個個別的銷針連接起 來。在細中…個電氣電路為—職38而另一個為例 如用於將該DUT與-測試頭互連起來之一電路板。在後面 的情況下’第6圖中的該彈簧銷針可將該DUT财的一球 格陣列之-銷針或球36與該電路板或插座板各自的墊片電 互連起來。該鎖針36及34之間的電接觸不僅僅由於該等兩 外殼40及42形成的-電阻性電路徑產生。更者,該彈菁可 由諸如金屬之導電材料製成。在這個情況下,該彈簧產生 的作用為電連接在料取%之間的—電紐元件,在第 -實例中’其是不需要的。然而下面的關於本發明的一些 實施例的贿,會顯示此«在職-部分阻抗匹配或者 抗反射電路時有積極的作用。 為了完整性的目的,第6圖在下文做更進一步描述。特 別地,第6圖顯示了由-DUT插座32包含的該彈簧銷針3〇。 17 201024739 也就是說,該彈簧銷針由該插座32支撐,以此外殼40從插 座32的一邊凸出而另一外殼42從插座32的另一邊凸出。儘 管沒有在第6圖中顯示,多於一個的彈簧銷針可以此方式組 合得到一彈簧銷針的橫向陣列。該彈簧銷針30被用於將一 電路板上的一墊片34與一受測元件封裝38之一球格陣列 (BGA)的一球36電連接起來。如上文所述,該彈簧銷針3〇 包含該内管筒40、該外管筒42及該彈簧44。 第7a圖顯示一彈簧銷針的一内管筒以及處於鬆開狀態 的與該内管筒接觸的彈簧。該彈簧50可被機械性地附接到 〇 該内管筒52。或者,該彈簧50僅緊靠管筒52的内表面。該 ' 内管筒52包含一接觸部分56用於鄰接—受測元件的一塾 - 片。該彈簧銷針進一步包含一活塞部分54用於插入此圖沒 - 有顯示的外管筒。在如第7a圖所示的鬆開狀態下,該活塞 部分凸出於該外管筒之外。在如第几圖所示的壓縮狀態 下,部分54在该外管筒的内部。在與該接觸部分相對的該 活塞部分的相對端,該彈簧銷針包含—彈簧固定部分58, 其相對於該活塞部分徑向向外凸出以在彈簧鬆開狀態下與 ❿ 外管筒的各自的部分相互干涉定義—孔,透過該孔該活塞 部分延伸以避免該内管筒52脫離出該外管筒。該彈菁固定 部分58也被用於形成一固定表面,該彈簧如靠著該表面壓 縮。該彈簧50藉由該内管筒52的-内部部分6〇被穩定在該 内管筒52内於其徑向位置,該内部部分6〇自該彈菁固定部 分58向内延似具有一比部分58較小的徑向延伸。換言 之’彈簧50被套在該内部部分60上。在該彈簧狀與該彈 18 201024739 簧固定部分的固定端相對的那端處,該彈簧可具有一減小 的直役以被插入該外管筒並作為在該壓縮狀態下供該内部 部分用之一接觸點,如後文所描述的。 該彈簧銷針中的該彈簧固定部分58對應於如第6圖所 示的該固定點,其中該彈簧44接觸該内管筒40。 套在該内管筒52上的該外管筒未在第7a圖繪製出來但 其範例在第8圖中顯示,第8圖顯示一外管筒以及該内管筒。 §亥内部分以這樣的方式縱向延伸,以使得在第7b圖所 示的該壓縮狀態下,背離該彈簧固定部分58的一末端64接 觸彈簧50的該小直徑部分,及藉由該小直徑部分電接觸該 外管筒。如第7a圖所示,當該彈簧5〇處於第7a圖所示的該 鬆開狀態時,該内管筒52可具有一 3.7 mm的長度。 要指出的是彈簧50可為被偏壓的,即使在第7a圖所示 的該等管筒分離最大化的狀態下。在此程度上,該術語“鬆 開的”應被廣泛地理解為指出該彈簧比起在第几圖所示的 該等管筒之間的距離最小化的壓縮狀態下的受壓/受偏壓 要小。 第7b圖顯示第7a圖中的彈簧銷針的内管筒52及處於壓 縮狀態下的彈簧銷針的彈簧50。在這個狀態下,該内管筒 52最大程度地被容納進入該外管筒中且該彈簧5〇處於最大 的壓縮之下。該彈簧50的長度例如由3.7 mm縮至3.4 mm, 在這個情況下該彈簧銷針具有可變量為〇3 mm的可變長 度。此長度被稱為接觸行程62。當該彈簧5〇被最大程度壓 縮時内部部分60的末端64與彈簧50的小直徑部分機械接觸 19 201024739 因此形成了在該内管筒52、該彈簧50及該外管筒之間的一 電接觸。因此,該内部部分60也作為一連鎖機制以避免該 内管筒52進入外管筒的部分超出該接觸行程62。 第8圖顯示第7a圖及第7b圖之彈簧銷針的一可能的外 部套筒66以及該内管筒。該外管筒66可具有如圖中所標示 的尺寸。該外套筒或管筒66包含適應彈簧50的小直徑部分 之一小直徑的中空部分74且該中空部分74作為一外部接觸 部分以機械性及電性接觸一墊片,該墊片被由該内管筒52 的該接觸部分56接觸的墊片接觸。進一步,套筒66包含一 大直徑部分72以適應第8圖中未繪製的彈簧50的大直徑部 分。在與小直徑部分74相對的大直徑部分72的末端,該套 筒66包含一孔,内管筒的活塞部分經該孔延伸。在該孔處, 大直徑部分72包含一在徑向方向上向内凸出的環(未顯 示),以與内管筒52的彈簧固定部分接合以避免内管筒脫離 出外管筒。 由以上所述的第7a圖、第7b圖及第8圖的論述可清楚得 知,存在三條可能的電通路透過該彈簧銷針電連接該彈簧 銷針的該等末端:一條路徑經由該彈簧50,一條路徑經由 内套筒的内部部分,及一條路徑透過活塞與圓柱部分之間 的機械接觸處經由套筒自身。依照下面的一些實施例,一 具有類似結構的彈簧銷針被設計以使其形成一匹配電路的 至少一部分,據此電路徑的數目如下文所述可以變化。在 任何的情況下,該經過彈簧的路徑導致一高的阻抗,該阻 抗在測試中必須加以考慮。進一步,該彈簧與内部部分60 201024739 的末端64之間的接觸點被判定得相當不準確,因 用第7a圖、第7b圖及第8圖所示的彈簧銷針進行而導致使 之間的產生阻抗會變動,或者至少,一組結—續'則試 銷針之間的阻抗變化。 5同的彈赞 第9圖顯示了使用接觸一短路的受夠 1千的〜彈馨 針量測得到的一時域反射(TDR)圖,該彈簧銷針 貢蛸 圖、弟7b圖及第8圖所示。以上提到的該彈菁銷針:、、、—第了3 電感產生了透過該彈簧銷針所執行之量測所致的需要的 第9圖說明了這個延遲。一TDR脈衝由—信號產生。延遲。 簧銷針傳送給該短路的裝置。織,該脈衝由該該彈 置反射並由一信號接收器諸如,例如— 旦路的裝 不波器接收。由兮 示波器接收到的該信號在第9圖中繪示。户 在—短路的情況 下,該傳❹m裝置的信號經反㈣應叹向極 到。發送給該裝置的脈衝具有大㈣毫伏的波幅 ^ 時間轴的時間〇m〇0ps之間觀測到。該脈衝在 L—Gps後由該短路的受測元件反射並以反向極性被 接收。依賴於該短路的細節諸如, 路徑上的電感性質部 分的電阻,一不同的延遲可被觀測到。 為了校準測試器具,一器具延 ^ητττ^ --- , t 枚準(FXDL cal)在測試 s亥DUT之刖被執行,以考慮到在 "心則#式頭與該等DUT球之 間的信號傳播過程。出於這個目 ^ 叼,插入一短路裝置(例如 一鑛金金屬片)而非一真正的Dut ^ 甘立4 。4該短路裝置插入時, 其產生一至接地銷針的短接。若一 ❻躍信號由該測試器(像 使用一TDR)發出,該回波(以反 躍出現)的傳播延遲揭 21 201024739 示了電通路之長度。'_,若該料不是—㈣實阻抗例 如為50ohm的理想傳輸線而是包含—電感器諸如該“有&害, 插座彈簧騎,抗變為魏且加人—寄以遲。這。個 特性在第9圖顯示。It body 'wf· is used in applications requiring high bandwidth. The time domain reflectometer (D (10)) is a program used to determine and analyze the duration and reflection characteristics of electromagnetic waves and electromagnetic signals. In the TDR test, the pulse generator generates a series of short signal transitions with a rise time of, for example, 2G nanoseconds (step (Qing), which waits for a time interval such as f shield to make the next turn At the beginning of the state, the echoes that have not changed state are completely settled. An oscilloscope can be used to measure the step responses. The transition states are applied to the device under test, and the device under test is based on 14 201024739 The pulses are reflected at its input impedance. If the input impedance of the device under test matches the impedance of the transmission line, then no pulses are reflected and no echoes can be observed by the oscilloscope. Figure 5 illustrates a mismatch. The case diagram includes an amplitude axis A and a time axis t. The figure shows an amplitude A of a reflected signal transition (step) plotted at time t. t=Os indicates the beginning of a transition state. Time. Between Ren (9) and 100 ps (picoseconds), a transient occurs in relation to the rise time of the square wave signal pulses. Between l ps and 400 ps, the TDR map represents the received h One of the strange amplitudes, which illustrates a part of the signal pulse Directly reaching the TDR receiver/oscilloscope connected to the same end of the transmission line as the pulse generator. After 400 ps, the reflection of the signal pulse reaches the receiver, whereby the energy of the received signal is initially reduced. In Figure 5, the reduction Illustratively from 500 millivolts to 345 millivolts. Thereafter, the received voltage rises again between 5 ps and 750 ps, rising from 345 millivolts to a full amplitude of 550 millivolts. The negative effect of reflection is terminated after 750 ps. The 750 ps is a time indicating the transient time of the device under test connected to the impedance line and is a characteristic value of the DUT. Figure 5 shows a test using the GDDR5 memory component for the fifth figure. The measurement should wait at least 750 ps before deciding a test signal result to ensure that there are no unwanted distortions that have a negative impact on the quality of the measurement. Until now, the above discussion focused only on the input impedance of the DUT, adapting the impedance. The line impedance of the transmission. However, in the case of a test head, the pin used to electrically contact the pin of the DUT also constitutes an impedance match in the design of the test configuration device. Problem 15 201024739 Figure 6 shows a cross-sectional view of a possible spring pin that can be used as a BGA (spherical grid array) pad 34 on a socket board and the DUT (device under test) The interface between a ball 36 in one of the arrays of 3-8. The spring pin is used in a device in an electronic circuit for between two electronic devices, such as between printed circuit boards (PCBs) or A normally temporary connection is established between a PCB and a 1C or similar device. The spring pin can be used in a test system. A test system includes a test head 'a pin-electronic module and corresponding The drive is located in the test head. The pin-electronic module is connected to a spring-connector via a cable, and the spring-connector is arranged on the upper side of the test head. An interface is mated to the test head such that the spring pin contacts the interface through the low side. The interface includes contact pads adapted to contact the pins of the pins, wherein the contacts are connected to the interface through the interface. These interface thin wires end on the upper side of the interface to connect the socket boards. The socket boards can be (small) PCBs (printed circuit boards) and also contain contact areas for connecting the DUT sockets 32. The DUT sockets 32 can be screwed to (or connected to) the contact areas of the socket boards. The DUT sockets 32 contain (small) spring pins 3〇 as shown in Fig. 6. They have a length of approximately 2_3 ® nun. The DUTs 38 are pressed into the DUT sockets 32 whereby the balls 36 of the ball grid array package 38 are contacted by the spring pins 30. Such a contact provides a one-way signal path connection between the DUT and the test driver or DUT and the test receiver, respectively. The spring pin 3'' shown in the second figure may have a relatively short length of about 2-3 mm, and the ridge line disposed on the interface has a length of about 40 cm. The spring pin shown in Figure 6 comprises two tubes 16 of electrically conductive material: 201024739 cartridges or housings 40 and 42, of which 40 are inserted in the other 42 so as to slide along their common axis The way relative is relatively movable. Some interlocking (not shown in the sixth figure) can be provided to prevent the outer casing 40 from falling out of the outer casing 42. - the spring 44 is placed in the inner region enclosed by the sections (4) and 42 to The mounting means for carrying the outer shell lions 42 separate the outer casings 40 and 42. Along the longitudinal axis of the spring lock pin, such as after the two electrical circuits, the spring lock pin causes the outer casing to be pushed relative to the electrical circuit by force Do 42, the magnitude of the force depends on the degree of compression 'and thus establish a safe electrical contact between the two circuits. The spring pin in Figure 6 can be placed on a dense array with other bullet pins. A plurality of individual pins of the electrical circuits are connected. In the middle, one electrical circuit is a job 38 and the other is, for example, a circuit board for interconnecting the DUT with the test head. In the latter case, the spring pin in Fig. 6 can electrically interconnect the pin or ball 36 of a ball grid array of the DUT with the respective pads of the circuit board or the socket board. The electrical contact between 36 and 34 is not only due to the two outer casings 40 and A resistive electrical path is formed 42. Further, the elastomer can be made of a conductive material such as a metal. In this case, the spring produces a function of electrically connecting the material between the % of the material, In the first example, 'it is not required. However, the following bribes relating to some embodiments of the present invention will show a positive effect on this «in-service-partial impedance matching or anti-reflection circuit. For the sake of completeness, Figure 6 is further described below. In particular, Figure 6 shows the spring pin 3〇 contained by the -DUT socket 32. 17 201024739 That is, the spring pin is supported by the socket 32. The outer casing 40 projects from one side of the socket 32 and the other outer casing 42 projects from the other side of the socket 32. Although not shown in Fig. 6, more than one spring pin can be combined in this manner to obtain a lateral direction of a spring pin. The spring pin 30 is used to electrically connect a pad 34 on a circuit board to a ball 36 of a ball grid array (BGA) of a device under test package 38. As described above, the spring Pin 3〇 includes the inner tube 40 The outer tube 42 and the spring 44. Figure 7a shows an inner tube of a spring pin and a spring in contact with the inner tube in a loosened state. The spring 50 can be mechanically attached The inner tube 52. Alternatively, the spring 50 abuts only the inner surface of the tube 52. The 'inner tube 52 includes a contact portion 56 for abutting - a tab of the device under test. Further included is a piston portion 54 for inserting the outer tube of the figure - shown. In the released state as shown in Figure 7a, the piston portion protrudes beyond the outer tube. In the compressed state shown, the portion 54 is inside the outer tube. At the opposite end of the piston portion opposite the contact portion, the spring pin includes a spring retaining portion 58 relative to the diameter of the piston portion. Projecting outwardly to interfere with the respective portions of the outer tube in the relaxed state of the spring defines a bore through which the piston portion extends to prevent the inner tube 52 from disengaging out of the outer tube. The elastic cyanine fixing portion 58 is also used to form a fixed surface against which the spring is compressed. The spring 50 is stabilized in the inner tube 52 in its radial position by the inner portion 6 of the inner tube 52, and the inner portion 6〇 has an inward extension from the elastic portion 58 Portion 58 has a smaller radial extent. In other words, the spring 50 is fitted over the inner portion 60. At the end of the spring opposite the fixed end of the spring fixed portion of the spring 18 201024739, the spring may have a reduced direct service to be inserted into the outer tube and serve as the inner portion in the compressed state. One of the contact points, as described later. The spring fixing portion 58 of the spring pin corresponds to the fixing point as shown in Fig. 6, wherein the spring 44 contacts the inner tube 40. The outer tube sleeved over the inner tube 52 is not drawn in Figure 7a but an example is shown in Figure 8, which shows an outer tube and the inner tube. The inner portion extends longitudinally in such a manner that, in the compressed state shown in Fig. 7b, an end portion 64 facing away from the spring fixing portion 58 contacts the small diameter portion of the spring 50, and by the small diameter Partially electrically contacting the outer tube. As shown in Fig. 7a, the inner tube 52 can have a length of 3.7 mm when the spring 5 is in the released state shown in Fig. 7a. It is to be noted that the spring 50 can be biased even in the state in which the separation of the tubes shown in Fig. 7a is maximized. To this extent, the term "released" is to be interpreted broadly to mean that the spring is compressed/biased in a compressed state that minimizes the distance between the tubes as shown in the figures. The pressure is small. Fig. 7b shows the inner tube 52 of the spring pin in Fig. 7a and the spring 50 of the spring pin in the compressed state. In this state, the inner tube 52 is maximally received into the outer tube and the spring 5 is under maximum compression. The length of the spring 50 is reduced, for example, from 3.7 mm to 3.4 mm, in which case the spring pin has a variable length with a variable of 〇3 mm. This length is referred to as the contact stroke 62. When the spring 5 is maximally compressed, the end 64 of the inner portion 60 is in mechanical contact with the small diameter portion of the spring 50. 19 201024739 thus forming an electrical connection between the inner tube 52, the spring 50 and the outer tube contact. Thus, the inner portion 60 also acts as a interlocking mechanism to prevent the portion of the inner tube 52 from entering the outer tube beyond the contact stroke 62. Figure 8 shows a possible outer sleeve 66 of the spring pin of Figures 7a and 7b and the inner tube. The outer tube 66 can have dimensions as indicated in the figures. The outer sleeve or tube 66 includes a small diameter hollow portion 74 adapted to one of the small diameter portions of the spring 50 and the hollow portion 74 serves as an external contact portion for mechanically and electrically contacting a gasket, the gasket being The gasket contacting the contact portion 56 of the inner tube 52 contacts. Further, the sleeve 66 includes a large diameter portion 72 to accommodate the large diameter portion of the spring 50, not shown in Fig. 8. At the end of the large diameter portion 72 opposite the small diameter portion 74, the sleeve 66 includes a bore through which the piston portion of the inner tube extends. At the hole, the large diameter portion 72 includes a ring (not shown) projecting inward in the radial direction to engage the spring fixing portion of the inner tube 52 to prevent the inner tube from coming out of the outer tube. It can be clearly seen from the discussion of the above-mentioned 7a, 7b and 8 that there are three possible electrical paths through which the ends of the spring pin are electrically connected through the spring pin: a path through the spring 50, a path through the inner portion of the inner sleeve, and a path through the mechanical contact between the piston and the cylindrical portion via the sleeve itself. In accordance with some of the following embodiments, a spring pin having a similar configuration is designed to form at least a portion of a matching circuit whereby the number of electrical paths can vary as described below. In any case, the spring-traveled path results in a high impedance that must be considered during testing. Further, the point of contact between the spring and the end 64 of the inner portion 60 201024739 is determined to be rather inaccurate due to the use of the spring pin shown in Figures 7a, 7b and 8 to cause The resulting impedance will change, or at least, a set of junctions will continue to test the impedance change between the pins. 5 The same bullet-like figure 9 shows a time-domain reflection (TDR) map measured by the contact of a short-circuited one thousand ~ elastic needle, the spring pin tribute diagram, the brother 7b diagram and the 8th The figure shows. The above-mentioned pinion pin:,,, - the third inductor produces the need for measurement by the spring pin. Figure 9 illustrates this delay. A TDR pulse is generated by a signal. delay. The spring pin is delivered to the shorted device. The pulse is reflected by the spring and received by a signal receiver such as, for example, a ballast. The signal received by the oscilloscope is shown in Figure 9. In the case of a short circuit, the signal of the ❹m device should be reversed to the extreme (4). The pulse sent to the device has a large (four) millivolt amplitude. ^ The time axis is observed between 〇m〇0ps. The pulse is reflected by the shorted test element after L-Gps and received in reverse polarity. Depending on the details of the short circuit, such as the resistance of the inductive nature of the path, a different delay can be observed. In order to calibrate the test instrument, an instrument is extended by η ττττ ---, and the t-index (FXDL cal) is executed after the test s-DUT to take into account the relationship between the "heart-style head and the DUT balls. The signal propagation process. For this purpose, insert a short-circuit device (such as a gold metal plate) instead of a real Dut ^ Gan Li 4 . 4 When the shorting device is inserted, it generates a short circuit to the ground pin. If a hopping signal is sent by the tester (like using a TDR), the propagation delay of the echo (in the presence of a retrace) is revealed. The length of the electrical path is shown in 201024739. '_, if the material is not—(4) the actual impedance is, for example, an ideal transmission line of 50 ohms but contains - an inductor such as the "have & damage, the socket spring ride, the resistance becomes Wei and the addition - sent later. This. The characteristics are shown in Figure 9.

一第一曲線81說明了使用一第—短路裝置的量測,第 二曲線82說明了使用一第二短路袭置的量測。第—曲線w 與第二曲線82之間的一延遲達到大約1〇〇1)8,這可由第’一曲 線81與二曲線82與時間軸1相交的兩點觀測到。對於第一曲 線81該延遲大約為650ps且對於第二曲線幻大約為75〇^。A first curve 81 illustrates the measurement using a first short circuit device and a second curve 82 illustrates the measurement using a second short circuit. A delay between the first curve w and the second curve 82 reaches approximately 1 〇〇 1) 8, which can be observed by the two points at which the first curve 81 and the two curve 82 intersect the time axis 1. The delay is approximately 650 ps for the first curve 81 and approximately 75 对于 for the second curve.

