TW201024072A - A method for forming metal capped substrate imprints - Google Patents
A method for forming metal capped substrate imprints Download PDFInfo
- Publication number
- TW201024072A TW201024072A TW098134246A TW98134246A TW201024072A TW 201024072 A TW201024072 A TW 201024072A TW 098134246 A TW098134246 A TW 098134246A TW 98134246 A TW98134246 A TW 98134246A TW 201024072 A TW201024072 A TW 201024072A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- metal layer
- region
- mold
- imprint
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/20—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
- G01N21/554—Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
- H05K2201/09036—Recesses or grooves in insulating substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
- H05K2201/09045—Locally raised area or protrusion of insulating substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/01—Tools for processing; Objects used during processing
- H05K2203/0104—Tools for processing; Objects used during processing for patterning or coating
- H05K2203/0108—Male die used for patterning, punching or transferring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/01—Tools for processing; Objects used during processing
- H05K2203/0104—Tools for processing; Objects used during processing for patterning or coating
- H05K2203/0113—Female die used for patterning or transferring, e.g. temporary substrate having recessed pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1105—Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0014—Shaping of the substrate, e.g. by moulding
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/821—Patterning of a layer by embossing, e.g. stamping to form trenches in an insulating layer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Abstract
Description
201024072 六、發明說明: 【發明所屬之技術領域】 本發明係有關於金屬覆蓋基材壓印’且特別是有關於 -種:成壓印於之基材上之方法’其覆蓋有金屬層。此金 屬覆蓋I印可用於表面電漿共振之在感測器中作光反射。 【先前技術】 在電子領域中,於基材上沉積或圖案化各種導電材料 之能力為重要的技#。有機電子元件(〇— electronics)為電子元件的一種,其使用導電高分子。欲 實現先進有機電子S件之關鍵步驟之―,為沉積或圖案化 各種導電材料至聚合物基材上的能力。現有的圖案化技術 包含光學微影、電子束微影、剛性遮罩技術(々id—— mask technology)。 傳統光學微影技術通常使用紫外光輻射(UV radiation )形式的光,選擇性照射預定部分之光敏化學 物其’儿積於基材表面上,稱為光阻。選擇性照射之步驟 通常係使用光罩來遮蔽/暴露紫外光輪射至光阻對應區域 來完成。接著,通常進行移除部分光阻層及過量(plethora) /儿積的裝程例如化學氣相沉積(CVD )或物理氣相沉積 (PVD)。 光學微影所遭遇的問題為選擇.1±沉積金属#法不依賴 光罩或剛性遮罩來完成。此外,I製程中使用剛性遮罩不 但昂貴且生產耗時’因而增加微影技術所需之成本。 201024072 類似地,其他傳統微影技術也具有些許缺點。這些缺 點的其中之一為傳統微影技術需要多道處理步驟,因而導 致成本增加。另—缺點為這些傳統微影技術無法不依賴光 罩選擇性沉積金屬於基材上,或需要大量且精密的對準以 選擇性地沉積金屬於基材上。此外,這些技術皆不適於形 成金屬圖案於非平面基材上。 對於感測晶片來說’例如用於表面電漿共振光譜儀201024072 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to metal-coated substrate embossing' and in particular to a method of embossing a substrate onto a substrate which is covered with a metal layer. This metal-covered I-print can be used for surface reflection in the sensor for light reflection. [Prior Art] In the field of electronics, the ability to deposit or pattern various conductive materials on a substrate is an important technique. An organic electronic component (electronic-electronics) is a type of electronic component that uses a conductive polymer. The key step in the advancement of advanced organic electronic components is the ability to deposit or pattern various conductive materials onto polymer substrates. Existing patterning technologies include optical lithography, electron beam lithography, and rigid mask technology (々 id – mask technology). Conventional optical lithography techniques typically use light in the form of ultraviolet radiation to selectively illuminate a predetermined portion of the photosensitive chemical on the surface of the substrate, referred to as photoresist. The step of selective illumination is typically accomplished using a reticle to mask/exposure the UV light to the corresponding area of the photoresist. Next, a process of removing a portion of the photoresist layer and an excess (plethora)/product is performed, such as chemical vapor deposition (CVD) or physical vapor deposition (PVD). The problem encountered with optical lithography is the choice of .1 ± deposited metal # method independent of the mask or rigid mask. In addition, the use of rigid masks in the I process is expensive and time consuming to produce, thus increasing the cost of lithography. 201024072 Similarly, other traditional lithography techniques have some drawbacks. One of these shortcomings is that traditional lithography requires multiple processing steps, resulting in increased costs. Another disadvantage is that these conventional lithography techniques cannot selectively deposit metal onto the substrate without relying on the reticle, or require extensive and precise alignment to selectively deposit metal onto the substrate. Moreover, none of these techniques are suitable for forming metal patterns on non-planar substrates. For sensing wafers, eg for surface plasma resonance spectrometers
❹ (surface plasmon resonance spectroscopy),若以前 述方法來在這些晶片上形成金屬《,是不足夠且昂貴的。 通常,感測晶片為基於Kretschmann結構以作使用。然而, Kretschmann結構受制於許多支撐基材之光學性質且需特 定範圍中之反射材料。通常此範圍為金的46至5()咖。目 前已證實可使用栅式耦合表面電漿光譜儀(grating coupled surface plasmon spectr〇sc〇py),其基材上塗 佈有反射材料’例如厚度約IGGnm的金,以增加在基材上 製造表面電漿共振之效率並可降低成纟。然@,這些光概 皆由使用單一金屬塗佈之柵狀結構組成。 因此,業界需要的是提供一種形成壓印(imprin1^於 金屬層上之方法,其中此壓印(imprint)具有金屬層於其 【發明内容】 本發明之第一目的係為提供一壓印於具有金屬層於其 上之基材上之方法,此方法包含下列步驟:(&)提供一具 5 201024072 有一第一區域及一第二區 forming surface)之模具, 具有較大的表面積,且其中 一金屬塗佈;以及 域之遷印形成表面(iinprint 該第一區域相較於該第二區域 該第一區域及第二區域上具有 ⑴以該模具與—第一基材接觸,在該第一基材上形 成-屢印’其令該壓印形成之條件係經選擇,以使位於該 模具之第-區域上之金屬塗佈實質上轉移至該所形成之壓 印上’且該第二區域上之金屬塗佈實質上仍維持在該模具 上0 有益的是,由於此模具之第-區域之表面積較模具之 第二區域之表面積大’模具之第_區域與基材上之對應區 域之間具有較佳的黏著功(霞k 〇f adhesi〇n),因此促 進或便於金屬層轉移至基材上。 有益的是,在此揭示之方法可同時在基材上形成壓印 (imprint)及沉積金屬層於基材壓印上之所選區城上。 有益的是,本發明揭示之方法可提供一用於偵測系統 中之反射基材,例如表面電漿共振系統,纟中該偵測系統 中僅有一部份具有一反射金屬,是微米或奈米尺寸的壓 印,因此大幅增加其在分析上的應用,例如分析多個離散 共軛(discretely con_jugated)至一單一感測器的生物分 子0 有益的是,在此揭示之方法可在含聚合物雙極板 (polymeric bipolar plate)的基板及聚合物燃料電池的 觸媒之間提供一導電途徑。目前,金屬雙極板重量達燃料 201024072 電池總重的70%以上 物雙極板及施以導電 降低重量。 依照本發明揭示之方法,使用聚合 材料於雙極板上之所選區域即可有效 有益的疋本發明揭不之方法使用經選擇性金屬圖案 化之基材’可控制流體流動的特定模式。特別的是,在微 流體的應用中可控制流體的流動。 依知本發明之第二目的,係提供一種壓印基材,此基 籲材具有一微米尺度或奈米尺度之壓印,一體成形於基材表 面上,並具有金屬層沉積於至少一部份之壓印上。 依照本發明之第三目的,係提供一基材,該基材包含 一栅攔形式之排列,以在該些鄰近壓印間形成溝槽,其中 一金屬層覆蓋該些壓印或該些溝槽。 有益的是,在基材上形成壓印及選擇性沉積金屬層於 壓印上係為同時發生。 依照本發明之第四目的’係提供一如上所述之基材, ❹ 以用於燃料電池、表面電漿共振儀、有機電子元件、微機 電系統/奈米機電系統(MEMs/NEMs )、微流體裝置或電漿 裝置。 依照本發明之第五目的,係提供一如上所述之基材, 其中該基材係由如上所述之方法獲得。 依照本發明之第六目的’係提供一如上所述之基材, 係可由如上所述之方法獲得該基材。 依照本發明之第七目的’係提供一如上所述之基材, 其中該基材係由如上所述之方法獲得,其使用於燃料電 7 201024072 池、表面電漿共振儀、有機電子元件、微機電系統/奈米機 電系統(MEMs/NEMs )、微流體裝置或電漿裝置。 依照本發明之第八目的,係提供一如上所述之基材, 其中該基材係可由如上所述之方法獲得,其使用於燃料電 池、表面電漿共振儀、有機電子元件、微機電系統/奈米機 電系統(MEMs/NEMs )、微流體裝置或電漿裝置。 依照本發明之第九目的,係提供一種感測晶片,具有 一基材本體,其包含自該基材延伸之微米尺寸或奈米尺寸 壓印之陣列’且經排列以在該些鄰近壓印間形成溝槽,其 中一金屬層覆蓋該些壓印或該些溝槽。 依照本發明之第十目的,係提供一種表面電漿共振系 統,包含:一光源;一如上所述之感測晶片;一光偵測器, 用以接收由該感測晶片之該反射金屬層反射的光;以及一 光學調幅器(optical modulator),用以指引調變光至該 感測晶片上。 【實施方式】 接下來在此所使用之詞囊,除非有另有指明,具有下 列所述之意義: “壓印(impr iηΐ ) ”及ϋ接叫&故 夂/、各種词性變化,在此說明書 之内容中,為包含任何形式 式之產生於可塑固體(例如熱 性高分子基材)之物理印纪 己。通常,壓印普.遍為一長 構’其自基材表面沿著一縱細 縱轴延伸,此縱轴在位於基材上 或鄰近於基材之近端及相對 相對於此近點之遠端之間延伸。通 201024072 常,縱轴通長正交(nonnal)於基材水平面,但此縱軸可 大幅變換其角度,例如與基材水平面夾45度。壓印陣列具 有一系歹,j規則的列或排於基材丨,且彳在鄰近的列與列之 間形成溝槽。此壓印之長度尺寸及厚度尺寸皆可為奈米尺 度及微米尺度,因此溝槽也為奈米尺度及微求尺度。除非 另有指明,本說明書中,當“表面區域(surface πα) “是提及為模具之壓印形成表面之第一區域及/或第二區 ❹域時,可解釋為:模具的一部分,該部分具有可與欲壓印 之基材接觸之金屬層。因此,當模具與基材接觸時,“表 面區域(surface area) “意指為模具麼印形成表面之區 域,其與基材接觸但排除其他不具金屬層於其上的地方, 縱然這些地方也可能會與基材接觸。 實質上(substantially) ”並未排除“完全地 (completely) ” ,亦即一組成物“實質上,,不含γ,意 指為為可能為完全地不含γ。必要時,本發明可能省去對 ❹ 實質上(substantiaUy) ”的定義。字彙“―體成形 (integrally f0rmed) ”意指為基材,其為一單一的整 體,包含魔印及金屬層。通常,一體成形之基材可由蓋印 壓印(imprint stamping)之方法製造,在此方法中,在 某種條件下施以一具有一金屬層於壓印形成表面上之模具 至基材,以形成壓印並同時轉移金屬層至壓印上。 不米壓印微影(nan〇imprinting im〇graphy),, 可廣泛地解釋為包含任何在某個溫度及壓力下,由表面具 有已定義之圖案或表面結構之模具接觸,而在基材表面上 201024072 印刷或創造出微米及/或奈米尺度的圖案或結構。 微米尺度”及“微米尺寸,,在此可交換使用,可解 釋為包含在約1至100微米之尺度。 奈米尺度及“奈米尺寸,,在此可交換使用’可解 釋為包含任何在約1微米以下之尺度。 二度空間(threedimensional) “可廣泛地解釋為 包含任何具有侧向變化(厚度)及深度變化之結構、結構 性元件、壓印或圖案。 玻璃轉變溫度 Tg ( glass transition ® rature)可解釋為包含任何聚合物位於橡膠及破璃 狀L之間時的溫度。這表示超過玻璃轉變溫度l時,聚合 物變成橡膠狀態並可不破裂即可伸縮或塑形。當聚合物之 服度低於Tg時,通常,聚合物會變得不可伸縮及易碎使 传在施予壓力至聚合物時會造成其破裂。值得注意的是, 玻璃轉變溫度並不是一個很範圍狹窄的轉換溫度,但通常 會逐漸轉變並依據實際條件來變化(例如膜層厚度、聚合 物規律及其類似條件)。真實聚合物之玻璃轉換溫度將 會隨膜層厚度之函數隨其改變。玻璃轉變溫度在此定義為 聚。物基材之巨大(bulk)的玻璃轉換溫度。巨大的玻璃 轉換溫度為一特定值’並廣泛地記載於文獻中。聚合物之 玻璃轉換溫度可由Dr. D. T Wu 2_年所編輯之ppp Handbook711軟體所得到。 黏著功(W〇rk of adhesion) ”意指為多少鍵結力 作用於模具與基材之間的接觸區域’其單位表示為Nm' 10 201024072 除另有指明,“包含(comprising),’及其詞性變化, 係為表示“開放式,,之語句,以使其包含所描述之元件且 也可包含額外的但未描述之元件。 約”在表示成分濃度之含量中,通常為所標示量值 的+/-5%,更常為所標示量值的+/_4%,更常為所標示量 值的+/-3% ’更常為所標示量值的+/ — 2%,所標示量值的 + /-1%及更甚至為所標示量值的+/_〇. 5%。 在整篇說明書中,某些實施例是以範圍格式揭示。值 ® 各 ’ 得注意的是,在以下描述中,此範圍格式表示僅為方便及 簡潔,但在不表示在此所述之範圍建構在一不可彈性調整 的範圍。因此,在此說明書中所述之範圍應具有全部可能 的次範圍及在此範圍中所有個別的數值。例如,說明書中 之範圍為1至6時,其應具有1至3、1至4、1至5、2至 4、2至6、3至6及其類似範圍,也應具有在此範圍中的 獨立數值’例如,1、2、3、4、5、6。無論多寬廣的範圍 φ 皆可適用。 在此將揭示一種用於在第一基材上作選擇性沉積之方 法之各種示範實施例’但本發明亦不受限於此。此方法包 含下列步驟:提供具有第一區域及第二區域之壓印形成表 面之模具’此第一區域相較於此第二區域尺寸具有較大的 表面積,且其中在此第一區域及第二區域上具有金屬塗 佈。此方法亦包含下列步驟:由將此模具與基材相接觸形 成一第一壓印於此第一基材上’其中此壓印之形成條件係 經選擇,以使此印模之第一區域上部分的金屬塗佈實質上 11 201024072 且第二區域上之金屬塗佈仍維持 轉移至所形成之壓印上 在此模具上 發明人發現使用印模時,印模形成表面可視為具有兩 個不同表面積的區域’在施予模具至基材時,相較於其他 區域,有較大表面積的區域會選擇性地將金屬層由模具轉 移至基材。未受限於本理論下,發明人相信此選擇性的轉 移或沉積金屬層於基材上’是由於模具上之具有較大表面 積的區域及基材上相對應之區域之間所蓋生的高黏著功。 由於高黏著功,可促進金屬層選擇性沉積於基材上。相較翁 之下’模具上具有較小表面積之區域並未造成轉移金屬所 需的高黏著功,因此當施予模具至基材上時,在此區域上 的金屬層不會轉移至基材上之相對應區域。 壓印形成表面之第-區域之表面積可比第二區域之表 面積多50%、較佳60%、較佳鄕、較佳8〇%、較佳9〇 %及最佳為95%以上。更佳的是,第一區域之表面積可為 第二區域之至少2倍、或至少5倍、或至少】。倍、或至少 15倍、或至少20倍或至少25倍。 此印模具有已圖案化之印模形成表面於其上。