TW201024690A - Apparatus and method for measuring optical spectrum distribution - Google Patents

Apparatus and method for measuring optical spectrum distribution Download PDF

Info

Publication number
TW201024690A
TW201024690A TW97150320A TW97150320A TW201024690A TW 201024690 A TW201024690 A TW 201024690A TW 97150320 A TW97150320 A TW 97150320A TW 97150320 A TW97150320 A TW 97150320A TW 201024690 A TW201024690 A TW 201024690A
Authority
TW
Taiwan
Prior art keywords
spectral distribution
light
light source
sub
spectrometer
Prior art date
Application number
TW97150320A
Other languages
Chinese (zh)
Inventor
Yu-Shan Chang
Kuei-Neng Wu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97150320A priority Critical patent/TW201024690A/en
Publication of TW201024690A publication Critical patent/TW201024690A/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

An apparatus for measuring optical spectrum distribution has a shift module, an image-obtaining module, a spectrometer, and a processor. The shift module has a carrier surface used to carry a point light source. The carrier surface is capable of shifting toward a scan direction. The image-obtaining module is used to obtain an image of the point light source so as to extend the point light source into a surface light source. The spectrometer has a light collection portion, which can divide a surface light source into a plurality of sub-areas, and measures the optical spectrum distributions of the sub-areas to output a plurality of optical spectrum distribution data to the processor. The processor controls the carrier surface shifting, so that the spectrometer is capable of measuring each sub-area sequentially. Finally, the optical spectrum distribution data are operated by the processor for obtaining the whole spectrum distribution information of the surface light source.

Description

201024690 ru/y/uuzjTW 29518twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光譜分佈的量測方法,且特別是 有關於一種點光源之光譜分佈的量測方法。 【先前技術】 發光二極體(LED)屬於半導體元件,其發光晶片 ® 之材料主要使用III_V族化學元素,如:磷化鎵(GaP)、砷 化鎵(GaAs)等化合物半導體,其發光原理係將電能轉換為 光,也就是對化合物半導體施加電流,透過電子與電洞的 結合,將過剩的能量以光的形式釋出,而達成發光的效果。 由於發光二極體的發光現象不是藉由加熱發光或放電發 光,因此發光一極禮的哥命長達十萬小時以上,且無須暖 燈時間(idling time )。此外,發光二極體更具有反應速度 快(約為1(Τ9秒)、體積小、用電省、污染低、高可靠度、 _ 適合量產等優點’所以發光二極體所能應用的領域十分廣 泛如大型看板、交通號德燈、手機、掃描器、傳真機之光 源以及照明裝置等。 近來’由於發光二極體的發光亮度與發光效率持續地 提昇’同時高亮度的白光發光二極體也被成功地量產,所 以白光發光二極體逐漸被使用於照明裝置中,如室内的燈 光照明以及戶外的路燈照明等。 圖1所示為一種發光二極體的光譜分佈圖。請參照圖 1,橫軸座標轴為光波長,而縱軸座標轴則是光強度。另外, 3 201024690 • ru/^/w^jTW 29518twf.doc/n 曲線102代表了白光發光二極體的光譜’而曲 藍光傷害光譜分佈。根據研究,對人眼傷害最大^疋 是波長400nm到500nm的藍光,也就是曲線1〇4所^佈 的I巳圍。因此’當要對發光二極體的傷害進行 需要完整的量測發光二極體的光譜分佈。 π ^201024690 ru/y/uuzjTW 29518twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a method for measuring spectral distribution, and in particular to measurement of spectral distribution of a point source method. [Prior Art] A light-emitting diode (LED) is a semiconductor component, and a material of the light-emitting chip® mainly uses a group III_V chemical element such as a compound semiconductor such as gallium phosphide (GaP) or gallium arsenide (GaAs), and the principle of light emission thereof The conversion of electrical energy into light, that is, the application of current to the compound semiconductor, through the combination of electrons and holes, the excess energy is released in the form of light to achieve the effect of luminescence. Since the illuminating phenomenon of the light-emitting diode is not by heating or discharging, the radiance of the light-emitting ritual is as long as 100,000 hours or more, and the idling time is not required. In addition, the light-emitting diode has a fast response speed (about 1 (Τ9 seconds), small volume, low power consumption, low pollution, high reliability, _ suitable for mass production, etc.] so the light-emitting diode can be applied. The field is very wide, such as large billboards, traffic lights, mobile phones, scanners, fax machines, light sources, lighting devices, etc. Recently, due to the luminous brightness and luminous efficiency of the light-emitting diodes continue to increase, while the high-brightness white light emitting two The polar body has also been successfully mass-produced, so white light-emitting diodes are gradually being used in lighting devices, such as indoor lighting and outdoor street lighting, etc. Figure 1 shows the spectral distribution of a light-emitting diode. Referring to Fig. 1, the horizontal axis coordinate axis is the light wavelength, and the vertical axis coordinate axis is the light intensity. In addition, 3 201024690 • ru/^/w^jTW 29518twf.doc/n curve 102 represents the white light emitting diode The spectrum 'Bright blue' damages the spectral distribution. According to the study, the damage to the human eye is the largest. The blue light is 400 nm to 500 nm, which is the I巳 of the curve 1〇4. Therefore, 'When the light-emitting diode is to be used of The need for complete spectral distribution of damage to the measurement of the light-emitting diode. Π ^

在習知的技術中,要量測發光二極體的光譜分佈 都是利用錢度計來量測。然而,光強度計所量測到的社 果僅是-個光強度值’並非發光二極體完整域二 佈。另外,由於發光二極體晶片的表面為不均句的曰面刀, 因此若只僅測量發光面上其巾—點的光譜分佈並不準確, 並不能代表全域的光譜分佈。 【發明内容】 本發明提供一種光譜分佈量測裝置,可以精確的量測 一點光源的全域光譜分佈。 本發明提供一種光譜分佈量測方法,也可以量測具有 不均勻發光面之點光源的全域光譜分佈。 本發明提供一種光譜分佈量測裝置,包括平移模組、 取像模組、光譜儀和處理模組。平移模組具有一承載面, 可以承載一點光源’並且平移模組可以依據一平移控制訊 號’而使承載面朝向一掃描方向平移。取像模組則可以對 準承載面’以對點光源取像,並且將點光源延伸為一面光 源。另外’光譜儀可以耦接取像模組,並且具有一集光部。 而光譜儀可以透過集光部而將面光源分割成多個次區域以 4 ^TW 29518twf.doc/n 201024690 ,行光譜分佈的侧,並分顺_應的光譜分佈資料給 處理她。而處理模朗可以輪料移控制訊號給平移模 ^使光譜儀可以依次對每—起域進行光譜分佈㈣ 二,猎處理模組可以將這些光譜分佈資料進行混合運 ,以獲得點光源的全域光譜分佈資訊。 在本發明的實施射’取像模組的集光部具有 ^結構,而此光狹縫的面積小於該面光源的面積 光源就可以經由光狹縫^被分成上述的次區域。9 譜儀另外,上述的光譜儀可以是影像光譜儀或是單點式光 法,供一種先譜分伟量測方 ,另外,依序量測每—次區域的光譜;;割= ί=Γ佈此,本發明可以將所有的光ί 貧枓此合運I ’以獲得點光源的全域光譜分佈資訊九°曰 光二ΐί發明的實施例中,上述被量測的點光源^以是發 由於本發明是將點光源延伸成面光源, 個次區域進行光譜分佈的量測。因此,本發明可=成多 量測點光源的光譜分佈。乂精確地 為讓本發明之上述特徵和優點能更明顯 舉實施例,並配合所附圖式作詳細說明如下。下文特 【實施方式】 5 TW 29518twf.doc/n 201024690 圖2繪示為依照本發明之一較佳實施例的一種光譜分 佈量測裝置的方塊圖。請參照圖2,本實施例所提供的光 譜分析量測裝置200,可以量測一點光源2〇2的光譜分佈。 在本實施例中,點光源202可以是發光二極體,然而本發 明並不以此為限。 光譜分佈量測裝置200包括平移模組212、取像模組 214、光譜儀216和處理模組218。取像模組214可以耦接 φ 光譜儀216,而光譜儀216的輸出則可以耦接處理模組 218。此外,處理模組218則可以耦接平移模組212。其中, 平移模組212具有一承載面,可以承載待測的點光源。除 此之=,平移模組212還可以接收由處理模組218所輪出 的一平移控制訊號C1,並依據此平移控制訊號C1控制承 載面朝一掃描方向平移。 凊繼續參照圖2,取像模組214可以對放置在平移模 212之承載面上的點光源202進行取像,並且可以將取 得的影像送至光譜儀216進行分析量測。在本實施例中, 取像模組214送至光譜儀216的影像為實體物理影像。圖 1則繪不依照本發明之一較佳實施例的一種取像模組的示 意圖。請參照圖3,取像模組214可以具有一物鏡組3〇2、 本體304和目鏡組306。其中,物鏡組302與目鏡組306 都可以安裝在本體304上。 物鏡組302可以配置多個鏡頭,例如鏡頭312、314 和316,可以用來對準圖2之平移模組212的承載面,以 接收點光源202所發出的光。其中,鏡頭312、314和316 2〇l〇2469〇Tw295i8twfd〇c/n 可以由多個光學鏡片所組成。藉此,鏡頭312、314和316 分別可以具有不同的光放大倍率。當點光源逝的光 入鏡頭312、314和316,就可以在目鏡組3〇6上成像。 於鏡頭312、314和316都具有不同的光放大倍率,因此點 光源2〇2在目鏡組3〇6上的成像就可以被延伸為一 源’例如圖5中的502。另一方面,目鏡組3〇6的鏡頭上 還可以配置-尺標,而使用者可以藉由此尺標來量測 源的面積。 請繼續參照圖2,在取像模組214之目鏡組3〇6上 成像,可雜送至光譜儀216,錢行制。光譜儀216 可以是單點式光譜儀或是影像光職。圖情示為依照本 發明之-較佳實闕的-郷像光譜儀的結制。請參昭 圖4,本實施例所提供的光譜儀216包括集光部術、透& 組綱和光感測器概。集光部搬可以接收從取像模电 214之目鏡組3〇6所獲得之面光源的光線,而透鏡組4〇4 則可以配置在集光部402和光感測器4〇6之間的路徑上。 集光#4〇2包持聚焦鏡化和光狹縫414。當從目鏡 組306出射的光、線440進入集光部術後,會先到聚焦鏡 412’再透射聚焦鏡412而到達光狹缝414。接著,光線44〇 玎以通過光狹縫414’而到達透鏡組4〇4。在本實施例中, 光線440可以依序通過透鏡組4〇4中的非球面鏡416、穿 透式繞射光栅418和消色差鏡·。至終,光線440會聚 焦在光感測器406。 圖5緣不為從光感测器4〇6來觀察目鏡組挪之影像 7 201024690 FU/y/uu^^TW 29518twf.doc/nIn the prior art, the spectral distribution of the light-emitting diodes is measured using a money meter. However, the measured value of the light intensity meter is only a light intensity value' which is not the complete domain of the light-emitting diode. In addition, since the surface of the light-emitting diode wafer is a face-to-face knife of a non-uniform sentence, if only the measurement of the spectral distribution of the towel-point is not accurate, it does not represent the spectral distribution of the whole domain. SUMMARY OF THE INVENTION The present invention provides a spectral distribution measuring device that can accurately measure the global spectral distribution of a point source. The present invention provides a spectral distribution measurement method, which can also measure the global spectral distribution of a point source having a non-uniform illumination surface. The invention provides a spectral distribution measuring device, which comprises a translating module, an imaging module, a spectrometer and a processing module. The translating module has a bearing surface that can carry a little light source 'and the translating module can translate the bearing surface toward a scanning direction according to a translational control signal. The image capture module can be used to image the spot light source and extend the point source to a side light source. In addition, the spectrometer can be coupled to the image taking module and has a light collecting portion. The spectrometer can divide the surface light source into a plurality of sub-regions through the concentrating portion to 4 ^ TW 29518 twf.doc / n 201024690 , the side of the spectral distribution, and divide the spectral distribution data to handle her. The processing mode can turn the control signal to the translation mode, so that the spectrometer can perform the spectral distribution for each domain in turn (4). The hunting processing module can mix and match these spectral distribution data to obtain the global spectrum of the point source. Distribution information. In the embodiment of the present invention, the light collecting portion of the image capturing module has a structure, and the area of the light slit is smaller than the area of the surface light source. The light source can be divided into the above-mentioned sub-region via the light slit. 9 Spectrometer In addition, the above spectrometer can be an image spectrometer or a single-point photo method for a pre-spectral measurement, and in addition, sequentially measure the spectrum of each sub-region; cut = ί=Γ Therefore, the present invention can make all the light 枓 枓 枓 合 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得 以获得The invention extends the point source into a surface source, and the sub-regions measure the spectral distribution. Therefore, the present invention can = a plurality of spectral distributions of point sources. The above-described features and advantages of the present invention will be more apparent from the following detailed description of the embodiments. The following is a schematic diagram of a spectral distribution measuring device according to a preferred embodiment of the present invention. Referring to FIG. 2, the spectral analysis measuring apparatus 200 provided in this embodiment can measure the spectral distribution of the light source 2〇2. In this embodiment, the point light source 202 may be a light emitting diode, but the invention is not limited thereto. The spectral distribution measuring device 200 includes a translating module 212, an imaging module 214, a spectrometer 216, and a processing module 218. The image capturing module 214 can be coupled to the φ spectrometer 216, and the output of the spectrometer 216 can be coupled to the processing module 218. In addition, the processing module 218 can be coupled to the translation module 212. The translation module 212 has a bearing surface and can carry the point light source to be tested. In addition, the translation module 212 can also receive a translation control signal C1 rotated by the processing module 218, and control the translation surface to translate in a scanning direction according to the translation control signal C1. Referring to FIG. 2, the image capture module 214 can image the point source 202 placed on the bearing surface of the translation mode 212, and can take the obtained image to the spectrometer 216 for analysis and measurement. In this embodiment, the image sent by the image capturing module 214 to the spectrometer 216 is a physical physical image. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of an image taking module not in accordance with a preferred embodiment of the present invention. Referring to FIG. 3, the image capturing module 214 can have an objective lens group 3, a body 304, and an eyepiece group 306. Wherein, both the objective lens set 302 and the eyepiece set 306 can be mounted on the body 304. The objective lens set 302 can be configured with a plurality of lenses, such as lenses 312, 314, and 316, that can be used to align the load bearing surface of the panning module 212 of FIG. 2 to receive light from the point source 202. Among them, the lenses 312, 314 and 316 2〇l〇2469〇Tw295i8twfd〇c/n may be composed of a plurality of optical lenses. Thereby, the lenses 312, 314 and 316 can each have different optical magnifications. When the light from the point source enters the lenses 312, 314 and 316, it can be imaged on the eyepiece group 3〇6. The lenses 312, 314 and 316 all have different optical magnifications, so that the imaging of the point source 2〇2 on the eyepiece group 3〇6 can be extended to a source' such as 502 in Fig. 5. On the other hand, the eyepiece group 3〇6 can also be equipped with a scale, and the user can measure the area of the source by using the scale. Referring to FIG. 2, the image is taken on the eyepiece group 3〇6 of the image capturing module 214, and can be sent to the spectrometer 216 for money. Spectrometer 216 can be a single point spectrometer or an image photo. The figure is shown in the context of a preferred embodiment of the present invention. Referring to FIG. 4, the spectrometer 216 provided in this embodiment includes a concentrating section, a permeable section, and a photosensor. The light collecting unit can receive the light from the surface light source obtained by the eyepiece group 3〇6 of the image pickup circuit 214, and the lens group 4〇4 can be disposed between the light collecting unit 402 and the light sensor 4〇6. On the path. The collection light #4〇2 holds the focusing mirror and the light slit 414. When the light and line 440 exiting the eyepiece group 306 enters the concentrating portion, it will first pass through the focusing mirror 412' and then pass through the focusing mirror 412 to reach the optical slit 414. Then, the light ray 44 is passed through the light slit 414' to reach the lens group 4〇4. In the present embodiment, the light ray 440 may sequentially pass through the aspherical mirror 416, the through diffraction grating 418, and the achromatic mirror in the lens group 4〇4. At the end, the light 440 will be focused on the light sensor 406. Figure 5 is not the view of the eyepiece group from the light sensor 4〇6 7 201024690 FU/y/uu^^TW 29518twf.doc/n