第10圖顯示一直方圖,該直方圖說明了使用如第7a 圖、第7b圖及第8圖所示之彈簧銷針的—測試器之—量測的& 可重複性。該圖說明了在-職2記憶體元件上執行的'兩個 連續的FXDL量測之差的結果。麵個連續的Fxdl量測之 時間差繪示在一時間軸t與一取樣軸上。該取樣軸表示藉由 該FXDL量測所量測之該DDR2裝置的銷針之鱗針:。曰差 值量測繪示了差值時間0、80、-40或_8〇ps。該量剩顯干了 -非常好的可重複性,大錄缝下縣值達則秒^有 時會出現一40或8〇Ps的錯誤。該量測可被用於校^測試裝 置之目的。 μ 、 以上第10圖所示的問題顯示了銷針中可能存在一 + 要的電感部分且可被用於有特定意圖的目的 J曰的啫如一抗反射 電路。 在簡短顯示了用於在該DUT及該測試頭之間提供連接 介面的該等彈簧銷針增加了該匹配問題的複雜度後進一 22 201024739 步由在DUT及傳輸線之間的阻抗失配而產生的問題將予以 説明。 第11圖顯示了一時域反射(TDR)圖,該TDR圖在終端為 一平面ODT(内置於晶片之終端)負載之一受測元件處量測 得到。一脈衝經該傳輸線傳送至該受測元件,且接著被該 受測元件的ODT負載反射。該TDR圖說明了該反射在2118時 開始並且持續直至大約3.5ns時為止。 第12圖顯示了 一信號的眼圖,該信號由在5〇〇Mbps下量 測一受測元件之一測試配置裝置内接收。來自TDR接收器 的數位信號對應於使用如第11圖所示的測試配置裝置量測 得到的信號。然而,該數位信號被重複取樣並被施加於一 示波器的垂直軸輸入,從而該信號代表波幅,而一位元時 鐘信號被用於觸發該示波器的水平掃描。該產生的示波器 輸出如第12圖所示被稱為眼圖。可見,可藉由該tdr量測 觀測到的如第11圖所示的反射導致該眼型的閉合或收縮。 在時間區間90期間,該反射對應於該眼型的失真,其中一 資料位元的持續時間由時間區間91代表。該反射的持續時 間90對應於第丨丨圖所示的反射之持續時間且其範圍從大約 1.7ns到大約2.3ns。這對於要嚴重干擾持續時間大約2ns的該 眼圖而言已經足夠長了。為了使用該測試配置裝置執行一 精確量測,需要一較短的取樣時間,例如可能需要 250Mbps,而與該應用不再相關。 第13a圖顯示以一内置於晶片之終端(〇DT)負載仿真 101為終端之一習知的SMA配接器100的示意性截面圖。該 23 201024739 内置於晶片之終端負載仿真ιοί包含並聯一電阻i〇3的一電 容102。本例中的該電容1〇2的值為llpF且由一 10pF的第一 電容器104及一lpF的第二電容器105並聯而實現。該電阻 103由兩100 Ω的電阻器106並聯而實施。該等電阻器106及 該等電容器104、105為離散裝置諸如,例如,SMD元件。 該内置於晶片之終端101利用例如焊接的方法附著到該 SMA配接器100。 第13b圖顯示了用如第13a圖所示的以該内置於晶片之 終端(ODT)負載終端1 〇 1為終端的該SMA配接器纜線100的 一等效電路圖。該等效電路圖包含一 11 pF的電容102與一 50 Ω的電阻103之並聯。該具有ODT負載仿真的SMA配接器 纜線100可被用於説明目的以説明一電阻性内置於晶片之 終端與一寄生電容並聯而作為該受測元件終端的結果。該 内置於晶片之終端負載仿真101用於顯示與例如,以一整合 的内置於晶片之終端為終端的一記憶體元件相同的電氣特 性。 第14圖顯示了以如第i3a圖所示的該〇DT負載終端作 為終端的該SMA配接器纜線100的一反射因數的一極點 圖。該極點圖以S參數S11的絕對值說明該反射因數r。S參 數為描述線性電氣網路當經歷各種小信號穩態激勵時的該 電氣行為之特性。網路或元件的很多的電氣特性可用S參數 來表示’諸如對應於S參數S11的該反射係數r。5參數大多 應用於運行在射頻及微波頻率下的網路,其中信號的功率 及能量因素較電流及電壓更容易量化。由於s參數隨著量測 201024739 頻率而變化,因此對於所述任何s參數量測而言’除了該特 徵阻抗或系統阻抗之外,量測頻率也必須被包括。該等四 個s參數可使用一網路分析器測得。S11為輸入埠的電壓反 射係數,S12為反向電壓增益,S21為前向電壓增益且S22 為輸出瑋的電壓反射係數。在依據第14圖的極點圖中,該S 參數S11依據量測頻率被顯示出來。以直流(DC)頻率開始’ 該S11參數對應於為〇的反射參數,這表明如第13a圖所示的 ^ 該SMA配接器纔線1〇〇匹配於如第13b圖所示的該ODT負 載。對於DC頻率,該SMA配接器纜線100之阻抗為50Ω,對 % - 應於該ODT負載的DC阻抗50Ω。對於較高的直至1GHz的頻 / 率’該反射參數增大,對應於如第13b圖所示的該ODT負載 中的電容器102的影響。對於非零頻率情況,來自該〇dt負 載的該等反射不可以被忽略。多個接頭點連接到共用線, 該等接頭點 下面的例子說明了當多於一個的DUT連接到一個測試 ^ 頭通道或測试頭銷針競爭一或多個接頭時,諸如DUT以沿 作為終端的一共用傳輸線分佈的接頭點而連接於該共用傳 輪線以得到一菊鏈時,阻抗失配增加而產生的該量測問題 第15圖顯不了無元件加載之用於記憶體元件的一菊鍵 測試配置裝置測得的-咖圖。該TDR圖是在由四個duT 之間共用的-位址線上量測得到。可見在lns與3ns之間的 許多回波,該等回波由自連接到該等個別的記憶體元件介 面的位址線的分支的無負載端的所接收的反射產生。這些 回波會干擾到一精確量測。 25 201024739 第16圖顯示了使用一已在菊鏈的所有位點加載DDR2 記憶體元件的菊鏈測試配置裝置測得的一TDR圖。與第15 圖所示的無記憶體元件負載的實例相比,如第16圖所示的 圖式顯示了由於附加的電容性負載而因該等DDR2記憶體 元件導致的一更高程度的反射。反射發生在Ins到大約4.5ns 的時間之間。 第17圖顯示了一測試配置裝置的一部分,包含多個 DUT以及透過一分支節點將該等DUT共同連接至一共用測 試頭銷針的電路板120。特別地’該板120包含一分支節點 121,第一及第二導線122及123連接到該節點121上,該等 導線122及123中的每一個連接到受測元件124及125中的另 一個,且該板120包含一共用的(信號饋入)傳輸線127,其延 伸到一裝置測試器的介面或一裝置測試器的測試頭。該共 用傳輸線127典型地具有與該等導線122及123不同的阻 抗。該傳輸線127包含例如阻抗Z!,等於50Ω。該等第一與 第二受測元件124及125可具有與一例如1.5 pF之電容並聯 的一60 Ω之ODT終端。如所述,該電路板120提供用於一裝 置測試器的一測試介面126。由於該等受測元件的60Ω,即 使該等輸出線122、123的阻抗為Z2 = 60 Ω,也不再會滿足 消去需求。該等受測元件124及125為例如具有一60 Ω實部 阻抗的GDDR5記憶體元件。 如何設定該等導線122及123的阻抗值的問題在第18圖 中得到解答。第18圖顯示了如第17圖所示的該電路板的一 電路圖’具有對稱的結構。該第一導線122及該第二導線123 201024739 包含一阻抗Zz= 100 Ω。該第一受測元件131包含例如與15 pF並聯之一 120 Ω電阻。該第二受測元件132也包含與1.5 pF 並聯之一 120 Ω電阻。由於該對稱性條件,該分支節點121 以該等均具有一 100 Ω阻抗的兩導線122、123為終端,其等 即產生50 Ω之分支節點121的等效終端。該分支節點121面 對該測試器的一侧以50 Ω匹配且面對DUT的一側以50 Ω匹 配,藉此該分支節點121不發生反射。反射只會由具有與該 等分支122及123的阻抗100 Ω不同的阻抗的該等受測元件 131及132發生,藉此來自兩受測元件131、132的反射傳輸 到該分支節點121。然而,一DUT例如131的該反射被另一 DUT例如132的反射信號消去了,在節點121處折射進入該 分支122。此消去效應就是該配置裝置不會發生多次反射的 原因。但是它一般要求Z2的值為Zl的值的兩倍。由於該電 路板120的對稱結構以及傳輸線127和測試介面126之間的 阻抗匹配’僅發生一個反射且其在兩個分支中被消去,而 不產生多個反射回波。因此,該板120允許高的量測精確度 的GDDR5記憶體元件的量測。 然而,反射的消去並不是容易實現的。第19圖顯示了 一如第17圖所示的電路板120的電路圖,該電路說明了反射 消去的條件。當一具有一特性阻抗的導線連接於具有另一 特性阻抗的另一導線時發生多個反射。該第一個分支線122 具有特性阻抗Z2 ’連接於一具有特性阻抗Z的一第一受測元 件133。若該特性阻抗&不等於該特性阻抗z,在該第一分 支線122與該第一受測元件133之間發生一反射rxl。若該具 27 201024739 有特f生阻抗乙2第二分支線123連接於_具有特性阻抗z的第 二受測元件m,其巾該雜阻抗2不特轉性阻抗&, 在該第二分支線12 3及該第二受測元件13 4之間發生一反射 Γγ1。若信號傳輸線127的特性阻抗Z1不同於特性阻抗心,在 該分支節點121處也會發生反射。例如,一電波由該測試器 發送至傳輸線127,該信號中一相等的部分折射入該等分支 線122及123且另一部分被反射回該測試器。假設該測試器 與該阻抗Z1匹配,那麼該反射部分被該測試器完全吸收。 然而,該折射部分沿著該等分支122及123向該133 Φ 及134傳播。因為該等DUT 133及134的輸入阻抗2幾乎無法 · 匹配於該等分支線122及123,故發生係數分別為rxl及ryl * 的反射。來自該等DUT的反射波向該分支或分叉節點121傳 播。此處的阻抗也不匹配該分支線阻抗。因此對於分支線 122的情況’該信號的一部分rx2又被反射向該DUT 133且另 一部分折射入該饋送線127及另一分支線123。然而,同樣 的情況發生在支線123上。此處該部分by2折射入另一分支 線且該部分by2折射入該饋送線127。可顯示出來若Z2的值 Ο 為Z1的值的兩倍,那麼rx2與byl具有相同的量值但是有不 同的符號,因此相互消去。這意味著不會發生更多的反射。 然而,這需要兩個分支就阻抗及長度而言完美對稱。 第20a圖顯示了上文已經提到的的菊鏈測試配置裝置 之一電路圖。該設備使用一菊鏈共用拓撲來量測受測元 件。該菊鏈共用拓撲尤其適用於高速記憶體的測試,諸如 適用於在一相同的測試步驟中量測多數個記憶體元件。 28 201024739 一元件測試器140透過一測試介面141連接到—傳輸線 ?^1上’該傳輸線尺71具有一特徵阻抗2(例如50〇11111)。這條 傳輸線以它的末端為終端,藉此不發生反射。該終端用— 匹配電阻器xy2及一接地155的終端電源xy3而實現。該傳輪 線現在在xy4、xy5、xy6及xy7點進行接頭量測。該等具有 一特性輸入電容143的受測元件透過短線(stub)(短傳輸線, 例如連接孔(via))連接到該等接頭處並因此使該傳輸線xyl 上的理想的信號傳輸失真。在每一個接頭處會發生反射, 因為該輸入電容以及該等短線的電容性行為分別在第一時 間或非常高的頻率上產生如短路一樣的作用。 一反射圖156說明了離自該等短線152及源於各自受測 元件DUT1-DUT4之寄生輸入電容143的各自的分支節點 145、146、148、150處的反射。在該等受測元件中的每一 個,發生一反射,導致前一個DUT所經歷之信號的一失真。 (該測試器並不用於評估該信號,其用於驅動。) 第20b圖顯示了使用如第20a圖所示的該習知的測試配 置裝置進行量測得到的一 TDR圖。該TDR圖說明了第一受 測元件DUT1所經歷之信號。這個信號包含三個反射’一第 一反射160對應於來自第二受測元件DUT2的一反射’一第 二反射161對應於來自第三受測元件DUT3的一反射且一第 三個反射162對應於來自第四受測元件DUT4的反射。該測 試器140之輸入阻抗及該終端阻抗153適當匹配於該等輸入 線的50 Ω,因此沒有反射發生。 第21a圖顯示了測試信號的一時序圖。四個測試信號 29 201024739 v(10)、v(ll)、V(12)、V(13)在一測試配置裝置處被接收, 該測試配置裝置使用一菊鏈共用拓撲以使用取樣頻率為 2.5Gbps的一偽隨機二進制序列(PRBS)來測試DDR記憶體 元件。該菊鏈共用拓撲為一By-4共用拓撲包含四個受測元 件,每個受測元件具有一 1.5 pF的負載阻抗及30 ps的接頭 短線。由於自第20a圖中所示的元件測試器140最初發送的 測试彳§號的反射,在第21a圖的該時序圖中可看到在各自的 受測元件接收到的信號包含許多來自相鄰的受測元件的反 射。由於來自相鄰的受測元件的反射’該等接收到的信號 v(10)、v(ll)、v(i2)、v(13)包含原始發送的測試信號中從 相鄰受測元件反射的信號分量。這導致了在該等DUT的輸 入端所經歷之失真。在該等DUT所經歷之該等信號顯示了 · 一振鈴,該振鈐衰減至目標規劃化值0.8 V。 第21b圖顯示了對應於作為第21a圖之基礎的一測試信 號的一眼圖。該眼圖說明了依據如第2〇a圖中所示之該測試 配置裝置於第一受測元件DUT1處接收到的測試信號 v(l〇)。由於相鄰受測元件的反射導致的該接收到的測試信 〇 號ν(10)的失真,該眼圖中的眼睛幾乎閉合。該接收的測試 信號ν(1〇)的過量(oversh〇〇t)和欠量(undershoot)使得該眼圖 失真導致眼睛閉合。 由上述圖式可看到’量測包含決定受測元件之輸入阻 抗的特定的寄生電容及電阻之受測元件會由於反射而導致 問題而降低量測的靈敏度。該等反射可能由於該等受測元 件的該輸入阻抗到連接於該元件測試器的該傳輸線的一失 30 201024739 調(miss-adjustment)產生。在其中多於一個的受測元件連接 到一個測試通道或一個測試介面(諸如以例如一菊鏈拓撲) 之一測試配置裝置的情況中,反射也可能自相鄰的受測元 件之反射而發生。特別是對於諸如例如GDDR5記憶體元件 之新世代記憶體元件所需之較高的取樣頻率,精確量測變 得幾乎不可能。需要解決方法來消除不想要的反射以使得 受測元件的高精確度量測變得容易。 本發明的一些實施例透過提供一測試配置裝置以解決 上文所提到的問題,該測試配置裝置包含一用於一受測元 件的介面,該介面包含一阻抗匹配電路且該阻抗匹配電路 包含一電阻與一電感並聯。 進一步,本發明的一些實施例提供一彈簧銷針,該彈 簧銷針包含導電材料之一第一套筒、導電材料之一第二套 筒、電阻性材料之一管筒及導電材料之一彈簀。該電阻性 材料之管筒、該第一套筒及該第二套筒沿一共用軸可滑動 地相互附接,其中該管筒被安排在該第一及第二套筒之 間。該彈簧係用於將第一及第二管筒向外分開。該彈簧銷 針形成了一主要由該彈簧形成的電感與一主要由該管筒形 成的電阻之一並聯連接。 本發明的一些實施例包含一彈簧銷針,該彈簧銷針包 含導電材料之一第一套筒、導電材料之一第二套筒、絕緣 材料之一管筒、導電材料之一彈簧及一彈性電阻性元件。 該第一套筒、該第二套筒及該管筒沿一共用軸可滑動地相 互附接,其中該管筒被安排在該第一及第二套筒之間。該 31 201024739 彈簧用於將第一及第二管筒向外分開。該彈性元件包含沿 該共用軸附接在該第一及該第二套筒之間的一電阻性材 料。該彈簧銷針形成了主要由該彈簧形成的產生電感器作 用的一電感與主要由該彈性體元件形成的一電阻的一並聯 連接。 本發明之一進一步的實施例包含一彈簧銷針,該彈簧 銷針包含一彈性體本體,該彈性體本體具有一主縱向轴; 及導電材料之嵌入在該彈性體本體中以在該彈性體本體的 頂表面及底表面之間沿該主縱向軸延伸的線。該彈簧銷針 受組配以形成二者均由該等線形成的一電感與一電容的一 並聯連接。 本發明一些實施例之大體想法為建構一包含一彈簧銷 針的測試配置裝置以使當該彈簧銷針連接在該DUT及該連 接傳輸線之間時該輸入阻抗匹配該線阻抗。在這樣的情況 下不發生反射。由於一受測元件的輸入阻抗通常為電容性 的,本發明之實施例提供一阻抗匹配電路,該阻抗匹配電 路包含-電阻與-電感並聯以匹配受測元件的該通常為電 容性的輸人阻抗。因此,依據這些實關,通常被視為有 害的該等彈簧銷針之特性就變成了優點並加以實施利用。 更確切地6兒’包含-彈簧的彈簧銷針提供—電感性彈菁線 圈。通常,其被解譯為-寄生元件。然而,依據這些實施 例’這個钱被詩組成—阻抗匹配電路的—部分。因此 該彈簧銷針削於形成-電感及—歐姆電阻以提供一阻抗 匹配電路’雜抗匹配電路可被置於緊靠該酣的附近處。 32 201024739 本發明之一些實施例基於如下想法,即一具有提升的 匹配性能的阻抗匹配電路可被獲得,當該阻抗匹配電路具 有一等於該受測元件的輸入阻抗之電阻值的電 %疋,例如在± 10 %之容差範圍以内,及一等於該受測元件的輪入阻广之 電陴值的平方乘該受測元件的輸入阻抗之電容值的電咸, 諸如例如在±10%之容差範圍以内時。 第22a圖顯示了一傳輸通過如第2a圖所示的光學介質 的光的波圖,然而,其中該光學介質在其上具有抗反射塗 Φ 層材料之一光學薄膜。該光學介質為,例如,一高反射玻 璃。該塗層材料使反射最小化。 ' 本發明之一些實施例之一大體的想法是將這個思想從 . 光學轉移到電學的領域中。當如第22a圖所示的該光波2〇傳 輸通過一光學介質諸如,例如,具有與空氣折射指數如不 同的折射係數⑴的玻璃’其中ηι > n〇且該玻璃具有_抗反射 耋層材料之薄層21時,可降低該玻璃的反射率。透過該抗 反射塗層材料之薄層21,其中該抗反射塗層材料之薄層21 ® 具有〜在該空氣折射指數n〇及該玻璃折射指數〜之間的一 折射指數,該光束20反射兩次:即一次從空氣與八虹層21 之間的表面處反射,一次從ARC層21到玻璃22的介面處反 射。可以證明在ARC層21的折射指數為一特定最佳值時, 兩個介面的透射率相等,且這對應於該玻璃的最大總透射 率。這個最佳值由兩周圍指數的幾何平均給出:Figure 10 shows a histogram illustrating the & repeatability of the -tester using the spring pins as shown in Figures 7a, 7b and 8. The figure illustrates the results of the difference between the two consecutive FXDL measurements performed on the -2 memory component. The time difference of a continuous Fxdl measurement is plotted on a time axis t and a sampling axis. The sampling axis represents the scale needle of the pin of the DDR2 device measured by the FXDL measurement. The 曰 difference value measurement shows the difference time 0, 80, -40 or _8 〇 ps. The amount is left to dry up - very good repeatability, the county value of the big recording seam is up to seconds ^ sometimes there will be a 40 or 8 〇 Ps error. This measurement can be used for the purpose of the test device. μ, the problem shown in Figure 10 above shows that there may be a + inductive part of the pin and can be used for purposes with a specific intent, such as an anti-reflection circuit. The short display of the spring pins for providing a connection interface between the DUT and the test head increases the complexity of the matching problem. The second step 201024739 is generated by the impedance mismatch between the DUT and the transmission line. The issue will be explained. Figure 11 shows a time domain reflectometry (TDR) map measured at one of the components under test for a planar ODT (terminal built into the wafer). A pulse is transmitted through the transmission line to the device under test and is then reflected by the ODT load of the device under test. The TDR map illustrates that the reflection starts at 2118 and lasts until approximately 3.5 ns. Figure 12 shows an eye diagram of a signal received by a test configuration device that measures one of the components under test at 5 Mbps. The digital signal from the TDR receiver corresponds to the signal measured using the test configuration device as shown in FIG. However, the digital signal is oversampled and applied to the vertical axis input of an oscilloscope such that the signal represents amplitude and the one-bit clock signal is used to trigger horizontal scanning of the oscilloscope. The resulting oscilloscope output is referred to as an eye diagram as shown in Figure 12. It can be seen that the reflection as shown in Fig. 11 observed by the tdr measurement causes the closure or contraction of the eye pattern. During time interval 90, the reflection corresponds to the distortion of the eye pattern, wherein the duration of a data bit is represented by time interval 91. The duration 90 of the reflection corresponds to the duration of the reflection shown in Figure 且 and ranges from about 1.7 ns to about 2.3 ns. This is long enough for the eye diagram to be severely disturbed for a duration of approximately 2 ns. In order to perform an accurate measurement using the test configuration device, a shorter sampling time is required, for example 250 Mbps may be required, and is no longer relevant to the application. Figure 13a shows a schematic cross-sectional view of a conventional SMA adapter 100 with one terminal built into the wafer (〇 DT) load simulation 101 as a terminal. The 23 201024739 terminal load emulation ιοί built into the chip includes a capacitor 102 connected in parallel with a resistor i〇3. The value of the capacitor 1 〇 2 in this example is llpF and is realized by a parallel connection of a 10 pF first capacitor 104 and an lpF second capacitor 105. This resistor 103 is implemented by connecting two 100 Ω resistors 106 in parallel. The resistors 106 and the capacitors 104, 105 are discrete devices such as, for example, SMD components. The terminal 101 built into the wafer is attached to the SMA adapter 100 by, for example, soldering. Fig. 13b shows an equivalent circuit diagram of the SMA adapter cable 100 terminated with the end-of-wafer terminal (ODT) load terminal 1 〇 1 as shown in Fig. 13a. The equivalent circuit diagram includes a 11 pF capacitor 102 in parallel with a 50 Ω resistor 103. The SMA adapter cable 100 with ODT load emulation can be used for illustrative purposes to illustrate the result of a resistive built-in termination of the wafer in parallel with a parasitic capacitance as a termination of the device under test. The terminal load emulation 101 built into the chip is used to display the same electrical characteristics as, for example, a memory component terminated by an integrated terminal built into the chip. Figure 14 shows a pole view of a reflection factor of the SMA adapter cable 100 with the DT load terminal as shown in Figure i3a. The pole map illustrates the reflection factor r with the absolute value of the S parameter S11. The S parameter is a characteristic that describes the electrical behavior of a linear electrical network when subjected to various small signal steady state excitations. Many of the electrical characteristics of the network or component can be represented by S-parameters such as the reflection coefficient r corresponding to the S-parameter S11. Most of the 5 parameters are applied to networks operating at RF and microwave frequencies, where the power and energy of the signal are easier to quantify than current and voltage. Since the s-parameter varies with the frequency of the measurement 201024739, the measurement frequency must be included in addition to the characteristic impedance or system impedance for any of the s-parameter measurements. These four s parameters can be measured using a network analyzer. S11 is the voltage reflection coefficient of the input ,, S12 is the reverse voltage gain, S21 is the forward voltage gain, and S22 is the voltage reflection coefficient of the output 玮. In the pole diagram according to Fig. 14, the S parameter S11 is displayed in accordance with the measurement frequency. Starting with a direct current (DC) frequency, the S11 parameter corresponds to a reflection parameter of 〇, which indicates that the SMA adapter line 1〇〇 as shown in Fig. 13a matches the ODT as shown in Fig. 13b. load. For DC frequencies, the impedance of the SMA adapter cable 100 is 50 Ω, and the DC impedance of the ODT load is 50 Ω. This reflection parameter increases for higher frequency/rates up to 1 GHz, corresponding to the effect of capacitor 102 in the ODT load as shown in Figure 13b. For non-zero frequency conditions, such reflections from the 〇dt load may not be ignored. Multiple connector points are connected to the common line. The following examples illustrate when more than one DUT is connected to a test head channel or the test head pins compete for one or more joints, such as the DUT When the joint point of a common transmission line of the terminal is connected to the common transmission line to obtain a daisy chain, the measurement problem caused by the increase of the impedance mismatch is shown in FIG. 15 showing the component-free loading for the memory element. A daisy-key test configuration device measured - coffee chart. The TDR map is measured on the - address line shared between the four duTs. A number of echoes between lns and 3 ns are seen which are generated by the received reflections from the unloaded ends of the branches of the address lines connected to the individual memory element interfaces. These echoes can interfere with an accurate measurement. 25 201024739 Figure 16 shows a TDR plot measured using a daisy chain test configuration device that has loaded DDR2 memory components at all sites of the daisy chain. Compared to the example of the no-memory component load shown in Fig. 15, the pattern shown in Fig. 16 shows a higher degree of reflection due to the DDR2 memory components due to the additional capacitive load. . Reflection occurs between Ins and approximately 4.5 ns. Figure 17 shows a portion of a test configuration device that includes a plurality of DUTs and a circuit board 120 that commonly connects the DUTs to a common test pin pin through a branch node. In particular, the board 120 includes a branch node 121 to which the first and second conductors 122 and 123 are connected, each of the conductors 122 and 123 being coupled to the other of the devices under test 124 and 125. And the board 120 includes a common (signal fed) transmission line 127 that extends to the interface of a device tester or to the test head of a device tester. The common transmission line 127 typically has a different impedance than the conductors 122 and 123. The transmission line 127 contains, for example, an impedance Z! equal to 50 Ω. The first and second devices under test 124 and 125 can have a 60 Ω ODT termination in parallel with a capacitance of, for example, 1.5 pF. As described, the circuit board 120 provides a test interface 126 for a device tester. Due to the 60 Ω of the elements under test, even if the impedance of the output lines 122, 123 is Z2 = 60 Ω, the elimination requirement is no longer satisfied. The devices 12 and 125 to be tested are, for example, GDDR5 memory elements having a 60 Ω real impedance. The problem of how to set the impedance values of the wires 122 and 123 is answered in Fig. 18. Fig. 18 shows a circuit diagram of the circuit board as shown in Fig. 17 having a symmetrical structure. The first wire 122 and the second wire 123 201024739 comprise an impedance Zz=100 Ω. The first device under test 131 comprises, for example, a 120 Ω resistor in parallel with 15 pF. The second device under test 132 also includes a 120 Ω resistor in parallel with 1.5 pF. Due to the symmetry condition, the branch node 121 terminates with the two wires 122, 123 each having an impedance of 100 Ω, which is equivalent to the equivalent terminal of the branch node 121 of 50 Ω. The branch node 121 is matched with 50 Ω on one side of the tester and 50 Ω on the side facing the DUT, whereby the branch node 121 does not reflect. The reflections will only occur by the elements 14 and 132 having an impedance different from the impedance of the branches 122 and 123 by 100 Ω, whereby reflections from the two elements under test 131, 132 are transmitted to the branch node 121. However, this reflection of a DUT, e.g., 131, is cancelled by the reflected signal of another DUT, such as 132, which is refracted into the branch 122 at node 121. This erasing effect is the reason why the configuration device does not have multiple reflections. But it generally requires that the value of Z2 be twice the value of Zl. Due to the symmetrical structure of the circuit board 120 and the impedance matching between the transmission line 127 and the test interface 126, only one reflection occurs and it is eliminated in both branches without generating a plurality of reflected echoes. Thus, the board 120 allows for high measurement accuracy measurements of GDDR5 memory components. However, the elimination of reflection is not easy to achieve. Fig. 19 shows a circuit diagram of the circuit board 120 as shown in Fig. 17, which illustrates the conditions of reflection cancellation. Multiple reflections occur when a wire having a characteristic impedance is connected to another wire having another characteristic impedance. The first branch line 122 has a characteristic impedance Z2' coupled to a first device under test 133 having a characteristic impedance Z. If the characteristic impedance & is not equal to the characteristic impedance z, a reflection rx1 occurs between the first branch line 122 and the first device under test 133. If the 27 201024739 has a special impedance b 2, the second branch line 123 is connected to the second measured component m having the characteristic impedance z, and the impurity impedance 2 is not the special impedance & A reflection Γγ1 occurs between the branch line 12 3 and the second device under test 13 4 . If the characteristic impedance Z1 of the signal transmission line 127 is different from the characteristic impedance center, reflection also occurs at the branch node 121. For example, a wave is sent by the tester to transmission line 127 where an equal portion is refracted into the branch lines 122 and 123 and another portion is reflected back to the tester. Assuming that the tester matches the impedance Z1, the reflected portion is completely absorbed by the tester. However, the refracting portion propagates along the branches 122 and 123 toward the 133 Φ and 134. Since the input impedances 2 of the DUTs 133 and 134 are almost impossible to match the branch lines 122 and 123, the reflections of the coefficients rxl and ryl* occur, respectively. Reflected waves from the DUTs are propagated to the branch or fork node 121. The impedance here does not match the branch line impedance. Thus, for the case of branch line 122, a portion of the signal rx2 is reflected to the DUT 133 and another portion is refracted into the feed line 127 and the other branch line 123. However, the same situation occurs on the branch line 123. Here, the portion by2 is refracted into another branch line and the portion by2 is refracted into the feed line 127. It can be shown that if the value of Z2 is twice the value of Z1, then rx2 has the same magnitude as byl but has different signs and therefore cancels each other. This means that no more reflections will occur. However, this requires two branches to be perfectly symmetric in terms of impedance and length. Figure 20a shows a circuit diagram of the daisy chain test configuration device already mentioned above. The device uses a daisy-chain shared topology to measure the measured component. This daisy chain sharing topology is particularly suitable for testing high speed memory, such as for measuring a plurality of memory elements in the same test step. 28 201024739 A component tester 140 is coupled through a test interface 141 to a transmission line 117. The transmission line 71 has a characteristic impedance 2 (e.g., 50 〇 11111). This transmission line is terminated with its end so that no reflection occurs. The terminal is implemented by a matching resistor xy2 and a terminal power supply xy3 of a ground 155. The transmission line now performs joint measurement at xy4, xy5, xy6, and xy7 points. The devices under test having a characteristic input capacitance 143 are connected to the connectors via stubs (short transmission lines, such as vias) and thereby distort the desired signal transmission on the transmission line xyl. Reflection occurs at each joint because the input capacitance and the capacitive behavior of the short lines produce a short-circuit effect at the first time or at a very high frequency, respectively. A reflection 156 illustrates the reflections from the respective branch nodes 145, 146, 148, 150 from the short lines 152 and the parasitic input capacitances 143 from the respective device under test DUT1-DUT4. At each of the tested components, a reflection occurs, resulting in a distortion of the signal experienced by the previous DUT. (The tester is not used to evaluate the signal for driving.) Figure 20b shows a TDR map measured using the conventional test configuration device as shown in Figure 20a. This TDR diagram illustrates the signal experienced by the first device under test DUT1. This signal contains three reflections. A first reflection 160 corresponds to a reflection from the second device under test DUT2. A second reflection 161 corresponds to a reflection from the third device under test DUT3 and a third reflection 162 corresponds to The reflection from the fourth device under test DUT4. The input impedance of the tester 140 and the termination impedance 153 are suitably matched to 50 Ω of the input lines, so no reflection occurs. Figure 21a shows a timing diagram of the test signal. Four test signals 29 201024739 v(10), v(ll), V(12), V(13) are received at a test configuration device that uses a daisy chain sharing topology to use a sampling frequency of 2.5. A pseudo-random binary sequence (PRBS) of Gbps is used to test DDR memory components. The daisy chain sharing topology is a By-4 shared topology comprising four elements under test, each of the tested components having a load impedance of 1.5 pF and a stub of 30 ps. Due to the reflection of the test 彳§ number originally sent by the component tester 140 shown in Fig. 20a, it can be seen in the timing diagram of Fig. 21a that the signals received at the respective devices under test contain many phases. Reflection of adjacent test elements. Due to reflections from adjacent test elements, the received signals v(10), v(ll), v(i2), v(13) contain reflections from adjacent test elements in the originally transmitted test signal. Signal component. This results in distortion experienced at the input of the DUTs. The signals experienced by the DUTs show a ringing that decays to a target planning value of 0.8V. Fig. 21b shows an eye diagram corresponding to a test signal which is the basis of Fig. 21a. The eye diagram illustrates the test signal v(l〇) received at the first device under test DUT1 in accordance with the test configuration device as shown in Fig. 2a. The eye in the eye is almost closed due to distortion of the received test signal ν (10) due to reflection from adjacent elements under test. The excess (oversh〇〇t) and undershoot of the received test signal ν(1〇) causes the eye pattern to be distorted resulting in eye closure. As can be seen from the above figure, measuring the measurement element including the specific parasitic capacitance and resistance which determine the input impedance of the device under test may cause a problem due to reflection and reduce the sensitivity of the measurement. The reflections may be due to a loss-adjustment of the input impedance of the tested elements to the transmission line connected to the component tester. In the case where more than one of the devices under test is connected to one of the test channels or one of the test interfaces (such as, for example, a daisy-chain topology), the reflections may also occur from reflections of adjacent test elements. . Especially for the higher sampling frequencies required for new generation memory components such as, for example, GDDR5 memory components, accurate measurement becomes almost impossible. A solution is needed to eliminate unwanted reflections to make high-accuracy measurements of the device under test easier. Some embodiments of the present invention address the above mentioned problems by providing a test configuration apparatus including an interface for a device under test, the interface including an impedance matching circuit and the impedance matching circuit including A resistor is connected in parallel with an inductor. Further, some embodiments of the present invention provide a spring pin comprising a first sleeve of a conductive material, a second sleeve of a conductive material, a tube of a resistive material, and a conductive material. Hey. The tube of the resistive material, the first sleeve and the second sleeve are slidably attached to each other along a common axis, wherein the tube is disposed between the first and second sleeves. The spring is used to separate the first and second tubes outwardly. The spring pin forms an inductance formed primarily by the spring in parallel with one of the resistors formed primarily by the barrel. Some embodiments of the present invention comprise a spring pin comprising a first sleeve of electrically conductive material, a second sleeve of electrically conductive material, a tube of insulating material, a spring of electrically conductive material, and an elastic Resistive component. The first sleeve, the second sleeve, and the barrel are slidably attached to each other along a common shaft, wherein the tube is disposed between the first and second sleeves. The 31 201024739 spring is used to separate the first and second tubes outward. The resilient member includes a resistive material attached between the first and second sleeves along the common axis. The spring pin forms a parallel connection of an inductor formed primarily by the spring to create an inductor and a resistor formed primarily by the elastomeric member. A further embodiment of the invention includes a spring pin comprising an elastomer body having a main longitudinal axis; and a conductive material embedded in the elastomer body for the elastomer A line extending between the top surface and the bottom surface of the body along the main longitudinal axis. The spring pins are assembled to form a parallel connection of an inductor formed by the lines to a capacitor. The general idea of some embodiments of the present invention is to construct a test configuration device including a spring pin such that the input impedance matches the line impedance when the spring pin is coupled between the DUT and the connection transmission line. In such a case, no reflection occurs. Since the input impedance of a device under test is typically capacitive, embodiments of the present invention provide an impedance matching circuit that includes a resistor-inductor in parallel to match the generally capacitive input of the device under test. impedance. Therefore, based on these realities, the characteristics of these spring pins, which are generally considered to be harmful, become advantages and are utilized. More precisely, the 6-inclusive spring-loaded pin provides an inductive elastomeric coil. Typically, it is interpreted as a parasitic element. However, according to these embodiments, the money is composed of poems - part of the impedance matching circuit. Thus the spring pin is cut to form an inductor and - the ohmic resistor to provide an impedance matching circuit. The hybrid impedance matching circuit can be placed in close proximity to the turn. 32 201024739 Some embodiments of the present invention are based on the idea that an impedance matching circuit with improved matching performance can be obtained when the impedance matching circuit has an electrical % 等于 equal to the resistance value of the input impedance of the device under test, For example, within a tolerance of ± 10%, and a square of the electrical enthalpy value equal to the wheel-in resistance of the device under test multiplied by the capacitance of the input impedance of the device under test, such as, for example, ±10% When the tolerance is within the range. Figure 22a shows a wave diagram of light transmitted through an optical medium as shown in Figure 2a, however, wherein the optical medium has an optical film of an anti-reflective coating material thereon. The optical medium is, for example, a highly reflective glass. This coating material minimizes reflection. The general idea of one of the embodiments of the present invention is to transfer this idea from the field of optics to the field of electricity. When the light wave 2〇 as shown in Fig. 22a is transmitted through an optical medium such as, for example, a glass having a refractive index (1) different from an air refractive index, such as ηι > n〇 and the glass has an anti-reflective layer When the thin layer 21 of material is used, the reflectance of the glass can be lowered. Passing through the thin layer 21 of the anti-reflective coating material, wherein the thin layer 21 ® of the anti-reflective coating material has a refractive index between the air refractive index n 〇 and the glass refractive index 〜, the light beam 20 reflects Twice: that is, one reflection from the surface between the air and the eight-ion layer 21, and one reflection from the interface of the ARC layer 21 to the glass 22. It can be shown that when the refractive index of the ARC layer 21 is a certain optimum value, the transmittances of the two interfaces are equal, and this corresponds to the maximum total transmittance of the glass. This optimal value is given by the geometric mean of the two surrounding indices:

Vvi 0 舉例而言,玻璃具有一折射指數大約為⑴=L5且空氣 33 201024739 具有折射指數n〇 = 1,這個最佳折射指數約為nARc =丨225。 空氣與玻璃之間的中間介質塗層(抗反射塗層,Arc)可降低 反射損失。 將光學抗反射塗層的思想轉移到電學領域中繪示在第 22b圖中。第22b圖顯示了一信號圖,該信號圖為電傳輸線 Z〇以該受測元件DUT的終端阻抗Zin為終端,Zin與該傳輸線 的阻抗Z〇不等’根據該發明之一實施例,具有一抗反射電 路(阻抗匹配電路)200連接於該傳輸線2〇1及該受測元件2〇2 之間。該ARC電路200為該等兩電氣介質即傳輸線及該受測 元件的終端阻抗之間的類比元件,類比於該等兩光學介質 即第22a圖中的空氣及玻璃之間的該抗反射塗層材料之薄 層21。該抗反射塗層電路2〇〇可被設計以包含一在該傳輪線 201的反射指數及該受測元件的終端阻抗202的反射指數之 間的一反射指數。該ARC電路200可被設計以透過抑制電波 203的反射,使電波203流經該傳輸線201到達該終端阻抗 202。一適當調整的ARC電路200將該電波203的反射抑制約 99 %藉此該電波203的能量被傳送到該受測元件的該終端 阻抗202。 第23a圖依據本發明之一實施例,顯示了 一測試配置裝 置400之示意圖。該測試配置裝置4〇〇包含用於一受測元件 404的一介面401。該介面4〇1包含一阻抗匹配電路402,該 阻抗匹配電路402包含並聯的一電阻r及一電感l。該介面 402包含一彈簧銷針403,該彈簧銷針403形成了該阻抗匹配 電路403。這由該彈簧銷針4〇3的示意性表示4〇3b描述,其 201024739 中說明了該電阻R及該電感L之並聯的電路圖。該阻抗匹配 電路402中的該電阻R及該電感L可由離散的電子元件形 成’該等離散的電子元件被安排在該彈簧銷針4〇3的内部或 (緊靠)該彈簧銷針403的外面。該彈簧銷針4〇3的實施例在第 27圖、第28圖、第29a圖及第29b圖中描繪出來。 s亥測試配置裝置400進一步包含一信號產生器405以施 加一測試信號。 s玄測試配置裝置進一步包含該受測元件,其包含〜 輸入阻抗。該介面4〇1被用於在該阻抗匹配電路4〇2及該受 測元件404的輸入阻抗之間提供電耦接。該阻抗匹配電路 402的該電阻R及該電感l受組配以使該阻抗匹配電路4〇2之 一阻抗匹配該受測元件404的輸入阻抗。 第23b圖依據本發明之另一實施例’顯示了一測試配置 裝置400之一示意圖,該實施例與第23a圖所示的實施例除 了該阻抗匹配電路402的實現不同之外都相同。該阻抗匹配 電路402包含該彈簧銷針403及一外部電氣元件420的串聯 連接。該外部電氣元件420包含一離散的電阻器r及一離散 的電感器L。該外部電氣元件420之離散的電阻器r及離散的 電感器L受組配以使該阻抗匹配電路4〇2的一阻抗(包含該 彈簧銷針403的阻抗及該外部電氣元件420的阻抗)匹配該 受測元件404的一輸入阻抗。 該測試配置裝置400進一步包含一信號產生器405以施 加一測試信號。例如,該測試信號可具有低於該介面4〇1之 最大頻率的一中間頻率(mean frequency)。該外部電氣元件 35 201024739 420被安排緊靠該彈簧銷針403,例如小於對應於最大頻率 的電波長的四分之一。近的距離產生了該阻抗匹配電路402 的更好的匹配性能。Vvi 0 For example, glass has a refractive index of approximately (1) = L5 and air 33 201024739 has a refractive index n 〇 = 1, and this optimum refractive index is approximately nARc = 丨 225. An intermediate dielectric coating (anti-reflective coating, Arc) between air and glass reduces reflection losses. The idea of transferring an optical anti-reflective coating to the field of electricity is shown in Figure 22b. Figure 22b shows a signal diagram of the electrical transmission line Z〇 with the terminal impedance Zin of the device under test Din as the terminal, Zin and the impedance Z〇 of the transmission line being unequal, according to an embodiment of the invention, having An anti-reflection circuit (impedance matching circuit) 200 is connected between the transmission line 2〇1 and the device under test 2〇2. The ARC circuit 200 is an analog component between the two electrical media, that is, the transmission line and the terminal impedance of the device under test, and is analogous to the anti-reflective coating between the two optical media, that is, the air and the glass in FIG. 22a. A thin layer 21 of material. The anti-reflective coating circuit 2 can be designed to include a reflectance index between the reflectance index of the passer wire 201 and the reflectance index of the terminal impedance 202 of the device under test. The ARC circuit 200 can be designed to pass the reflection of the radio wave 203 to cause the electric wave 203 to flow through the transmission line 201 to reach the terminal impedance 202. An appropriately adjusted ARC circuit 200 suppresses the reflection of the electric wave 203 by about 99% whereby the energy of the electric wave 203 is transmitted to the terminal impedance 202 of the device under test. Figure 23a shows a schematic diagram of a test configuration device 400 in accordance with an embodiment of the present invention. The test configuration device 4A includes an interface 401 for a device under test 404. The interface 4〇1 includes an impedance matching circuit 402. The impedance matching circuit 402 includes a resistor r and an inductor 1 connected in parallel. The interface 402 includes a spring pin 403 that forms the impedance matching circuit 403. This is described by the schematic representation 4〇3b of the spring pin 4〇3, which is illustrated in 201024739 in parallel with the resistor R and the inductance L. The resistor R and the inductor L in the impedance matching circuit 402 may be formed by discrete electronic components that are arranged inside or (close to) the spring pin 4〇3 outside. The embodiment of the spring pin 4〇3 is depicted in Figures 27, 28, 29a and 29b. The shai test configuration device 400 further includes a signal generator 405 for applying a test signal. The sin test configuration device further includes the device under test, which includes a ~ input impedance. The interface 4〇1 is used to provide electrical coupling between the impedance matching circuit 4〇2 and the input impedance of the device under test 404. The resistor R of the impedance matching circuit 402 and the inductor 1 are combined such that one impedance of the impedance matching circuit 4〇2 matches the input impedance of the device under test 404. Figure 23b shows a schematic diagram of a test configuration device 400 in accordance with another embodiment of the present invention, which embodiment is identical to the embodiment shown in Figure 23a except that the implementation of the impedance matching circuit 402 is different. The impedance matching circuit 402 includes a series connection of the spring pin 403 and an external electrical component 420. The external electrical component 420 includes a discrete resistor r and a discrete inductor L. The discrete resistor r and the discrete inductor L of the external electrical component 420 are assembled such that an impedance of the impedance matching circuit 4〇2 (including the impedance of the spring pin 403 and the impedance of the external electrical component 420) An input impedance of the device under test 404 is matched. The test configuration device 400 further includes a signal generator 405 for applying a test signal. For example, the test signal can have a mean frequency that is lower than the maximum frequency of the interface 4〇1. The external electrical component 35 201024739 420 is arranged against the spring pin 403, for example, less than a quarter of the electrical wavelength corresponding to the maximum frequency. The close distance produces better matching performance of the impedance matching circuit 402.

第23c圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖。該測試配置裝置包含一受測元件 DUT ’該受測元件具有由電阻R及電容C並聯形成的一輸入 阻抗Zin。該測試配置裝置進一步包含一阻抗匹配電路 ARC(抗反射塗層),該arc電路具有由電阻R及電感L並聯 形成的一阻抗。該阻抗匹配抗反射電路ARC與該受測元件 DUT串聯連接,藉此該阻抗匹配電路ARC與受測元件DUT 的串聯連接具有一輸入阻抗Z。 該輸入阻抗Z的一計算結果 外2 +会+士)Figure 23c shows an equivalent circuit diagram of a test configuration device in accordance with an embodiment of the present invention. The test configuration device includes a device under test DUT' having a input impedance Zin formed by a parallel connection of a resistor R and a capacitor C. The test configuration device further includes an impedance matching circuit ARC (anti-reflective coating) having an impedance formed by the parallel connection of the resistor R and the inductor L. The impedance matching anti-reflection circuit ARC is connected in series with the device under test DUT, whereby the series connection of the impedance matching circuit ARC and the device under test DUT has an input impedance Z. The calculation result of the input impedance Z is 2 + will + ±)

該受測元件的輸入阻抗Zi n的一電阻A對應於該阻抗匹 配電路ARC的阻抗ZARC^—電阻R。若條件l = r2c得到滿 足,該電路的阻抗Z的結果為A resistor A of the input impedance Zi n of the device under test corresponds to the impedance ZARC^-resistor R of the impedance matching circuit ARC. If the condition l = r2c is satisfied, the result of the impedance Z of the circuit is

=R 由於上文所示方程式中的極點與零點的消去,包含該 受測元件DUT争聯連接於該阻抗匹配電路的該電路的阻抗 Z變為與阻抗匹配電路ARC及受測元件dut的電阻R對應 一實值。藉此’該阻抗Z的頻率依賴性藉由如下匹配條件所 消去 36 201024739=R Due to the elimination of the pole and the zero in the equation shown above, the impedance Z of the circuit including the DUT contiguously connected to the impedance matching circuit becomes the resistance of the impedance matching circuit ARC and the device under test dut R corresponds to a real value. Thereby, the frequency dependence of the impedance Z is eliminated by the following matching conditions. 36 201024739

L = R2 C 當然’該匹配條件並不需要被100%滿足以提供一與不 匹配情況相比有優勢的配置。例如,該阻抗匹配電路的電 感可等於該輸入阻抗的電阻R的平方乘以該輸入阻抗的電 容C ’在+/-10%之容差範圍以内。另外,該阻抗匹配電路的 電阻可等於該輸入阻抗的電阻,在+/-10%之容差範圍以内。 如果該電阻R等於連接到該電路之傳輸線的阻抗Zq,則 魯 完全無反射發生。該受測元件DUT的阻抗Zin可用一内置於 晶片之終端ODT及/或用一内置於晶片之電容Qn(例如一寄 * 生電容)及一外部電阻器R實現。 第23d圖顯示了依據本發明之一實施例的一測試配置 裝置400的一示意圖,該測試配置裝置4〇〇包含一元件測試 器、一測試介面及用於多數個受測元件的多數個介面。 彈簧銷針403可被分別地施加於測試系統或測試配置 裝置400上。在這個實施例中該測試配置裝置4〇〇包含一測 φ 試頭407或一元件測試器,一銷針-電子模組410及相應的測 試器驅動器405位於其中。該銷針-電子模組41〇由纜線412 連接到一彈簧-連接器417’該彈簧-連接器417被安排在該測 試頭407的上邊。一測試介面4〇6配接在測試頭4〇7上以使該 等彈簧連接器417接觸到該測試介面4〇6,例如於該測試介 面406的底邊或其他任何可能的接觸點。該配接可使用一機 械鎖機構416實施。該測試介面4〇6包含接觸墊413,該等接 觸墊413可適於接觸該等彈簧連接器413,其中接觸墊413透 過測試介面纜線418連接到該測試介面4〇6。此等測試介面 37 201024739 纜線418終止於該測試介面406的上邊以連接多數個插座板 (或電路板)4〇8、408b。該等插座板4〇8、408b可為(小 的)PCB(印刷電路板)’也包括用以(分別)連接與該等插座板 408、408b相關聯之該等介面401、401b(或受測元件插座) 的接觸區域414。用於該受測元件404的介面401與該插座板 408相關聯’用於該第二受測元件4〇4b的第二介面4〇lb與該 插座板408b相關聯。該等介面(受測元件插座)4〇丨、ib可 使用螺絲415旋擰(或透過一機械配置裝置連接)到該等插座 板408、408b的接觸區域414。該等介面(受測元件插座)4〇1、 Ο 401b包含(小的)彈簧銷針403,就該測試頭4〇7的彈簧-連接 器417而g要小。該等彈簧銷針4〇3可例如具有大約2_3 mm 的長度。該等受測元件404、404b可被推入這些介面(受測 — 元件插座)401、401b,藉此該球格陣列封裝(該等受測元件 404、404b)之球419由該等彈簧銷針403接觸。這樣一接觸 提供了分別在受測元件404、404b及一測試器驅動4〇5或測 試器接收器411之間的一完整的信號通路連接。第23d圖所 示的該等彈簧銷針403可具有一相對短的長度,大約23 Ο mm,而安排在測試介面406内的該纜線418具有大約4〇 εηι 的長度。 一分支節點120由一輸入線127、一第—輸出線122及一 第二輸出線123形成。該輸入線127電連接在該測試介面4〇6 及一分支節點121之間。該第一輸出線122電連接在該分支 節點121及用於該受測元件404的該介面4〇1之間且該第二 輸出線123電連接在該分支節點121及用於該第二受測元件 38 201024739 404b的該第二介面40lb之間。該分支節點12ι可在該等(pCB) 電路板408、408b之一或該測試介面4〇6上實現。 該輸入線127、該第一輸出線122及該第二輸出線123可 以以傳輸線、波導、微帶線、一印刷電路板的帶狀導體、 導通孔、連接(微)帶線、高頻微波境線、連接器、互連體或 組件、SMA配接益或同轴缓線而實施。該等第一 122及第二 123輸出線的長度可為不同的。輸出線122及123均可在該等 電路板408、408b的不同層上實現。 第23e圖顯示了如第23c圖所示的該測試配置裝置的輸 入阻抗z的一奈奎斯特圖。該奈奎斯特圖透過其實部Re(z) 及其虛部Im(Z)之表示繪示了該輸入阻抗的頻率依賴性。該 測試配置裝置的輸入阻抗Z為定值且為實量並與該線阻抗 完全匹配。因此,不再有頻率相依的反射發生。該定值對 應於該受測元件DUT及該阻抗匹配電路ARC的電阻R。 第24a圖顯示了對應於一包含如第5圖所示的GDDR5記 憶體元件的測試配置裝置的一等效電路圖,具有一依據本 發明之一實施例,連接在該受測元件及該傳輸線之間的阻 抗匹配電路ARC。該電路的結構對應於如第23a圖描述的結 構。對應於該GDDR5記憶體元件,一6〇Ω的電阻及一 i.5pF 的電容形成了該受測元件DUT的輸入阻抗的並聯連接。該 相等的60 Ω的電阻與一L = R2C = 5.4 nH的電感並聯以形成 該阻抗匹配電路ARC,藉此該測試配置裝置的阻抗z成為z =R。一阻抗Z〇 = 60 Ω的傳輸線連接於阻抗匹配電路的另一 終端。該阻抗匹配電路ARC實現了該受測元件DUT的阻抗 39 201024739L = R2 C Of course, the matching condition does not need to be 100% satisfied to provide a configuration that is advantageous over the mismatch. For example, the inductance of the impedance matching circuit can be equal to the square of the resistance R of the input impedance multiplied by the capacitance C' of the input impedance within a tolerance of +/- 10%. Additionally, the impedance of the impedance matching circuit can be equal to the resistance of the input impedance, within a tolerance of +/- 10%. If the resistance R is equal to the impedance Zq of the transmission line connected to the circuit, then no reflection at all occurs. The impedance Zin of the device under test DUT can be realized by a terminal ODT built in the chip and/or by a capacitor Qn (for example, a capacitor) built in the chip and an external resistor R. Figure 23d shows a schematic diagram of a test configuration device 400 including a component tester, a test interface, and a plurality of interfaces for a plurality of devices under test, in accordance with an embodiment of the present invention. . Spring pin 403 can be applied to test system or test configuration device 400, respectively. In this embodiment, the test configuration device 4A includes a test φ test head 407 or a component tester in which a pin-electronic module 410 and a corresponding tester driver 405 are located. The pin-electronic module 41 is connected by a cable 412 to a spring-connector 417' which is arranged on the upper side of the test head 407. A test interface 4〇6 is mated to the test head 4〇7 to bring the spring connectors 417 into contact with the test interface 4〇6, such as at the bottom edge of the test interface 406 or any other possible point of contact. The mating can be implemented using a mechanical lock mechanism 416. The test interface 4〇6 includes contact pads 413 that are adapted to contact the spring connectors 413, wherein the contact pads 413 are connected to the test interface 4〇6 via a test interface cable 418. These test interfaces 37 201024739 cable 418 terminates above the test interface 406 to connect a plurality of socket boards (or boards) 4 〇 8, 408b. The socket boards 4〇8, 408b may be (small) PCBs (printed circuit boards)' also include (respectively) connecting the interfaces 401, 401b associated with the socket boards 408, 408b (or Contact area 414 of the component socket). The interface 401 for the device under test 404 is associated with the socket plate 408. The second interface 4b for the second device under test 4〇4b is associated with the socket plate 408b. The interfaces (device sockets under test) 4, ib can be screwed (or connected by a mechanical arrangement) to the contact areas 414 of the socket plates 408, 408b using screws 415. The interfaces (device under test sockets) 4〇1, Ο 401b include (small) spring pin 403, which is smaller than the spring-connector 417 of the test head 4〇7. The spring pins 4〇3 can for example have a length of approximately 2_3 mm. The test elements 404, 404b can be pushed into the interfaces (measured - component sockets) 401, 401b, whereby the ball 419 of the ball grid array package (the test elements 404, 404b) is replaced by the spring pins The needle 403 is in contact. Such contact provides a complete signal path connection between the device under test 404, 404b and a tester drive 4〇5 or tester receiver 411, respectively. The spring pin 403 shown in Figure 23d can have a relatively short length of about 23 Ο mm, and the cable 418 disposed within the test interface 406 has a length of about 4 〇 εη. A branch node 120 is formed by an input line 127, a first output line 122, and a second output line 123. The input line 127 is electrically connected between the test interface 4〇6 and a branch node 121. The first output line 122 is electrically connected between the branch node 121 and the interface 4〇1 for the device under test 404, and the second output line 123 is electrically connected to the branch node 121 and used for the second Between the second interface 40lb of the measuring element 38 201024739 404b. The branch node 12i can be implemented on one of the (pCB) boards 408, 408b or the test interface 4〇6. The input line 127, the first output line 122, and the second output line 123 may be a transmission line, a waveguide, a microstrip line, a strip conductor of a printed circuit board, a via hole, a connection (micro) strip line, and a high frequency microwave. Implemented with a line, connector, interconnect or component, SMA mating or coaxial slow line. The lengths of the first 122 and second 123 output lines may be different. Output lines 122 and 123 can each be implemented on different layers of the boards 408, 408b. Figure 23e shows a Nyquist plot of the input impedance z of the test configuration device as shown in Figure 23c. The Nyquist diagram shows the frequency dependence of the input impedance through the representation of the real part Re(z) and its imaginary part Im(Z). The test configuration device has an input impedance Z that is constant and is a real amount and is perfectly matched to the line impedance. Therefore, no frequency dependent reflections occur. The set value corresponds to the resistance R of the device under test DUT and the impedance matching circuit ARC. Figure 24a shows an equivalent circuit diagram corresponding to a test configuration device including a GDDR5 memory device as shown in Figure 5, having an embodiment connected to the device under test and the transmission line in accordance with an embodiment of the present invention. Inter-impedance matching circuit ARC. The structure of this circuit corresponds to the structure as described in Fig. 23a. Corresponding to the GDDR5 memory component, a 6 Ω Ω resistor and an i.5 pF capacitor form a parallel connection of the input impedance of the DUT under test. The equal 60 Ω resistor is connected in parallel with an L = R2C = 5.4 nH inductor to form the impedance matching circuit ARC, whereby the impedance z of the test configuration device becomes z = R. A transmission line with an impedance of Z 〇 = 60 Ω is connected to the other terminal of the impedance matching circuit. The impedance matching circuit ARC realizes the impedance of the DUT of the device under test 39 201024739

Zin匹配於该傳輸線的阻抗Z〇,藉此反射被抑制。 第24b圖顯示了如第24a圖所示的該測試配置裝置的一 奈奎斯特圖。由於該阻抗匹配電路ARC,該測試配置裝置 的輸入阻抗Z匹配於R,藉此對於所有的從直流到幾乎無限 大的頻率沒有反射發生。該匹配點=R對於所有頻率都是相 同的點。可得到一大約為0%的反射r及一大約為1〇〇%的透 射b。 第25圖顯示了使用如第2如圖所示的該測試配置裝置 量測一輸入阻抗Z的一GDDR時域反射圖。該信號v(2)對應 於一在一TDR接收器之已量測信號。由於匹配條件,該信 號的能量在該阻抗匹配電路ARC及受測元件DUT的串聯連 接中被完全吸收藉此沒有反射被反射到該TDR接收器且該 接收到的信號V(2)顯示無反射或回波。在0和10〇ns之間的 轉態用於表示該測試器驅動器的非理想的上升時間。 第26圖顯示了如第24a圖所示的該測試配置裝置的受 測元件DUT處的電壓與第4a圖中所示的該習知的的受測元 件的輸入阻抗處的電壓相比較之一時序圖。該受測元件 DUT處的該電壓V(40)具有一上升時間,該上升時間比不存 在阻抗匹配電路ARC的一測試裝置的一受測元件DUT處的 電壓V(4)的大。通常地,一具有及一不具有匹配電路ARC 的配置裝置的該階躍響應可粗略地使用一指數函數 f(t)=alpha*(l-exp(-t/tau))來描述。該匹配電路ARC的引入以 一粗略為1+R/Z0的因數增加了時間常數。該電壓V(40)在大 約500 ps之後達到550 mV之轉態電壓的95 %處,而該電壓 201024739 V(4)則在大約450 ps的時間後達到550 mV之轉態電壓電壓 的95 %處。考慮到該電壓的一轉態在大約為200 ps的時間開 始時,該包含該阻抗匹配電路的受測元件處的電壓V(40) 需要大約400 ps來轉態,而該不包含阻抗匹配電路的該受測 元件處的電壓V(4)需要大約250 ps來轉態。該差值15〇 ps是 由於該匹配電路ARC因經過電氣電路的信號傳輸而產生的 結果。 有不同的可選擇方法以實現上文所概述的在DUT及測 式裝置内的傳輸線之間的ARC電路。一些實施例在下面敍 述。 第27圖依據本發明之一實施例顯示了在一測試配置裝 置中用於將一受測元件210連接到一測試頭的介面214的一 彈簧銷針的一載面圖。特別地,該測試配置裝置包含一具 有一連接球211的受測元件封裝21〇,該連接球2H透過在一 受測元件插座213中的一彈簧銷針212連接到在一電路板上 的一BGA(球格陣列)墊片214,該電路板特別設計用於該受 測元件且其自身連接到一測試器或其一部分。該彈簧銷針 212被用於將該受測元件封裝21〇的封裝球21丨接觸到該受 測元件的BGA墊片214。屬於並位於該彈簧銷針212内部的 一可伸縮彈簧215產生分別使該球211及墊214安全電接觸 所需的力。 該彈簧銷針212包含一導電材料的第一套筒216、一導 電材料的第二套筒217、-電阻性材料的管筒218及該彈簧 215。該彈簧215由導電性材料製成並被用於分開該第一套 41 201024739 筒216及該第二套筒217。該第一套筒216、該第二套筒217 及該管筒218沿該管筒218的一共用軸219可滑動地相互附 接,其中該電阻性的管筒218被定位在該第一套筒216及該 第二套筒217之間。與如第6圖所示的彈簧銷針相對比,該 第一套筒216及該第二套筒217可具有一相同的直徑,藉此 其中一套筒不會滑入另一套筒中,與在第6圖及第8圖中所 示的彈簧銷針相對比,在第6圖及第8圖中所示的彈簧銷針 中該内管筒40滑入該外管筒42。 該彈簧銷針的縱向大小的適應性由該管筒218實現,該 管筒218滑入該第一套筒216及該第二套筒217。在一接觸域 220該彈簧215附接到該管筒218。該彈簧215可被套在該第 一套筒216及該第二套筒2Π上,例如按照第7a圖及第7b圖 所示的機制。該彈簧銷針212形成了一主要由該彈簧215形 成的電感與一主要由該管筒218形成的電阻之並聯。該並聯 對應於如第23a圖及第24a圖所示的阻抗匹配電路ARC。 該彈簧銷針212可藉由使得由該管筒218形成的電阻對 應於該受測元件的一電阻且由該彈簧215形成的電感對應 於該電阻的平方乘該受測元件的電容之一方法來製造。該 彈簧銷針212可被製造用於一特定的受測元件的該等特定 的需要,例如’用於一GDDR5記憶體元件。一新一代的記 憶體元件可需要一新的彈簧銷針212,其元件適用於該新的 記憶體元件。 應說明的是第27圖中的該彈簧銷針也可被設計以使得 該彈菁線圈215僅僅在對於該彈簧銷針的所有可能的壓縮 201024739 程度下保持與該彈簧的接觸的位置處接職等套筒及/或 s玄電阻性相。透過適當地選擇尺寸及材料,-如上文所 述的ARC電路可透過使用—第27&圖所示的彈簧鎖針來實 施。 第28圖顯示了依據本發明之另一實施例的一測試配置 裝置的一截面圖。該測試配置裝置對應於如第27圖所示的 測试配置裝置’除了使用了另一彈簧銷針222。該彈簧銷針 222包含一導電材料的第一套筒226、一導電材料的第二套 筒227、一導電材料的用於分開該第一套筒226及該第二套 筒227的彈簧225、一絕緣材料的管筒228及一彈性元件 223。該第一套筒226、該第二套筒227及該管筒228沿一共 用軸229可滑動地相互附接,對應於如第27圖所示的該彈簧 銷針212 ’除了該管筒228為用絕緣材料而不是導電材料製 成。進一步’該彈簧銷針222包含一彈性元件223,其包含 一電阻性材料諸如例如一電阻性彈性體,沿一共用軸229附 接在該第一套筒226及該第二套筒227之間。該彈性體橫向 絕緣且縱向為電阻性。這可以用經由該彈性體元件223縱向 延伸且橫向隔開的細線來實現,因此從内部電耦接套筒226 及 227。 該彈簧銷針222形成了一主要由該彈簧225形成的電感 與一主要由該彈性體元件223形成的電阻之一並聯。由於該 絕緣管筒228其可由諸如例如PTFE(特夫綸(Teflon))之材料 製成,一電氣電路由從該第一套筒226分別透過該彈|225 及該彈性元件223到該第二套筒227而形成。該電氣電路不 43 201024739 由該管筒228形成。這個特性將㈣圖所示的該彈簧銷針 222與第27圖所示的該彈簧銷針212區分開來。 二而,本發明的其他實施例可包含一彈簧銷針222,該 彈簣銷針222具有―電阻材料的管筒228及_電阻材料的彈 f生元件223,藉此一電氣電路由該彈簧225及由彈性元件μ〗 的電阻與管筒228的電阻並聯而形成。 如上文所述,該彈性元件228可包含一具有與該共用轴 229相對應的主縱向軸的彈性體及彼入在該彈性體本體中 以沿該主縱向轴在該彈性體的—頂表面到—底表面之雜 ❹ 伸之電導性材料的線。該等電導性材㈣線可為,例如< 線或金線1¾彈性元件228可塗有絕緣材料的塗層以此防纟 在由該彈簧225形成的電感及主要由該彈性體元件223形《 ' 的電阻之間的短路。或者,該彈簧225可具有-絕緣塗層。 該彈簧225可為-螺旋狀彈簧或任何不同種賴彈菁以將 §亥第一套筒226及該第二套筒227分開。Zin is matched to the impedance Z〇 of the transmission line, whereby reflection is suppressed. Figure 24b shows a Nyquist plot of the test configuration device as shown in Figure 24a. Due to the impedance matching circuit ARC, the input impedance Z of the test configuration device is matched to R, whereby no reflection occurs for all frequencies from DC to almost infinite. This match point = R is the same point for all frequencies. A large reflection of about 0% r and a large transmission of about 1% of b can be obtained. Fig. 25 shows a GDDR time domain reflection map for measuring an input impedance Z using the test configuration device as shown in Fig. 2. The signal v(2) corresponds to a measured signal at a TDR receiver. Due to the matching condition, the energy of the signal is completely absorbed in the series connection of the impedance matching circuit ARC and the device under test DUT whereby no reflection is reflected to the TDR receiver and the received signal V(2) shows no reflection. Or echo. The transition between 0 and 10 ns is used to indicate the non-ideal rise time of the tester driver. Figure 26 shows a comparison of the voltage at the DUT of the test configuration device as shown in Figure 24a with the voltage at the input impedance of the conventional device under test shown in Figure 4a. Sequence diagram. The voltage V(40) at the DUT under test has a rise time which is greater than the voltage V(4) at a DUT of a test device which does not exist in the impedance matching circuit ARC. In general, the step response of a configuration device having and without a matching circuit ARC can be roughly described using an exponential function f(t) = alpha * (l-exp(-t/tau)). The introduction of the matching circuit ARC increases the time constant by a factor of roughly 1 + R / Z0. This voltage V(40) reaches 95% of the 550 mV transition voltage after approximately 500 ps, while the voltage 201024739 V(4) reaches 95% of the 550 mV transition voltage after approximately 450 ps At the office. Considering that a transition state of the voltage starts at a time of about 200 ps, the voltage V(40) at the device under test including the impedance matching circuit requires about 400 ps to transition, and the impedance matching circuit is not included. The voltage V(4) at the device under test requires approximately 250 ps to transition. The difference 15 〇 ps is a result of the matching of the matching circuit ARC due to signal transmission through the electrical circuit. There are different alternative ways to implement the ARC circuit between the DUT and the transmission line within the test device as outlined above. Some embodiments are described below. Figure 27 is a side elevational view of a spring pin for connecting a device under test 210 to a interface 214 of a test head in a test configuration apparatus in accordance with one embodiment of the present invention. Specifically, the test configuration device includes a device under test enclosure 21 having a connection ball 211 connected to a spring pin 212 in a socket 213 under test connected to a circuit board. A BGA (Plate Array) pad 214 that is specifically designed for the device under test and that is itself connected to a tester or a portion thereof. The spring pin 212 is used to contact the package ball 21 of the device under test 21 丨 to the BGA pad 214 of the device under test. A retractable spring 215 belonging to and within the spring pin 212 produces the force required to securely contact the ball 211 and pad 214, respectively. The spring pin 212 includes a first sleeve 216 of electrically conductive material, a second sleeve 217 of electrically conductive material, a tube 218 of resistive material, and the spring 215. The spring 215 is made of a conductive material and is used to separate the first sleeve 41 201024739 cartridge 216 and the second sleeve 217. The first sleeve 216, the second sleeve 217 and the tube 218 are slidably attached to each other along a common axis 219 of the tube 218, wherein the resistive tube 218 is positioned in the first sleeve Between the barrel 216 and the second sleeve 217. The first sleeve 216 and the second sleeve 217 may have the same diameter as compared with the spring pin shown in FIG. 6, whereby one of the sleeves does not slide into the other sleeve. In contrast to the spring pins shown in Figures 6 and 8, the inner tube 40 slides into the outer tube 42 in the spring pins shown in Figures 6 and 8. The adaptability of the longitudinal extent of the spring pin is achieved by the barrel 218 which slides into the first sleeve 216 and the second sleeve 217. The spring 215 is attached to the tube 218 at a contact field 220. The spring 215 can be placed over the first sleeve 216 and the second sleeve 2, for example in accordance with the mechanisms shown in Figures 7a and 7b. The spring pin 212 forms a parallel connection of the inductance formed primarily by the spring 215 with a resistor formed primarily by the barrel 218. This parallel connection corresponds to the impedance matching circuit ARC as shown in Figs. 23a and 24a. The spring pin 212 can be obtained by making the resistance formed by the tube 218 correspond to a resistance of the device under test and the inductance formed by the spring 215 is corresponding to the square of the resistance multiplied by the capacitance of the device under test. To manufacture. The spring pin 212 can be fabricated for these particular needs of a particular device under test, such as for a GDDR5 memory component. A new generation of memory elements may require a new spring pin 212 with components suitable for the new memory component. It should be noted that the spring pin in Fig. 27 can also be designed such that the tactile coil 215 takes over only at the position where it maintains contact with the spring for all possible compressions of the spring pin 201024739. Equal sleeve and / or s sinuous resistive phase. By appropriately selecting the size and material, the ARC circuit as described above can be implemented by using the spring lock pin shown in Fig. 27 & Figure 28 is a cross-sectional view showing a test configuration apparatus in accordance with another embodiment of the present invention. The test configuration device corresponds to the test configuration device 'as shown in Fig. 27' except that another spring pin 222 is used. The spring pin 222 includes a first sleeve 226 of a conductive material, a second sleeve 227 of a conductive material, and a spring 225 of a conductive material for separating the first sleeve 226 and the second sleeve 227. A tube 228 of insulating material and an elastic member 223. The first sleeve 226, the second sleeve 227 and the tube 228 are slidably attached to each other along a common shaft 229, corresponding to the spring pin 212' as shown in Fig. 27 except for the tube 228. Made of insulating material instead of conductive material. Further, the spring pin 222 includes a resilient member 223 that includes a resistive material such as, for example, a resistive elastomer attached between the first sleeve 226 and the second sleeve 227 along a common axis 229. . The elastomer is laterally insulated and longitudinally resistive. This can be accomplished with thin wires extending longitudinally and laterally through the elastomeric member 223, thereby electrically coupling the sleeves 226 and 227 from the interior. The spring pin 222 forms an inductance formed primarily by the spring 225 in parallel with one of the resistors formed primarily by the elastomeric member 223. Since the insulating barrel 228 can be made of a material such as, for example, PTFE (Teflon), an electrical circuit is transmitted from the first sleeve 226 through the spring 225 and the elastic member 223 to the second The sleeve 227 is formed. The electrical circuit is not formed by the tube 228. This feature distinguishes the spring pin 222 shown in the figure (4) from the spring pin 212 shown in Fig. 27. In addition, other embodiments of the present invention may include a spring pin 222 having a tube 228 of a resistive material and a resilient member 223 of a resistive material, whereby an electrical circuit is used by the spring 225 and the resistor of the elastic element μ are formed in parallel with the resistance of the barrel 228. As described above, the elastic member 228 can include an elastomer having a main longitudinal axis corresponding to the common shaft 229 and a top surface of the elastomer along the main longitudinal axis. To the line of the bottom surface of the hybrid conductive material. The electrically conductive (4) wires may be, for example, <line or gold wire 126. The elastic member 228 may be coated with a coating of insulating material to prevent snagging in the inductance formed by the spring 225 and primarily by the elastomeric member 223. Short circuit between ''resistance'. Alternatively, the spring 225 can have an insulating coating. The spring 225 can be a helical spring or any of a variety of elastomers to separate the first sleeve 226 and the second sleeve 227.

第2 9 a圖顯示了依據本發明之一實施例的一測試配置 裝置的-俯視圖。該測試配置裝置包含一彈簣銷針232,該 G 彈簧鎖針232包含-具有一主縱向轴234的彈性體本體 233該彈簧銷針232進—步包含嵌入在彈性體本體如中的 導電性材料的線235以沿該主縱向軸234在該彈性體本體 233的頂表面236到底表面237之間延伸。該彈簧銷針232形 成一電感及一電阻的並聯,兩者均由線235形成。與該彈簧 銷針232的電感相對應之例如5 nH的磁場由該等線形 成。該等線235以使得該等線235在該本體233之中彼此之間 44 201024739 電氣中斷之方式嵌入在該體233中。該頂表面236及該底表 面237可包含導性材料以將該彈簧銷針232電接觸一受測元 件封裝210及一受測元件。該等線235可為碳線導致一總的 電阻為50Ω。該彈簧銷針232可作為一共用銷針使用。在本 發明之這一實施例中,該本體233為圓柱形體。然而,在其 他實施例中,該本體233可具有另一種形式及另一截面,諸 如例如一立方體形。 ❷第29b圖依據本發明之另一實施例顯示了一測試配置 裝置的一俯視圖。該測試配置裝置包含一彈簧銷針242,該 . 彈簧銷針242與如第29a圖所示的該彈簧銷針232的形成類 似,不同之處在於該等線245由金製成藉此可獲得一 i 口的 電阻。該等低電阻金線245提供了該彈簧銷針242之一低電 感藉此該彈簧銷針242可作為一電源或非共用銷針使用。該 彈簧銷針242與如第29a圖所示的主要受組配用於匹配目的 的忒彈簧銷針242相比較,主要是受組配用於接觸目的而迆 φ 不疋用於匹配目的。如第29a圖所示的該彈簧銷針232也巧* 用於如第28圖所示的該彈性元件225。同樣,如第29b圖所 示的該彈簧銷針242可用於該彈性元件225。 如第29a圖及第29b圖所示的該等彈簧銷針設計的一主 要思想係由直徑和圓柱形物體的電感之間的關係而透過增 大或減小其直徑來調整圓柱形狀的彈簧銷針232、242的電 感 ®柱體的電感為它的直徑的一函數。一細的圓柱體 比粗的圓柱體具有更高的電感。該等金線245受組配以提 间”亥彈簧銷針242的導電率。該彈簧銷針242包含該等金線 45 201024739 安排於沿該彈性體的總體直徑上,而該彈簧銷針232包含線 235僅僅安排於沿該彈性體之直徑的内部部分(内核)。因此 如第29b圖所示的該彈簧銷針242比如第29a圖所示的該彈 簧銷針232具有一低的電感。 第29c圖顯示了依據如第29a/b圖所示的該等彈簧銷針 232及242之一彈簧銷針陣列。該等彈簧銷針232、242具有 連接到一共用電極246的底面237。該測試裝置可被用於形 成一壓力敏感導電橡膠(PCR)插座。該插座可被用於連接— 印刷電路板或其他高性能的邏輯元件。大的處理器、控制 器及其它積體電路(1C)需要特定插座。這些插座可為PCR插 座,該等PCR插座提供了每個銷針較小的力、較高的電流 輸送容量及高達20 GHz的電氣性能。間距可低至0.25 mm, 一交流(AC)性能達到20 GHz且生命週期達到200000次。 PCR插座被設計以可與現有的彈簧銷針或衝壓接點相容且 被實施以提高良率出及系統運行時間(system up time)。該 P C R彈性體接點提供了高性能及幾乎不可見的元件示位標 (witness mark)。如第29a圖及第29b圖所說明的彈簧銷針可 被用於PCR插座。視需要而定,一些彈簧銷針242可被用於 電源及非共用銷針,而其他的彈簧銷針232可被用於作為接 觸銷針,提供給該阻抗匹配電路一抗反射插座彈簧銷針的 作用。 第30圖依據本發明之一實施例,顯示了一測試配置裝 置的一等效電路圖,該測試配置裝置包含一阻抗匹配電路 250、一 TDR發送器251及一 TDR接收器252。該TDR發送器 201024739 251及該TDR接收器252透過一同軸纜線253連接到一電 路,該電路包含該阻抗匹配電路25〇預串聯至該受測元件 DUT,該受測元件DUT具有由一丨丨pp的電容及一5〇 Ω的電 阻並聯而形成的一阻抗Zin。該同軸纜線253可具有一20 cm 的長度及一5 mm的直徑。該阻抗匹配電路25〇係用於避免 由該同轴纜線253的阻抗與該受測元件DUT的阻抗Zin失配 導致的反射。 第31圖顯示了使用如第3〇圖所示的該測試配置裝置量 測的一TDR圖,該測試配置裝置包含該阻抗匹配電路25〇。 與第11圖所不的不包含該阻抗匹配電路25〇的一量測相比 較,如第31圖所示的該TDR圖顯示幾乎無反射,除了在大 約第2.1 ns後由該阻抗匹配電路25〇的該串聯電阻R的一寄 生·#效串聯電感(ESL)造成的一小反射。然而,與不包含一 阻杬匹配電路250的電路相比較,由該寄生ESL造成的反射 是可忽略的。對於該阻抗匹配電路25〇的電感的一更低的值 可補償該阻抗匹配電路250的電阻R的該寄生ESL。由於該 TDR彳s號之較小的失真’該包含阻抗匹配電路25〇的測試配 置裝置允許具有更高取樣頻率的量測及進而對於快速記憶 體元件,例如GDDR5記龍元件的高精破度的量測。 第32圖顯示了 一測試配置裝置的一等效電路圖,該測 試配置裝置包含-對應於如第卿所示❹】試配置裝置的 阻抗匹配電路25G、-對應於如第爛所示測試配置裝置的 TDR發送器251及- TDR接收器254。一 RTL(上升時間限制) 電路連接在該TDR發_251及該表面微帶傳輸線扮之 47 201024739 間,以將在該TDR發送器251產生的信號的上升時間限制到 250 ps的值。該表面微帶傳輸線255連接到該阻抗匹配電路 250,該阻抗匹配電路250與具有由一 11 PF電容及一50Ω電 阻並聯而形成的該輸入阻抗Zin的該受測元件DUT串聯。 此配置裝置用於當施加的不是如第30圖所示的該快速 的TDR量測(30 ps上升時間)而是一如第32圖所示的較慢的 TDR量測(250 ps上升時間)時,測試該阻抗匹配電路250及 該受測元件DUT的性能,該較慢的TDR量測的上升時間更 適合於該測試器的上升時間(大約200 ps)。 第33圖顯示了如第32圖所示的該測試配置裝置的TDR 接收器254所接收的一信號的一眼圖。該眼圖顯示了一幾乎 打開的眼,只有由於該阻抗匹配電路250的阻抗R的寄生 ESL造成的小反射260而被極小地干擾。與如第12圖所示的 說明了一不具有阻抗匹配電路250的測試配置裝置的眼圖 相比較,如第33圖所示的包含一阻抗匹配電路250的眼圖中 的失真實質上更小。包含一阻抗匹配電路250或抗反射電路 的一測試配置裝置分別允許具有準確性的一精確量測,即 便在高取樣率時。如第32圖所示的該測試配置裝置非常適 於量測高速率取樣裝置,例如GDDR5記憶體元件。 第34a圖依據本發明之一實施例,顯示了 一測試配置裝 置之一示意性載面圖,該測試配置裝置包含一SMA配接器 300’透過將一0DT負載仿真302與一阻抗匹配電路301串聯 而終止一同軸纜線(未顯示)。該阻抗匹配電路3〇1包含一 27nH的電感303與一50Ω電阻304並聯。該50Ω電阻是透過兩 201024739 個100 Ω電阻器之一並聯實現以降低該寄生ESL。 該ODT負載仿真302是透過一 11 pF的電容305及一50Ω 的電阻306的一並聯實現的。該ODT負載仿真302的該電容 305是透過一 10 pF的電容器及一 lpF的電容器的一並聯實 現的。該電阻306可透過兩標準的100Ω電阻器的一並聯實 現。該阻抗匹配電路303的電路及ODT負載仿真302連接在 一内核307及該SMA配接器纜線300的一接地連接308之 間。該等電子元件為離散元件諸如,例如,SMD元件。 第34b圖顯示了如第34a圖所示的該測試配置裝置之一 等效電路圖。該阻抗匹配電路301與該受測元件的該ODT負 載仿真302串聯。該電感303為27 nH,兩電阻304、306均為 50 Ω且該電容305為11 pF。該阻抗匹配電路301被定尺寸以 使得該阻抗匹配電路301的電阻304對應於該ODT負載仿真 的電阻306且使得該阻抗匹配電路301的電感303對應於該 ODT負載仿真302的電阻306的平方乘該ODT負載仿真302 的電容305。這個匹配條件保證了對不想要的反射的抑制。 由於電氣元件的耐受效應(tolerance-effected)性質,該阻抗 匹配電路301的該等元件303、304可在一容許區域之内變 動,例如’在由上所示的匹配條件所決定的最佳值周圍 10%。 第35圖顯示了如第34a圖所示的測試配置裝置的一反 射係數量測的一史密斯(Smith)圖。與不包含阻抗匹配電路 的SMA配接器纜線的反射係數的史密斯圖相比,如第35圖 所示的包含該阻抗匹配電路301的該測試配置裝置的反射 49 201024739 係數的史密斯圖顯示了對於幾半 有頻率的匹配特性。兮 量測從一直流鮮直至大約1邮的頻率上被執行。即使;亥 f1GI7解上’奴㈣數哨如第14_示的反射 係數Γ相比也只有-非常小的複值幅度。_的偏離 度可能由與如第31圖及第糊所示之量_對應的阻抗匹 配電路30!的該電阻304的等效的串聯電感產生。Figure 29a shows a top view of a test configuration device in accordance with an embodiment of the present invention. The test configuration device includes a magazine pin 232 that includes an elastomer body 233 having a main longitudinal axis 234 that includes electrical conductivity embedded in the elastomer body, such as A line 235 of material extends between the top surface 236 and the bottom surface 237 of the elastomer body 233 along the main longitudinal axis 234. The spring pin 232 forms a parallel connection of an inductor and a resistor, both formed by a wire 235. A magnetic field of, for example, 5 nH corresponding to the inductance of the spring pin 232 is formed by the lines. The lines 235 are embedded in the body 233 in such a manner that the lines 235 are electrically interrupted between the bodies 233 44 201024739. The top surface 236 and the bottom surface 237 can include a conductive material to electrically contact the spring pin 232 to a device under test 210 and a device under test. The line 235 can be a carbon wire resulting in a total resistance of 50 ohms. The spring pin 232 can be used as a common pin. In this embodiment of the invention, the body 233 is a cylindrical body. However, in other embodiments, the body 233 can have another form and another cross section, such as, for example, a cube shape. Figure 29b shows a top view of a test configuration device in accordance with another embodiment of the present invention. The test configuration device includes a spring pin 242 that is similar in construction to the spring pin 232 as shown in Figure 29a, except that the wires 245 are made of gold to obtain The resistance of an i port. The low resistance gold wires 245 provide a low inductance of the spring pin 242 whereby the spring pin 242 can be used as a power source or a non-share pin. The spring pin 242 is compared to the 忒 spring pin 242, which is primarily assembled for matching purposes as shown in Fig. 29a, and is primarily intended for contact purposes and 迤 φ is not used for matching purposes. The spring pin 232 as shown in Fig. 29a is also used for the elastic member 225 as shown in Fig. 28. Similarly, the spring pin 242 can be used for the resilient member 225 as shown in Figure 29b. A main idea of the design of the spring pin as shown in Figures 29a and 29b is to adjust the cylindrical spring pin by increasing or decreasing the diameter of the cylindrical body by the relationship between the diameter and the inductance of the cylindrical object. The inductance of the pins 232, 242 is the function of the diameter of the cylinder. A thin cylinder has a higher inductance than a thick cylinder. The gold wires 245 are assembled to adjust the electrical conductivity of the "spring" pin 242. The spring pin 242 includes the gold wires 45 201024739 arranged along the overall diameter of the elastomer, and the spring pin 232 The inclusion line 235 is only arranged in the inner portion (core) along the diameter of the elastomer. Thus the spring pin 242 as shown in Fig. 29b, such as the spring pin 232 shown in Fig. 29a, has a low inductance. Figure 29c shows an array of spring pin pins of the spring pins 232 and 242 as shown in Figure 29a/b. The spring pins 232, 242 have a bottom surface 237 that is coupled to a common electrode 246. The test device can be used to form a pressure sensitive conductive rubber (PCR) socket that can be used to connect - printed circuit boards or other high performance logic components. Large processors, controllers, and other integrated circuits (1C) Specific sockets are required. These sockets can be PCR sockets that provide less force per pin, higher current delivery capacity and electrical performance up to 20 GHz. Pitch can be as low as 0.25 mm, an AC (AC) performance reaches 20 GHz and is born The cycle reaches 200,000. The PCR socket is designed to be compatible with existing spring pins or stamped contacts and implemented to increase yield and system up time. The PCR elastomer contacts provide high Performance and almost invisible component marks. Spring pins as illustrated in Figures 29a and 29b can be used in PCR sockets. Some spring pins 242 can be used as needed. The power supply and the non-shared pin, and the other spring pin 232 can be used as a contact pin, which is provided to the impedance matching circuit as an anti-reflection socket spring pin. Figure 30 is an embodiment of the present invention, An equivalent circuit diagram of a test configuration apparatus is shown. The test configuration apparatus includes an impedance matching circuit 250, a TDR transmitter 251, and a TDR receiver 252. The TDR transmitter 201024739 251 and the TDR receiver 252 are coupled through a coaxial The cable 253 is connected to a circuit including the impedance matching circuit 25 〇 pre-connected to the DUT under test, the DUT having a capacitance of 丨丨pp and a 5 〇Ω resistor connected in parallel An impedance Zin. The coaxial cable 253 can have a length of 20 cm and a diameter of 5 mm. The impedance matching circuit 25 is used to avoid the impedance of the coaxial cable 253 and the DUT under test. The reflection caused by the impedance Zin mismatch. Fig. 31 shows a TDR diagram measured using the test configuration device as shown in Fig. 3, the test configuration device including the impedance matching circuit 25A. If not, a comparison of the magnitudes of the impedance matching circuit 25A is not included, and the TDR pattern shown in Fig. 31 shows almost no reflection except for the series connection by the impedance matching circuit 25 after about 2.1 ns. A small reflection caused by a parasitic · inductor series inductance (ESL) of the resistor R. However, the reflection caused by the parasitic ESL is negligible compared to a circuit that does not include a resistive matching circuit 250. A lower value for the inductance of the impedance matching circuit 25A compensates for the parasitic ESL of the resistance R of the impedance matching circuit 250. Due to the small distortion of the TDR彳s number, the test configuration device including the impedance matching circuit 25〇 allows measurement with higher sampling frequency and thus high precision for fast memory components such as GDDR5 Measurement. Figure 32 is a diagram showing an equivalent circuit diagram of a test configuration device, the test configuration device comprising - corresponding to the impedance matching circuit 25G of the test configuration device as shown in the second, - corresponding to the test configuration device as shown in the second TDR transmitter 251 and - TDR receiver 254. An RTL (rise time limit) circuit is coupled between the TDR _251 and the surface microstrip transmission line 47 201024739 to limit the rise time of the signal generated at the TDR transmitter 251 to a value of 250 ps. The surface microstrip transmission line 255 is coupled to the impedance matching circuit 250 in series with the device DUT having the input impedance Zin formed by a 11 PF capacitor and a 50 Ω resistor in parallel. This configuration device is used when the fast TDR measurement (30 ps rise time) as shown in Fig. 30 is applied but the slower TDR measurement (250 ps rise time) as shown in Fig. 32 The performance of the impedance matching circuit 250 and the DUT under test is tested, and the rise time of the slower TDR measurement is more suitable for the rise time of the tester (about 200 ps). Figure 33 shows an eye diagram of a signal received by the TDR receiver 254 of the test configuration device as shown in Figure 32. The eye diagram shows an almost open eye that is minimally disturbed only by the small reflection 260 caused by the parasitic ESL of the impedance R of the impedance matching circuit 250. The distortion in the eye diagram including an impedance matching circuit 250 as shown in Fig. 33 is substantially smaller as compared with the eye diagram of the test configuration device having no impedance matching circuit 250 as shown in Fig. 12. . A test configuration device comprising an impedance matching circuit 250 or an anti-reflection circuit respectively allows for an accurate measurement with accuracy, even at high sampling rates. The test configuration device as shown in Figure 32 is well suited for measuring high rate sampling devices, such as GDDR5 memory components. Figure 34a shows a schematic cross-sectional view of a test configuration apparatus including an SMA adapter 300' for transmitting an OD load simulation 302 and an impedance matching circuit 301, in accordance with an embodiment of the present invention. A coaxial cable (not shown) is terminated in series. The impedance matching circuit 〇1 includes a 27nH inductor 303 in parallel with a 50Ω resistor 304. The 50Ω resistor is implemented in parallel with one of two 201024739 100 Ω resistors to reduce this parasitic ESL. The ODT load simulation 302 is implemented by a parallel connection of a 11 pF capacitor 305 and a 50 Ω resistor 306. The capacitance 305 of the ODT load simulation 302 is implemented by a parallel connection of a 10 pF capacitor and an lpF capacitor. The resistor 306 is implemented in a parallel connection of two standard 100 ohm resistors. The circuit of the impedance matching circuit 303 and the ODT load emulation 302 are coupled between a core 307 and a ground connection 308 of the SMA adapter cable 300. The electronic components are discrete components such as, for example, SMD components. Figure 34b shows an equivalent circuit diagram of one of the test configuration devices as shown in Figure 34a. The impedance matching circuit 301 is coupled in series with the ODT load simulation 302 of the device under test. The inductor 303 is 27 nH, both resistors 304, 306 are 50 Ω and the capacitor 305 is 11 pF. The impedance matching circuit 301 is sized such that the resistance 304 of the impedance matching circuit 301 corresponds to the resistance 306 of the ODT load simulation and the inductance 303 of the impedance matching circuit 301 corresponds to the square of the resistance 306 of the ODT load simulation 302. The ODT load simulates the capacitance 305 of 302. This matching condition guarantees suppression of unwanted reflections. Due to the tolerance-effect properties of the electrical components, the components 303, 304 of the impedance matching circuit 301 can be varied within an allowable region, such as 'optimally determined by the matching conditions shown above. The value is around 10%. Figure 35 shows a Smith chart of a reflection coefficient measurement of the test configuration device as shown in Figure 34a. Compared to the Smith chart of the reflection coefficient of the SMA adapter cable that does not include the impedance matching circuit, the Smith chart of the coefficient of the test configuration device including the impedance matching circuit 301 shown in FIG. 35 shows the coefficient of 201024739. For a few halves there are frequency matching characteristics.兮 Measurements are performed from the frequency of up to about 1 post. Even if the Hai f1GI7 solves the 'slave (four) number whistle, as shown in the 14th, the reflection coefficient 只有 is only - very small complex value. The degree of deviation of _ may be generated by an equivalent series inductance of the resistor 304 of the impedance matching circuit 30! corresponding to the amount shown in Fig. 31 and the paste.

第36圖顯示了-測試配置褒置之一等效電路圖,該測 試配置裝置包含兩個阻抗匹配電路32(),每—個阻抗匹配電 路與又測元件32卜-TDR發送器322及各㈣TDR接收 器323相關聯。該測試配置襄置進一步包含一γ纔線似以 將該TDR發送器322連接到這兩個受測元件321。該TDR發 送器322包含用於將該TDR發送器產生的信號的上升時間 限制到250 ps之一RTL電路。該γ_分支纜線具有包含一傳輸 線325、一第一導線326及一第二導線327的一 Υ結構。該導 線325透過一導通孔連接到該第一導線326及該第二導線Figure 36 shows an equivalent circuit diagram of the test configuration device, the test configuration device comprising two impedance matching circuits 32(), each of the impedance matching circuit and the re-measuring component 32-TDR transmitter 322 and each (four) TDR Receiver 323 is associated. The test configuration device further includes a gamma line to connect the TDR transmitter 322 to the two devices under test 321 . The TDR transmitter 322 includes an RTL circuit for limiting the rise time of the signal generated by the TDR transmitter to 250 ps. The gamma-branch cable has a meandering structure including a transmission line 325, a first conductor 326 and a second conductor 327. The wire 325 is connected to the first wire 326 and the second wire through a via hole.

327。該傳輸線325具有一50 Ω的阻抗且可用一長度1 m直徑 5 mm的Gore纜線實現。該第一及第二導線326、327具有50 Ω的阻抗且可用具有長度20 cm直徑5 mm 的 Rosenberger 繞 線實現。該Y-分支纜線進一步包含一SMA配接器纜線327, 該SMA配接器纜線327連接在該第一導線326及該Y-分支纜 線的一輸出之間以產生一有意的長度失配。該SMA配接器 纜線具有一3 cm的長度。該SMA配接器纜線327的輸出連接 到該第一個受測元件的阻抗匹配電路320且該第二輸出缓 線327的輸出連接到該第二受測元件的阻抗匹配電路320。 50 201024739 透過該Y-分支纔線324的不對稱結構,可量測由於不對稱的 線長度產生的結果。 第3 7圖顯示了使用如第3 6圖所示的測試配置裝置測得 的一TDR圖。該TDR量測顯示了儘管該γ_分支纜線324具有 一不對稱的結構’在該TDR接收器323量測該受測元件321 處的接收信號的量測點處也沒有反射發生。由於匹配於該 受測元件321之阻抗的該阻抗匹配電路320,在包含該阻抗 匹配電路320及該受測元件321的電路中反射被消去。從該 Υ-分支纜線返回到該TDR發送器322的反射在該TDR發送 器322中被消去,藉此它們不影響在該受測元件321處的量 測。 第38圖顯示了一測試配置裝置之一等效電路圖,該測 試配置裝置包含兩個阻抗匹配電路320,每一個阻抗匹配電 路與一受測元件321、一長度失配的Υ-分支纜線324、一測 試信號發送器330及一測試信號接收器331相關聯。該Υ-分 支纜線324、該等阻抗匹配電路320及該等受測元件321對應 於如第36圖所示的該等電路。該測試配置裝置在量測的類 別上不同,如第36圖所示的該測試配置裝置用於一時域反 射量測,而如第38圖所示的該測試配置裝置用於信號量測 諸如,例如,用於量測在該受測元件321處的一眼圖。該測 試信號發送器330可為一位元誤碼率測試器(BERT)或一偽 隨機二進制序列(PRBS)產生器。 第39圖顯示了使用如第38圖所示的該測試配置裝置測 得的一眼圖。該眼圖顯示了沒有由於反射而起失真。然而, 51 201024739327. The transmission line 325 has a 50 Ω impedance and can be implemented with a Gore cable having a length of 1 m and a diameter of 5 mm. The first and second conductors 326, 327 have an impedance of 50 Ω and can be realized with a Rosenberger winding having a length of 20 cm and a diameter of 5 mm. The Y-branch cable further includes an SMA adapter cable 327 coupled between the first conductor 326 and an output of the Y-branch cable to produce a desired length lost pair. The SMA adapter cable has a length of 3 cm. The output of the SMA adapter cable 327 is coupled to the impedance matching circuit 320 of the first device under test and the output of the second output buffer 327 is coupled to the impedance matching circuit 320 of the second device under test. 50 201024739 Through the asymmetric structure of the Y-branch line 324, the results due to the asymmetrical line length can be measured. Figure 37 shows a TDR map measured using a test configuration device as shown in Figure 36. The TDR measurement shows that although the γ-branch cable 324 has an asymmetrical structure, no reflection occurs at the measurement point at which the TDR receiver 323 measures the received signal at the device under test 321 . Due to the impedance matching circuit 320 matching the impedance of the device under test 321, the reflection is cancelled in the circuit including the impedance matching circuit 320 and the device under test 321 . The reflections returned from the Υ-branch cable to the TDR transmitter 322 are eliminated in the TDR transmitter 322, whereby they do not affect the measurement at the device under test 321 . Figure 38 shows an equivalent circuit diagram of a test configuration device comprising two impedance matching circuits 320, each impedance matching circuit and a device under test 321, a length mismatched Υ-branch cable 324 A test signal transmitter 330 and a test signal receiver 331 are associated. The Υ-branch cable 324, the impedance matching circuit 320, and the device under test 321 correspond to the circuits as shown in Fig. 36. The test configuration device differs in the type of measurement, such as the test configuration device shown in FIG. 36 for a time domain reflectometry, and the test configuration device as shown in FIG. 38 for signal measurement such as For example, it is used to measure an eye diagram at the device under test 321 . The test signal transmitter 330 can be a one bit error rate tester (BERT) or a pseudo random binary sequence (PRBS) generator. Fig. 39 shows an eye diagram measured using the test configuration device as shown in Fig. 38. This eye diagram shows no distortion due to reflection. However, 51 201024739

與如第32_㈣具有—條信號傳輸線的職配置裝置相 比上升時間被降低了。在20%轉態點與8〇%轉態點之間, 可量測得—大約麵_上升時間。該眼_示了對於量測 沒有反射之受測元件而言不需要—對_γ分支麟。不 再需要該消去條件Z2 = 2.H巾細料線326及327的 各自的阻抗且Zl描述γ_分支_中的該傳輸線325的阻 抗。因此,由於該阻抗匹配電路32〇的匹配,不需考慮纔線 長又該Υ刀支八用纖線可按照受測元件的需要來定尺寸 而不需要考慮對稱條件。較短_線會提高上升時間且一 下降他卿)補償會給科场時間—額外的提高。The rise time is reduced as compared to the job configuration device having the signal transmission line of the 32_(4). Between the 20% transition point and the 8〇% transition point, it is measurable—about face_rise time. This eye_ shows that it is not necessary for measuring the component to be measured without reflection - the _ γ branch. The respective impedances of the erase condition Z2 = 2.H towel fine lines 326 and 327 are no longer required and Z1 describes the impedance of the transmission line 325 in the γ_branch_. Therefore, due to the matching of the impedance matching circuit 32, it is not necessary to consider the length of the wire, and the fiber of the burr can be sized according to the needs of the device under test without considering the symmetry condition. A shorter _ line will increase the rise time and a drop in the amount of compensation. The compensation will give the time of the field - an additional increase.

接著這意未著依據本發明的一測試配置裝置要求較 少的設計限制制是對於分支節點。該輸人線該第一輸 出線及該第二輸出線可包含傳輸線、波導、微帶線一印 刷電路板的帶狀導體、導通孔、連接(微)帶線、高頻微波纔 線連接體、互連體或組件、SMA配接器、同轴瘦線,且 該輸出線可偏離對稱條件,即,例如,該第-輸出線的阻 抗偏離該第—輸出線的阻抗多於5%或者使得該第一輸出 線的阻抗與該第二輸出線雜抗之並聯的阻抗偏離該輸入 線的阻抗多於5%。可選擇地或是另外,鱗輪出線/分支的 長度可偏移多於1%,該等受測元件的阻抗可相互偏移多於 1%,及/或該第-輸出線在電路板中於不同於該第二輸出線 的另一層上形成,透過導通孔將三條線連接到該共用的輸 入線因而不對稱。 第40圖依據本發明之一實施例,顯示了—測試配置裝 52 201024739 置的一電路圖’該測試配置裝置包含如第17圖所示的該分 支電路板120及連接在各自的輸出線122、123和該等受測元 件DUT1、DUT2的各自的阻抗之間的阻抗匹配電路34〇。透 過該阻抗匹配電路340,在分支端不再發生反射藉此一消去 條件(Z2 = 2ZD變得不再被需要了。當該輸入線的阻抗&為 60 Ω時’該等輸出線的一阻抗Z2可為6〇 Ω。對稱性不再作 為要求’例如不再要求長度匹配。該等上升時間明顯更快 因為線阻抗明顯更低。例如,透過該等輸出線的阻抗ζ2 = 6〇 Ω,可實現一等效線阻抗30 Ω而提高該等上升時間。該等 受測元件DUT1、DUT2可為GDDR5記憶體元件。 第41圖依據本發明之一實施例,顯示了 一測試配置裝 置的一等效電路圖,該測試配置裝置包含兩個受測元件 Dim、DUT2。就該Υ-分支120、該等受測元件DUT1、DUT2 及該阻抗匹配電路ARC而言,該測試配置裝置對應於如第 40圖所示的測試配置裝置。該阻抗匹配電路340用一5.4 nH 的電感及一60 Ω的電阻的並聯表示。該等阻抗匹配電路340 的元件依據如下匹配條件而定尺寸:阻抗匹配電路340及受 測元件的阻抗的一相等的電阻以及為該電阻的平方乘該受 測元件的電容的一電感。一信號產生器350耦接到該測試介 面126並被用於產生用來測試該等受測元件DUT1、DUT2之 測試信號。 第42圖顯示了如第41圖所示的該測試配置裝置的一第 一輸入信號v(10)的一模擬的眼圖》該取樣時間為2.5 Gbps。該信號產生器350產生一 27偽隨機二進制序列 53 201024739 (PRBS)。一上升時間tR與如第39圖所示的使用如第38圖所 示的測試配置裝置量測的8 〇 〇 p s的上升時間相比其值降至 大約130 ps。上升時間^的提高是為了避免該等反射所需的 該阻抗匹配電路的結果。 第43圖依據本發明之一實施例,顯示了 一測試配置裝 置的一等效電路圖,該測試配置裝置包含四個受測元件 DUT1、DUT2、DUT3、DUT4。該測試配置裝置包含一微 帶線360 ’該微帶線360連接在用於一裝置測試器350的一測 試介面126及阻抗匹配電路ARC及受測元件DUT1 - DUT4 瘳 的串聯連接之間。該微帶線360包含四個分支節點361、 - 362、363及364,藉此,在該測試介面126及該第一分支節 點361之間的該微帶線360的阻抗為25 Ω,在該第一分支節 · 點3 61及該第二分支節點3 62之間的該微帶線360的阻抗為 33 Ω,在該第二分支節點362及該第三分支節點363之間的 該微帶線360的阻抗為50 Ω且在該第三分支節點363及該第 四分支節點364之間的該微帶線360的阻抗為1〇〇 Ω。該微帶 線360可被定尺寸以使在各自的分支節點361 - 364及連接 Θ 各自的受測元件DUT1 - DUT4的該等阻抗匹配電路ARC之 間的輸出線的阻抗為大約為100 Ω。該等分支節點361至364 被安排在該微帶線3 60上且在該測試介面12 6之間藉此形成 電阻性線元件365,其中每一個電阻性線元件364具有100 Ω 的電阻。該微帶線360包含四個電阻性線元件365並聯在該 測試介面126及該第一分支節點361之間,總計為25 Ω之電 阻。在該第一分支節點361及該第二分支節點362之間三個 54 201024739 電阻性線元件365並聯,總計為33 Ω之電阻。在該第二分支 節點362及該第三分支節點363之間兩個電阻性線元件365 並聯,總計為50 Ω之電阻。在該第三分支節點363及該第四 分支節點364之間連接一個電阻性線元件365,總計100 Ω為 之電阻。 第44圖顯示了如第43圖所示的該測試配置裝置的四個 輸入信號的一信號圖。該等信號ν(1〇)、ν(11)、ν(12)及ν(13) 在各自的受測元件DUT1 -DUT4處量測。儘管該微帶線360 顯示了一高度不對稱的結構,由於預先連接的消去來自該 等受測元件DUT1 - DUT4的反射的該等阻抗匹配電路 ARC,該等信號v(l〇)-v(13)沒有反射。 要注意,沒有阻抗匹配電路ARC時會發生的反射是由 該等受測元件DUT1 - DUT4的輸入產生而不是由該不對稱 的微帶線360產生的。這個類匯流排(bus-like)結構(非到稱 的微帶線360)為了一期望的功能而需要一種阻抗匹配電路 ARC。因此,與一 Y-結構(如第41圖所示的Y-分支120)成對 比,對於類匯流排結構(不對稱的微帶線360)沒有定義消去 條件。 第45圖顯示了如第43圖所示的該測試配置裝置的該第 一輸入信號v(10)的一眼圖。該眼圖不因反射而失真。然而, 大約為200 ps的上升時間影響了該眼圖而使得該眼不是被 完全打開。與如第22b圖所示的不具有該阻抗匹配電路 的量測相比,如第45圖所示的眼圖被打開得更廣,藉此更 高精確度的量測在例如GDDR5記憶體元件是可能的。該等 55 201024739 如第21b圖所示的在該眼圖中可見的 中所示的該眼圖中被消去。 失真在如第45圖 置裝置勺人7了測試配置裝置之—示意圓,該測試配 置裝置W阻抗匹配電路縱1舰,第 示-具有-塾片陣列3刪路板,該等塾 = - DUT的該等塾片上。為此,該等塾片37 = 循該丽的佔用面積及墊片分佈。儘管該等銷針371 == -個可具有-撕,第46圖僅僅顯示了—代表性的塾片:This then means that a test configuration device in accordance with the present invention requires less design constraints for the branch nodes. The first output line and the second output line of the input line may include a transmission line, a waveguide, a microstrip line, a strip conductor of a printed circuit board, a via hole, a connection (micro) strip line, and a high frequency microwave line connector. , an interconnect or component, an SMA adapter, a coaxial thin wire, and the output line may deviate from a symmetrical condition, ie, for example, the impedance of the first output line deviates from the impedance of the first output line by more than 5% or The impedance of the impedance of the first output line in parallel with the second output line is less than 5% of the impedance of the input line. Alternatively or additionally, the length of the scale outlet/branch may be offset by more than 1%, the impedances of the tested components may be offset from each other by more than 1%, and/or the first output line is on the circuit board Formed on another layer different from the second output line, the three lines are connected to the common input line through the via holes and thus are asymmetrical. Figure 40 is a circuit diagram showing a test configuration package 52 201024739 in accordance with an embodiment of the present invention. The test configuration device includes the branch circuit board 120 as shown in Figure 17 and is connected to respective output lines 122, An impedance matching circuit 34 is formed between 123 and the respective impedances of the devices DUT1, DUT2. Through the impedance matching circuit 340, no reflection occurs at the branch end thereby eliminating the condition (Z2 = 2ZD becomes no longer needed. When the impedance of the input line & 60 Ω is 'one of the output lines' Impedance Z2 can be 6 〇Ω. Symmetry is no longer required. 'For example, length matching is no longer required. These rise times are significantly faster because the line impedance is significantly lower. For example, the impedance through these output lines ζ 2 = 6 〇 Ω The rise time can be increased by an equivalent line impedance of 30 Ω. The devices DUT1, DUT2 can be GDDR5 memory elements. Figure 41 shows a test configuration device in accordance with an embodiment of the present invention. An equivalent circuit diagram, the test configuration device includes two components Dim, DUT2. For the Υ-branch 120, the DUTs DUT1, DUT2 and the impedance matching circuit ARC, the test configuration device corresponds to The test configuration device shown in Fig. 40. The impedance matching circuit 340 is represented by a parallel connection of a 5.4 nH inductor and a 60 Ω resistor. The components of the impedance matching circuit 340 are sized according to the following matching conditions: impedance matching An equal resistance of the impedance of the path 340 and the device under test and an inductance of the capacitance of the device under test for the square of the resistance. A signal generator 350 is coupled to the test interface 126 and used to generate the test. The test signals of the tested components DUT1, DUT2. Figure 42 shows a simulated eye diagram of a first input signal v(10) of the test configuration device as shown in Fig. 41. The sampling time is 2.5. Gbps. The signal generator 350 generates a 27 pseudo-random binary sequence 53 201024739 (PRBS). A rise time tR and 8 〇〇 ps measured using the test configuration device as shown in Fig. 38 as shown in Fig. 39 The rise time is reduced to approximately 130 ps compared to its value. The increase in rise time is to avoid the results of the impedance matching circuit required for such reflections. Figure 43 shows a test configuration in accordance with an embodiment of the present invention. An equivalent circuit diagram of the device, the test configuration device comprising four devices DUT1, DUT2, DUT3, DUT4. The test configuration device includes a microstrip line 360' connected to a device tester 350 One test The test interface 126 and the impedance matching circuit ARC and the connected components DUT1 - DUT4 瘳 are connected in series. The microstrip line 360 includes four branch nodes 361, - 362, 363 and 364, whereby the test interface 126 and The impedance of the microstrip line 360 between the first branch node 361 is 25 Ω, and the impedance of the microstrip line 360 between the first branch node point 3 61 and the second branch node 3 62 is 33 Ω, the impedance of the microstrip line 360 between the second branch node 362 and the third branch node 363 is 50 Ω and the microstrip between the third branch node 363 and the fourth branch node 364 The impedance of line 360 is 1 〇〇Ω. The microstrip line 360 can be sized such that the impedance of the output line between the respective branch nodes 361 - 364 and the impedance matching circuits ARC of the respective sense elements DUT1 - DUT4 connected to Θ is approximately 100 Ω. The branch nodes 361 to 364 are arranged on the microstrip line 3 60 and between the test interfaces 12 6 thereby forming a resistive line element 365, wherein each resistive line element 364 has a resistance of 100 Ω. The microstrip line 360 includes four resistive line elements 365 connected in parallel between the test interface 126 and the first branch node 361 for a total of 25 Ω. Between the first branch node 361 and the second branch node 362, three 54 201024739 resistive line elements 365 are connected in parallel, for a total of 33 Ω. The two resistive line elements 365 are connected in parallel between the second branch node 362 and the third branch node 363, for a total of 50 Ω. A resistive line element 365 is connected between the third branch node 363 and the fourth branch node 364 for a total of 100 Ω. Figure 44 shows a signal diagram of the four input signals of the test configuration device as shown in Figure 43. The signals ν(1〇), ν(11), ν(12), and ν(13) are measured at the respective devices DUT1 - DUT4. Although the microstrip line 360 exhibits a highly asymmetrical structure, the signals v(l〇)-v (the signals v(l〇)-v) are removed due to the pre-connected impedance matching circuits ARC that cancel the reflections from the DUT1 - DUT4. 13) No reflection. It is to be noted that the reflection that occurs when there is no impedance matching circuit ARC is generated by the inputs of the devices DUT1 - DUT4 rather than by the asymmetric microstrip line 360. This bus-like structure (not to the microstrip line 360) requires an impedance matching circuit ARC for a desired function. Therefore, in contrast to a Y-structure (such as the Y-branch 120 shown in Fig. 41), no elimination condition is defined for the bus-like bus structure (asymmetric microstrip line 360). Figure 45 shows an eye diagram of the first input signal v(10) of the test configuration device as shown in Figure 43. This eye diagram is not distorted by reflection. However, a rise time of approximately 200 ps affects the eye pattern such that the eye is not fully open. Compared with the measurement without the impedance matching circuit as shown in Fig. 22b, the eye pattern as shown in Fig. 45 is opened wider, thereby measuring the higher precision in, for example, the GDDR5 memory element. It is possible. These 55 201024739 are eliminated in the eye diagram shown in Figure 21b, which is visible in the eye diagram. The distortion is as shown in Fig. 45. The test configuration device has a test circle. The test configuration device W impedance matching circuit is a vertical ship, and the first display-with-chip array 3 is used to cut the circuit board. These cymbals on the DUT. To this end, the slabs 37 = follow the area occupied by the lee and the distribution of the shims. Although the pins 371 == - can have - tear, Figure 46 shows only - representative cymbals:

的-ARC。該ARC經由一第一傳輸線381耗接到該接觸塾 372,該第-傳輸線381例如為嵌入在該電路板内的一信號 走線實施且由-導通孔382連接到在該電路板的_外^面 上形成的該接觸塾372。該ARC及墊片372之間的距離長經 由該第-傳輸線381延伸且該導通孔382可具有比經由該勢 37 2用於測朗D υ τ的—測試㈣的平均波長λ的四分之一 小的長度。該等接觸塾片371、372可以以對稱結構安排而 形成一球陣列(BGA)。-ARC. The ARC is discharged to the contact port 372 via a first transmission line 381. The first transmission line 381 is implemented, for example, as a signal trace embedded in the circuit board and connected by the via hole 382 to the outside of the circuit board. The contact 塾 372 formed on the surface. The distance between the ARC and the spacer 372 is long extended via the first transmission line 381 and the via 382 may have a quarter of the average wavelength λ of the test (four) used to measure the D υ τ via the potential 37 2 A small length. The contact pads 371, 372 can be arranged in a symmetrical configuration to form a ball array (BGA).

該阻抗匹配電路ARC包含諸如一電感器(諸如具有例 如L = 6.2 nH之線藝電感器)與一電阻器(例如為6〇 之離 散元件的一並聯。該電感器及該電阻器元件可如第46圖所 示一個在另一個上地堆疊起來。兩者均可被安排在形成該 等塾片371的該電路板的外表面的頂部。例如該ARc電路由 SMD部分形成。一導通孔383可將該ARC與該傳輸線381連 接起來。在ARC的另一終端,同樣可被連接於一導線,其 接著連接到一測試器或測試頭。例如,一導通孔384及一走 56 201024739 線385可被連接到該ARC使得該ARC串聯在該等走線385及 381之間。走線385可被連接到一分叉節點,該分又節點如 在該等前述實施例中所描述地在該電路板上形成。或者, 該不分叉節點可出現在該ARC及該測試器之一信號產生器 之間。 第47圖顯示了在該等由如第46圖所示的一離散元件 ARC阻抗匹配電路量測所得的信號與如第42圖所示的一彈 簧銷針ARC阻抗匹配電路量測所得的信號的對比之一時序 圖。該彈簧銷針ARC量測信號V(8)具有比該離散元件ARC 量測信號V(80)稍快的上升時間。由於接觸接該受測元件的 觸墊371到該ARC阻抗匹配電路的該傳輸線381的長度小於 該測試信號的波長的四分之一波長,該失配條件不再有 效。應使該阻抗匹配電路ARC的電感L匹配於該受測元件的 一輸入阻抗,該受測元件具有長度小於該測試信號的四分 之一波長的一傳輸線。一6.2 nH的值被找到以幾乎最佳化地 調整該阻抗匹配電路ARC以適於該受測元件的新的輸入阻 抗。該阻抗匹配電路ARC產生如一適中且良性的低通濾波 器的作用。在該測試器銷針電子卡中的一下降補償電路將 能夠補償該低通特性。藉此可獲得一明顯的眼睛張開。由 於該受測元件的輸入電容Cin為該上升時間的限制因素,故 將來由於新世代的記憶體元件導致Cin之依比例降低會提高 邊上升時間。本發明之包含一阻抗匹配電路ARC的該等實 施例為可縮放的’反射不會再限制速度。 【阐式簡單說明】 57 201024739 第1圖顯示了一光束圖,圖中光被一光學材料反射或通 過該光學材料,視該光學材料的一光學抗反射塗層而定, 以說明下文所述本發明之該等實施例之基礎的主要想法其 中之一; 第2a圖顯示了第1圖之情景的一示意圖,即光傳輸過一 具有與周圍空氣的反射指數不同的反射指數的光學介質; 第2b圖根據第2a圖所示的該光學配置裝置,顯示連接 到一受測元件的一電傳輸線的一示意圖,該受測元件具有 一與該傳輸線的阻抗不同的阻抗; 第3a圖顯示了一受測元件之輸入阻抗的一等效電路 圖,包括一電阻性的“内置於晶片之終端”及一電容性的輸 入電容; 第3b圖顯示了一表示第3a圖中的輸入阻抗的奈奎斯特 圖; 第4a圖顯示一受測元件的一輸入阻抗的一等效電路 圖,該輸入阻抗包含具有説明性的具體電阻及電感量值的 一電阻性内置於晶片之終端及一閘極以及一ESD(靜電放電) 電容; 第4b圖顯示了說明第4a圖中的輸入阻抗的一奈奎斯特 圖; 第5圖說明性地顯示了一GDDR5記憶體的輸入阻抗的 一 TDR(時域反射)圖; 第6圖依據一比較實施例顯示一電路彈簧銷針之截面 圖; 58 201024739 第7 a圖顯示另一對比實施例的彈簧銷針的内部構件及 用於將内部構件和外部套筒相互分開處於鬆開狀態的彈簧 之俯視圖; 第7b圖顯示第7a圖中處於壓縮狀態之一配置裝置的俯 視圖, 第8圖顯示第7a圖及第7b圖所示彈簧銷針的一外部套 筒之一俯視圖; 第9圖顯示了透過第7a圖到第8圖中的彈簧銷針的一短 路的受測元件(DUT)的一輸入銷針處量測得到的一時域反 射(TDR)圖; 第10圖顯示一直方圖,該直方圖說明了使用第7a圖至 第8圖所示之彈簧銷針的一彈簧銷針量測的可重複性; 第11圖顯示了一TDR圖,該TDR圖由用於量測一受測 元件(DUT)的比較測試配置裝置量測得到; 第12圖顯示了在一用於量測一阻抗失配的受測元件之 測試配置裝置中的一TDR接收器處所接收的一信號的眼 圖, 第13a圖顯示一 SMA(超小A型(sub-miniature-A))配接 器纜線以一 ODT負載仿真為終端之示意性截面圖; 第13b圖顯示了如第13a圖所示的以由該内置於晶片之 終端(ODT)負載終端為終端的該SMA配接器纜線的一等效 電路圖; 第14圖顯示了以如第13a圖所示的以該ODT負載終端 作為終端的該SMA配接器纜線的一輸入阻抗的一極點圖; 59 201024739 第15圖顯示了一無元件加載的菊鏈測試配置裝置測得 的一 TDR圖; 第16圖顯示了使用已於所有位點加載DDR2元件的菊 鏈測試配置裝置測得的一 TDR圖; 第17圖顯示了用於將一測試銷針連接至兩個受測元件 上的一分支的電路圖,該分支包含一共用線及透過一分支 節點連接的兩支線; 第18圖顯示了如第17圖所示的該分支的一電路圖,其 中該等分支線的阻抗及該等DUT的輸入阻抗為特定值; 第19圖顯示了一如第17圖所示的習知的分支電路圖, 其中指出了發生的反射; 第20a圖顯示了用於在一共用測試通道中量測DUT的 菊鏈測試配置裝置之一電路圖; 第20b圖顯示了使用第20a圖所示測試配置裝置進行量 測得到的一TDR圖; 第21a圖顯示了施加於一菊鏈配置裝置的測試信號之 一階躍響應時序圖; 第21b圖顯示了如第21a圖所示的該測試信號的一眼 圖, 第22a圖顯示了一傳輸通過如第2a圖所示的光學介質 當該光學介質包含由抗反射塗層材料製成的一光學薄膜時 光的波圖; 第22b圖顯示了與第22a圖類似的一信號圖,依據本發 明之一實施例,該信號圖為第2b圖的電傳輸線並具有一連 201024739 接在該傳輸線及該終端阻抗之間的抗反射電路(阻抗匹配 電路); 第23a圖依據本發明之一實施例,顯示了 一測試配置裝 置之一示意圖; 第23b圖依據本發明之另一實施例,顯示了一測試配置 裝置之一示意圖; 第23c圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖; 第23d圖顯示了依據本發明之一實施例的一測試配置 裝置的示意圖,該測試配置裝置包含一裝置測試器、一測 試介面及用於多數個受測元件的多數個介面; 第23e圖顯示了說明如第23a圖所示的測試配置裝置的 輸入阻抗的理論上的一奈奎斯特圖; 第24a圖顯示了對應於第4a圖所示的GDDR5記憶體元 件的說明性的例子之一測試配置裝置的等效電路圖,具有 一依據本發明之一實施例,連接在該傳輸線及受測元件之 間的阻抗匹配電路; 第24b圖顯示了如第24a圖所示的該測試配置裝置的一 理論上的奈奎斯特圖; 第25圖顯示了使用如第24a圖所示的該測試配置裝置 量測的一理論上的TDR圖; 第2 6圖顯示如第24 a圖所示的該測試配置裝置的受測 元件處的電壓與在第4a圖的情況下生成的該受測元件的輸 入阻抗處的電壓相比較的一階躍響應時序圖; 61 201024739 第2 7圖顯示了依據本發明之一實施例的一彈簧銷針的 一示意性的截面圖; 第28圖顯示了依據本發明之另一實施例的一彈簧銷針 之一示意性的截面圖; 第29a圖顯示了依據本發明之一實施例的一彈簧銷針 的一空間視圖; 第2%圖顯示了依據本發明之另一實施例的一彈簧銷 針的一空間視圖; 第29c圖顯示了依據本發明之一實施例的一測試配置 裝置的一俯視圖; 第30圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖,該測試配置裝置包含一阻抗匹配電 路、一TDR發送器及一TDR接收器; 第31圖顯示了使用如第3 0圖所示的該測試配置裝置量 測的一 TDR圖; 第32圖依據本發明之一實施例,顯示了 一測試配置裝 置的一等效電路圖,該測試配置裝置包含一阻抗匹配電 路、一TDR發送器、一微帶線及一量測探針; 第3 3圖顯示了如第3 2圖所示的該測試配置裝置的T D R 接收器接收的一信號的一眼圖; 第34a圖依據本發明之一實施例,顯示了 一測試配置裝 置之一示意性截面圖,該測試配置裝置包含一SMA配接器 纜線,其以一ODT負載仿真及一阻抗匹配電路的串聯作為 終端; 201024739 第3 4 b圖顯示了如第3 4 a圖所示的該測試配置裝置之一 等效電路圖; 第35圖顯示了如第34a圖所示的該測試配置裝置的一 反射係數量測的一史密斯圖; 第36圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖,該測試配置裝置包含兩個阻抗匹配電 路,每一個阻抗匹配電路與一受測元件、一長度失配的Y-分支纜線、一TDR發送器及一量測探針相關聯; 第3 7圖顯示了使用如第3 6圖所示的該測試配置裝置測 得的一信號圖; 第38圖依據本發明之一實施例,顯示了 一測試配置裝 置之一等效電路圖,該測試配置裝置包含兩個阻抗匹配電 路,每一個阻抗匹配電路與一受測元件、一長度失配的Y-分支纜線、一測試信號發送器及一測試信號接收器相關聯; 第39圖顯示了使用如第38圖所示的該測試配置裝置測 得的一眼圖; 第40圖依據本發明之一實施例,顯示了 一測試配置裝 置的電路圖,該測試配置裝置包含如第17圖所示的該分 支,及連接在各自的輸出線和該受測元件的各自的阻抗之 間的阻抗匹配電路; 第41圖依據本發明之一實施例,顯示了 一測試配置裝 置的等效電路圖,該測試配置裝置包含兩個受測元件; 第42圖顯示了如第41圖所示的該測試配置裝置的模擬 的一第一輸入信號的一模擬的眼圖; 63 201024739 第43圖依據本發明之一實施例,顯示了 一測試配置裝 置的等效電路圖,該測試配置裝置包含四個受測元件; 第4 4圖顯示了如第4 3圖所示的一測試配置裝置的一模 擬的四個輸入信號的一信號圖; 第4 5圖顯示了如第4 4圖所示的該測試配置裝置的模擬 的第一輸入信號的一眼圖; 第46圖顯示了 一測試配置裝置之一示意圖,該測試配 置裝置包含一阻抗匹配電路,該阻抗匹配電路透過一第一 傳輸線耦接到一第一受測元件且透過一第二傳輸線耦接到 一第二受測元件,該第一傳輸線具有比一測試信號的載波 的四分之一波長小的長度且第二傳輸線具有比該測試信號 的該載波的四分之一波長大的長度;及 第47圖顯示了在如第46圖所示的在該第一受測元件量 測所得及該第二受測元件量測所得的信號的一時序圖。 【主要元件符號說明】 10...光學材料的上部 30·.·彈簧銷針 12...光學材料的下部 32...受測元件插座 14...透鏡 34...墊片/銷針 16/18...光 36...球 20…光束 38...受測元件封裝 21...抗反射塗層材料之薄層 40···外殼/内管筒 /ARC 層 42…外殼/外管筒 22...玻璃 44/50...彈簧 24...電信號 52...内管筒 201024739The impedance matching circuit ARC includes a parallel such as an inductor (such as a line art inductor having, for example, L = 6.2 nH) and a resistor (for example, a discrete element of 6 。. The inductor and the resistor element can be as The one shown in Fig. 46 is stacked one on top of the other. Both can be arranged on top of the outer surface of the circuit board forming the slabs 371. For example, the ARc circuit is formed by the SMD portion. A via 383 The ARC can be connected to the transmission line 381. The other terminal of the ARC can also be connected to a conductor, which is then connected to a tester or test head. For example, a via 384 and a walk 56 201024739 line 385 Can be connected to the ARC such that the ARC is connected in series between the traces 385 and 381. The trace 385 can be connected to a bifurcation node, as described in the foregoing embodiments. Formed on the circuit board. Alternatively, the non-forked node may appear between the ARC and one of the signal generators of the tester. Figure 47 shows the ARC impedance of a discrete component as shown in Fig. 46. Matching circuit measurement A timing diagram of the comparison of the signals measured by a spring pin ARC impedance matching circuit as shown in Fig. 42. The spring pin ARC measurement signal V(8) has a measured signal V(V) compared to the discrete component. 80) a slightly faster rise time. Since the length of the transmission line 381 contacting the contact pad of the device under test to the ARC impedance matching circuit is less than a quarter wavelength of the wavelength of the test signal, the mismatch condition is no longer Effective. The inductance L of the impedance matching circuit ARC should be matched to an input impedance of the device under test having a transmission line having a length less than a quarter wavelength of the test signal. A value of 6.2 nH is found. The impedance matching circuit ARC is adjusted to be nearly optimally adapted to the new input impedance of the device under test. The impedance matching circuit ARC produces a function as a moderate and benign low pass filter. A drop compensation circuit in the card will be able to compensate for the low-pass characteristic, whereby a significant eye opening can be obtained. Since the input capacitance Cin of the device under test is a limiting factor for the rise time, The new generation of memory components results in a reduction in the proportion of Cin which increases the edge rise time. The embodiments of the present invention comprising an impedance matching circuit ARC are scalable 'reflections no longer limit the speed. 57 201024739 Figure 1 shows a beam diagram in which light is reflected by an optical material or through an optical material, depending on an optical anti-reflective coating of the optical material, to illustrate the implementation of the invention described below. One of the main ideas of the basis of the example; Figure 2a shows a schematic diagram of the scene of Figure 1, that is, the optical transmission of an optical medium having a different reflection index than the reflection index of the surrounding air; Figure 2b is based on the second The optical arrangement shown in the figure shows a schematic diagram of an electrical transmission line connected to a device under test having an impedance different from the impedance of the transmission line; Figure 3a shows the input of a component under test An equivalent circuit diagram of impedance, including a resistive "terminal built into the chip" and a capacitive input capacitor; Figure 3b shows a representation of Figure 3a a Nyquist diagram of the input impedance; Figure 4a shows an equivalent circuit diagram of an input impedance of a device under test, the input impedance comprising a resistive specific resistance and inductance value embedded in the terminal of the wafer And a gate and an ESD (electrostatic discharge) capacitor; Figure 4b shows a Nyquist diagram illustrating the input impedance in Figure 4a; Figure 5 illustratively shows the input impedance of a GDDR5 memory a TDR (Time Domain Reflected) diagram; Figure 6 shows a cross-sectional view of a circuit spring pin according to a comparative embodiment; 58 201024739 Figure 7a shows the internal components of a spring pin of another comparative embodiment and for A top view of the spring in which the inner member and the outer sleeve are separated from each other; FIG. 7b shows a plan view of a device in a compressed state in FIG. 7a, and FIG. 8 shows a spring pin shown in FIGS. 7a and 7b. a top view of one of the outer sleeves of the needle; Figure 9 shows a time domain measured by an input pin of a shorted test element (DUT) through the spring pin of Figures 7a through 8 Reflection (TDR) map Figure 10 shows a histogram illustrating the repeatability of a spring pin measurement using the spring pins shown in Figures 7a through 8; Figure 11 shows a TDR map showing the TDR The figure is measured by a comparative test configuration device for measuring a DUT; Figure 12 shows a TDR reception in a test configuration device for measuring an impedance component of an impedance mismatch. An eye diagram of a signal received at the device, Figure 13a shows a schematic cross-sectional view of an SMA (sub-miniature-A) adapter cable terminated with an ODT load simulation; Figure 13b An equivalent circuit diagram showing the SMA adapter cable terminated by the end terminal (ODT) loaded terminal of the wafer as shown in Fig. 13a is shown; Fig. 14 is shown as shown in Fig. 13a A pole map of an input impedance of the SMA adapter cable with the ODT load terminal as a terminal; 59 201024739 Figure 15 shows a TDR diagram measured by a componentless loaded daisy chain test configuration device; Figure 16 shows a daisy chain test configuration device using DDR2 components loaded at all locations. a measured TDR diagram; Figure 17 shows a circuit diagram for connecting a test pin to a branch on two elements under test, the branch comprising a common line and two lines connected by a branch node; Figure 18 shows a circuit diagram of the branch as shown in Figure 17, wherein the impedance of the branch lines and the input impedance of the DUTs are specific values; Figure 19 shows a conventional example as shown in Figure 17. Branch circuit diagram, which indicates the reflection that occurs; Figure 20a shows a circuit diagram of a daisy-chain test configuration device for measuring the DUT in a shared test channel; Figure 20b shows the test configuration shown in Figure 20a. a TDR map obtained by the device; FIG. 21a shows a step response timing diagram of a test signal applied to a daisy chain configuration device; and FIG. 21b shows an eye of the test signal as shown in FIG. 21a Figure 22a shows a wave pattern of light transmitted through an optical medium as shown in Figure 2a when the optical medium comprises an optical film made of an anti-reflective coating material; Figure 22b shows the same as Figure 22b. akin Signal diagram, according to an embodiment of the present invention, the signal diagram is the electrical transmission line of Figure 2b and has an anti-reflection circuit (impedance matching circuit) connected to the transmission line and the impedance of the terminal of 201024739; One embodiment of the invention shows a schematic diagram of a test configuration apparatus; FIG. 23b shows a schematic diagram of a test configuration apparatus according to another embodiment of the present invention; and FIG. 23c shows an embodiment according to an embodiment of the present invention. An equivalent circuit diagram of a test configuration device; FIG. 23d is a schematic diagram showing a test configuration device including a device tester, a test interface, and a majority for receiving a test configuration device according to an embodiment of the present invention. Measuring a plurality of interfaces of the component; Figure 23e shows a theoretical Nyquist plot illustrating the input impedance of the test configuration device as shown in Figure 23a; Figure 24a shows the corresponding Figure 4a An equivalent circuit diagram of a test configuration device, one of the illustrative examples of a GDDR5 memory component, having an embodiment connected to the transmission in accordance with an embodiment of the present invention And an impedance matching circuit between the tested components; Figure 24b shows a theoretical Nyquist diagram of the test configuration device as shown in Figure 24a; Figure 25 shows the use as shown in Figure 24a The test configuration device measures a theoretical TDR map; Figure 26 shows the voltage at the device under test of the test configuration device as shown in Fig. 24a and the case generated in the case of Fig. 4a A step response timing diagram comparing the voltages at the input impedance of the device under test; 61 201024739 Figure 27 shows a schematic cross-sectional view of a spring pin in accordance with an embodiment of the present invention; A schematic cross-sectional view of a spring pin in accordance with another embodiment of the present invention is shown; Figure 29a shows a spatial view of a spring pin in accordance with an embodiment of the present invention; A space view of a spring pin according to another embodiment of the present invention; FIG. 29c shows a top view of a test configuration device in accordance with an embodiment of the present invention; FIG. 30 is an embodiment of the present invention Showing a test configuration An equivalent circuit diagram of the device, the test configuration device comprising an impedance matching circuit, a TDR transmitter and a TDR receiver; and FIG. 31 shows a TDR measured using the test configuration device as shown in FIG. Figure 32 is a diagram showing an equivalent circuit diagram of a test configuration apparatus including an impedance matching circuit, a TDR transmitter, a microstrip line, and a measuring probe, in accordance with an embodiment of the present invention. Figure 3 3 shows an eye diagram of a signal received by the TDR receiver of the test configuration device as shown in Figure 32; Figure 34a shows one of the test configuration devices in accordance with an embodiment of the present invention In a schematic cross-sectional view, the test configuration apparatus includes an SMA adapter cable that is terminated by an ODT load simulation and a series connection of an impedance matching circuit; 201024739 Figure 3 4 b shows a diagram as shown in Figure 34 An equivalent circuit diagram of one of the test configuration devices; FIG. 35 shows a Smith chart of a reflection coefficient measurement of the test configuration device as shown in FIG. 34a; FIG. 36 shows an embodiment of the present invention An equivalent circuit diagram of a test configuration device, the test configuration device comprising two impedance matching circuits, each impedance matching circuit and a device under test, a length mismatched Y-branch cable, a TDR transmitter and a The measurement probe is associated; Figure 37 shows a signal diagram measured using the test configuration device as shown in Figure 36; Figure 38 shows a test configuration device in accordance with an embodiment of the present invention An equivalent circuit diagram, the test configuration device includes two impedance matching circuits, each impedance matching circuit and a device under test, a length mismatched Y-branch cable, a test signal transmitter, and a test signal receiver Corresponding; FIG. 39 shows an eye diagram measured using the test configuration device as shown in FIG. 38; FIG. 40 is a circuit diagram showing a test configuration device according to an embodiment of the present invention, the test configuration device Included in the branch as shown in FIG. 17, and an impedance matching circuit connected between respective output lines and respective impedances of the device under test; FIG. 41 is an embodiment of the present invention An equivalent circuit diagram of a test configuration device is shown, the test configuration device comprising two components under test; and Figure 42 is a simulation of a first input signal of the simulation of the test configuration device as shown in Fig. 41 Eye diagram; 63 201024739 Figure 43 shows an equivalent circuit diagram of a test configuration device comprising four components under test in accordance with an embodiment of the invention; Figure 4 4 shows a diagram as in Figure 4 A test signal of a simulated four input signals of a test configuration device; FIG. 45 shows an eye diagram of the simulated first input signal of the test configuration device as shown in FIG. 4; The figure shows a schematic diagram of a test configuration device. The test configuration device includes an impedance matching circuit coupled to a first device under test via a first transmission line and coupled to a first transmission line through a second transmission line. a second component to be tested, the first transmission line having a length smaller than a quarter wavelength of a carrier of the test signal and the second transmission line having a quarter wave of the carrier of the test signal The length of the growth; and Fig. 47 shows a timing chart of the signal measured by the first device under test and measured by the second device under test as shown in Fig. 46. [Description of main component symbols] 10...upper part of optical material 30·.·spring pin 12...lower part 32 of optical material...device socket 14 under test...lens 34...shield/pin Needle 16/18...light 36...ball 20...beam 38...test component package 21...thin layer of anti-reflective coating material 40···outer/inner tube/ARC layer 42... Housing/outer tube 22...glass 44/50...spring 24...electric signal 52...inner tube 201024739

54.. .活塞部分 56.. .接觸部分 58.. .彈簧固定部分 60.. .内部部分 62.. .接觸行程 64…末端 66.. .外套筒 72.. .大直徑部分 74.. .小直徑的中空部分 81.. .量測曲線 82.. .量測曲線 90…導致眼型失真的反射的 時間間隔 91…資料位元的時間間隔 100.. .5.A配接器 101…信號終端負載仿真 102…電容 103.. ·電阻 104、105·.·電容器 106.. .電阻器 120.. .電路板 121…分支節點 122…第一導線/第一輪出線 123…第二導線/第二輪出線 124、125…受測元件 126.. .測試介面 127.. .傳輸線 131~134…受測元件 140…裝置測試器 141.. .測試介面 143·.·寄生輸入電容 145,146,147,148,150·..分支節點 152…短線 153…終端阻抗 155…接地端 156…反射圖 160…來自DUT2的反射 161…來自DUT3的反射 162…來自DUT4的反射 200.. .阻抗匹配電路 201…傳輸線 202…受測元件/受測元件的 終端阻抗 203…電波 210··.受測元件封裝 211··.球 212.. .彈簧銷針 213. ·.受測元件插座 65 201024739 214…在插座板上的球格陣 列墊 215…彈簧 216.. .第一套筒 217.. .第二套筒 218.. .管筒 219.. .共用軸 220.. .接觸域 222.. .彈簧銷針 223…彈性元件 225.. .彈簧 226.. .第一套筒 227.. .第二套筒 228.. .管筒 229.. .共用軸 232.. .彈簧銷針 233.. .彈性體本體 234.. .主縱向軸 235.. .碳線 236.. .頂表面 237.. .底表面 247.. .内核 242.. .彈簧銷針 245.. .金線 246.. .電極 250.. .阻抗匹配電路 251.. .TDR發送器 252.. .TDR接收器 253.. .同轴電纜 254.. .TDR發送器 255.. .表面微帶傳輸線 260.. .小反射 300.. .5.A配接器 301.. .阻抗匹配電路 302.. .0.T負載仿真 303.. .電感 304…電阻 305.. .電容 306.. .電阻 307.. .内核 308.. .接地連接 320.. .阻抗匹配電路 321.. .受測元件 322.. .TDR發送器 323.. .TDR接收器 324.. . Y-分支電纜 325.. .同軸電纜/傳輸線 326.. .同軸電繞/第一導線54.. piston part 56.. contact part 58.. spring fixed part 60.. internal part 62.. contact stroke 64... end 66.. outer sleeve 72.. large diameter part 74. .. Small diameter hollow portion 81.. Measuring curve 82.. Measuring curve 90... Time interval 91 for reflection of eye shape distortion... Time interval of data bit 100.. .5.A adapter 101...Signal terminal load simulation 102...capacitor 103.. ·resistor 104,105·.·capacitor 106..resistor 120..circuit board 121...branch node 122...first lead/first round outgoing line 123... Second wire/second wheel outlet 124, 125... Tested component 126.. Test interface 127.. Transmission line 131~134... Tested component 140... Device tester 141.. Test interface 143.. Input Capacitors 145, 146, 147, 148, 150.. Branch Nodes 152... Short Lines 153... Terminal Impedances 155... Grounds 156... Reflections 160... Reflections from DUT 2 161... Reflections from DUT 3 ...... Reflections from DUT 4 200.. Impedance Matching Circuits 201... Transmission line 202...Terminal impedance of the device under test/measured element 203...Electric wave 210··. Device under test 211··. 212.. . Spring Pin 213. · Tested Component Socket 65 201024739 214... Grid Array Pad 215 on the Socket Plate... Spring 216.. First Sleeve 217.. Second Sleeve 218.. Tube 219.. .Shared shaft 220.. Contact field 222.. Spring pin 223... Elastic element 225.. Spring 226... First sleeve 227... Second sleeve 228.. Tube 229.. Common shaft 232.. Spring pin 233.. Elastomer body 234.. Main longitudinal axis 235.. Carbon wire 236.. Top surface 237.. Bottom surface 247. .. kernel 242.. spring pin 245.. gold wire 246.. electrode 250.. impedance matching circuit 251..TDR transmitter 252..TDR receiver 253.. coaxial cable 254 .. .TDR Transmitter 255.. Surface Microstrip Transmission Line 260.. Small Reflection 300.. .5.A Adapter 301.. Impedance Matching Circuit 302..0.T Load Simulation 303.. Inductor 304...resistor 305..capacitor 306..resistance 307..core 308.. Ground connection 320.. impedance matching circuit 321.. Measured component 322..TDR transmitter 323.. TDR Receiver 324.. . Y-Branch Cable 325.. . Coaxial Cable / Transmission Line 326.. . Coaxial Electric Winding / First Conductor

66 20102473966 201024739

327…第二導線/SMA配接器 瘦線/第二輸出纜線 330.. .誤碼率測試器/偽隨機 二進制序列/信號源 331.. .測試信號接收器 340.. .阻抗匹配電路 350.. .信號產生器 360.. .微帶線 361/362/363/364. ·.分支節點 365.. .電阻性線元件 371.. .墊片陣列 372.. .墊片 381…第一傳輸線 382~384…導通孔 385.. .信號線 400.. .測試配置裝置 401.. .介面 402.. .阻抗匹配電路 403.. .彈簧銷針 403b...彈簧銷針的示意性表示 404.. .受測元件 405.. .信號產生器 420.. .外部電氣元件 401b...介面 404b...受測元件 406.. .測試介面 407.. .測試頭 408/408b...插座板 410.. .銷針-電子模組 411.. .測試器接收器 412.. .纜線 413.. .接觸墊 414.. .接觸區域 415.. .螺絲 416.. .機械鎖機構 417.. .彈簧連接器 418.. .測試介面纜線 419".球 R/R〇DT…電阻 C/Cin...電容 L...電感 Z/Zin/Zarc/Zi/Z2 …阻抗 fl...頻率 r...反射係數 b...折射係數 no/i^/nARc…折射指數 S11/S12/S21/S22...S 參數 tR...上升時間 67327...Second wire/SMA adapter thin wire/second output cable 330.. Bit error rate tester/pseudo-random binary sequence/signal source 331.. test signal receiver 340.. impedance matching circuit 350.. .Signal generator 360.. . microstrip line 361/362/363/364. ·. Branch node 365.. resistive line element 371.. spacer array 372.. spacer 381... A transmission line 382~384... via hole 385.. signal line 400.. test configuration device 401.. interface 402.. impedance matching circuit 403.. spring pin 403b... schematic of spring pin Indicates 404.. Test element 405.. Signal generator 420.. External electrical component 401b... Interface 404b... Tested component 406.. Test interface 407.. Test head 408/408b. .. socket board 410.. pin-electronic module 411.. tester receiver 412.. cable 413.. contact pad 414.. contact area 415.. screw 416.. mechanical Lock mechanism 417.. Spring connector 418.. Test interface cable 419". Ball R/R〇 DT... Resistance C/Cin... Capacitance L... Inductance Z/Zin/Zarc/Zi/Z2 ... Impedance fl...frequency r...reflection coefficient b...refractive index no/i^/nARc...refractive index S 11/S12/S21/S22...S parameters tR...rise time 67

Claims (1)

201024739 七、申請專利範圍: 1. 一種測試配置裝置,其包含: 用於一受測元件的一介面,該介面包含一阻抗匹配 電路,該阻抗匹配電路包含並聯的一電阻(R)及一電感 (L)。 2. 如申請專利範圍第1項所述之測試配置裝置,其中該介 面包含一彈簧銷針,該彈簧銷針形成該阻抗匹配電路。201024739 VII. Patent application scope: 1. A test configuration device comprising: an interface for a device under test, the interface comprising an impedance matching circuit, the impedance matching circuit comprising a resistor (R) and an inductor connected in parallel (L). 2. The test configuration device of claim 1, wherein the interface comprises a spring pin that forms the impedance matching circuit. 3. 如申請專利範圍第1項或第2項所述之測試配置裝置,其 中該阻抗匹配電路的該電阻(R)及該電感(L)藉由離散的 電氣元件形成。3. The test configuration device of claim 1 or 2, wherein the resistance (R) of the impedance matching circuit and the inductance (L) are formed by discrete electrical components. 4. 如前述申請專利範圍中任一項所述之測試配置裝置,其 進一步包含一信號產生器以為該介面施加一具有低於 一最大頻率的一中間頻率之測試信號,其中該阻抗匹配 電路被配置以使得在該受測元件及該阻抗匹配電路之 間的一電氣距離小於與該最高頻率相對應的一電波長 的四分之一。 5. 如前述申請專利範圍中任一項所述之測試配置裝置,其 進一步包含該受測元件,該受測元件包含一輸入阻抗 (Zin),該介面適於在該阻抗匹配電路與該輸入阻抗(Zin) 之間提供一電氣耦接,以使得該阻抗匹配電路之一阻抗 (ZaRC)匹配該輸入阻抗(Zin)。 6. 如申請專利範圍第5項所述之該測試配置裝置,其中該 輸入阻抗包含並聯的一電阻(R)及一電容(C), 其中該阻抗匹配電路的該電阻(R)等於該輸入阻抗 68 201024739 (Zin)的該電阻(R)’在+/_1〇%之容差範圍内,及 其中該阻抗匹配電路的該電感(L)等於該輸入阻抗 (Zin)的該電阻(R)的平方乘該輸入阻抗(Zin)的該電容 (C),在+/- 10%之容錯範圍内。 7·如則述申請專利範圍中任一項所述之測試配置裝置,其 進一步包含: 用於一第二受測元件的一第二介面,該第二介面包 含—阻抗匹配電路’該阻抗匹配電路包含並聯的一電阻 (R)及一電感(L) ’該電阻(R)及該電感(L)等於用於該受 測元件的該介面的該電阻(R)及該電感(L); 用於一元件測試器的一測試介面;及 由一輸入線、—第一輸出線及一第二輸出線形成的 一分支點’該輸入線電氣連接在該測試介面及一分支節 ‘點之間’該第一輸出線電氣連接在該分支節點及用於該 文測70件的該介面之間,該第二輸出線電氣連接在該分 支卽點及用於該第二受測元件的該第二介面之間。 8. 如申請專利範圍第7項所述之測試配置裝置 ,其中該輸 入線、該第一輸出線及該第二輸出線包含傳輸線、波 導、微帶線、一印刷電路板的帶狀導體、導通孔、連接 (微線、向頻微波纜線、連接器、互連體或組件、SMA 配接器或同軸纜線。 9. 如申請專利範圍第7項所述之該測試配置裝置,其中該 等第一及第二輸出線偏離於一對稱條件而使得該第一 輸出線之阻抗偏離於該第二輸出線之阻抗超過了 5%或 69 201024739 使得該第一輸出線之阻抗與該第二輸出線之阻抗的並 聯的阻抗偏離於該輸入線之阻抗超過5%。 10. 如申請專利範圍第7項或第8項所述之測試配置裝置,其 中該第一與第二輸出線之長度偏離超過1%。 11. 如申請專利範圍第7項至第10項中任一項所述之測試配 置裝置,其中該等受測元件之該等阻抗相互間偏離超過 1%。 12. 如申請專利範圍第7項至第11項中任一項所述之測試配 置裝置,其中該第一輸出線形成在一電路板内與該第二 輸出線不同的另一層上。 13. —種彈簧銷針,其包含: 一導電材料的第一套筒; 一導電材料的第二套筒; 一電阻性材料的管筒,該第一套筒、該第二套筒及 該管筒沿一共用軸以滑動的方式相互附接,其中該管筒 被安排在該第一及該第二套筒之間;及 一導電材料的彈簧,用於將該第一及該第二套筒分 開, 其中該彈簧銷針形成了一主要由該彈簧形成的電 感與一主要由該管筒形成的電阻的一並聯。 14. 如申請專利範圍第13項所述之彈簧銷針,其中該第一及 第二套筒具有一相同的直徑,其容差範圍為+/-5%。 15. 如申請專利範圍第13項或第14項所述之彈簧銷針,其中 該管筒具有比該第一及第二套筒較小的一直徑,以使得 201024739 該管筒可在該第一及第二套筒内滑動。 16. 如申請專利範圍第13項至第15項中任一項所述之彈簧 銷針,其中該彈簧被安排在該第一及第二套筒内。 17. 如申請專利範圍第16項所述之彈簧銷針,其中該彈簧被 安排在該管筒内。 18. —種彈簧銷針,其包含: 一導電材料的第一套筒; 一導電材料的第二套筒; 一絕緣材料的管筒,該第一套筒、該第二套筒及該 管筒沿一共用軸以滑動的方式相互附接,其中該管筒被 安排在該第一及該第二套筒之間; 一導電材料的彈簧,用於將該第一及該第二套筒分 開;及 一彈性元件,包含沿該共用軸在該第一及該第二套 筒之間附接的一電阻性材料, 其中該彈簧銷針形成了一主要由該彈簧形成的電 感與一主要由該彈性元件形成的電阻的一並聯。 19. 如申請專利範圍第18項所述之彈簧銷針,其中該彈性元 件被附接在第一及第二套筒和管筒的該配置裝置内。 20. 如申請專利範圍第18項或第19項所述之彈簧銷針,其中 該彈簧為一螺旋式彈簧且該彈性元件被安排在該螺旋 式彈簧内。 21. 如申請專利範圍第18項至第20項中任一項所述之彈簧 銷針,其中該彈性元件為一電阻性彈性體。 71 201024739 22. 如申請專利範圍第18項至第21項中任一項所述之彈簧 銷針,其中該彈性元件被塗有一絕緣材料塗層以防止在 主要由該彈簧形成的該電感與主要由該彈性元件形成 的該電阻之間的一短路。 23. 如申請專利範圍第18項至第20項中任一項所述之彈簧 銷針,其中該彈性元件包含 一具有一主縱向軸的彈性體本體;及 彼入在該彈性體本體内的導電材料的線,以使在該 彈性體本體的一頂表面至一底表面之間沿該主縱向軸 延伸, 其中該彈性元件被附接在該第一及該第二套筒之 間以使該主縱向軸對齊該共用軸。 24. —種彈簧銷針,其包含: 一具有一主縱向軸的彈性體本體;及 欲入在該彈性體本體内的導電材料的線’以使在該 彈性體本體的一頂表面至一底表面之間沿該主縱向軸 延伸, 其中該彈簧銷針形成均由該等線形成的一電感(L) 及一電阻(R)的一並聯。 25. 如申請專利範圍第24項所述之彈簧銷針,其中該等線被 嵌入在該體内以使該等線在該本體内彼此電氣中斷。 26. 如申請專利範圍第24項或第25項所述之彈簧銷針,其中 該等線為碳線或金線。 27. 如申請專利範圍第24項至第26項中任一項所述之彈簧 201024739 銷針,其中該本體為圓柱形狀 且其中該等線被嵌入在該圓柱形狀本體的一圓柱 形狀内核中,其中該内核之直徑決定了該電感(L)之值。 28. —種如申請專利範圍第24項至第27項中任一項所述之 彈簧銷針之陣列,使它們的底表面連接到一共用電極。 29. —種用於測試一受測元件的方法,其包含以下步驟: 透過一阻抗匹配電路連接該受測元件,該阻抗匹配 電路包含並聯的一電阻(R)及一電感(L)。4. The test configuration device of any of the preceding claims, further comprising a signal generator for applying a test signal having an intermediate frequency below a maximum frequency to the interface, wherein the impedance matching circuit is The electrical distance between the device under test and the impedance matching circuit is configured to be less than a quarter of an electrical wavelength corresponding to the highest frequency. 5. The test configuration device of any of the preceding claims, further comprising the device under test, the device under test comprising an input impedance (Zin), the interface being adapted to be in the impedance matching circuit and the input An electrical coupling is provided between the impedances (Zin) such that one impedance of the impedance matching circuit (ZaRC) matches the input impedance (Zin). 6. The test configuration device of claim 5, wherein the input impedance comprises a resistor (R) and a capacitor (C) connected in parallel, wherein the resistor (R) of the impedance matching circuit is equal to the input The resistance (R)' of the impedance 68 201024739 (Zin) is within a tolerance of +/_1〇%, and the inductance (L) of the impedance matching circuit is equal to the resistance (R) of the input impedance (Zin) The square of this input impedance (Zin) is the capacitance (C) within +/- 10% of the tolerance. The test configuration device according to any one of the preceding claims, further comprising: a second interface for a second device under test, the second interface comprising an impedance matching circuit The circuit includes a resistor (R) and an inductor (L) in parallel. The resistor (R) and the inductor (L) are equal to the resistor (R) and the inductor (L) for the interface of the device under test; a test interface for a component tester; and a branch point formed by an input line, a first output line, and a second output line. The input line is electrically connected to the test interface and a branch node The first output line is electrically connected between the branch node and the interface for the 70 pieces of the document, the second output line is electrically connected to the branch point and the portion for the second device under test Between the second interface. 8. The test configuration device of claim 7, wherein the input line, the first output line, and the second output line comprise a transmission line, a waveguide, a microstrip line, a strip conductor of a printed circuit board, Via, connection (microwire, directional microwave cable, connector, interconnect or component, SMA adapter or coaxial cable. 9. The test configuration device of claim 7 wherein The first and second output lines are offset from a symmetrical condition such that the impedance of the first output line deviates from the impedance of the second output line by more than 5% or 69. 201024739 such that the impedance of the first output line is different from the first The parallel impedance of the impedance of the two output lines deviates from the impedance of the input line by more than 5%. 10. The test configuration device of claim 7 or 8, wherein the first and second output lines The length of the test device according to any one of claims 7 to 10, wherein the impedances of the devices under test deviate from each other by more than 1%. Apply for patent scope item 7 to The test configuration device of any of the items 11, wherein the first output line is formed on another layer in a circuit board different from the second output line. 13. A spring pin comprising: a conductive a first sleeve of material; a second sleeve of electrically conductive material; a tube of resistive material, the first sleeve, the second sleeve and the tube are slidably attached to each other along a common axis Wherein the tube is disposed between the first and the second sleeve; and a spring of electrically conductive material for separating the first and the second sleeve, wherein the spring pin forms a primary The spring pin formed by the spring is connected in parallel with a resistor formed mainly by the tube. The spring pin according to claim 13, wherein the first and second sleeves have the same diameter. , the tolerance of the first and second sleeves, wherein the tube has a smaller one than the first and second sleeves, wherein the tolerance is in the range of +/- 5%. The diameter is such that the tube can slide in the first and second sleeves in 201024739. 16. The spring pin of any of claims 13 to 15 wherein the spring is disposed within the first and second sleeves. 17. As claimed in claim 16 a spring pin, wherein the spring is arranged in the tube. 18. A spring pin comprising: a first sleeve of electrically conductive material; a second sleeve of electrically conductive material; a tube, the first sleeve, the second sleeve and the tube are slidably attached to each other along a common shaft, wherein the tube is arranged between the first and the second sleeve; a spring of electrically conductive material for separating the first and second sleeves; and an elastic member comprising a resistive material attached between the first and second sleeves along the common axis, wherein The spring pin forms a parallel connection of an inductance formed primarily by the spring and a resistor formed primarily by the resilient element. 19. The spring pin of claim 18, wherein the resilient member is attached to the configuration of the first and second sleeves and the barrel. 20. The spring pin of claim 18, wherein the spring is a helical spring and the resilient element is disposed within the helical spring. The spring pin of any one of claims 18 to 20, wherein the elastic element is a resistive elastomer. The spring pin of any one of clauses 18 to 21, wherein the elastic element is coated with a coating of insulating material to prevent the inductance and the main formed mainly by the spring. A short circuit between the resistors formed by the resilient element. The spring pin of any one of claims 18 to 20, wherein the elastic member comprises an elastomer body having a main longitudinal axis; and the body member is embedded in the body of the elastomer a wire of electrically conductive material extending along a major longitudinal axis between a top surface and a bottom surface of the elastomer body, wherein the resilient member is attached between the first and second sleeves such that The main longitudinal axis is aligned with the common axis. 24. A spring pin comprising: an elastomer body having a main longitudinal axis; and a line of conductive material intended to be inserted into the body of the elastomer such that a top surface of the body of the elastomer is to The bottom surfaces extend along the main longitudinal axis, wherein the spring pins form a parallel connection of an inductor (L) and a resistor (R) each formed by the lines. 25. The spring pin of claim 24, wherein the wires are embedded in the body such that the wires are electrically interrupted from each other within the body. 26. The spring pin of claim 24 or claim 25, wherein the wires are carbon or gold wires. 27. The spring 201024739 pin of any one of claims 24 to 26, wherein the body is cylindrical in shape and wherein the wires are embedded in a cylindrical shaped core of the cylindrical body, The diameter of the core determines the value of the inductance (L). An array of spring pins as claimed in any one of claims 24 to 27, wherein their bottom surfaces are connected to a common electrode. 29. A method for testing a device under test, comprising the steps of: connecting the device under test through an impedance matching circuit comprising a resistor (R) and an inductor (L) in parallel. 7373
TW098136658A 2008-10-30 2009-10-29 Test arrangement, pogo-pin and method for testing a device under test TWI414791B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/009178 WO2010048971A1 (en) 2008-10-30 2008-10-30 Test arrangement, pogo-pin and method for testing a device under test

Publications (2)

Publication Number Publication Date
TW201024739A true TW201024739A (en) 2010-07-01
TWI414791B TWI414791B (en) 2013-11-11

Family

ID=41011371

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098136658A TWI414791B (en) 2008-10-30 2009-10-29 Test arrangement, pogo-pin and method for testing a device under test

Country Status (2)

Country Link
TW (1) TWI414791B (en)
WO (1) WO2010048971A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166027A (en) * 2019-04-30 2019-08-23 华太极光光电技术有限公司 High-voltage pulse signal generation device and method
TWI785539B (en) * 2020-03-31 2022-12-01 日商愛德萬測試股份有限公司 Tester system, tester system diagnostic method and test system analysis method
US11733290B2 (en) 2020-03-31 2023-08-22 Advantest Corporation Flexible sideband support systems and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107577860B (en) * 2017-08-29 2019-09-10 西安电子科技大学 Microwave device road coupled transfer performance prediction method based on single gold wire bonding
WO2019241530A1 (en) 2018-06-14 2019-12-19 Formfactor, Inc. Electrical test probes having decoupled electrical and mechanical design
CN110554346B (en) * 2019-08-06 2021-06-22 国网四川省电力公司电力科学研究院 Frequency response testing device for coaxial transmission line end matching resistance voltage divider

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326095B2 (en) * 1996-12-27 2002-09-17 日本発条株式会社 Conductive contact
US6785148B1 (en) * 1998-12-21 2004-08-31 Intel Corporation Easy mount socket
US6218910B1 (en) * 1999-02-25 2001-04-17 Formfactor, Inc. High bandwidth passive integrated circuit tester probe card assembly
US6442718B1 (en) * 1999-08-23 2002-08-27 Sun Microsystems, Inc. Memory module test system with reduced driver output impedance
US6264476B1 (en) * 1999-12-09 2001-07-24 High Connection Density, Inc. Wire segment based interposer for high frequency electrical connection
DE10021371A1 (en) * 2000-05-02 2001-11-08 Infineon Technologies Ag Circuit arrangement
EP1248444A1 (en) * 2001-02-12 2002-10-09 Harris Corporation Analog telephone test set with low pass filter circuit and resistors coupled with the lead pair for preventing corruption of digital communication signals
CN1262842C (en) * 2000-06-16 2006-07-05 日本发条株式会社 Microcontactor probe and electric probe unit
US6642707B1 (en) * 2000-09-13 2003-11-04 Teradyne, Inc. High-speed peaking circuit for characteristic impedance control
US7019222B2 (en) * 2002-01-17 2006-03-28 Ardent Concepts, Inc. Compliant electrical contact assembly
US6784674B2 (en) * 2002-05-08 2004-08-31 Formfactor, Inc. Test signal distribution system for IC tester
JP4689196B2 (en) * 2003-11-05 2011-05-25 日本発條株式会社 Conductive contact holder, conductive contact unit
JP4521611B2 (en) * 2004-04-09 2010-08-11 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
KR100664158B1 (en) * 2004-10-06 2007-01-04 엘지전자 주식회사 Power-supply terminal protecting short-circuit for mobile communication terminal and mobile communication terminal having the same
US7435102B2 (en) * 2005-02-24 2008-10-14 Advanced Interconnections Corporation Interconnecting electrical devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166027A (en) * 2019-04-30 2019-08-23 华太极光光电技术有限公司 High-voltage pulse signal generation device and method
CN110166027B (en) * 2019-04-30 2023-07-04 华太极光光电技术有限公司 High-voltage pulse signal generating device and method
TWI785539B (en) * 2020-03-31 2022-12-01 日商愛德萬測試股份有限公司 Tester system, tester system diagnostic method and test system analysis method
US11619667B2 (en) 2020-03-31 2023-04-04 Advantest Corporation Enhanced loopback diagnostic systems and methods
US11733290B2 (en) 2020-03-31 2023-08-22 Advantest Corporation Flexible sideband support systems and methods

Also Published As

Publication number Publication date
TWI414791B (en) 2013-11-11
WO2010048971A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US7019544B1 (en) Transmission line input structure test probe
EP1825282B1 (en) Signal module with reduced reflections
US6501278B1 (en) Test structure apparatus and method
TWI414791B (en) Test arrangement, pogo-pin and method for testing a device under test
US6407562B1 (en) Probe tip terminating device providing an easily changeable feed-through termination
US20120274338A1 (en) High performance time domain reflectometry
US4418314A (en) High impedance fast voltage probe
US7034544B2 (en) Methods for minimizing the impedance discontinuity between a conductive trace and a component and structures formed thereby
CN101790690B (en) Contactless measuring system
CN102474476B (en) Differential signal transmission lines road, IC packaging part and their test method
CN112710977B (en) Surface-mounted passive device S parameter measuring device and method based on TRM calibration
CN114791554A (en) Hybrid shielded socket with impedance tuning for integrated circuit device test tool
CN106133531A (en) Contact assembly, particularly HF measure head
US6841986B1 (en) Inductively coupled direct contact test probe
JP2005351731A (en) Test socket
CN105677524A (en) Test component, connector and test mainboard
US9726707B1 (en) Controlled impedance charged device tester
Chen et al. Electrical characterization of BGA test socket for high-speed applications
JP4885613B2 (en) Terminal probe for circuit measurement
US10267838B1 (en) Current sensor having microwave chip resistors in parallel radial arrangement
Rosas et al. Development of a 1.85 mm coaxial blind mating interconnect for ATE applications
Petersson et al. A New Calibration Kit for VNA Measurements of General Microstrip Line Devices Using Gap Waveguide Technology
Huang et al. Probe with absorbing materials
CN102331962A (en) Serial attached small computer system interface (SAS) test tool
JPH05218780A (en) Probe attenuator