TW201023359A - Semiconductor structure and method of fabricating the same - Google Patents

Semiconductor structure and method of fabricating the same Download PDF

Info

Publication number
TW201023359A
TW201023359A TW97147882A TW97147882A TW201023359A TW 201023359 A TW201023359 A TW 201023359A TW 97147882 A TW97147882 A TW 97147882A TW 97147882 A TW97147882 A TW 97147882A TW 201023359 A TW201023359 A TW 201023359A
Authority
TW
Taiwan
Prior art keywords
gate
semiconductor structure
substrate
dielectric layer
recess
Prior art date
Application number
TW97147882A
Other languages
Chinese (zh)
Other versions
TWI408806B (en
Inventor
Hung-Sung Lin
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW97147882A priority Critical patent/TWI408806B/en
Publication of TW201023359A publication Critical patent/TW201023359A/en
Application granted granted Critical
Publication of TWI408806B publication Critical patent/TWI408806B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor structure including a substrate, a gate dielectric layer, a gate, a source region and a drain region is provided. The gate dielectric layer is disposed on the substrate. At least one recess is disposed in the substrate. The gate is disposed on the gate dielectric layer and in the recess. The source and drain regions are respectively disposed in the substrate beside the gate.

Description

124 29322twf.doc/n 201023359 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種積體電路及其製造方法,且特別 是有關於一種半導體結構及其製造方法。 【先前技術】 隨著半導體元件之積集度的曰益提升,半導體元件 之尺寸亦隨之縮小。因此,半導體元件中各個構件如分 流器(current divider )的尺寸也必須相應地縮小。 習知的分流器為利用多晶矽層及金屬層以蛇狀配置的 方式,來達到分流的目的。然而,此作法的多晶石夕層及金 屬層佔用到相當大的面積,因此,半導體元件的尺寸無法 縮小。另外,形成分流器的製程經常不能和現有的製程相 整合,進而增加製程的複雜度,且製造成本也較高。 。因此,如何没計一個面積小且與現有製程相容的分流 器,已成為業者極為重視的議題之一。 【發明内容】124 29322 twf.doc/n 201023359 IX. Description of the Invention: [Technical Field] The present invention relates to an integrated circuit and a method of fabricating the same, and more particularly to a semiconductor structure and a method of fabricating the same. [Prior Art] As the degree of integration of semiconductor elements increases, the size of semiconductor elements also shrinks. Therefore, the size of each member such as a current divider in the semiconductor element must also be correspondingly reduced. The conventional shunt is to achieve the purpose of shunting by using a polysilicon layer and a metal layer in a serpentine configuration. However, the polycrystalline layer and the metal layer of this method occupy a considerable area, and therefore, the size of the semiconductor element cannot be reduced. In addition, the process of forming the shunt is often not integrated with the existing process, thereby increasing the complexity of the process and the manufacturing cost is also high. . Therefore, how to disregard a shunt that is small in size and compatible with existing processes has become one of the topics that the industry attaches great importance to. [Summary of the Invention]

’其製造出 本發明提供一 本發明提供一種半導體結構 種作為分流器之半導體結 尺寸的分流器,也可以 ,成本低且可靠度佳。 ’其包括基底、閘介電 201023359 —^38-0124 29322twf.doc/n 層、閘極、源極區與汲極區。閘介電層配置在基底上。至 少一凹陷配置在基底中。閘極配置在閘介電層上及凹陷 中。源極區與汲極區分別配置在閘極之兩側的基底中。 依照本發明之一實施例所述,在一操作下,反轉層或 累積層形成於閘介電層及基底之間,使得閘極電流沿著反 轉層或累積層分為流向源極區的源極電流以及流向汲極區 的汲·極電流。 依照本發明之一實施例所述,當至少一四陷與源極區 之間的最短距離為L1,至少一凹陷與汲極區之間的最短距 離為L2時’源極電流正比於L2/(L1+L2),汲極電流正比 於 L1/(L1+L2)。 依照本發明之一實施例所述,上述之半導體結構更包 括介電層配置於凹陷之表面上。 依照本發明之一實施例所述,上述之凹陷之表面上未 配置介電層。 上述之半導體結構更包 依照本發明之一實施例所述 括配置.於基底中的井區。 依照本發明之一實施例所述,上述之基底的材料包括 包括發明之一實施例所述,上述之閘介電層的材料 夕曰依照本發明之—實施例所述,上述之閘極的材料包括 夕曰日矽、多晶矽化金屬、金屬矽化物或金屬。 本發明另提供一種半導體結構的形成方法。首先,於一 201023359 〜08-0124 29322twf.doc/n 基底上形成閘介電層。然後,於基底中形成至少一凹陷。接著, 於閘介電層上及凹陷中形成閘極。之後,於閘極之兩側的基底 中形成源極區與汲極區。 依照本發明之一實施例所述,在一操作下,反轉層或 累積層形成於閘介電層及基底之間,使得閘極電流沿著反 轉層或累積層分為流向源極區的源極電流以及流向汲極區 的沒極電流。 依照本發明之一實施例所述’當至少一凹陷與源極區 之間的最短距離為L1,至少一凹陷與汲極區之間的最短距 離為L2時,源極電流正比於L2/(L1+L2),汲極電流正比 於 L1/(L1+L2)。 依照本發明之一實施例所述,上述之形成閘介電層的 步驟在形成至少一凹陷的步驟之前。 依照本發明之一實施例所述,上述之形成閘介電層的 步驟在形成至少一凹陷的步驟之後。 依照本發明之一實施例所述,上述之形成閘介電層的 ❿ ^法包括進行缝化法或化學氣相沉積製程。 依照本發明之—實施例所述, 的方法包括進行餘刻製程。 依照本發明之一實施例所述, 石夕。 依照本發明之—實施例所述, 包括氧化石夕。 依“、、本發明之—實施例所述, 上述之形成至少一凹陷 上述之基底的材料包括 上述之閘介電層的材料 上述之閘極的材料包括 201023359 ^xv^-.v〇8-〇l24 29322twf.doc/n 多晶石^、多晶魏金屬、金財化物或金屬。 综上所述’在本發明的半導體結射,利 、一 凹陷於基底巾’且凹陷之表面上未配置介電層^ ==電流分流為源極電流以及没極電流二 和現有的製程整合,減低製程的複雜性 降:以 ❹ 另外,在本發明的半導體結構中,利用配巾 ==陷 錄凹陷之表面上配置有介電層’可作為單次燒 :可欠==不會有燒斷點不可預期之現象: 為讓本發明之上述特徵和優點能更明顯易懂,下 舉較佳實補,並配合所關式,作詳纟魏明如下。 【實施方式】 圖1疋依據本發明—實施例所繪示之—種半導體結構 的相示意圖。圖2是圖^之半導體結構的局部上視圖。 八請參照圖1及圖2,半導體結構刚包括基底1〇2、問 ”電層104、閘極106、源極區108與汲極區11〇。基底ι〇2 4 J如疋Ν型基底或ρ型基底,或是具有與基底導電性不同 (未繪示)的基底。基底1〇2的材料包括矽,例如 疋單晶矽、磊晶矽、多晶矽、矽化鍺或碳化矽等等。基底 102具有主動區1〇1。閘介電層1〇4配置在主動區的基 底102上。閘介電層1〇4的材料例如是氧化矽。另外,至 201023359 i_»iviv^u-z.\/\)8-0124 29322twf.doc/n 少一凹陷Π2配置在基底1〇2中。The invention provides a shunt for a semiconductor junction size of a semiconductor structure as a shunt, which is also low in cost and excellent in reliability. ‘It includes the substrate, gate dielectric 201023359 —^38-0124 29322twf.doc/n layer, gate, source region and bungee region. The gate dielectric layer is disposed on the substrate. At least one recess is disposed in the substrate. The gate is disposed on the gate dielectric layer and in the recess. The source region and the drain region are respectively disposed in the substrate on both sides of the gate. According to an embodiment of the invention, in an operation, an inversion layer or an accumulation layer is formed between the gate dielectric layer and the substrate, so that the gate current is divided into the source region along the inversion layer or the accumulation layer. The source current and the 汲·pole current flowing to the drain region. According to an embodiment of the invention, when the shortest distance between the at least one quad and the source region is L1, and the shortest distance between at least one of the recess and the drain region is L2, the source current is proportional to L2/ (L1+L2), the drain current is proportional to L1/(L1+L2). According to an embodiment of the invention, the semiconductor structure further includes a dielectric layer disposed on a surface of the recess. According to an embodiment of the invention, the dielectric layer is not disposed on the surface of the recess. The semiconductor structure described above further includes a well region disposed in the substrate in accordance with an embodiment of the present invention. According to an embodiment of the invention, the material of the substrate comprises a material according to an embodiment of the invention, wherein the material of the gate dielectric layer is in accordance with the embodiment of the invention, and the gate is Materials include 曰 曰, polycrystalline bismuth metal, metal bismuth or metal. The present invention further provides a method of forming a semiconductor structure. First, a gate dielectric layer is formed on the substrate of 201023359~08-0124 29322twf.doc/n. Then, at least one depression is formed in the substrate. Next, a gate is formed on the gate dielectric layer and in the recess. Thereafter, a source region and a drain region are formed in the substrates on both sides of the gate. According to an embodiment of the invention, in an operation, an inversion layer or an accumulation layer is formed between the gate dielectric layer and the substrate, so that the gate current is divided into the source region along the inversion layer or the accumulation layer. The source current and the immersion current flowing to the drain region. According to an embodiment of the invention, 'when the shortest distance between at least one recess and the source region is L1, and the shortest distance between at least one recess and the drain region is L2, the source current is proportional to L2/( L1+L2), the drain current is proportional to L1/(L1+L2). According to an embodiment of the invention, the step of forming the gate dielectric layer is preceded by the step of forming at least one recess. According to an embodiment of the invention, the step of forming the gate dielectric layer is performed after the step of forming at least one recess. According to an embodiment of the invention, the method of forming the gate dielectric layer includes performing a slitting or chemical vapor deposition process. In accordance with an embodiment of the present invention, the method includes performing a residual process. According to an embodiment of the invention, Shi Xi. According to an embodiment of the invention, including oxidized stone. According to the embodiment of the present invention, the material for forming the at least one recessed substrate comprises the material of the gate dielectric layer, and the material of the gate includes 201023359 ^xv^-.v〇8- 〇l24 29322twf.doc/n polycrystalline stone ^, polycrystalline Wei metal, gold chemical or metal. In summary, the semiconductor in the present invention is formed, which is recessed on the substrate towel and is not on the surface of the depression. Configuring the dielectric layer ^ == current shunting as the source current and the immersion current 2 and the existing process integration, reducing the complexity of the process: ❹ In addition, in the semiconductor structure of the present invention, the use of the towel == trap The surface of the recess is provided with a dielectric layer 'which can be used as a single burn: can be owed == there is no unexpected phenomenon of burnout points: In order to make the above features and advantages of the present invention more obvious, the following is preferred.实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 > Partial top view. Eight please refer to Figure 1 and Figure 2, semiconductor The structure just includes the substrate 1, 2, the "electric layer 104, the gate 106, the source region 108 and the drain region 11". The substrate ι〇2 4 J is a ruthenium-based or p-type substrate, or a substrate having a conductivity different from that of the substrate (not shown). The material of the substrate 1〇2 includes germanium, for example, germanium single crystal germanium, epitaxial germanium, polycrystalline germanium, germanium germanium or tantalum carbide, and the like. Substrate 102 has an active region 101. The gate dielectric layer 1〇4 is disposed on the substrate 102 of the active region. The material of the gate dielectric layer 1〇4 is, for example, hafnium oxide. In addition, to 201023359 i_»iviv^u-z.\/\)8-0124 29322twf.doc/n Less than one Π2 is placed in the substrate 1〇2.

閘極106配置在閘介電層ι〇4上及凹陷112中。閘極 106的材料例如是多晶矽、多晶矽化金屬(p〇iycide)、金 屬矽化物(silicide)或金屬。在一實施例中,間隙壁116 也可以選擇性地配置於閘極1〇6的侧壁上。源極區ι〇8與 /及極區110分別配置在閘極之兩侧的基底1〇2中。源 極區108包括淡摻雜區ι〇7及濃摻雜區m,源極區n〇 包括淡摻雜區109及濃摻雜區113。源極區1〇8與汲極區 110例如是N型摻雜區或p型摻雜區。 在一操作下’例如當施加於閘極1〇6的電壓高於施加 於基底102、源極區1〇8與汲極區no的電壓時,富含電 子的反轉層(inversion layer) 114形成於閘介電層1〇4及 基底102之間,使得閘極電流1(}沿著反轉層114分為流向 源極區108的源極電流is以及流向汲極區u〇的汲極電流The gate 106 is disposed on the gate dielectric layer ι 4 and in the recess 112. The material of the gate 106 is, for example, polycrystalline germanium, polycrystalline germanium, metal silicide or metal. In an embodiment, the spacers 116 may also be selectively disposed on the sidewalls of the gates 1〇6. The source regions ι 8 and / and the polar regions 110 are respectively disposed in the substrate 1 〇 2 on both sides of the gate. The source region 108 includes a lightly doped region ι 7 and a heavily doped region m, and the source region n 包括 includes a lightly doped region 109 and a heavily doped region 113. The source region 1 〇 8 and the drain region 110 are, for example, N-type doped regions or p-type doped regions. Under an operation 'e.g., when the voltage applied to the gate 1 〇 6 is higher than the voltage applied to the substrate 102, the source region 1 〇 8 and the drain region no, the electron-rich inversion layer 114 Formed between the gate dielectric layer 1〇4 and the substrate 102, such that the gate current 1(} is divided along the inversion layer 114 into the source current is flowing to the source region 108 and the drain flowing to the drain region u〇 Current

Id。源極電流Is和沒極電流iD的大小(magnitude)符合下 列之公式:Id. The magnitude of the source current Is and the infinite current iD conform to the following formula:

Is 〜IgxL2/(L1+L2) ⑴Is ~IgxL2/(L1+L2) (1)

Id 〜IgxL1/(L1+L2) ⑵ 其中,凹陷112與源極區1〇8之間的最短距離為Lb 凹陷112與汲極區11〇之間的最短距離為L2。由公式(〇 及公式(2)可看出,源極電流is正比於L2/(L1+L2),沒 極電流ID正比於L1/(L1+L2)。因此,在半導體結構1〇〇中, 利用配置在基底1〇2中的凹陷112,在適當的操作條件下, 可將電流路徑一分為二,而達到將閘極電流Ig分流為源極 9 201023359 ^Ανι^-ώυ08-0124 29322twf.doc/n 電流Is以及没極電流的目的。也就是說,本發明的半導體 結構1〇〇可當作分流器,反轉層114可當作電阻器,經調 整凹陷112的寬度與位置以及施加在間極1〇6、基底1〇2、 源極區108與汲極區11〇的電壓,可以改變源極電流祕 汲極電流ID的大小。 特別要說明的是’本發明之用作分流器的半導體結構 /、1知的金氧半導體(Mos)結構相肖因此其製造方法 髻 I以和現有的製程整合’減低製程的複雜,大幅降低成 。另一方面,本發明僅需在基底中配置至少一凹陷即可 ^到分流的目的,不需佈局習知之大尺寸呈蛇狀的多晶石夕 二及金屬層’因此本發明之用作分流器的半導體結構的尺 、可以縮小’提升元件的積集度與效能。 在上述的實施例中,是以一個凹陷U2配置在基底1〇2 :為例來說明之,但不用以限定本發明。換言之,本發明 Ϊ不對凹陷的數目作限制。舉例來說’如圖3及圖4所示, 鬌 〖多數個凹陷112a、112b、U2c配置在基底1〇2中時,凹 『112a、112b、112c與源極區1〇8之間的最短距離為u, P凹陷lUa到源極區1〇8之間的距離;而凹陷⑽、 llh與’及極區11〇之間的最短距離為L2,即凹陷 fc到及極區11〇之間的距離。圖3及圖4的半導體結構 〇同樣翻於公式⑴及公式⑺,可藉由調整凹陷 2a 112b、112c的寬度與位置以及施加在閘極1〇6、基 ^ 102源極區108與汲極區110的電壓,進而改變源極 電流Is與汲極電流iD的大小。 201023359 «…—J8-0124 29322twf.doc/n 此外,在圖1至圖4的實施例中’凹陷的形狀為長條 型’且其寬度與主動區101的寬度相同,均為W,但本發 明並不以此為限。在另一實施例中,凹陷的形狀可以為任 意形狀’且凹陷的寬度可以小於主動區1〇1的寬度,如圖 5之橢圓形之凹陷U2d所示。 另外,在上述的實施例中,由於施加於閘極1〇6的電 壓高於施加於基底102的電壓’因此富含電子的反轉層114 形成於閘介電層104及基底1〇2之間,但本發明並不以此 為限。在另一實施例中,當施加於基底102的電壓高於施 加於閘極106的電壓時’富含電洞的累積層(accumulati〇n layer)(未繪示)會形成於閘介電層1〇4及基底1〇2之間, 此累積層同樣也可以當做電阻器,達到將閘極電流沿著 累積層分流為源極電流15與汲極電流1]〇之目的。 接下來,將列舉多個實施例來說明本發明之半導體結 構的製造方法。 差二JT施例 ❹ 圖6A至6B為依據本發明第一實施例所繪示的半 結構之製作方法剖面圖。 請參照圖6A,首先,於基底1〇2上形成閘介電層1〇4。 1〇2例如是N型基底或p型基底,或是具有與基底 不同之井區(未繪示)的基底。基底1〇2的材料包 =’例如是單晶、多轉、雜錯或碳化 隹—^電層104的材料包括氧化石夕,且其形成方法例 订…、氧化法或化學氣相沉積製程。然後,於基底1〇2中形成 -U8-0124 29322twfdoc/n 201023359 ίΓ开凹Γ12/形成凹陷112的方法例如是進行侧製程。 :步::=的步驟可以和形成淺溝渠隔離⑽)結 是’圖6Α中的步驟也可以互換,舉例來 上形成底102中形成至少—凹陷112,再於基底102 102及二:”日1()4,因此’閘介電層1G4會同時形成於基底 ❹ 11二曰。然後,進行_製程,以移除凹陷 Ζ之表面上的閘介電層104。 ㈣it請參照圖6Β ’於間介電層104上及凹陷112中形 屬f *厪。閘極106的材料例如是多晶矽、多晶矽化金 【:㈡:化物或金屬。閘極106的形成方法包括化學氣 i 。之後,以間極106為罩幕’利用㈣摻質或 由^進订離子植入製程,以於閉極106兩侧的基底102 开推雜區1〇7及1〇9。繼之,於閘極106的侧壁上 形成間隙壁116。間隙壁116之材料例如為氧切,且其 式例如是以化學氣相沉積法在基底102上先形成- θ,隙壁材料層(未緣示),再以非等向性姓刻移除部份的 ^隙壁材料層。接著’以間隙壁116為罩幕,利用Ν型摻 I或ρ型㈣進行離子植人製程,以關紐ιΐ6兩側的 :底:02中形成濃摻雜區111及113。淡摻雜區107與濃 摻雜區ill形成源極㊣1〇8,而淡摻雜區1〇9與濃換雜區 113形成沒極區。 第二實施例. 圖7Α至7C為依據本發明第二實施例所繪示的半導體 12 201023359 ^^08-0124 29322twf.doc/n 結構之製作方法剖面圖。第二實施例與第一實施例類似, 以下就不同處說明之,相同處則不再贅述。 請參照圖7A,先於基底1〇2中形成至少一凹陷112,再 於基底102上形成閘介電層1〇4,因此’閘介電層1〇4會同時 形成於基底102及凹陷112的表面上。Id ~ IgxL1/(L1 + L2) (2) wherein the shortest distance between the recess 112 and the source region 1 〇 8 is Lb The shortest distance between the recess 112 and the drain region 11 为 is L2. It can be seen from the formula (〇 and equation (2) that the source current is proportional to L2/(L1+L2), and the infinite current ID is proportional to L1/(L1+L2). Therefore, in the semiconductor structure With the recess 112 disposed in the substrate 1〇2, under appropriate operating conditions, the current path can be divided into two, and the gate current Ig is shunted to the source 9 201023359 ^Ανι^-ώυ08-0124 29322twf .doc/n current Is and the purpose of immersing current. That is, the semiconductor structure 1 of the present invention can be used as a shunt, and the inversion layer 114 can be used as a resistor to adjust the width and position of the recess 112 and The voltage applied to the interpole 1〇6, the substrate 1〇2, the source region 108 and the drain region 11〇 can change the magnitude of the source current secret current ID. In particular, the 'invention of the present invention is used. The semiconductor structure of the shunt/the known structure of the metal oxide semiconductor (Mos) is so close that the manufacturing method 髻I is integrated with the existing process to reduce the complexity of the process and greatly reduce the composition. On the other hand, the present invention only needs to be At least one recess can be arranged in the substrate to achieve the purpose of splitting, without the need for layout The polycrystalline stone and the metal layer having a serpentine size are thus the rule of the semiconductor structure used as the shunt of the present invention, which can reduce the degree of integration and performance of the 'lifting element. In the above embodiment, it is a The recess U2 is disposed on the substrate 1〇2: as an example, but the invention is not limited. In other words, the present invention does not limit the number of recesses. For example, as shown in FIG. 3 and FIG. 4, 鬌When the recesses 112a, 112b, U2c are disposed in the substrate 1〇2, the shortest distance between the recesses 112a, 112b, 112c and the source region 1〇8 is u, and between the pits 1Ua and the source regions 1〇8 The distance between the recesses (10), llh and 'and the pole region 11〇 is L2, that is, the distance between the recess fc and the pole region 11〇. The semiconductor structure of FIGS. 3 and 4 is also turned over by the formula. (1) and formula (7), by adjusting the width and position of the recesses 2a 112b, 112c and the voltages applied to the gate 1〇6, the source region 108 and the drain region 110, thereby changing the source current Is and 汲The magnitude of the pole current iD. 201023359 «...—J8-0124 29322twf.doc/n In addition, in Figures 1 to 4 In the embodiment, the shape of the recess is a strip shape and the width thereof is the same as the width of the active region 101, which is W, but the invention is not limited thereto. In another embodiment, the shape of the recess may be Any shape 'and the width of the recess may be smaller than the width of the active region 1〇1, as shown by the elliptical recess U2d of Fig. 5. In addition, in the above embodiment, the voltage applied to the gate 1〇6 is higher than The voltage applied to the substrate 102, thus the electron-rich inversion layer 114, is formed between the gate dielectric layer 104 and the substrate 1〇2, but the invention is not limited thereto. In another embodiment, when a voltage applied to the substrate 102 is higher than a voltage applied to the gate 106, a 'hole-rich accumulation layer (not shown) is formed in the gate dielectric layer. Between 1〇4 and substrate1〇2, this accumulation layer can also be used as a resistor to achieve the purpose of shunting the gate current along the accumulation layer to source current 15 and drain current 1]〇. Next, a plurality of embodiments will be exemplified to explain a method of manufacturing the semiconductor structure of the present invention. Differential JT Example ❹ Figs. 6A to 6B are cross-sectional views showing a manufacturing method of a half structure according to a first embodiment of the present invention. Referring to FIG. 6A, first, a gate dielectric layer 1〇4 is formed on the substrate 1〇2. 1〇2 is, for example, an N-type substrate or a p-type substrate, or a substrate having a well region (not shown) different from the substrate. The material of the substrate 1 〇 2 = 'for example, a single crystal, a multi-turn, a erroneous or a ruthenium carbide - the material of the electric layer 104 includes oxidized stone eve, and its formation method is exemplified by an oxidation method or a chemical vapor deposition process. . Then, a method of forming -U8-0124 29322twfdoc/n 201023359 Γ Γ / 12 / forming the recess 112 in the substrate 1 例如 2 is, for example, performing a side process. The steps of step::= can be isolated from the formation of shallow trenches (10). The steps in Fig. 6Α can also be interchanged. For example, at least the depressions 112 are formed in the upper substrate 102, and then the substrate 102 102 and the second: 1()4, therefore, the gate dielectric layer 1G4 is simultaneously formed on the substrate ❹11. Then, a process is performed to remove the gate dielectric layer 104 on the surface of the recess 。. (4) Please refer to FIG. The material of the gate 106 is f*厪. The material of the gate 106 is, for example, polycrystalline germanium, polycrystalline gold (:): metal or metal. The method of forming the gate 106 includes chemical gas i. The interpole 106 is a mask "using (4) dopant or by an ion implantation process to open the interfering regions 1〇7 and 1〇9 on the substrate 102 on both sides of the closed pole 106. Next, at the gate 106 A spacer 116 is formed on the sidewall of the spacer. The material of the spacer 116 is, for example, oxygen dicing, and is formed by, for example, chemical vapor deposition on the substrate 102 by forming - θ, a layer of spacer material (not shown), and then The part of the wall material is removed by an anisotropic surne. Then, the spacer is used as a mask, and the type I or p type is used. (4) Performing an ion implantation process to form concentrated doped regions 111 and 113 on both sides of the ιΐ6: bottom: 02. The lightly doped region 107 and the heavily doped region ill form a source positively 1〇8, and the lightly doped The impurity region 1〇9 and the thick swap region 113 form a non-polar region. Second Embodiment. FIGS. 7A to 7C are semiconductors 12 according to a second embodiment of the present invention. 201023359 ^^08-0124 29322twf.doc/n The second embodiment is similar to the first embodiment, and will be described below in different places, and the same portions will not be described again. Referring to FIG. 7A, at least one recess 112 is formed in the substrate 1〇2, The gate dielectric layer 1〇4 is formed on the substrate 102, so that the gate dielectric layer 1〇4 is simultaneously formed on the surface of the substrate 102 and the recess 112.

接著,請參照圖7B,於閘介電層1〇4上及凹陷112中形 成閘極106。之後,以閘極106為罩幕,進行離子植入製程= 以於閘極106兩側的基底102中形成谈摻雜區1〇7及1〇9。 繼之,於閘極106的侧壁上形成間隙壁116。接著,以間 隙壁116為罩幕,進行離子植入製程,以於間隙壁μ兩 側的基底H)2中形成濃摻雜區⑴及U3。淡推雜區ι〇7 /、;辰摻雜區111开J成源極區1〇8,而淡摻雜區與濃摻 雜區113形成没極區11〇。 〜^叫爹肽圆,利用尖端放電(point discharg£ =法燒斷位於凹陷112之底角(即A點)的閘介電層ι〇 T,T4] IT" ll6 ^ 層i禾、、日不)相通,而達到分流之目的。 之底17B的結構除了可在燒斷凹陷1 ,底角的閘,|電層1()4後當作分流器外,也可以當作單次燒 =2rTTTing;OTP)的錢铸齡構,用於修 兀件的柄(e〇de)e舉例來說,在圖7 f,與其兩側所形成的反轉層或累積層不i,因此編碼 。“件的編碼需要修補時,利 焯斷: 於凹_之底角的閉介電請(如 13 201023359 uuviv^j^-ζ,υ J8-0124 29322twf.doc/n …、兩侧卿成的反轉層或累積層相 ^ g械度麵度較大絲祕置(即A點)Next, referring to Fig. 7B, a gate 106 is formed on the gate dielectric layer 1〇4 and in the recess 112. Thereafter, the ion implantation process is performed with the gate 106 as a mask. The doped regions 1〇7 and 1〇9 are formed in the substrate 102 on both sides of the gate 106. Next, a spacer 116 is formed on the sidewall of the gate 106. Next, an ion implantation process is performed with the gap wall 116 as a mask to form concentrated doped regions (1) and U3 in the substrate H) 2 on both sides of the spacer μ. The light-doped region ι〇7 /, the doped region 111 is opened to form a source region 1〇8, and the lightly doped region and the densely doped region 113 form a non-polar region 11〇. ~^ is called 爹 peptide circle, using the tip discharge (point discharg £ = method to burn the gate dielectric layer ι〇T, T4] located at the bottom corner of the depression 112 (ie point A) IT" ll6 ^ layer i Wo, day Not) communicated and achieved the purpose of diversion. The structure of the bottom 17B can be used as a shunt for the single-burning = 2rTTTing; OTP), except that it can be used as a shunt after burning the recess 1 , the gate of the bottom corner, and the electrical layer 1 () 4 . For example, in Fig. 7f, the inversion layer or the accumulation layer formed on both sides thereof is not i-coded. "When the coding of the piece needs to be repaired, the profit is broken: please close the corner of the concave _ (such as 13 201023359 uuviv^j^-ζ, υ J8-0124 29322twf.doc/n ..., both sides of the The inversion layer or the cumulative layer has a larger degree of silkness (ie, point A)

曰=’因此’細尖端放電的方法所燒_地方(即A ..沾)疋可職的。也就是說,圖7B曰 = ' Therefore, the method of fine tip discharge is burned _ place (ie A.. dip) 疋 is available. That is, Figure 7B

輯^樹軸例㈣t因= 罪度也會大幅提升。 JThe ^ tree axis example (four) t factor = the degree of crime will also be greatly improved. J

综上所述,在本發_半導體結構中,配置至少一 於基底中’且凹陷之表面上未配置介電層可作為分 ^器’達聰_電流分流為源極電流以及祕電流的目 麻本發Θ之用作分流器的半導體結構與習知的金氧半導 t構相同’因此其製造方法可以和現有的製程整合,減 t程的複雜性’大幅降低成本。此外,由於本發明之用 曰刀仙·二的半導體結構不需佈局習知之大尺寸呈蛇狀的多 =層及金>1層’因此其尺寸m料’大幅提升元件的 積集度與效能。In summary, in the present invention, the semiconductor structure is disposed at least one in the substrate and the dielectric layer is not disposed on the surface of the recess as a source device and the current is shunted as a source current and a secret current. The semiconductor structure used as a shunt is the same as the conventional gold-oxygen semiconducting t-structure. Therefore, its manufacturing method can be integrated with existing processes, and the complexity of the t-process is greatly reduced. In addition, since the semiconductor structure of the present invention is not required to have a large-sized snake-like multi-layer and gold > 1 layer, the size of the material is greatly increased. efficacy.

陷112中的閘極l〇6 通’因此編碼為1。 此外 另外,在本發明的半導體結構中,利用配置至少一凹陷 =基底中,且凹陷之表面上配置有介電層,可作為單次燒 用、的t氧半導體結構’用以修補元件的編碼。*於本發明之 因錄的半導體結構不會有燒斷點不可預期之現象’ 大,其可靠度也會大幅提升。此外,此種半導體結構在燒斷 凹之底角的閘介電層後可當作分流器,同樣也有上述之不佔 面積^與現有製程料整合之伽。 雖然本發明已以實施例揭露如上,然其並非用以限定 201023359 一一一 08-0124 29322twfdoc/n 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 “、、 【圖式簡單說明】 種半導體結構The gate in the trap 112 is turned on, so it is coded as 1. In addition, in the semiconductor structure of the present invention, at least one recess is used in the substrate, and a dielectric layer is disposed on the surface of the recess, which can be used as a single-burning, t-oxygen semiconductor structure to repair the component. . * The semiconductor structure of the present invention does not have an unpredictable phenomenon of burnout points, and its reliability is greatly improved. In addition, the semiconductor structure can be used as a shunt after the gate dielectric layer of the bottom corner of the recess is blown, and the above-mentioned area is not integrated with the existing process material. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and it is not intended to limit the scope of the present invention. The scope of protection of the present invention is defined by the scope of the appended claims. ",, [Simplified illustration] semiconductor structure

圖1是依據本發明一實施例所繪示之一 的剖面示意圖^ 、一· '^丁寸胆、、•口 4丹口|4工々尼圓 〇 圖3疋依據本發明另一實施例所緣示之一種 構的剖面示意圖。 等體、、、° 圖4是圖2之半導體結構的局部上視圖。 圖5是依據本發明又一實施例所繪示之一種 構的局部上視圖。 # 圖6Α至6Β為依據本發明第一實施例所繪示的半導體 結構之製作方法剖面圖。 圖7Α至7C為依據本發明第二實施例所繪示的 結構之製作方法剖面圖。 【主要元件符號說明】 100、200 :半導體結構 101 :主動區 102 :基底 104 :閘介電層 15 201023359w δ-0124 29322twf.doc/a 106 :閘極 107、109 :淡摻雜區 10 8 *源極區 110 ·>及極區 111、 113 :濃摻雜區 112、 112a、112b、112c、112d :凹陷 114 ··反轉層 116 :間隙壁 LI、L2 :距離1 is a cross-sectional view of one of the embodiments of the present invention. FIG. 1 is a cross-sectional view of one of the embodiments of the present invention. A schematic cross-sectional view of the structure shown. Etc., FIG. 4 is a partial top view of the semiconductor structure of FIG. 2. Figure 5 is a partial top plan view of one configuration of another embodiment of the present invention. Figure 6A to Figure 6 are cross-sectional views showing a method of fabricating a semiconductor structure in accordance with a first embodiment of the present invention. 7A through 7C are cross-sectional views showing a method of fabricating a structure in accordance with a second embodiment of the present invention. [Description of main component symbols] 100, 200: semiconductor structure 101: active region 102: substrate 104: gate dielectric layer 15 201023359w δ-0124 29322twf.doc/a 106: gate 107, 109: lightly doped region 10 8 * Source region 110 ·> and polar regions 111, 113: densely doped regions 112, 112a, 112b, 112c, 112d: recesses 114 · inversion layer 116: spacers LI, L2: distance

1616

Claims (1)

201023359 ‘0124 29322twf.doc/n 十、申請專利範圍: 1. 一種半導體結構,包括·· 閘μ電層配置在一基底上,其中至少一凹陷配置在 該基底中; 一閘極’配置在該閘介電層上及該凹陷中;以及 一源極區與一汲極區,分別配置在該閘極之兩側的該 基底中。 2. 如申請專利範圍第1項所述之半導體結構,其中在 一操作下,一反轉層或一累積層形成於該閘介電層及該基 底之間,使得一閘極電流沿著該反轉層或該累積層分為流 向該源極區的一源極電流以及流向該没極區的一没極電 流。 3. 如申請專利範圍第2項所述之半導體結構,其中當 該至夕凹陷與該源極區之間的最短距離為L1,該至少一 凹陷與該汲極區之間的最短距離為L2時,該源極電流正 比於L2/(L1+L2) ’該汲極電流正比於L1/(L1+L2)。 4. 如申請專利範圍第1項所述之半導體結構,更包括 一介電層配置於該凹陷之表面上。 5·如申請專利範圍第1項所述之半導體結構,其中該 凹陷之表面上未配置一介電層。 6.如申請專利範圍第i項所述之半導體結構其中該半 導體結構更包括一井區,配置於該基底中。 7·如申請專利範圍第1項所述之半導體結構,其中該基 底的材料包括矽。 17 ^8-0124 29322twf.doc/n 201023359 8.如申請專利範圍第i項所述之半導體結構,其中該閘 介電層的材料包括氧化矽。 9·如申請專利範圍第1項所述之半導體結構,其令該閘 極的材料包括多晶矽、多晶矽化金屬、金屬矽化物或金屬。 10. 種半導體結構的製造方法,包括: 於一基底上形成一閉介電層,· 於該基底中形成至少一凹陷; 於該閘介電層上及物陷巾軸以及 於該閘極之_的該基底中形成—源極區與—汲極區。 11. 如y料纖圍第1G項魏之半導賴構的製造 方法’在—操作下’―反轉層H制形成於該閉介電 基底之間,使得一閘極電流沿著該反轉層或該累積 層/刀為流向賴、極區的—源極電流以及流向該 一 汲極電流。 W 方法π其二圍第11項所述之半導體結構的製造 方法其中虽該至少一凹陷與該源極 L1,該至少1陷與該祕區之間的最短距離為!Γί ==广正…2/(L1+L2),該沒極電流正比於 13.如申請專利範圍fl〇項所述之半導體 止 =前其中形成該閘介電層的步驟在形成該至少—凹陷二 M.如申.月專利範圍第1〇項所述之 方法,其中形成該閘介電層的步驟在形成該導 18 201023359_4 29322twf.doc/n 驟之後。 15.如申請專利範圍第10項所述之半導體結 方法,其中形成該閘介電層的方法包括進行熱氧化 氣相沉積製程。 、 如中請專利顧第撕述之半導難構的製造 方法,其中形成該至少一凹陷的方法包括進行麵刻製程。201023359 '0124 29322twf.doc/n X. Patent Application Range: 1. A semiconductor structure comprising: a gate electrode layer disposed on a substrate, wherein at least one recess is disposed in the substrate; a gate is disposed in the And on the gate dielectric layer and the recess; and a source region and a drain region are respectively disposed in the substrate on both sides of the gate. 2. The semiconductor structure of claim 1, wherein, in an operation, an inversion layer or a buildup layer is formed between the gate dielectric layer and the substrate such that a gate current is along the The inversion layer or the accumulation layer is divided into a source current flowing to the source region and a infinite current flowing to the gate region. 3. The semiconductor structure of claim 2, wherein a shortest distance between the recess and the source region is L1, and a shortest distance between the at least one recess and the drain region is L2 When the source current is proportional to L2/(L1+L2)', the drain current is proportional to L1/(L1+L2). 4. The semiconductor structure of claim 1, further comprising a dielectric layer disposed on a surface of the recess. 5. The semiconductor structure of claim 1, wherein a dielectric layer is not disposed on a surface of the recess. 6. The semiconductor structure of claim i wherein the semiconductor structure further comprises a well region disposed in the substrate. 7. The semiconductor structure of claim 1, wherein the material of the substrate comprises ruthenium. The semiconductor structure of claim i, wherein the material of the gate dielectric layer comprises hafnium oxide. 9. The semiconductor structure of claim 1, wherein the material of the gate comprises polysilicon, polycrystalline metal, metal halide or metal. 10. A method of fabricating a semiconductor structure, comprising: forming a closed dielectric layer on a substrate, forming at least one recess in the substrate; forming a dielectric layer on the gate dielectric layer and the gate electrode The source region and the drain region are formed in the substrate. 11. For example, the manufacturing method of the semi-conducting structure of the first fiber of the first fiber, the 'in the operation', the inversion layer H is formed between the closed dielectric substrates, so that a gate current is along the opposite The transfer layer or the accumulation layer/knife is the source current flowing to the drain region and flowing toward the drain current. W Method π The manufacturing method of the semiconductor structure according to Item 11, wherein the at least one recess and the source L1, the shortest distance between the at least one trap and the secret area is! Γί == 广正...2/(L1+L2), the immersed current is proportional to 13. The semiconductor described in the patent application scope 〇 = = before the step of forming the gate dielectric layer is formed at least - The method of claim 1, wherein the step of forming the gate dielectric layer is performed after forming the guide 18 201023359_4 29322twf.doc/n. 15. The semiconductor junction method of claim 10, wherein the method of forming the gate dielectric layer comprises performing a thermal oxidation vapor deposition process. For example, the method of manufacturing the semi-conductive hard structure of the patent, the method of forming the at least one recess includes performing a surface engraving process. 構的製造 法或化學 16. Π.如申請專利範圍第1〇項所述之半導體結構的製造 方法,其中該基底的材料包括矽。 18. 如申請專利範圍第1〇項所述之半導體結構的製造 方法,其中s亥閘介電層的材料包括氧化石夕。 19. 如申請專利範圍第1〇項所述之半導體結構的製造 方法’其中該閘極的材料包括多晶石夕、多㈣化金屬、金 屬矽化物或金屬。The method of manufacturing a semiconductor structure as described in claim 1, wherein the material of the substrate comprises ruthenium. 18. The method of fabricating a semiconductor structure according to claim 1, wherein the material of the dielectric layer comprises oxidized stone. 19. The method of fabricating a semiconductor structure as described in claim 1 wherein the material of the gate comprises a polycrystalline stone, a poly (tetra) metal, a metal telluride or a metal. 1919
TW97147882A 2008-12-09 2008-12-09 Semiconductor structure and method of fabricating the same TWI408806B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97147882A TWI408806B (en) 2008-12-09 2008-12-09 Semiconductor structure and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97147882A TWI408806B (en) 2008-12-09 2008-12-09 Semiconductor structure and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201023359A true TW201023359A (en) 2010-06-16
TWI408806B TWI408806B (en) 2013-09-11

Family

ID=44833342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97147882A TWI408806B (en) 2008-12-09 2008-12-09 Semiconductor structure and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI408806B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045694A (en) * 1975-09-26 1977-08-30 Rca Corporation Current divider
DE69306603T2 (en) * 1992-02-11 1997-06-05 Philips Electronics Nv Current divider and integrated circuit with multiple current dividers
US6184724B1 (en) * 1998-12-16 2001-02-06 Macronix International Co., Ltd. Voltage detection circuit
US6864536B2 (en) * 2000-12-20 2005-03-08 Winbond Electronics Corporation Electrostatic discharge protection circuit

Also Published As

Publication number Publication date
TWI408806B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US9362274B2 (en) Self-aligned contact for replacement metal gate and silicide last processes
JP4309967B2 (en) Semiconductor device and manufacturing method thereof
JP6335089B2 (en) Manufacturing method of semiconductor device
US9922993B2 (en) Transistor with self-aligned source and drain contacts and method of making same
US20060157735A1 (en) Compound semiconductor device
TWI286344B (en) Isolation spacer for thin SOI devices
US7391083B2 (en) Semiconductor device and a method of manufacturing the same
JP2010238738A (en) Semiconductor device and method for manufacturing the semiconductor device
JP2011129929A (en) Metal gate structure of field effect transistor
JP2007208260A (en) Cmos semiconductor device equipped with double work function metallic gate stack
TW200917478A (en) Semiconductor device
TWI524434B (en) Integrated circuit and fabrication thereof
JPWO2012131898A1 (en) Silicon carbide semiconductor device
US20080108190A1 (en) SiC MOSFETs and self-aligned fabrication methods thereof
WO2014032338A1 (en) Semiconductor structure and manufacturing method therefor
JP2012160485A (en) Semiconductor device and manufacturing method of the same
WO2010095544A1 (en) Method for manufacturing semiconductor device, and semiconductor device
CN103915321A (en) Semiconductor structure and manufacturing method thereof
US9012289B2 (en) Semiconductor device and manufacturing method thereof
JP5366797B2 (en) Electronic device including a plurality of semiconductor islands having different thicknesses on an insulating layer and method for forming the same
TW201023359A (en) Semiconductor structure and method of fabricating the same
KR100770013B1 (en) Method for manufacturing schottky barrier tunnel transistor
US10103259B2 (en) Method of manufacturing a wide bandgap vertical-type MOSFET
JP2007165480A (en) Semiconductor device and manufacturing method therefor
WO2013105550A1 (en) Semiconductor device and method for manufacturing same