的示意圖。請參照圖5,由於光感測器406和目鏡組3〇6 之間,配置有光狹缝414,並且光狹缝414的開口面積小 於面光源502。因此,當從光感測器406處觀看目鏡組3〇6 中所成像的面光源502時,僅能夠觀測到面光源5〇2從光 狹缝414暴露出來的部分。在此,定義面光源5〇2從光狹 縫414暴路出來的部份為次區域504。而藉由光狹縫々Μ, 就可以將面光源502劃分為多個次區域。當次區域刈4的 光線到達光感測器406時,光感測器406就可以偵測次區 域504令的光譜分佈,並且產生對應的光譜分佈料〇 給圖2中的處理模組218。 請,併參照圖2和圖5,處理模組218可以產生平移控制 訊號ci給平移模組212,以使其承載面朝掃描方向平 移。當平移模組212的承載面_财向平料面光源 也會隨之朝掃描方向平移。藉此,光譜儀训就可以 ==有次區域的光譜分佈,並且產生對應的光譜分佈 貝處理模組218。再其它的實施例,可以利用 析軟體得_些次區域的光譜分細提供給處理模組 218 ° 圖6即緣示圖2之光譜儀所輸出不同次區域之光 意圖。請參照圖6,其縱座標是標示 1, 而1標則標示為光波長。其中,曲線6〇2、祕、刪、 中的光譜分佈料。代表了不同次區域 純始佈月开7虽處理模組218接收到這些光譜分佈 、’ ’可以將其混合運算,以㈣點統的全域光講分 8 TW 29518twf.doc/n 201024690 佈資訊’例如圖7所示。其中,在本實施例中,由於每個 次區域的面積相同,以獲得圖7所繪示的光譜資料,其表 示將圖6中所有光譜資料進行平均後所獲得的全域平均光 譜分佈資料。 凊回頭參照圖5 ’在一些實施例中,量測人員也可以 將承載面旋轉90度後,在重複量測一次面光源5〇2上所有 次區域的光譜分佈資料。藉此,就可以獲得例如圖8中之 晝素區域802中的光譜分佈。而在這些實施例中,處理模 組218可以將所有畫素區域8〇2的光譜分佈進行運算,就 可以獲得更精確的點光源全域光譜分佈資訊。 而在另外一些選擇實施例中,要獲得晝素區域802的光譜 分佈的步驟,射以· 軟體對面絲观的次區域 504影像進行影像分析來取得。 綜上所述,由於本發明在光譜儀中配置有光狹縫因 此光t a儀就可以藉由光狹縫*將面光源分成多個次區域量 測。而經由混合運算所有次區域的光譜分佈,本發明就可 以精確的量測到點光源的全域光譜分佈資訊。 雖然本發明已以實_麟如上,财並義以限定 所屬技術領域中具有通常知識者,在不脫離 2 範圍内,當可作些許之更動與潤飾,故本 I月之保知圍當視_之申請專·_界定者為準。 【圖式簡單說明】 201024690 /vw^jTW 29518twf.doc/n 種發光二極體的光譜分佈圖。 佈量:i:=本發明之-較佳實施例的-種先譜分 組的sr為依照本發明之—較佳實施例的—種取像模 譜儀賴树狀—婦實施_1影像先 .影像的 一圖5繪示為從圖4之光感測器來觀察目鏡組之 示意圖。 一圖6繪示為光譜儀所輸出不同次區域之光譜分佈資料 的示意圖。 圖7繪示為點光源的全域光譜分佈的示意圖。 圖8綠示為依照本發明之一實施例之晝素區域的示意 圖。 【主要元件符號說明】 102、1〇4 :光譜曲線 2〇〇 :光譜分析量測裝置 202 :點光源 212 :平移模組 214 :取像模組 216 :光譜儀 218 :處理模組 rw 29518twf.doc/n 201024690 x \j I y f \j\j^u 302 :物鏡組 304 :本體 306 :目鏡組 312、314、316 :鏡頭 402:集光部 404 :透鏡組 406:光感測器 412 :聚焦鏡 414 :光狹缝 440 :光線 502 :面光源 504 :次區域 602、604、606、608、610、612、614、616、618 、 D1 :光譜分佈資料 802 :晝素區域 C1 :平移控制訊號 11Schematic diagram. Referring to FIG. 5, a light slit 414 is disposed between the photo sensor 406 and the eyepiece group 3〇6, and the opening area of the light slit 414 is smaller than the surface light source 502. Therefore, when the surface light source 502 imaged in the eyepiece group 3〇6 is viewed from the light sensor 406, only the portion of the surface light source 5〇2 exposed from the light slit 414 can be observed. Here, the portion defining the surface light source 5〇2 from the light slit 414 is the sub-region 504. By means of the optical slit 々Μ, the surface light source 502 can be divided into a plurality of sub-regions. When the light of the sub-region 刈4 reaches the photo sensor 406, the photo sensor 406 can detect the spectral distribution of the sub-region 504 and generate a corresponding spectral distribution to the processing module 218 of FIG. Referring to Figures 2 and 5, the processing module 218 can generate a translation control signal ci to the translation module 212 to align its bearing surface toward the scanning direction. When the bearing surface of the translating module 212, the horizontal flat surface light source is also translated in the scanning direction. Thereby, the spectrometer can == have a spectral distribution of the sub-region and generate a corresponding spectral distribution shell processing module 218. In still other embodiments, the spectral division of the sub-regions may be provided to the processing module by means of the software. 