此圖案 可包含洞(holes)、圓柱(c〇lumns)、柱狀、凹 穴(d11BPies)、隆起(pr〇jections)、栅攔聯) 或溝槽(trenches)。此圖案可具有預定之高度、寬度及 長度’其可為微米尺度或奈米尺度。圖案與圖案間彼此可 互相隔開。此圖案可為三度空間結構。 在一實施例中,第一區域可意指為自模具表面突出的 12 201024072 圖案,例如隆起(projections)或柵攔(gratings)。第 二區域可意指為沒有自模具表面突起的圖案,例如孔洞、 溝槽模具表面本身。第一區域也可意指為模具表面本身。 在另—實施财,第-區域可意指為沒有自模具表面 突起的圖案,例如孔洞(holes) '凹穴(di_es)、溝 槽(trenches)表面本身。第二區域可意指為自模具表面 突出的圖案,例如圓柱(columns)或柱狀(pilUrs)、隆 起(projectl〇ns)或栅欄(gratings)。第二區域也可意 ; 指為模具表面本身β 此形成於模具上之圖案可由擇自下列群組之方法形 成·光學微影、深反應離子蝕刻、全像微影(h〇1〇graphic lithography)、電子束微影(e_beam Uth〇graphy)、 離子束微影(lon-beam lithography)及前述之組合。 在一實施例中,模具上之圖案可包含栅攔/或溝槽。柵 欄及/溝槽可沿著相對於此模具之縱軸延伸。柵欄或溝槽之 φ寬度可為微米或奈米尺度。當模具上同時具有柵欄及溝槽 時,栅欄及溝槽可與彼此平行排列。模具上之囷案也可包 含線及空格圖案。 柵欄及溝槽之寬度可各自獨立地擇自下列組成之族 群:約5〜50微米、約5〜40微米、約5〜3〇微米、約5 〜20微米、約5〜1〇微米、約10〜5〇微米、約2〇〜5〇微 米、約30〜50微米及約40〜50微米。在一實施例中,柵 欄之寬度及對應的通道可為約1〇微米。 形成之柵欄具有柵欄常數100 nm至1000 nm。 13 201024072 形成之柵攔之高度可為10至100 nm。 形成之柵攔可為一形狀,當以剖面圖檢視時,擇自下 列下列組成之族群:正弦波、方塊波、梯形(trapezoidalSurface plasmon resonance spectroscopy, if previously described to form metal on these wafers, is not sufficient and expensive. Typically, the sensing wafer is based on a Kretschmann structure for use. However, the Kretschmann structure is subject to the optical properties of many supporting substrates and requires a reflective material in a specific range. Usually this range is from gold to 46 to 5 () coffee. It has been confirmed that a grating coupled surface plasmon spectr〇 sc〇py can be used, which is coated with a reflective material such as gold having a thickness of about IGGnm to increase the surface electric power on the substrate. The efficiency of the slurry resonance can be reduced to enthalpy. However, these lights are composed of a grid-like structure coated with a single metal. Therefore, what is needed in the industry is to provide a method of forming an imprint on a metal layer, wherein the imprint has a metal layer. [Invention] The first object of the present invention is to provide an imprint on a method of having a metal layer thereon, the method comprising the steps of: (&) providing a mold having a first region and a second region forming surface, having a large surface area, and One of the metal coatings; and the pre-printing of the domain to form a surface (iinprint the first region compared to the second region of the first region and the second region having (1) the mold and the first substrate are in contact with Forming a stamp on the first substrate, wherein the conditions for forming the stamp are selected such that the metal coating on the first region of the mold is substantially transferred to the formed stamp 'and The metal coating on the second region remains substantially on the mold. 0. Advantageously, since the surface area of the first region of the mold is larger than the surface area of the second region of the mold, the first region of the mold and the substrate are Corresponding area There is a better adhesion between the two, thus facilitating or facilitating the transfer of the metal layer onto the substrate. Advantageously, the method disclosed herein can simultaneously form an imprint on the substrate (imprint And depositing a metal layer on the selected area on the substrate imprint. Advantageously, the method disclosed herein provides a reflective substrate for use in a detection system, such as a surface plasma resonance system, Only a portion of the detection system has a reflective metal that is embossed in micron or nanometer size, thus greatly increasing its analytical application, such as analyzing multiple discrete conjugations to a single sensor. Biomolecules 0 Advantageously, the methods disclosed herein provide a conductive pathway between a substrate comprising a polymeric bipolar plate and a catalyst for a polymer fuel cell. Currently, the weight of the metal bipolar plate Up to 70% of the total fuel cell weight of the bipolar plate and the application of electrical conductivity to reduce the weight. According to the method disclosed in the present invention, it is effective to use the polymeric material on selected areas of the bipolar plate. The method of the present invention uses a selectively metallized substrate to control a particular mode of fluid flow. In particular, the flow of fluid can be controlled in microfluidic applications. Providing an embossing substrate having a one-micron or nano-sized embossing integrally formed on a surface of a substrate and having a metal layer deposited on at least a portion of the embossing. A third object is to provide a substrate comprising an array of barriers to form a trench between the adjacent stamps, wherein a metal layer covers the stamps or the trenches. The formation of embossed and selectively deposited metal layers on the substrate occurs simultaneously on the embossing. According to a fourth object of the present invention, a substrate as described above is provided for use in a fuel cell, a surface plasma resonator, an organic electronic component, a microelectromechanical system/nanoelectromechanical system (MEMs/NEMs), micro Fluid or plasma device. According to a fifth object of the present invention, there is provided a substrate as described above, wherein the substrate is obtained by the method as described above. According to a sixth object of the present invention, there is provided a substrate as described above which can be obtained by the method as described above. According to a seventh object of the present invention, there is provided a substrate as described above, wherein the substrate is obtained by the method as described above, which is used in a fuel cell 7 201024072 cell, a surface plasma resonator, an organic electronic component, MEMS/Nano Electromechanical Systems (MEMs/NEMs), microfluidic devices or plasma devices. According to an eighth object of the present invention, there is provided a substrate as described above, wherein the substrate is obtainable by a method as described above for use in a fuel cell, a surface plasma resonator, an organic electronic component, a microelectromechanical system / Nano electromechanical systems (MEMs/NEMs), microfluidic devices or plasma devices. According to a ninth object of the present invention, there is provided a sensing wafer having a substrate body comprising an array of micron-sized or nano-sized imprints extending from the substrate and arranged to imprint adjacent to each other A trench is formed therebetween, wherein a metal layer covers the stamp or the trenches. According to a tenth aspect of the present invention, a surface plasma resonance system includes: a light source; a sensing wafer as described above; and a photodetector for receiving the reflective metal layer from the sensing wafer Reflected light; and an optical modulator for directing modulated light onto the sensing wafer. [Embodiment] The term capsule used herein, unless otherwise specified, has the following meanings: "imprinting (impr iηΐ)" and ϋ & amp 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 In the context of this specification, it is intended to include physical forms of any form of plastic solids (eg, thermal polymeric substrates). Typically, the stamp is a long structure that extends from the surface of the substrate along a longitudinal longitudinal axis that is on or adjacent to the proximal end of the substrate and relatively opposite to the near point Extend between the distal ends. 201024072 Often, the longitudinal axis is nonnal in the horizontal plane of the substrate, but this longitudinal axis can be greatly changed in angle, for example, 45 degrees from the substrate level. The embossed array has a series of 歹, j regular columns or rows on the substrate 丨, and 彳 forms a trench between adjacent columns and columns. The length and thickness of the stamp can be in the nanometer scale and the micrometer scale, so the groove is also on the nanometer scale and the micrometer scale. Unless otherwise specified, in the present specification, when the "surface πα" is referred to as the first region and/or the second region of the embossed surface of the mold, it may be interpreted as: a part of the mold, This portion has a metal layer that is in contact with the substrate to be imprinted. Therefore, when the mold is in contact with the substrate, the "surface area" means the area where the surface is formed by the mold, which is in contact with the substrate but excludes other places where the metal layer is not present, even though these places May come into contact with the substrate. Substantially does not exclude "completely", that is, a composition "substantially, without gamma, meaning that it is possible to be completely free of gamma. Where necessary, the present invention may omit the definition of "substantiaUy". The term "integrally f0rmed" means a substrate, which is a single whole, containing magic and metal layers. The integrally formed substrate can be manufactured by imprint stamping. In this method, a mold having a metal layer on the imprint forming surface is applied to the substrate under certain conditions to form Embossing and simultaneously transferring the metal layer to the embossing. Non-imprinting embossing (nan〇imprinting im〇graphy), can be broadly interpreted to include any defined pattern on the surface at a certain temperature and pressure. Or the surface structure of the mold contacts, and on the surface of the substrate 201024072 print or create a micron and / or nano-scale pattern or structure. Micron-scale" and "micron size, which can be used interchangeably, can be interpreted as included in A scale of about 1 to 100 microns. The nanoscale and "nano size, here interchangeable" can be interpreted to encompass any scale below about 1 micron. "Three dimensional" "can be broadly interpreted to include any structure, structural element, embossing or pattern having lateral variations (thickness) and depth variations. Glass transition temperature Tg (glass transition ® rature) can be interpreted as including Any polymer is located between the rubber and the glass-like L. This means that when the glass transition temperature l exceeds the polymer, the polymer becomes rubbery and can be stretched or shaped without breaking. When the polymer is less than Tg Usually, the polymer becomes non-stretchable and brittle so that it will break when it is applied to the polymer. It is worth noting that the glass transition temperature is not a very narrow transition temperature, but it usually gradually The transformation varies according to actual conditions (eg, film thickness, polymer law, and the like). The glass transition temperature of a real polymer will vary with the thickness of the film. The glass transition temperature is herein defined as poly. The bulk glass transition temperature of the substrate. The large glass transition temperature is a specific value' and is widely documented in the literature. The glass transition temperature of the polymer can be obtained from the software of ppp Handbook711 edited by Dr. D. T Wu 2_. "W〇rk of adhesion" means how much bonding force acts on the mold and the substrate. Inter-contact area 'its unit is expressed as Nm' 10 201024072 Unless otherwise indicated, "comprising," and its part-of-speech change, means "open, statement, to include the described elements and Additional but undescribed components may also be included. "About" indicates the concentration of the component, usually +/- 5% of the indicated amount, more often +/_4% of the indicated amount, more often +/- 3% of the indicated amount. More often +/ - 2% of the indicated magnitude, + /-1% of the indicated magnitude and even +/_〇. 5% of the indicated magnitude. In the entire specification, some implementations The examples are disclosed in a range format. Values® Each 'It is noted that in the following description, this range format representation is merely for convenience and brevity, but does not imply that the scope described herein is constructed in a range that is not elastically adjustable. Therefore, the ranges stated in this specification should have all possible sub-ranges and all individual values in the range. For example, when the range in the specification is 1 to 6, it should have 1 to 3, 1 to 4, 1 to 5, 2 to 4, 2 to 6, 3 to 6, and the like, and should also have independent numerical values in the range 'for example, 1, 2, 3, 4, 5, 6. No matter how broad the range φ is applicable. Various exemplary embodiments of a method for selective deposition on a first substrate will be disclosed herein, but the invention is not limited thereto. The method includes the steps of: providing a mold having an embossed surface of the first region and the second region, wherein the first region has a larger surface area than the second region, and wherein the first region and The second region has a metal coating. The method also includes the steps of: contacting the mold with the substrate to form a first imprint on the first substrate, wherein the conditions for forming the imprint are selected, So that the metal on the upper portion of the first region of the stamp is substantially 11 201024072 and the metal coating on the second region remains transferred to the formed stamp. On the mold, the inventors discovered that the stamp was used. The stamp forming surface can be viewed as a region having two different surface areas. When the mold is applied to the substrate, a region having a larger surface area selectively transfers the metal layer from the mold to the substrate than other regions. Subject to this theory, the inventors believe that this selective transfer or deposition of a metal layer on a substrate is due to the area between the mold having a larger surface area and the corresponding area on the substrate. High adhesion work. Due to the high adhesion work, the metal layer can be selectively deposited on the substrate. Compared with the lower surface area of the mold, the area with a small surface area does not cause the high adhesion work required for the transfer metal. When the mold is applied to the substrate, the metal layer on this region is not transferred to the corresponding region on the substrate. The surface area of the first region of the embossed surface can be 50% more than the surface area of the second region. Preferably, 60%, preferably 鄕, preferably 8%, preferably 9%, and most preferably 95% or more. More preferably, the surface area of the first region may be at least 2 times, or at least 5, of the second region. Multiple, or at least, at least 15 times, or at least 20 times or at least 25 times. The stamp has a patterned stamp forming surface thereon. The pattern may include holes, cylinders (c 〇lumns), columns, dimples (d11BPies), pr〇jections, barriers or trenches. This pattern may have a predetermined height, width and length' which may be on the micrometer scale or on the nanometer scale. The pattern and the pattern can be separated from each other. This pattern can be a three-dimensional structure. In an embodiment, the first region may mean a 12 201024072 pattern that protrudes from the surface of the mold, such as projections or gratings. The second region may mean a pattern that does not protrude from the surface of the mold, such as a hole, the groove mold surface itself. The first region can also be referred to as the mold surface itself. In another implementation, the -region may mean a pattern that does not protrude from the surface of the mold, such as holes 'di_es', the trenches surface itself. The second region may mean a pattern that protrudes from the surface of the mold, such as columns or pilates, projections or gratings. The second region is also meaningful; refers to the mold surface itself β. The pattern formed on the mold can be formed by the following methods: optical lithography, deep reactive ion etching, hologram lithography (h〇1〇graphic lithography) ), electron beam lithography (e_beam Uth〇graphy), ion beam lithography (lon-beam lithography), and combinations of the foregoing. In an embodiment, the pattern on the mold may include a gate barrier or trench. The grids and/or grooves may extend along a longitudinal axis relative to the mold. The width of the fence or groove φ can be on the micrometer or nanometer scale. When the mold has both a fence and a groove, the fence and the groove may be arranged in parallel with each other. The pattern on the mold can also contain lines and spaces. The width of the barrier and the grooves can each independently be selected from the group consisting of: about 5 to 50 microns, about 5 to 40 microns, about 5 to 3 microns, about 5 to 20 microns, about 5 to 1 inch, about 10 to 5 μm, about 2 to 5 μm, about 30 to 50 μm, and about 40 to 50 μm. In one embodiment, the width of the grid and the corresponding channel may be about 1 micron. The fence formed has a fence constant of 100 nm to 1000 nm. 13 201024072 The height of the barrier formed can be 10 to 100 nm. The barrier formed may be a shape. When viewed in a sectional view, the following groups are selected: sine wave, square wave, trapezoid (trapezoidal
Shape )、雜齒狀(blazed shape)及三角形。 桃棚及/或溝槽可具有擇自下列深寬比組成之族群:約 〇· 1 〜3. 0、約 0· 1 〜2. 5、約 0· 1 〜2· 0、約 〇. l〜l 5、約 0.1〜1.0及約〇.1〜〇5。在一實施例中,柵攔及/或溝槽 之深寬比約為〇. 5。 在另一實施例令,模具上之圖案可包含圓柱及或圓形 孔洞。圓柱及或圓形孔洞之直徑可為微米尺度。模具上之 圓案也可包含柱(Pillar)及/或凹穴(dimples)。 圓柱及/或圓形孔洞之直徑可各自獨立地擇自下列組Shape ), blazed shape and triangle. The peach shed and/or the groove may have a group consisting of the following aspect ratios: about 〇·1~3. 0, about 0·1~2. 5, about 0·1~2·0, about 〇. l ~l 5, about 0.1~1.0 and about 〇.1~〇5. In an embodiment, the aspect ratio of the barrier and/or the trench is about 〇. In another embodiment, the pattern on the mold can comprise cylindrical and or circular holes. The diameter of the cylindrical and or circular holes can be on the micrometer scale. The round on the mold may also contain Pillars and/or dimples. The diameter of the cylinder and/or the circular hole can be independently selected from the following groups
成之族群:約1〜10 約1〜8 vm、約1〜6 約The group of people: about 1~10 about 1~8 vm, about 1~6 about
Am約1〜2私m、約2〜1〇 #m、約4〜 參 "m、約8〜10 ym及約4〜6 /zm。在一實施例 中,圓柱及/或圓形孔洞之直徑約為5仁瓜。 圓柱、柱、凹穴及圓形孔洞之深寬比,係擇自下列組 成之族群.約G.1〜2.0、、約0.1〜1.5、約(j.iqo及約 〜0.5。在-實施财1柱、柱、凹穴及圓形孔洞之 冰寬比約可為〇. 5。在另一實施例中,圓柱、柱、四陷及 圓形孔洞之深寬比約可為丨.〇。 金屬層中之金屬可擇自下列金屬組成之族群:元素週 期表ΪΒ族及IUA族、前述之合金及前述之組合。 在一實施例中,可擇自下列金屬組成之族群·鋁、銅、 14 201024072 金、銀、錄、路及前述之組合。 在一實施例中,此金屬可為金。在另一實施例中,此 金屬可為銀。 金屬可由熱蒸鍵(thermal evaporation)、電子束蒸 鑛(electron beam evapration)或濺鍍(sputtr ing)沉 積於模具表面。 模具表面上之金屬層之厚度可擇自下列範圍所組成之 族群:約 50〜500 nm、約 '50〜400 nm、約 50〜300 nm、 約 50〜200 nm、約 50〜100 nm、約 100〜500 nm、約 200 〜500 nm、約300〜500 nm及約400〜500 nm。在一實施 例中,可選擇金屬層之厚度為約1〇〇〜2〇〇 ηιη。 金屬層在與基材接觸的期間,可選擇性地沉積或轉移 至基材上之壓印。 在施予模具至第一基材後,剩餘的金屬層不會選擇性 轉移至第一基材上而維持在模具之第二區域上。將模具與 # 第二基材接觸,模具第二區域上之剩餘金屬層可選擇性地 轉移至第二基材,以同時形成一壓印及自模具之第二區域 選擇性沉積金屬層至第二基材。此領域相關技術人員皆可 知的是’第一及第二接觸步驟是可相互交換的。 第一及/或第二基材可為一聚合物基材,例如熱塑聚合 物基材。 此熱塑聚合物基材可包含至少一單體’其係擇自下列 組成之族群·丙稀酸醋(aCryiates )、鄰苯二甲醯胺 (phthalamides)、丙稀腈類(acryi〇nitriles)、纖維 15 201024072 素(cellulosics)、苯乙稀(styrene s)、炫•類(alkyls)、 烧基甲基丙稀酸醋(alkyl methacrylates )、稀類 (311^61165)、_化稀類(]1&1〇舀6113士6(1&1让61163)、胺類 (amides )、亞醯胺 (imides )、芳基醚酮 (aryletherketones )、丁二稀(butadienes )、酮類 (ketones)、酯類(esters)、縮搭類(acetals)、碳 酸酯(carbonates)及前述之組合。 在一實施例中,熱塑性‘聚合物為聚碳酸酯 (polycarbonate)。形成此熱塑性聚合物之單體可擇自下 列組成之族群:曱基烧類(methy 1 s )、乙稀類(ethy 1 enes )、 丙烯類(propylenes )、曱基丙烯酸曱基酯(methyl methacrylates)、曱基戊烯類(methypentenes)、亞乙 稀(vinyludene)、氯亞乙稀(vinyludene chloride)、 鍵酿亞胺類 (etherimides )、乙稀氣化物 (ethylenechlorinates )、尿酯(urethanes )、乙烯-乙烯醇(ethylene vinyl alcohols )、氟碳_ 塑膠 (fluoroplatics)、碳酸酯( carbonates)、丙烯腈-丁 二烯-苯乙稀(acrylonitrile-butadiene-styrenes)、二 醚酮(etheretherketones )、離子聚合物(ionomers )、 丁烯(butylenes)、伸苯基氧化物(phenylene oxides)、 礙類(sulfones)、醚礙類(ehtersulfones)、伸苯礙類 (phenylene sulfones)、熱塑性彈性體(elastomers)、 對苯二甲酸乙二酯(ethy 1 ene terephthalate)、對苯二甲 酸萘酯(ethylene terephthalate)、萘酸乙二醋 16 201024072 (ethylenenaphthalate)及前述之組合。 /每個接觸步驟期間’所得到之在基材上之堡印圖案 與模具上之圖案成互補。例如,當模具施予至基材時,棋 具上含有柵攔圖案可使對應基材上有互補性的通道結構。 在一實施例中,在模具接觸第—及/或第二聚合物基材 之步驟期間’此方法可包含控制溫度至超過第-及/或第二 聚合物基材之玻璃轉移溫度之步驟。在此溫度下,聚合: ❹軟化並依照模具的形狀塑形,以使廢印創造於聚合物表面 上,其中當聚合物基材冷卻變硬時,其上之壓印圖案可為 與模具上之圖案呈互補。此外,此模具可較佳施予一預定 之壓力-段時間,以形成壓印於聚合物表面上。所使用之 溫度及壓力是依聚合物的使用來決定。 此方法可包含使用奈米遲印微影技術。此方法可使基 材表面的平面或三度空間結構改變。 模具可由任何化學惰性、且在溫度高於軟基材之玻璃 •轉換溫度時硬度較軟基材硬高之合適材料。此模具可由 夕金屬玻璃、石英、陶瓷或前述之組合形成。 當模具接觸至第一及/或第二聚合物基材所使用之 溫度,可各自獨立地擇自下列溫度範圍所組成之族群: 約 120。〜20(TC、'約 14〇〜2〇〇ΐ、約 16〇〜2〇代、約 18〇 〜2〇〇°C、約 120〜14〇。〇、約 12〇〜16〇t:及約 12〇 〜 180〇C。 此μ度較佳控制在超過第一及/或第二聚合物基材之 玻璃轉換溫度。較佳地,此溫度控制在高於第一及/或第二 17 201024072 聚合物基材之玻璃轉換溫度20°C以上° 當模具接觸至第一及/或第二聚合物基材所使用之壓 力,可各自獨立地擇自下列壓力範圍所組成之族群:約1〇 bar ( 1 MPa)〜50 bat ( 5 MPa)、約 10 bar ( 1 MPa)〜40 bar ( 4 MPa)、約 i〇 bar ( 1 MPa) ~30 bar ( 3 MPa)、 約 10 bar ( 1 MPa)〜20 bar ( 2 MPa)、約 20 bar ( 2 MPa) 〜50 bar ( 5 MPa)、約 3〇 bar ( 3 MPa) ~50 bar ( 5 MPa)、 約 40 bar (4 MPa)〜5〇 bar (5 MPa)及約 20 bar (2 MPa) ~30 bar ( 3 MPa)。在一實施例中,所施用之壓力約為22 ⑩ bar ( 2.2 MPa)。 模具接觸至第一及/或第二聚合物基材的時間,可各自 獨立地控制為約5〜120分鐘。對於聚酸酯基材,第一接觸 步驟的時間約為15分鐘,第二接觸步驟的時間約為9〇分 鐘。本領域相關之技術人員可知的是,第一及/或第二接觸 步驟所進行之時間,是由基材所使用的型態及圖案之任何 形貌及密度來決定。 表面積與進行第一及第二接觸步驟之時間的關係為依© 經驗所得到。然而,在不受限於特定經驗法則下通常的 規則為^帛1域1之表面積大於第二表面積95%以上 時’需例h 15分鐘。第二接觸步驟需較長的時間 9 0分鐘。 _此方法可包含,在第一接觸步驟或第二接觸步驟之 月1J ’ 供黏結促進劑至隹—tt. JJ- « JJ. 常J主第一基材及第一基材上之步驟。 佳地,黏結促谁麻丨比# 双 劑白施予至第一基材及第二基材而形成表 18 201024072 面塗佈於其上。在金屬已由模p ;释押丨 模具選擇性轉移至第一及/或第Am about 1~2 private m, about 2~1〇 #m, about 4~ 参"m, about 8~10 ym and about 4~6 /zm. In one embodiment, the cylindrical and/or circular holes are about 5 in diameter. The aspect ratio of the cylinder, the column, the recess and the circular hole is selected from the group consisting of the following composition: about G.1~2.0, about 0.1~1.5, about (j.iqo and about ~0.5. The ice-to-width ratio of the column, the column, the recess, and the circular hole may be about 0.5. In another embodiment, the aspect ratio of the column, the column, the four traps, and the circular hole may be about 丨.〇. The metal in the metal layer may be selected from the group consisting of the following metals: the periodic table of the lanthanum and the IUA group, the foregoing alloys, and combinations thereof. In one embodiment, the group of the following metals may be selected: aluminum, copper, 14 201024072 Gold, silver, recording, road and combinations thereof. In one embodiment, the metal may be gold. In another embodiment, the metal may be silver. The metal may be thermally evaporated, electronically Electron beam evapration or sputtering is deposited on the surface of the mold. The thickness of the metal layer on the surface of the mold can be selected from the group consisting of: about 50~500 nm, about '50~400 nm. , about 50~300 nm, about 50~200 nm, about 50~100 nm, about 100~500 nm, about 200~ 500 nm, about 300 to 500 nm, and about 400 to 500 nm. In one embodiment, the thickness of the metal layer can be selected to be about 1 〇〇 to 2 〇〇 ηιη. The metal layer can be selected during contact with the substrate. Embossing or transferring onto the substrate. After the mold is applied to the first substrate, the remaining metal layer is not selectively transferred to the first substrate and remains on the second region of the mold. The mold is in contact with the # second substrate, and the remaining metal layer on the second region of the mold is selectively transferred to the second substrate to simultaneously form an embossed and selectively deposited metal layer from the second region of the mold to the second Substrate. It will be appreciated by those skilled in the art that the first and second contacting steps are interchangeable. The first and/or second substrate can be a polymeric substrate, such as a thermoplastic polymer substrate. The thermoplastic polymer substrate may comprise at least one monomer selected from the group consisting of acryiates, phthalamides, acrylonitriles (acryi〇nitriles). ), fiber 15 201024072 cellulosics, styrene s, Hyun • alkyls, alkyl methacrylates, rare (311^61165), _ thinning (]1&1〇舀6113±6 (1&1 let 61163), Amides (amides), imides, aryletherketones, butadienes, ketones, esters, acetates, carbonates Carbonates) and combinations of the foregoing. In one embodiment, the thermoplastic 'polymer is a polycarbonate. The monomer forming the thermoplastic polymer may be selected from the group consisting of methy 1 s, ethy 1 enes, propylenes, methyl methacrylates. ), methypentenes, vinyludene, vinyludene chloride, etherimides, ethylenechlorinates, urethanes, Ethylene vinyl alcohols, fluorocarbons, fluoroplatics, carbonates, acrylonitrile-butadiene-styrenes, etheretherketones, ions Polymers (ionomers), butylenes, phenylene oxides, sulfones, ehtersulfones, phenylene sulfones, thermoplastic elastomers (elastomers) , ethy 1 ene terephthalate, ethylene terephthalate, naphthalene phthalate 16 201024072 (ethylenenaphthalate) and the foregoing Combination. The resulting stamp pattern on the substrate during each contact step is complementary to the pattern on the mold. For example, when the mold is applied to the substrate, the checkerboard has a barrier pattern to provide a complementary channel structure on the corresponding substrate. In one embodiment, the method may include the step of controlling the temperature to exceed the glass transition temperature of the first and/or second polymeric substrate during the step of contacting the mold with the first and/or second polymeric substrate. At this temperature, the polymerization: softening and shaping according to the shape of the mold, so that the waste printing is created on the surface of the polymer, wherein when the polymer substrate is cooled and hardened, the embossed pattern thereon can be on the mold The patterns are complementary. Additionally, the mold may be preferably applied for a predetermined period of time to form an imprint on the surface of the polymer. The temperature and pressure used are determined by the use of the polymer. This method can include the use of nano-typography lithography. This method can change the planar or tertiary spatial structure of the substrate surface. The mold may be any suitable material that is chemically inert and harder than the soft substrate at temperatures above the glass transition temperature of the soft substrate. The mold may be formed of a metallic glass, quartz, ceramic or a combination of the foregoing. When the mold is contacted to the temperature at which the first and/or second polymeric substrates are used, they may each independently be selected from the group consisting of the following temperature ranges: about 120. ~20 (TC, 'about 14〇~2〇〇ΐ, about 16〇~2〇, about 18〇~2〇〇°C, about 120~14〇.〇, about 12〇~16〇t: and About 12 〇 to 180 〇 C. The μ degree is preferably controlled to exceed the glass transition temperature of the first and/or second polymer substrate. Preferably, the temperature is controlled above the first and/or second 17 201024072 The glass transition temperature of the polymer substrate is above 20 °C. ° When the mold is in contact with the pressure used in the first and/or second polymer substrate, it can be independently selected from the following pressure ranges: about 1 〇bar (1 MPa)~50 bat (5 MPa), about 10 bar (1 MPa)~40 bar (4 MPa), about i〇bar (1 MPa) ~30 bar (3 MPa), about 10 bar (1 MPa)~20 bar (2 MPa), about 20 bar (2 MPa) ~50 bar (5 MPa), about 3〇bar (3 MPa) ~50 bar (5 MPa), about 40 bar (4 MPa)~5 〇bar (5 MPa) and about 20 bar (2 MPa) ~ 30 bar (3 MPa). In one embodiment, the applied pressure is about 22 10 bar (2.2 MPa). The mold is contacted to the first and / or The time of the second polymer substrate can be independently controlled to be about 5 to 120 minutes. For the polyacrylate substrate, the first contacting step is about 15 minutes and the second contacting step is about 9 minutes. As will be appreciated by those skilled in the art, the first and/or second contacting steps The time taken is determined by the morphology and pattern of the substrate used and the morphology and density of the pattern. The relationship between the surface area and the time of the first and second contact steps is based on experience. However, The general rule under certain rule of thumb is that when the surface area of the domain 1 is greater than 95% of the second surface area, it takes 15 minutes. The second contact step takes a long time of 90 minutes. _ This method can be Including, in the first contact step or the second contact step, the month 1J' is for the adhesion promoter to 隹. JJ- « JJ. The step of the J main substrate and the first substrate. Promote who is paralyzed than #double agent white to the first substrate and the second substrate to form Table 18 201024072 surface coated on it. The metal has been selectively transferred from the mold p; release mold to the first And/or
一基材後’黏結促進劑可用於掛KP 别」用於增加金屬層與第一基材及/ 或第二基材之黏結。此黏結促進劑可為钱化合物。 此石夕院化合物可擇自下列所組成之族群:2-硫醇基乙 基三甲氧基矽烷(2iercaptoethyl trimeth〇xysiiane)、 3-硫醇基丙基三甲氧基矽烷(3iercapt〇pr〇pyi trimethoxysilane ) 、2-硫醇基丙基三乙氧基矽烷 ❿ (2-mercapt〇pr0Pyl triethoxysilane)、3_硫醇基丙基 三乙氧基矽烷(3-mercaptopropyl triethoxys ilane ) ' 2硫酵基乙基二丙氧基碎燒(2-mercapt〇ethyi tripropoxysilane) 、2-硫醇基乙基三第二丁氧基矽烷 (2-mercap1;oe1:hyl tri sec-butoxysilane)、3-硫醇基 丙基二第二丁氧基梦院(3-mercaptopropyl tri sec-butoxysilane ) 、3-硫醇基丙基三異丙氧基矽烷 (3-mercaptopropy 1 tri isopropoxysi lane ) 、3-硫醇基 • 丙 基三辛氧基碎烧 (3-mercaptopropy 1 trioctoxysilane) 、2-硫醇基乙基三2’ -乙基己氧基碎 烧(2-mercaptoethy1 tri-2, -ethylhexoxysilane) 、2_ 硫醇基乙基二甲氧基乙氧基矽烷(2-mercap1:oethyl dimethoxyethoxy s i lane)、3-硫醇基丙基曱氧基乙氧基丙 氧 基矽烷 ( 2-mercaptopropyl methoxyethoxypropoxysi lane ) 、3-硫醇基丙基一曱乳基 甲基梦炫(2-mercaptopropyl dimethoxymethylsilane)、 3-硫醇基丙基甲氧基二甲基矽烷(2一 19 201024072 methoxy dimethylsilane) 、3-硫醇基丙基乙氧基二曱基 石夕烧(2-mercaptopropy 1 ethoxy dimethylsilane) 、3-硫醇基丙基環己氧基甲基矽烷(3-mercaptopropyl cy cl oh exoxy methyl silane) 、4_硫醇基丁基三甲氧基石夕 燒(4-inercaptobutyl trimethoxysilane)、3-硫醇基-3-甲基丙基三甲氧基矽烷(3-mercapto-3-methylpropyl tri methoxy si lane)、3-硫醇基-3-甲基丙基三丙氧基梦院 (3-mercapto-3-methylpropy1 tripropoxysilane ) 、3-After a substrate, the "adhesion promoter can be used to hang KP" is used to increase the adhesion of the metal layer to the first substrate and/or the second substrate. This adhesion promoter can be a money compound. This compound can be selected from the group consisting of 2-ercaptoethyltrimeth〇xyane, 3-thiolpropyltrimethoxysilane (3iercapt〇pr〇pyi trimethoxysilane). , 2-mercapt propyl pranopyrene, 3-mercaptopropyl triethoxys ilane ' 2 thiolacyl ethyl 2-mercapt〇ethyi tripropoxysilane, 2-mercaptoethyl tributoxybutane (2-mercap1; oe1:hyl tri sec-butoxysilane), 3-thiolpropyl 3-mercaptopropyl tri sec-butoxysilane, 3-mercaptopropy 1 tri isopropoxysi lane, 3-thiol group • propyl trisole 3-mercaptopropy 1 trioctoxysilane, 2-mercaptoethy1 tri-2, -ethylhexoxysilane, 2_thiolethyl 2-mercap1: ethyl dimethoxyethoxy si lane, 3-thiol propyl oxime 2-mercaptopropyl methoxyethoxypropoxysi lane, 3-mercaptopropyl dimethoxymethylsilane, 3-thiolpropylmethoxymethyl dimethyl 2-mercaptopropy 1 ethoxy dimethylsilane, 3-mercaptopropy 1 ethoxy dimethylsilane, 3-thiol propylcyclohexyloxymethyl decane (3-19) -mercaptopropyl cy cl oh exoxy methyl silane), 4-inercaptobutyl trimethoxysilane, 3-thiol-3-methylpropyltrimethoxysilane (3-mercapto- 3-methylpropyl tri methoxy si lane), 3-mercapto-3-methylpropy1 tripropoxysilane, 3-
硫醇基-3-乙基丙基二甲氧基曱基矽烷 ( 3-mercapto-3-ethylpropy1 dimethoxy methylsilane) 、3 -硫醇基-2-曱基丙基三曱氧基石夕烧 (3-mercapto-2-methylpropy1 trimethoxysilane ) 、3- 硫醇基-2-甲基丙基二曱氧基苯基矽烷 ( 3-mereapto-2-methylpropy1 dimethoxy phenylsilane ) 、3-硫醇基環己基三曱氧基碎烧 ❹ (3-mercapto-cyclohexyl trimethoxysi lane ) 、12-硫醇 基十二统基三甲氧基梦燒 (12-mercaptododecyl trimethoxysi lane )、12-硫醇基十二烧基三乙氧基石夕烧 (12-mercaptododecy 1 tr i ethoxysi lane ) 、18-硫醇基十 八炫基三甲氧基石夕院’(18-mercaptooctadecyl trimethoxysi lane)、18-硫醇基十八妓•基甲氧二甲基梦院 (18-mercaptooctadecy1 methoxydimethy1 si lane ) 、2- 硫醇基 -2-甲基乙基三丙氧基矽烷 (2-mercapto-2-methylehtyl tripropoxysi1ane ) 、 2- 20 201024072 硫醇基 -2_ 曱 基乙基三辛氧基梦烧 (2-mercapto-2-methy1ehty1 trioctoxysi1ane) 、 2-硫 醇基苯基三曱氧基碎院 (2-mercaptophenyl trimethoxysilane ) 、2-硫醇基苯基三乙1氧基碎烧 (2-mercaptophenyl triethoxysilane) 、2-硫醇基甲苯 基三甲氧基石夕烧(2-mercaptotolyl trimethoxysilane)、 2-硫醇基曱苯基三乙氧基碎燒(2-mercaptotolyl triethoxysi lane) 、1-硫醇基甲基甲苯基三甲氧基梦烧 ❹ (1-mercaptomethy 1 toly 1 tr imethoxysi lane ) 、1-硫醇 基甲基甲苯基三乙氧基石夕燒(1-mercaptomethyltolyl triethoxysilane ) 、2-硫醇基乙苯基三甲氧基碎烧 (2-mercaptoehtylpheny 1 trimethoxysi lane ) 、2-硫醇 基乙苯基三乙氧基碎炫> (2-mercaptoeh1;ylphenyl tri ethoxys i lane ) 、2-硫醇基乙基曱苯基三甲氧基石夕烧 (2-mercaptoehty 1 toly 1 trimethoxysi lane ) 、2-硫醇基 ❷ 乙基曱苯基三乙氧基梦競> (2-mercapi:oeh1:yltolyl triethoxysilane ) 、2-硫醇基丙苯基三甲氧基碎烧 (2-mercaptopropy lpheny 1 trimethoxysi lane ) 、2-硫醇 基丙苯基三乙氧基石夕烧 (2-mercaptopropylphenyl tr i ethoxysi lane ) 、 3-氨丙基三曱氧基碎烧 (3-aminopropyltrimethoxysilane)、3-氨丙基三乙氧基 碎统(3-aminopropy 1 triethoxysi lane ) 、4-氨丁 基三乙 氧基石夕烧(3-aminobutyltriethoxysilane)、N-曱基 3-氨 -2- 甲 基丙基 三甲氧 基矽烷 21 201024072 (N-methy1-3-amino-2-methy 1 propyltrimethoxys ilane )、N-乙基-3-氨-2-曱基丙基三曱氧基矽烷 (N-ethyl-3-amino-2-methy 1 propyltrimethoxysilane ) 、N-乙基_3_氨_2-甲基丙基二乙氧基甲基碎烧 (N-ethy1-3-amino-2-methylpropyldiethoxymethy1 si la ne ) 、N-乙基-3-氨-2-曱基丙基三乙氧基矽烷 (N-ethy1-3-amino-2-methylpropyltrimethoxysi lane ) 、N-乙基-3-氨-2-甲基丙基甲基二甲氧基矽烷 (N-ethy1-3-amino-2-methy 1 propyl-methyltrimethoxys ilane ) 、N- 丁基-3-氨-2-甲基丙基三甲氧基矽烷 (N-buty1-3-amino-2-methylpropyltrimethoxysi lane ) 、3-(N-甲基-3_氨-1-甲基_1-乙基)丙基三甲氧基梦炫* (3-(N-methy1-3-amino-1-methyl-1-ethy 1)-propy1 trim ethoxy silane ) 、N -乙基-4-氨-3,3-二曱基丁基二曱氧基 甲 基矽烷 (N-ethyl-4-amino-3,3-dimethylbuty1 dimethoxymethy 1 silane) 、N-乙基_4 -氨_3, 3 -二甲基丁基三曱氧基碎烧 (N-ethyl-4-amino-3, 3-dimethylbutyltrimethoxysilan e)、N-(環己基)-3-氨丙基三曱氧基妙院(N-(cyclohexyl) -3-aminopropyl1;rin]ethoxysilane) 、N-(2-胺乙基)-3-氨丙基三曱氧基梦燒 (N-(2-aminoethy 1 ) -3-aminopropyltrimethoxysi lane ) 、N-(2-胺乙基)-3- 氨丙基三乙氧基石夕烧 (N-(2-aminoethy 1 ) -3-aminopropyltriethoxysilane)、N-(2-胺乙基)-3-氨 201024072 丙基甲基二甲氧基石夕院 (N-(2-aminoethyl ) -3-aminopropy lmethyldimethoxysi lane )、氨丙基三乙氧 基矽院(aminopropyl tr iethoxysi lane )、雙(三甲氧基石夕 _2_ 甲基 丙基) 胺 (bis-(3-trimethoxysiliy-2-methylpropyl)amine 及 N-(3’曱氧基矽丙基)-3-氨-2-甲基丙基三曱氧基矽烷(N-( 3, -trimethoxysi1iypropyl ) -3-amino-2-me1;hylpropyl1:riinethoxysi lane)。 在一實施例中,矽烷化合物為3_硫醇基丙基三甲氧基 矽烷(MPTMS)。 在不受限於任何特定理論下,一般相信3_硫醇基丙基 二甲氧基矽烷(MPTMS)的化學性質可作為金的黏結促進 劑,其中此化合物的硫醇基與金黏結,且三甲氧基梦貌官 月t*基黏結至聚碳酸醋基材上。 在一實施例中,黏結促進劑之表面塗佈為小於約1〇3-mercapto-3-ethylpropy1 dimethoxy methylsilane, 3-mercapto-2-mercaptopropyltrimethoxy oxalate (3- Mercapto-2-methylpropy1 trimethoxysilane ), 3-mereapto-2-methylpropy1 dimethoxy phenylsilane, 3-thiol cyclohexyltrimethoxy 3-mercapto-cyclohexyl trimethoxysi lane, 12-mercaptododecyl trimethoxysi lane, 12-thiol-dodecyl triethoxyxilan (12-mercaptododecy 1 tr i ethoxysi lane ), 18-mercaptooctadecyl trimethoxysi lane, 18-mercapto-octadecyl trimethoxysi lane, 18-thiol- 18 妓 基 methoxy dimethyl dimethyl dream (18-mercaptooctadecy1 methoxydimethy1 si lane ), 2-mercapto-2-methylehtyl tripropoxysi1ane , 2- 20 201024072 thiol-2_ decyl 2-mercapto-2-methy1ehty1 trioctoxysi1ane, 2-thiolphenyl triterpenoid 2-mercaptophenyl trimethoxysilane, 2-mercaptophenyl triethoxysilane, 2-mercaptotolyl trimethoxysilane , 2-mercaptotolyl triethoxysi lane, 1-mercaptomethy 1 toly 1 tr imethoxysi lane , 1-mercaptomethyltolyl triethoxysilane, 2-mercaptoehtylpheny 1 trimethoxysi lane, 2-thiol group B 2-mercaptoeh1;ylphenyl tri ethoxys i lane ), 2-mercaptoehty 1 toly 1 trimethoxysi lane , 2- Thiol-ylethyl phenyl triethoxymethane (2-mercapi: oeh1:yltolyl triethoxysilane), 2-mercaptopropy lpheny 1 trimethoxysi lane 2-mercaptopropyl propyl triethoxy zebra (2-mercapto Propylphenyl tr i ethoxysi lane ), 3-aminopropyltrimethoxysilane, 3-aminopropy 1 triethoxysi lane, 4-aminobutyl tri 3-aminobutyltriethoxysilane, N-mercapto 3-ammon-2-methylpropyltrimethoxydecane 21 201024072 (N-methy1-3-amino-2-methy 1 propyltrimethoxys ilane ), N- N-ethyl-3-amino-2-methy 1 propyltrimethoxysilane, N-ethyl_3_amino-2-methylpropyl Ethoxymethyl calcination (N-ethy1-3-amino-2-methylpropyldiethoxymethy1 si la ne ), N-ethyl-3-ammon-2-mercaptopropyltriethoxydecane (N-ethy1-3 -amino-2-methylpropyltrimethoxysi lane ), N-ethy1-3-amino-2-methy 1 propyl-methyltrimethoxys ilane N-buty1-3-amino-2-methylpropyltrimethoxysi lane, 3-(N-methyl-3-amino-1-methyl _1-ethyl)propyltrimethoxymethanol* (3-(N-methy1-3-amino-1-methyl-1-ethy 1)-propy1 trim ethoxy silane ) , N-ethyl-4-amino-3,3-dimercaptobutyl dimethoxymethyl decane (N-ethyl-4-amino-3,3-dimethylbuty1 dimethoxymethy 1 Silane), N-ethyl-4-amino-3, 3-dimethylbutyltrimethoxysilan e, N-(cyclohexyl) N-(cyclohexyl)-3-aminopropyl1;rin]ethoxysilane), N-(2-aminoethyl)-3-aminopropyltrimethoxyoxymethane ( N-(2-aminoethy 1 ) -3-aminopropyltrimethoxysi lane ), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (N-(2-aminoethy 1 ) -3-aminopropyltriethoxysilane) , N-(2-Aminoethyl)-3-ammonia 201024072 propyl-methyl-2-methoxypropy lmethyldimethoxysi lane (N-(2-aminoethyl)-3-aminopropy lmethyldimethoxysi lane), aminopropyltriethoxy oxime (aminopropyl tr iethoxysi lane ), bis(trimethoxysiliy-2-methylpropyl)amine and N-(3' methoxypropyl)-3- Amino-2-methylpropyltrimethoxysidecane (N-(3,-trimethoxysi1iypropyl)-3-amino-2-me1;hylpr Opyl1: riinethoxysi lane). In one embodiment, the decane compound is 3-thiolpropyltrimethoxydecane (MPTMS). Without being bound by any particular theory, it is generally believed that the chemistry of 3_thiolpropyl dimethoxydecane (MPTMS) acts as a gold adhesion promoter in which the thiol group of this compound is bonded to gold, and The trimethoxylized monthly t* base is bonded to the polycarbonate substrate. In one embodiment, the surface of the adhesion promoter is coated to less than about 1 inch.
nm ° 在此提供一I材,該基材具有微米或奈米尺度之壓 印’ -體成形於基材表面中’且具有一金屬層沉積於該壓 印之至少一部份上。 必刊疋狎之微米尺寸或奈 隹此提供一基材 :尺寸壓印之陣列’該基材包含一柵欄形式之排列:::: :些鄰近壓印間形成溝槽,Λ中一金屬層覆 該些溝槽。 &丨a 在此提供如上所述之基材 可使用於燃料電池'表面 23 201024072 電漿光譜儀、有機電子元件、微機電系統/奈米機電系統 (MEMs/NEMs)、微流體裝置或電漿裝置。 在此提供如上所述之基材,其中此基材係由上述之方 法獲得。 在此提供如上所述之基材,其中此基材係可由上述之 方法獲得。 在此提供如上所述之基材,其中此基材係由上述之方 法獲得,可使用於燃料電池、表面電漿光譜儀、有機電子 元件、微機電系統/奈米機電系統(MEMs/NEMs)、微流 ® 體裝置或電漿裝置》 在此提供如上所述之基材,其中此基材係可由上述之 方法獲得’可使用於燃料電池、表面電漿光譜儀、有機電 子元件、微機電系統/奈米機電系統(MEMs/NEMs )、微流 體裝置或電漿裝置。 在此提供一種感測晶片,具有一基材主體(b〇dy ), 、. 其包含自該基材延伸之微米尺寸或奈米尺寸壓印之陣列且 ❹ 經排列以在該些鄰近壓印間形成溝槽,其中一反射金屬層 覆蓋該些壓印或該些溝槽。 在此提供一種表面電漿共振系統,包含:一光源;一 如前述之感測晶片;一光源偵測器,用以接收由該感測晶 片之該反射金屬層反射的光;以及一光學調幅器(〇ptical modulator )’用以指引調變光至該感測晶片上。 第1圖為顯示一示意圖’其選擇性沉積金属層至第一 基材上(步驟(a) -(c))及隨後選擇性沉積金屬層至第 24 201024072 二基材上(步驟(d) - (f))之方法10。 在第1圖之步驟(a)中,矽模具12具有壓印形成表 面’其包含第一區域(14a、14b、14c)及含隆起物之第二 區域(16a、16b、.16c、1 6d ),經由電子束蒸鐘塗佈有反 射金屬(例如金)。模具12掛載於電子束蒸鍍儀(圖中未 顯示)中,且距離金標靶一段距離以使蒸鍍為單方向性, 而形成第一區域上(14a、14b、14c)之金塗佈層(18a、 ❻ 1、18c )及第二區域之金塗佈層(2〇a、別乜、2〇c、2〇d )。 第一區域(14a、14b、14c)之表面積(250, 000 # m2)相 較於第二區域(16a、16b、16c、16d)之表面積(1〇, 〇〇〇 #^) 較大。 在步驟(a)之前,先以黏結促進劑(3-硫醇基丙基三 甲氧基矽烷)對第一聚碳酸酯(PC)基材進行處理,以形 成黏結促進劑之表面塗佈24。 在第1圖之步驟(b)中’在溫度超過聚碳酸酯基材 • 22之玻璃轉換溫度U8(TC ),壓力為2.2MPa的條件下, 施壓碎模具12至聚碳酸酯(PC)基材22表面Γ5分鐘,以 在聚碳酸酯基材22形成壓印。 在第1圖之步驟(c)中’在聚碳酸酯基材22自模具 12脫膜之前’冷卻至locpc 一段時間(卜5分鐘)。 形成在聚碳酸酯基材22上之麗印包含隆起之第一區 域(26a、26b、26c)及凹陷之第二區域(28a、28b、28c、 28d)。模具12之第一區域上(14a、14b、14c)之金層(i8a、 18b、18c)轉移至聚碳酸酯基材22上之對應隆起之第一區 25 201024072 域(26a、2 6b、26c )。這是由於模具12上之第一區域(14a、 14b、14c )之表面積較隆起之第二區域(16a、16b、l6c、 16d)之表面積大,使模具12之第一區域(Ua、丨“、l4c) 與聚碳酸酯基材22上之對應隆起之第一區域(26a、26b、 26c )的黏著功較大。 在第1圖之步驟(d)中,使用具有金塗佈層(2〇a、2〇b、 20c、20d)於隆起之第二區域(16a、16b、16。16d)上 之相同矽模具12,同時壓印及選擇性沉積金屬至第二聚碳 酸基材30上《第二聚碳酸酯基材3〇也有以黏結促進劑❻ (MPTMS)處理,以形成黏結促進劑之塗佈表面3 2。 在第1圖之步驟(e)中,在溫度超過聚碳酸酯基材 30之玻璃轉換溫度(18(rc),壓力為22Mpa的條件下, 施壓矽模具12至聚碳酸酯基材3〇之表面9〇分鐘,以在聚 碳酸酯基材30上形成壓印。 在第1圖之步驟(f)中,在聚碳酸酯基材3〇自矽模 具12脫膜之前,冷卻聚碳酸酯基材30至10(TC 1-5分鐘。 形成在聚碳酸酯30上之壓印包含隆起之第一區域(3切、® 34b 34c)及凹陷之第二區域(36a、36b、36c、36d)。 矽模具12之第二區域(163、161)、16(:、16(1)上之金層(2(^、 20b、20c、20d)轉移至聚碳酸酯基材3〇上之對應第二區 域(36a、36b、36c、36d)。 實施例 下文特舉出較佳實施例作詳細說明如下,然其並非用 26 201024072 以限定本發明。 材料及方法 金沉積 在 3. 8xl〇-6mbai· ( 3. 8xl〇-'7 kPa)之壓力下、電流 100Nm ° Here is provided an I material having a micron or nanometer embossed 'formed into the surface of the substrate' and having a metal layer deposited on at least a portion of the embossing. The micron size or the nephew of the must-have item provides a substrate: an array of size imprints. The substrate comprises an arrangement of fences::::: some adjacent stamping spaces form a trench, and a metal layer in the crucible Cover the grooves. &丨a The substrate provided above can be used for fuel cell 'surface 23 201024072 plasma spectrometer, organic electronic components, microelectromechanical systems / nanomechanical systems (MEMs / NEMs), microfluidic devices or plasma Device. The substrate as described above is provided herein, wherein the substrate is obtained by the method described above. Provided herein is a substrate as described above, wherein the substrate is obtainable by the method described above. Provided herein is a substrate as described above, wherein the substrate is obtained by the method described above and can be used in fuel cells, surface plasma spectrometers, organic electronic components, MEMS/NEMs, (MEMs/NEMs), Microfluidic® Body Device or Plasma Device Here, a substrate as described above is provided, wherein the substrate can be obtained by the method described above, which can be used for fuel cells, surface plasma spectrometers, organic electronic components, MEMS/ Nano electromechanical systems (MEMs/NEMs), microfluidic devices or plasma devices. There is provided a sensing wafer having a substrate body (b〇dy), comprising an array of micron- or nano-sized imprints extending from the substrate and arranged to imprint adjacent to each other A trench is formed therebetween, wherein a reflective metal layer covers the stamps or the trenches. There is provided a surface plasma resonance system comprising: a light source; a sensing wafer as described above; a light source detector for receiving light reflected by the reflective metal layer of the sensing wafer; and an optical amplitude modulation A 〇ptical modulator is used to direct the modulated light onto the sensing wafer. Figure 1 is a schematic view showing a selective deposition of a metal layer onto a first substrate (steps (a) - (c)) and subsequent selective deposition of a metal layer onto a second substrate of 24 201024072 (step (d) - (f)) Method 10. In the step (a) of Fig. 1, the crucible mold 12 has an imprint forming surface 'which includes a first region (14a, 14b, 14c) and a second region containing the bumps (16a, 16b, .16c, 16d) ), a reflective metal (for example, gold) is applied via an electron beam vapor. The mold 12 is mounted on an electron beam evaporation instrument (not shown) and is at a distance from the gold target to make the vapor deposition unidirectional, and forms a gold coating on the first region (14a, 14b, 14c). The cloth layer (18a, ❻ 1, 18c) and the gold coating layer of the second region (2〇a, 乜, 2〇c, 2〇d). The surface area (250, 000 # m2) of the first region (14a, 14b, 14c) is larger than the surface area (1〇, 〇〇〇 #^) of the second region (16a, 16b, 16c, 16d). Prior to step (a), the first polycarbonate (PC) substrate is treated with a adhesion promoter (3-thiolpropyl propyl methoxy decane) to form a surface coating 24 of the adhesion promoter. In step (b) of Figure 1, 'mold the mold 12 to polycarbonate (PC) under the condition that the temperature exceeds the glass transition temperature U8(TC) of the polycarbonate substrate 22 and the pressure is 2.2 MPa. The surface of the substrate 22 was rubbed for 5 minutes to form an impression on the polycarbonate substrate 22. In step (c) of Figure 1, 'the polycarbonate substrate 22 is cooled to locpc for a period of time (5 minutes) before the film is removed from the mold 12. The embossing formed on the polycarbonate substrate 22 includes a first region (26a, 26b, 26c) of ridges and a second region (28a, 28b, 28c, 28d) of depressions. The gold layer (i8a, 18b, 18c) on the first region (14a, 14b, 14c) of the mold 12 is transferred to the first region 25 201024072 domain (26a, 26b, 26c) of the corresponding ridge on the polycarbonate substrate 22. ). This is because the surface area of the first region (14a, 14b, 14c) on the mold 12 is larger than the surface area of the second region (16a, 16b, 16c, 16d) of the bulge, so that the first region of the mold 12 (Ua, 丨" And l4c) having a greater adhesion to the first regions (26a, 26b, 26c) of the corresponding ridges on the polycarbonate substrate 22. In the step (d) of Fig. 1, a coating layer having a gold coating layer (2) is used. 〇a, 2〇b, 20c, 20d) the same tantalum mold 12 on the second region (16a, 16b, 16.16d) of the ridge, while simultaneously imprinting and selectively depositing the metal onto the second polycarbonate substrate 30 The second polycarbonate substrate 3 is also treated with a binder promoter (MPTMS) to form a coated surface of the adhesion promoter 32. In step (e) of Figure 1, the temperature exceeds the polycarbonate. The glass transition temperature of the substrate 30 (18 (rc), under a pressure of 22 MPa, was applied to the surface of the mold 12 to the surface of the polycarbonate substrate 3 for 9 minutes to form a pressure on the polycarbonate substrate 30. In step (f) of Figure 1, the polycarbonate substrate 30 to 10 is cooled (TC 1-5 minutes) before the polycarbonate substrate 3 is released from the mold 12 The stamp formed on the polycarbonate 30 includes a first region of the ridge (3 cut, ® 34b 34c) and a second region (36a, 36b, 36c, 36d) of the recess. The second region of the mold 12 (163) , 161), 16 (:, 16 (1) gold layer (2 (^, 20b, 20c, 20d) transferred to the corresponding second region (36a, 36b, 36c, 36d) on the polycarbonate substrate 3 The following is a detailed description of the preferred embodiments as follows, but it is not limited to 26 201024072 to limit the invention. Materials and methods gold deposition at 3. 8xl 〇-6mbai· ( 3. 8xl 〇-'7 kPa Under the pressure, current 100
Ma、沉積速率〇.llnm/s的條件下,由電子束蒸鍍法塗佈金 於矽模具上。矽模具掛載於Edffard Aut〇 3〇6電子束蒸鍍 鲁儀中’ it距離金標乾一段距_,以確保金為$方向性的沉 積於矽模具上。金不會沉積在任何凹陷區域之侧壁上。金 層之厚度為100 nm至200 nm。 聚碳酸醋之表面處理 聚碳酸酯薄膜係以黏結促進劑(3_硫醇基三甲氧基矽 烷;MPTMS)作處理’以增強壓印製程進行期間聚碳酸酯及 金層之間的黏結》聚碳酸酯浸泡於5ffil 3_硫醇基三甲氧基 鰺钱UPTMS)與240ml乙醇、1〇ffil去離子水之混合溶液 中。此薄膜置於此溶液中過夜,以確保3_硫醇基三甲氧基 矽燒(MPTMS)與聚碳酸醋薄膜反應形成一用以促進黏結之 表面塗佈。 金轉移 3- 壓 合 使用傳統奈米壓印技術,以塗佈有金之矽模具及經 硫醇基三甲氧基矽烷(MPTMS )處理之聚合物基材進行 印。在Obducant壓印機上,將塗佈有金之模具置於聚 27 201024072 物基材之頂部。接著加熱溫度至超過聚合物基材之玻璃轉 移溫度(180。〇,麼力為2.2MPa ’進行15分鐘。接著, 在100°c下,將矽模具自聚合物脫膜。 凹陷區域轉移至 。金轉移之區域 在壓印後,金層自模具之突起區域或 至聚合物基材之對應凹陷區域或突起區域 特別的是’金轉移會發生 第一區域之表面積約大於 可由矽模具之幾何圖案所控制 在表面積區域相對較大之區域 第二區域的95%以上。 隨後用剩餘附著於矽模具上之金進行一個新的麼印步 驟。再次加熱溫度至過聚合物基材之玻璃轉移溫度 (18〇°C),壓力為2.2MPa’進行9〇分鐘,其中精確的壓 印時間是依照幾何圖案及密度來決定,此製程週期終點為 矽模具自聚合物基材在1〇〇<t下脫膜。在壓印後,剩餘的 金層在與第一壓印相反之區域中自矽模具轉移至聚合物基 材。 鑑定 聚合物與金的有顯著不同的反射率,使用光學顯微鏡 可鑑定金是否具有一致性的選擇性轉移。在光學顯微鏡圖 像中’較壳的區域表示為由金所覆蓋,較暗的區域代表沒 有金。 亦使用能量分散X光光譜元素分佈(energy dispersive X~ray spectroscopy elemental ; EDS elemental mapping)來確認由光學顯微鏡圖像所得到之結 201024072 果。同樣地’能量分散X光光譜元素分佈(EDSeleinental mapping)可鑑別(permits)特殊的元素’例如金,較亮 * 的區域表示為覆蓋由金’較暗的區域代表沒有金。 實施例1 本實施例將描述於第1圖所示之方法10,使用帶有 10/z m柱狀(pillar)圖案(深寬比〇. 5)(顯示於第2圖) φ 之矽模具。矽模具具有壓印形成表面,包含如前述之塗佈 有金之第一凹陷區域40及第二隆起區域42。聚碳酸酯基 材也如前述以黏結促進劑作處理。 在第一壓印步驟期間,石夕模具之第一凹陷區域中的 金層轉移至聚碳酸酯基材之對應隆起區域5〇 (第4&及4b 圖),其中在隆起區域42之金層仍維持在矽模具上。聚碳 酸酯基材上之對應凹陷區域52 (第牦及4b圖)不具有金 層。參見第2及3圖,矽模具之凹陷區域4〇具有大於矽模 ®具之隆起區$ 42之表面積,用以促進或使金層便於自梦模 具之凹陷區域轉移至基材上。 進行能量分散X光光譜元素分佈(EDS elefflental ㈣PP^g)來確認金確實位於基材上。第5圖顯示為基材之 疋素刀佈圖。第6圖顯不為相對應之掃猫式電子顯微鏡圖 (SEM) T以看到’在聚碳酸酯基材上之隆起區域上 有金的存在。 隨後纟第—基材上進行如前述之第二壓印步驟。珍 模具第二隆起區域49 p + λ 场42上之剩餘的金層轉移至第二基材上 29 201024072 之對應凹陷區域60。第二基材上之隆起區域62不具有金 層(第7a及7b圖) 實施例2 本實施例將描述一選擇性沉積金之示範方法使用 帶有10//m凹穴(dimple)圖案(深寬比10)(顯示於 第8圖)之矽模具。矽模具具有壓印形成表面,包含如前 述之塗佈有金之第一隆起區域7〇及第二凹陷區域72。如 第8圖及第9圈所示,矽模具之第一隆起區域7〇具有較矽 © 模具之第一凹陷區域72大的表面積。 發模具上具有如前述之金層塗佈。聚碳酸酯基材也如 前述以黏結促進劑作處理。 在第一壓印步驟期間’矽模具之第一隆起區域中的 金層轉移至聚碳酸酯基材之對應凹陷區域8〇(第1〇3及1〇b 圖),而在凹陷區域72之金層仍維持在模具上(第9圖)。 如此’聚碳酸酯基材上之對應隆起區域82 (第1〇a及1〇b ⑩ 圖)不具有金層。矽模具之凹陷區域7〇具有大於矽模具之 隆起區域72之表面積,可促進或便於使金層自矽模具之隆 起區域70轉移至基材上。 進行at·量为散X光光譜元素分佈(EDS elemental mapping)來確認金確實位於基材上。第u圖顯示為基材 之元素分佈圖。第12圖顯示為相對應之掃瞄式電子顯微鏡 圖(SEM )。可以看到,在聚碳酸酯基材上之凹陷區域8〇 上有金的存在。 30 201024072 實施例3Ma, under the condition of deposition rate 〇.llnm/s, was coated with gold on the enamel mold by electron beam evaporation. The 矽 mold is mounted on Edfard Aut〇 3〇6 electron beam evaporation. It is a distance from the gold standard to ensure that gold is deposited in the 矽 mold. Gold does not deposit on the sidewalls of any recessed areas. The thickness of the gold layer is from 100 nm to 200 nm. Polycarbonate surface treatment polycarbonate film is treated with a adhesion promoter (3_thiol trimethoxy decane; MPTMS) to enhance the bonding between polycarbonate and gold layer during the imprint process. The carbonate was immersed in a mixed solution of 5ffil 3_thiol trimethoxy hydrazine UPTMS) with 240 ml of ethanol and 1 〇ffil of deionized water. The film was placed in this solution overnight to ensure that the 3-thiol trimethoxy oxime (MPTMS) reacted with the polycarbonate film to form a surface coating to promote adhesion. Gold Transfer 3-Compression Using a conventional nanoimprint technique, a gold-coated die and a thiol-based trimethoxydecane (MPTMS)-treated polymer substrate are used for printing. On a Obducant press, a gold coated mold was placed on top of the poly 27 201024072 substrate. The temperature was then heated to a temperature exceeding the glass transition temperature of the polymer substrate (180 Å, the force was 2.2 MPa' for 15 minutes. Then, at 100 ° C, the ruthenium mold was released from the polymer. The depressed region was transferred. After the embossing of the gold transfer region, the gold layer from the protruding region of the mold or to the corresponding recessed region or the raised region of the polymer substrate, in particular, the 'gold transfer occurs. The surface area of the first region is greater than the geometric pattern of the moldable mold. It is controlled to be more than 95% of the second region in the relatively large area of the surface area. Then a new printing step is carried out with the remaining gold attached to the crucible mold. The temperature is again heated to the glass transition temperature of the polymer substrate ( 18〇°C), pressure is 2.2MPa' for 9〇 minutes, the precise imprinting time is determined according to geometric pattern and density. The end point of this process cycle is 矽 mold from polymer substrate at 1〇〇<t Lower release film. After imprinting, the remaining gold layer is transferred from the crucible mold to the polymer substrate in the opposite region of the first imprint. The polymer is distinguished from gold by a significantly different reflectance. Optical microscopy can be used to identify whether gold has consistent selective transfer. In optical microscopy images, the 'shell area is represented by gold, and the darker area represents no gold. Energy dispersive X-ray spectral element distribution is also used. (Energy dispersive X~ray spectroscopy elemental; EDS elemental mapping) to confirm the knot obtained from the optical microscope image 201024072. Similarly, 'EDSeleinental mapping can identify special elements' For example, gold, a brighter* area is indicated as covering the gold's darker area representing no gold. Example 1 This example will be described in the method 10 shown in Figure 1, using a 10/zm column (pillar) a pattern (aspect ratio 〇. 5) (shown in Fig. 2) 矽 a 矽 矽 mold. The 矽 mold has an embossed surface comprising the first recessed region 40 and the second raised region 42 coated with gold as described above. The polycarbonate substrate is also treated with a binder promoter as described above. During the first imprinting step, the gold layer in the first recessed region of the Shixi mold is transferred to the polycarbonate substrate. Corresponding ridge region 5〇 (4th and 4b), wherein the gold layer in the ridge region 42 is still maintained on the dies. The corresponding recessed regions 52 on the polycarbonate substrate (Fig. 4b) do not have Gold layer. Referring to Figures 2 and 3, the recessed area 4〇 of the 矽 mold has a surface area greater than the ridge area of the 矽 ®® with a surface area of 42 to promote or facilitate the transfer of the gold layer from the recessed area of the mold to the substrate. The energy dispersive X-ray spectral element distribution (EDS elefflental (4) PP^g) was performed to confirm that the gold was indeed on the substrate. Figure 5 shows a guilloche pattern for the substrate. Figure 6 shows a corresponding scanning electron micrograph (SEM) T to see the presence of gold on the raised areas on the polycarbonate substrate. Subsequently, a second imprinting step as described above is carried out on the substrate. The remaining gold layer on the 49 p + λ field 42 of the second raised region of the Jane mold is transferred to the corresponding recessed region 60 on the second substrate 29 201024072. The raised region 62 on the second substrate does not have a gold layer (Figs. 7a and 7b). Example 2 This example will describe an exemplary method of selectively depositing gold using a 10//m dimple pattern ( The aspect ratio 10) (shown in Figure 8) is the mold. The crucible mold has an imprint forming surface comprising a first raised region 7〇 and a second recessed region 72 coated with gold as described above. As shown in Figures 8 and 9, the first raised region 7 of the crucible mold has a larger surface area than the first recessed region 72 of the mold. The hair mold has a gold layer coating as described above. The polycarbonate substrate is also treated with a adhesion promoter as described above. During the first imprinting step, the gold layer in the first raised region of the crucible is transferred to the corresponding recessed region 8〇 of the polycarbonate substrate (Figs. 1 and 3〇b), and in the recessed region 72 The gold layer remains on the mold (Fig. 9). Thus, the corresponding raised regions 82 (Fig. 1a and 1〇b 10) on the polycarbonate substrate do not have a gold layer. The recessed area 7〇 of the crucible mold has a surface area greater than the raised area 72 of the crucible mold, which facilitates or facilitates the transfer of the gold layer from the raised region 70 of the crucible mold to the substrate. The amount of at is measured by EDS elemental mapping to confirm that the gold is indeed on the substrate. Figure u shows the elemental distribution of the substrate. Figure 12 shows the corresponding scanning electron microscope (SEM). It can be seen that gold is present on the recessed areas 8〇 on the polycarbonate substrate. 30 201024072 Example 3
本實施例將描述於第 10/im柵欄圖案(深寬比 1圖所示之方法 〇.5)(顯示於第 1 〇,使用帶有 13圖)之梦模 具。矽模具具有壓印形成表面,包 第一凹陷區域90及第二隆起區域 含如前述之塗佈有金之 92。聚碳酸酯基材也如 前述以黏結促進劑作處理。 在第一 Μ印步驟期間,石夕模具之第一凹陷區域9〇中的 金層轉移至聚碳酸酯基材之對應隆起區域100 (第15a及 5b圖)ffii在隆起區域92<金層仍維持在模具上(第14圖)如此’聚碳酸醋基材上之對應凹陷H域102 (第15a 圖及第15b圖)不具有金層。參見第心及i4圖珍模具 之凹陷區域90具有大於矽模具之隆起區域犯之表面積, 用以促進或便於使金層自梦模具之凹陷區域9〇轉移至基 材上。 進仃能量分散X光光譜元素分佈(EDS el⑽ ⑩mapping)來確認金確實位於基材上。帛16_示為基材 之元素分佈圖。第17圖顯示為相對應之掃瞄式電子顯微鏡 圖(SEM )。可以看到,在聚碳酸酯基材上之隆起區域【ο? 上有金的存在。 隨後,如前述在第二基材上進行第二步驟。矽模具上 之第二隆起區域92上之剩餘的金轉移至第二基材之相對 應凹陷區域200。第二基材上之隆起區域2〇2不具有金層 (第18a及18b圖) 31 201024072 應用 本發明在此所述之方法提供一選擇性沉積金屬層於基 材之至少一部份上之製程。 有益的疋,依照本發明所述之方法選擇性沉積金屬層 至基材上,可在不帛光罩或剛性硬罩幕之條件下完成。 有益的是,本發明在此所述之方法,避免使用一些額 卜的。又備或製程’相較於傳統方法可具有較低的成本及消 耗較少的時間 有益的疋,本發明在此所述之方法同時可使壓印形成❹ ;基材上及/冗積金屬層於基材上之壓印之選擇區域上。更 佳的是’本發明在此所述之方法可選擇性沉積金屬層於非 平面基材上。 有益的是,使用本發明在此所述之模具隨後可用於壓 印近似或不同的基材。這是因為在第—同時壓印及選擇性 沉積期間所維持於模具上之金屬I,隨後可用於進行之同 時壓印及選擇性沉積在另一基材上。This embodiment will be described in the 10th/im fence pattern (method of the aspect ratio 1 shown in Fig. 5) (shown on the first page, using the figure 13). The ruthenium mold has an embossed surface, and the first recessed region 90 and the second ridged region are coated with gold as described above. The polycarbonate substrate is also treated with a adhesion promoter as described above. During the first stamping step, the gold layer in the first recessed region 9〇 of the Shixi mold is transferred to the corresponding raised region 100 of the polycarbonate substrate (Figs. 15a and 5b) ffii in the raised region 92<gold layer still Maintained on the mold (Fig. 14), the corresponding recessed H-domain 102 (Figs. 15a and 15b) on the 'polycarbonate substrate' does not have a gold layer. The recessed area 90 of the center of the heart and the i4 figure mold has a surface area larger than that of the raised area of the enamel mold to promote or facilitate the transfer of the gold layer from the recessed area 9 of the dream mold to the substrate. The energy dispersive X-ray spectral element distribution (EDS el(10) 10mapping) was confirmed to confirm that the gold was indeed on the substrate.帛 16_ is shown as the elemental distribution map of the substrate. Figure 17 shows the corresponding scanning electron microscope (SEM). It can be seen that gold is present on the raised areas of the polycarbonate substrate. Subsequently, the second step is carried out on the second substrate as previously described. The remaining gold on the second raised region 92 on the crucible mold is transferred to the corresponding recessed region 200 of the second substrate. The raised region 2〇2 on the second substrate does not have a gold layer (Figs. 18a and 18b). 31 201024072 The method described herein provides a selective deposition of a metal layer on at least a portion of a substrate. Process. Advantageously, the selective deposition of a metal layer onto the substrate in accordance with the method of the present invention can be accomplished without the need for a reticle or rigid hard mask. Beneficially, the method of the invention described herein avoids the use of some amount. The preparation or process 'is a lower cost and consumes less time than the conventional method. The method described herein can simultaneously form embossing on the substrate; on the substrate and/or redundant metal The layer is on the selected area of the imprint on the substrate. More preferably, the method of the invention described herein selectively deposits a metal layer on a non-planar substrate. Beneficially, the molds described herein using the present invention can then be used to imprint an approximately or different substrate. This is because the metal I maintained on the mold during the first-simultaneous imprinting and selective deposition can then be used for simultaneous imprinting and selective deposition on another substrate.
有益的是,依照本發明料之⑽可❹燃料電池 表面電漿光譜儀、有機電子元件'微機電系統/奈米機電 統(MEMs/NEMs)、微流體裝置或電漿裝置。 雖然本發明已以數個較佳實施例揭露如上,然其並 用以限定本發明,任何所屬技術領域中具有通常知識者 在不脫離本發明之精神和範圍内,當可作任意之更動與 飾’因此本發明之保護範圍當視後附之中請專^Advantageously, (10) a fuel cell surface plasma spectrometer, an organic electronic component 'microelectromechanical system/nanoelectromechanical system (MEMs/NEMs), a microfluidic device or a plasma device, in accordance with the present invention. While the invention has been described above in terms of several preferred embodiments, the invention is intended to be limited to the scope of the invention. 'Therefore, the scope of protection of the present invention should be regarded as a
定者為準。 & @ I 32 201024072 【圖式簡單說明】 第1圖為依照本發明一實施例之一選择性沉積金屬層 至第一基材上且隨後選擇性金屬層至第二基材上之方法之 流程圖。 第2圖顯示為依照本發明一實施例之矽模具之掃瞄式 電子顯微鏡圖。 第3圖顯不為第2圖之矽模具於第一同時壓印及選擇 性》儿積金屬層至第一基材上後之光學顯微鏡圖(放大倍 率:50X)。 第4a及4b圖顯示為由第2圖之矽模具於第一同時壓 印及選擇性沉積金屬層至第一基材上後,第一基材之光學 顯微鏡圖(放大倍率:(a)5〇X (b) 5X)。 第5及6圖各自顯示為第4a及4b圖相對應之元素分 佈圖及掃瞄式電子顯微鏡圖。 第7a及7b圖顯示為由第2圖之梦模具於第一同時壓 ❹ 印及選擇性沉積金屬層至第二基材上後,第二基材之光學 顯微鏡圖(放大倍率:(a)50X (b) 5X)。 第8圖顯示為本發明另一實施例之梦模具之掃猫式電 子顯微_鏡圖。 第9圖為由第8圖之矽模具於第一同時壓印及選擇性 >儿積金屬層至第一基材上後,碎模具之光學顯微鏡圖(放 大倍率:50X)。 第10a及l〇b圖為由第8圖之矽模具於第一同時壓印 及選擇性沉積金屬層至第一基材上後,第一基材之光學顯 33 201024072 微鏡圖(放大倍率:(a)50X (b) 5X)。 第11及12圖各自顯示為第1〇a及1〇b圖相對應之元 素分佈圖及掃瞄式電子顯微鏡圖。 第1 3圖顯示為依照本發明又一實施例之矽模具之掃 瞄式電子顯微鏡圖。 第14圖為由第13圖之矽模具於第一同時壓印及選擇 性况積金屬層至第一基材上後,矽模具之光學顯微鏡圖(放 大倍率:50X)。 第15a及15b圖為由第13圖之石夕模具於第一同時壓印 © 及選擇性沉積金屬層至第一基材上後,第一基材之光學顯 微鏡圖(放大倍率:(a)50X (b) 5X)。 第16及17圖各自顯示為第15a及15b圖相對應之元 素分佈圖及掃瞄式電子顯微鏡圖。 第18a及18b圖顯示為由第14圖之矽模具於第一同時 壓印及選擇性沉積金屬層至第二基材上後,第二基材之光 學顯微鏡圖(放大倍率:(a)5〇X (b) 5X)。 .【主要元件符號說明】 12〜矽模具 14a、14b、14c〜第一區域 16a、16b、16c、16d~ 第二區域 18a、18b、18c〜第一區域上之金層 20a、20b、20c、20d〜第二區域上之金層 34a、34b、34c〜基材之隆起第一區域 34 201024072 36a、36b、36c、36d〜基材之凹陷第二區域 4 0〜凹陷區域 42~隆起區域 50〜隆起區域 5 2〜凹陷區域 7 0 ~隆起區域 72~凹陷區域The standard is subject to change. & @ I 32 201024072 [Schematic Description of the Drawings] FIG. 1 is a view of a method of selectively depositing a metal layer onto a first substrate and then selectively selecting a metal layer onto a second substrate in accordance with an embodiment of the present invention. Flow chart. Fig. 2 is a scanning electron micrograph showing a boring mold according to an embodiment of the present invention. Fig. 3 is a photomicrograph (magnification: 50X) of the second mold after the first simultaneous imprinting and selective placement of the metal layer onto the first substrate. Figures 4a and 4b show optical micrographs of the first substrate after the first simultaneous imprinting and selective deposition of the metal layer onto the first substrate by the die of Figure 2 (magnification: (a) 5 〇X (b) 5X). Figures 5 and 6 each show the elemental map and the scanning electron microscope image corresponding to the 4a and 4b figures. Figures 7a and 7b show optical micrographs of the second substrate after the first simultaneous compression printing and selective deposition of the metal layer onto the second substrate by the dream mold of Figure 2 (magnification: (a) 50X (b) 5X). Fig. 8 is a view showing a cat-type electron micrograph of a dream mold according to another embodiment of the present invention. Figure 9 is an optical micrograph of the broken mold (magnification magnification: 50X) after the first simultaneous imprinting and selective > metal layer on the first substrate by the mold of Fig. 8. 10a and lb are micrographs of the first substrate after the first simultaneous imprinting and selective deposition of the metal layer onto the first substrate by the tantalum mold of Fig. 8 201024072 micromirror (magnification :(a)50X (b) 5X). Figures 11 and 12 each show the element distribution map and the scanning electron microscope image corresponding to the first 〇a and 〇b diagrams. Fig. 1 3 shows a scanning electron microscope image of a enamel mold according to still another embodiment of the present invention. Fig. 14 is an optical micrograph (magnification magnification: 50X) of the enamel mold after the first simultaneous imprinting and selective deposition of the metal layer onto the first substrate by the 矽 mold of Fig. 13. Figures 15a and 15b are optical micrographs of the first substrate after the first simultaneous imprinting © and the selective deposition of a metal layer onto the first substrate by the Shixi mold of Fig. 13 (magnification: (a) 50X (b) 5X). Figures 16 and 17 each show a corresponding element distribution map and a scanning electron microscope image for the 15a and 15b drawings. Figures 18a and 18b show optical micrographs of the second substrate after the first simultaneous imprinting and selective deposition of the metal layer onto the second substrate by the die of Figure 14 (magnification: (a) 5 〇X (b) 5X). [Description of main component symbols] 12 to 矽 molds 14a, 14b, 14c to first regions 16a, 16b, 16c, 16d~ second regions 18a, 18b, 18c to gold layers 20a, 20b, 20c on the first region, 20d to the second region, the gold layer 34a, 34b, 34c~ the substrate ridges the first region 34 201024072 36a, 36b, 36c, 36d ~ the substrate recessed second region 40 0 ~ recessed region 42 ~ raised region 50 ~ Rising area 5 2~ recessed area 7 0 ~ raised area 72 ~ recessed area
80~對應凹陷區域 82~對應隆起區域 90~凹陷區域 92〜隆起區域 100〜對應隆起區域 102〜對應凹陷區域 200〜對應凹陷區域 202~對應隆起區域80~ corresponding recessed area 82~ corresponding raised area 90~ recessed area 92~ raised area 100~ corresponding raised area 102~ corresponding recessed area 200~ corresponding recessed area 202~ corresponding raised area
3535
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10403408P | 2008-10-09 | 2008-10-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201024072A true TW201024072A (en) | 2010-07-01 |
TWI524984B TWI524984B (en) | 2016-03-11 |
Family
ID=42100839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098134246A TWI524984B (en) | 2008-10-09 | 2009-10-09 | Metal capped substrate imprints and method for forming the same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI524984B (en) |
WO (1) | WO2010042076A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015004114B4 (en) * | 2015-03-31 | 2022-06-15 | Friedrich-Schiller-Universität Jena | Surface enhancing plasmonic substrate |
TWI613506B (en) * | 2017-01-04 | 2018-02-01 | How to make the mask |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8222072B2 (en) * | 2002-12-20 | 2012-07-17 | The Trustees Of Princeton University | Methods of fabricating devices by low pressure cold welding |
KR20060089839A (en) * | 2005-02-04 | 2006-08-09 | 삼성에스디아이 주식회사 | Methods for fabricating patterned organic electroluminescent devices |
JP2007069604A (en) * | 2005-08-10 | 2007-03-22 | Toray Ind Inc | Pattern forming method, pattern forming sheet and optically functional sheet formed using it |
JP4697156B2 (en) * | 2007-02-28 | 2011-06-08 | トヨタ自動車株式会社 | Circuit board manufacturing method |
JP5214232B2 (en) * | 2007-12-20 | 2013-06-19 | Asti株式会社 | Plastic microstructure manufacturing method |
-
2009
- 2009-10-09 WO PCT/SG2009/000373 patent/WO2010042076A1/en active Application Filing
- 2009-10-09 TW TW098134246A patent/TWI524984B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2010042076A1 (en) | 2010-04-15 |
TWI524984B (en) | 2016-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Block copolymer nanopatterning for nonsemiconductor device applications | |
Kim et al. | Directed assembly of high molecular weight block copolymers: highly ordered line patterns of perpendicularly oriented lamellae with large periods | |
Jeon et al. | New top-down approach for fabricating high-aspect-ratio complex nanostructures with 10 nm scale features | |
Son et al. | Placement control of nanomaterial arrays on the surface-reconstructed block copolymer thin films | |
US8828871B2 (en) | Method for forming pattern and mask pattern, and method for manufacturing semiconductor device | |
CN101479031B (en) | Monoparticulate-film etching mask and process for producing the same, process for producing fine structure with the monoparticulate-film etching mask, and fine structure obtained by the production pro | |
Park et al. | Large area high density sub-20 nm SiO2 nanostructures fabricated by block copolymer template for nanoimprint lithography | |
TW201026474A (en) | Large area patterning of nano-sized shapes | |
KR101345109B1 (en) | Method of Manufacturing for 3-Dimensional Aligned Nanostructure Prepared by Both Imprint Lithography and Lift-Off Processes | |
CN101910829A (en) | Make the method for microarray | |
KR101549063B1 (en) | Method for producing transferred structure and mother die for use in the method | |
WO2007137438A1 (en) | Zero-order diffractive pigments | |
CA2706053A1 (en) | Direct imprinting of porous substrates | |
TW200927456A (en) | Controlling thickness of residual layer | |
US9255170B2 (en) | Block copolymer, method of forming the same, and method of forming pattern | |
WO2017115304A1 (en) | Multifunctional hierarchical nano and microlens for enhancing extraction efficiency of oled lighting | |
Kang et al. | Light-induced surface patterning of silica | |
TW201024072A (en) | A method for forming metal capped substrate imprints | |
US9354522B2 (en) | Block copolymer and pattern forming method using the same | |
US9362126B2 (en) | Process for making a patterned metal oxide structure | |
Endo et al. | Fabrication and functionalization of periodically aligned metallic nanocup arrays using colloidal lithography with a sinusoidally wrinkled substrate | |
EP3295247B1 (en) | Tool surface nano-structure patterning process | |
Yu et al. | Ink-drop dynamics on chemically modified surfaces | |
KR101563156B1 (en) | Reflective structure display apparatus comprising reflective structure and methods of manufacturing reflective structure and display apparatus | |
US20120298617A1 (en) | Apparatus for nano structure fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |