TW201023019A - Input device comprising resistive touch panel and calculating method of touch position thereof - Google Patents

Input device comprising resistive touch panel and calculating method of touch position thereof Download PDF

Info

Publication number
TW201023019A
TW201023019A TW98124435A TW98124435A TW201023019A TW 201023019 A TW201023019 A TW 201023019A TW 98124435 A TW98124435 A TW 98124435A TW 98124435 A TW98124435 A TW 98124435A TW 201023019 A TW201023019 A TW 201023019A
Authority
TW
Taiwan
Prior art keywords
delay
electrode
difference
switch
clock signal
Prior art date
Application number
TW98124435A
Other languages
Chinese (zh)
Inventor
Duck-Young Jung
Bang-Won Lee
Original Assignee
Atlab Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlab Inc filed Critical Atlab Inc
Publication of TW201023019A publication Critical patent/TW201023019A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided are an input device and method of calculating a touch position in the same. The input device includes a touch panel having a plurality of electrodes in which resistances between the respective electrodes and a touch position vary according to the touch position, a sampling clock signal generator for outputting a sampling clock signal, a first switch for applying the sampling clock signal to some of the electrodes in sequence, a delay element for delaying a signal of a delay node connected with at least one of the electrodes, a delay measurer for measuring and outputting delay differences between the signal of the delay node and the sampling clock signal, and a coordinate calculator for receiving the delay differences and calculating coordinates of the touch position.

Description

201023019 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種具有電阻式觸控面板的輸入裝 置’且特別是有關於一種使用多個通過觸控面板之量測訊 號的延遲差異來決定觸碰位置的輸入裝置以及用於此輸入 裝置之計算觸碰位置的方法。 【先前技術】 個人電腦(pc)、可攜式通訊裝置以及其它資訊處理裝 置使用多種輸入裝置來操作多種功能。近來,具有觸控面 板之輸入裝置頻頻被使用。 一般而言,觸控面板裝設於顯示器的表面,例如陰極 射線管(CRT)、液晶螢幕(LCD)、電漿面板(PDP)或電致發 光(EL)顯示器,並且可偵測被物體觸碰之位置。顯示面板 被裝設於電腦系統或可攜式資訊終端之顯示器之螢幕,使 得使用者可用手或筆在螢幕上輸入資訊而非用鍵盤或滑 鼠。氧化銦錫(indium tin oxide,ITO)(銦錫混合的氧化物) 導電膜可用來製造觸控面板。 觸控面板包括電阻式、電容式、超音波感測、光學(紅 外線)感測器以及電磁感應觸控面板等等。其中電阻式觸控 面板具有兩片有間隔物(spacer)相隔之電阻式薄片墊,藉按 壓來使兩薄片墊相接觸。 圖1繪示一種常用的傳統輸入裝置之組成,其具有四 線電阻式觸控面板。此輸入裝置包括觸控面板10、第一開 關21、第二開關22、第三開關23、電源供應器30以及一 201023019201023019 VI. Description of the Invention: [Technical Field] The present invention relates to an input device having a resistive touch panel, and in particular to a delay difference using a plurality of measurement signals through a touch panel. An input device that determines the touch position and a method for calculating the touch position for the input device. [Prior Art] Personal computers (PCs), portable communication devices, and other information processing devices use a variety of input devices to operate a variety of functions. Recently, input devices having a touch panel have been frequently used. Generally, the touch panel is mounted on the surface of the display, such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma panel (PDP), or an electroluminescence (EL) display, and can be detected to be touched by an object. Touch the location. The display panel is mounted on the screen of the display of the computer system or the portable information terminal, so that the user can input information on the screen with a hand or a pen instead of using a keyboard or a mouse. Indium tin oxide (ITO) (indium tin mixed oxide) conductive film can be used to manufacture touch panels. Touch panels include resistive, capacitive, ultrasonic sensing, optical (out-of-line) sensors, and electromagnetically-sensitive touch panels. The resistive touch panel has two resistive sheet mats separated by spacers, and the two sheet mats are brought into contact by pressing. Figure 1 illustrates the composition of a conventional conventional input device having a four-wire resistive touch panel. The input device includes a touch panel 10, a first switch 21, a second switch 22, a third switch 23, a power supply 30, and a 201023019

Jio^t pii 電壓量測器40。觸控面板i〇包括上層薄片墊^與下層薄 片墊12。上層薄片墊11向第一方向,例如x座標轴,之 兩端具有第—電極111與第二電極112。下層薄片墊12向 第二方向,例如y座標軸,之兩端具有第三電極121盥 四電極122。 /、 圖1所示各方塊之功能說明如下。 ❹ 觸控螢幕ίο上的一觸碰位置與各電極m、112、121 以及122之間的阻抗依據觸碰位置而變化。也就是說,當 一物,,例如手或筆,觸碰上層薄片墊11上的一位置時, 上層薄片塾11與下層薄片塾12電性連接。而觸碰位置與 被施加電壓之各電極lu、112、121以及122 抗 依據觸碰位置而定》 抗 ★第-開關21與第二糊22依序將電源供應器3〇與上 層薄片塾11及下層薄片塾12作連接,而第三開關幻依 將電魔量· 4G與下層薄片塾12及上層薄片塾u作 接。第-至第二開關21〜23可由一控制器來控制,雖 控制器並未繪於圖式中。 热此 圖2是一等效電路圖,用以說明圖1具有電阻式觸把 面板之傳統輸人裝置之操作^在圖2中,τ為觸碰位 R1A為上層薄片塾Π之第—電極⑴與觸碰位置 的等效阻抗、R1B為上層薄片塾u之第二電極112與 位置τ之關等餘抗、R2A為下層薄片塾12之第四 極122與觸碰位置了之間的等雜抗以及聊為下 整12之第三電極121與觸碰位置τ之間的等效阻抗。 201023019 jio*t/pu 請參照圖1及圖2,以下將說明上述傳統輸入裝置之 操作。 首先,量測用以決定y軸方向之位置的第一電壓Vy。 更具體來說,第一開關21連接電源供應器30與a點、第 二開關22連接接地電壓與a點以及第三開關23連接電壓 量測器40與c點。因此,電源供應器30的電壓被施予下 層薄片墊12之第四電極122、接地電壓被施予下層薄片墊 12之第三電極121以及電壓量測器40連接於接地電壓與 觸碰位置T之間,並且量測該第一電壓Vy。以Vb表示電 源供應器30之電壓,則該第一電壓Vy由下列方程式決定:Jio^t pii voltage measuring device 40. The touch panel i includes an upper sheet mat and a lower sheet mat 12. The upper sheet mat 11 has a first electrode 111 and a second electrode 112 at both ends in a first direction, for example, an x coordinate axis. The lower sheet pad 12 has a third electrode 121 盥 four electrodes 122 in a second direction, for example, a y coordinate axis. /, The function of each block shown in Figure 1 is explained below.阻抗 The impedance between the touch position on the touch screen ίο and the electrodes m, 112, 121 and 122 varies depending on the touch position. That is, when an object, such as a hand or a pen, touches a position on the upper sheet mat 11, the upper sheet stack 11 is electrically connected to the lower sheet stack 12. The touch position and the electrodes to which the voltage is applied, lu, 112, 121, and 122 are resistant according to the touch position. The anti-the first switch 21 and the second paste 22 sequentially connect the power supply 3 to the upper sheet 11 The lower layer sheet 12 is connected, and the third switch phantom connects the electric volume 4G to the lower sheet 塾12 and the upper sheet 塾u. The first to second switches 21 to 23 can be controlled by a controller, although the controller is not shown in the drawings. Fig. 2 is an equivalent circuit diagram for explaining the operation of the conventional input device having the resistive touch panel of Fig. 1. In Fig. 2, τ is the touch position R1A is the first electrode of the upper sheet ( (1) The equivalent impedance with the touch position, R1B is the balance between the second electrode 112 of the upper layer 塾u and the position τ, and R2A is the difference between the fourth pole 122 of the lower sheet 塾12 and the touch position. The resistance and the chatter are the equivalent impedance between the third electrode 121 of the next 12 and the touch position τ. 201023019 jio*t/pu Referring to Fig. 1 and Fig. 2, the operation of the above conventional input device will be described below. First, the first voltage Vy for determining the position in the y-axis direction is measured. More specifically, the first switch 21 is connected to the power supply 30 and the point a, the second switch 22 is connected to the ground voltage and the point a, and the third switch 23 is connected to the voltage measuring devices 40 and c. Therefore, the voltage of the power supply 30 is applied to the fourth electrode 122 of the lower sheet pad 12, the ground voltage is applied to the third electrode 121 of the lower sheet pad 12, and the voltage measuring device 40 is connected to the ground voltage and the touch position T. And measuring the first voltage Vy. The voltage of the power supply 30 is represented by Vb, and the first voltage Vy is determined by the following equation:

Vy = R2A + R2BxVb 之後,量測用以決定x軸方向之位置的第二電壓Vx。 更具體來說’第一開關21連接電源供應器30與c點、第 二開關22連接接地電壓與c點以及第三開關23連接電壓 量測器40與a點。因此,電源供應器30的電壓被施加至 上層薄片墊11之第二電極112、接地電壓被施加至上層薄 片墊11之第一電極111以及電壓量測器40連接於接地電 壓與觸碰位置T之間,並且量測第二電壓Vx。以vb表示 電源供應器30之電屢’則第二電壓vx由下列方程式決定: R1A πAfter Vy = R2A + R2BxVb, the second voltage Vx for determining the position in the x-axis direction is measured. More specifically, the first switch 21 is connected to the power supply 30 and the c-point, the second switch 22 is connected to the ground voltage and the c-point, and the third switch 23 is connected to the voltage measuring device 40 and the point a. Therefore, the voltage of the power supply 30 is applied to the second electrode 112 of the upper sheet pad 11, the ground voltage is applied to the first electrode 111 of the upper sheet pad 11, and the voltage measuring device 40 is connected to the ground voltage and the touch position T. Between and measuring the second voltage Vx. The power supply 30 is represented by vb. The second voltage vx is determined by the following equation: R1A π

Vy =-x VbVy =-x Vb

R1A + R1B 第一電壓Vy正比於下層薄片墊12之第三電極12i與 觸碰位置T之間的等效阻抗R2B,而阻抗R2B正比於下層 薄片墊12之第三電極121與觸碰位置τ之間的距離。因 此’第一電壓Vy正比於下層薄片墊12之第三電極ι21與 201023019 ^ x υτ / 觸碰位置τ之間的距離。傳統輸入裝置使用類比至數位 (A/D)轉換器(未繪示)將電壓量測器40所量測得的第一電 壓Vy轉換成數位值,並且使用轉換後的數位值來辨識沿 著y轴的觸碰位置。 此外’第二電壓Vx正比於上層薄片墊11之第一電極 111與觸碰位置T之間的等效阻抗ria,而阻抗R1A正比 於上層薄片墊11之第一電極η丨與觸碰位置T之間的距 離。因此,第二電壓Vx正比於上層薄片墊n之第一電極 111與觸碰位置T之間的距離。傳統輸入裝置使用A/D轉 換器將電壓量測器40所量測得的第二電壓Vx轉換成數位 值,並且使用轉換後的數位值來辨識沿著χ軸的觸碰位置。 然而,電源供應器30供應的功率被消耗於阻抗R2A 與R2B或R1A與R1B,故傳統輸入裝置消耗大量的功率。 此外,辨識觸碰位置需要A/D轉換器,而可供輸入裝置辨 識觸碰位置的精確度決定於A/D轉換器的性能,例如,解 析度。更具禮來說’ A/D轉換卜定得操作在高速下以增 加傳統輸人裝置的操作速度,而且趟轉換器的解析度必 須,加以提高輸人裝置的精確度。蛾可知,在高速下驅 動高解析的A/D轉換器轉大量的功率,而且增加操 $困難的。再者,因為上述原因,傳統輸 在 率時,花費-段長時間來辨識—觸碰位置。 在低力 【發明内容】 並且’此輪人裝置齡功率消耗 並且具有能在南速操作之電阻式觸控面板。 201023019 j io*t/pii 本發明也提供-種枝’祕輸人裝置以計算一觸碰 位置。 本發明提出一種輸入裝置,包括觸控面板、取樣時脈 訊號產生器、第一開關、延遲元件、延遲量測器以及座標 計算器。觸控面板具有多個電極,其中各電極與一觸碰位 置之間的阻抗依據所述觸碰位置而變化。取樣時脈訊號產 生器用以輸出一取樣時脈訊號。第一開關用以依序施加所 述取樣時脈訊號至部分之所述多個電極。延遲元件用以延 遲一延遲節點之訊號,所述延遲節點至少連結所述多個電 極其中之一。延遲量測器用以量測並且輸出所述延遲節點 之所述訊號與所述取樣時脈訊號之間的延遲差異。座標計 算器用以接收所述延遲量測器輸出之延遲差異並且計算所 述觸碰位置之座標。 在本發明之一實施例中’上述之延遲元件包括電容, 其連接於所述延遲節點與接地電壓之間。所述延遲節點之 訊號被所述觸控面板之一阻抗與所述電容的電容量所延 遲。所述阻抗位於被施予所述取樣時脈訊號之電極與連接 所述延遲節點之電極之間。 在本發明之一實施例中,上述之延遲量測器包括延遲 脈衝輸出單元以及比較器。所述延遲脈衝輸出單元用以偵 測所述延遲節點之所述訊號之準位並且輸出一脈衝訊號。 所述比較器用以接收所述脈衝訊號與所述取樣時脈訊號、 量測所述脈衝訊號與所述取樣時脈訊號之間的延遲差異並 且輸出所述延遲差異作為所述延遲節點之所述訊號與所述 201023019 〇 i 〇呼 /pif 取樣時脈訊號之延遲差異。The first voltage Vy of R1A + R1B is proportional to the equivalent impedance R2B between the third electrode 12i of the lower sheet pad 12 and the touch position T, and the impedance R2B is proportional to the third electrode 121 of the lower sheet pad 12 and the touch position τ the distance between. Therefore, the first voltage Vy is proportional to the distance between the third electrode ι 21 of the lower sheet pad 12 and 201023019 ^ x υτ / touch position τ. The conventional input device converts the first voltage Vy measured by the voltage measuring device 40 into a digital value using an analog to digital (A/D) converter (not shown), and uses the converted digital value to identify along the digital value. The touch position of the y-axis. Further, the 'second voltage Vx is proportional to the equivalent impedance ria between the first electrode 111 of the upper sheet pad 11 and the touch position T, and the impedance R1A is proportional to the first electrode η丨 and the touch position T of the upper sheet pad 11. the distance between. Therefore, the second voltage Vx is proportional to the distance between the first electrode 111 of the upper sheet pad n and the touch position T. The conventional input device converts the second voltage Vx measured by the voltage measuring device 40 into a digital value using an A/D converter, and uses the converted digital value to recognize the touch position along the x-axis. However, the power supplied by the power supply 30 is consumed by the impedances R2A and R2B or R1A and R1B, so the conventional input device consumes a large amount of power. In addition, the identification of the touch position requires an A/D converter, and the accuracy with which the input device can recognize the touch position is determined by the performance of the A/D converter, for example, the degree of resolution. More politely, the A/D conversion is set to operate at high speeds to increase the operating speed of conventional input devices, and the resolution of the 趟 converter must be increased to improve the accuracy of the input device. The moth knows that driving a high-resolution A/D converter at high speed can transfer a large amount of power and increase the difficulty of operation. Moreover, for the above reasons, in the conventional input rate, it takes a long period of time to recognize the touch position. In the case of low force [Summary of the Invention] and the current power consumption of the device and the resistance touch panel capable of operating at a south speed. 201023019 j io*t/pii The present invention also provides a planting device to calculate a touch location. The present invention provides an input device comprising a touch panel, a sampling clock signal generator, a first switch, a delay element, a delay meter, and a coordinate calculator. The touch panel has a plurality of electrodes, wherein an impedance between each of the electrodes and a touch position changes according to the touch position. The sampling clock signal generator is used to output a sampling clock signal. The first switch is configured to sequentially apply the sampling clock signal to the plurality of electrodes. The delay element is configured to delay the signal of a delay node, the delay node connecting at least one of the plurality of electrodes. The delay detector is configured to measure and output a delay difference between the signal of the delay node and the sampling clock signal. A coordinate calculator is operative to receive a delay difference of the delay meter output and calculate a coordinate of the touch position. In one embodiment of the invention, the delay element described above includes a capacitor coupled between the delay node and a ground voltage. The signal of the delay node is delayed by the impedance of one of the touch panels and the capacitance of the capacitor. The impedance is between an electrode to which the sampling pulse signal is applied and an electrode connected to the delay node. In an embodiment of the invention, the delay detector comprises a delay pulse output unit and a comparator. The delay pulse output unit is configured to detect the level of the signal of the delay node and output a pulse signal. The comparator is configured to receive the pulse signal and the sampling clock signal, measure a delay difference between the pulse signal and the sampling clock signal, and output the delay difference as the delay node The delay between the signal and the 201023019 〇i //pif sampling clock signal.

在本發明之另-實施例中,上述之延遲量測器包括訊 號偵測器以及控制器。所述訊號偵測器用以決定所述取樣 時脈訊號衫透過所述延遲節點而輸人至所述延遲量測 器’並且依據蚊的結果來輸出—制訊號。所述控制器 用以依據所述侧訊號來改變—控制碼直到所述取樣時脈 訊號之脈域縣為_ fg_hfeshGld)值,並且域所述取 樣時脈訊號之所述脈衝寬度成為所㈣限值時之所述控制 碼,輸出-延遲差異作為所述延遲節點之訊號與所述取樣 時脈訊號之延遲差異’其中所述取樣時脈訊號產生器響應 於所述控制碼纽魏出之取樣時脈峨的脈衝寬度/ 在本發明之-實施例中,上述之觸控面板包括第一薄 片墊以及第二薄片b所述第—薄片塾具有第—電極與第 ,電極’向第-方向置於所述第—薄片塾之兩端。所述第 -薄片塾具有第三電極與第四電極,向垂直所述第一方向 之第二方向置於所述第二薄片墊之兩端。 在本發明之-實施例中,所述第—_依序施加所述 取樣時脈訊號至所述第-電極和第三電極。輸人裝置更包 -開目i所述第—開關施加所述取樣時脈訊號至所 、’[電極時’所述第二關將所述第三電極及所述第四 所述延遲節點作連接。在所述第一開關施加所 ^取樣時脈訊號至所述第三電極時,所述第二開關將所述 電極及所述第二電極依序與所述延遲節點作連接。 在本發明之一實施例中,上述之第二開關’在所述第 9 201023019 JiOH/pn 一開關施加所述取樣時脈訊號至所述第一電極時,另外將 所述第二電極與所述延遲節點作連接。在所述第一開關施 加所述取樣時脈訊號至所述第三電極時,另外將所述第四 電極與所述延遲節點作連接。在所述觸控面板未受觸碰 時,另外將所述第二電極或所述第四電極與所述延遲節點 作連接。 # 在本發明之-實施例中,上述之延遲量測器,在所述 第一開關施以所述取樣時脈訊號予所述第一電極且所述第 二開關連接所述第三電極與所述延遲節點時,量測此時之 延遲差異並且作為第一延遲差異而輸出至所述座標計算 器。在所述第一開關施以所述取樣時脈訊號予所述第一電 極且所述第二開關連接所述第四電極與所述延遲節點時, 量測此時之延遲差異並且作為第二延遲差異而輸出至所述 座標·^算[在所述第-關施以所述取樣時脈訊號予所 ,第一電極且所述第二開關連接所述第一電極與所述延遲 節點時,量測此時之延遲差異並且作為第三延 出至所述座標計算器。在所述第—關施以所述取樣時= 訊號予所述第三電極且所述第二_連接所述第二電極與 所述延遲節點時,量測此時之延遲差異並且作為第四延遲 差異而輸出至所述座標計算ϋ。在所述第—關施以所述 取樣時脈訊鮮所述第-電極且所述第二卩連接所述第 二電極與所述延遲節點時,量測此時之延遲差異並且作為 第五延遲差異而輸出至所述座標計算器。在所述第一開關 施以所述取樣時脈訊號予所述第三電極且所述第二開關連 201023019 J ιοτ/pif 接所述第四電極與所述延遲節點時,量測此時之延遲差異 並且作為第六延遲差異而輸出至所述座標計算器。 在本發明之一實施例中,上述之延遲量測器在所述觸 控面板未受觸碰時,量測並輸出所述第五與所述第六延遲 差異。 在本發明之一實施例中,上述之座標計算器接收所述 第一至所述第六延遲差異、計算所述第一至所述第四電極 各自與所述觸碰位置之間的阻抗並且計算所述觸碰位置之 座標。 在本發明之一實施例中,上述之座標計算器計算所述 第一延遲差異與所述第二延遲差異之間的第一差異,以及 所述第三延遲差異與所述第四延遲差異之間的第二差異。 分別將所述第一差異與所述第二差異除以所述第五與所述 第六延遲差異,並且計算所述多個阻抗。 在本發明之一實施例中,上述之座標計算器在所述第 一至所述第四延遲差異為一特定值或超過所述特定值時, ® 決定所述觸控面板未受觸碰。 在本發明之一實施例中,輸入裝置更包括第一電阻以 ^第二電阻。所述第一電阻連接在所述第—開關與所述取 樣時脈訊號產生器之間。所述第二電阻連接在所述第二 關與所述延遲節點之間。所述第一電阻與所述第二電&二 材質可與所述第一與所述第二薄片墊相同。 ,在本發明之另一實施例中,上述之觸控面板包括四角 形第一薄片墊以及四角形第二薄片墊。所述四角形第一薄 11 201023019In still another embodiment of the invention, the delay detector includes a signal detector and a controller. The signal detector is configured to determine that the sampling clock signal is input to the delay detector through the delay node and output a signal according to the result of the mosquito. The controller is configured to change according to the side signal—the control code until the pulse region of the sampling clock signal is _fg_hfeshGld), and the pulse width of the sampling clock signal in the domain becomes the (four) limit value. The control code, the output-delay difference is used as a delay difference between the signal of the delay node and the sampling clock signal, wherein the sampling clock signal generator responds to the sampling of the control code Pulse width of the pulse / In the embodiment of the present invention, the touch panel includes a first sheet and a second sheet b, the first sheet has a first electrode and a second electrode, and the electrode is disposed in a first direction At both ends of the first sheet. The first sheet has a third electrode and a fourth electrode, and is placed at both ends of the second sheet mat in a second direction perpendicular to the first direction. In an embodiment of the invention, the first-stage sequentially applies the sampling clock signal to the first electrode and the third electrode. The input device further includes a first switch to apply the sampling clock signal to the device, and [[the electrode is the second switch, the third electrode and the fourth delay node are connection. When the first switch applies the sampling pulse signal to the third electrode, the second switch sequentially connects the electrode and the second electrode to the delay node. In an embodiment of the present invention, the second switch 'in the ninth 201023019 JiOH/pn switch applies the sampling clock signal to the first electrode, and additionally the second electrode The delay node is connected. When the first switch applies the sampling clock signal to the third electrode, the fourth electrode is additionally connected to the delay node. When the touch panel is not touched, the second electrode or the fourth electrode is additionally connected to the delay node. In the embodiment of the present invention, the delay measuring device is configured to apply the sampling clock signal to the first electrode and the second switch to connect the third electrode with the first switch When the node is delayed, the delay difference at this time is measured and output to the coordinate calculator as the first delay difference. When the first switch applies the sampling clock signal to the first electrode and the second switch connects the fourth electrode to the delay node, measuring a delay difference at this time and as a second Delaying the difference and outputting to the coordinate value ^ when the first-off is applied to the sampling clock signal to the first electrode and the second switch is connected to the first electrode and the delay node The delay difference at this time is measured and extended as a third to the coordinate calculator. Measuring a delay difference at this time and as a fourth when the first-time application of the sampling = signal to the third electrode and the second connection of the second electrode to the delay node The difference is delayed and output to the coordinate calculation ϋ. Measuring the delay difference at this time and as the fifth when the first-off is applied to the sampling-time pulse to freshen the first electrode and the second-side is connected to the second electrode and the delay node The difference is delayed and output to the coordinate calculator. When the first switch applies the sampling clock signal to the third electrode and the second switch connects 201023019 J ιοτ/pif to the fourth electrode and the delay node, the measurement is performed at this time. The difference is delayed and output to the coordinate calculator as a sixth delay difference. In an embodiment of the invention, the delay detector measures and outputs the fifth and sixth delay differences when the touch panel is not touched. In an embodiment of the present invention, the coordinate calculator described above receives the first to sixth delay differences, calculates an impedance between each of the first to fourth electrodes, and the touch position and Calculate the coordinates of the touch position. In an embodiment of the present invention, the coordinate calculator calculates a first difference between the first delay difference and the second delay difference, and the third delay difference and the fourth delay difference The second difference between the two. The first difference and the second difference are respectively divided by the fifth and the sixth delay differences, and the plurality of impedances are calculated. In an embodiment of the present invention, when the first to the fourth delay difference is a specific value or exceeds the specific value, the coordinate calculator determines that the touch panel is not touched. In an embodiment of the invention, the input device further includes a first resistor to the second resistor. The first resistor is connected between the first switch and the sampling clock signal generator. The second resistor is coupled between the second switch and the delay node. The first resistor and the second electrical & two material may be the same as the first and second foil pads. In another embodiment of the invention, the touch panel comprises a quadrangular first wafer pad and a quadrangular second foil pad. The square first thin 11 201023019

J 1 / J/AX 片势具有-輸出電極,其形成於所述四角形第一薄片塾之 一邊緣上°所述四角形第二薄片墊具有第-至第四電極, 其形成於所述四角形第二薄片塾之四個角落,其中所述輸 出電極可與所述延遲節點相連接。 在本發明之另一實施例中,上述之第一開關依序施加 所述取樣時脈訊號至所述第一電極至所述第四電極。 在本發明之另一實施例中,上述之延遲量測器,量測 在所述第-開關施以所述取樣時脈訊號予所述第一電極時 ,延遲差異並作為第-延遲差異而輸出至所述座標計冑 ❹ 器、量測輸出在所述第一開關施以所述取樣時脈訊號予所 ,第二電極時之延遲差異並作為第二延遲差異至所述座標 计算器、量測輸出在所述第一開關施以所述取樣時脈訊號 予所述第二電極時之延遲差異並作為第三延遲差異至所述 座標計算器、以及量測輸出在所述第一開關施以所述取樣 時脈訊號予所述第四電極時之延遲差異並作為第四延遲差 異至所述座標計算器。 在本發明之另一實施例中,上述之座標計算器接收所 ⑩ 述第一至所述第四延遲差異,計算所述第一電極至所述第 四電極各別與所述觸碰位置之間的阻抗,並且計算所述觸 碰位置之座標。 在本發明之另一實施例中,上述之座標計算器計算所 述第一至所述第四延遲差異之間的差異,將計算之差異兩 兩相除,並且計算所述多個阻抗。 在本發明之另一實施例中,上述之座標計算器在所述 12 201023019 ^ J. UT / 第一至所述第四延遲差異為一特定值或超過所述特定值 時’決定所述觸控面板未受觸碰。 在本發明之另一實施例中,輪入裝置更包括第一電阻 以及第二電阻。所述第一電阻連接在所述第一開關與所述 取樣時脈訊號產生器之間。所述第二電阻連接在所述第二 開關與所述延遲節點之間。所述第一與所述第二電阻之材 質與所述第一與所述第二薄片墊相同。 Φ 在本發明之第三實施例中,上述之觸控面板包括第一 薄片墊以及第二薄片墊。所述第一薄片墊具有向第一方向 延伸之多個第一觸控板。所述多個第一觸控板置於垂直於 所述第一方向之第二方向,各第一觸控板兩端連接於所述 多個電極中對應之電極。所述第二薄片墊具有向所述第二 方向延伸之多個第二觸控板。所述多個第二觸控板置於所 述第一方向,各第二觸控板兩端連接於所述多個電極中對 應之電極。 在本發明之第三實施例中,輸入裝置更包括一第二開 ❹ 關,在所述第一開關施以所述取樣時脈訊號予連接所述多 個第一觸控板其中之一之一端之電極時,所述第二開關依 序將連接於所述多個第二觸控板兩端之電極與所述延遲節 點作連接。在所述第一開關施以所述取樣時脈訊號予連接 所述多個第二觸控板其中之一之一端之電極時,所述第二 開關=序將連接於所述多個第一觸控板兩端之電極與所述 延遲節點作連接,其中所述第一開關依序施以所述取樣時 脈訊號予連接所述多個第一觸控板其中一端之電極以及連 13 201023019 接所述多個第二觸控板其中一端之電極。 在本發明之第二實施例中,上述之延遲量測器依據各 個情況來量測並輸出延遲差異,所述多個情況為所述第一 開關施以所述取樣時脈訊號予連接所述多個第一或第二觸 控板其中之一之一端之電極且所述第二開關將連接於所述 第一或第二觸控板兩端的電極與所述延遲節點作連接時。 在本發明之第三實施例中,上述之座標計算器接收所 述多個延遲差異、計算各電極與所述觸碰位置之間的阻抗 並計算所述觸碰位置之座標。 ❻ 在本發明之第三實施例中,輸入裝置更包括第一電阻 以及第二電阻。所述第一電阻連接於所述第一開關與所述 取樣時脈訊號產生器之間。所述第二電阻連接於所述第二 開關與所述延遲節點之間。所述第一及所述第二電阻之材 質可與所述第一及所述第二觸控板相同。 本發明提出一種在具有觸控面板之輸入裝置中計算 觸碰位置的方法。所述觸控面板具有多個電極,各電極與 一觸碰位置之間的阻抗依據所述觸控位置而變化。以及,' ❹ 一延遲元件用以延遲一延遲節點之訊號,所述方法包括以 下步驟。取樣時脈訊號施予步驟:依序施以取樣時脈訊號 予部分之所述多個電極。延遲步驟:連接至少所述多個電 極其中之一於所述延遲節點。延遲量測步驟:量測所述延 遲節點之所述訊號與所述取樣時脈訊號間的延遲差異。以 及,座標計算步驟:接收所述延遲量測步驟之延遲差異、 計算各電極與所述觸碰位置之間的阻抗並計算所述觸碰位 14 201023019, «^xu^/ριί 置之座標。 在本發明之一實施例中,上述之延遲量測步驟包括以 下步驟°延遲脈衝輸出步驟:偵測所述延遲節點之所述訊 號之準位並輸出脈衝訊號。以及,比較步驟:量測所述脈 衝訊號與所述取樣時脈訊號之間的延遲差異,並且輸出所 述延遲差異作為所述延遲節點之所述訊號與所述取樣時脈 §凡號之間的延遲差異。 Φ 在本發明之另一實施例中,上述之延遲量測步驟可包 括以下步驟。訊號偵測步驟:決定所述取樣時脈訊號是否 經由所述延遲節點而輸入至延遲量測器,並依據決定結果 而輸出偵測訊號。以及,控制步驟:依據所述偵測訊號來 改變一控制碼直到所述取樣時脈訊號之脈衝寬度成一閘限 值,並且在所述取樣時脈訊號之所述脈衝寬度為所述閘限 值時’輸出對應於所述控制碼之延遲差異作為所述延遲節 點之所述訊號與所述取樣時脈訊號之間的延遲差異,其中 所述取樣時脈訊號施予步驟包括依據所述控制碼來改變輸 ❹ 出之取樣時脈訊號之脈衝寬度。 在本發明之方法的一實施例中’上述之觸控面板具有 第一薄片塾以及第二薄片墊。所述第一薄片塾兩端向第一 方向置有第一與第二電極。所述第二薄片墊兩端向垂直於 所述第一方向之第二方向置有第三與第四電極。所述取樣 時脈訊號施予步驟包括依序施以所述取樣時脈訊號予所述 第一與所述第三電極,而所述延遲步驟包括在所述取樣時 脈訊號被施予所述第一電極時,依序連接所述第三與所述 15 201023019 ^ Ί 〇*Τ / ριχ 第四,極於所述延遲節點。在所述取樣時脈訊號被施予所 述第二電極時,依序連接所述第一與所述第二電極於所述 延遲節點。 在本發明之方法的一實施例中,上述之延遲步驟更包 括在所述取樣時脈訊號被施予所述第一電極時,另外將所 述第二電極朗述延遲節點作連接。在所述取樣時脈訊號 被施予所述第二電極時’另外將所述第四電極與所述延遲 節點作連接。 在本發明之方法的一實施例中,上述之延遲量測步驟 包括在所述取樣時脈訊號被施予所述第一電極且所述第三 電極連接於所述延遲節點時,量測並且輪出此時之延遲差 異作為第延遲差異。在所述取樣時脈訊號被施予所述第 一電極且所述第四電極連接於所述延遲節點時,量測並且 輸^此時之延遲差異作為第二延遲差異。在所述取樣時脈 ,號被施予所述第三電極且所述第—電極連接於所述延遲 郎點時’量測並且輸出此時之延遲差異作為第三延遲差 異。在所述取樣時脈訊號被施予所述第三電極且所述二 電極連接於所奴卿點時,量賴且輸出此時之延遲^ 異^為第四輯差異。在麟取樣時脈職被施予所述第 -電極且所述第二電極連接於所述延遲節點時,量測並且 輸f此時之延遲差異作為第五延遲差異。在所述取樣時脈 :=施予二述第三電極且所述第四電極連接 輪出此時之延遲差異作為第六延遲差異 在本發明之方法的-實施例中,上述之座標計算步驟 201023019 了步驟。差異計算步驟:從所述第—延遲差異減去 #里^延遲差異以計算第—差異,以及從所述第三延遲 四延遲差異以計算第二差異。比值計算步 ;L第一差異除以所述第五延遲差異以計算第一比 值,以及將所述第二差異除以所述第六延遲差異以計算第 二抗計算步驟:使用所述第—與所述第二比值來 巧所述第-至所述第四電極分別與所述觸碰位置之間的 =抗以及’座標值計算步驟:使㈣述多個阻抗來計算 所述觸碰位置的座標。 魯a J 1 /J/AX chip having an output electrode formed on one edge of the quadrangular first sheet bundle, wherein the quadrangular second sheet pad has first to fourth electrodes formed on the square Four corners of the two sheets, wherein the output electrodes are connectable to the delay node. In another embodiment of the present invention, the first switch sequentially applies the sampling clock signal to the first electrode to the fourth electrode. In another embodiment of the present invention, the delay measuring device measures a delay difference and serves as a first delay difference when the first switch applies the sampling clock signal to the first electrode. Outputting to the coordinate meter, the measurement output is applied to the first switch by the sampling clock signal to the second electrode, and the delay difference is used as the second delay difference to the coordinate calculator, Measuring a difference in delay when the first switch applies the sampling clock signal to the second electrode and as a third delay difference to the coordinate calculator, and measuring output at the first switch A delay difference when the sampling clock signal is applied to the fourth electrode is applied and is used as a fourth delay difference to the coordinate calculator. In another embodiment of the present invention, the coordinate calculator receives the first to fourth delay differences, and calculates the first electrode to the fourth electrode and the touch position. The impedance between the two, and the coordinates of the touch position are calculated. In still another embodiment of the present invention, the coordinate calculator described above calculates a difference between the first to fourth delay differences, divides the calculated difference by two, and calculates the plurality of impedances. In another embodiment of the present invention, the coordinate calculator described above determines the touch when the 12 201023019 ^ J. UT / the first to the fourth delay difference is a specific value or exceeds the specific value. The control panel is not touched. In another embodiment of the invention, the wheeling device further includes a first resistor and a second resistor. The first resistor is coupled between the first switch and the sampling clock signal generator. The second resistor is coupled between the second switch and the delay node. The materials of the first and second resistors are the same as the first and second sheet pads. In the third embodiment of the present invention, the touch panel includes a first sheet mat and a second sheet mat. The first sheet mat has a plurality of first touch panels extending in a first direction. The plurality of first touch panels are disposed in a second direction perpendicular to the first direction, and the two ends of each of the first touch panels are connected to corresponding ones of the plurality of electrodes. The second sheet pad has a plurality of second touch panels extending in the second direction. The plurality of second touch panels are disposed in the first direction, and the two ends of the second touch panels are connected to the corresponding ones of the plurality of electrodes. In a third embodiment of the present invention, the input device further includes a second switch, and the sampling signal is applied to the first switch to connect one of the plurality of first touch panels. The second switch sequentially connects the electrodes connected to the two ends of the plurality of second touch panels to the delay node. When the first switch applies the sampling pulse signal to the electrode of one of the plurality of second touch panels, the second switch=order will be connected to the plurality of first The electrodes at the two ends of the touch panel are connected to the delay node, and the first switch sequentially applies the sampling clock signal to the electrode of one of the plurality of first touch panels and the connection 13 201023019 Connecting the electrodes of one of the plurality of second touch panels. In a second embodiment of the present invention, the delay detector measures and outputs a delay difference according to each situation, wherein the plurality of conditions apply the sampling clock signal to the first switch to connect the An electrode of one of the plurality of first or second touch panels and the second switch connects an electrode connected to both ends of the first or second touch panel to the delay node. In a third embodiment of the present invention, the coordinate calculator described above receives the plurality of delay differences, calculates an impedance between each electrode and the touch position, and calculates a coordinate of the touch position. In a third embodiment of the invention, the input device further includes a first resistor and a second resistor. The first resistor is coupled between the first switch and the sampling clock signal generator. The second resistor is coupled between the second switch and the delay node. The materials of the first and second resistors may be the same as the first and second touch panels. The present invention proposes a method of calculating a touch position in an input device having a touch panel. The touch panel has a plurality of electrodes, and an impedance between each of the electrodes and a touch position changes according to the touch position. And, a delay element is used to delay the signal of a delay node, and the method includes the following steps. Sampling pulse signal application step: sequentially sampling the pulse signals to the plurality of electrodes. Delay step: connecting at least one of the plurality of electrodes to the delay node. Delay measurement step: measuring a delay difference between the signal of the delay node and the sampling clock signal. And a coordinate calculation step of: receiving a delay difference of the delay measurement step, calculating an impedance between each electrode and the touch position, and calculating the touch position 14 201023019, «^xu^/ριί coordinates. In an embodiment of the invention, the delay measuring step includes the following steps: delaying the pulse outputting step: detecting the level of the signal of the delay node and outputting a pulse signal. And a comparing step of: measuring a difference in delay between the pulse signal and the sampling clock signal, and outputting the delay difference as the signal between the delay node and the sampling clock The difference in delay. Φ In another embodiment of the present invention, the delay measuring step described above may include the following steps. The signal detecting step determines whether the sampling clock signal is input to the delay measuring device via the delay node, and outputs a detecting signal according to the determined result. And a control step of: changing a control code according to the detection signal until a pulse width of the sampling clock signal is a threshold value, and the pulse width of the sampling pulse signal is the threshold value And outputting a delay difference corresponding to the control code as a delay difference between the signal of the delay node and the sampling clock signal, wherein the sampling clock signal giving step comprises: according to the control code To change the pulse width of the sampling clock signal output. In an embodiment of the method of the present invention, the touch panel has a first sheet and a second sheet. Both ends of the first sheet bundle are provided with first and second electrodes in a first direction. The second wafer pad has third and fourth electrodes disposed in a second direction perpendicular to the first direction. The sampling clock signal applying step includes sequentially applying the sampling clock signal to the first and third electrodes, and the delaying step comprises: applying the pulse signal to the sampling signal In the first electrode, the third and the 15 201023019 ^ Ί 〇 * Τ / ρι χ are sequentially connected in series, which is extreme to the delay node. And connecting the first and the second electrodes to the delay node when the sampling pulse signal is applied to the second electrode. In an embodiment of the method of the present invention, the delaying step further comprises: when the sampling clock signal is applied to the first electrode, and additionally connecting the second electrode reading delay node. When the sampling pulse signal is applied to the second electrode, the fourth electrode is additionally connected to the delay node. In an embodiment of the method of the present invention, the delay measuring step includes measuring when the sampling clock signal is applied to the first electrode and the third electrode is connected to the delay node. The difference in delay at this time is taken as the first delay difference. When the sampling pulse signal is applied to the first electrode and the fourth electrode is connected to the delay node, the delay difference at this time is measured and used as the second delay difference. At the sampling clock, the number is applied to the third electrode and the first electrode is connected to the delay lag point' and the difference in delay at this time is output as the third delay difference. When the sampling pulse signal is applied to the third electrode and the two electrodes are connected to the slave point, the delay and the output delay are the fourth series difference. When the pulse sampling is applied to the first electrode and the second electrode is connected to the delay node, the delay difference at time f is measured as the fifth delay difference. In the sampling clock: = the third electrode is applied and the fourth electrode is connected to the wheel delay difference as the sixth delay difference. In the embodiment of the method of the present invention, the above coordinate calculation step 201023019 The steps. A difference calculation step: subtracting a delay difference from the first delay difference to calculate a first difference, and a fourth delay from the third delay to calculate a second difference. a ratio calculation step; an L first difference divided by the fifth delay difference to calculate a first ratio, and a second difference divided by the sixth delay difference to calculate a second anti-calculation step: using the first Determining, between the first to the fourth electrodes, and the touch position, and the 'coordinate value calculation step, with the second ratio: causing (four) a plurality of impedances to calculate the touch position The coordinates of the coordinates. Lu

在本發明之方法的另一實施例中,上述之觸控面板具 :角形第—薄片塾以及四角形第二薄片墊…輸出電極 7成於所述四角形第-薄0之—邊。第-至第四電極形 ^於所述四角形第二薄㈣之_角落。所述取樣時脈訊 ’施予步称包括依序將所述取樣時腺訊號施予所述第一至 第四電極。而所述座標計算步驟包括接收延遲差異、計算 所述第-至第四電極分別與所述觸碰位置之 計算所述觸碰位置之座標。 H 在本發明之方法的另一實施例中,上述之延遲計算步 驟包括在所述取樣時脈訊號被施予所述第一電極時,量測 並且輸出此時之延遲差異作為第一延遲差異。在所述取樣 時脈訊號被施予所述第二電極時,量測並且輸出此時之延 遲差異作為第二延遲差異。在所述取樣時脈賴被施予所 述第三電極時,量測並且輸出此時之延遲差異作為第三延 遲差異。在所述取樣時脈訊號被施予所述第四電極時,量 17 201023019 /pil 測並且輸出此時之延遲差異作為第四延遲差異。 f本個之綠㈣—實關巾,上収座標計算步 驟包括以下步驟。差異計算步驟:計算所述第—至所述第 四延遲差異之間的多個差異。比值計算步驟··將所述多個 差異兩兩相除,以計算所述多個差異之間的多個比值。阻 抗計算步驟:使用所述多個比值來計算所述第一至第四電 極分別與所述觸碰位置之間的阻抗。以及,座標值計算步 驟:使用所述多個阻抗來計算所述觸碰位置的座標。In another embodiment of the method of the present invention, the touch panel has an angular first sheet and a square second sheet. The output electrode 7 is formed on the side of the square. The first to fourth electrode shapes are formed in the corner of the second thin (four) of the square. The sampling pulse hopping step includes sequentially applying the sampled gland signals to the first to fourth electrodes. And the coordinate calculation step includes receiving a delay difference, calculating a coordinate of the first to fourth electrodes and the touch position, respectively, calculating the touch position. In another embodiment of the method of the present invention, the delay calculating step includes measuring and outputting a delay difference at the time as the first delay difference when the sampling clock signal is applied to the first electrode . When the sampling clock signal is applied to the second electrode, the delay difference at this time is measured and output as the second delay difference. When the sampling is applied to the third electrode, the difference in delay at this time is measured and output as the third delay difference. When the sampling pulse signal is applied to the fourth electrode, the amount 17 201023019 /pil is measured and the delay difference at this time is output as the fourth delay difference. f The green (4) - the actual closing towel, the calculation step of the upper receiving coordinates includes the following steps. Difference calculation step: calculating a plurality of differences between the first to the fourth delay differences. The ratio calculation step divides the plurality of differences by two to calculate a plurality of ratios between the plurality of differences. The impedance calculation step: using the plurality of ratios to calculate an impedance between the first to fourth electrodes and the touch position, respectively. And, a coordinate value calculation step of: calculating the coordinates of the touch position using the plurality of impedances.

基於上述,本發明所提出的輸入裝置及其計算觸碰位 置之方法可減少功率消耗並且具有能在高速操作之電阻式 觸控面板。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 【實施方式】 以下將詳細說明本發明之示範實施例。然而,本發明 並不受限於以下的示範實施例,而是可以多種形式來實 現。下列的示範實施例之說明是為了供所屬領域之技術人 員來實現本發明。 圖3繪示本發明示範實施例之具有電阻式觸控面板之 輸出裝置之組成。此輸入裝置包括觸控面板10、第一開關 51、第二開關52、取樣時脈訊號產生器60、延遲量測器 70、座標計算器80以及延遲元件90。觸控面板10包括上 層薄片墊11與下層薄片墊12。上層薄片墊11兩端向第一 方向’例如X轴方向,具有第一電極111與第二電極112。 18 201023019 u x UT / yi.1 下層薄片勢12兩端向第二方向,例如y軸方向’具有第三 電極121與第四電極122。此外,延遲元件90包括電容C, 其連接於延遲節點A與接地電壓之間。 在圖3中’ Ra表示連接於第一開關51與取樣時脈訊 號產生器60之間的第一電阻,而Rb表示連接於第二開關 52與延遲節點A之間的第二電阻。換句話說,依本發明之 示範實施例之具有電阻式觸控面板之輸入裝置更可包括第 一電阻Ra與第二電阻Rb。 ® 圖3所示各方塊之功能說明如下。 觸控面板10以與圖丨之說明相同的方式作用,請參 照圖1之說明。 取樣時脈訊號產生器60產生取樣時脈訊號clk並且輸 出至第一開關51以及延遲量測器70。 第一開關51將取樣時脈訊號產生器60輸出之取樣時 脈訊號elk依序施予上層薄片墊η之第一電極lu與下層 薄片墊12之第三電極121。 ❿ 在第一開關51施以取樣時脈訊號cik予上層薄片塾 11之第一電極111時,第二開關52依序將下層薄片墊12 之第二電極121及第四電極122與延遲節點A作連接。在 第一開關51施以取樣時脈訊號cik予下層薄片墊12之第 三電極時121,第二開關52依序將上層薄片墊u之第一 電極111及第二電極112與延遲節點A作連接。 於此處,在第一開關51施以取樣時脈訊號cik予上層 薄片墊11之第一電極111時,第二開關52更可將上層薄 2010230i? 片墊11之第二電極112與延遲節點A作連接。在第一開 關51施以取樣時脈訊號elk予下層薄片墊12之第三電極 121時’第二開關52更可將下層薄片墊12之第四電極122 與延遲節點A作連接。其中第二開關52更將第二電極112 或第四電極122與延遲節點A作連接之操作可實施於觸控 面板10未受物體觸碰時。 延遲元件90使延遲節點a之訊號dk_d延遲。如上 所述,延遲元件90可包括電容c,其連接於延遲節點A 與接地電壓之間。於此例中,延遲節點A之訊號〇也_4被 _ 電容c的電容量以及被第一開關51施予取樣時脈訊號clk 之電極(即第一電極111或第三電極121)與藉由第二開關 52連接延遲節點A之電極(即第三電極121或第四電極 122、或是第一電極111或第二電極112)之間的阻抗所延 遲。換句話說’對應於取樣時脈訊號elk之延遲節點A之 訊號clk_d之延遲決定於電容c之電容量以及下述二種阻 抗之總合’即:被施予取樣時脈訊號elk之電極與觸碰位 置間的阻抗、和談觸碰位置與連接該延遲節點A之電極間 的阻抗。 延遲量測器70接收取樣時脈訊號產生器60輸出之取 樣時脈訊號elk以及延遲節點a之訊號clk_d,並且量測 及輸出該取樣時脈訊號elk與延遲節點A之訊號clk__d之 間的延遲差異td。如上所述’延遲節點A之訊號clk__d是 將輸出自取樣時脈訊號產生器60之時脈訊號elk經由第 一電阻Ra、依據觸碰位置而變化之觸控面板之阻抗、 20 201023019 J X VJ-T / jJil 第二電阻Rb以及電容c來延遲一段特定時間。由於第一 電阻Ra與第二電阻Rb的阻抗以及電容c的電容量是固定 的,所以延遲節點A之訊號dk_(K延遲是由依據觸碰位 置而變化之觸控面板10之阻抗來決定的。 座標計算器80接收延遲量測器70輸出之延遲差異td 並且計算及輸出該觸碰位置之座標。 如上所述,依本發明示範實施例之輸入裝置更可包括 Φ 第一電阻Ra與第二電阻Rb。在一物體觸碰觸控面板10 的一邊緣時’觸控面板10之阻抗為0,即,第一開關51 與第二開關52之間的阻抗為〇。於此例中,取樣時脈訊號 elk在無阻抗之下被施加至延遲節點A,而使得輸入裝置功 能異常。為了避免功能異常,依本發明示範實施例之輸入 裝置更可包括第一電阻Ra與第二電阻Rb。 雖然未示於圖式中’但圖3之依本發明示範實施例之 輸入裝置中,上層薄片墊11與下層薄片墊12的位置可以 互換。 ❹ 圖4是一等效電路圖,用以說明圖3之依本發明示範 實施例之輸入裝置之操作。在圖4中,τ表示一觸碰位置、 R1A表示上層薄片塾11之第一電極in與觸碰位置τ之 間的等效阻抗、R1B表示上層薄片墊u之第二電極112 與觸碰位置T之間的等效阻抗、似八表示下層薄片塾12 之第四電極122與觸碰位置τ之間的等效阻抗以及mb表 示下層薄片墊12之第三電極121與觸碰位置τ之間的等 效阻抗。 21 201023019 J 10*T /pil 如圖4所繪示,延遲量測器7〇可包括延遲脈衝輸出 單元71與比較器72。 延遲脈衝輸出單元71接收延遲節點a之訊號cik_d、 债測延遲節點A之訊號elk—d之準位(例如,延遲節點a 之電壓準位)以產生脈衝訊號pclk__d並且輸出脈衝訊號 pclk_d。於此處’取樣時脈訊號elk與脈衝訊號pclk_d之 間的延遲差異等於取樣時脈訊號elk與延遲節點A之訊號 clk_d之間的延遲差異。另外,延遲脈衝輸出單元71之參 考準位,意即延遲脈衝輸出單元71用以產生輸出脈衝訊號 © pclk一d之準位’可固定在一特定值。此處,延遲差異可用 阻抗(意即第一電阻Ra、第二電阻Rb以及依據觸碰位置而 變化之觸控面板10之阻抗的總合)與電容C之電容量的乘 積來表不。 比較器72接收延遲脈衝輸出單元71所輸出之脈衝訊 號pclk_d以及取樣時脈訊號產生器70輸出之取樣時脈訊 號clk,並且計算及輸出脈衝訊號pclk_d與取樣時脈訊號 elk之間的延遲差異。此處,雜訊濾除程序可增加於計算延 ❹ 遲差異td之程序中。 請參照圖3與圖4’本發明之示範實施例之輸入裝置, 其操作將詳述如下。 首先’第一開關51連接a點’使得取樣時脈訊號clk 被施予第—電極111,而第二開關52依序連接b點與d點, 使得第三電極121與第四電極122依序與延遲節點a作連 接。以上各情況中,取樣時脈訊號elk與延遲節點a之訊 22 201023019 J χοτ/pif 號clk_d之間的延遲差異td,意即取樣時脈訊號clk與輪 出脈衝訊號pclk一d之間的延遲差異,是由延遲量測器^ 所量測並且輸出至座標計算器8〇。然後,第一開關51連 接b點,使得取樣時脈訊號clk被施加至第三電極121,而 第二開關52依序連接a點與^點,使得第一電極ηι與第 二電極112依序與延遲節點A作連接。以上各情況中,取 樣時脈訊號clk與延遲節點A之訊號dk_d之間的延遲差 ❹ 異td,意即取樣時脈訊號clk與輸出脈衝訊號pclk、dq 的延遲^異’同樣是由延遲量測器7〇所量測並且輪出至座 ‘计算器80上述操作在觸碰位置與物體接觸時被施行。 接著,第一開關51連接a點,使得取樣時脈訊號clk 被施予第一電極1U ’而第二開關52連接£點,使得第二 電極1 =與延遲節·點a作連接。然後,第一開關51連接b 點,使得取樣時脈訊號clk被施予第三電極121,而第二開 關52連接d點’使得第四電極122與延遲節點a作連接。 以上各情況中,取樣時脈訊號dk與延遲節點A之訊號 ❹clk-d之間的延遲差異td’意即取樣時脈訊號他與輸出脈 衝訊號pclk一d之間的延遲差異,是由延遲量測器 70所量 並且輸出至座標計算^ 8G。上述操作是在觸碰位置並無 物體接觸時被施行。 此外,上述操作可用不同次序來執行。 座標計算H 8G使用接收岐遲差異td來計算阻抗 R1A R^B、R2A以及R2B,然後計算觸碰位置了的座標。 假設在第—開關51連接&點且第二開關52連接b點 23 201023019 j 1 on / uii 時’取得之取樣時脈訊號elk與延遲節點a之訊號dk d 之間的延遲差異(意即取樣時旅訊號clk與輸出 之間的延遲差異)為第一延遲差異tl、在第 51連接a點且第二開關52連接d點時,取得之取樣時脈 訊號clk與延遲節點A之訊號elk—d之間的延遲差異為第 二延遲差異t2、在第一開關51連接b點且第二開關u連 接a點時,取得之取樣時脈訊號elk與延遲節點A之訊號 elk—d之間的延遲差異為第三延遲差異t3、在第一開^ ^ 連接b點且第二開關52連接c點時,取得之取樣時^訊號 參 elk與延遲節點八之訊號dk_d之間的延遲差料第四延遲 差異t4、在第一開關51連接a點且第二開關公連接〇點 時,取得之取樣時脈訊號dk與延遲節點a之訊號dkd 之間的延遲差異為第五延遲差異t5,以及在第一開關 連接b點且第二開關52連接d點時,取得之取樣時^脈訊號 elk與延遲節點a之訊號dk_d之間的延遲差異為第六延遲 差異t6。由延遲量測器70所量測的第一至第六延^差異 tl〜t6可由以下公式來決定,其中C表示電容^的電容量參 而Ra、Rb、R1A、RIB、R2A以及R2B表示電隍Ra與 Rb的阻抗以及阻抗R1A、RIB、R2A與R2B : 、 11 =Cx(Ra+Rl A+R2B+Rb) t2=Cx(Ra+RlA+R2A+Rb) t3=Cx(Ra+R2B+R 1 A+Rb) t4=Cx(Ra+R2B+R 1 B+Rb) t5=Cx(Ra+R 1A+R1 B+Rb) 24 201023019 •J L OT / plf t6=Cx(Ra+R2A+R2B+Rb) 座標計算器80接收第一至第六延遲差異tl〜t6並且計 算阻抗 Ra、Rb、R1A、RIB、R2A 以及 R2B。阻抗 Ra、 Rb、R1A、RIB、R2A以及R2B可由以下公式來計算。 更具體來說,座標計算器80先從第一延遲差異tl減 去第二延遲差異t2,以計算一差異(tl-t2),並且從第三延 遲差異t3減去第四延遲差異t4,以計算一差異(t3-t4)。此 處所計算之差異可用下列公式來表示: tl-t2=Cx(Ra+RlA+R2B+Rb)- Cx(Ra+RlA+R2A+Rb) =Cx(R2B-R2A) t3-t4=Cx(Ra+R2B+RlA+Rb)- Cx(Ra+R2B+RlB+Rb) =Cx(R1A-R1B) 接著,座標計算器80將差異(tl-t2)除以第五延遲差異 t5並且將差異(t3-t4)除以第六延遲差異诏,從而計算比值 (tl-t2)/t5與(t3-t4)/t6。電容C的電容量可藉計算各比值而 被移除。比值(tl-t2)/t5與(t3-t4)/t6可由下列公式來表示:Based on the above, the input device of the present invention and its method of calculating the touch position can reduce power consumption and have a resistive touch panel that can be operated at high speed. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] Hereinafter, exemplary embodiments of the present invention will be described in detail. However, the present invention is not limited to the following exemplary embodiments, but can be implemented in various forms. The following description of the exemplary embodiments is provided to enable those skilled in the art to practice the invention. FIG. 3 illustrates the composition of an output device having a resistive touch panel according to an exemplary embodiment of the present invention. The input device includes a touch panel 10, a first switch 51, a second switch 52, a sampling clock signal generator 60, a delay measuring device 70, a coordinate calculator 80, and a delay element 90. The touch panel 10 includes an upper sheet mat 11 and a lower sheet mat 12. Both ends of the upper sheet mat 11 have a first electrode 111 and a second electrode 112 in a first direction 'e.g., an X-axis direction. 18 201023019 u x UT / yi.1 The lower layer sheet potential 12 has a third electrode 121 and a fourth electrode 122 in a second direction, for example, a y-axis direction. In addition, delay element 90 includes a capacitor C coupled between the delay node A and the ground voltage. In Fig. 3, 'Ra' denotes a first resistance connected between the first switch 51 and the sampling clock signal generator 60, and Rb denotes a second resistance connected between the second switch 52 and the delay node A. In other words, the input device having the resistive touch panel according to an exemplary embodiment of the present invention may further include a first resistor Ra and a second resistor Rb. ® The functions of the blocks shown in Figure 3 are described below. The touch panel 10 functions in the same manner as the description of the figure, please refer to the description of FIG. The sampling clock signal generator 60 generates a sampling clock signal clk and outputs it to the first switch 51 and the delay measuring unit 70. The first switch 51 sequentially applies the sampling clock signal elk output from the sampling clock signal generator 60 to the first electrode lu of the upper layer pad n and the third electrode 121 of the lower layer pad 12. ❿ When the first switch 51 applies the sampling pulse signal cik to the first electrode 111 of the upper sheet stack 11, the second switch 52 sequentially connects the second electrode 121 and the fourth electrode 122 of the lower sheet mat 12 with the delay node A. Make a connection. When the first switch 51 applies the sampling pulse signal cik to the third electrode 121 of the lower layer pad 12, the second switch 52 sequentially connects the first electrode 111 and the second electrode 112 of the upper layer pad u with the delay node A. connection. Here, when the first switch 51 applies the sampling pulse signal cik to the first electrode 111 of the upper layer pad 11, the second switch 52 can further connect the second electrode 112 of the upper layer 2010230i? pad 11 with the delay node. A is connected. When the first switch 51 applies the sampling pulse signal elk to the third electrode 121 of the lower sheet pad 12, the second switch 52 further connects the fourth electrode 122 of the lower layer pad 12 with the delay node A. The operation of the second switch 52 to connect the second electrode 112 or the fourth electrode 122 to the delay node A can be implemented when the touch panel 10 is not touched by an object. Delay element 90 delays signal dk_d of delay node a. As described above, the delay element 90 can include a capacitor c coupled between the delay node A and the ground voltage. In this example, the signal of the delay node A is also _4 is the capacitance of the _ capacitor c and the electrode of the sampling pulse signal clk (ie, the first electrode 111 or the third electrode 121) is applied by the first switch 51. The impedance between the electrode connected to the delay node A (i.e., the third electrode 121 or the fourth electrode 122, or the first electrode 111 or the second electrode 112) is delayed by the second switch 52. In other words, the delay of the signal clk_d corresponding to the delayed node A of the sampling clock signal elk is determined by the capacitance of the capacitor c and the sum of the following two impedances: that is, the electrode of the pulse signal elk is sampled. The impedance between the touched position, the touch position and the impedance between the electrodes connected to the delay node A. The delay detector 70 receives the sampling clock signal elk output by the sampling clock signal generator 60 and the signal clk_d of the delay node a, and measures and outputs a delay between the sampling clock signal elk and the signal clk__d of the delay node A. Difference td. As described above, the signal clk__d of the delay node A is the impedance of the touch panel that changes the clock signal elk of the self-sampling clock signal generator 60 via the first resistor Ra according to the touch position, 20 201023019 JX VJ- T / jJil The second resistor Rb and the capacitor c are delayed for a certain period of time. Since the impedances of the first resistor Ra and the second resistor Rb and the capacitance of the capacitor c are fixed, the signal dk_ of the node A is delayed (the K delay is determined by the impedance of the touch panel 10 that varies according to the touch position). The coordinate calculator 80 receives the delay difference td of the output of the delay measurer 70 and calculates and outputs the coordinates of the touch position. As described above, the input device according to an exemplary embodiment of the present invention may further include Φ the first resistor Ra and the first The second resistor Rb. When an object touches an edge of the touch panel 10, the impedance of the touch panel 10 is zero, that is, the impedance between the first switch 51 and the second switch 52 is 〇. In this example, The sampling clock signal elk is applied to the delay node A without impedance, so that the input device functions abnormally. In order to avoid the function abnormality, the input device according to the exemplary embodiment of the present invention may further include the first resistor Ra and the second resistor Rb. Although not shown in the drawings, the position of the upper sheet mat 11 and the lower sheet mat 12 may be interchanged in the input device according to the exemplary embodiment of the present invention. FIG. 4 is an equivalent circuit diagram for explaining image 3 The operation of the input device according to the exemplary embodiment of the present invention. In FIG. 4, τ represents a touch position, R1A represents an equivalent impedance between the first electrode in and the touch position τ of the upper sheet stack 11, and R1B represents The equivalent impedance between the second electrode 112 of the upper layer pad u and the touch position T, the equivalent impedance between the fourth electrode 122 and the touch position τ of the lower layer sheet 12 and the lower layer sheet pad The equivalent impedance between the third electrode 121 of 12 and the touch position τ. 21 201023019 J 10*T /pil As shown in FIG. 4, the delay detector 7A may include a delay pulse output unit 71 and a comparator 72. The delay pulse output unit 71 receives the signal cik_d of the delay node a and the signal elk_d of the delay node A (for example, delays the voltage level of the node a) to generate the pulse signal pclk__d and outputs the pulse signal pclk_d. Here, the difference in delay between the sampling clock signal elk and the pulse signal pclk_d is equal to the difference in delay between the sampling clock signal elk and the signal clk_d of the delay node A. In addition, the reference level of the delay pulse output unit 71 means delay The output of the output pulse signal © pclk-d can be fixed to a specific value. Here, the delay difference can be an impedance (that is, the first resistance Ra, the second resistance Rb, and the touch position. The comparator 72 receives the pulse signal pclk_d output by the delay pulse output unit 71 and the sampling of the output of the sampling clock signal generator 70. The clock signal clk, and calculates and outputs the delay difference between the pulse signal pclk_d and the sampling clock signal elk. Here, the noise filtering procedure can be added to the program for calculating the delay difference td. Referring to Figures 3 and 4', an input device of an exemplary embodiment of the present invention will be described in detail below. First, the first switch 51 is connected to the a point, so that the sampling clock signal clk is applied to the first electrode 111, and the second switch 52 is sequentially connected to the b point and the d point, so that the third electrode 121 and the fourth electrode 122 are sequentially arranged. Connected to the delay node a. In each of the above cases, the delay difference td between the sampling clock signal elk and the delay node a 22 201023019 J χοτ/pif number clk_d, that is, the delay between the sampling clock signal clk and the round pulse signal pclk-d The difference is measured by the delay measurer and output to the coordinate calculator 8〇. Then, the first switch 51 is connected to the b point, so that the sampling clock signal clk is applied to the third electrode 121, and the second switch 52 sequentially connects the a point and the ^ point, so that the first electrode ηι and the second electrode 112 are sequentially Connect with the delay node A. In the above cases, the delay difference between the sampling clock signal clk and the signal dk_d of the delay node A is different, td, that is, the delay of the sampling clock signal clk and the output pulse signals pclk, dq is also the delay amount. The measuring device 7 is measured and turned out to the 'calculator 80'. The above operation is performed when the touch position is in contact with the object. Next, the first switch 51 is connected to point a such that the sampling clock signal clk is applied to the first electrode 1U' and the second switch 52 is connected to the point so that the second electrode 1 = is connected to the delay node a. Then, the first switch 51 is connected to point b such that the sampling clock signal clk is applied to the third electrode 121, and the second switch 52 is connected to the point d such that the fourth electrode 122 is connected to the delay node a. In the above cases, the delay difference td between the sampling clock signal dk and the signal ❹clk-d of the delay node A means that the delay difference between the sampling clock signal and the output pulse signal pclk-d is caused by the delay amount. The amount of the detector 70 is measured and output to the coordinate calculation ^ 8G. The above operation is performed when there is no object contact at the touched position. Moreover, the above operations can be performed in a different order. The coordinate calculation H 8G uses the reception delay difference td to calculate the impedances R1A R^B, R2A, and R2B, and then calculates the coordinates of the touch position. Suppose that the delay between the sampling clock signal elk and the signal dk d of the delay node a is obtained when the first switch 51 is connected to the & point and the second switch 52 is connected to b point 23 201023019 j 1 on / uii (ie The difference between the delay between the travel signal clk and the output during sampling is the first delay difference t1. When the 51st connection a is connected and the second switch 52 is connected to the d point, the obtained sampling clock signal clk and the delay node A signal elk are obtained. The difference in delay between —d is the second delay difference t2. When the first switch 51 is connected to point b and the second switch u is connected to point a, the obtained sampling clock signal elk is delayed between the signal elk and the delay node A. The delay difference is the third delay difference t3, when the first opening ^ is connected to the point b and the second switch 52 is connected to the point c, the delay difference between the obtained signal timing ek and the delayed node eight signal dk_d is obtained. The fourth delay difference t4, when the first switch 51 is connected to the point a and the second switch is connected to the point, the delay difference between the obtained sampling clock signal dk and the signal dkd of the delay node a is the fifth delay difference t5. And when the first switch is connected to point b and the second switch 52 is connected to point d. Obtaining a delay time difference ^ between the sampling clock signal elk node with a delay of the sixth signal delay difference dk_d t6. The first to sixth delay differences t1 to t6 measured by the delay measurer 70 can be determined by the following formula, where C represents the capacitance of the capacitance ^, and Ra, Rb, R1A, RIB, R2A, and R2B represent electricity.阻抗Ra and Rb impedance and impedance R1A, RIB, R2A and R2B : , 11 =Cx(Ra+Rl A+R2B+Rb) t2=Cx(Ra+RlA+R2A+Rb) t3=Cx(Ra+R2B+ R 1 A+Rb) t4=Cx(Ra+R2B+R 1 B+Rb) t5=Cx(Ra+R 1A+R1 B+Rb) 24 201023019 •JL OT / plf t6=Cx(Ra+R2A+R2B +Rb) The coordinate calculator 80 receives the first to sixth delay differences t1 to t6 and calculates the impedances Ra, Rb, R1A, RIB, R2A, and R2B. The impedances Ra, Rb, R1A, RIB, R2A, and R2B can be calculated by the following formula. More specifically, the coordinate calculator 80 first subtracts the second delay difference t2 from the first delay difference t1 to calculate a difference (tl-t2), and subtracts the fourth delay difference t4 from the third delay difference t3 to Calculate a difference (t3-t4). The difference calculated here can be expressed by the following formula: tl-t2=Cx(Ra+RlA+R2B+Rb)- Cx(Ra+RlA+R2A+Rb)=Cx(R2B-R2A) t3-t4=Cx(Ra +R2B+RlA+Rb)- Cx(Ra+R2B+RlB+Rb)=Cx(R1A-R1B) Next, the coordinate calculator 80 divides the difference (tl-t2) by the fifth delay difference t5 and the difference (t3) -t4) divided by the sixth delay difference 诏, thereby calculating the ratios (tl-t2)/t5 and (t3-t4)/t6. The capacitance of capacitor C can be removed by calculating the ratio. The ratios (tl-t2)/t5 and (t3-t4)/t6 can be expressed by the following formula:

〇 tl-t2_ R2B-R2ATl tl-t2_ R2B-R2A

t5 ~Ka + RlA + RlB + Rb t3-t4_ R1A-R1B ka + R2A+R2B+Rb 接著,座標計算器藉由同時求解上述公式來計算阻抗 R1A、R1B、R2A以及R2B。在以上公式中,第一電阻Ra 與第二電阻Rb的阻抗於設計時決定,阻抗R1A與R1B的 總和(R1A+R1B)為整個上層薄片墊η的阻抗且由設計時 決定,以及’阻抗R2A與R2B的總和(R2A+R2B)為整個 25 201023019T5 ~ Ka + RlA + RlB + Rb t3-t4_ R1A - R1B ka + R2A + R2B + Rb Next, the coordinate calculator calculates impedances R1A, R1B, R2A, and R2B by simultaneously solving the above equation. In the above formula, the impedance of the first resistor Ra and the second resistor Rb is determined at the time of design, and the sum of the impedances R1A and R1B (R1A+R1B) is the impedance of the entire upper wafer pad η and is determined by the design time, and the 'impedance R2A The sum with R2B (R2A+R2B) is the whole 25 201023019

Jlot/pn 下層薄片墊12的阻抗且由設計時決定。因此,使用上述公 式以及設計時的設定值來計算各個阻抗R1A、RIB、R2A 以及R2B是可能的。 阻抗R1A正比於觸碰位置τ與上層薄片墊n的左侧 電極之距離’而阻抗R2B正比於觸碰位置τ與下層薄片墊 12的下側電極之距離。因此,座標計算器8〇可以從阻抗 R1A、RIB、R2A以及R2B來計算該觸碰位置之座標。 如上所述’第一電阻Ra之阻抗、第二電阻处之阻抗、 阻抗R1A與R1B之總和以及阻抗R2A與R2B之總和是由 ❹ 設計時決定的,但是誤差可能因製程或其它原因而發生。 所以,本發明示範實施例之輸出裝置,其上述誤差可 藉由校正操作來修正。 於本發明示範實施例之輸出裝置中,第一電阻Ra與 第二電阻Rb可使用如同上層薄片墊u與下層薄片墊Η 之氧化銦錫(ITO)薄膜來製造,使得依據溫度之阻抗變化由 公式中被消去。 在第一至第四延遲差異tl〜t4為特定值或超過此特定 癰 值時,座標計算器80可決定觸控面板1〇未被觸碰。 為了方便起見,上述之延遲脈衝輸出單元71並不另 將延遲節點A之訊號clk_d作延遲。然而,為反應從外界 輸入之控制訊號’延遲脈衝輸出單元71可依據此控制訊號 將延遲節點A之訊號elk一d延遲一段時間並輸出脈衝訊號 pclk—d。此控制訊號可由使用者輸入或是由輸入裝置之控 制器(未繪示)輸入。在此情況下’藉由控制該延遲脈衝輸 26 201023019 J AOT/pil 出單元71之額外的延遲來控制觸控面板1〇與置於其下方 之顯不器(未繪示)之間之寄生電容之額外延遲,或補 正操作的結果是可能的。 該延遲脈衝輸出單元71的參考準位可對應外界輸入 之控制訊號而改變’或者該延遲脈衝輸出單元71可具滯後 (hysteresis)特性。在參考準位改變或該延遲脈衝輸出單元 71具滞後(hysteresis)特性時,使在該延遲節點A上產生之 _ 雜訊的影響最小化是可能的。 圖5繪示了本發明另外之示範實施例之具有電阻式觸 控面板之輸入裝置的組成。此輸入裝置包括觸控面板13、 第一開關53、取樣時脈訊號產生器60、延遲量測器7〇、 座標計算器81以及延遲元件90。觸控面板13包括上層薄 片墊14與下層薄片墊15。上層薄片墊14具有連接一延遲 節點A之輸出電極141且輸出電極141形成於上層薄片墊 14之邊緣。下層薄片墊15之四個角落形成有第一至第四 電極151〜154。此外,延遲元件90可包括電容c,其連接 〇 於該延遲節點A與接地電壓之間。上層薄片墊14與下層 薄片墊15可以為四角形。 〃 雖然未繪示於圖式中,但圖5之本發明另外之示範實 施例之輸入裝置更可包括第一電阻,其連接於第一開關53 與取樣時脈訊號產生器60之間,以及第二電阻,其^接於 輸出電極141與延遲節點A之間。於此例中,第一電阻與 第二電阻可由與上層薄片墊14以及下層薄片塾15同樣的 材質製成。 27 201023019 Λ UT / pit 圖5所示各方塊之功能說明如^。 請參照圖3之說明,取樣時脈產生器6〇、延遲量測器 70以及延遲元件90之作用方式與圖3之說明相同。 於觸控面板13中,觸碰位置與各電極之間的阻抗依 據觸碰位置而變化。在上層薄片塾14 +,觸碰位置盥輸出 電極⑷之間的阻抗依據觸碰位置而改變,而在下層薄片 塾中,觸碰位置與第—至第四電極⑸〜154之間的各 阻抗依據觸碰位置而變化。 第-開關53依序施以輸出自取樣 的取樣時脈訊號dk予下層薄片塾15之生器6〇 151〜1M。 & 15之第-至第四電極 座標計算器81接收延遲量测器7 纪、計算觸碰位置與下層薄片塾丨,出之延遲差異 151〜154之間的各個阻抗並且計算該—至第四電極 請參照如圖3之說明,上層薄片 ^的座標。 15的位置是可互換的。 月墊14與下層薄片墊 圖6至圖8繪示了圖5之本發明 _ 具有電阻式觸控面板之輸入裝置之操卜之示範實施例之 薄片塾14 ’ ® 7繪示了下層薄片聲°圖6緣示了上層 圖。在圖6與圖7中,T表示觸碰位置而圖8為等效電路 R2T、R3T以及R4T分別表示觸碰在圖7中’ R1T、 第二電極152、第三電極153以及第與第一電極151、 效阻抗。在圖8中,Rs表示觸碰仇四^極154之間的等 之電極141之間的等效阻抗,而R 與上層薄片墊Η 表1示下層薄片墊15 28 201023019 之阻抗R1T至R4T其中之一。 阻抗R1T至R4T中,各阻抗正比於觸碰位置τ與電 極151至154中對應之電極之間的距離。阻抗Rs對應該 觸碰位置T而變化。更具體來說’在該觸碰位置τ於觸控 面板13的中央時,阻抗rs為最大值,並且隨著觸碰位置 T朝觸控面板13的邊緣移動而減小。(在左侧邊緣至觸碰 位置T之距離/整個x轴之距離為p以及下側邊緣至觸碰位 ⑩ 置T之距離/整個y軸之距離為q時,阻抗Rs正比於p(l p) xq〇q)。) 如圖4所示,圖5與圖8之延遲計算器70更可包括 延遲脈衝輸出單元與比較器。 請參照圖5至圖8,本發明另外之示範實施例之具有 電阻式觸控面板之輸入裝置,其操作詳述如下。 第一開關53依序施以取樣時脈訊號予第一至第四電 極151〜154。在各情況中,延遲量測器7〇量測延遲節點a ❹ 之訊號elk—d與取樣時脈訊號dk之間的延遲差異td,並 且輸出量測到的延遲差異td。座標計算器81接收此延遲 異td並且計算與輸出該觸碰位置τ之座標。 如圖8所繪示’延遲節點A之訊號dk_d!由電容〔 的電容量以及阻抗RiT其中之一與阻抗Rs—之總和來決定 的。更具體來說,假設在第-開關53施以取樣時脈訊號 elk予第一電極151時,所取得之延遲差異為第一延遲差異 11‘、在第一開關53施以取樣時脈訊號elk予第二電極152 時’取得之延遲差異為第二延遲差異t2,、在第一開關53 29 201023019 jioH/pn 施以取樣時脈訊號elk予第三電極153時,取得之延遲差 異為第三延遲差異t3’以及在第一開關53施以取樣時脈訊 號elk予第四電極154時’取得之延遲差異為第四延遲差 異t4’,由延遲量測器70量測之第一至第四延遲差異⑴〜料, 可用下列公式表示: 、 tl,=Cx(RlT+Rs) t2,=Cx(R2T+Rs) t3’=Cx(R3T+Rs) t4,=Cx(R4T+Rs) ❹ 第一至第四延遲差異tl,〜t4,被輸入至座標計算器81。 座標计算器81計算第一至第四延遲差異之間的差 異,將计算所得的差異兩兩相除,然後計算阻抗R1T至 R4T。阻抗R1T至R4T可用以下公式來計算。 更具體來說,座標量測器81使用輸入之第一至第四 延遲差異tl,〜t4,來計算差異值,(tl,_t2,)、(ti,_t3,)、 (11’44’)、〇2’43’)、〇2’44’)以及(〇’_料,)。所計算之差異值, (tl -t2,)、’)、(tl’-t4’)、(t2’-t3,)、(t2,-t4,)以及(t3,-t4,), _ 可由以下公示來表示: tl’-t2’=Cx(RlT+Rs)-Cx(R2T+Rs)=Cx(RlT-R2T) tl,-t3,=Cx(RlT+Rs)-Cx(R3T+Rs)=Cx(RlT-R3T) 119 -t45 =C x (R1 T+Rs)-C x (R4T+Rs)=C x (R1T-R4T) t2 ’ -t3 ’=C x (R2T+Rs)-C x (R3 T+Rs)=C x (R2T-R3 T) t2,-t4,=Cx(R2T+Rs)-Cx(R4T+Rs)=Cx(R2T-R4T) t3,-t4,=Cx(R3T+Rs)-Cx(R4T+Rs)=Cx(R3T-R4T) 30 201023019 U 1 f 接著’座標計算器81將各差異’(tl,_t3,)、(tl,_t4,)、 (t2’-t3’)、(t2’-t4’)以及(t3’-t4’),除以差異(ti,_t2,),藉此來 计异各差異之比值,((tr_t3,)/(tr_t2,))、 ((tl’-t4’)/(tl’-t2’))、((t2’-t3’)/(tl,_t2,))、((t2,-t4,)/(tl,-t2,)) 以及((〖344’)/〇1’42’))。換句話說,座標計算器81可藉由 將差異值,(tl’-t2,)、(tl’-t3,)' (tl,-t4,)、(t2,-t3,)、(t2,-t4,) 以及(t3 _t4’)兩兩相除來消去電容c的電容量。上述比值可 ©由以下公式表示: (tl,-t3,)_(RlT-R3T) (tl,-t4,)_(RlT-R4T) (R1T-R2T) (t2,-t3,)_(R2T—R3T) WT=t2i)-(RlT-R2T) (12Μ4,) —(R2T-R4T) ^i7=:t27)'"(RlT-R2T) (e,-t4,)_(R3T-R4T) (tr-t2’) 一 (R1T-R2T) o 接著,座標計算器81藉由同時求解以上公式來計算 阻抗R1T至R4T ’並且從阻抗R1T至R4T來計算該觸碰 位置T的座標。 該觸碰位置τ之座標可以只從阻抗R1T至R4T其中 三個阻抗來計算。然而,在本發明另外之示範實施例中, 阻抗R1T至R4T都會被計算,使得溫度的影響等等(阻抗 會被改變)’可藉由使用阻抗R1T至R4T的比值來消除。 此外,在第一至第四延遲差異tl,〜t4’為特定值或超過 31 201023019 χ t yxx 此特定值時,座標計算器81決定觸控面板13未受到觸碰。 圖9繪示了本發明另外之示範實施例之具有電阻式觸 控面板之輸入裝置的組成。此輸入裝置包括觸控面板16、 第一開關57、第二開關58、取樣時脈訊號產生器60、延 遲量測器70以及座標計算器82。觸控面板16包括上層薄 片墊17與下層薄片墊18。 圖10與圖11分別依據圖9之本發明另外之示範實施 例之輸入裝置而繪示觸控面板16之上層薄片墊17與下層 薄片墊18的示範實施例。 ® 如圖10與圖11所繪示,本發明另外之示範實施例之 輸入裝置之上層薄片墊Π具有多個第一觸控板Pyl、 Py2…,這些觸控板朝X轴方向延伸並且置於y轴方向。 而下層薄片墊18具有多個第二觸控板Ρχΐ、ρΧ2.·_,這此 觸控板朝y轴方向延伸並且置於X轴方向。圖ίο所示為: 層薄片墊17具有12個第一觸控板Py卜py2…之例子而 圖11所示為下層薄片墊18具有15個第二觸控板ρχ1、 Ρχ2…之例子。然而,上層薄片墊π與下層薄片墊18所 具有的第一觸控板與第一觸控板的數量可分別视需要而 定。例如,上層薄片墊17可只具有一個第一觸控板,而 層薄片塾18可具有兩個或多個第二觸控板。 凊參照圖9至圖11,圖9所示方塊之功能詳述如 取樣時脈訊號產生器60以及延遲量測器7〇之 圖3之說明相同’請參照圖3。此外,如圖4所 ^ 量測器70可包括延遲脈衝輪出單元71以及比較器乃延遲 32 201023019 ^ ί o-r /pif 第一開關57將取樣時脈訊號產生器6〇輸出之取樣時 脈訊號elk依序施予上層薄片墊17之多個左側電極μ; an,以及下層薄片墊18之多個下側電極bl : bm。在第一 開關57將取樣時脈訊號clk施予上層薄片墊17之左側電 極al :an其中之一時,第二開關58將下層薄片墊18之多 個上側電極dl : dm以及下側電極bl : bm依序與延遲節 點A作連接。在第一開關58將取樣時脈訊號clk施予上層 ❹ 薄片塾17之下側電極bl : bm其中之一時,第二開關58 將上層薄片塾17之左側電極ai : an以及右侧電極:⑶ 依序與延遲節點A作連接。 請參照圖9至圖11’本發明另外之示範實施例之具有 電阻式觸控面板之輸入裝置,其操作將詳述如下。 首先,第一開關57將取樣時脈訊號Clk施予上層薄片 墊Π之左侧電極al : an其中之第一電極ai,而第二開關 58將下層薄片墊18之上側電極dl: dm以及下侧電極bl: bm依序與延遲節點A作連接。延遲量測器70量測各情況 Φ 下的延遲差異td並且輸出量測到的延遲差異td至座標計 算器82。座標計算器82使用輸入之延遲差異td來計算阻 抗,並且用計算得到的阻抗來計算一觸碰位置的座標。請 參照圖3與圖4之說明,使用延遲差異td來計算阻抗以及 使用計算的阻抗來計算該觸碰位置的座標的過程可被輕易 地理解。上述過程會一直重覆直到第一開關57將取樣時脈 訊號elk施予上層薄片塾17之左側電極al : an其中之最 後電極an。 33 201023019The impedance of the Jlot/pn lower layer pad 12 is determined by the design time. Therefore, it is possible to calculate the respective impedances R1A, RIB, R2A, and R2B using the above formula and the set values at the time of design. The impedance R1A is proportional to the distance τ between the touch position τ and the left electrode of the upper sheet pad n and the impedance R2B is proportional to the distance between the touch position τ and the lower electrode of the lower sheet pad 12. Therefore, the coordinate calculator 8〇 can calculate the coordinates of the touch position from the impedances R1A, RIB, R2A, and R2B. As described above, the impedance of the first resistor Ra, the impedance at the second resistor, the sum of the impedances R1A and R1B, and the sum of the impedances R2A and R2B are determined by the design time, but the error may occur due to process or other reasons. Therefore, in the output device of the exemplary embodiment of the present invention, the above error can be corrected by the correcting operation. In the output device of the exemplary embodiment of the present invention, the first resistor Ra and the second resistor Rb may be fabricated using an indium tin oxide (ITO) film such as an upper layer pad u and a lower layer pad, such that the impedance change according to temperature is It is eliminated in the formula. When the first to fourth delay differences t1 to t4 are specific values or exceed the specific value, the coordinate calculator 80 may determine that the touch panel 1 is not touched. For the sake of convenience, the delay pulse output unit 71 described above does not delay the signal clk_d of the delay node A. However, the control signal 'delay pulse output unit 71 input for the reaction from the outside can delay the signal elk-d of the delay node A for a period of time and output the pulse signal pclk_d according to the control signal. The control signal can be input by the user or input by a controller (not shown) of the input device. In this case, 'the parasitic between the touch panel 1〇 and the display (not shown) placed under it is controlled by controlling the additional delay of the delay pulse output unit 2010A. Additional delays in capacitance, or the result of corrective operations, are possible. The reference level of the delayed pulse output unit 71 may be changed corresponding to the control signal input from the outside' or the delayed pulse output unit 71 may have a hysteresis characteristic. It is possible to minimize the influence of the _ noise generated on the delay node A when the reference level is changed or the delayed pulse output unit 71 has a hysteresis characteristic. Figure 5 illustrates the composition of an input device having a resistive touch panel in accordance with another exemplary embodiment of the present invention. The input device includes a touch panel 13, a first switch 53, a sampling clock signal generator 60, a delay measuring device 7A, a coordinate calculator 81, and a delay element 90. The touch panel 13 includes an upper film pad 14 and a lower layer pad 15. The upper sheet pad 14 has an output electrode 141 connected to a delay node A and the output electrode 141 is formed at the edge of the upper sheet pad 14. The four corners of the lower sheet pad 15 are formed with first to fourth electrodes 151 to 154. Additionally, delay element 90 can include a capacitor c coupled between the delay node A and a ground voltage. The upper sheet pad 14 and the lower sheet pad 15 may have a square shape.输入 Although not shown in the drawings, the input device of the exemplary embodiment of the present invention in FIG. 5 may further include a first resistor connected between the first switch 53 and the sampling clock signal generator 60, and The second resistor is connected between the output electrode 141 and the delay node A. In this case, the first resistor and the second resistor may be made of the same material as the upper sheet mat 14 and the lower sheet stack 15. 27 201023019 Λ UT / pit The function description of each block shown in Figure 5 is as ^. Referring to Figure 3, the sampling clock generator 6A, the delay measuring device 70, and the delay element 90 function in the same manner as in Figure 3. In the touch panel 13, the impedance between the touch position and each electrode changes depending on the touch position. In the upper sheet 塾 14 +, the impedance between the touch position 盥 output electrode (4) changes according to the touch position, and in the lower sheet ,, the impedance between the touch position and the first to fourth electrodes (5) to 154 It varies depending on the touch position. The first switch 53 sequentially applies the sampling clock signal dk which is output from the sampling to the burners 6 151 to 1M of the lower sheet stack 15 . The first to fourth electrode coordinate calculators 81 of the & 15 receive the delay measurer 7, calculate the touch position and the lower slice 塾丨, and the respective impedances between the delay differences 151 to 154 and calculate the - to the For the four electrodes, please refer to the coordinates of the upper layer ^ as illustrated in Figure 3. The position of 15 is interchangeable. The moon pad 14 and the lower layer pad are shown in FIG. 6 to FIG. 8 . The invention of FIG. 5 _ the exemplary embodiment of the input device with the resistive touch panel, the sheet 塾 14 ' ® 7 shows the lower layer sound ° Figure 6 shows the upper layer. In FIGS. 6 and 7, T represents the touch position and FIG. 8 shows that the equivalent circuits R2T, R3T, and R4T respectively touch the 'R1T, the second electrode 152, the third electrode 153, and the first Electrode 151, effective impedance. In Fig. 8, Rs represents the equivalent impedance between the electrodes 141 between the electrodes 151, and R and the upper sheet Η Table 1 shows the impedance of the lower sheet pads 15 28 201023019 R1T to R4T one. In the impedances R1T to R4T, each impedance is proportional to the distance between the touch position τ and the corresponding one of the electrodes 151 to 154. The impedance Rs changes corresponding to the touch position T. More specifically, when the touch position τ is at the center of the touch panel 13, the impedance rs is the maximum value, and decreases as the touch position T moves toward the edge of the touch panel 13. (The impedance Rs is proportional to p(lp) when the distance from the left edge to the touch position T/the distance from the entire x-axis is p and the distance from the lower edge to the touch position 10 is T/the distance from the entire y-axis is q. ) xq〇q). As shown in FIG. 4, the delay calculator 70 of FIGS. 5 and 8 may further include a delay pulse output unit and a comparator. Referring to FIG. 5 to FIG. 8, an input device having a resistive touch panel according to another exemplary embodiment of the present invention is described in detail below. The first switch 53 sequentially applies sampling clock signals to the first to fourth electrodes 151 to 154. In each case, the delay measurer 7 measures the delay difference td between the signal elk_d of the delay node a 与 and the sampling clock signal dk, and outputs the measured delay difference td. The coordinate calculator 81 receives this delay td and calculates and outputs the coordinates of the touch position τ. As shown in Fig. 8, the signal dk_d of the delay node A is determined by the sum of the capacitance of the capacitor and one of the impedances RiT and the impedance Rs. More specifically, it is assumed that when the first switch 53 applies the pulse signal elk to the first electrode 151, the difference in delay obtained is the first delay difference 11', and the pulse signal elk is applied to the first switch 53. When the second electrode 152 is applied to the second electrode 152, the difference in delay is the second delay difference t2. When the first switch 53 29 201023019 jioH/pn applies the sampling pulse signal to the third electrode 153, the delay difference is the third. The delay difference t3' and the delay difference obtained when the first switch 53 applies the sampling pulse signal elk to the fourth electrode 154 is the fourth delay difference t4', and the first to fourth are measured by the delay measurer 70. The delay difference (1) ~ material, can be expressed by the following formula: , tl, = Cx (RlT + Rs) t2, = Cx (R2T + Rs) t3 ' = Cx (R3T + Rs) t4, = Cx (R4T + Rs) ❹ The first to fourth delay differences t1, t4 are input to the coordinate calculator 81. The coordinate calculator 81 calculates the difference between the first to fourth delay differences, divides the calculated difference by two, and then calculates the impedances R1T to R4T. The impedances R1T to R4T can be calculated by the following formula. More specifically, the coordinate measurer 81 calculates the difference value using the first to fourth delay differences t1, tt4 of the input, (tl, _t2,), (ti, _t3,), (11'44') , 〇 2'43'), 〇 2'44') and (〇'_料,). The calculated difference values, (tl -t2,), '), (tl'-t4'), (t2'-t3,), (t2, -t4,), and (t3, -t4,), _ can be The following public expressions are shown: tl'-t2'=Cx(RlT+Rs)-Cx(R2T+Rs)=Cx(RlT-R2T) tl,-t3,=Cx(RlT+Rs)-Cx(R3T+Rs) =Cx(RlT-R3T) 119 -t45 =C x (R1 T+Rs)-C x (R4T+Rs)=C x (R1T-R4T) t2 ' -t3 '=C x (R2T+Rs)-C x (R3 T+Rs)=C x (R2T-R3 T) t2,-t4,=Cx(R2T+Rs)-Cx(R4T+Rs)=Cx(R2T-R4T) t3,-t4,=Cx( R3T+Rs)-Cx(R4T+Rs)=Cx(R3T-R4T) 30 201023019 U 1 f Then the 'coordinate calculator 81 will make the difference' (tl, _t3,), (tl, _t4,), (t2' -t3'), (t2'-t4') and (t3'-t4'), divided by the difference (ti, _t2,), to calculate the ratio of the differences, ((tr_t3,) / (tr_t2, )), ((tl'-t4')/(tl'-t2')), ((t2'-t3')/(tl,_t2,)), ((t2,-t4,)/(tl, -t2,)) and ((〖344')/〇1'42')). In other words, the coordinate calculator 81 can be obtained by taking the difference values, (tl'-t2,), (tl'-t3,)' (tl, -t4,), (t2, -t3,), (t2, -t4,) and (t3 _t4') divide the two phases to eliminate the capacitance of the capacitor c. The above ratio can be expressed by the following formula: (tl, -t3,)_(RlT-R3T) (tl, -t4,)_(RlT-R4T) (R1T-R2T) (t2, -t3,)_(R2T —R3T) WT=t2i)-(RlT-R2T) (12Μ4,) —(R2T-R4T) ^i7=:t27)'"(RlT-R2T) (e,-t4,)_(R3T-R4T) (tr-t2') One (R1T - R2T) o Next, the coordinate calculator 81 calculates the impedances R1T to R4T' by simultaneously solving the above formula and calculates the coordinates of the touch position T from the impedances R1T to R4T. The coordinates of the touch position τ can be calculated from only three of the impedances R1T to R4T. However, in another exemplary embodiment of the present invention, the impedances R1T to R4T are all calculated such that the influence of temperature or the like (impedance is changed) can be eliminated by using the ratio of the impedances R1T to R4T. Further, when the first to fourth delay differences t1, t4' are specific values or exceed the specific value of 31 201023019 χ t yxx , the coordinate calculator 81 determines that the touch panel 13 is not touched. Figure 9 is a diagram showing the composition of an input device having a resistive touch panel in accordance with another exemplary embodiment of the present invention. The input device includes a touch panel 16, a first switch 57, a second switch 58, a sampling clock signal generator 60, a delay measuring device 70, and a coordinate calculator 82. The touch panel 16 includes an upper film pad 17 and a lower layer pad 18. 10 and FIG. 11 illustrate an exemplary embodiment of the top sheet pad 17 and the lower sheet pad 18 of the touch panel 16 in accordance with the input device of the other exemplary embodiment of the present invention. As shown in FIG. 10 and FIG. 11 , the input device upper layer pad of the exemplary embodiment of the present invention has a plurality of first touch panels Pyl, Py2, . . . , which extend in the X-axis direction and are disposed. In the y-axis direction. The lower sheet pad 18 has a plurality of second touch panels Ρχΐ, ρΧ2··_, which extend in the y-axis direction and are placed in the X-axis direction. The figure shows that the layer sheet pad 17 has 12 first touch panels Py py2... and the lower layer sheet pad 18 has 15 second touch panels ρχ1, Ρχ2.... However, the number of the first touch panel and the first touch panel provided by the upper sheet mat π and the lower sheet mat 18 may be respectively determined as needed. For example, the upper sheet cushion 17 may have only one first touch panel, and the layer stack 18 may have two or more second touch panels. Referring to Figures 9 through 11, the functional details of the blocks shown in Figure 9 are the same as those described in Figure 3 for sampling pulse signal generator 60 and delay measuring device 7'. Please refer to Figure 3. In addition, as shown in FIG. 4, the measuring unit 70 may include a delay pulse wheeling unit 71 and the comparator is delayed. 32 201023019 ^ ί or /pif The first switch 57 outputs the sampling clock signal of the sampling clock signal generator 6〇. The elk sequentially applies a plurality of left side electrodes μ; an of the upper sheet mat 17 and a plurality of lower side electrodes bl: bm of the lower sheet mat 18. When the first switch 57 applies the sampling clock signal clk to one of the left side electrodes a1:an of the upper sheet mat 17, the second switch 58 sets the plurality of upper electrodes dl:dm and the lower electrode bl of the lower sheet mat 18: Bm is connected to the delay node A in sequence. When the first switch 58 applies the sampling clock signal clk to one of the lower side electrodes bl: bm of the upper layer 塾 sheet 塾 17, the second switch 58 sets the left side electrode ai: an of the upper sheet 塾 17 and the right side electrode: (3) Connect to the delay node A in sequence. Referring to Figures 9 through 11', an input device having a resistive touch panel according to another exemplary embodiment of the present invention will be described in detail below. First, the first switch 57 applies the sampling clock signal Clk to the left electrode a1 of the upper layer pad an: an first electrode ai thereof, and the second switch 58 sets the upper electrode dl of the lower layer pad 18 to the lower electrode dl: dm The side electrodes bl: bm are sequentially connected to the delay node A. The delay measurer 70 measures the delay difference td in each case Φ and the delay difference td measured by the output amount to the coordinate calculator 82. The coordinate calculator 82 uses the input delay difference td to calculate the impedance, and uses the calculated impedance to calculate the coordinates of a touch position. Referring to the description of Figs. 3 and 4, the process of calculating the impedance using the delay difference td and calculating the coordinates of the touch position using the calculated impedance can be easily understood. The above process will continue until the first switch 57 applies the sampling clock signal elk to the left electrode a1 of the upper sheet stack 17 to the last electrode an. 33 201023019

JlO'T/pil 接著’第一開關57將取樣時脈訊號clk施予下層薄片 塾18之下侧電極bl :bm其中之第一電極bl ’而第二開關 58將上層薄片墊17之左侧電極al : an以及右侧電極cl :JlO'T/pil then 'the first switch 57 applies the sampling clock signal clk to the lower electrode bl of the lower layer 塾18, the first electrode bl' of the bottom layer bl:bm, and the second switch 58 sets the left side of the upper wafer pad 17 Electrode a1: an and right electrode cl:

Cn依序與延遲節點A作連接。延遲量測器70量測並輸出 各隋i兄下的延遲差異t(^座標計算器82使用此延遲差異 td來计算阻抗’並且用此延遲差異td來計算該觸碰位置的 座標。上述過程會一直重覆直到第一開目57將取樣時脈訊 號elk施予下層薄片墊18之下侧電極bl :化其中之最後 電極bm。 @ 如上所述,在延遲差異td為特定值或大於此特定值 時,座標計算器82決定該觸控面板16未受到觸碰。 在圖9至圖U之本發明另外之實施例之具有電阻式 觸控面板之輸入裝置中,上層薄片墊17及/或下層薄片墊 18具有多個觸控板,使得同時偵測該觸控面板16中的兩 個或多個觸碰位置是可能的。舉例來說,在上層薄片墊 具有一個觸控板且下層薄片墊18具有兩個觸控板時,此輸 入裝置可同時偵測兩個觸碰位置,以及在上層薄片塾17 ❹ 與下層薄片墊18各具有兩個觸控板時,此輸入裝置可同時 偵測四個觸碰位置。 因此,本發明另外之實施例之具有電阻式觸控面板之 輸入裝置可降低功率消耗並且以高速來偵測一觸碰位置。 另外,此輸入裝置更可同時偵測兩個或多個觸碰位置。 圖12繪示了圖3、圖5以及圖9之具有電阻式觸控面 板之輸入裝置’其取樣時脈訊號產生器60以及延遲量測器 34 201023019 ^ wr/pif 7〇之另外的示範實施例。 圖12所示各方塊之功能說明如下。 取樣時脈訊號產生器65可依據延遲量測器75輸出的 控制碼code來改變取樣時脈訊號elk的脈衝寬度,並且輪 出此取樣時脈訊號elk。Cn is sequentially connected to the delay node A. The delay measurer 70 measures and outputs the delay difference t under each 兄i brother (the coordinate calculator 82 uses this delay difference td to calculate the impedance' and uses this delay difference td to calculate the coordinates of the touch position. It will repeat until the first opening 57 applies the sampling clock signal elk to the lower electrode bl of the lower sheet pad 18: the last electrode bm is formed therein. @ As described above, the delay difference td is a specific value or larger. At a specific value, the coordinate calculator 82 determines that the touch panel 16 is not touched. In the input device having the resistive touch panel of the other embodiment of the present invention shown in FIGS. 9 to 9, the upper layer pad 17 and/or Or the lower layer pad 18 has a plurality of touch pads, so that it is possible to simultaneously detect two or more touch positions in the touch panel 16. For example, the upper layer pad has a touch pad and the lower layer When the sheet pad 18 has two touch panels, the input device can simultaneously detect two touch positions, and when the upper sheet cassette 17 and the lower sheet sheet 18 each have two touch panels, the input device can simultaneously Detect four touch positions. Therefore, the input device with the resistive touch panel of the other embodiment of the present invention can reduce power consumption and detect a touch position at high speed. In addition, the input device can simultaneously detect two or more touches. Figure 12 is a diagram showing the input device of the resistive touch panel of Figure 3, Figure 5 and Figure 9 with its sampled clock signal generator 60 and delay measuring device 34 201023019 ^ wr/pif 7〇 Exemplary Embodiments The functions of the blocks shown in Fig. 12 are as follows: The sampling clock signal generator 65 can change the pulse width of the sampling clock signal elk according to the control code code output from the delay measuring device 75, and rotate the sampling. Clock signal elk.

❹ 延遲量測器75接收一延遲節點A之訊號dk一d,並且 決定該取樣時脈訊號elk是否經由延遲節點a而被傳送到 延遲量測器75。依據決定的結果’延遲量測器75改變控 制碼code並且輸出對應於控制碼code之延遲差異td。 延遲量測器75之訊號偵測器76可接收延遲節點a之 訊號clk_d、決定取樣時脈訊號elk是否經由延遲節點A而 被傳送並且依據決定的結果而輸出一偵測訊號det。 延遲量測器75之控制器77可依據該偵測訊號det來 改變該控制碼code並且輸出該延遲差異td。更具體來說, 控制器77可改變該控制碼c〇de直到該偵測訊號det指示 是否收到經由延遲節點A而被傳送的取樣時脈訊號dk、 依據該取樣時脈訊號elk經由延遲節點A而被傳送之閘限 值來偵測該控制碼code並且依據對應於此閘限值之控制 碼code而輸出該延遲差異记。 I η在使用如圖12所示另外之示範實施例之取樣時脈訊 號產生器65與延遲量測器75時,本發明另外之示範 例之輸入裝置之操作說明如下。 如上所述,取樣時脈訊號產生器65可依據該控制 code來改變輪出之取樣時脈訊號dk的脈衝寬度。換句話 35 201023019 說,取樣時脈訊號elk具有對應於該控制碼c〇de的脈衝寬 度。 取樣時脈訊號elk是經由觸控面板1〇 (13或16)以及 延遲節點A而輸入至延遲量測器75。取樣時脈訊號dk是 否以時脈訊號的形式而輸入至延遲量測器75,是由取樣時 脈訊號elk的脈衝寬度、觸控面板依據觸控位置而變化的 阻抗以及延遲元件90(例如電容c的電容量)來決定的。此 處,延遲元件90的電容量是固定的’而觸控面板1〇的阻 抗是依據觸控位置來決定的。因此,取樣時脈訊號elk是 ❹ 否以時脈訊號的形式而輸入至延遲量測器75,是由取樣時 脈訊號elk的脈衝寬度來決定的。 在取樣時脈訊號elk的脈衝寬度大於或等於一閘限值 時’取樣時脈訊號elk是以時脈訊號的形式經由延遲節點 A而被傳送到延遲量測器75。反之,在取樣時脈訊號cik 的脈衝寬度小於此閘限值時,由於觸控面板10之阻抗以及 延遲元件90造成的失真,取樣時脈訊號dk不是以時脈訊 號的形式被傳送。換句話說,延遲量測器75之訊號偵測器 馨 76無法偵測到時脈訊號。此閘限值對應於依據觸碰位置變 化之觸控面板之阻抗,也就是說,對應於取樣時脈訊號Clk 與延遲節點A之訊號clk_d之間的延遲差異。 訊號偵測器76可決定該取樣時脈訊號elk是否以時脈 訊號的形式經由延遲節點A而被傳送’並且依據決定的結 果而輸出該貞測訊號det。 在依據該偵測訊號det來改變該控制碼code時,控制 36 201023019 Λ UT / 器77偵測此閘限值並且輸出對應於該控制碼⑺知的延遲 差異td,其中此控制碼c〇de以取樣時脈訊號clk的脈衝寬 度作為此閘限值。控制器77在改變該控制碼c〇de使得取 樣時脈訊號elk的脈衝寬度逐漸從最大值或特定值減小 時,偵測此閘限值、在改變該控制碼code使得取樣時脈訊 號elk的脈衝寬度逐漸從最小值或特定值增加時,偵測此 閘限值或是使用逐次近似法來偵測此閘限值。 ❹ 之後,計算該觸碰位置的座標的實施方式可參考圖3 至圖8的說明而以相同的方式來實施。延迟 Delay detector 75 receives a signal dk-d of delay node A, and determines whether the sample clock signal elk is transmitted to delay detector 75 via delay node a. The delay detector 75 changes the control code code according to the result of the decision and outputs a delay difference td corresponding to the control code code. The signal detector 76 of the delay detector 75 can receive the signal clk_d of the delay node a, determine whether the sample clock signal elk is transmitted via the delay node A, and output a detection signal det according to the determined result. The controller 77 of the delay measurer 75 can change the control code code according to the detection signal det and output the delay difference td. More specifically, the controller 77 can change the control code c〇de until the detection signal det indicates whether the sampling clock signal dk transmitted via the delay node A is received, according to the sampling clock signal elk via the delay node. A is transmitted by the threshold to detect the control code code and output the delay difference according to the control code code corresponding to the threshold. I η When using the sampling clock signal generator 65 and the delay measuring device 75 of another exemplary embodiment as shown in Fig. 12, the operation of the input device of another exemplary embodiment of the present invention will be described below. As described above, the sampling clock signal generator 65 can change the pulse width of the sampled clock signal dk that is rotated according to the control code. In other words 35 201023019, the sampling clock signal elk has a pulse width corresponding to the control code c〇de. The sampling clock signal elk is input to the delay measuring device 75 via the touch panel 1 (13 or 16) and the delay node A. The sampling clock signal dk is input to the delay measuring device 75 in the form of a clock signal, which is a pulse width of the sampling clock signal elk, an impedance of the touch panel according to the touch position, and a delay element 90 (for example, a capacitor) The capacity of c) is determined. Here, the capacitance of the delay element 90 is fixed' and the impedance of the touch panel 1 is determined according to the touch position. Therefore, whether the sampling clock signal elk is input to the delay measuring device 75 in the form of a clock signal is determined by the pulse width of the sampling clock signal elk. When the pulse width of the sampling clock signal elk is greater than or equal to a threshold value, the sampling clock signal elk is transmitted to the delay measuring device 75 via the delay node A in the form of a clock signal. On the other hand, when the pulse width of the sampling clock signal cik is less than the threshold value, the sampling clock signal dk is not transmitted in the form of a clock signal due to the impedance of the touch panel 10 and the distortion caused by the delay element 90. In other words, the signal detector of the delay detector 75 cannot detect the clock signal. The threshold value corresponds to the impedance of the touch panel according to the touch position change, that is, the delay difference between the sampling clock signal Clk and the signal clk_d of the delay node A. The signal detector 76 determines whether the sampling clock signal elk is transmitted in the form of a clock signal via the delay node A and outputs the signal tet according to the determined result. When the control code code is changed according to the detection signal det, the control 36 201023019 UT UT / 77 detects the threshold value and outputs a delay difference td corresponding to the control code (7), wherein the control code c〇de The pulse width of the sampling clock signal clk is taken as the threshold value. When the controller 77 changes the control code c〇de such that the pulse width of the sampling clock signal elk gradually decreases from the maximum value or the specific value, the threshold value is detected, and the control code code is changed to sample the clock signal elk. When the pulse width gradually increases from the minimum or a specific value, the threshold is detected or a successive approximation is used to detect the threshold. After that, the embodiment of calculating the coordinates of the touch position can be implemented in the same manner with reference to the description of FIGS. 3 to 8.

更具體來說,使用圖12所示另外之實施例之取樣時 脈訊號產生器65以及延遲量測器75時,取樣時脈訊號dk 之脈衝寬度被改變以債測該取樣時脈訊號clk與延遲節點 A之訊號elk一d之間的延遲差異,使用此延遲差異來計算 觸控面板10之依據觸碰位置而變化的阻抗,因而可計算該 觸碰位置的座標。 X 綜上所述,本發明之示範實施例之具有電阻式觸控面 © 板之輸入裝置以及用於此輸入裝置之計算觸碰位置之方法 可實現功率消耗的減小以及高速的操作。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内’當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1缚示一種具有電阻式觸控面板之傳統輸入裝置之 37 201023019 jXO*t/yil 組成。 ,用以說明圖1之傳統輸入裝置 圖2是—等效電路圖 之操作。 ⑼^^不依據本發明之示範實施例之具有電阻式觸控 面板之輪出裴置之組成。 μ ^4疋—等效電路圖’用以說明® 3之依本發明之示 範實施例之輪入裝置之操作。 參 圖5綠不了本發明另外之示範實施例之具有電阻式觸 控面板之輸入装置的組成。 圖6繪不了圖5之依據本發明另外之示範實施例之具 有電阻式觸控面板之輸人裝置之上層薄片塾以說明此輸入 裝置之操作。 圖7繪示了圖5之依據本發明另外之示範實施例之具 有電阻式觸控面板之輸入裝置之下層薄片墊以說明此輸入 裝置之操作。 圖8是一等效電路圖,用以說明圖5之依本發明另外 之示範實施例之輸入裝置之操作。 ❹ 圖9緣示了本發明另外之示範實施例之具有電阻式觸 控面板之輸入裝置的組成。 圖10與圖11分別繪示圖9之依據本發明另外之示範 實施例之輸入裝置之觸控面板之上層薄片墊與下層薄片 塾。 圖12繪示了圖3、圖5以及圖9之具有電阻式觸空面 板之輸入裝置,其取樣時脈訊號產生器以及延遲量測器另 38 201023019 ^ x o-r / px/ 外之示範實施例。 【主要元件符號說明】 10、13、16 :觸控面板 1卜14、17 :上層薄片墊 U1、112、12卜 122、15 卜 152、153、154、al〜an、 cl〜cn、bl〜bm、dl〜dm :電極 15、18:下層薄片墊 魯 141 :輸出電極 21、51、53、57 :第一開關 22 ' 52、58 ··第二開關 23 :第三開關 3〇 :電源供應器 40 =電壓量測器 T ·觸碰位置 R1A、RIB、R2A、R2B、R1T、R2T、R3T、R4T、 RiT、Rs:等效阻抗 60、65 :取樣時脈訊號產生器 70、75 :延遲量測器 71 ··延遲脈衝輸出單元 72 :比較器 76 :訊號偵測器 T7 :控制器 80、81、82 :座標計算器 90 :延遲元件 39 201023019 J io*t /pixMore specifically, when the sampling clock signal generator 65 and the delay measuring device 75 of the other embodiment shown in FIG. 12 are used, the pulse width of the sampling clock signal dk is changed to measure the sampling clock signal clk and The delay difference between the signal elk-d of the node A is delayed, and the delay difference is used to calculate the impedance of the touch panel 10 according to the touch position, so that the coordinates of the touch position can be calculated. In summary, the input device having the resistive touch surface of the exemplary embodiment of the present invention and the method for calculating the touch position of the input device can achieve reduction in power consumption and high speed operation. The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any one of ordinary skill in the art can make a few changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a combination of a conventional input device having a resistive touch panel, 37 201023019 jXO*t/yil. For explaining the conventional input device of Fig. 1, Fig. 2 is the operation of the equivalent circuit diagram. (9) ^^ The composition of the wheel-out device having the resistive touch panel according to the exemplary embodiment of the present invention. The μ^4疋-equivalent circuit diagram' is used to illustrate the operation of the wheeling device of the exemplary embodiment of the present invention. Figure 5 illustrates the composition of an input device having a resistive touch panel of another exemplary embodiment of the present invention. FIG. 6 illustrates the operation of the input device of the input device of FIG. 5 in accordance with another exemplary embodiment of the present invention with a resistive touch panel. FIG. 7 illustrates the operation of the input device of FIG. 5 in accordance with another exemplary embodiment of the present invention with an input device underlying lamella pad having a resistive touch panel. Figure 8 is an equivalent circuit diagram for explaining the operation of the input device of Figure 5 in accordance with another exemplary embodiment of the present invention. ❹ Figure 9 illustrates the composition of an input device having a resistive touch panel in accordance with another exemplary embodiment of the present invention. 10 and FIG. 11 respectively illustrate an upper layer of a touch panel and a lower layer of the touch panel of the input device of FIG. 9 according to another exemplary embodiment of the present invention. 12 illustrates an exemplary embodiment of the input device with the resistive touch panel of FIG. 3, FIG. 5, and FIG. 9 sampling the clock signal generator and the delay detector 38 201023019 ^x or /px/ . [Main component symbol description] 10, 13, 16: touch panel 1 Bu 14, 17: upper foil pad U1, 112, 12 122, 15 152, 153, 154, al~an, cl~cn, bl~ Bm, dl~dm: electrodes 15, 18: lower sheet mat 141: output electrodes 21, 51, 53, 57: first switch 22' 52, 58 · second switch 23: third switch 3 〇: power supply 40 = voltage measuring device T · touch position R1A, RIB, R2A, R2B, R1T, R2T, R3T, R4T, RiT, Rs: equivalent impedance 60, 65: sampling clock signal generator 70, 75: delay Measurer 71 · Delay pulse output unit 72: Comparator 76: Signal detector T7: Controller 80, 81, 82: Coordinate calculator 90: Delay element 39 201023019 J io*t /pix

Ra、Rb :電阻 C :電容 elk :取樣時脈訊號 clk_d :延遲節點之訊號 td :延遲差異 pclk_d :脈衝訊號 CV :座標 A:延遲節點Ra, Rb: resistance C: capacitance elk: sampling clock signal clk_d: delay node signal td: delay difference pclk_d: pulse signal CV: coordinate A: delay node

Pyl、Py2···、Ρχΐ、Ρχ2·":觸控板 det :偵測訊號 code :控制碼Pyl, Py2···, Ρχΐ, Ρχ2·": touchpad det: detection signal code : control code

4040

Claims (1)

201023019 ^ XOT / JJlf 七、申锖專利範困: L 一種輸入裝置,包括: 觸控面板’具有多個電極,其中各電極與—觸碰位 置之間的阻抗依據該觸碰位置而變化; =取,時脈訊號產生器,用以輸出—取樣時脈訊號; 第開關,用以依序施以該取樣時脈訊號予部分之 該些電極; Φ 、延遲元件,用以延遲一延遲節點之訊號,該延遲節 點連結該些電極之至少一電極; 一延遲量測器,用以量測並且輸出該延遲節點之該訊 號與該取樣時脈訊號之間的延遲差異;以及 一座標計算器,用以接收該延遲量測器輸出之延遲差 異並且計算該觸碰位置之座標。 2. 如申請專利範圍第1項所述之輸入裝置,其中該延 遲元件包括一電容,連接於該延遲節點與接地電壓之間, 該延遲節點之該訊號被該觸控面板之一阻抗與該電容的電 ® 容量所延遲’該阻抗為被施予該取樣時脈訊號之電極與連 接該延遲節點之電極兩者間的阻抗。 3. 如申請專利範圍第1項所述之輸入裝置,其中該延 遲量測器包括: 一延遲脈衝輸出單元,用以偵測該延遲節點之該訊號 之準位並且輸出一脈衝訊號;以及 一比較器,用以接收該脈衝訊號與該取樣時脈訊號, 量測該脈衝訊號與該取樣時脈訊號之間的延遲差異,並且 201023019 J JlOt/pti 輸出該延遲差異作為該延遲節點之該訊號與該取樣時脈訊 號之間的延遲差異》 4.如申請專利範圍第i項所述之輸入裝置,其中該延 遲量測器包括: 一訊號偵測器,用以決定該取樣時脈訊號是否透過該 延遲節點而輸入至該延遲量測器,並且依據決定的結果來 輸出一偵測訊號;以及 一控制器,用以依據該偵測訊號來改變一控制碼直到 該取樣時脈訊號之一脈衝寬度成為一閘限值,並且依據該 ❹ 取樣時脈訊號之該脈衝寬度成為該閘限值時之該控制碼, 輸出一延遲差異作為該延遲節點之該訊號與該取樣時脈訊 號之間的延遲差異, 其中該取樣時脈訊號產生器依據該控制碼來改變輸 出之取樣時脈訊號的脈衝寬度。 5·如申請專利範圍第1項所述之輸入裝置’其中該觸 控面板包括: 一第一薄片墊,具有一第一電極與一第二電極,向第 ⑩ 一方向置於該第一薄片墊之兩端;以及 一第二薄片墊,具有一第三電極與一第四電極,向垂 直於該第一方向之第二方向而置於該第二薄片墊之兩端。 6.如申請專利範圍第5項所述之輸入裝置,更包括一 第二開關,在該第一開關施以該取樣時脈訊號予該第一電 極時,該第二開關依序將該第三電極及該第四電極與該延 遲節點作連接,在該第一開關施以該取樣時脈訊號予該第 42 201023019 χ «j-γ / 三電極時,該第二開關依序將該第一電極及該第二電極與 該延遲節點作連接, 其中該第一開關依序施以該取樣時脈訊號予該第一 電極與該第三電極。 7. 如申明專利範圍第6項所述之輸入裝置,其中該第 二開關,在該第一開關施以該取樣時脈訊號予該第一電極 時,另外將該第二電極與該延遲節點作連接,在該第一開 關施以該取樣時脈訊號予該第三電極時,另外將該第四電 ® 極與該延遲節點作連接。 8. 如申請專利範圍第7項所述之輸入裝置,其中該第 二開關在該觸控面板未受觸碰時,另外將該第二電極或該 第四電極與該延遲節點作連接。 9. 如申請專利範圍第7項所述之輸入裝置,其中該延 遲量測器’在該第一開關施以該取樣時脈訊號予該第一電 極且該第一開關連接該第三電極與該延遲節點時,量測此 時之延遲差異並且作為一第一延遲差異而輸出至該座標計 ⑩ 算器’在該第一開關施以該取樣時脈訊號予該第一電極且 該第二開關連接該第四電極與該延遲節點時,量測此時之 延遲差異並且作為一第二延遲差異而輸出至該座標計算 器,在該第一開關施以該取樣時脈訊號予該第三電極且該 第一開關連接該第一電極與該延遲節點時’量測此時之延 遲差異並且作為一第三延遲差異而輸出至該座標計算器, 在該第一開關施以該取樣時脈訊號予該第三電極且該第二 開關連接該第二電極與該延遲節點時,量測此時之延遲差 43 201023019 X \j—I / 異並且作為一第四延遲差異而輸出至該座標計算器,在該 第一開關施以該取樣時脈訊號予該第一電極且該第二開關 連接該第二電極與該延遲節點時,量測此時之延遲差異並 且作為一第五延遲差異而輸出至該座標計算器’在該第一 開關施以該取樣時脈訊號予該第三電極且該第二開關連接 該第四電極與該延遲節點時,量測此時之延遲差異並且作 為一第六延遲差異而輸出至該座標計算器。 10. 如申請專利範圍第9項所述之輸入裝置,其中該 延遲量測器在該觸控面板未受觸碰時,量測並輸出該第五 Θ 與該第六延遲差異。 11. 如申请專利範圍第9項所述之輸入裝置,其中該 座標計算器接收該第一至該第六延遲差異,計算該第一至 該第四電極各自與該觸碰位置之間的阻抗,並且計算該觸 碰位置之座標。 12. 如申請專利範圍第u項所述之輸入裝置,其中該 座標計算器計算該第一延遲差異與該第二延遲差異之間的 一第一差異,以及該第三延遲差異與該第四延遲差異之間 · 的一第二差異,分別將該第一差異與該第二差異除以該第 五與該第六延遲差異’並且計算該些阻抗。 13. 如申請專利範圍第9項所述之輸入裝置,其中該 座標計算器在該第一至該第四延遲差異為一特定值或超過 該特定值時’決定該觸控面板未受觸碰。 14. 如申請專利範圍第6項所述之輸入裝置,更包括: 一第一電阻’連接在該第一開關與該取樣時脈訊號產 44 201023019 W A W f 卜A丄 生器之間;以及 一第二電阻,連接在該第二開關與該延遲節點之間。 一 15.如申請專利範圍第14項所述之輸入裝置,其中該 第一與該第二電阻之材質與該第一與該第二薄片墊相同。 16.如申請專利範圍第1項所述之輸入裝置,其中該 觸控面板包括: 四角形第一薄片墊,具有一輸出電極,其形成於該 ❹ 四角形第—薄丨墊之-邊;以及 一四角形第二薄片墊,具有第一至第四電極,其形成 於該四角形第二薄片墊之四個角落, 其中該輪出電極連接該延遲節點。 17·如申請專利範圍第16項所述之輸入裝置,其中該 第一開關依序施以該取樣時脈訊號予該第一至該第四電 極。 18·如申請專利範圍第Π項所述之輸入裝置,其中該 %遲#測器’量測在該第一開關施以該取樣時脈訊號予該 ® 第一電極時之延遲差異並作為一第一延遲差異而輸出至該 座標計算器’量測在該第一開關施以該取樣時脈訊號予該 第二電極時之延遲差異並作為一第二延遲差異而輸出至該 座標計算器,量測在該第一開關施以該取樣時脈訊號予該 第三電極時之延遲差異並作為一第三延遲差異而輪出至該 座標計算器,量測在該第一開關施以該取樣時脈訊號予該 第四電極時之延遲差異並作為一第四延遲差異而輪出至該 座標計算器。 w 45 201023019 x wr I ^/xx 19. 如申請專利範圍第18項所述之輸入裝置其中該 座標計算器接收該第一至該第四延遲差異,計算該第一至 該第四電極各別與該觸碰位置之間的阻抗,並且計算該觸 碰位置之座標。 20. 如申請專利範圍第19項所述之輸入裝置,其中該 座標計算器計算該第一至該第四延遲差異之間的差異,將 所計算之差異兩兩相除,並且計算該些阻抗。 21. 如申請專利範圍第18項所述之輸入裝置,其中該 座標計算器在該第一至第四延遲差異為一特定值或超過該 參 特定值時’決定該觸控面板未受觸碰。 22. 如申請專利範圍第17項所述之輸入裝置,更包 括: 一第一電阻’連接在該第一開關與該取樣時脈訊號產 生器之間;以及 一第二電阻,連接在該第二開關與該延遲節點之間。 23·如申請專利範圍第22項所述之輸入裝置,其中該 第一與該第二電阻之材質與該第一與該第二薄片墊相同。 ❿ 24.如申請專利範圍第丨項所述之輸入裝置,其中該 觸控面板包括: 一第一薄片墊’具有向第一方向延伸之多個第一觸控 板,該些第一觸控板置於垂直該第一方向之第二方向,各 第一觸控板兩端連接於該些電極中對應之電極;以及 一第二薄片墊’具有向該第二方向延伸之多個第二觸 控板,該些第二觸控板置於該第一方向,各第二觸控板兩 46 201023019 ·/ X U~T / MJil 端連接於該些電極中對應之電極。 25.如申請專利範圍第24項所述之輸入裝置,更包括 一第二開關,在該第一開關施以該取樣時脈訊號予連接該 些第一觸控板其中之一之一端之電極時,該第二開關依序 將連接於該些第二觸控板兩端之電極與該延遲節點作連 接’在該第一開關施以該取樣時脈訊號予連接該些第二觸 控板其中之一之一端之電極時,該第二開關依序將連接於 ©該些第一觸控板兩端之電極與該延遲節點作連接, 其中該第一開關依序施以該取樣時脈訊號予連接該 些第一觸控板其中一端之電極以及連接該些第二觸控板其 中一端之電極。 26.如申請專利範圍第25項所述之輪入裝置,其中該 延遲量測器依據各個情況量測並輸出多種延遲差異,該些 情況為該第一開關施以該取樣時脈訊號予連接該些第一或 第二觸控板其中之一之一端之電極且該第二開關將該第一 或第二觸控板的兩端與該延遲節點作連接時。 座標計算器接㈣些延遲差異,計算各電極與該觸碰位置 之間的阻抗,並計算該觸碰位置之座標。 28.如申請專利範圍第25項所述之輸入裝置,更包 ❹ 27.如申請專利範圍第26項所述之輸入裝置,其中該 括: 一第一電阻, 生器之間;以及 一第二電阻, 連接於該第-開關與該取樣時脈訊號產 連接於該第二開關與該延遲節點之間。 47 201023019 W * u飞丨土 29. 如申請專利範圍第28項所述之輸入裝置,其中該 第一及該第二電阻之材質與該第一及該第二觸控板相同。 30. —種在具有一觸控面板之一輸入裝置中計算一觸 碰位置的方法,該觸控面板具有多個電極,各電極與一觸 碰位置之間的阻抗依據該觸控位置而變化,以及一延遲元 件用以延遲一延遲節點之訊號,該方法包括: 一取樣時脈訊號施予步驟,依序施以一取樣時脈訊號 予部分之該些電極; 一延遲步驟,連接該些電極中之至少一電極於該延遲 響 節點; 一延遲量測步驟’量測該延遲節點之該訊號與該取樣 時脈訊號間的延遲差異;以及 一座標計算步驟’接收該延遲量測步驟之延遲差異, 計算各電極與該觸碰位置之間的阻抗,並計算該觸碰位置 之座標。 31. 如申請專利範圍第30項所述之在具有一觸控面 板之一輸入裝置中計算一觸碰位置的方法,其中該延遲量 測步驟包括: 一延遲脈衝輸出步驟,偵測該延遲節點之該訊號之準 位並輸出一脈衝訊號;以及 一比較步驟,量測該脈衝訊號與該取樣時脈訊號之間 的一延遲差異’並且輸出該延遲差異作為該延遲節點之該 訊號與該取樣時脈訊號之間的延遲差異。 32. 如申請專利範圍第30項所述之在具有一觸控面 48 201023019 A 板之一輸入裝置中計算一觸碰位置的方法’其中該延遲量 測步驟包括: 一訊號偵測步驟,決定該取樣時脈訊號是否經由該延 遲節點而輸入至一延遲量測器’並依據決定的結果輸出一 偵測訊號;以及 一控制步驟,依據該偵測訊號來改變一控制碼直到該 取樣時脈訊號之一脈衝寬度成為一閘限值’並且在該取樣 時脈訊號之該脈衝寬度成為該閘限值時,輸出對應於該控 制碼之一延遲差異作為該延遲郎點之該訊號與該取樣時脈 訊號之間的延遲差異, 其中該取樣時脈訊號施予步驟包括依據該控制碼來 改變輸出之取樣時脈訊號之脈衝寬度。 33.如申請專利範圍第30項所述之在具有一觸控面 板之一輸入裝置中計算一觸碰位置的方法,其中該觸控面 板具有一第一薄片墊,該第一薄片墊兩端向第一方向置有 一第一與一第二電極;以及一第二薄片墊,該第二薄片墊 〇 兩端向垂直於該第一方向之第二方向置有一第三與一第四 電極’該取樣時脈訊號施予步驟包括依序施以該取樣時脈 - 訊號予該第一與該第三電極,而該延遲步驟包括在該取樣 時脈訊號被施予該第一電極時,依序連接該第三與該第四 電極於該延遲節點,在該取樣時脈訊號被施予該第三電極 時,依序連接該第一與該第二電極於該延遲節點。 34·如申請專利範圍第33項所述之在具有一觸控面 板之一輸入裝置中計算一觸碰位置的方法,其中該延遲步 49 201023019 x \j-t I 驟更包括在該取樣時脈訊號被施予該第一電極時,另外將 該第二,極與該延遲節點作連接,在該取樣時脈訊號被施 予該第二電極時,另外將該第四電極與該延遲節點作連接。 35.申請專利範圍第34項所述之在具有一觸控面板 之一輸入裝置中計算一觸碰位置的方法,其中該延遲量測 步驟包括在該取樣時脈訊號被施予該第一電極且該第三電 極連接於該延遲節點時,量測並且輸出此時之延遲差異作 為一第一延遲差異,在該取樣時脈訊號被施予該第一電極 且該第四電極連接於該延遲節點時,量測並且輸出此時之 ❹ 延遲差異作為-第二延遲差異,在該取樣時脈訊號被施予 該第二電極且該第一電極連接於該延遲節點時量測並且 輸出此時之延遲差異作為-第三延遲差異,在該取樣時脈 訊號被施予該第三電極且該第二電極連接於該延遲節點 時,量測並且輸出此時之延遲差異作為一第四延遲差異, 在該取樣時脈訊號被施予該第一電極且該第二電極連接於 該延遲節點時,量測並且輪出此時之延遲差異作為一第五 延遲差異,在該取樣時脈訊號被施予該第三電極且該第四 ❹ 電極連接於該延遲節點時,量測並且輸出此時之延遲差異 作為一第六延遲差異。 36·申請專利範圍第35項所述之在具有一觸控面板 之一輸入裝置中計算一觸碰位置的方法,其中該座標計算 步驟包括: 一差異計算步驟,從該第一延遲差異減去該第二延遲 差異以計算一第一差異,以及從該第三延遲差異減去該第 50 201023019 λ. \J~r I l/jlL· 四延遲差異以計算一第二差異; 一比值計算步驟,將該第一差異除以該第五延遲差異 以計算第一比值,以及將該第二差異除以該第六延遲差異 以計算第二比值; 一阻抗計算步驟,使用該第一與該第二比值來計算該 第一至該第四電極分別與該觸碰位置之間的阻抗;以及 一座標值計算步驟,使用該些阻抗來計算該觸碰位置 的座標。 © i 37. 申請專利範圍第30項所述之在具有一觸控面板 之一輸入裝置中計算一觸碰位置的方法,其中該觸控面板 具有一四角形第一薄片墊,一輸出電極形成於該四角形第 一薄片墊之一邊;以及一四角形第二薄片墊,第一至第四 電極形成於該四角形第二薄片墊之四個角落,該取樣時脈 訊號施予步驟包括依序將該取樣時脈訊號施予該第一至該 第四電極,而該座標計算步驟包括接收該些延遲差異,計 算該第一至該第四電極分別與該觸碰位置之間的阻抗,並 © 且計算該觸碰位置之座標。 38. 申請專利範圍帛37 #所述之在具有一觸控面板 之輸入裝置中计算一觸碰位置的方法,其中該延遲量測 步驟包括在該取樣時脈訊號被施予該第一電極時量測並 iff此時之延遲差異作為一第—延遲差異,在該取樣時 二炎被施予該第二電極時’量職且輸出此時之延遲差 雷搞《I ΐ一延遲差異,在該取樣時脈訊號被施予該第三 時,量測並且輸出此時之延遲差異作為一第三延遲差 51 201023019 ^ 1 U~T I 異,在該取樣時脈訊號被施予該第四電極時,量測並且 出此時之延遲差異作為一第四延遲差異。 J 39.申請專利範圍第38項所述之在具有一觸控面板 之一輸入裝置中計算一觸碰位置的方法,其中該座標計算 步驟包括: 一差異計算步驟,計算該第一至該第四延遲差異之間 的多個差異; ' β 一比值計算步驟,將該些差異兩兩相除以計算該些差 異之間的多個比值; 參 一阻抗計算步驟,使用該些比值來計算該第一至該第 四電極分別與該觸碰位置之間的阻抗;以及 一座標值計算步驟,使用該些阻抗來計算該觸碰位置 的座標》201023019 ^ XOT / JJlf VII. Application for patents: L An input device comprising: a touch panel having a plurality of electrodes, wherein the impedance between each electrode and the touch position varies according to the touch position; Taking a clock signal generator for outputting a sampling clock signal; a switch for sequentially applying the sampling clock signal to a portion of the electrodes; Φ and a delay element for delaying a delay node a delay node connecting at least one of the electrodes; a delay measuring device for measuring and outputting a delay difference between the signal of the delay node and the sampling clock signal; and a calibration calculator And receiving a delay difference of the delay detector output and calculating a coordinate of the touch position. 2. The input device of claim 1, wherein the delay element comprises a capacitor connected between the delay node and a ground voltage, the signal of the delay node being impedanced by the touch panel The electrical capacity of the capacitor is delayed by 'the impedance is the impedance between the electrode to which the sampling pulse signal is applied and the electrode to which the delay node is connected. 3. The input device of claim 1, wherein the delay measuring device comprises: a delay pulse output unit for detecting a level of the signal of the delay node and outputting a pulse signal; and a comparator for receiving the pulse signal and the sampling clock signal, measuring a delay difference between the pulse signal and the sampling clock signal, and 201023019 J JlOt/pti outputting the delay difference as the signal of the delay node The difference between the delay and the sampling of the sampling signal. 4. The input device of claim i, wherein the delay measuring device comprises: a signal detector for determining whether the sampling clock signal is Inputting to the delay detector through the delay node, and outputting a detection signal according to the determined result; and a controller for changing a control code according to the detection signal until one of the sampling clock signals The pulse width becomes a threshold value, and a delay difference is output according to the control code when the pulse width of the sampling pulse signal becomes the threshold value. Delay difference between the nodes delay the clock signal when the sample number for inquiry, wherein when the sampling clock signal generator according to the control code to change the pulse width of the output sampling clock signal. 5. The input device of claim 1, wherein the touch panel comprises: a first wafer pad having a first electrode and a second electrode, the first sheet being placed in a 10th direction And a second wafer pad having a third electrode and a fourth electrode disposed at opposite ends of the second wafer pad in a second direction perpendicular to the first direction. 6. The input device of claim 5, further comprising a second switch, wherein when the first switch applies the sampling pulse signal to the first electrode, the second switch sequentially The third electrode and the fourth electrode are connected to the delay node, and when the first switch applies the sampling clock signal to the 42th 201023019 χ «j-γ / three electrodes, the second switch sequentially An electrode and the second electrode are connected to the delay node, wherein the first switch sequentially applies the sampling clock signal to the first electrode and the third electrode. 7. The input device of claim 6, wherein the second switch, when the first switch applies the sampling pulse signal to the first electrode, additionally using the second electrode and the delay node For connection, when the first switch applies the sampling clock signal to the third electrode, the fourth electrode is further connected to the delay node. 8. The input device of claim 7, wherein the second switch further connects the second electrode or the fourth electrode to the delay node when the touch panel is not touched. 9. The input device of claim 7, wherein the delay detector 'the pulse is given to the first electrode when the first switch is applied and the third electrode is connected to the third electrode When the node is delayed, the delay difference at this time is measured and output to the coordinate meter as a first delay difference. The pulse is given to the first electrode and the second is applied to the first switch. When the switch connects the fourth electrode and the delay node, measuring the difference in delay at this time and outputting to the coordinate calculator as a second delay difference, and applying the sampling clock signal to the third switch at the first switch And measuring the delay difference at the time when the first switch is connected to the first electrode and the delay node, and outputting to the coordinate calculator as a third delay difference, applying the sampling clock to the first switch When the signal is applied to the third electrode and the second switch is connected to the second electrode and the delay node, the delay difference 43 201023019 X \j−I / is measured at this time and is output to the coordinate as a fourth delay difference. Calculation And when the first switch applies the sampling clock signal to the first electrode and the second switch connects the second electrode to the delay node, measuring a delay difference at this time and outputting as a fifth delay difference When the first switch applies the sampling clock signal to the third electrode and the second switch connects the fourth electrode to the delay node, measuring the delay difference at this time and as a first The six delay differences are output to the coordinate calculator. 10. The input device of claim 9, wherein the delay measuring device measures and outputs the fifth Θ and the sixth delay difference when the touch panel is not touched. 11. The input device of claim 9, wherein the coordinate calculator receives the first to the sixth delay difference, and calculates an impedance between each of the first to fourth electrodes and the touch position And calculate the coordinates of the touch location. 12. The input device of claim 5, wherein the coordinate calculator calculates a first difference between the first delay difference and the second delay difference, and the third delay difference and the fourth A second difference between the delay differences is respectively divided by the first difference and the second difference by the fifth and the sixth delay difference' and the impedances are calculated. 13. The input device of claim 9, wherein the coordinate calculator determines that the touch panel is not touched when the first to the fourth delay difference is a specific value or exceeds the specific value. . 14. The input device as claimed in claim 6, further comprising: a first resistor s connected between the first switch and the sampling clock signal 44 201023019 WAW f A burner; A second resistor is coupled between the second switch and the delay node. The input device of claim 14, wherein the material of the first and second resistors is the same as the first and second sheet pads. The input device of claim 1, wherein the touch panel comprises: a quadrangular first wafer pad having an output electrode formed on an edge of the ❹-shaped quadrangle pad; and a The quadrangular second wafer pad has first to fourth electrodes formed at four corners of the quadrangular second foil pad, wherein the wheel electrode is connected to the delay node. The input device of claim 16, wherein the first switch sequentially applies the sampling clock signal to the first to the fourth electrodes. 18. The input device of claim 2, wherein the %#detector' measures a delay difference when the first switch applies the sampling pulse signal to the first electrode and acts as a a first delay difference is output to the coordinate calculator ′ to measure a delay difference when the first switch applies the sampling clock signal to the second electrode, and output to the coordinate calculator as a second delay difference, Measuring a delay difference when the first switch applies the sampling clock signal to the third electrode and rotating to the coordinate calculator as a third delay difference, and measuring the sampling at the first switch The delay difference of the clock signal to the fourth electrode is rotated to the coordinate calculator as a fourth delay difference. w 45 201023019 x wr I ^/xx 19. The input device according to claim 18, wherein the coordinate calculator receives the first to the fourth delay difference, and calculates the first to the fourth electrode respectively The impedance between the touched position and the coordinates of the touched position are calculated. 20. The input device of claim 19, wherein the coordinate calculator calculates a difference between the first to the fourth delay differences, divides the calculated differences by two, and calculates the impedances . 21. The input device of claim 18, wherein the coordinate calculator determines that the touch panel is not touched when the first to fourth delay differences are a specific value or exceeds the specific value of the parameter . 22. The input device of claim 17, further comprising: a first resistor 'connected between the first switch and the sampling clock signal generator; and a second resistor coupled to the first The second switch is between the delay node. The input device of claim 22, wherein the material of the first and second resistors is the same as the first and second sheet pads. The input device of claim 2, wherein the touch panel comprises: a first wafer pad having a plurality of first touch panels extending in a first direction, the first touches The board is placed in a second direction perpendicular to the first direction, each of the first touch panels is connected to a corresponding one of the electrodes; and a second wafer pad has a plurality of second extending in the second direction The touchpads are disposed in the first direction, and the second touchpads 46 4623023019 · / XU~T / MJil ends are connected to corresponding ones of the electrodes. The input device of claim 24, further comprising a second switch, wherein the first switch applies the pulse signal to the electrode connected to one of the first touch panels The second switch sequentially connects the electrodes connected to the two ends of the second touch panels to the delay node. The first switch applies the sampling clock signal to the second touch panels. When the electrode is turned on, the second switch sequentially connects the electrodes connected to the two ends of the first touch panel to the delay node, wherein the first switch sequentially applies the sampling clock. The signal is connected to an electrode at one end of the first touch panels and an electrode connected to one end of the second touch panels. 26. The wheel-in device of claim 25, wherein the delay meter measures and outputs a plurality of delay differences according to respective conditions, wherein the first switch applies the sampling clock signal to the first switch. An electrode of one of the first or second touch panels and the second switch connects the two ends of the first or second touch panel to the delay node. The coordinate calculator connects (4) some delay differences, calculates the impedance between each electrode and the touch position, and calculates the coordinates of the touch position. 28. The input device of claim 25, further comprising: the input device of claim 26, wherein: the first resistor, the live device; and the first And a second resistor connected to the first switch and the sampling clock signal is connected between the second switch and the delay node. The input device of claim 28, wherein the materials of the first and second resistors are the same as the first and second touch panels. 30. A method for calculating a touch position in an input device having a touch panel, the touch panel having a plurality of electrodes, and an impedance between each electrode and a touch position varies according to the touch position And a delay element for delaying the signal of a delay node, the method comprising: a sampling clock signal applying step, sequentially applying a sampling clock signal to the portion of the electrodes; and a delay step connecting the At least one of the electrodes is at the delay ringing node; a delay measuring step 'measuring a difference in delay between the signal of the delay node and the sampling clock signal; and a standard calculating step 'receiving the delay measuring step Delay difference, calculate the impedance between each electrode and the touch position, and calculate the coordinates of the touch position. 31. A method for calculating a touch position in an input device having a touch panel as described in claim 30, wherein the delay measurement step comprises: a delay pulse output step detecting the delay node a signal of the signal and outputting a pulse signal; and a comparing step of measuring a delay difference between the pulse signal and the sampling clock signal and outputting the delay difference as the signal of the delay node and the sampling The difference in delay between clock signals. 32. The method for calculating a touch position in an input device having a touch surface 48 201023019 A board as described in claim 30, wherein the delay measurement step comprises: a signal detection step, determining Whether the sampling clock signal is input to a delay measuring device via the delay node and outputting a detecting signal according to the determined result; and a control step of changing a control code according to the detecting signal until the sampling clock One of the pulse widths of the signal becomes a threshold value 'and when the pulse width of the pulse signal becomes the threshold value, the signal corresponding to one of the delay codes of the control code is output as the delay point and the sampling The delay difference between the clock signals, wherein the sampling clock signal applying step comprises changing the pulse width of the output sampling clock signal according to the control code. 33. A method for calculating a touch position in an input device having a touch panel as described in claim 30, wherein the touch panel has a first wafer pad, and the first wafer pad has two ends a first electrode and a second electrode are disposed in a first direction; and a second pad is disposed, and a third and a fourth electrode are disposed at opposite ends of the second wafer pad in a second direction perpendicular to the first direction The sampling clock signal applying step includes sequentially applying the sampling clock signal to the first electrode and the third electrode, and the delaying step comprises: when the sampling pulse signal is applied to the first electrode, And connecting the third electrode and the fourth electrode to the delay node, and sequentially connecting the first electrode and the second electrode to the delay node when the sampling pulse signal is applied to the third electrode. 34. The method of calculating a touch position in an input device having a touch panel as described in claim 33, wherein the delay step 49 201023019 x \jt I is further included in the sampling clock signal When the first electrode is applied, the second electrode is further connected to the delay node, and when the sampling signal is applied to the second electrode, the fourth electrode is additionally connected to the delay node. . 35. A method for calculating a touch position in an input device having a touch panel as described in claim 34, wherein the delay measuring step comprises: applying a pulse signal to the first electrode during the sampling And when the third electrode is connected to the delay node, measuring and outputting the delay difference at this time as a first delay difference, wherein the pulse signal is applied to the first electrode and the fourth electrode is connected to the delay At the time of the node, the difference between the delays at this time is measured and output as the second delay difference, and the pulse signal is applied to the second electrode when the sampling is performed and the first electrode is connected to the delay node, and the output is measured. The delay difference is a third delay difference. When the sampling signal is applied to the third electrode and the second electrode is connected to the delay node, the delay difference at the time is measured and output as a fourth delay difference. And when the sampling pulse signal is applied to the first electrode and the second electrode is connected to the delay node, measuring and rotating the delay difference at this time as a fifth delay difference, at the time of sampling When the pulse signal is applied to the third electrode and the fourth 电极 electrode is connected to the delay node, the difference in delay at this time is measured and output as a sixth delay difference. 36. The method of calculating a touch position in an input device having a touch panel according to claim 35, wherein the coordinate calculation step comprises: a difference calculation step, subtracting from the first delay difference The second delay difference is calculated by calculating a first difference, and subtracting the 50th 201023019 λ. \J~r I l/jlL· four delay difference from the third delay difference to calculate a second difference; a ratio calculation step Dividing the first difference by the fifth delay difference to calculate a first ratio, and dividing the second difference by the sixth delay difference to calculate a second ratio; an impedance calculating step of using the first and the first The second ratio is used to calculate the impedance between the first to the fourth electrodes and the touch position; and a set of value calculation steps are used to calculate the coordinates of the touch position. The method for calculating a touch position in an input device having a touch panel as described in claim 30, wherein the touch panel has a square first wafer pad, and an output electrode is formed on One side of the quadrilateral first sheet mat; and a quadrangular second sheet mat, the first to fourth electrodes are formed at four corners of the quadrangular second sheet mat, and the sampling clock signal applying step comprises sequentially sampling the strip The clock signal is applied to the first to the fourth electrodes, and the coordinate calculation step includes receiving the delay differences, calculating an impedance between the first to the fourth electrodes and the touch position, and calculating The coordinates of the touch location. 38. The method of claiming a touch position in an input device having a touch panel, wherein the delay measuring step comprises: when the sampling pulse signal is applied to the first electrode Measuring and iff delay difference at this time as a first-delay difference, when the second inflammation is applied to the second electrode at the time of sampling, and the delay difference at the output is "I ΐ-delay difference, When the sampling clock signal is applied to the third, the delay difference is measured and output as a third delay difference 51 201023019 ^ 1 U~TI, and the pulse signal is applied to the fourth electrode during the sampling. At the time of measurement, the difference in delay at this time is taken as a fourth delay difference. J 39. The method of calculating a touch position in an input device having a touch panel according to claim 38, wherein the coordinate calculation step comprises: a difference calculation step of calculating the first to the first a plurality of differences between the four delay differences; a β-ratio calculation step of dividing the differences by two to calculate a plurality of ratios between the differences; a reference impedance calculation step of calculating the ratio using the ratios First to fourth impedances of the fourth electrode and the touch position; and a set of value calculation steps for calculating the coordinates of the touch position 5252
TW98124435A 2008-12-15 2009-07-20 Input device comprising resistive touch panel and calculating method of touch position thereof TW201023019A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080127410A KR101007049B1 (en) 2008-12-15 2008-12-15 Input device comprising resistive touch panel and calculating method of touch position thereof

Publications (1)

Publication Number Publication Date
TW201023019A true TW201023019A (en) 2010-06-16

Family

ID=40485985

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98124435A TW201023019A (en) 2008-12-15 2009-07-20 Input device comprising resistive touch panel and calculating method of touch position thereof

Country Status (3)

Country Link
KR (1) KR101007049B1 (en)
TW (1) TW201023019A (en)
WO (1) WO2010071285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257741A (en) * 2012-02-17 2013-08-21 Nlt科技股份有限公司 Touch panel and display device employing the same
US10031633B2 (en) 2013-11-15 2018-07-24 Fujitsu Component Limited Touch panel device and method for controlling touch panel device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940907B1 (en) * 2008-09-04 2010-02-08 영남대학교 산학협력단 Capacitive sensing touch key irrelevant to the resistance and clock frequency and operating method thereof
KR100933037B1 (en) * 2009-04-22 2009-12-21 에이디반도체(주) Resistive touch screen identifying multi-touch coordinates by using charging time of capacitor
KR101103825B1 (en) * 2009-10-19 2012-01-06 주식회사 애트랩 Touch panel is capable of sensing multi-touch and method for sensing multi-touch
KR101119208B1 (en) * 2010-02-26 2012-03-22 쓰리에이로직스(주) Capacitive touch sensor, method thereof, and data processing system having the same
KR101031500B1 (en) * 2010-07-09 2011-04-29 주식회사 켐트로닉스 Apparatus and method for sensing change of capacitance and computer readable record-midium on which program for excuting method thereof, apparatus and method for sensing touch using the same and computer readable record-midium on which program for excuting method thereof
US8725443B2 (en) 2011-01-24 2014-05-13 Microsoft Corporation Latency measurement
US8988087B2 (en) 2011-01-24 2015-03-24 Microsoft Technology Licensing, Llc Touchscreen testing
US8982061B2 (en) 2011-02-12 2015-03-17 Microsoft Technology Licensing, Llc Angular contact geometry
US9542092B2 (en) 2011-02-12 2017-01-10 Microsoft Technology Licensing, Llc Prediction-based touch contact tracking
US8773377B2 (en) 2011-03-04 2014-07-08 Microsoft Corporation Multi-pass touch contact tracking
US8913019B2 (en) 2011-07-14 2014-12-16 Microsoft Corporation Multi-finger detection and component resolution
US9378389B2 (en) 2011-09-09 2016-06-28 Microsoft Technology Licensing, Llc Shared item account selection
US9785281B2 (en) 2011-11-09 2017-10-10 Microsoft Technology Licensing, Llc. Acoustic touch sensitive testing
US8914254B2 (en) 2012-01-31 2014-12-16 Microsoft Corporation Latency measurement
US9317147B2 (en) 2012-10-24 2016-04-19 Microsoft Technology Licensing, Llc. Input testing tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172446A (en) * 1998-12-10 2000-06-23 Ricoh Co Ltd Touch panel interface
US7385593B2 (en) * 2004-02-17 2008-06-10 Trane International Inc. Generating and validating pixel coordinates of a touch screen display
KR101297216B1 (en) * 2006-09-05 2013-08-16 삼성디스플레이 주식회사 Touch panel, touch screen display device having the touch panel and method of manufacturing the same
KR100957836B1 (en) * 2008-06-02 2010-05-14 주식회사 애트랩 Touch panel device and contact position detection method of it
KR100982282B1 (en) * 2008-09-19 2010-09-15 주식회사 애트랩 Sensor, sensing method for the sensor, and filter for the sensor
KR101033997B1 (en) * 2008-11-11 2011-05-11 주식회사 애트랩 Touch panel and input device comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257741A (en) * 2012-02-17 2013-08-21 Nlt科技股份有限公司 Touch panel and display device employing the same
CN103257741B (en) * 2012-02-17 2017-04-12 Nlt科技股份有限公司 Touch panel and display device employing the same
US10031633B2 (en) 2013-11-15 2018-07-24 Fujitsu Component Limited Touch panel device and method for controlling touch panel device

Also Published As

Publication number Publication date
KR101007049B1 (en) 2011-01-12
KR20090003137A (en) 2009-01-09
WO2010071285A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
TW201023019A (en) Input device comprising resistive touch panel and calculating method of touch position thereof
JP4981113B2 (en) Multi-point detection method for capacitive touch panel
JP4932667B2 (en) Screen input type image display system
TWI387908B (en) Device and method for detecting position of object and image display system using the same device
TWI400646B (en) Method for detecting pressure of touch sensing element and electronic device using the same
TW200921485A (en) Touch panel device and method of detecting contact position thereof
US20110157083A1 (en) Resistive touch apparatus
KR20070011224A (en) Anisotropic touch screen element
CN101661361A (en) Multipoint touch detection system
US8624865B2 (en) Device for improving the accuracy of the touch point on a touch panel and a method thereof
CN101661363A (en) Application method for multipoint touch sensing system
CN102681743B (en) Micro impedance change detection device
JP2012514264A (en) Touch screen controller
JP5373134B2 (en) Touch panel structure and position detection method selection method
TW201106220A (en) Touch panel and output method therefor
TW201037584A (en) Posistion apparatus for touch device and posistion method thereof
US20150138152A1 (en) Control unit, sensing device for a capacitive touch panel and method thereof
WO2010059216A1 (en) Method and system for measuring position on surface capacitance touch panel using a flying capacitor
US20150338971A1 (en) Apparatus and Method for Sensing Touch
TW201232368A (en) Testing device for touch panel and capacitance-measure module
JP6661309B2 (en) Touch panel device
US9342203B2 (en) Input apparatus and input method
CN102339190A (en) Method for recognizing two-point touch of resistance touch screen on mobile phone
CN101957703A (en) Resistance type touch detecting system and touch screen thereof
CN101950229B (en) Resistance determining method for capacitive touch screen sensor in diamond structure