218 ° Figure 6 is the optical intent of the different sub-regions output by the spectrometer of Figure 2. Referring to Figure 6, the ordinate is labeled 1, and the 1 standard is labeled as the wavelength of light. Among them, the spectral distribution of the curve 6〇2, secret, deletion, and medium. It represents the different sub-regions of the pure beginning of the month. Although the processing module 218 receives these spectral distributions, ' ' can be mixed, to the (four) point of the whole field light speech 8 TW 29518twf.doc/n 201024690 cloth information ' For example, as shown in Figure 7. In the present embodiment, since the area of each sub-area is the same, the spectral data shown in Fig. 7 is obtained, which represents the global average spectral distribution data obtained by averaging all the spectral data in Fig. 6. Referring back to Figure 5', in some embodiments, the surveyor can also measure the spectral distribution of all sub-regions on the surface source 5〇2 after rotating the carrier surface by 90 degrees. Thereby, a spectral distribution in, for example, the halogen region 802 in Fig. 8 can be obtained. In these embodiments, the processing module 218 can operate on the spectral distribution of all pixel regions 8〇2 to obtain more accurate spectral distribution information of the point source. In still other alternative embodiments, the step of obtaining the spectral distribution of the halogen region 802 is performed by image analysis of the sub-region 504 image of the opposite side of the software. In summary, since the present invention is provided with a light slit in the spectrometer, the light source can be divided into a plurality of sub-areas by the optical slit*. By mixing the spectral distributions of all sub-regions, the present invention can accurately measure the global spectral distribution information of the point source. Although the present invention has been implemented in the above-mentioned manner, it is limited to the general knowledge in the technical field, and it is possible to make some changes and refinements within the scope of 2, so _ The application is subject to the definition of _. [Simple description of the diagram] 201024690 /vw^jTW 29518twf.doc/n Spectral distribution of the light-emitting diodes. The amount of cloth: i: = the sr of the pre-spectrum grouping of the preferred embodiment of the present invention is a kind of image-taking spectrometer according to the preferred embodiment of the present invention. Figure 5 is a schematic view of the eyepiece assembly viewed from the light sensor of Figure 4. Figure 6 is a schematic diagram showing the spectral distribution data of different sub-regions output by the spectrometer. Figure 7 is a schematic diagram showing the global spectral distribution of a point source. Figure 8 is a green diagram showing a region of a halogen element in accordance with an embodiment of the present invention. [Description of main component symbols] 102, 1〇4: Spectral curve 2〇〇: Spectral analysis measuring device 202: Point source 212: Translation module 214: Image capturing module 216: Spectrometer 218: Processing module rw 29518twf.doc /n 201024690 x \j I yf \j\j^u 302: objective lens group 304: body 306: eyepiece group 312, 314, 316: lens 402: light collecting portion 404: lens group 406: light sensor 412: focusing Mirror 414: Light slit 440: Light 502: Surface light source 504: Sub-region 602, 604, 606, 608, 610, 612, 614, 616, 618, D1: Spectral distribution data 802: Alizarin region C1: Translation control signal 11

Claims (1)

201024690 * TW 29518twfdoc/n 七 申請專利範困: 1. -種光譜分佈量測裝置,適於量測—點綠的光譜 分佈,而該光譜分佈量測裝置包括: ,二平移模組,具有一承載面,以承載該點光源,且該 平移模組依據—平移㈣減,而使該錢㈣向-掃描 方向平移; 一取像模組,朝向該承載面,以對該點 將該點光祕料―自綠; 原取像 )一光譜儀,耦接該取像模組,並具有—集光部,以透 過該集絲㈣該Φ光齡割成多個次區域進行光譜分佈 的偵測,並分別輸出對應的光譜分佈資料;以及 處理模組,輪出該平移控制訊號給該平移模組,以 ,該光職依次縣—魏域騎光譜分佈㈣測,且該 ϋ模組更魏每—魏域的光譜*佈資料,並將其混合 運异後,而獲得該點光源的全域光譜分佈資訊。 2. 如申請專利範圍第丨項所述之光譜分佈量測裝置, 3該取像模組具有—物鏡組,用⑽錢點光源所發出 的光,並形成該面光源以供測量。 3. 如申請專概圍第丨項所述之光譜分佈量測裝置, ,、中該取像模組具有—目鏡組,且在該目鏡_鏡 置有尺規,以量測該面光源的面積。 心頭上配 4. 如巾請專鄉㈣丨項所述之光譜分佈量測裝置, 集光部具有—光狹縫,而該光狹缝的面積小於該面 先源的面積’使得該面光源經由該光狹缝而被分成該些次 12 lW29518twf.doc/n 201024690 ▲ ..........» 區域。 5·如申請專利範圍第1項所述之光譜分佈量測裝置, 其中該光譜儀為影像光譜儀。 6.如申請專利範圍第丨項所述之光譜分佈量測裝置, 其中該光譜儀為單點式光譜儀。 7·如申請專利範圍第1項所述之光譜分佈量測裝置, 其中該點光源為一發光二極體。 8·如申請專利範圍第.1項所述之光譜分佈量剛裝 置’其中該處理模組更包含一影像分析或連接一影像分析 運算裝置以得到該些次區域的光譜分佈。 9.一種光譜分佈量測方法,適於量測一點光源的光譜 分佈’而該光譜分佈量測方法包括下列步驟: 延伸該點光源為一面光源; 將該面光源分割成多個次區域; 依序量測每一該些次區域的光譜分佈,並產生對應的 光譜分佈資料;以及 將該些光譜資料混合運算,以獲得該點光源的全域光 譜分佈資訊。 10·如申請專利範圍第9項所述之光譜分佈量測方 法’其中形成該些次區域的步驟,包括下列步驟: 提供一光狹縫,並擺至該面光源之上,使得該面光源 從该光狹縫的開口處暴露出來;以及 /口一掃描方向平移該面光源,使得該面光源的每一部 份在時間上依序通過該光狹缝,以形成該些次區域。 13 201024690 ru iy 29518twf.doc/n 11. 如申請專利範圍第9項所述之光譜分佈量測方 法,其中該點光源為一發光二極體。 12. 如申請專利範圍第9項所述之光譜分佈量測方 法,更包括利用一影像分析軟體來獲得到該些次區域的光 譜分佈。 ❹ 14201024690 * TW 29518twfdoc/n Seven application patents: 1. A spectral distribution measuring device suitable for measuring the spectral distribution of point green, and the spectral distribution measuring device comprises: , two translation modules, having one a bearing surface for carrying the point light source, and the translation module shifts the money (four) to the scan direction according to the translation (four) subtraction; and an image capturing module facing the bearing surface to light the point Material-from green; original image) a spectrometer coupled to the image capturing module, and having a light collecting portion for detecting the spectral distribution through the collecting wire (4) the Φ light age is cut into a plurality of sub-regions, And outputting the corresponding spectral distribution data respectively; and processing the module, and rotating the translation control signal to the translation module, so that the optical service ranks the county-Wei domain riding spectrum distribution (four), and the ϋ module is more Wei - The spectrum of the Wei domain * cloth data, and mixed and transported to obtain the global spectral distribution information of the point source. 2. The spectral distribution measuring device according to the scope of claim 2, wherein the image capturing module has an objective lens group that uses (10) a light source to emit light and forms the surface light source for measurement. 3. If the spectral distribution measuring device described in the above section is applied, the image capturing module has an eyepiece group, and a gauge is placed on the eyepiece mirror to measure the surface light source. area. 4. In the heart, the spectral distribution measuring device described in the article (4), the light collecting portion has a light slit, and the area of the light slit is smaller than the area of the surface of the surface. Through the light slit, it is divided into the 12 lW29518twf.doc/n 201024690 ▲ ..........» area. 5. The spectral distribution measuring device according to claim 1, wherein the spectrometer is an image spectrometer. 6. The spectral distribution measuring device according to claim 2, wherein the spectrometer is a single-point spectrometer. 7. The spectral distribution measuring device according to claim 1, wherein the point source is a light emitting diode. 8. The spectral distribution device as described in claim 1 wherein the processing module further comprises an image analysis or an image analysis operation device to obtain spectral distributions of the sub-regions. 9. A spectral distribution measuring method, suitable for measuring a spectral distribution of a light source', and the spectral distribution measuring method comprises the steps of: extending the point source into a side light source; dividing the surface light source into a plurality of sub-regions; The spectral distribution of each of the sub-regions is measured, and corresponding spectral distribution data is generated; and the spectral data is mixed to obtain global spectral distribution information of the point source. 10. The method according to claim 9, wherein the step of forming the sub-regions comprises the steps of: providing a light slit and swinging onto the surface light source such that the surface light source Exposing from the opening of the light slit; and translating the surface light source in a scanning direction such that each portion of the surface light source sequentially passes through the light slit in time to form the sub-regions. 13 201024690 ru iy 29518 twf.doc/n 11. The spectral distribution measuring method of claim 9, wherein the point source is a light emitting diode. 12. The spectral distribution measurement method described in claim 9 further includes using an image analysis software to obtain the spectral distribution to the sub-regions. ❹ 14
TW97150320A 2008-12-23 2008-12-23 Apparatus and method for measuring optical spectrum distribution TW201024690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97150320A TW201024690A (en) 2008-12-23 2008-12-23 Apparatus and method for measuring optical spectrum distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97150320A TW201024690A (en) 2008-12-23 2008-12-23 Apparatus and method for measuring optical spectrum distribution

Publications (1)

Publication Number Publication Date
TW201024690A true TW201024690A (en) 2010-07-01

Family

ID=44852249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97150320A TW201024690A (en) 2008-12-23 2008-12-23 Apparatus and method for measuring optical spectrum distribution

Country Status (1)

Country Link
TW (1) TW201024690A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422805B (en) * 2011-09-23 2014-01-11 Univ Nat Taipei Technology System for light-emitting diode spectrum measurement
TWI426248B (en) * 2011-11-16 2014-02-11 Ind Tech Res Inst Spectrum measurement systems and methods for spectrum measurement
TWI495850B (en) * 2012-03-07 2015-08-11 Kye Systems Corp Optical sensing device
CN111795803A (en) * 2020-06-23 2020-10-20 深圳市摩西尔工业检测设备有限公司 Two-dimensional luminescence detection method for surface luminophor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422805B (en) * 2011-09-23 2014-01-11 Univ Nat Taipei Technology System for light-emitting diode spectrum measurement
TWI426248B (en) * 2011-11-16 2014-02-11 Ind Tech Res Inst Spectrum measurement systems and methods for spectrum measurement
TWI495850B (en) * 2012-03-07 2015-08-11 Kye Systems Corp Optical sensing device
CN111795803A (en) * 2020-06-23 2020-10-20 深圳市摩西尔工业检测设备有限公司 Two-dimensional luminescence detection method for surface luminophor

Similar Documents

Publication Publication Date Title
JP6022458B2 (en) Defect inspection and photoluminescence measurement system
EP1602960A1 (en) Microscope
CN105973571B (en) A kind of measuring method of the LED chip macroscopic surface brightness based on CCD
KR101350214B1 (en) Noncontact inspecting apparatus for light emitting diode and method thereof
WO2012176106A4 (en) Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
TW201315990A (en) Solar metrology methods and apparatus
TWI338771B (en) Position detecting device, position detecting method, test device and manufacturing device of camera module
CN108139329A (en) For reading the device of IVD measure
Zheng et al. Research on a camera-based microscopic imaging system to inspect the surface luminance of the micro-LED array
CN108072609A (en) For the lighting unit, micro spectrometer and mobile terminal device of micro spectrometer
TW201024690A (en) Apparatus and method for measuring optical spectrum distribution
US7912274B2 (en) Method and device for measuring dynamic parameters of particles
TWI793091B (en) Led light source probe card technology for testing cmos image scan devices
CN109076155A (en) The method and photoelectron lighting device, camera and mobile terminal illuminated for the face to people
TWI258583B (en) Device and method for optical detection of printed circuit board
JP2012234081A (en) Illumination device and optical device
KR20030037314A (en) Apparatus for analyzing fluorescence image of biochip
KR101174755B1 (en) Apparatus and method for inspecting LED epiwafer using photoluminescence imaging
JP2005091701A (en) Fluorescence microscope and exciting light source control method thereof
JP6894019B1 (en) Inspection equipment and inspection method
TWM606486U (en) Testing equipment and light receiving device
JP2012103107A (en) Device, method and program for measuring light distribution
RU2384838C1 (en) TESTING METHOD OF CHIPS OF CASCADE PHOTOCONVERTERS BASED ON Al-Ga-In-As-P CONNECTIONS AND DEVICE FOR IMPLEMENTATION THEREOF
CN112577958A (en) Quantum dot detection device and method
JP7510657B2 (en) Light emitting diode lighting device