TW201021389A - Adaptive PWM pulse positioning for fast transient response - Google Patents

Adaptive PWM pulse positioning for fast transient response Download PDF

Info

Publication number
TW201021389A
TW201021389A TW98125513A TW98125513A TW201021389A TW 201021389 A TW201021389 A TW 201021389A TW 98125513 A TW98125513 A TW 98125513A TW 98125513 A TW98125513 A TW 98125513A TW 201021389 A TW201021389 A TW 201021389A
Authority
TW
Taiwan
Prior art keywords
voltage
signal
ramp
load
pulse
Prior art date
Application number
TW98125513A
Other languages
Chinese (zh)
Other versions
TWI411211B (en
Inventor
wei-hong Qiu
Robert H Isham
zhi-xiang Liang
Thomas S Szepesi
Original Assignee
Intersil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/273,441 external-priority patent/US7868600B2/en
Application filed by Intersil Inc filed Critical Intersil Inc
Publication of TW201021389A publication Critical patent/TW201021389A/en
Application granted granted Critical
Publication of TWI411211B publication Critical patent/TWI411211B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

An adaptive pulse positioning system for a voltage converter including an adjustable ramp generator, a pulse generator circuit, and a sense and adjust circuit. The adjustable ramp generator has an adjust input and provides a periodic ramp voltage having an adjustable magnitude based on an adjust signal provided to the adjust input. The pulse generator circuit receives the ramp voltage and generates a pulse signal with control pulses for controlling the output voltage of the voltage controller based on the ramp voltage. The sense and adjust circuit senses an output load transient and provides the adjust signal to the adjust input of the ramp generator to adaptively shift the pulse signal in time in response to the output load transient without adding pulses to the pulse signal.

Description

201021389 六、發明說明: 【發明所屬之技術領域】 相關申請案之交又參考 本申請案係2嶋年5月17日提_的美國專利申請案 第1 1/383,878號的部份接續案,該案目前已在2帽年η 月18日獲准並獲頒為美國專利㈣7,453,246號,該案本 身主張2005年11月16曰提申的美國專利申請案第 60/737,523冑的權利’而美國專利中請案第術mm號 則主張2006年2月17日提申的美國臨時專利申請案第 贈4,459號的權利,本文以引用的方式將它們全部併入以 達所有的目的與用途。 【先前技術】 【發明内容】 【實施方式】 本文在下面所提出的說明可以讓熟習本技術的人士在 特殊應用背景及其必要條件内來製造與使用本發明。不 201021389 過’熟習本技術的人士便會明白較佳實施例的各種修正, 且本文中所定義的一般性原理亦可應用至其它實施例。所 以’本發明的用意並非限制本文中所示與所述的特殊實施 彳相反地#與本文中所揭示的原理及新賴特點一致的 最廣範缚相符。201021389 VI. Description of the Invention: [Technical Fields of the Invention] The related application is also referred to the continuation of the US Patent Application No. 1 1/383,878, which is filed on May 17, 2010. The case is currently approved on November 18th, and is granted US Patent (4) No. 7,453,246, which itself claims the right of US Patent Application No. 60/737,523, filed November 16, 2005. The U.S. Patent Application Serial No. 4,459, the entire disclosure of which is incorporated herein by reference in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire disclosure [Prior Art] [Embodiment] The description provided below allows the person skilled in the art to make and use the invention within the specific application background and its necessary conditions. Various modifications of the preferred embodiment will be apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the intention of the present invention is not intended to limit the scope of the invention as set forth in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

包含現代中央處理單元(CPU)的現代電路的負載電流 極為動態’而且會料快速地從低改變為冑且從高改變為 ,。舉例來說,中央處理單元的電流暫態可能會出現在i 微秒(AS)内,其小於習知電壓調節器的典型切換週期。 圖1所示的係根據本發明-實施例的適應性脈寬調變 脈衝定位技術的操作模式的時序圖。在圖丨中繪製的係一 直流直流功率調節器(圖中未顯示)的輸出負載電流⑴一 相對於一時脈訊號與一 PWM訊號的關係圖。在初始時間⑺ 處,訊號IL_係在正常位準lN0R^。時脈訊號則會根據 一預設的時脈頻率來產生一週期性的時脈脈衝。在訊號 的IN0RM位準所示之正常負載下的正常操作期間,每 一個P W Μ脈衝會開始於每一個時脈循環期間並且因該時脈 訊號上的脈衝而被終止。在後續時間u處,會因訊號 跳升至IHIGH所示的新的高電流位準而出現輸出暫態。響應 於輸出負載暫態,該PWM訊號的下一個脈衝1〇1會如箭頭 103所示以虛線所示之其正常位置為基準朝目前時脈循環 的起點處被重新定位。藉由在施加重負載之後將脈衝ι〇ι 朝循環的起點移動,在該暫態事件後面的空白週期便自然 會縮短,從而在該初始暫態響應中不會有任何額外的電壓 201021389 降。於此情況中,脈衝101還會響應於輸出負載的增加而 具有較長的時間持續長度。該高負載事件期間(當IL0AD位 在IHIGH處時)該PWM訊號的後續脈衝1〇5、1〇7、以及 則會朝個別時脈循環的起點偏移。 在後續時間t2處,訊號IL0ad會返回正常位準 處。該PWM訊號的下一個脈衝lu會如箭頭113所示 時脈循環的結束處偏移回到正常位置。如圖1中所示的特 定調變技術中,PWM脈衝經常出現在該循環的結束處。在 該暫態事件下,該PWM脈衝會響應於輸出麼降而被往前 拉。在該暫態事件後,該PWM脈衝會回到其正常位準處(舉 例來說,在該時脈結束時)。為避免因空白週期的關係導致 額外的壓降’在重負載下,該PWM脈衝會朝該循環的起點 移動。在輕負載下’該PWM脈衝會位於該時脈結束處,所 二=負載條件來移動’例如在全負載條件下朝循環的 起點移動^脈衝^位係靈活可變的以達較佳的效能。 除了重新定位該脈衝之外,亦可以讓相同的 第二PWM脈衝’其會導致輸出更快地趨穩。不過倘若” 態事件發生在高重複率處時,相同循環的第舍 應來說,會希望在—或多個耗的傾向。對快速暫態響 較佳的係在輕負載下,讓該_脈衝往前拉。 近,俾使會有足夠的空間㈣二:保持在循環結束附 往前拉。該刚脈衝可以在重負載二暫態事件來將該脈衝 中的任何地方。對負栽釋 ^置在一切換循環 爭仵來說,在該暫態之後,脈 201021389 寬調變會立刻結束,並且需要空白時間來放電電感器電 流。因此在重負載條件下,可能會希望讓PWM脈衝出現在 循環的起點處。所以在輕負載條件下,該PWM脈衝會保持 在循環結束處’並且在負載增加時移動到循環的起點。The load current of modern circuits, including modern central processing units (CPUs), is extremely dynamic and will quickly change from low to high and from high to high. For example, the current transient of the central processing unit may occur within i microseconds (AS), which is less than the typical switching period of a conventional voltage regulator. 1 is a timing diagram of an operational mode of an adaptive pulse width modulation pulse localization technique in accordance with the present invention. The output load current (1) of a DC-DC power conditioner (not shown) is plotted in relation to a PWM signal and a PWM signal. At the initial time (7), the signal IL_ is at the normal level lN0R^. The clock signal generates a periodic clock pulse based on a predetermined clock frequency. During normal operation under normal load as indicated by the IN0RM level of the signal, each P W Μ pulse will begin during each clock cycle and be terminated by a pulse on the clock signal. At the subsequent time u, the output transient occurs due to the signal jumping to the new high current level indicated by IHIGH. In response to the output load transient, the next pulse 1〇1 of the PWM signal is repositioned toward the beginning of the current clock cycle as indicated by arrow 103 with its normal position indicated by the dashed line. By moving the pulse ι〇ι towards the beginning of the cycle after applying a heavy load, the blank period after the transient event is naturally shortened so that there is no additional voltage 201021389 in the initial transient response. In this case, the pulse 101 also has a longer duration of time in response to an increase in the output load. During this high load event (when the IL0AD bit is at IHIGH), the subsequent pulses of the PWM signal, 1〇5, 1〇7, and will be offset towards the start of the individual clock cycle. At the subsequent time t2, the signal IL0ad will return to the normal level. The next pulse lu of the PWM signal will be shifted back to the normal position at the end of the clock cycle as indicated by arrow 113. In the particular modulation technique shown in Figure 1, PWM pulses often occur at the end of the cycle. Under this transient event, the PWM pulse is pulled forward in response to the output drop. After this transient event, the PWM pulse will return to its normal level (for example, at the end of the clock). To avoid an extra voltage drop due to the blank period relationship, under heavy load, the PWM pulse will move towards the beginning of the cycle. Under light load, 'the PWM pulse will be at the end of the clock, and the second = load condition to move', for example, moving to the beginning of the cycle under full load conditions. The pulse is flexible and can achieve better performance. . In addition to repositioning the pulse, it is also possible to have the same second PWM pulse 'which causes the output to stabilize more quickly. However, if the "state event occurs at a high repetition rate, the same cycle should be expected to be in-or multiple consumption trends. For fast transients, it is better to use light load, let the _ The pulse is pulled forward. Nearly, there will be enough space (4) 2: Keep it at the end of the cycle and pull it forward. The pulse can be placed anywhere in the pulse under heavy load two transient events. In the case of a switching cycle, after the transient, the pulse of 201021389 will immediately end, and a blank time is required to discharge the inductor current. Therefore, under heavy load conditions, it may be desirable to have the PWM pulse out. Now the starting point of the cycle. So under light load conditions, the PWM pulse will remain at the end of the cycle' and move to the beginning of the cycle as the load increases.

圖2所示係根據本發明一實施例所施行的後緣調變器 電路200的簡化方塊圖。時序源2〇1會產生一時脈訊號A, 其會被提供至一延遲功能203的輸入。該延遲功能203會 延遲該訊號A並且提供一延遲時脈訊號AD至一斜波產生 器205的輸入以及至脈衝時序電路211的時脈輸入(ck)。 於一替代實施例中’該脈衝時序電路會被SR正反器取代。 該斜波產生器205會產生一斜波訊號B,其會被提供至一脈 寬調變比較器207的一個輸入(舉例來說,反向輸入)。誤差 放大器209會提供一補償訊號C至該比較器2〇7的另一個 輸入(舉例來說’非反向輸入)。該比較器207會產生一訊號 D ’其會被提供至脈衝時序電路2 11的控制(CTL)輸入。該 脈衝時序電路211會以用於控制該直流-直流功率調節器之 輸出電壓的訊號D為基礎來產生一 PWM訊號,並且會被配 置成用以確保該訊號AD的每一個循環僅會有一個脈衝。一 電流感測方塊213會提供一調整訊號ADJ至該延遲功能203 的另一個輸入。該電流感測方塊2 13會感測流經一輸出負 載(如圖所示)的負載電流IL0AD並且據以控制訊號ADJ。圖 中還顯示訊號C以及該轉換器的輸出電壓V OUT會被提供給 該延遲功能203。訊號A與AD之間的延遲量(或T DELAY)為2 is a simplified block diagram of a trailing edge modulator circuit 200 implemented in accordance with an embodiment of the present invention. The timing source 2〇1 generates a clock signal A that is provided to the input of a delay function 203. The delay function 203 delays the signal A and provides a delayed clock signal AD to the input of a ramp generator 205 and a clock input (ck) to the pulse timing circuit 211. In an alternate embodiment, the pulse timing circuit is replaced by an SR flip-flop. The ramp generator 205 generates a ramp signal B which is provided to an input (e.g., a reverse input) of a pulse width modulation comparator 207. Error amplifier 209 provides a compensation signal C to the other input of comparator 2〇7 (e.g., 'non-inverting input'). The comparator 207 generates a signal D' which is supplied to the control (CTL) input of the pulse sequential circuit 2 11. The pulse timing circuit 211 generates a PWM signal based on the signal D for controlling the output voltage of the DC-DC power regulator, and is configured to ensure that only one cycle of each cycle of the signal AD is provided. pulse. A current sensing block 213 provides an adjustment signal ADJ to the other input of the delay function 203. The current sense block 2 13 senses the load current IL0AD flowing through an output load (as shown) and controls the signal ADJ accordingly. The figure also shows that signal C and the output voltage V OUT of the converter are provided to the delay function 203. The amount of delay (or T DELAY) between signal A and AD is

ADJADJ

V OUTV OUT

及 C 的函數 或 7 201021389 TDELAY=TDl + fl*ADJ + f2*C + f3*VOUT ’ 其中 TD1 係一常數; 而函數Π、f2、以及f3為任何合宜的函數,其視情況其範 圍從相對簡單至複雜。於一實施例中,Π至f 3皆為常數。 於一替代實施例中’該電流感測方塊213會感測流經 該調節器的一輸出電感器的電流,或者感測一或多個輸出 相位電路中每一者的相位電流。 圖3所示係後緣調變器電路200的操作時序圖。圖中 鳍製的係訊號Iload、A、AD、B、C、D、及PWM相對於 時間的關係圖。訊號B與C彼此疊加以便更清楚地圖解比 較器207的功能。在圖中所不的實施例中,斜波產生器205 會產生具有上升斜波之鋸齒波形的訊號B。因此當訊號AD 的脈衝在高位準時,斜波訊號B會始於低斜波位準Rl〇處; 並且會在該AD脈衝回到低位準時以恆定的速率上升。在圖 中所示的實施例中,斜波訊號B會被限制在預設的高位準 Rin處。補償訊號C會被配置成範圍介於rl〇與rhi之間。 在操作中’斜波訊號B會在時脈訊號AD的初始緣處重置 J Rlo 並且在時脈訊说AD的後緣開始上升。當b低於 c時’比較器207會判定訊號D為高位準;否則便會判定 訊號D為低位準。除了在每一個循環中訊號AD變成低位 準之後的起點處外,脈衝時序電路211通常會以和訊號D 致的方式來判定PWM訊號;俾使當AD變成低位準時, Μ會變成商位準,並且當D變成低位準時,會變 成低位準。操作會依此方式重複進行,而且每一個PWM脈 衝的時間持續長度會部分相依於補償訊號C的位準。 201021389 在一習知的後緣調變器電路(圖中未顯示)中,延遲功能 203並不存在,因此時序係以時脈訊號a為基礎而非以時脈 訊號AD為基礎。延遲功能203僅係會促成以來自電流感測 方塊2 13的訊號ADJ為基礎來調整時脈訊號ad的時序, 該電流感測方塊2 1 3會以訊號iL〇AD(或是其它被感測的輸出 電流)的位準為基礎來修正訊號ADJ »在時間t9處,訊號 iL〇AD會如前面所述般地從Inorm跳升至Ihigh。該電流感測 方塊213會響應以修正該訊號ADJ,以便縮減訊號AD相對 ❹ 於時脈訊號A的延遲。如在301處所示,訊號AD上的下 一個脈衝會被偏移或是被重新定位在該循環中的較早時間 處。該AD脈衝的早期初始緣會比在3〇3處所示的正常值更 早讓斜波訊號B重置回到Rl〇。斜波訊號B早期重置會導 致訊號D如在3 05處所示偏移定位至該循環中的較早時間 處。訊號D上的該早期脈衝會導致pwM訊號被偏移而如 307處所示在該循環中的較早時間處被判定。在該負載暫態 偏移事件之後,除了相對於正常條件被偏移外,該等脈衝 的時序實際上為相同。該等pwM脈衝的相對寬度可以調整 以便處置額外負載。依此方式,該pWM訊號會響應於該負 載暫態事件而被重新定位至該循環中的較早時間處。只要 該負載暫態事件存在’該pwM訊號便會保持偏移;並且會 在較间負載條件消除時返回正常。如在時間㈣處所示,訊 號Iload會返回IN〇RM ’而下一個AD脈衝則會如在處 所示偏移至該循環中的較晚時間處。這會導致D脈衝與 PWM脈衝偏移回到正常定位處。依此方式,PWM脈衝的定 9 201021389 位便響應於負載暫“被調整或調適以提供較佳效能。 延遲功能203不會提高時脈訊號的頻率,取而代之的 係僅會達到暫時調整該等PWM脈衝之定位的目的。要注意 的係’正常條件期間的延遲長度可依照需要來產生例如 訊號A的一個週期。倘若該延遲約等於時脈週期,那麼該 PWM脈衝便幾乎可以被重新定位至__給定循環中的任何地 方’用以回應非同步的負载暫態事件。 圖4所不係根據本發明一實施例所施行的雙緣調變器 電路400的簡化方塊圖。依照和後緣調變器電路2〇〇雷同 的方式,一時序源401會產生一時脈訊號a,其會被提供至 一延遲功能403的輸入。該延遲功能的操作方式實質上和 延遲功能203雷同。該延遲功能4〇3會延遲該訊號a並且 提供一延遲時脈訊號AD至一三角斜波產生器4〇5的輸入以 及至脈衝時序電路411的時脈(CK)輸入。該三角斜波產生 器405會產生一三角斜波訊號τ,其會被提供至一比較器 407的一個輸入(舉例來說,反向輸入)。誤差放大器4〇9會 提供一補償訊號C至該比較器407的另一個輸入(舉例來 說’非反向輸入)以及至該延遲功能403。該比較器407會 產生一訊號D’其會被提供至脈衝時序電路411的控制輸 入。該脈衝時序電路411會以用於控制輸出電壓的訊號D 為基礎來產生一 PWM訊號’並且會被配置成用以確保每一 個循環僅會有一個脈衝。一電流感測電路413會接收該訊 號Iload並且提供一調整訊號ADJ至該延遲功能403的另一 個輸入,該延遲功能403還會如圖所示接收訊號ν〇υτ。該 201021389 電流感測電路4 1 3會感測流經一給屮备 輪出負載的負載電流或是 流經一輸出電感器的電流或是—式皮 兄疋或多個輸出相位電路中每 一者的相位電流’並且會如前面淋、+、仏u 月』面所述般地據以控制訊號 ADJ。該訊號V0UT還會如圖所示被提供至延遲功能4〇3。延 遲功能403所提供的延遲量實質上和延遲功能2〇3雷同, 或 TDELAY=TDl+fl*ADJ+f2*C + f3*VOUT。 ❹And C's function or 7 201021389 TDELAY=TDl + fl*ADJ + f2*C + f3*VOUT ' where TD1 is a constant; and functions Π, f2, and f3 are any appropriate functions, depending on the situation, the range is relative Simple to complex. In one embodiment, Π to f 3 are all constant. In an alternate embodiment, the current sense block 213 senses the current flowing through an output inductor of the regulator or senses the phase current of each of the one or more output phase circuits. FIG. 3 shows an operational timing diagram of the trailing edge modulator circuit 200. The graph of the relationship between the fin signals Iload, A, AD, B, C, D, and PWM versus time. The signals B and C are superimposed on each other to more clearly illustrate the function of the map composer 207. In the embodiment shown in the figures, the ramp generator 205 generates a signal B having a sawtooth waveform of the rising ramp. Therefore, when the pulse of the signal AD is at the high level, the ramp signal B will start at the low ramp level R1〇; and will rise at a constant rate when the AD pulse returns to the low level. In the embodiment shown in the figures, the ramp signal B is limited to a predetermined high level Rin. The compensation signal C is configured to have a range between rl〇 and rhi. In operation, the ramp signal B resets J Rlo at the initial edge of the clock signal AD and begins to rise at the trailing edge of the AD. When b is lower than c, the comparator 207 determines that the signal D is at a high level; otherwise, it determines that the signal D is at a low level. In addition to the start point after the signal AD becomes a low level in each cycle, the pulse sequence circuit 211 usually determines the PWM signal in a manner similar to the signal D; so that when the AD becomes a low level, the Μ becomes a quotient level. And when D becomes a low level, it will become a low level. The operation is repeated in this way, and the duration of each PWM pulse will depend in part on the level of the compensation signal C. 201021389 In a conventional trailing edge modulator circuit (not shown), the delay function 203 does not exist, so the timing is based on the clock signal a rather than the clock signal AD. The delay function 203 only causes the timing of the clock signal ad to be adjusted based on the signal ADJ from the current sensing block 2 13 . The current sensing block 2 1 3 will be signaled iL 〇 AD (or other sensed) Based on the level of the output current), the signal ADJ is selected. At time t9, the signal iL〇AD will jump from Inorm to Ihigh as described above. The current sense block 213 responds to correct the signal ADJ to reduce the delay of the signal AD relative to the clock signal A. As shown at 301, the next pulse on signal AD is offset or relocated at an earlier time in the loop. The early initial edge of the AD pulse resets the ramp signal B back to R1〇 earlier than the normal value shown at 3〇3. An early reset of the ramp signal B causes the signal D to be positioned at an earlier time in the loop as indicated at 305. This early pulse on signal D causes the pwM signal to be shifted and is determined at an earlier time in the cycle as shown at 307. After the load transient offset event, the timing of the pulses is actually the same except that they are offset relative to the normal conditions. The relative width of the pwM pulses can be adjusted to handle additional loads. In this manner, the pWM signal is relocated to an earlier time in the loop in response to the load transient event. As long as the load transient event exists, the pwM signal will remain offset; and will return to normal when the inter-load condition is removed. As shown at time (four), the signal Iload will return IN 〇 RM ' and the next AD pulse will be shifted to the later time in the loop as shown. This causes the D pulse and the PWM pulse to shift back to normal positioning. In this way, the PWM pulse's fixed 9 201021389 bit is "adjusted or adapted to provide better performance in response to the load. The delay function 203 does not increase the frequency of the clock signal, but instead only temporarily adjusts the PWM. The purpose of the positioning of the pulse. It should be noted that the delay length during the normal condition can generate a period such as signal A as needed. If the delay is approximately equal to the clock period, the PWM pulse can be almost relocated to _ Anywhere in a given loop 'in response to a non-synchronized load transient event. Figure 4 is a simplified block diagram of a dual-edge modulator circuit 400 implemented in accordance with an embodiment of the present invention. In the same manner as the modulator circuit 2, a timing source 401 generates a clock signal a which is supplied to the input of a delay function 403. The operation of the delay function is substantially the same as the delay function 203. The function 4〇3 delays the signal a and provides an input of the delayed clock signal AD to a triangular ramp generator 4〇5 and a clock (CK) to the pulse sequential circuit 411. The triangular ramp generator 405 generates a triangular ramp signal τ which is supplied to an input of a comparator 407 (for example, an inverting input). The error amplifier 4〇9 provides a compensation signal. C to the other input of the comparator 407 (for example, 'non-inverting input') and to the delay function 403. The comparator 407 generates a signal D' which is supplied to the control input of the pulse timing circuit 411. The pulse timing circuit 411 generates a PWM signal based on the signal D for controlling the output voltage and is configured to ensure that there is only one pulse per cycle. A current sensing circuit 413 receives the signal. Iload also provides an adjustment signal ADJ to another input of the delay function 403. The delay function 403 also receives the signal ν 〇υτ as shown. The 201021389 current sensing circuit 4 1 3 senses a flow through a feed. The load current of the backup load or the current flowing through an output inductor or the phase current of each of the multiple output phase circuits will be as before, +, 仏u According to the control signal ADJ, the signal VOUT is also provided to the delay function 4〇3 as shown in the figure. The delay function 403 provides a delay amount substantially the same as the delay function 2〇3, or TDELAY =TDl+fl*ADJ+f2*C + f3*VOUT. ❹

圖5所示係雙緣調變器電路彻的操作時序圖。圖中 繪製的係訊號lL0AD、A、AD、T、C、d、以及PWM相對 於時間的關係圖。訊號丁與C彼此疊加以便更清楚地圖解 比較器407的功能。於此情況中,時脈訊號a與ad係5〇% 工作循環訊號。當訊號AD的脈衝為低位準時,三角斜波訊 號T會上升,而當該訊號ad為高位準時,則會下降。在操 作中,當訊號T小於訊號C時,訊號D會被判定為高位準; 否則便會被判定為低位準。當訊號D為高位準時,脈衝時 序電路411會判定該PWM訊號。操作會依此方式重複進 行,而且每一個PWM脈衝的時間持續長度會部分相依於補 償訊號C的位準。 在一習知的雙緣調變器電路(圖中未顯示)中,延遲功能 403並不存在,因此時序係以時脈訊號a為基礎,並非以時 脈訊號AD為基礎。對雙緣調變器電路4〇〇來說,延遲功能 4〇3僅係會促成以來自電流感測方塊4丨3的訊號ADJ為基 礎來調整時脈訊號AD的時序,該電流感測方塊4 13會以訊 號Iload的位準為基礎來修正訊號ADJ。在時間tl 1處,訊 號1load會如前面所述從IN0RM跳升至IHIGH。該電流感測方 201021389 ❹ 塊413會響應以修正該訊號ADJ以便縮減訊號AD相對於 時脈訊號A的延遲。如在501處所示,訊號AD會因為小 延遲的關係而在該循環中的較早時間處被偏移。三角斜波 訊號T會在較早期處(相較於正常的條件)下降,以便如503 處所示在該循環中的較早時間處和訊號C相交。訊號τ和 和訊號C之間的早期相交會導致訊號D被偏移而如5〇5處 所示在該循環中的較早時間處被判定,其因而會如在5〇7 處所示導致該PWM訊號被重新定位至該循環中的較早時間 處。該適應性定位會響應於負載暫態事件而導致該pWM訊 號被重新定位至該循環中的較早時間處。只要該負載暫態 條件存在,該PWM訊號便會保持偏移;並且會在負载條件 消除時返回正常定位。如在後續時間tl2處所示,訊號how 會返回IN〇RM,從而導致訊號ad、d、以及PWM偏移回到 它們的正常定位處。依此方式,pWM脈衝的定位便 整或調適且因而係靈活可變的以便達到較佳的效能。 〇 在2005年12@ 23日提申的美國專利中請案序號第 11/318,G81號中已揭示過利用雙斜波的雙緣調變技術,該 的標題為「具有利用雙斜波之雙緣調變的脈寬調變控制器 (PWM c〇ntroller with dual.edge :-㈣」,本文以引用的方式將其併入以達所有的目的與用 每-環!緣調變技術同時將該等_脈衝限制為 二二:對一:二::,每-個循環“ 對重負载暫態事件作出初始響應之德疋作 會出現沒有任何PWM脈衝的週期 . 忐 瑚此二白週期可能會在該 12 201021389Figure 5 shows the timing diagram of the operation of the double-edge modulator circuit. The plots of the signal lL0AD, A, AD, T, C, d, and PWM plotted against time are plotted. The signals D and C are superimposed on each other to more clearly understand the function of the map decoder 407. In this case, the clock signals a and ad are 5〇% duty cycle signals. When the pulse of the signal AD is at a low level, the triangular ramp signal T will rise, and when the signal ad is at a high level, it will fall. In operation, when the signal T is smaller than the signal C, the signal D will be judged as a high level; otherwise, it will be judged as a low level. When the signal D is at a high level, the pulse timing circuit 411 determines the PWM signal. The operation is repeated in this manner, and the duration of each PWM pulse is partially dependent on the level of the compensation signal C. In a conventional dual-edge modulator circuit (not shown), the delay function 403 does not exist, so the timing is based on the clock signal a, not based on the clock signal AD. For the dual-edge modulator circuit 4〇〇, the delay function 4〇3 only causes the timing of the clock signal AD to be adjusted based on the signal ADJ from the current sensing block 4丨3, which is used to adjust the timing of the clock signal AD. 4 13 will correct the signal ADJ based on the level of the signal Iload. At time t1, signal 1load will jump from IN0RM to IHIGH as previously described. The current senser 201021389 ❹ block 413 responds to correct the signal ADJ to reduce the delay of the signal AD relative to the clock signal A. As shown at 501, the signal AD will be offset at an earlier time in the loop due to the small delay relationship. The triangular ramp signal T will drop at an earlier stage (compared to normal conditions) to intersect the signal C at an earlier time in the loop as shown at 503. The early intersection between the signal τ and the signal C causes the signal D to be offset and is determined at an earlier time in the cycle as shown at 5〇5, which thus results in the indication at 5〇7 The PWM signal is relocated to an earlier time in the loop. The adaptive positioning causes the pWM signal to be relocated to an earlier time in the loop in response to a load transient event. As long as the load transient condition exists, the PWM signal will remain offset; and normal positioning will be returned when the load condition is removed. As shown at subsequent time t12, the signal how will return IN 〇 RM, causing the signals ad, d, and PWM to shift back to their normal position. In this way, the positioning of the pWM pulses is tailored or adapted and thus flexible to achieve better performance. The double-edge modulation technique using double-slope waves has been disclosed in the U.S. Patent No. 11/318, file No. G. No. 11/23, filed on Dec. 12, 2005. Dual-edge modulation pulse width modulation controller (PWM c〇ntroller with dual.edge :-(four)", which is incorporated herein by reference for all purposes and simultaneously with the per-ring! Limit the _pulse to two: two: one: two::, every cycle "The initial response to the heavy load transient event will occur without any PWM pulse cycle. May be in the 12 201021389

❹ 暫態事件之後造成額外壓降。於一雙斜波雙緣調變技術之 中’ PWM脈衝總疋會出現在循壞的結束處。在暫態事件下, 該PWM脈衝可能會響應於該輸出壓降而被往前拉。在該暫 態事件之後’該PWM脈衝會回到循環的結束處。為避免因 該空白週期所導致的額外壓降,該PWM脈衝可能會在重負 載下被移到循環的起點處。所以在輕負載下,該PWM脈衝 係位於循環的結束處,並且其會根據負載條件來移動,而 在全負載條件下位於循環的起點處。pWM脈衝定位係靈活 可變的以達較佳的效能。 圖6所示係根據上面引用之專利申請案中所述之實施 例的雙斜波雙緣脈寬調變調變電路6〇〇的概略示意圖。向 下斜波比較器CMP 1具有:一非反向輸入,用以接收一補 償訊號vC0MP(例如來自誤差放大器,舉例來說,2〇9、4〇9); 一反向輸入,用以接收一向下斜波訊號Vd〇wnramp;以及 一輸出,其會被耦合至一設定-重置(SR)正反器6〇1的設定 輸入。向上斜波比較器CMP2具有:一反向輸入,用以接 收該訊號VC0MP ; —非反向輸入,用以接收一向上斜波訊號 VUP_RAMP;以及一輸出,其會被耦合至SR正反器6〇1的重 置輸入。該SR正反器601的Q輸出會判定該pWM訊號, 用以提供PWM脈衝。一時序源6〇3會產生一時脈訊號CK, 其會被k供至一刖緣斜波產生器6 〇 5。在圖中所示的實施例 中,該刖緣斜波產生器605會產生同步於該訊號CK的向下 斜波齒波形5圖中顯示為V ^ ^ * h., 岡T網小’ vd〇wn_ramp。當該向下斜波訊 號下降至VC0MP的位準時,比較器CMP1會將其輸出判定為 13 201021389 高位準並且設定該SR正反器601,該SR正反器601會判 定該PWM訊號為高位準,用以起始每一個PWM脈衝。一 後緣斜波產生器607會產生一後緣斜波訊號(圖中顯示為向 上斜波訊號VUP_RAMP),用以達到終止每一個PWM脈衝的 目的。當該PWM訊號被判定為高位準時,該後緣斜波產生 器607便會開始上升該訊號VUP RAMP(舉例來說,參見圖16 中所示的訊號vUP—RAMP的操作)。當Vup—RAMP抵達vC0Mp 時’ CMP2便會將其輸出判定為高位準,用以重置該sr正 反器601,並且將PWM訊號下拉至低位準,從而終止每一 個PWM脈衝。當PWM被下拉時,該後緣斜波產生器6〇7 便會再次將該訊號VUP RAMP拉回到低位準。 該雙斜波雙緣脈寬調變調變電路6〇〇會在一個切換循 環裡面的任何時間處啟動與關閉該等pWM脈衝,俾使其暫 態響應係非常的快速。在正常的操作下,pWM脈衝會出現 在該切換循環的結束處。當在該循環的起點處施加重負載 時,該PWM脈衝會被往前拉至該切換循環的起點處,以便 試圖讓輸出保持在規格裡面^為限制切換頻率,在一切換 循環之中通常允許僅有一個PWM脈衝。倘若該重暫態負載 事件及PWM脈衝發生在該循環的起點處,那麼在下一個循 環之刖就不會出現另-個PWM脈衝。這可能會存在一沒有 出現任何PWM脈衝的長週期,從而會在該初始響應之後導 所示係雙斜波雙緣脈寬調變調變電路600的操作 序圖其圖解的係在—4相系統的雙斜波雙緣脈調變技 201021389 術中的長空白週期(blank peri〇d)問題。圖中繪製的係訊號 L〇AD,四個訊號VD〇WN —RAMP 1至4(每相位一個,或是 D〇WN-RAMP1 至 V〇〇WN_RAMP4);補償訊號的電壓(VC0MP);以 及對應的四個PWM訊號PWM卜PWM2、PWM3、及PWM4 相對於時間的關係圖。在大約時間t2〇4,一重負載會被施 加至該系統且控制迴路會快速地啟動以對此事件作出回應 的所有相位,如每一個PWM訊號上的同步脈衝所示。在後 ❿&quot;、時門t21處,所有相位均會被關閉。在後續的時間t22 控制電壓VC0MP會返回其操作點。於理想的情況中,倘 右該系統於此時間之後為穩定,那麼該控制電壓便預期會 如虛線701所示般怪定。不過由於每個循環具有一個脈衝 的限制’在時間t24之前不會有另一個脈衝。所以於 該理想的情況中,會在時間t21與t24之間存在一「空白」 週期Tl,其約等於切換週期。於實際的情;兄中’目為沒^ 任何PWM脈衝出現在該空白週期之中,所以,在下:個 鲁PWM脈衝之前的輸出電壓便會一直下降。所以,實際的補 償訊號VC0MP會如在703 4所示般提高,以便試圖讓該輸出 電屢保持在規格裡面。因此,該循環中會在時間⑵的較早 時:處有一 PWM脈衝,使得介於時間m與m之間的實 際空白週期τ2會遠小於切換週期。即使空白週期A遠小於 切^期,其仍會造成額外壓降,而且輸出電壓在其趨穩 之則可能會振盪數個循環。 所以在圖巾所㈣雙緣技術中,可能會在該雙斜波雙 緣調變技術中的初始暫態響應之後存在一空白週期,其會 15 201021389 造成額外料以及可能的振Μ題。為防 空白週期應該越短越好。解決此問題的一 、降,該 態事件下允許於相同的循環中有第二 二式係在重暫 在初始暫態響應之後,Vc〇Mp會再 圖7中所示, 的循環中有第™衝,輸出便會:逮 偶若該暫態事件發生在高重複率處,其則會有提穩古一疋, 中的切換頻率和熱消耗。對快速暫態響應來說,二: 應該能夠在一個循環中被往前拉。較佳的係 、衝 讓該PWM脈衝保持在循環的結束處,俾、 衝往前拉。不過—脈衝則可以在重負: 一切換循環裡面的㈣地方。對負載釋放事件來說,2 暫態之後’脈寬調變會立刻結束,並且需要空白時間來對 電感器電流進行放電。因此在重負載條件下,可能 讓PWM脈衝出現在循環的起點處。所以如下文進一步說 明,在輕負載條件下,該PWM脈衝會保持在循環結束處, 並且在負載增加時移動到循環的起點。 圖8所示係根據本發明-實施例的適應性脈寬調變脈 衝定位系統_的方塊圖,其可應用至雙斜波雙緣脈寬調 變調變電路。和雙斜波雙緣脈寬調變調變電路6〇〇中的器 件雷同的器件假設會有相同的元件符號。雖然圖中並未顯 示時序源603以及產生器6〇5與6〇7;不過,實際上有提供 並且以相同的方式來操作。向上斜波比較器CMp2會接收 訊號乂(:(^!&gt;與VUP RAMp’且其輸出會被耦合至SR正反器 的重置輸入。向下斜波比較器CMpi的反向輸入則會接收 201021389 向下斜波訊號Vdow»_ramp且其輸出會被輕合至SR正反器 601的設定輸入。於此案例中,利用一函數方塊8〇1與一加 法器803加入一偏移電壓V〇至該誤差放大器輸出訊號 VCOMP,加法器803會提供一經過調整的補償訊號Vci至比 較器CMP1的非反向輸入。比較器cmpi的輸出會被耦合至 SR正反器601的設定輸入。該偏移電壓v〇係所有相位的 感測平均電流IAVG的函數匕⑷,因此,其中 Φ 星號「*」代表乘法。在重負載下,該偏移電壓V〇很高, 以便在該循環中早期觸發該PWM脈衝。圖中雖然未顯示; 不過,可以使用一平衡電流來調整被提供至該向上斜波比 較器CMP2的補償訊號,其中該平衡電流和一個相位的感 測相位電流Iphase及所有相位的感測平均電流Lvg有關,舉 例來說,f2(IAVG,Iphase) ’其中G為任何合宜的函數。一簡翠 範例為 Ibalance = k*(IAVG-Iphase),其中 k 為常數。 圖9所示係用於施行適應性脈寬調變脈衝定位系統8〇〇 _ 的一示範性實施例的脈寬調變脈衝定位系統900的概略示 意圖。和雙斜波雙緣脈寬調變調變電路800中的器件雷同 的器件假設會有相同的元件符號。雖然圖中並未顯示時序 源603以及產生器605與6〇7;不過,實際上有提供並且以 相同的方式來操作。於本案例中,訊號Vc〇Mp會被提供至一 電阻器Rl的一端,該電阻器1的另一端則會產生訊號 Vd,其會被提供至比較器CMP1的非反向輸入。電流 會被注入產生訊號VC1的節點之中,其會使得v〇=RinAVQ 且 Vci—Vc〇Mp+ Ri*IavG。 17 201021389 4相系統的適應性脈寬調變脈衝定 卜圖’其包含四個向下斜波訊號造成 Extra pressure drop after transient events. In a double-wave double-edge modulation technique, the 'PWM pulse total 疋 appears at the end of the cycle. Under a transient event, the PWM pulse may be pulled forward in response to the output voltage drop. After this transient event, the PWM pulse will return to the end of the loop. To avoid the extra voltage drop caused by this blank period, the PWM pulse may be moved to the beginning of the loop under heavy load. So at light loads, the PWM pulse is at the end of the cycle and it moves according to load conditions and is at the beginning of the cycle under full load conditions. The pWM pulse positioning system is flexible and variable for better performance. Fig. 6 is a schematic view showing a double-slope double-edge pulse width modulation modulation circuit 6A according to the embodiment described in the above-referenced patent application. The down-ramp comparator CMP 1 has a non-inverting input for receiving a compensation signal vC0MP (eg, from an error amplifier, for example, 2〇9, 4〇9); a reverse input for receiving A downward ramp signal Vd〇wnramp; and an output coupled to a set input of a set-reset (SR) flip-flop 6〇1. The upward ramp comparator CMP2 has: an inverting input for receiving the signal VC0MP; a non-inverting input for receiving an up ramp signal VUP_RAMP; and an output coupled to the SR flip-flop 6重置1 reset input. The Q output of the SR flip-flop 601 determines the pWM signal to provide a PWM pulse. A timing source 6〇3 generates a clock signal CK which is supplied by k to a rake ramp generator 6 〇 5. In the embodiment shown in the figure, the edge ramp generator 605 generates a downward ramp tooth waveform synchronized with the signal CK. The figure 5 shows V ^ ^ * h. 〇wn_ramp. When the down-ramp signal drops to the level of VC0MP, the comparator CMP1 determines its output as 13 201021389 high level and sets the SR flip-flop 601, and the SR flip-flop 601 determines that the PWM signal is high. To start each PWM pulse. A trailing edge ramp generator 607 generates a trailing edge ramp signal (shown as an up ramp signal VUP_RAMP) for the purpose of terminating each PWM pulse. When the PWM signal is judged to be high, the trailing edge ramp generator 607 begins to rise the signal VUP RAMP (for example, see the operation of the signal vUP-RAMP shown in Figure 16). When Vup-RAMP arrives at vC0Mp, CMP2 will determine its output as a high level to reset the sr flip-flop 601 and pull the PWM signal to the low level to terminate each PWM pulse. When the PWM is pulled down, the trailing edge ramp generator 6〇7 will again pull the signal VUP RAMP back to the low level. The double-slope dual-edge pulse width modulation circuit 6〇〇 turns the pWM pulses on and off at any time within a switching cycle, making the transient response very fast. Under normal operation, the pWM pulse will appear at the end of the switching cycle. When a heavy load is applied at the beginning of the cycle, the PWM pulse is pulled forward to the beginning of the switching cycle in an attempt to keep the output within specifications. To limit the switching frequency, it is usually allowed in a switching cycle. There is only one PWM pulse. If the transient transient load event and the PWM pulse occur at the beginning of the cycle, then another PWM pulse will not occur after the next cycle. There may be a long period in which no PWM pulses appear, so that after the initial response, the operation sequence of the double-short-wave double-edge pulse width modulation modulation circuit 600 is shown. The system's double-slope double-edge pulse modulation technique 201021389 The long blank period (blank peri〇d) problem. The signal L 〇 AD drawn in the figure, four signals VD 〇 WN - RAMP 1 to 4 (one per phase, or D 〇 WN-RAMP1 to V 〇〇 WN_RAMP4); the voltage of the compensation signal (VC0MP); The relationship between the four PWM signals PWM, PWM2, PWM3, and PWM4 with respect to time. At approximately time t2 〇 4, a heavy load is applied to the system and the control loop will quickly initiate all phases that respond to this event, as indicated by the sync pulse on each PWM signal. At the rear ❿&quot;, time gate t21, all phases will be turned off. At the subsequent time t22, the control voltage VC0MP will return to its operating point. In the ideal case, if the right system is stable after this time, then the control voltage is expected to be as ambiguous as indicated by the dashed line 701. However, since each cycle has a pulse limit 'no other pulse before time t24. Therefore, in the ideal case, there will be a "blank" period T1 between times t21 and t24, which is approximately equal to the switching period. In the actual situation; in the brothers, the target is not ^ any PWM pulse appears in the blank period, so the output voltage before the next: the PWM pulse will continue to drop. Therefore, the actual compensation signal VC0MP will increase as shown in 703 4 in an attempt to keep the output power in specifications. Therefore, the cycle will have a PWM pulse at an earlier time (2): so that the actual blank period τ2 between times m and m will be much smaller than the switching period. Even if the blank period A is much smaller than the cut period, it will cause an additional voltage drop, and the output voltage may oscillate for several cycles as it stabilizes. Therefore, in the dual-edge technology of the four-edge technology of the towel, there may be a blank period after the initial transient response in the double-slope double-edge modulation technique, which will cause additional materials and possible vibrating problems. To prevent the blank period from being as short as possible. To solve this problem, the state is allowed to have the second formula in the same cycle. After the initial transient response, Vc〇Mp will be shown in the loop of Figure 7. TM rush, the output will be: if the transient event occurs at a high repetition rate, it will have a stable frequency, the switching frequency and heat consumption. For fast transient response, two: should be able to be pulled forward in a loop. Preferably, the PWM pulse is held at the end of the cycle, and is pulled forward. However, the pulse can be overweight: a (4) place inside the switching loop. For a load release event, the 2 pulse after the pulse width modulation will end immediately and a blank time is required to discharge the inductor current. Therefore, under heavy load conditions, it is possible to have a PWM pulse appear at the beginning of the cycle. Therefore, as further explained below, under light load conditions, the PWM pulse will remain at the end of the cycle and move to the beginning of the cycle as the load increases. Figure 8 is a block diagram of an adaptive pulse width modulated pulse positioning system in accordance with the present invention embodiment, which is applicable to a double ramp dual edge pulse width modulation modulation circuit. The same components are assumed to have the same component symbol as the device in the double-slope double-edge pulse width modulation circuit. Although the timing source 603 and the generators 6〇5 and 6〇7 are not shown in the figure; however, they are actually provided and operated in the same manner. The up-ramp comparator CMp2 will receive the signal 乂(:(^!&gt; with VUP RAMp' and its output will be coupled to the reset input of the SR flip-flop. The reverse input of the down-wave comparator CMpi will The 201021389 down ramp signal Vdow»_ramp is received and its output is lightly coupled to the set input of the SR flip-flop 601. In this case, an offset voltage V is added using a function block 8〇1 and an adder 803. To the error amplifier output signal VCOMP, the adder 803 provides an adjusted compensation signal Vci to the non-inverting input of the comparator CMP1. The output of the comparator cmpi is coupled to the set input of the SR flip-flop 601. The offset voltage v〇 is a function of the sense average current IAVG of all phases 匕(4), therefore, where Φ asterisk "*" represents multiplication. Under heavy load, the offset voltage V〇 is high, so that in the early stage of the cycle The PWM pulse is triggered. Although not shown in the figure; however, a balanced current can be used to adjust the compensation signal supplied to the up-ramp comparator CMP2, wherein the balanced current and a phase sense phase current Iphase and all phases The sense average current Lvg is related, for example, f2(IAVG, Iphase) 'where G is any suitable function. A simple example is Ibalance = k*(IAVG-Iphase), where k is a constant. A schematic diagram of a pulse width modulation pulse localization system 900 for performing an exemplary pulse width modulation pulse localization system 8〇〇_ and a double ramp dual edge pulse width modulation modulation circuit 800 The devices in the same device are assumed to have the same component symbols. Although the timing source 603 and the generators 605 and 6〇7 are not shown in the figure; however, they are actually provided and operated in the same manner. In this case The signal Vc〇Mp is supplied to one end of a resistor R1, and the other end of the resistor 1 generates a signal Vd which is supplied to the non-inverting input of the comparator CMP1. The current is injected to generate the signal VC1. Among the nodes, it will make v〇=RinAVQ and Vci-Vc〇Mp+ Ri*IavG. 17 201021389 4-phase system adaptive pulse width modulation pulse calibration map containing four downward ramp signals

解用於產生訊號PWM1至PWM4的個別比較器的操作。圖 中以虛線來顯示VC0MP的電壓以達比較的目的。如圖所示, 圖10所示係用於一 4相秀 位系統900的操作時序圖, 有一負載暫態正好出現在時間t30之前而導致觸發所有訊 ◎ 號PWM1至PWM4,接著它們便會在時間t31附近再次變成 低位準。在時間t3 2、t3 3、及t34處會在訊號PWM2、pWM3、 及PWM4上分別出現額外的PWM脈衝,倘若訊號Vc〇Mp 而非經修正的補償訊號VC1直接被提供至比較器CMp〗,則 每一者皆會更早出現。依此方式效能會獲得顯著改善。 圖11所示係根據本發明另一實施例的適應性脈寬調變 脈衝定位系統1 1 00的方塊圖,其可應用至雙斜波雙緣脈寬 調變調變電路。該適應性脈寬調變脈衝定位系統1100和通 ❹ 應性脈寬調變脈衝定位系統800雷同,其中雷同的器件假 設會有相同的元件符號。雖然圖中並未顯示時序源6〇3及 產生器605與607;不過實際上有提供並且以相同的方式來 操作。訊號IAVG會被提供至函數方塊801以產生偏移電廢 vo’偏移電壓VO則會被提供至加法器iioi的反向輸入。 加法器lioi會在其非反向輸入處接收訊號Vdownramp。於 此案例中’該訊號VDOWNRAMP係由偏移電壓VO來調整, 18 201021389 而非誤差放大器輸出訊號Vc〇Mp。加法器丨1〇1會利用 VD0WN RAMP減去VO以產生—經調整的斜波訊號VR,其會 被提供至比較器CMP1的反向輸入,如圖所示,該誤差放 大器輸出訊號VC0MP會直接被提供至比較器CMP2的反向 輸入,比較器CMP2會在其非反向輸入處接收¥叩^财且 其輸出會被耦合至SR正反器6〇1的重置輸入。該SR正反 器601係以雷同方式來操作以提供該pWM訊號。 圖12所示係根據本發明另一實施例的適應性脈寬調變 ❹ 脈衝定位系統1200的方塊圖,其可應用至雙斜波雙緣脈寬 調變調變電路。該適應性脈寬調變脈衝定位系統12〇〇和雙 斜波雙緣脈寬調變調變電路6〇〇雷同,其中雷同的器件假 設會有相同的元件符號。雖然圖中並未顯示時序源6〇3及 產生器605與607;不過實際上有提供並且以相同的方式來 操作。圖中提供比較器CMP1且其會比較訊號Vc〇Mp和訊號 VD0WN_RAMP並且將其輸出提供至SR正反器601的設定輸 ©入’用以在其Q輸出處提供該PWM訊號。於此案例中會產 生一不同的偏移電壓V02,其和一多相位轉換器中個別相 位的感測相位電流iPHASE有關。電流Iphase會被提供至函數 方塊1201的輸入(其會將IpHASE乘以函數f3(s))以產生 V02 ’接著v〇2便會被提供至一加法器12〇3的輸入。加法 器1203會將VC0MP加入到V02以產生一經過調整的補償訊 號VC2。該訊號VC2會被提供至比較器CMP2的反向輸入, 比較器CMP2會在其非反向輸入處接收VupRAMp且其輸出 會被耦合至SR正反器601的重置輸入。在重負載下,該偏 19 201021389 移電壓V02很高而電壓Vo會減低,其會導致Vc〇Mp提高 以便保持相同的工作循環’從而導致早期觸發每一個相位 的PWM脈衝。 圖13所示係用於施行適應性脈寬調變脈衝定位系統 1200的一示範性實施例的適應性脈寬調變脈衝定位系統 13 00的概略示意圖。再次地,雷同的器件假設會有相同的 元件符號。雖然圖中並未顯示時序源603及產生器605與 607;不過實際上有提供並且以相同的方式來操作。於此案 例中,實際上係以電阻器R2來取代函數方塊12〇1與加法器 ❹ 1203匕的一知會接收訊號VC0MP而另一端則會產生訊號 Vq,如圖所示,訊號Vo會被提供至比較器CMp2的反向 輸入。電流IPHASE會從產生訊號Vo的節點處被拉出,俾使 Vc2=VCOMP-R2*lPHASE。比較器CMP2會比較該經過調整的補 償訊號VC2和訊號VUP RAMp,比較器CMP2的輸出會被耦合 至SR正反器601的重置輸入。比較器CMP1的電路和圖12 中所示者相同。 圖14所示係用於一 4相位系統的適應性脈寬調變脈衝 〇 定位系統1300的操作時序圖,其包含四個向下斜波訊號 Vd〇wn〜rAMP丨至VDOWN RAMP4以及四個pWM訊號pwM1至 PWM4。圖中繪製係訊號Il〇ad、、v_N RAMp丨至 VD〇WN_RAMP4、及PWM1至PWM4相對於時間的關係圖。訊 號vC0MP與訊號▽⑽龍^⑽丨至Vd〇wn ^mh彼此疊加以便 圖解用於產生訊號PWM1至PWM4的個別比較器的操作。 如圖所示,有一負載暫態出現在大約時間處而造成訊號 20 201021389The operation of the individual comparators for generating signals PWM1 to PWM4 is solved. The voltage of VC0MP is shown in dotted lines in the figure for comparison purposes. As shown in the figure, FIG. 10 is an operation timing diagram of a 4-phase appearance system 900. A load transient occurs just before time t30, which causes all signals PWM1 to PWM4 to be triggered, and then they will It becomes a low level again near time t31. At time t3 2, t3 3, and t34, additional PWM pulses appear on signals PWM2, pWM3, and PWM4, respectively. If signal Vc〇Mp is not directly supplied to comparator CMp, instead of modified compensation signal VC1, Then each one will appear earlier. In this way, the performance will be significantly improved. Figure 11 is a block diagram of an adaptive pulse width modulated pulse positioning system 1 00 in accordance with another embodiment of the present invention, which is applicable to a double ramp dual edge pulse width modulation modulation circuit. The adaptive pulse width modulation pulse positioning system 1100 is identical to the universal pulse width modulation pulse positioning system 800, wherein the same device is assumed to have the same component symbol. Although the timing source 6〇3 and the generators 605 and 607 are not shown in the figure; however, they are actually provided and operated in the same manner. Signal IAVG will be provided to function block 801 to generate an offset VO' offset voltage VO which is provided to the inverse input of adder iioi. The adder lioi will receive the signal Vdownramp at its non-inverting input. In this case, the signal VDOWNRAMP is adjusted by the offset voltage VO, 18 201021389 instead of the error amplifier output signal Vc 〇 Mp. The adder 丨1〇1 will subtract VO from VD0WN RAMP to generate an adjusted ramp signal VR, which will be supplied to the inverting input of comparator CMP1. As shown, the error amplifier output signal VC0MP will be directly Provided to the inverting input of comparator CMP2, comparator CMP2 will receive its output at its non-inverting input and its output will be coupled to the reset input of SR flip-flop 6〇1. The SR flip-flop 601 operates in a similar manner to provide the pWM signal. Figure 12 is a block diagram of an adaptive pulse width modulation ❹ pulse positioning system 1200 in accordance with another embodiment of the present invention, which is applicable to a double ramp dual edge pulse width modulation modulation circuit. The adaptive pulse width modulation pulse positioning system 12 〇〇 and the double slant wave double edge pulse width modulation modulation circuit 6 are identical, wherein the same device hypothesis has the same component symbol. Although the timing source 6〇3 and the generators 605 and 607 are not shown in the figure; however, they are actually provided and operated in the same manner. The comparator CMP1 is provided and compares the signal Vc 〇 Mp and the signal VD0WN_RAMP and provides its output to the set input of the SR flip flop 601 to provide the PWM signal at its Q output. In this case a different offset voltage V02 is generated which is related to the sense phase current iPHASE of the individual phase in a multiphase converter. Current Iphase is provided to the input of function block 1201 (which will multiply IpHASE by function f3(s) to produce V02' and then v2 will be provided to the input of an adder 12〇3. Adder 1203 adds VC0MP to V02 to generate an adjusted compensation signal VC2. This signal VC2 will be supplied to the inverting input of comparator CMP2, which will receive VupRAMp at its non-inverting input and its output will be coupled to the reset input of SR flip-flop 601. Under heavy load, this bias 19 201021389 shifts voltage V02 high and voltage Vo decreases, which causes Vc〇Mp to increase to maintain the same duty cycle' resulting in early triggering of PWM pulses for each phase. 13 is a schematic diagram of an adaptive pulse width modulated pulse positioning system 13 00 for performing an exemplary embodiment of an adaptive pulse width modulated pulse positioning system 1200. Again, the same device assumes the same component symbol. Although timing source 603 and generators 605 and 607 are not shown in the figures; however, they are actually provided and operate in the same manner. In this case, the resistor R2 is used instead of the function block 12〇1 and the adder ❹1203匕 to receive the signal VC0MP and the other end will generate the signal Vq. As shown, the signal Vo will be provided. Reverse input to comparator CMp2. The current IPHASE is pulled out from the node where the signal Vo is generated, so that Vc2 = VCOMP - R2 * lPHASE. Comparator CMP2 compares the adjusted compensation signal VC2 and signal VUP RAMp, and the output of comparator CMP2 is coupled to the reset input of SR flip-flop 601. The circuit of the comparator CMP1 is the same as that shown in FIG. Figure 14 is an operational timing diagram of an adaptive pulse width modulated pulse chirp positioning system 1300 for a 4-phase system including four down ramp signals Vd〇wn~rAMP丨 to VDOWN RAMP4 and four pWMs. Signals pwM1 to PWM4. The graph plots the signal signals Il〇ad, v_N RAMp丨 to VD〇WN_RAMP4, and PWM1 to PWM4 versus time. The signal vC0MP and the signal ▽(10) dragon^(10)丨 to Vd〇wn^mh are superimposed on each other to illustrate the operation of the individual comparators for generating the signals PWM1 to PWM4. As shown in the figure, a load transient occurs at approximately the time to cause the signal 20 201021389

Vcomp提高,.從而導致觸發所有的訊號P WM 1至P WM4。該 等訊號P WM1至P WM4會在後續的時間t4 1處再次變成低 位準。在時間t42、t43、及t44處會在訊號PWM2、PWM3、 及PWM4之上分別出現額外的PWM脈衝,倘若訊號VC0MP 而非經修正的補償訊號VC2直接被提供至比較器CMP2,則 每一者皆會更早期出現。依此方式效能會獲得顯著改善。 圖15所示係可用來產生雙斜波雙緣脈寬調變調變電路 600的訊號VD0WN_RAMP的向下斜波產生器15〇〇的方塊圖, 從而圖解根據本發明另一實施例的適應性脈寬調變脈衝定 位系統。因此’圖中係使用雙斜波雙緣脈寬調變調變電路 600,除了以向下斜波產生器1500取代前緣斜波產生器605 之外。而針對向下斜波產生器150〇來說,一受控電流槽 (current sink)1501會被耦合在接地(GND)及用於產生訊號 V〇0WN_RAMP 的節點1502之間。電容器ci會被耦合在節點 1502和GND之間。二極體15〇3的陰極會被耦合至節點 15 02’而其陽極則會被耦合至用於產生最小斜波電壓vMIN 之電壓源1505的正終端。一單刀單擲(SPST,single_p〇le single-throw)切換器SW的切換終端會被耦合在節點15〇2 和用於產生最大斜波電壓VMAX之電壓源1507的正終端之 間’其中VMAX大於VMIN。電壓源1505及1507的負終端會 被耦合至GND。切換器SW具有一用以接收時脈訊號(CLK) 的控制終端’其會以該訊號CLK的頻率來張開及閉合該 SW。電流槽1501具有一用以接收訊號c+k*IAVG的控制終 端’其中C和k均為常數。依此方式,電流槽15〇1的電流 21 201021389 便會以iAVG之經測量或經感測到的位準為基礎。 在向下斜波產生器1500的操作中,切換器sw會閉合 而電壓源1507會將電容器C1充電至電壓位準νΜΑχ。當切 換器SW張開時’電流槽15〇1則會在以訊號Uvg為基礎的 速率處對電容器C1進行放電。其會決定常數…,以便 2對訊號iAVG的正常操作位準來決定訊號Vd〇wn ramp的合 宜轉換速率(slew rate)。#訊號Iavg因負載變遷而提高時, 訊號乂〇0__11心1&gt;的轉換速率會因而提高,以便加速電容器 ci的放電並且從而將下一個PWM脈衝重新定位在該循環❹ 中的較早時間處。結果,便可以經感測的平均電流工·為 基礎來調整訊號VD0WNRAMp的轉換速率。在輕負載下,Iavg 較低而且訊號vdownramp的轉換速率很低。在重負載下,Vcomp is increased, thereby causing all signals P WM 1 to P WM4 to be triggered. The signals P WM1 to P WM4 will again become low levels at the subsequent time t4 1 . Additional PWM pulses appear on signals PWM2, PWM3, and PWM4 at times t42, t43, and t44, respectively, if signal VC0MP, instead of modified compensation signal VC2, is provided directly to comparator CMP2, then each They will all appear earlier. In this way, the performance will be significantly improved. 15 is a block diagram of a ramp-down wave generator 15A that can be used to generate a signal VD0WN_RAMP of the double-slope double-edge pulse width modulation modulation circuit 600, thereby illustrating the adaptability according to another embodiment of the present invention. Pulse width modulation pulse positioning system. Therefore, the double-skew double-edge pulse width modulation modulation circuit 600 is used in the figure except that the leading edge ramp generator 605 is replaced by the downward ramp generator 1500. For the ramp-up generator 150A, a controlled current sink 1501 is coupled between ground (GND) and node 1502 for generating the signal V〇0WN_RAMP. Capacitor ci will be coupled between node 1502 and GND. The cathode of diode 15〇3 will be coupled to node 15 02' and its anode will be coupled to the positive terminal of voltage source 1505 for generating minimum ramp voltage vMIN. A switching terminal of a SPST, single_p〇le single-throw switch SW is coupled between the node 15〇2 and the positive terminal of the voltage source 1507 for generating the maximum ramp voltage VMAX, where VMAX is greater than VMIN. The negative terminals of voltage sources 1505 and 1507 are coupled to GND. The switch SW has a control terminal for receiving a clock signal (CLK) which opens and closes the SW at the frequency of the signal CLK. The current slot 1501 has a control terminal ' for receiving the signal c + k * IAVG ' where C and k are constant. In this way, the current 21 201021389 of the current sink 15〇1 is based on the measured or sensed level of the iAVG. In operation of the ramp-up generator 1500, the switch sw will be closed and the voltage source 1507 will charge the capacitor C1 to the voltage level νΜΑχ. When the switch SW is opened, the current tank 15〇1 discharges the capacitor C1 at a rate based on the signal Uvg. It determines the constant... so that the normal operating level of the two pairs of signals iAVG determines the appropriate slew rate of the signal Vd〇wn ramp. When the signal Iavg is increased due to load transition, the slew rate of the signal 乂〇0__11心1&gt; is thus increased to accelerate the discharge of the capacitor ci and thereby reposition the next PWM pulse at an earlier time in the loop ❹. As a result, the slew rate of the signal VD0WNRAMp can be adjusted based on the sensed average current. At light loads, Iavg is low and the conversion rate of the signal vdownramp is very low. Under heavy load,

Uvg會提同而且訊號VD〇WNRAMp的轉換速率會提高,從而 造成於該循環中早期觸發該PWM脈衝。 圖16所示係運用向下斜波產生器15〇〇的適應性脈寬 調變脈衝定位系統的操作時序圖。圖中繪製訊號Il〇ad、 CLK Vd〇wn_ramp、VUP RAMp、vc〇Mp、以及 pwM 相對於時 〇 間的關係圖。訊號VC0MP與訊號VD0WN RAMP及Vup—RAMP彼 此疊加,以便圖解比較器CMP 1與CMP2的操作。當訊號 Il〇ad從INORM跳升至IHIGH時,訊號vc〇Mp會暫時提高,且 訊號Iavg也會提高,從而導致早期觸發pwM訊號。 圖1 7所示係根據另一實施例所施行的雙緣調變器電路 1700的概略示意圖。該雙緣調變器電路17〇〇包含一三角斜 波產生器1 701及一感測與調整電路丨7〇3。於一實施例中, 22 201021389 該雙緣調變器電路1700會取代雙緣調變器電路400的功能 方塊401、403、405、以及413 ’其中三角斜波產生器1701 會產生一週期性三角斜波電壓T2,其會如圖所示取代被提 供至比較器407之反向輸入的三角斜波訊號τ。訊號c係以 實質上和前面所述雷同的方式由誤差放大器4〇9所產生、 並且會被提供至比較器407的非反向輸入。比較器407會 產生被提供至脈衝時序電路411之CTL輸入的訊號D,脈 衝時序電路411會在其輸出處產生該Pwm訊號。三角斜波 ❹ 產生器1701還會產生一被提供至脈衝時序電路411之CK 輸入的時脈訊號CLK。脈衝時序電路4 11會以用於控制該 直流-直流功率調節器之輸出電壓的訊號D為基礎來產生一 PWM訊號,並且會被配置成用以確保該clk訊號中的每一 個循環僅會有一個脈衝。比較器4〇7及脈衝時序電路411 會共同構成一脈衝產生器電路以產生用於控制該電壓調節 器之輸出的PWM脈衝訊號。感測與調整電路i 7〇3會感測 訊號Iload並且產生一電流調變訊號IADJ,其會被用來調 參 變或調整三角斜波電壓T2的大小’進一步說明如下。感測 與調整電路1 703基本上係取代電流感測電路4 13 ,其中吼 號IADJ係充當一調整訊號,操作方式和訊號adj雷同,不 過,訊號IADJ係被提供至三角斜波產生器17〇1裡面的一 卽點以調整T2的大小,進一步說明如下。 一電壓源VCC會被提供至一正常張開的單刀單掷 (SPST)切換器SW1的一切換終端,該SW1的另一切換終端 會被耦合至用於產生電流2ICH的電流源1702的負終端。 23 201021389 電流源1 702的正終端會被耦合至用以產生該三角斜波電壓 T2的節點1704。節點1704會進一步被耦合至電容器COSC 的一端,被耦合至用於產生電流ICH的另一電流源1706的 負終端,被耦合至比較器COMPH的非反向輸入,被耦合至 另一比較器COMPL的反向輸入,及被耦合至比較器407的 反向輸入。電流源1706的正終端及電容器COSC的另一端 會被耦合至GND。電壓源1708的負終端會被耦合至GND 而其正終端會提供一電壓VTHH給電阻器R1的一端。電阻 器R1的另一端會被耦合至節點1710,其會產生一電壓 © VTHHM且被耦合至比較器COMPH的反向輸入。另一電壓 源1712的負終端會被耦合至GND而其正終端會提供一電 壓VTHL給比較器COMPL的非反向輸入。比較器COMPH 的輸出會被提供至SR正反器FF3的設定輸入,而比較器 COMPL的輸出貝|J會被提供至SR正反器FF3的重置輸入。 FF3的非反向Q輸出會產生訊號CLK,其會被提供至脈衝 時序電路411的CK輸入。該訊號CLK會以和三角斜波訊 號T2相同的頻率在數位位準之間雙態觸變(toggle)。FF3的 〇 反向Q輸出(圖中以在反向「Q」輸出上方劃一條短線的 「Qbar」表示)會被提供至切換器SW1的控制輸入。 圖中所示的負載電流Iload會被提供通過電流感測器 1705,電流感測器1705的輸出會產生一和I LOAD成比例的 電流感測電壓VCS。訊號I LOAD 可能為負載電流本身或和該 負載電流相關或會受到該負載電流影響的其它訊號,如電 感器電流訊號。VCS會被提供至放大器1707的非反向輸 24 201021389 入;被提供至電阻器R2的一輸入;及被提供至電壓控制電 流源1714的正控制輸入,該電壓控制電流源1714的負控 制輸入會被耦合至GND。電流源1714具有:一負輸出終端, 其會被耦合至節點1709;及一正輸出終端,其會被耦合至 GND。電流源1714會從節點1709吸取一比例電流IPADJ 至GND,其中電流IPADJ和VCS成比例而VCS本身則和 Iload 的位準成比例。R2的另一端會被耦合至電容器C2且 被耦合至放大器1707的反向輸入。電容器C2的另一端會 ® 被耦合至GND,而放大器1707的輸出則會產生一負載暫態 訊號LT。LT會被提供至比較器COMPTR+的非反向輸入且 會被提供至另一比較器COMPTR-的反向輸入。電壓源1716 的負終端會被耦合至GND而其正終端則會提供一電壓 VTRTH+至比較器COMPTR+的反向輸入。另一電壓源1718 的正終端會被耦合至GND,而其負終端則會提供一電壓 VTRTH-至比較器 COMPTR-的非反向輸入。比較器 COMPTR+的輸出會被耦合至SR正反器FF1的設定輸入, ❹ 而比較器COMPTR-的輸出會被耦合至另一 SR正反器FF2 的設定輸入。比較器C0MPH的輸出會被耦合至,FF1與FF2 兩者的重置輸入。FF1的非反向Q輸出會被提供至一雙輸 入OR閘1 7 11的一輸入。FF2的非反向Q輸出會被提供至 一正常張開的SPST切換器SWL的控制輸入並且會被提供 至OR閘1 7 11的另一輸入。切換器SWL(當控制輸入為邏輯 高位準時會閉合)的切換終端會被耦合在VCC和電流源 1 720的負終端之間,電流源1720的正終端則會被耦合至節 25 201021389 點1709。當切換器SWL閉合時,電流源1720會提供一電 流IPADJOFFS至節點1709。OR閘1711的輸出會被耦合至 另一正常張開的SPST切換器SWH的控制輸入,切換器 SWH的切換終端會被耦合在節點1710和1709之間,且當 控制輸入為邏輯高位準時會閉合。如下文的進一步說明, VTHHM的電壓通常和VTHH有相同的電壓位準。當切換器 SWH閉合時,電流IADJ(圖中顯示流入節點1710中)便會調 整VTHHM的位準以便調變T2的尖峰數值或上限振幅。 如下文的進一步解釋,SR正反器FF1與FF2、電流源 1714與1720、切換器SWL與SWH、以及OR閘1711會共 同構成一調整訊號產生電路,其會響應於輸出負載暫態來 控制訊號IADJ,用以調整T2的大小。響應於導致LT上升 至正臨界電壓VTRTH+之上的正負載暫態,T2的上限臨界 電壓會下降和Iload 之增額成比例的數額。T2之上限臨界電 壓的下降會導致比較器COMPH較早觸發,其會將下一個 PWM脈衝往前拉以便出現在該循環中的較早時間處。 COMPH的觸發作用還會重置FF 1使得臨界值改變受限在一 個循環中。響應於導致LT負向下降至負臨界電壓VTRTH-之下的負負載暫態,T2的上限臨界電壓則會增加由 IPADJOFFS所決定的偏移值並且縮減和IL0AD之減額成比 例的數額。T2之上限臨界電壓的增加會導致比較器COMPH 較晚觸發,其會將下一個PWM脈衝往外推以便出現在該循 環中的較晚時間處。COMPH的觸發作用還會重置FF2使得 臨界值改變受限在一個循環中。 201021389 雙緣調變器電路1700的操作會參考圖18來作說明, 圖1 8包含IL0AD相對於時間的第一時序圖,三角斜波電壓 T2相對於時間的第二時序圖,及PWM訊號相對於時間的 第三時序圖。T2的時序圖還利用虛線來圖解VTHHM、C、 以及VTHL的電壓位準,以便解釋雙緣調變器電路1700的 操作。為清楚起見,圖中所示的補償電壓C係在恆定位準 處,其中應該暸解的係,該補償電壓C通常會隨著負載條 件而改變。剛開始’負載電流Iload 係在正常穩態位準處, © 而三角斜波電壓T2則會在臨界電壓位準VTHL和VTHH之 間上升和下降。當IADJ為零或是可忽略時,例如在穩態負 載條件期間,那麼VTHHM實質上會等於VTHH。當切換器 SW1張開時,電容器COSC會被電流ICH放電,使得T2 會從VTHH朝VTHL下降。當T2下降至約電壓位準VTHL 處時,比較器COMPL便會切換且重置FF3,其會閉合切換 器 SW1。電流2ICH(其為ICH之位準的兩倍)會以約為 ICH(2ICH-ICH)的電流位準來充電電容器COSC,使得T2 • 會以恆定的速率從VTHL朝VTHH上升。當T2抵達VTHH 的電壓位準時,比較器COMPH便會切換且設定FF3,其會 張開切換器SW1。於正常穩態負載條件期間或是當輸出負 載改變比較緩慢時,操作便會依此方式重複進行,其中, T2會在臨界電壓位準VTHL和VTHH之間進行升降。於每 一個循環期間,當T2下降至C的電壓位準以下時,PWM 訊號會被判定為高位準;而當T2上升至C的電壓位準之下 時,PWM訊號則會被重置回到低位準。 27 201021389 電阻器R2和電容器C2會共同構成一低通濾波器,使 得放大器1707的反向輸入會相對於其非反向輸入被延遲。 依此方式,訊號LT的位準大小便會響應於VCS(其會與 Iload成比例)的轉變而改變。電壓VTRTH+及VTRTH-為臨 界電壓,它們會定義一電壓LT可在裡面改變而不會影響正 常操作的電壓範圍。Iload相對緩慢的改變會導致LT的些 微改變。不過,ILOAD相對快速且相對大額的改變卻會導致 VCS有一對應改變,使得LT會短暫地跳出臨界電壓 VTRTH+及VTRTH-之間的正常操作範圍。依此方式’包含 放大器1707的放大器電路及具有R2和C2的RC濾波器連 同比較器電路COMPTR+/-會構成一負載暫態臨界電路’用 以監視輸出負載暫態。Uvg will mention that the conversion rate of the signal VD〇WNRAMp will increase, causing the PWM pulse to be triggered early in the cycle. Figure 16 is an operational timing diagram of an adaptive pulse width modulated pulse positioning system employing a down ramp generator 15A. The diagram plots the relationship of signals I1〇ad, CLK Vd〇wn_ramp, VUP RAMp, vc〇Mp, and pwM with respect to time. The signal VC0MP and the signals VD0WN RAMP and Vup-RAMP are superimposed on each other to illustrate the operation of the comparators CMP 1 and CMP2. When the signal Il〇ad jumps from INORM to IHIGH, the signal vc〇Mp will temporarily increase, and the signal Iavg will also increase, resulting in early triggering of the pwM signal. Figure 17 shows a schematic diagram of a dual-edge modulator circuit 1700 implemented in accordance with another embodiment. The double-edge modulator circuit 17A includes a triangular ramp generator 1 701 and a sensing and adjusting circuit 丨7〇3. In one embodiment, 22 201021389 the dual-edge modulator circuit 1700 replaces the functional blocks 401, 403, 405, and 413 of the double-edge modulator circuit 400. The triangular ramp generator 1701 generates a periodic triangle. The ramp voltage T2, which replaces the triangular ramp signal τ supplied to the inverting input of the comparator 407, is shown. The signal c is generated by the error amplifier 4〇9 in a manner substantially identical to that previously described and is provided to the non-inverting input of the comparator 407. The comparator 407 generates a signal D that is supplied to the CTL input of the pulse timing circuit 411, and the pulse timing circuit 411 generates the Pwm signal at its output. The triangular ramp ❹ generator 1701 also generates a clock signal CLK that is supplied to the CK input of the pulse timing circuit 411. The pulse sequence circuit 4 11 generates a PWM signal based on the signal D for controlling the output voltage of the DC-DC power regulator, and is configured to ensure that each cycle of the clk signal is only One pulse. Comparator 4〇7 and pulse sequential circuit 411 together form a pulse generator circuit to generate a PWM pulse signal for controlling the output of the voltage regulator. The sensing and adjusting circuit i 7〇3 senses the signal Iload and generates a current modulation signal IADJ, which will be used to adjust or adjust the magnitude of the triangular ramp voltage T2'. The sensing and adjusting circuit 1 703 basically replaces the current sensing circuit 4 13 , wherein the nickname IADJ serves as an adjustment signal, and the operation mode is the same as the signal adj. However, the signal IADJ is provided to the triangular ramp generator 17〇. A point inside 1 to adjust the size of T2, further explained below. A voltage source VCC is provided to a switching terminal of a normally open single pole single throw (SPST) switch SW1, the other switching terminal of which is coupled to the negative terminal of current source 1702 for generating current 2ICH. . 23 201021389 The positive terminal of current source 1 702 is coupled to node 1704 for generating the triangular ramp voltage T2. Node 1704 is further coupled to one end of capacitor COSC, coupled to the negative terminal of another current source 1706 for generating current ICH, coupled to the non-inverting input of comparator COMPH, coupled to another comparator COMPL The inverting input is coupled to the inverting input of comparator 407. The positive terminal of current source 1706 and the other end of capacitor COSC are coupled to GND. The negative terminal of voltage source 1708 is coupled to GND and its positive terminal provides a voltage VTHH to one end of resistor R1. The other end of resistor R1 is coupled to node 1710 which produces a voltage © VTHHM and is coupled to the inverting input of comparator COMPH. The negative terminal of the other voltage source 1712 is coupled to GND and its positive terminal provides a voltage VTHL to the non-inverting input of the comparator COMPL. The output of the comparator COMPH is supplied to the set input of the SR flip-flop FF3, and the output of the comparator COMPL is supplied to the reset input of the SR flip-flop FF3. The non-inverting Q output of FF3 produces a signal CLK which is provided to the CK input of pulse timing circuit 411. The signal CLK toggles between the digital levels at the same frequency as the triangular ramp signal T2. The 反向 reverse Q output of FF3 (indicated by "Qbar" in the figure with a short line above the reverse "Q" output) is supplied to the control input of switch SW1. The load current Iload shown in the figure is provided through current sensor 1705, which produces a current sense voltage VCS that is proportional to I LOAD . Signal I LOAD may be the load current itself or other signal related to or affected by the load current, such as the inductor current signal. The VCS is provided to the non-inverting input 24 201021389 of the amplifier 1707; to an input of the resistor R2; and to the positive control input of the voltage controlled current source 1714, which controls the negative control input of the current source 1714 Will be coupled to GND. Current source 1714 has a negative output terminal that is coupled to node 1709 and a positive output terminal that is coupled to GND. Current source 1714 draws a proportional current IPADJ from node 1709 to GND, where current IPADJ is proportional to VCS and VCS itself is proportional to the level of Iload. The other end of R2 will be coupled to capacitor C2 and coupled to the inverting input of amplifier 1707. The other end of capacitor C2 will be coupled to GND, and the output of amplifier 1707 will generate a load transient signal LT. The LT will be provided to the non-inverting input of the comparator COMPTR+ and will be provided to the inverting input of the other comparator COMPTR-. The negative terminal of voltage source 1716 is coupled to GND and its positive terminal provides a voltage VTRTH+ to the inverting input of comparator COMPTR+. The positive terminal of another voltage source 1718 is coupled to GND, while its negative terminal provides a non-inverting input of voltage VTRTH- to comparator COMPTR-. The output of the comparator COMPTR+ is coupled to the set input of the SR flip-flop FF1, and the output of the comparator COMPTR- is coupled to the set input of the other SR flip-flop FF2. The output of the comparator C0MPH is coupled to the reset input of both FF1 and FF2. The non-inverting Q output of FF1 is provided to an input of a dual input OR gate 1 7 11 . The non-inverting Q output of FF2 will be provided to the control input of a normally open SPST switch SWL and will be provided to the other input of the OR gate 1 7 11 . The switch terminal of switch SWL (which closes when the control input is logic high) is coupled between VCC and the negative terminal of current source 1 720, and the positive terminal of current source 1720 is coupled to node 25 201021389 point 1709. Current source 1720 provides a current IPADJOFFS to node 1709 when switch SWL is closed. The output of the OR gate 1711 will be coupled to the control input of another normally open SPST switch SWH, the switching terminal of the switch SWH will be coupled between nodes 1710 and 1709, and will close when the control input is logic high. . As further explained below, the voltage of VTHHM typically has the same voltage level as VTHH. When the switch SWH is closed, the current IADJ (shown in the inflow node 1710 in the figure) adjusts the level of VTHHM to modulate the peak value or upper limit amplitude of T2. As further explained below, the SR flip-flops FF1 and FF2, the current sources 1714 and 1720, the switches SWL and SWH, and the OR gate 1711 together form an adjustment signal generating circuit that controls the signal in response to the output load transient. IADJ, used to adjust the size of T2. In response to a positive load transient that causes LT to rise above the positive threshold voltage VTRTH+, the upper threshold voltage of T2 will decrease by an amount proportional to the increase in Iload. A decrease in the upper threshold voltage of T2 causes the comparator COMPH to trigger earlier, which pulls the next PWM pulse forward to appear at an earlier time in the cycle. The triggering action of COMPH also resets FF 1 so that the threshold change is limited to one cycle. In response to a negative load transient that causes LT to fall negatively below the negative threshold voltage VTRTH-, the upper threshold voltage of T2 increases the offset value determined by IPADJOFFS and is reduced by the amount of the decrement of IL0AD. An increase in the upper threshold voltage of T2 causes the comparator COMPH to trigger later, which will push the next PWM pulse extrapolated to appear at a later time in the cycle. The triggering action of COMPH also resets FF2 so that the threshold change is limited to one cycle. 201021389 The operation of the double-edge modulator circuit 1700 will be described with reference to FIG. 18. FIG. 18 includes a first timing diagram of IL0AD with respect to time, a second timing diagram of triangular ramp voltage T2 with respect to time, and a PWM signal. A third timing diagram relative to time. The timing diagram for T2 also illustrates the voltage levels of VTHHM, C, and VTHL using dashed lines to account for the operation of the dual-edge modulator circuit 1700. For the sake of clarity, the compensation voltage C shown in the figure is at a constant level, where it should be understood that the compensation voltage C will generally vary with load conditions. At the beginning, the load current Iload is at the normal steady state level, and the triangular ramp voltage T2 rises and falls between the threshold voltage levels VTHL and VTHH. When IADJ is zero or negligible, such as during steady state load conditions, then VTHHM will be substantially equal to VTHH. When switch SW1 is open, capacitor COSC is discharged by current ICH, causing T2 to fall from VTHH toward VTHL. When T2 drops to approximately voltage level VTHL, comparator COMPL switches and resets FF3, which closes switch SW1. The current 2ICH, which is twice the level of the ICH, charges the capacitor COSC at a current level of approximately ICH (2ICH-ICH) such that T2 will rise from VTHL towards VTHH at a constant rate. When T2 reaches the voltage level of VTHH, the comparator COMPH switches and sets FF3, which opens the switch SW1. During normal steady-state load conditions or when the output load changes slowly, the operation is repeated in this manner, where T2 ramps up between the critical voltage levels VTHL and VTHH. During each cycle, when T2 falls below the voltage level of C, the PWM signal is judged to be high. When T2 rises below the voltage level of C, the PWM signal is reset back. Low level. 27 201021389 Resistor R2 and capacitor C2 together form a low pass filter such that the inverting input of amplifier 1707 is delayed relative to its non-inverting input. In this way, the level of the signal LT will change in response to a transition of VCS (which will be proportional to Iload). The voltages VTRTH+ and VTRTH- are critical voltages that define a voltage range in which the LT can be changed without affecting the normal operating voltage range. A relatively slow change in Iload can result in slight changes in LT. However, a relatively fast and relatively large change in ILOAD results in a corresponding change in VCS, causing LT to briefly jump out of the normal operating range between the threshold voltages VTRTH+ and VTRTH-. In this manner, the amplifier circuit including the amplifier 1707 and the RC filter having R2 and C2, together with the comparator circuit COMPTR+/-, constitute a load transient critical circuit' for monitoring the output load transient.

在約時間tl處,負載電流 Iload 會快速地跳升至Ihigh 所示的高電流位準。響應於此輸出負載暫態,vcs會提高 而放大器1707則會藉由將LT判定為高位準來回應。於此 案例中,Iload的變遷非常高而使得LT會上升至上限臨界 電壓VTRTH+之上,俾使比較器COMPTR+會切換狀態並且 設定FF1。OR閘1711會響應於FF1的高位準輸出而將其 輸出判定為高位準並且會閉合切換器SWH。電壓控制電流 源1714的輸出電流IPADJ(其會與ILOAd的較高位準成比例) 會導致一負IADJ電流,用以經由電阻器R1從節點1710處 拉出電流。流經電阻器R1的IPADJ電流會如圖所示將 VTHHM的電壓位準降至VTHH的電壓位準以下》VTHHM 的相對電壓變化量會相依於IPADJ的大小,其會相依於VCS 201021389 的大小且從而會相依於Iload的大小。當T2抵達該已下降 的VTHHM電壓位準時,比較器COMPH便會將其輸出切換 為高位準並且早期設定FF3,用以在目前的PWM循環中早 期張開切換器SW1。依此方式,Τ2會在該循環中較早抵達 一較低大小的尖峰值並且如1 80 1處所示開始斜波下降回到 低位準。進一步言之,Τ2會在目前循環中更早抵達C,其 會導致下一個PWM脈衝響應於已提高的負載暫態而適應性 地偏移至1 802處所示之該循環中的較早時間處。可以使用 ® 標準限制技術來限制該上限臨界值的移動,以便停留在 VTHL之上。比較器COMPH還會在時間t2處重置FF1使 得切換器SWH會重新張開,從而導致VTHHM返回VTHH 的電壓位準,而放大器1 707則會依照暫態進行調整並且將 LT拉回介於VTRTH-與VTRTH+之間的臨界電壓範圍裡 面。因此,感測與調整電路1 703實際上會被重置回到正常 操作且三角斜波電壓T2及PWM訊號會返回正常操作,以 便將負載暫態響應限制在單一循環中。 ® 在約時間t3處,負載電流IL0AD會快速降回正常電流位 準 Inorm 0 響應於此負負載暫態,放大器1 707會判定LT低 於負臨界電壓VTRTH-而導致比較器COMPTR-設定FF2。 應該注意的係在圖中所示實施例中,VTRTH-為GND以下 的負臨界值使得LT會負向下降並且降至VTRTH-之下,用 以觸發比較器COMPTR-。響應之後,FF2會閉合切換器SWL 和SWH兩者。IL0AD的較低位準會降低VCS,其會降低IPADJ 的電流位準。因為切換器SWL和SWH兩者皆閉合,所以 29 201021389 電流IPADJOFFS會被提供至節點1710以被電流IPADJ偏 ' 移,使得IADJ=IPADJOFFS-IPADJ。電流IADJ會經由電阻 器R1被注入節點1710中’從而如在時間t3處所示提高 VTHHM的電壓,其中該電壓增額係以IADJ的電流位準和 R1的阻值為基礎。三角斜波電壓T2的上升斜波會通過 VTHH的正常上限臨界值直到在時間t4處抵達VTHHM的 已提南電壓處。因為T2係以怪定速率上升,所以會花費較 長的時間以抵達VTHHM的已提高電壓,從而會如1803處 所示導致T2的大小短暫提高。在時間t4處,當T2抵達 ◎ VTHHM的電壓位準時,比較器COMPH會切換從而起始T2 的負向斜波。Τ2最後會下降至C的電壓位準以便起始下— 個PWM脈衝。依此方式,Τ2之已提高大小會如18〇4處所 示延遲該下一個PWM脈衝,而後操作便會返回正常值直到 下一次負載變遷為止。另外在時間t4處,比較器COMPU 還會重置FF2以將負載變遷響應限制在單一循環中。 雙緣調變器電路1700會在一負載暫態之後的單一循環 中調變該斜波訊號(三角形或鋸齒形)的振幅,其中在Load q 提高時的一個循環中振幅會較低,而在Il〇ad下降時的一個 循環中振幅會較大。因為補償訊號C會與該斜波訊號作比 較以產生該等PWM脈衝,所以適應性的振幅改變會偏移下 一個PWM脈衝。因為負載暫態響應被限制在一個循環中, 所以後續的PWM脈衝同樣會有時間偏移以便保持相同的脈 衝速率。一般來說,該脈衝訊號在時間中會被適應性偏移 而不必增加脈衝。該等脈衝會在正負載暫態(負載條件提高) 30 201021389 中被在刖拉並且會在負倉恭勒 推。依此μ (負載條件下降)中被往外 推依此方式,操作頻率僅會在—個循環令受到影響,並 且在母-個暫態之後返回正常。響應於正負載暫離,下一 個:WM脈衝會被偏移w現在較早時間處,使得操作 短暫地提高。同樣地,響應於負負載暫態,下—個MM脈 衝會被偏移而出現在較晚時間處,使得操作頻率短暫地下 降。因為任-情況中的暫態響應皆被限制在_個循環中,At approximately time t1, the load current Iload quickly jumps to the high current level indicated by Ihigh. In response to this output load transient, vcs will increase and amplifier 1707 will respond by asserting LT to a high level. In this case, the Iload transition is so high that LT will rise above the upper threshold voltage VTRTH+, causing the comparator COMPTR+ to toggle state and set FF1. The OR gate 1711 will assert its output to a high level in response to the high level output of FF1 and will close the switch SWH. The output current IPADJ of voltage controlled current source 1714 (which will be proportional to the higher level of ILOAD) will result in a negative IADJ current for pulling current from node 1710 via resistor R1. The IPADJ current flowing through resistor R1 will reduce the voltage level of VTHHM below the voltage level of VTHH as shown. The relative voltage variation of VTHHM will depend on the size of IPADJ, which will depend on the size of VCS 201021389 and This will depend on the size of the Iload. When T2 reaches the lowered VTHHM voltage level, the comparator COMPH switches its output to a high level and sets FF3 early to open the switch SW1 early in the current PWM cycle. In this way, Τ2 will arrive at a lower sized spike early in the loop and begin ramping down to a lower level as indicated at 801. Further, Τ2 will arrive at C earlier in the current cycle, which will cause the next PWM pulse to adaptively shift to the earlier time in the cycle shown at 1 802 in response to the increased load transient. At the office. You can use the ® standard limit technique to limit the movement of this upper threshold to stay above VTHL. The comparator COMPH also resets FF1 at time t2 so that the switch SWH will re-open, causing VTHHM to return to the voltage level of VTHH, while amplifier 1 707 will adjust according to the transient and pull LT back to VTRTH. - Inside the critical voltage range between VTRTH+. Therefore, the sense and adjustment circuit 1 703 is actually reset back to normal operation and the triangular ramp voltage T2 and the PWM signal are returned to normal operation to limit the load transient response to a single cycle. ® At approximately time t3, the load current IL0AD will quickly fall back to the normal current level. Inorm 0 In response to this negative load transient, amplifier 1 707 will determine that LT is below the negative threshold voltage VTRTH- and cause comparator COMPTR- to set FF2. It should be noted that in the embodiment shown in the figure, VTRTH- is a negative threshold below GND such that LT will fall negatively and fall below VTRTH- to trigger comparator COMPTR-. After the response, FF2 will close both switches SWL and SWH. A lower level of IL0AD will reduce VCS, which will lower the current level of the IPADJ. Since both switches SWL and SWH are closed, 29 201021389 current IPADJOFFS will be provided to node 1710 to be shifted by current IPADJ such that IADJ=IPADJOFFS-IPADJ. Current IADJ is injected into node 1710 via resistor R1 to increase the voltage of VTHHM as shown at time t3, where the voltage increase is based on the current level of IADJ and the resistance of R1. The rising ramp of the triangular ramp voltage T2 passes through the normal upper threshold of VTHH until it reaches the boosted south voltage of VTHHM at time t4. Since the T2 rises at a strange rate, it takes a long time to reach the increased voltage of the VTHHM, which causes a temporary increase in the size of T2 as shown at 1803. At time t4, when T2 reaches the voltage level of ◎ VTHHM, the comparator COMPH switches to initiate a negative ramp of T2. Τ2 will eventually drop to the voltage level of C to initiate the next PWM pulse. In this way, the increased size of Τ2 will delay the next PWM pulse as indicated at 18〇4, and the operation will return to normal until the next load transition. Also at time t4, the comparator COMPU also resets FF2 to limit the load transition response to a single loop. The double-edge modulator circuit 1700 modulates the amplitude of the ramp signal (triangle or zigzag) in a single cycle after a load transient, wherein the amplitude is lower in one cycle when Load q is increased, and When Il〇ad falls, the amplitude will be larger in one cycle. Since the compensation signal C is compared with the ramp signal to generate the PWM pulses, the adaptive amplitude change shifts the next PWM pulse. Since the load transient response is limited to one cycle, subsequent PWM pulses will also have a time offset to maintain the same pulse rate. In general, the pulse signal is adaptively offset over time without having to increase the pulse. These pulses are pulled in the positive load transient (load condition increase) 30 201021389 and will be pushed in the negative position. In this way, μ (the load condition is degraded) is extrapolated. In this way, the operating frequency is only affected in one cycle, and returns to normal after the parent-transient. In response to the positive load slip, the next: WM pulse will be offset w now at an earlier time, causing the operation to increase briefly. Similarly, in response to a negative load transient, the next MM pulse will be offset and appear at a later time, causing the operating frequency to drop briefly. Because the transient response in any-case is limited to _ loops,

所以操作頻率會立刻相正常,使得總操㈣率的改變係 可以忽略的。 往前拉/往外推動作係由—負載暫態臨界電路來觸發, 倘若負載改變大於預設極限的話,該負載暫態臨界電路便 會啟動該一個循環的臨界值改變。於一實施例十,該預設 極限會一直保持在全負載條件的1〇至5〇%之間。pwM脈衝 響應於負載暫態的相對偏移會以該暫態的相對大小為基礎 受到調整。舉例來說,正負載暫態期間的負載電流越低, IPADJ的位準便越低,其會響應於負載增加而減少VTHHM 的降額從而縮減下一個PWM脈衝的相對偏移。同樣地,負 負載暫態期間的負載電流越高,IPADJ電流的位準便越高, 且因而會降低VTHHM的增額’從而縮減下一個pwM脈衝 的延遲偏移。倘若暫態出現在該PWM的導通時間期間,則 雙緣調變器電路1700不會自動遺失脈衝及擴展脈寬而有助 於負載暫態響應β 雖然本文解釋的係雙緣配置,不過該項概念很容易被 調適成用於前緣或後緣調變系統。本文中雖然係感測負載 31 201021389 電流來表示輸出負載條件,不過亦可以感測其它輸出訊 號,例如輸出電壓或類似訊號。雖然斜波產生器17〇1會產 生一三角斜波電壓,不過亦可產生替代類型的斜波訊號, 例如鋸齒訊號、向上斜波訊號、向下斜波訊號等。雖然本 文中所解釋的調整訊號為電流訊號,不過亦可以使用替代 類型的訊號,例如調整電壓或時序訊號及類似訊號。 雖然本文已經參考本發明的特定較佳型式非常詳細地 說明過本發明,不過本發明仍可能會有並涵蓋其它型式與 變化。舉例來說,時脈訊號的延遲調整或是被加入斜波訊❿ 號及/或補償訊號中的偏移電壓亦可以輸出或負載電流以外 的操作參數(例如輸入電壓、輸出電流及/或輸出電壓的差動 值(舉例來說,暫態事件或類似事件)等)為基礎。本發明亦 可套用至數位調變器,其中會以數位計算及/或演算法以及 類似的數位功能來取代類比功能(舉例來說,斜波、誤差訊 號、補償訊號等)。本發明可套用至運用數位控制器(例如用 以調整延遲時間、調整時脈訊號、調整PWM脈衝起始的時 序以计算結果為基礎來調整PWM工作循環等)的調變器。❹ 熟習本技術的人士便應該明白,他們能夠輕易地利用本文 所揭不的概念及特定實施例為基礎達到設計或修正其它結 構的目的’用以提供和本發明相同的用途,但卻不會脫離 本發明的精神與範疇。 【圖式簡單說明】 依照别面的說明以及隨附的圖式,便可更瞭解本發明 的好處、特點、以及優點,其中: 32 201021389 圖1所不係根據本發明—實施例的適應性脈寬調變脈 衝定位技術的操作模式的時序圖; 圖2所不係根據本發明—實施例所施行的後緣調變器 電路的簡化方塊圖; 圖3所不係圖2的後緣調變器電路的操作時序圖; 圖4所不係根據本發明一實施例所施行的雙緣調變器 電路的簡化方塊圖; 圖5所不係圖4的雙緣調變器電路的操作時序圖; 圖6所不係根據先前已提申專利申請案中所述之實施 例的雙斜波雙緣脈寬調變調變電路的概略示意圖; 圖7所示係圖6的雙斜波雙緣脈寬調變調變電路的操 作時序圖,其圖解在-4相系統的雙斜波雙緣脈調變技術 中的長空白週期問題; 圖8所不係根據本發明一實施例的適應性脈寬調變脈 衝定位系統的方塊圖,其可應用至雙斜波雙緣脈寬調變調 變電路; 圖9所示係用於施行圖8的適應性脈寬調變脈衝定位 系統的一示範性實施例的一脈寬調變脈衝定位系統的概略 示意圖, 圖10所示係用於-4相系統的圖9的適應性脈寬調變 脈衝定位系統的操作時序圖; 圖11所示係根據本發明另一實施例的適應性脈寬調變 脈衝定位系統的方塊圖,其可應用至雙斜波雙緣脈寬調變 調變電路; 33 201021389 圖12所示係根據本發明另一實施例的適應性脈寬調變 脈衝定位系統的方塊圖,其可應用至雙斜波雙緣脈寬調變 調變電路; 圖13所示係用於施行圖12的適應性脈寬調變脈衝定 位系統的一示範性實施例的適應性脈寬調變脈衝定位系統 的概略示意圖; 圖14所示係用於一 4相系統的圖13的適應性脈寬調 變脈衝定位系統的操作時序圖; 圖15所示係可用來產生圖6雙斜波雙緣脈寬調變調變 ❹ 電路的向下斜波訊號的向下斜波產生器的方塊圖,來圖解 根據本發明另一實施例的適應性脈寬調變脈衝定位系統; 圖16所示係運用圖15之向下斜波產生器的適應性脈 寬調變脈衝定位系統的操作時序圖; 圖17所示係根據另一實施例所施行的雙緣調變器電路 的概略示意圖;以及 圖18所示係圖17的雙緣調變器電路的操作的一 時序圖。 【主要元件符號說明】 101,105,107,111 :脈衝 1〇3,113 :箭頭 2〇〇 :後緣調變器電路 201 :時序源 203 :延遲功能 205 :斜波產生器 34 201021389 207 :脈寬調變比較器 209 :誤差放大器 2 1 1 :脈衝時序電路 2 1 3 :電流感測方塊 400 :雙緣調變器電路 401 :時序源 403 :延遲功能 405 :三角斜波產生器 Ο 407 :脈寬調變比較器 409 :誤差放大器 4 11 :脈衝時序電路 4 1 3 :電流感測電路 6 00 :雙斜波雙緣脈寬調變調變電路 601 :設定-重置(SR)正反器 603 :時序源 605 :前緣斜波產生器 ® 607 :後緣斜波產生器 701 :虛線 800,1 100,1200,13 00 :適應性脈寬調變脈衝定位系統 801 :函數方塊 803 :加法器 9 00 :脈寬調變脈衝定位系統 1101 :加法器 1201 :函數方塊 35 201021389 1203 :加法器 1500 :向下斜波產生器 1501 :受控電流槽 1502 :節點 1503 :二極體 1505,1507 :電壓源 1700 :雙緣調變器電路 1701 :三角斜波產生器 1702,1706,1714,1720 :電流源 1703 :感測與調整電路 1704,1709,1710 :節點 1705 :電流感測器 1707 :放大器 1708,1712,1716,1718 :電壓源 1711 :雙輸入OR閘 A,CLK :時脈訊號 AD :延遲時脈訊號 ADJ :調整訊號 B :斜波訊號 C :補償訊號 CK :時脈輸入 CMP1 :向下斜波比較器 CMP2 :向上斜波比較器 COMPH,COMPL,COMPTR+,COMPTR-:比較器 201021389 _ C0SC,C1 :電容器 CTL :控制輸入 D :訊號 FF1-FF3 : SR 正反器 GND :接地 IADJ :電流調變訊號 ICH,IPADJOFFS :電流 Iavg :平均電流 _ I HIGH : 1¾電流位準Therefore, the operating frequency will be normal immediately, so that the change in the total operating rate can be ignored. The forward/outward push action is triggered by the load transient critical circuit, and if the load change is greater than the preset limit, the load transient critical circuit will initiate the critical value change of the cycle. In a tenth embodiment, the preset limit is maintained between 1 〇 and 5 〇 % of the full load condition. The relative offset of the pwM pulse in response to the load transient is adjusted based on the relative magnitude of the transient. For example, the lower the load current during a positive load transient, the lower the level of the IPADJ, which reduces the VTHHM derating in response to an increase in load, thereby reducing the relative offset of the next PWM pulse. Similarly, the higher the load current during the negative load transient, the higher the level of the IPADJ current, and thus the increase in VTHHM', thereby reducing the delay offset of the next pwM pulse. If the transient occurs during the on-time of the PWM, the dual-edge modulator circuit 1700 does not automatically lose the pulse and spread the pulse width to facilitate the load transient response β. Although the dual edge configuration is explained herein, The concept can easily be adapted for use in leading or trailing edge modulation systems. Although the load 31 201021389 current is sensed to represent the output load condition, other output signals, such as output voltage or the like, can also be sensed. Although the ramp generator 17〇1 generates a triangular ramp voltage, it can also generate alternative types of ramp signals, such as sawtooth signals, up-slope signals, down-slope signals, and the like. Although the adjustment signal explained in this document is a current signal, alternative types of signals such as voltage or timing signals and the like can be used. Although the present invention has been described in considerable detail with reference to certain preferred embodiments of the invention, the invention may be For example, the delay adjustment of the clock signal or the offset voltage added to the ramp signal and/or the compensation signal can also output operational parameters other than the load current (eg, input voltage, output current, and/or output). The differential value of the voltage (for example, transient events or similar events), etc.). The present invention can also be applied to digital modulators in which analog functions (e.g., ramp, error, compensation, etc.) are replaced by digital calculations and/or algorithms and similar digital functions. The present invention can be applied to a modulator that uses a digital controller (e.g., to adjust the delay time, adjust the clock signal, adjust the timing of the start of the PWM pulse to adjust the PWM duty cycle based on the calculation result, etc.).人士 Those skilled in the art will appreciate that they can easily use the concepts and specific embodiments disclosed herein to achieve the purpose of designing or modifying other structures to provide the same use as the present invention, but not Without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The advantages, features, and advantages of the present invention will become more apparent from the description and accompanying drawings in which: FIG. Timing diagram of the operation mode of the pulse width modulation pulse localization technique; FIG. 2 is not a simplified block diagram of the trailing edge modulator circuit according to the present invention; FIG. 3 is not the trailing edge modulation of FIG. FIG. 4 is a simplified block diagram of a dual-edge modulator circuit implemented in accordance with an embodiment of the present invention; FIG. 5 is not a timing sequence of the dual-edge modulator circuit of FIG. Figure 6 is a schematic diagram of a double-slope double-edge pulse width modulation modulation circuit according to the embodiment described in the prior patent application; Figure 7 is a double oblique wave double of Figure 6. Operation timing diagram of the edge-width modulation modulation circuit, which illustrates the long blank period problem in the double-slope dual-edge pulse modulation technique of the -4 phase system; FIG. 8 is not adapted according to an embodiment of the present invention. Block diagram of a pulse width modulation pulse positioning system, which can be applied To the double-slope double-edge pulse width modulation modulation circuit; FIG. 9 is a pulse width modulation pulse positioning system for performing an exemplary embodiment of the adaptive pulse width modulation pulse positioning system of FIG. Schematic diagram, FIG. 10 is an operational timing diagram of the adaptive pulse width modulated pulse positioning system of FIG. 9 for a -4 phase system; FIG. 11 is an adaptive pulse width modulation according to another embodiment of the present invention. A block diagram of a variable pulse positioning system that can be applied to a double-slope double-edge pulse width modulation modulation circuit; 33 201021389 FIG. 12 is an adaptive pulse width modulation pulse positioning system according to another embodiment of the present invention. Block diagram, which can be applied to a double ramp dual edge pulse width modulation modulation circuit; FIG. 13 is an adaptive pulse for performing an exemplary embodiment of the adaptive pulse width modulated pulse positioning system of FIG. A schematic diagram of a wide-tuning pulse positioning system; Figure 14 is an operational timing diagram of the adaptive pulse width modulation pulse positioning system of Figure 13 for a 4-phase system; Figure 15 is shown for generating Figure 6 Ramp-wave double-edge pulse width modulation A block diagram of a downward ramp generator of a signal to illustrate an adaptive pulse width modulation pulse localization system in accordance with another embodiment of the present invention; FIG. 16 is an adaptation of the downward ramp generator of FIG. FIG. 17 is a schematic diagram showing an operation of a pulse width modulation pulse positioning system; FIG. 17 is a schematic diagram of a double-edge modulator circuit according to another embodiment; and FIG. 18 is a double-edge modulator circuit shown in FIG. A timing diagram of the operation. [Main component symbol description] 101, 105, 107, 111: pulse 1〇3, 113: arrow 2〇〇: trailing edge modulator circuit 201: timing source 203: delay function 205: ramp generator 34 201021389 207: Pulse width modulation comparator 209: error amplifier 2 1 1 : pulse timing circuit 2 1 3 : current sensing block 400: double edge modulator circuit 401: timing source 403: delay function 405: triangular ramp generator Ο 407 : Pulse width modulation comparator 409 : Error amplifier 4 11 : Pulse timing circuit 4 1 3 : Current sensing circuit 6 00 : Double ramp double edge pulse width modulation modulation circuit 601 : Setting - reset (SR) positive Counter 603: Timing Source 605: Leading Edge Ramp Generator® 607: Trailing Edge Ramp Generator 701: Dotted Lines 800, 1 100, 1200, 13 00: Adaptive Pulse Width Modulation Pulse Positioning System 801: Function Block 803 : Adder 9 00 : Pulse width modulation pulse positioning system 1101 : Adder 1201 : Function block 35 201021389 1203 : Adder 1500 : Down ramp generator 1501 : Controlled current slot 1502 : Node 1503 : Diode 1505 , 1507: voltage source 1700: double-edge modulator circuit 1701: triangular ramp generator 1702, 1706, 1714, 1 720: current source 1703: sensing and adjusting circuit 1704, 1709, 1710: node 1705: current sensor 1707: amplifier 1708, 1712, 1716, 1718: voltage source 1711: dual input OR gate A, CLK: clock signal AD: Delayed pulse signal ADJ: Adjust signal B: Ramp signal C: Compensation signal CK: Clock input CMP1: Down ramp comparator CMP2: Up ramp comparator COMPH, COMPL, COMPTR+, COMPTR-: Comparator 201021389 _ C0SC, C1: Capacitor CTL: Control input D: Signal FF1-FF3: SR Positive and negative GND: Ground IADJ: Current modulation signal ICH, IPADJOFFS: Current Iavg: Average current _ I HIGH : 13⁄4 Current level

Iload :負載電流 Inorm :正常位準 Iphase .相位電流 LT :負載暫態訊號 Rhi :南斜波位準 Rlo :低斜波位準 Rl5R2 :電阻器 ® SW,SWH,SWL,SW1 :單刀單擲切換器 T,T2 :三角斜波訊號 Vc〇MP:補償訊號 VCS :電流感測電壓 VC1 ••經過調整/修改的補償訊號 VC2 :經過調整的補償訊號 Vd〇WN_RAMP :向下斜波訊號 V minj Vmax :最小/最大斜波電壓 37 201021389 V0,V02 :偏移電壓 VR :經調整的斜波訊號 VTHL,VTHH,VTHHM :臨界電壓 VTRTH+,VTRTH-:電壓Iload : Load current Inorm : Normal level Iphase . Phase current LT : Load transient signal Rhi : South ramp level Rlo : Low ramp level Rl5R2 : Resistor ® SW, SWH, SWL, SW1 : Single pole single throw switching T, T2: Triangular ramp signal Vc〇MP: Compensation signal VCS: Current sense voltage VC1 • Adjusted/modified compensation signal VC2: Adjusted compensation signal Vd〇WN_RAMP: Down ramp signal V minj Vmax : Min/Max ramp voltage 37 201021389 V0, V02 : Offset voltage VR: Adjusted ramp signal VTHL, VTHH, VTHHM: Threshold voltage VTRTH+, VTRTH-: Voltage

VlJP RAMP :向上斜波訊號VlJP RAMP: Up ramp signal

3838

Claims (1)

201021389 ' 七、申請專利範圍: 1. 一種用於一電壓轉換器的適應性脈衝定位系統,該電 壓轉換器提供一輸出電壓,該適應性脈衝定位電路包括: 一可調整斜波產生器,其具有一調整輸入,且提供一 週期性斜波電壓,該週期性斜波電壓的大小係以該調整輸 入為基礎來調整; 一脈衝產生器電路,其會接收該斜波電壓,且產生包 括複數個脈衝的一脈衝訊號,用於以該斜波電壓為基礎來 Φ 控制該電壓控制器的輸出電壓;以及 一感測與調整電路,其會感測用於表示該電壓轉換器 之輸出負載暫態的一訊號,且提供一調整訊號至該可調整 斜波產生器的調整輸入,以便響應於該輸出負載暫態來及 時適應性地偏移該脈衝訊號,而不需要在該等複數個脈衝 中增加任何脈衝。 2.如申請專利範圍第工項之適應性脈衝定位系統,其中 該可調整斜波產生器包括一三角斜波產生器,用以提供一 β 角斜波電壓,s亥二角斜波電壓會在下限臨界電壓和上限 臨界電壓之間進行升降,且其中該調整輸入會調整該上限 臨界電壓。 .如申凊專利範圍第2項之適應性脈衝定位系統,其中 該感測與調整電路具有被耦合至該可調整斜波產生器的一 輪入且其中該感測與調整電路僅會在該斜波電壓的 一個循環中調整該上限臨界值。 4·如申請專利範圍第丨項之適應性脈衝定位系統,其中 39 201021389 該脈衝產生器電路包括: 一比較器,其會比較一誤差電壓和該斜波電壓且產 生用於表示比較結果的一脈衝控制訊號;以及 一脈衝時序電路,其具有: :一第一輸入,用以接收該201021389 ' VII. Patent application scope: 1. An adaptive pulse positioning system for a voltage converter, the voltage converter provides an output voltage, and the adaptive pulse positioning circuit comprises: an adjustable ramp generator, Having an adjustment input and providing a periodic ramp voltage, the magnitude of the periodic ramp voltage being adjusted based on the adjustment input; a pulse generator circuit that receives the ramp voltage and produces a complex number a pulsed pulse signal for controlling the output voltage of the voltage controller based on the ramp voltage; and a sensing and adjusting circuit for sensing the output load of the voltage converter a signal of the state, and providing an adjustment signal to the adjustment input of the adjustable ramp generator to adaptively shift the pulse signal in time in response to the output load transient, without the need for the plurality of pulses Add any pulse in it. 2. The adaptive pulse positioning system according to the application of the patent scope, wherein the adjustable ramp generator comprises a triangular ramp generator for providing a beta angle ramp voltage, and the ramp angle voltage is The lower limit threshold voltage and the upper limit threshold voltage are raised and lowered, and wherein the adjustment input adjusts the upper limit threshold voltage. An adaptive pulse positioning system according to claim 2, wherein the sensing and adjusting circuit has a turn-in coupled to the adjustable ramp generator and wherein the sensing and adjusting circuit is only in the oblique The upper limit threshold is adjusted in one cycle of the wave voltage. 4. An adaptive pulse positioning system according to the scope of the patent application, wherein 39 201021389 the pulse generator circuit comprises: a comparator that compares an error voltage and the ramp voltage and generates a one for indicating a comparison result a pulse control signal; and a pulse sequential circuit having: a first input for receiving the 循環中僅有一個脈衝。 5.如申請專利範圍第丨項之適應性脈衝定位系統,其中 該感測與調整電路包括: 一感測器,其會感測一輸出負載訊號,且提供和該輪 出負載訊號成比例的一感測電廢; 一負載暫態電路,其具有用以接該感測電壓的一輪 入,與用以提供一負載暫態感測電壓的一輸出,該負載暫 態感測電壓係表示該輸出負載訊號的暫態; 一比較器電路,其會比較該負載暫態感測電壓和一正 臨界電壓與—㈣界電壓,纟中倘若該負載暫態感測電屋 抵達該正臨界電壓,則該比較器電路會提供一第一控制訊 號,而倘若該負載暫態感測電壓抵達該負臨界電壓,則該 比較器電路會提供一第二控制訊號;以及 一調整訊號產生電路,當提供該第一控制訊號時,其 會提供該調整訊號用以縮減該斜波電壓的大小,而當提供 該第二控制訊號時,其則會提供該調整訊號用以增加該斜 波電壓的大小。 201021389 6. 如申請專利範圍第5項之適應性脈衝定位系統,其中 該感測器包括一電流感測器,其會感測該電壓轉換器的輸 出負載電流。 7. 如申請專利範圍第5項之適應性脈衝定位系統,其中 該負載暫態電路包括: 一低通滤波器,其具有用以接收該感測電壓的一輸入 且具有一輸出;以及There is only one pulse in the loop. 5. The adaptive pulse positioning system of claim </ RTI> wherein the sensing and adjusting circuit comprises: a sensor that senses an output load signal and provides a proportional to the wheel load signal a load transient circuit; a load transient circuit having a wheel input for receiving the sense voltage and an output for providing a load transient sense voltage, the load transient sense voltage indicating Transient of the output load signal; a comparator circuit that compares the load transient sense voltage with a positive threshold voltage and a - (four) boundary voltage, if the load transient senses that the electrical house reaches the positive threshold voltage, The comparator circuit provides a first control signal, and if the load transient sensing voltage reaches the negative threshold voltage, the comparator circuit provides a second control signal; and an adjustment signal generating circuit is provided The first control signal provides the adjustment signal for reducing the magnitude of the ramp voltage, and when the second control signal is provided, the adjustment signal is provided to increase the slope The size of the wave voltage. 201021389 6. The adaptive pulse positioning system of claim 5, wherein the sensor comprises a current sensor that senses an output load current of the voltage converter. 7. The adaptive pulse positioning system of claim 5, wherein the load transient circuit comprises: a low pass filter having an input for receiving the sense voltage and having an output; 一放大器,其具有:一第一輸入,用以接收該感測電 壓;一第二輸入’其會被耦合至該低通濾波器的該輸出; 與一輸出,用以提供該負載暫態感測電壓。 8. 如申請專利範圍第5項之適應性脈衝定位系統,其中 該可調整斜波產生器包括一三角斜波產生器,用以提供一 三角斜波電壓,該三角斜波電壓會在下限臨界電壓和上限 臨界電壓之間進行升降,且其中當提供該第—控制訊號 時,該調整訊號會降低該上限臨界電壓,而當提供該第二 控制訊號時,該調整訊號則會提高該上限臨界電壓。 ^ 9·如申請專利範圍第8項之適應性脈衝定位系統,其中 虽提供該第-控制訊號時’該調整訊號產生電路會判定和 該感測電壓成比例的該調整訊號’而當提供該第二控制訊 就時’該調整訊號產生電路則會判定該調整訊號位在一偏 =位準處,該偏移位準會被調整和該感測電壓成比例的一 1 0 · —種對用來控制一 進行適應性定位脈寬調變 電壓調節器之一輸出電壓的脈衝 之方法,該方法包括: 41 201021389 產生一週期性斜波電壓; 比較該斜波電壓和-誤差電壓,用以在該斜波電壓的 連續循環中提供複數個脈衝; 感測用於表示該電壓調節器之—輪出負載的一負載暫 態的一訊號;以及 響應於該負載暫態來調整該斜波電壓,以便及時適應 性地偏移該等複數個脈衝,而不需要增加任何脈衝。 11^請專利範圍第Π)項之方法’其中該感測用於表 〇 不該電壓調節器之一輸出負載的一負載暫態之一訊號包括 感測輸出負載電流。 12·如申請專利範圍第1()項之方法其中該產生一斜波 電壓包括產生範圍介於第一臨界電壓與第二臨界電壓之間 的斜波電壓’且其中該調整該斜波電壓包括在該斜波電 壓的至少一循環中調整該第-臨界電壓與該第二臨界電壓 中至少一者。 ❹ 13.如申請專利範圍第1〇項之方法,其中該產生一斜波 電壓包括產生會在—下限臨 、 r丨艮臨界電壓與一上限臨界電壓之間 進行升降的一三角斜,、由, ^ ^ *波電壓,且其中該調整該斜波電壓包 該斜波電壓的至少—循環中調整該上限臨界電壓。 _月專利範圍帛13項之方法,其中該感測用於表 不該電壓調節器之—輪屮査 ... 輸出負载的一負載暫態之一訊號包括 俄測用於表示負載接古从 阿的一正負載暫態,且其中該調整該 界電壓。 斜波電壓的至少一循環中降低該上限臨 42 201021389 一 I5.如申請專利範圍第13項之方法,其中該感測用於表 示該電壓調節器之一輸出負載的一負載暫態之一訊號包括 、丨;表示負載降低的一負負載暫態,且其中該調整該 斜波電壓包括在該斜波電壓的至少—循環中提高該上限臨 界電壓。 1 6.如申請專利範圍第丨〇項之方法,其中該感測用於表 示該電壓調節器之一輸出負載的一負載暫態之一訊號包 括: ® 感測-輸出訊號的—變化; 比較該輸出訊號的變化和一臨界值;以及 偵側當該輸出訊號的變化抵達該臨界值時的一負載暫 態。 ' 17. 如申請專利範圍第10項之方法,其中該感測用於表 示該電壓調節器之一輸出負載的一負載暫態之一訊號包 括: 感測一輸出訊號的一變化; 比較该輸出訊號的變化和一正臨界值與一負臨界值; 以及 偵側當該輸出訊號的變化抵達該正臨界值與該負臨界 值中任一者時的一負載暫態。 18. 如申請專利範圍第1〇項之方法,其中該調整該斜波 電壓包括僅在一個循環中調整該斜波電壓。 19. 如申請專利範圍第1〇項之方法,其中該調整該斜波 電壓包括以該負載暫態的相對數額為基礎來調整該斜波電 43 201021389 壓。 2〇.如申請專利範圍第10項之方法,其中: 該產生一週期性斜波電壓包括產生介於一下限臨界電 壓與一上限臨界電壓之間的一斜波電壓;以及 其中該調整該斜波電壓包括: 將該上限臨界電壓降低和表示一 態成比例的一數額;以及 已提高負栽的負 栽暫 將該上限臨界電壓提高一偏移值扣除和 表示— 負載的負載暫態成比例的一數額。 G下降 、圖式. (如次頁)An amplifier having: a first input for receiving the sense voltage; a second input 'which is coupled to the output of the low pass filter; and an output for providing the load transient sense Measure the voltage. 8. The adaptive pulse positioning system of claim 5, wherein the adjustable ramp generator comprises a triangular ramp generator for providing a triangular ramp voltage, the triangular ramp voltage being at a lower limit The voltage and the upper limit threshold voltage are raised and lowered, and when the first control signal is provided, the adjustment signal decreases the upper limit threshold voltage, and when the second control signal is provided, the adjustment signal increases the upper limit threshold Voltage. [9] The adaptive pulse positioning system of claim 8 wherein, when the first control signal is provided, the adjustment signal generating circuit determines the adjustment signal proportional to the sensing voltage. When the second control signal is ready, the adjustment signal generating circuit determines that the adjustment signal bit is at a bias=level, and the offset level is adjusted to be proportional to the sensing voltage. A method for controlling a pulse for adaptively locating an output voltage of a pulse width modulation voltage regulator, the method comprising: 41 201021389 generating a periodic ramp voltage; comparing the ramp voltage and the - error voltage for Providing a plurality of pulses in a continuous cycle of the ramp voltage; sensing a signal indicative of a load transient of the voltage regulator's wheel load; and adjusting the ramp voltage in response to the load transient In order to adaptively offset the plurality of pulses in time without adding any pulses. 11^ The method of claim Π)) wherein the sensing is used to indicate that one of the load transients of the output load of one of the voltage regulators includes the sensed output load current. 12. The method of claim 1 (), wherein the generating a ramp voltage comprises generating a ramp voltage between a first threshold voltage and a second threshold voltage and wherein adjusting the ramp voltage comprises At least one of the first threshold voltage and the second threshold voltage is adjusted in at least one cycle of the ramp voltage. ❹ 13. The method of claim 1, wherein the generating a ramp voltage comprises generating a triangular tilt that will rise and fall between a lower limit, a r丨艮 threshold voltage, and an upper limit voltage. , ^ ^ * wave voltage, and wherein the ramp voltage is adjusted to at least the ramp voltage of the ramp voltage to adjust the upper threshold voltage. The method of _month patent scope 帛13, wherein the sensing is used to indicate the voltage regulator - the rim check... one of the load transients of the output load includes the Russian test for indicating the load A positive load transient, and where the boundary voltage is adjusted. The method of claim 13, wherein the sensing is used to indicate a load transient of one of the output voltages of the voltage regulator, wherein the upper limit is reduced by at least one cycle of the ramp voltage. Included, 丨; a negative load transient indicating a reduced load, and wherein the adjusting the ramp voltage comprises increasing the upper threshold voltage in at least a cycle of the ramp voltage. 1 6. The method of claim 2, wherein the sensing one of a load transient for indicating an output load of the voltage regulator comprises: a sensing-output signal-change; a change in the output signal and a threshold value; and a load transient when the change in the output signal reaches the threshold. 17. The method of claim 10, wherein the sensing one of a load transient for indicating an output load of the voltage regulator comprises: sensing a change of an output signal; comparing the output a change in the signal and a positive threshold and a negative threshold; and a load transient when the change in the output signal reaches either of the positive threshold and the negative threshold. 18. The method of claim 1, wherein the adjusting the ramp voltage comprises adjusting the ramp voltage in only one cycle. 19. The method of claim 1, wherein the adjusting the ramp voltage comprises adjusting the ramp power based on a relative amount of the load transient. 2. The method of claim 10, wherein: generating a periodic ramp voltage comprises generating a ramp voltage between a lower threshold voltage and an upper threshold voltage; and wherein the adjusting the slope The wave voltage includes: decreasing the upper limit threshold voltage by an amount proportional to the one state; and increasing the negative load to temporarily increase the upper limit threshold voltage by an offset value subtraction and representation - load transient of the load is proportional One amount. G decline, schema. (such as the next page) 4444
TW98125513A 2008-11-18 2009-07-29 Adaptive pwm pulse positioning system and method for fast transient response TWI411211B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/273,441 US7868600B2 (en) 2005-11-16 2008-11-18 Adaptive PWM pulse positioning for fast transient response

Publications (2)

Publication Number Publication Date
TW201021389A true TW201021389A (en) 2010-06-01
TWI411211B TWI411211B (en) 2013-10-01

Family

ID=42464254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98125513A TWI411211B (en) 2008-11-18 2009-07-29 Adaptive pwm pulse positioning system and method for fast transient response

Country Status (2)

Country Link
CN (1) CN101741248B (en)
TW (1) TWI411211B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869853A (en) * 2012-12-12 2014-06-18 力智电子股份有限公司 Voltage regulation integrated circuit, voltage regulation circuit and voltage regulation method
TWI491149B (en) * 2013-05-13 2015-07-01 Upi Semiconductor Corp Dc-dc controller and multi-ramp signal operating method thereof
TWI492498B (en) * 2011-08-12 2015-07-11 Monolithic Power Systems Inc An improved hysteretic control scheme for dc-dc converters
TWI497882B (en) * 2013-05-17 2015-08-21 Upi Semiconductor Corp Power converter and operating method thereof
TWI750004B (en) * 2021-01-15 2021-12-11 台達電子工業股份有限公司 Power drive circuit and method of controlling the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468754A (en) * 2010-11-10 2012-05-23 立锜科技股份有限公司 Circuit and method for controlling power converter in current mode
TWI434496B (en) 2010-12-08 2014-04-11 Richtek Technology Corp Voltage regulator and pulse width modulation signal generation method thereof
CN102541131B (en) * 2011-01-04 2014-06-04 立锜科技股份有限公司 Voltage regulator and method for generating pulse width modulation signal thereof
US9071134B2 (en) * 2011-01-31 2015-06-30 Semiconductor Components Industries, Llc Power supply controller having selectable PWM and RPM modes and method therefor
TWI483531B (en) * 2012-03-30 2015-05-01 Upi Semiconductor Corp Power converter and operating method thereof
US9348345B2 (en) * 2012-09-12 2016-05-24 Texas Instruments Incorporated Fixed frequency DC to DC converter control circuit with improved load transient response
US9680375B2 (en) * 2014-02-26 2017-06-13 Texas Instruments Incorporated Switching mode power supply with adaptively randomized spread spectrum
TWI549409B (en) * 2014-10-03 2016-09-11 立錡科技股份有限公司 Voltage converting controller and method of voltage converting control
CN105763049B (en) * 2014-12-17 2018-08-03 联芯科技有限公司 A method of decompression converter ic and decompression conversion
CN106612070B (en) * 2015-10-22 2019-04-30 深圳市中兴微电子技术有限公司 A kind of the load transient response Enhancement Method and system of voltage-mode buck converter
CN108696105B (en) * 2018-07-09 2024-03-19 杰华特微电子(张家港)有限公司 Switching power supply control circuit and switching power supply
CN113507209B (en) * 2021-06-30 2022-10-04 中国科学技术大学 Pulse width modulation DC-DC converter, control method and electronic equipment
CN113507207B (en) * 2021-06-30 2022-10-04 中国科学技术大学 Control circuit and control method for multiphase series capacitor DC-DC converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299347A (en) * 2002-02-01 2003-10-17 Seiko Instruments Inc Pwm switching regulator control circuit, pwm switching regulator and electronic component
JP3710454B2 (en) * 2003-03-31 2005-10-26 Tdk株式会社 Power supply device and control device thereof
US7045966B2 (en) * 2004-07-07 2006-05-16 Osram Sylvania Inc. Resonant inverter including feed back circuit having phase compensator and controller
US7453246B2 (en) * 2005-11-16 2008-11-18 Intersil Americas Inc. Adaptive PWM pulse positioning for fast transient response

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492498B (en) * 2011-08-12 2015-07-11 Monolithic Power Systems Inc An improved hysteretic control scheme for dc-dc converters
CN103869853A (en) * 2012-12-12 2014-06-18 力智电子股份有限公司 Voltage regulation integrated circuit, voltage regulation circuit and voltage regulation method
CN103869853B (en) * 2012-12-12 2016-01-13 力智电子股份有限公司 Voltage regulation integrated circuit, voltage regulation circuit and voltage regulation method
TWI491149B (en) * 2013-05-13 2015-07-01 Upi Semiconductor Corp Dc-dc controller and multi-ramp signal operating method thereof
US9143034B2 (en) 2013-05-13 2015-09-22 Upi Semiconductor Corp. DC-DC controller and multi-ramp signal operating method thereof
TWI497882B (en) * 2013-05-17 2015-08-21 Upi Semiconductor Corp Power converter and operating method thereof
US9331571B2 (en) 2013-05-17 2016-05-03 Upi Semiconductor Corporation Power converter with automatic on-time extension function and operating method thereof
TWI750004B (en) * 2021-01-15 2021-12-11 台達電子工業股份有限公司 Power drive circuit and method of controlling the same

Also Published As

Publication number Publication date
TWI411211B (en) 2013-10-01
CN101741248B (en) 2013-04-17
CN101741248A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
TW201021389A (en) Adaptive PWM pulse positioning for fast transient response
US7868600B2 (en) Adaptive PWM pulse positioning for fast transient response
TWI323074B (en) Adaptive pulse positioning system for a voltage converter and method of adaptively positioning pulse width modulation pulses
US7453250B2 (en) PWM controller with dual-edge modulation using dual ramps
EP1909379B1 (en) Method and apparatus for pulse width modulation
US9548651B2 (en) Advanced control circuit for switched-mode DC-DC converter
JP6322002B2 (en) Controller for use in power converter, and power converter
TWI431451B (en) Advanced current-mode control for switching regulators and method for voltage regulation
US8446137B2 (en) Switching voltage regulator and related feed-forward control method
US20090058383A1 (en) Switching DC-DC converter with adaptive-minimum-on-time control and method of adaptively controlling minimum-on-time of a switching DC-DC converter
US20190348900A1 (en) Power Converter Controller With Stability Compensation
TW201236339A (en) System and method for improving regulation accuracy of switch mode regulator during DCM
CN202652066U (en) Control device of converter
US7471133B1 (en) Modulator circuit with linear and non-linear control
GB2472115A (en) Current limiting in a DC-DC converter
CN104849538A (en) Switching power converter current sensing with phase current estimator
KR20150086286A (en) Slope compensation module
TW200843311A (en) Apparatus and methods for improving the transient response capability of a switching power supply
KR20150026719A (en) Injection locked phasing for a peak-valley multiphase regulator
CN111587527B (en) Method and apparatus for reducing output voltage ripple
CN112583261A (en) Switching converter with pulse chopping control
US10720839B1 (en) System and method for operating a switching converter in light load
KR101285010B1 (en) Systems and methods for reducing input current in photoflash chargers
US20210044205A1 (en) Preventing Sub-Harmonic Oscillation with Clock Delay Compensation, in a DC-DC Switching Converter
TW200947837A (en) Quick response device and method for switching power supply