TW201022420A - Liquid crystal composite composition and method thereof - Google Patents

Liquid crystal composite composition and method thereof Download PDF

Info

Publication number
TW201022420A
TW201022420A TW97147844A TW97147844A TW201022420A TW 201022420 A TW201022420 A TW 201022420A TW 97147844 A TW97147844 A TW 97147844A TW 97147844 A TW97147844 A TW 97147844A TW 201022420 A TW201022420 A TW 201022420A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
nanoparticle
display device
crystal display
crystal compound
Prior art date
Application number
TW97147844A
Other languages
Chinese (zh)
Other versions
TWI396729B (en
Inventor
Hong-Cheu Lin
Wei-Hong Chen
Ling-Yung Wang
Chieh-Yin Tang
Szu-Fen Chen
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to TW97147844A priority Critical patent/TWI396729B/en
Publication of TW201022420A publication Critical patent/TW201022420A/en
Application granted granted Critical
Publication of TWI396729B publication Critical patent/TWI396729B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

A composition for a liquid crystal composite is provided. The composition comprises a liquid crystal compound and a nanoparticle. The liquid crystal compound is an optical compensated bend (OCB) liquid crystal. The main chain or the side chain of the nanoparticle has at least one acrylic functional group. The nanoparticle is 0.1 to 2 weight% by weight of the liquid crystal composite.

Description

201022420 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種液晶複合物的之成配方,特別是有關 . 於一種光學補償彎曲型的液晶複合物之組成配方。 【先前技術】 近年來,平面顯示器產業之相關技術,如液晶顯示器 (Liquid Crystal Display,LCD)之發展已驅成熟。目前液晶顯 ❹ 示器(LCD)已經被廣泛的使用在各種電子產品上,諸如個人 電腦、筆記型電腦等使用薄膜電晶體顯示器(Thin_Film201022420 VI. Description of the Invention: [Technical Field] The present invention relates to a formulation of a liquid crystal composite, and more particularly to a composition formula of an optically compensated curved liquid crystal composite. [Prior Art] In recent years, the development of related technologies in the flat panel display industry, such as liquid crystal displays (LCDs), has matured. At present, liquid crystal display (LCD) has been widely used in various electronic products, such as a personal computer, a notebook computer, etc., using a thin film transistor display (Thin_Film).

Transistor LCDs,TFT-LCDs)大尺寸產品,或是PDA、語言翻 譯機’手機等使用超扭轉型(Super Twist Nematic,STN)技術的 小尺寸產品都可以看到運用液晶所製造的產品。 僅管液晶顯示器因具有低幅射性以及體積輕薄短小之優 點,但當使用者從不同角度觀看液晶顯示器時,隨著視角的增 加,其對比度(contrast ratio)卻會遞減,而產生視角的限制《除 ® 此之外’目前市面上的液晶顯示裝置之應速度仍稍嫌不足,使 得在動態影像的顯示上常因影像滯留而模糊化。因此,如何增 大液晶顯示器的視角及增快其反應速度,以提昇液晶顯示器的 影像品質,乃是今日業界所致力的課題之一。 為了解決上述問題,一種使用光學補償模式(optically compensated birefringence,0CB)的液晶顯示裝置已被研發出 來’在OCB的操作模式下,其顯示裝置具有高反應速率與寬 視角等優點,因此具有極高的發展性。 201022420 ' 然而,目前市面上的光學補償模式的液晶顯示裝置具有長 期存在的問題。舉例來說,0CB模式在無電場情況下,其液Transistor LCDs, TFT-LCDs) Large-size products, or PDAs, language translators, mobile phones and other small-sized products using Super Twist Nematic (STN) technology can be seen using liquid crystal products. Although the liquid crystal display has the advantages of low radiation and small size and shortness, when the user views the liquid crystal display from different angles, the contrast ratio decreases as the viewing angle increases, and the viewing angle is limited. In addition to ®, the speed of liquid crystal display devices currently on the market is still too small, so that the display of motion pictures is often blurred due to image retention. Therefore, how to increase the viewing angle of the liquid crystal display and increase its response speed to improve the image quality of the liquid crystal display is one of the topics of the industry today. In order to solve the above problems, a liquid crystal display device using optically compensated birefringence (OCC) has been developed. In the OCB operation mode, the display device has a high reaction rate and a wide viewing angle, and thus is extremely high. Developmental. 201022420 'However, the liquid crystal display device of the optical compensation mode currently on the market has a long-term problem. For example, the 0CB mode has no electric field and its liquid

晶分子是平行於面板的輻散態(splaym〇de),而較佳的〇CB .Mode操作情況下,液晶分子必須在其彎曲態(bendm〇de)。為 了實現液晶分子的彎曲排列,每次驅動時都需要-定的預設時 間來讓液晶分子從輻散態扭轉到合適位置的彎曲態,才能正常 工作。 ❿ 詳s之’為了讓液晶分子從輻散態轉態扭轉到合適位置的 彎曲態,其耗費的驅動電壓與其相對的應答速度,會使光學補 償模式的液晶顯示裝置有延滯反應的效果產生。 【發明内容】 有鑑於此,為了解決上述問題,本發明之主要目的係提供 一種液晶複合物的組成配方,其可改善液晶顯示器之應答速 度。 此外,本發明之另一目的在提供一種改善液晶顯示器之應 ❿ 答速度的液晶複合物製造方法。 再者,本發明之另一目的係為提供一種液晶顯示裝置,以 改善習知液晶顯示器之應答速度。 為達到本發明之上述目的,本發明所述液晶複合物的組成 配方,其包括一液晶化合物與一奈米粒子(Nan〇 partical), 其中液晶化合物為光學補償彎曲型液晶化合物(〇CB Hquid crystal),而奈米粒子的主鏈或侧鏈上至少具有一壓克力官能 201022420 ’ 上述發明實施例中’液晶複合物組成配方中的奈米粒子 之含量為0.1〜2 wt% ’其重量百分比係以液晶複合物之重量為 基準。 . 上述發明實施例中,所述的壓克力官能基係為由通式(1) 所代表的結構。 -O-C-C-CHa 通式⑴The crystal molecules are parallel to the splaym〇de of the panel, and in the case of the preferred 〇CB.Mode operation, the liquid crystal molecules must be in their bent state (bendm〇de). In order to realize the curved arrangement of the liquid crystal molecules, it is necessary to set a predetermined time for each liquid crystal molecule to twist the liquid crystal molecules from the divergent state to the bent position at the proper position for the normal operation. ❿ ′′′ In order to make the liquid crystal molecules twist from the divergent state to the bent state at the appropriate position, the cost of the driving voltage and its relative response speed will cause the optical compensation mode liquid crystal display device to have a delayed reaction effect. . SUMMARY OF THE INVENTION In view of the above, in order to solve the above problems, it is a primary object of the present invention to provide a composition formula of a liquid crystal composite which can improve the response speed of a liquid crystal display. Further, another object of the present invention is to provide a liquid crystal composite manufacturing method which improves the response speed of a liquid crystal display. Furthermore, another object of the present invention is to provide a liquid crystal display device for improving the response speed of a conventional liquid crystal display. In order to achieve the above object of the present invention, a composition formula of the liquid crystal composite of the present invention comprises a liquid crystal compound and a nanoparticle, wherein the liquid crystal compound is an optically compensated curved liquid crystal compound (〇CB Hquid crystal) And the nanoparticle has at least one acryl functional group on the main chain or the side chain. 201022420' The content of the nanoparticle in the composition of the liquid crystal composite composition in the above invention example is 0.1 to 2 wt% '% by weight Based on the weight of the liquid crystal composite. In the above embodiment of the invention, the acryl functional group is a structure represented by the formula (1). -O-C-C-CHa Formula (1)

• II ΟΗέ ❹ 上述發明實關巾’奈米粒子係選自由氧化鋅、氧化辞 之何生物、二氧化矽以上二氧化矽之衍生物所組成之群組。 上述發明實施例中,液晶複合物可應用於光學補償彎曲 排列型(OCB)的液晶顯示裝置。 為達到本發明之另—目的,本發爾述液晶複合物的製造 方法’包括以下步驟:首先,混合一液晶化合物與一奈米粒子, 液晶化合物為光學補償液晶化合物,奈米粒子的主鍵或侧鍵上 ❹至少具有一壓克力官能基’其中奈米粒子之含量為〇1〜2 wt%。之後’注人混合後之液晶化合物與奈米粒子於—液晶盒 内。最後,提供-能量使奈米粒子與液晶化合物產生聚合反應。 上述發明實施例中,壓克力官能基係為由通式⑴所代表 的結構。 0 通式(1) Λ II. -O-C-C-GHa• II ΟΗέ ❹ The above invention is a group of nanoparticles selected from the group consisting of zinc oxide, oxidized organisms, and cerium oxide or higher cerium oxide derivatives. In the above embodiments of the invention, the liquid crystal composite can be applied to an optical compensation curved alignment type (OCB) liquid crystal display device. In order to achieve the other object of the present invention, the method for producing a liquid crystal composite of the present invention includes the following steps: first, mixing a liquid crystal compound with one nano particle, the liquid crystal compound is an optical compensation liquid crystal compound, a primary bond of a nano particle or The side button has at least one acryl functional group, wherein the content of the nanoparticles is 〇1 to 2 wt%. After that, the liquid crystal compound and the nano particles are mixed in a liquid crystal cell. Finally, energy is supplied to cause polymerization of the nanoparticle with the liquid crystal compound. In the above embodiment of the invention, the acrylic functional group is a structure represented by the general formula (1). 0 Formula (1) Λ II. -O-C-C-GHa

II CH2 201022420 上述發明實施例中,奈米粒子係選自由氧化鋅、氧化鋅 之衍生物、二氧化矽以上二氧化矽之衍生物所組成之群組。 上述發明實施例中,注入混合後之液晶化合物與奈米粒 子於液晶盒内之方式係為一滴下式注入製程(one dr〇p fming process)或真空毛細現象注入製程。 上述發明實施例中,所述的能量係為一紫外光或一外加 電壓。 為達到本發明之另一目的,本發明所述液晶顯示裝置,包含 一第一基板、一第二基板以及一液晶層。液晶層係設於第一基 板及第二基板之間,且液晶層具有一液晶複合物,其中液晶複 合物係由一液晶化合物與一奈米粒子聚合而成,其中液晶化合 物為光學補償液晶化合物,而奈米粒子的主鏈或侧鏈上至少具 有一壓克力官能基,且奈米粒子之含量為〇1〜2wt%。 、 上述發明實施例中,奈米粒子係選自由氧化鋅、氧化鋅 之衍生物、二氧化矽以上二氧化矽之衍生物所組成之群組。 上述發明實施例中,液晶顯示裝置為光學補償彎曲排列 型的液晶顯示裝置。 -當奈米粒子添加至原有的液晶化合物,可使液晶快速地由 轄散態轉向至彎曲態,使液晶顯示裝置在初始驅動時可快速達 到穩態’無需特殊高電壓的驅動回路,具有較快之應答速度(較 低之響應時間)。 又 為讓本發明之上述特徵和優點能更明顯易僅,下文特舉一 些實施例,並配合所附圖式,作詳細說明如下。 牛 6 201022420 【實施方式】 根據本發明之一較佳實例,其揭露一種光學補償彎曲排列 型的液晶顯示裝置’其係透過聚合反應合成出一種新的液晶複 , 合物,如此一來,新的液晶複合物可大幅降低光學補償雙弯曲 型液晶顯示裝置在起始驅動時從輻散態轉換至彎曲態所需之 時間及電源供應,並可消除輻散態至彎曲態之間的不穩定現 象,獲致比傳統液晶顯示裝置更快的應答效果。 請參考圖1,液晶顯示裝置1〇包括一第一基板2〇、一 ❹ 乐 一配向層22、一第二基板50、一第二配向層52以及一液晶層 40。第一基板20具有一第一表面21,第二基板50具有一第 二表面51,其中第一基板20係與第二基板50平行設置,且 第一表面21係與第二表面51相對。第一配向層22形成於第 一表面21之上。第二配向層52形成於第二表面51之上。液 晶層40係設於第一基板20及第二基板5〇之間,且液晶層 具有複數個液晶複合物42,其中,所述的液晶複合物42係透 參過一聚合反應混合一液晶化合物與一奈米粒子反應而得到。 上述液晶複合物的製造方法’包括下列步驟:首先,混合 一液晶化合物與一奈米粒子;之後,注入混合後之液晶化合物 與奈米粒子於一液晶盒内;最後提供一能量使奈米粒子與液晶 化合物產生聚合反應。 此外,上述的液晶化合物為一光學補償液晶化合物,而上 述的奈米粒子的主鍵或側鏈上至少具有一壓克力官能基,其壓 克力官能基係為由通式(1)所代表的結構。 201022420 ο -0-C-C-GH3 通式⑴ ch2 其中,奈米粒子係選自由氧化辞、氧化鋅之衍生物、二氧 化石夕以上二氧化石夕之衍生物所組成之群組。而奈求粒子之含量 為0.1〜3 wt%,重量百分比係以液晶組合物之重量為基準。 請參照表卜係列舉出數個符合本發明所述之具有一壓克 力官能基的奈米粒子’其中的奈米粒子係以氧化鋅之衍生物以 及二氧化石夕之衍生物為例。II CH2 201022420 In the above embodiment of the invention, the nanoparticles are selected from the group consisting of zinc oxide, a derivative of zinc oxide, and a derivative of cerium oxide or higher. In the above embodiment of the invention, the method of injecting the mixed liquid crystal compound and the nanoparticle into the liquid crystal cell is a one-dip pfming process or a vacuum capillary injection process. In the above embodiments of the invention, the energy is an ultraviolet light or an applied voltage. In order to achieve another object of the present invention, a liquid crystal display device of the present invention comprises a first substrate, a second substrate, and a liquid crystal layer. The liquid crystal layer is disposed between the first substrate and the second substrate, and the liquid crystal layer has a liquid crystal composite, wherein the liquid crystal composite is formed by polymerizing a liquid crystal compound and a nano particle, wherein the liquid crystal compound is an optical compensation liquid crystal compound And the nanoparticle has at least one acryl functional group on the main chain or the side chain, and the content of the nanoparticle is 〜1 to 2 wt%. In the above invention examples, the nanoparticles are selected from the group consisting of zinc oxide, a derivative of zinc oxide, and a derivative of cerium oxide or more. In the above embodiment of the invention, the liquid crystal display device is an optical compensation curved alignment type liquid crystal display device. - When nano particles are added to the original liquid crystal compound, the liquid crystal can be quickly turned from the sag state to the curved state, so that the liquid crystal display device can quickly reach the steady state during the initial driving, and the drive circuit without special high voltage is required. Faster response speed (lower response time). The above features and advantages of the present invention will become more apparent and obvious. The following detailed description of the embodiments and the accompanying drawings are set forth below. Cattle 6 201022420 [Embodiment] According to a preferred embodiment of the present invention, an optical compensation curved alignment type liquid crystal display device is disclosed which synthesizes a novel liquid crystal complex by polymerization reaction, and thus, new The liquid crystal composite can greatly reduce the time and power supply required for the optically compensated double-bend type liquid crystal display device to switch from the divergent state to the curved state at the initial driving, and can eliminate the instability between the divergent state and the curved state. The phenomenon is faster than the conventional liquid crystal display device. Referring to FIG. 1, the liquid crystal display device 1A includes a first substrate 2, a aligning layer 22, a second substrate 50, a second alignment layer 52, and a liquid crystal layer 40. The first substrate 20 has a first surface 21, and the second substrate 50 has a second surface 51, wherein the first substrate 20 is disposed in parallel with the second substrate 50, and the first surface 21 is opposed to the second surface 51. The first alignment layer 22 is formed over the first surface 21. The second alignment layer 52 is formed over the second surface 51. The liquid crystal layer 40 is disposed between the first substrate 20 and the second substrate 5 , and the liquid crystal layer has a plurality of liquid crystal composites 42 , wherein the liquid crystal composite 42 is mixed with a liquid crystal compound by a polymerization reaction. It is obtained by reacting with one nanometer particle. The method for producing a liquid crystal composite described above includes the following steps: first, mixing a liquid crystal compound and one nano particle; then, injecting the mixed liquid crystal compound and the nano particle in a liquid crystal cell; finally providing an energy to the nano particle A polymerization reaction occurs with the liquid crystal compound. Further, the above liquid crystal compound is an optical compensation liquid crystal compound, and the above-mentioned nano particles have at least one acrylic functional group on a primary bond or a side chain, and the acrylic functional group is represented by the general formula (1). Structure. 201022420 ο -0-C-C-GH3 Formula (1) ch2 wherein the nanoparticles are selected from the group consisting of an oxidized word, a derivative of zinc oxide, and a derivative of a dioxide dioxide or a cerium oxide. The content of the particles is 0.1 to 3 wt%, and the weight percentage is based on the weight of the liquid crystal composition. Referring to the table, a series of nanoparticles having an acryl functional group as described in the present invention can be cited. The nanoparticles of the invention are exemplified by derivatives of zinc oxide and derivatives of cerium oxide.

編號 Λ I. l,4f —---- 1 — 一--- . gh2 2 OH 〇 @-〇-CH2 -CH —CH2〇 -C-G-CH3 ch2 士 1 ---—I 表1 此外’注人齡後之液晶化合物與奈綠子於—液晶盒内 之方式係為-滴下式注人製程或真空毛細現象注入製程。 此外’液減絲與奈錄子可在轉加純起始劑的條 件下’在光或熱的作用自行進行具合反應,其中的能量源可為 為紫外光或-外加電壓。如此一來,液晶顯示器可避免因 始劑殘留所造成的影像殘留或延應等現象。 除此之外’與習知光學補償雙彎曲式液晶顯示器相比,本 201022420 發明所述之液晶顯示裝置具有較快之應答速度(較低之響應時 間)。以下特舉比較實施例及實施例,茲以說明。 第一實施例 分別以純光學補償彎曲型液晶化合物A (ZCE_5〇96)與 其液晶化合物(ZCE-5096)摻雜不同比例反應型半導體氧化 鋅(ΖιιΟ)奈米粒子的液晶化合物B、c、D、E、F作為顯晶No. Λ I. l,4f —---- 1 — a --- . gh2 2 OH 〇@-〇-CH2 -CH —CH2〇-CG-CH3 ch2 士 1 ---—I Table 1 In addition The liquid crystal compound and the green pigment in the liquid crystal cell are formed by a drip-type injection process or a vacuum capillary injection process. In addition, the liquid minus wire and the naprox can be self-assembled by light or heat under the condition of adding a pure starter, wherein the energy source can be ultraviolet light or - applied voltage. In this way, the liquid crystal display can avoid image sticking or delay caused by the residue of the initiator. In addition, the liquid crystal display device of the invention of 201022420 has a faster response speed (lower response time) than the conventional optical compensation double-bend liquid crystal display. The following specific examples and examples are given to illustrate. In the first embodiment, the pure optically compensated curved liquid crystal compound A (ZCE_5〇96) and its liquid crystal compound (ZCE-5096) are doped with liquid crystal compounds B, c, D of different ratios of reactive semiconductor zinc oxide (ΖιιΟ) nanoparticles. E, F as crystal

顯不裝置的液晶層來測試,其中氧化鋅(ZnC))奈米粒子結揭 如表1之編號1所示,其奈米粒子的粒徑大小為3〜1〇議。液 晶盒間隙為3.90 μιη,測試結果如表2。 如表2和表3所示,當奈米粒子為一反應型半導體氧化辞 (Ζη〇)奈米奸時,可發現混摻具有最佳的條件為2wt%時 為最佳’其應答時間由未混摻奈来粒子的4 94咖(平均值)增 快至3.77 ms (紅含2 wt% Zn〇),且其驅動電壓由未混換氧 奈米粒子的h93 v(平均值)降為⑺v(混捧後)。 ▲ ΎτλΓΛ -v~Γ____\ I -— 含ΖηΟ之 比例 r on (ms) r off (ms) r total (ms)The liquid crystal layer of the device was not tested, and the zinc oxide (ZnC) nanoparticle was revealed as shown in No. 1 of Table 1, and the particle size of the nanoparticles was 3 to 1. The gap of the liquid crystal cell was 3.90 μιη, and the test results are shown in Table 2. As shown in Table 2 and Table 3, when the nanoparticle is a reactive semiconductor oxidized sputum, it can be found that the optimal condition is 2 wt%, and the response time is determined by The 4 94 coffee (average value) of the unblended Nailai particles increased to 3.77 ms (red contains 2 wt% Zn〇), and its driving voltage was reduced from h93 v (average value) of the unmixed oxygen nanoparticles to (7) v (after mixed). ▲ ΎτλΓΛ -v~Γ____\ I -—— ratio of ΖηΟ r on (ms) r off (ms) r total (ms)

A 0 wt% 1.22A 0 wt% 1.22

BB

CC

D 0.1 wt% 0.5 wt% wt% 1.1 0.86 1.03 3.72 X47 3.76 ~4~01 4.94 4.57 4.62 5.1 ^ 2 wt% 1.16 ο 61 ~~—--- F 3 wt% ~〇.99 Τνΐ—~ --~~~-_ ~L-_L _Γ〇/ 4.36 201022420 含ZnO之比例 電壓值(V) A 0 wt% 1.93 _ B 0.1 wt% 1.98 _ C 0.5 wt% 1.85 — D 1 wt% T83 E 2 wt% 1.73 ' F 3 wt% 1.85 表3 : ZCE-5096液晶混摻ZnO奈米粒子之 驅動電壓數據值 施例 分別以純光學補償彎曲型液晶化合物A (ZCE-5096)與 其液晶化合物(ZCE-5096)掺雜不同比例反應型半導體二氧 魯化母(Si〇2)奈米粒子的液晶化合物作為顯晶顯示裝置的液晶 層來測試,其中二氧化梦(Si〇2)奈米粒子結構如 ^所示,其奈練子的粒徑大小為1G〜2G,液晶盒間隙為 •9〇 ,測試結果如表2。 (Si〇如f太1所7^ #奈米粒子為—反應料導體二氧化砍 d:子時’可發現混摻具有最佳的條件為ο.1祕 増粒子的5·06皿(平均值) 2 ms (摻入含 〇. 1 % Si〇2)。 201022420 含 Si02 之比例 r on ( ms) r off ( ms) r total ( ms) A 0 wt% 1.24 3.82 5.06 B 0.1 wt% 1.33 2.99 4.32 C 0.5 wt% 1.27 3.08 4.35 D 1 wt% 1.2 ^ 3.18 4.38 E 3 wt% 1.09 3.4 4.49 ❹ 表4 : ZCE-5096液晶混摻Si02奈米粒子之應答速度值 本發明所述之液晶顯示裝置及其製造方法’其係利用包含 添加奈米粒子的液晶物組合物,來降低光學補償型液晶顯示裝 置在起始驅動時從輻散態轉換至彎曲態所需之時間及電源供 應,可消除輻散態至彎曲態之間的不穩定現象,獲致比傳統液 晶顯示裝置更快的應答效果。此外’藉由比較表2、表3及表 Q 4可得知,本發明所述之液晶顯示裝置,確實較一般之光學補 償彎曲排列型液晶顯示裝置具有較快的反應速度,因此也具有 較佳之競爭能力。 雖然本發明已以-些實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離本發 =精神和範_,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 11 201022420 ^ 【圖式簡單說明】 圖1是本發明之光學補償液晶顯示器的剖面示意圖。 【主要元件符號說明】 10 液晶顯不裝置 20 第一基板 21 第一表面 22 第一配向層 40 液晶層 42 液晶複合物 50 第二基板 51 第二表面 52 第二配向層 12D 0.1 wt% 0.5 wt% wt% 1.1 0.86 1.03 3.72 X47 3.76 ~4~01 4.94 4.57 4.62 5.1 ^ 2 wt% 1.16 ο 61 ~~—--- F 3 wt% ~〇.99 Τνΐ—~ --~ ~~-_ ~L-_L _Γ〇/ 4.36 201022420 ZnO proportional voltage value (V) A 0 wt% 1.93 _ B 0.1 wt% 1.98 _ C 0.5 wt% 1.85 — D 1 wt% T83 E 2 wt% 1.73 ' F 3 wt% 1.85 Table 3 : Driving voltage data values of ZCE-5096 liquid crystal mixed doped ZnO nanoparticles. The examples were respectively doped with pure optically compensated curved liquid crystal compound A (ZCE-5096) and its liquid crystal compound (ZCE-5096). Liquid crystal compounds of different proportions of reactive semiconductor dioxin (Si〇2) nanoparticles are tested as liquid crystal layers of a crystal display device, wherein the structure of the dioxide (Si〇2) nanoparticle is as shown in The particle size of the nylon is 1G~2G, and the cell gap is 9.9〇. The test results are shown in Table 2. (Si〇 such as f too 1 7 ^ # nanoparticle is - reaction material conductor dioxide oxidation d: sub-time 'can be found mixed with the best conditions for the ο.1 secret particles of 5. 6 dishes (average Value) 2 ms (incorporating 〇. 1 % Si〇2). 201022420 Ratio of SiO2 r on (ms) r off (ms) r total (ms) A 0 wt% 1.24 3.82 5.06 B 0.1 wt% 1.33 2.99 4.32 C 0.5 wt% 1.27 3.08 4.35 D 1 wt% 1.2 ^ 3.18 4.38 E 3 wt% 1.09 3.4 4.49 ❹ Table 4: ZCE-5096 liquid crystal mixed SiO 2 nanoparticles particle response speed value The liquid crystal display device of the present invention The manufacturing method thereof uses a liquid crystal composition containing the added nanoparticle to reduce the time and power supply required for the optical compensation type liquid crystal display device to switch from the divergent state to the curved state at the initial driving, and the radiation supply can be eliminated. The instability between the scattered state and the curved state results in a faster response than the conventional liquid crystal display device. Further, by comparing Table 2, Table 3, and Table Q 4, the liquid crystal display device of the present invention can be known. It is indeed faster than the general optical compensation curved alignment type liquid crystal display device, This invention also has a better competitive ability. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art, without departing from the present invention, The scope of protection of the present invention is defined by the scope of the appended claims. 11 201022420 ^ [Simplified Schematic] FIG. 1 is a schematic cross-sectional view of an optical compensation liquid crystal display of the present invention. [Main component symbol description] 10 liquid crystal display device 20 first substrate 21 first surface 22 first alignment layer 40 liquid crystal layer 42 liquid crystal composite 50 second substrate 51 second surface 52 second alignment layer 12

Claims (1)

201022420 * 七、申請專利範圍: 1. 一種液晶複合物的組成配方,包括: 一液晶化合物,該液晶化合物為光學補償彎曲型液晶 化合物(〇CB liquid crystal);以及 一奈米粒子,其主鏈或側鏈上至少具有一壓克力官能 基’其中該奈米粒子之含量為〇丨〜2 wt〇/〇。 2. 如申凊專利範圍第1項所述之組成配方,其中該壓克力官 能基係為由通式(1)所代表的結構。 參. 0 II -O-C-C-GHs 通式(1) CHz 13 201022420 提供一能量使該奈米粒子與該液晶化合物產生聚合反 應’形成該液晶複合物。 6·如申請專利範圍第5項所述之方法,其中龍克力官能基 係為由通式(1)所代表的結構。 0 II 0 —C—C —CHs 通式⑴ II CH2 7. 如申請專利範圍第5項所述之方法,其中該奈米粒子係選 自由氧化鋅、氧化鋅之衍生物、二氧化矽以上二氧化矽之 衍生物所組成之群組。 8. 如申請專利範圍第5項所述之方法,其中注入混合後之該 液晶化合物與該奈米粒子於該液晶盒内之方式係為一滴下 式注入製程(one drop filling process)或真空毛細現象注入 製程。 ⑩ 9.如申請專利範圍第5項所述之方法,其中該能量係為一紫 外光或一外加電壓。 10.—種液晶顯示裝置,包含: 一第一基板; 一第二基板;以及 一液晶層,係設於該第一基板及該第二基板之間,該 液晶層具有一液晶複合物’該液晶複合物係由一液晶化合 物與一奈米粒子聚合而成’其中該液晶化合物為光學補償 201022420 液晶化合物’該奈米粒子的主鍵或侧鍵上至少具有一壓克 力官能基,且該奈米粒子之含量為0.1〜2 wt%。 11.如申請專利範圍第10項所述之液晶顯示裝置,其中該壓克 力官能基係為由通式(1)所代表的結構。 〇 0 II 通式(1) C-C-CHa II CHi 12.如申請專利制第1G項所述之減顯示裝置,其中該奈米 ,子係選自由氧化鋅、氧化辞之衍生物、二氧切以上二 氧化矽之衍生物所組成之群組。 如申明專利範圍第1〇項所述之液晶顯示裝置,其中該液晶 顯示裝置為光學補償料排列型(〇CB)的液晶顯示裝置。 15201022420 * VII. Patent application scope: 1. A composition formula of a liquid crystal composite, comprising: a liquid crystal compound which is an optically compensated curved liquid crystal compound (〇CB liquid crystal); and a nanoparticle whose main chain Or at least one acrylic functional group on the side chain, wherein the content of the nanoparticle is 〇丨~2 wt〇/〇. 2. The composition according to claim 1, wherein the acrylic functional system is a structure represented by the general formula (1). II 0 II -O-C-C-GHs Formula (1) CHz 13 201022420 provides an energy to cause the nanoparticle to react with the liquid crystal compound to form the liquid crystal composite. 6. The method of claim 5, wherein the Longkeli functional group is a structure represented by the formula (1). The method of claim 5, wherein the nanoparticle is selected from the group consisting of zinc oxide, zinc oxide derivatives, and cerium oxide. A group consisting of derivatives of cerium oxide. 8. The method of claim 5, wherein the method of injecting the mixed liquid crystal compound and the nanoparticle in the liquid crystal cell is a one-drop filling process or vacuum capillary The phenomenon is injected into the process. 10. The method of claim 5, wherein the energy is an ultraviolet light or an applied voltage. 10. A liquid crystal display device comprising: a first substrate; a second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate, the liquid crystal layer having a liquid crystal composite The liquid crystal composite is formed by polymerizing a liquid crystal compound and a nano particle, wherein the liquid crystal compound is an optical compensation 201022420 liquid crystal compound, wherein the nanoparticle has at least one acryl functional group on a primary bond or a side bond, and the nanoparticle The content of the rice particles is 0.1 to 2 wt%. 11. The liquid crystal display device of claim 10, wherein the acrylic functional group is a structure represented by the general formula (1). 〇0 II General formula (1) CC-CHa II CHi 12. The display device according to claim 1G, wherein the nanometer is selected from the group consisting of zinc oxide, an oxidized derivative, and a dioxygen cut. A group consisting of the above derivatives of cerium oxide. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is an optical compensation material array type (〇CB) liquid crystal display device. 15
TW97147844A 2008-12-09 2008-12-09 Liquid crystal composite composition and method thereof TWI396729B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97147844A TWI396729B (en) 2008-12-09 2008-12-09 Liquid crystal composite composition and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97147844A TWI396729B (en) 2008-12-09 2008-12-09 Liquid crystal composite composition and method thereof

Publications (2)

Publication Number Publication Date
TW201022420A true TW201022420A (en) 2010-06-16
TWI396729B TWI396729B (en) 2013-05-21

Family

ID=44832957

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97147844A TWI396729B (en) 2008-12-09 2008-12-09 Liquid crystal composite composition and method thereof

Country Status (1)

Country Link
TW (1) TWI396729B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594571A (en) * 1991-12-10 1997-01-14 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and process for production thereof
US7226966B2 (en) * 2001-08-03 2007-06-05 Nanogram Corporation Structures incorporating polymer-inorganic particle blends
EP1479734B1 (en) * 2003-05-20 2009-02-11 DSM IP Assets B.V. Nano-structured surface coating process, nano-structured coatings and articles comprising the coating
US7298446B2 (en) * 2003-08-14 2007-11-20 Chi Mei Optoelectronics Corp. Liquid crystal display device and method of manufacturing rework
US20070065638A1 (en) * 2005-09-20 2007-03-22 Eastman Kodak Company Nano-structured thin film with reduced light reflection
JP2007211149A (en) * 2006-02-10 2007-08-23 Stanley Electric Co Ltd Liquid crystal material and liquid crystal display device

Also Published As

Publication number Publication date
TWI396729B (en) 2013-05-21

Similar Documents

Publication Publication Date Title
TWI721283B (en) Liquid crystal display element and its manufacturing method
TWI550067B (en) Liquid crystal display element and manufacturing method thereof
JP4274713B2 (en) Liquid crystal display device, optical element, and manufacturing method thereof
TW200422715A (en) Liquid crystal display and method of manufacturing the same
TWI352838B (en) Liquid crystal, and liquid crystal material combin
WO2011004519A1 (en) Liquid crystal display panel and process for production thereof
KR20140030245A (en) Light-diffusing adhesive composition, light-diffusing adhesive sheet, polarizing plate, and liquid crystal display panel
JP2006301643A (en) Method of aligning negative dielectric anisotropic liquid crystal
JP2008545159A (en) Liquid crystal display element
WO2012121321A1 (en) Liquid crystal display device and production method for liquid crystal display device
TWI261067B (en) Liquid crystal optical device and method for fabricating the same
TW201313786A (en) Silicon-based liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN1257532A (en) Low viscosity liquid crystal material
WO2011004518A1 (en) Liquid crystal display panel and process for production thereof
CN111198452B (en) Liquid crystal display device having a plurality of pixel electrodes
JP3951323B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4228404B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4131296B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
TW201022420A (en) Liquid crystal composite composition and method thereof
JP4003091B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
WO2023173712A1 (en) Zirconium oxide monomer dispersion and preparation method therefor, optical film and display screen
JP2001146588A (en) Liquid crystal display
JP4186133B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
TWI704393B (en) Display apparatus
JP2009084566A (en) Liquid crystal, liquid crystal material mixture including the same and liquid crystal display panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees