TW201020597A - Optical waveguide and manufacturing method thereof - Google Patents

Optical waveguide and manufacturing method thereof Download PDF

Info

Publication number
TW201020597A
TW201020597A TW97144651A TW97144651A TW201020597A TW 201020597 A TW201020597 A TW 201020597A TW 97144651 A TW97144651 A TW 97144651A TW 97144651 A TW97144651 A TW 97144651A TW 201020597 A TW201020597 A TW 201020597A
Authority
TW
Taiwan
Prior art keywords
optical waveguide
key
alignment
waveguide structure
layer
Prior art date
Application number
TW97144651A
Other languages
Chinese (zh)
Other versions
TWI393928B (en
Inventor
Jen-Hao Yeh
Chun-Hsing Lee
Yuan-Chin Chen
Sheng-Ho Huang
Yu-Ming Huang
Hung-Lieh Hu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97144651A priority Critical patent/TWI393928B/en
Publication of TW201020597A publication Critical patent/TW201020597A/en
Application granted granted Critical
Publication of TWI393928B publication Critical patent/TWI393928B/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

A method for manufacturing an optical waveguide is provided. First, a non-transparent alignment key is formed on a rigid substrate. The alignment key and the rigid substrate are coated with a first cladding layer, and a first optical channel is formed on the first cladding layer. Subsequently, the first cladding layer and the first optical channel are coated with a second cladding layer. At last, the rigid substrate is separated from the first cladding layer, such that the alignment key is exposed to a first surface of the first cladding layer.

Description

201020597 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種光波導結構,特別係有關於一種 具有非透明對位鍵之光波導結構及其製造方法。 【先前技術】 ❹ ❹ 一般光互連系統(optical interconnection system)主要包 含有訊號發送端、訊號輸送端及訊號接收端,此三種模組 之間在组裝時的定位精確度將攸關光訊號的耦合效率與系 統的傳輪效能,一般常見的做法可在光波導(waveguide)結 構中形成對位鍵(alignment key)或對位記號,藉以提升組裝 時的精確度。 ~ '當欲將對位鍵製作於光波導結構上時,一般都是在製 作光波導核心層(Core)的步驟中同時製作,其中椤心声的 材料多為透紐質,因此對位鍵也是透光材f,這樣= 在對位時常會因為對比不佳造成對位上的_。另外,因 為光波導本身的材質過軟,使得製作於其上的對 偏移與錯位㈣題,如此將失去對位_魏 如何能Μ傳統光波輯構的製造方式並 鍵^ 確度始成為-重要課題。 料位鍵的精 【發明内容】 勺括本::之一實施例提供一種光波導結構之製作方法, 成至少-對位鍵於-硬質基板表面;塗布一第一 5 201020597 披覆層於前述硬質基板表面並且覆蓋前述對位鍵;於前述 第一披覆層上形成至少一光通道,用以傳遞光訊號;塗布 一第二披覆層於前述第一彼覆層上並且覆蓋前述光通道; 以及,將前述硬質基板與前述第一披覆層分離,使得前述 對位鍵顯露於第一披覆層之一第一表面。 於一實施例中,前述對位鍵為非透明材質。 於一實施例中,前述對位鍵為金屬材質。 於一實施例中,前述對位鍵可以是鎳、銅或鎢化鈦 ❹(TiW)。 於一實施例中,前述對位鍵係以電鍍方式形成於硬質 基板上。 於一實施例中,前述對位鍵形成於硬質基板之一光滑 表面上。 於一實施例中,前述製作方法更包括:對第一披覆層 進行固化處理,使第一披覆層固化並與對位鍵緊密結合。 於一實施例中,前述製作方法更包括:對第二披覆層 ⑩進行固化處理,使第二披覆層固化並與光通道緊密結合。 於一實施例中,前述製作方法更包括:形成至少一電 訊號通道於硬質基板表面,用以傳遞電訊號;以及,將硬 質基板與第一披覆層分離,使得電訊號通道顯露於第一披 覆層之第一表面。 於一實施例中,前述硬質基板可包括一本體以及一緩 衝層,前述緩衝層形成於本體上,且對位鍵形成於緩衝層 201020597 本發明之一實施例更提供一種光波導結構,其主要包 括一第一披覆層、一非透明之對位鍵、一光通道以及一第 二披覆層。前述第一披覆層具有一第一表面以及一第二表 面,其中第二表面相反於第一表面。前述對位鍵形成於第 一表面上,用以和一物件進行對位結合。前述光通道形成 於第一披覆層之第二表面上,用以傳遞光訊號。前述第二 彼覆層形成於第一披覆層上並且覆蓋光通道。 於一實施例中,前述光波導結構更包括一電訊號通 φ 道,形成於第一彼覆層之第一表面上,用以傳遞電訊號。 於一實施例中,前述對位鍵係預先形成於一硬質基板 上,接著使第一披覆層覆蓋於對位鍵與硬質基板上,直到 對位鍵與第一披覆層緊密結合後再將硬質基板剝離,使得 對位鍵顯露於第一表面。 於一實施例中,前述硬質基板包括一本體以及一缓衝 層,前述缓衝層形成於本體上,且對位鍵形成於缓衝層上。 為使本發明之上述目的、特徵、和優點能更明顯易懂5 ❿下文特舉較佳實施例並配合所附圖式做詳細說明。 【實施方式】 請參閱第1圖,在本實施例所揭露之光波導結構製造 方法中,首先係形成至少一對位鍵Μ於一硬質基板S上, 前述對位鍵Μ可採用非透明之金屬材質以提高對比度與可 辨識度。舉例而言,可將鎳、銅、鎢化鈦(TiW)等材質透過 電鍍方式形成於硬質基板S上,藉以形成對位鍵Μ,其中 201020597 前述對位鍵Μ可為十字、圓形或其他幾何圖案,此外亦可 形成等距間隔之尺規刻度(如第1圖所示)。 再請參閱第2圖,當對位鍵Μ形成於硬質基板S表面 之後,接著在硬質基板S與對位鍵Μ上方塗布一第一披覆 層10,然後可透過加熱或施加紫外線(UV)等方式對第一披 覆層10進行固化處理,以使其與對位鍵Μ緊密結合。如 第2圖所示,當第一彼覆層10固化之後,可使對位鍵Μ 緊密地欲合於第一披覆層10下方之第一表面11,以利於 ❹ 光波導結構在後續組裝時的對位之用。 請參閱第3圖,在製作完第一披覆層10之後,接著於 第一坡覆層10上方製作若干條光通道Cl(optical channel),用以傳遞光訊號。於本實施例中,第一彼覆層 10上方的第二表面12共形成有四條光通道C1,其中第二 表面12係相反於前述第一表面11。接著,在第一坡覆層 10上方塗布一第二彼覆層20(如第4圖所示),並使第二披 覆層20覆蓋前述光通道C1,然後可透過加熱或施加紫外 ® 線(UV)等方式對第二披覆層20進行固化處理,以使其與光 通道C1和第一彼覆層10緊密接合。 當完成前述步驟後,便可將硬質基板S由下方剝除 (peeling),亦即使其與第一披覆層10和對位鍵Μ分離。如 第5圖所示,由於對位鍵Μ在固化後已可完全嵌合於第一 披覆層10下方之第一表面11,因此不會隨著硬質基板S 脫落,至此可得到一具有非透明對位鍵之光波導結構。 應了解的是,當對位鍵Μ與硬質基板S分離後會顯露 8 201020597 於第一披覆層ίο下方之第—表面u,以利於後續的組裝 對位之用。舉例而言,可將前述具有對位鍵M之光波導結 構與一電路板或其他物件進行對位結合,其中由於對位鍵 Μ係抓用非透明材質所製成’故具有較高的對比度與可辨 識度,如此將有助於透過機器視覺或自動化影像檢測等方 式進行對位組裝,藉以提升產品精度並可達到大量生產之 目的。 需特別說明的是,為了使對位鍵Μ可穩固地結合於光 ❹波導結構上而不會隨著硬質基板S脫落,前述第-披覆層 10與對位鍵Μ之間的附著力(adherabiiity)必須大於硬質基 板s與對位鍵M之間的附著力;為了達成此一目的,可將 對位鍵Μ形成於硬質基板S之一光滑表面上,以降低其附 著力並可使硬質基板S順利地由第一披覆層1〇下方之第一 表面11剝離。此外’亦可採用如第6圖所示之硬質基板s, 八係由一本體S1以及一緩衝層S2(buffer layer)所構成,其 中對位鍵M形成於硬質基板S的緩衝層S2上,由於緩衝 層S2與第一披覆層1〇之間的附著力較小,因此當硬質基 板S由光波導結構下方剝除時不致於損壞對位鍵Μ。 再请參閱第7圖’本發明另一實施例之光波導結構製 作方去係在硬質基板s上形成對位鍵Μ的同時,一併製作 〜電訊號通道C2以傳遞光訊號,至於其他製程則與 1 〜圖所示之方法大致相同。應了解的是,在硬質基板 ;、之後,笔δ孔7虎通道C2會與對位鍵Μ —同顯露於第 披设層10之第一表面11,其中電訊號通道C2可與對位 9 201020597 鍵Μ同樣具有對位功能。 綜上所述,本發明提供一種具有非透明對位鍵之光波 導結構及其製作方法,其中藉由將非透明之對位鍵預先形 成於一硬質基板上,待對位鍵轉印至光波導結構上再將硬 質基板剝除,如此可避免光波導本身因材質過軟而造成製 作於其上的對位鍵產生偏移或錯位等問題。另一方面,由 於本發明中的對位鍵係採用非透明材質,故具有較佳的對 比度與可辨識度,如此可有利於透過機器視覺或自動化影 ❿ 像檢測等方式將光波導結構與一電路板或其他物件進行對 位結合,藉以提升產品精度並可達到大量生產之目的。 雖然本發明以前述之較佳實施例揭露如上,然其並非 用以限定本發明。本發明所屬技術領域中具有通常知識 者,在不脫離本發明之精神和範圍内,當可做些許之更動 與潤飾。因此本發明之保護範圍當視後附之申請專利範圍 所界定者為準。 ❿ 10 201020597 【圖式簡單說明】 第1〜5圖表示本發明一實施例之光波導結構製造方法 示意圖; 第6圖表示對位鍵形成於硬質基板之緩衝層上之示意 圖;以及 第7圖表示電訊號通道形成於硬質基板上之示意圖。 【主要元件符號說明】 ❿ 第一彼覆層1〇 第一表面11 第二表面12 第二披覆層20 光通道C1 電訊號通道C2 對位鍵Μ 硬質基板S ❿ 本體S1 緩衝層S2 11201020597 IX. Description of the Invention: [Technical Field] The present invention relates to an optical waveguide structure, and more particularly to an optical waveguide structure having a non-transparent alignment bond and a method of fabricating the same. [Prior Art] ❹ ❹ The general optical interconnection system mainly includes a signal transmitting end, a signal transmitting end and a signal receiving end. The positioning accuracy between the three modules during assembly will be related to the optical signal. The coupling efficiency and the system's transmission efficiency, it is common practice to form an alignment key or alignment mark in the optical waveguide structure to improve the accuracy of assembly. ~ 'When the alignment key is to be fabricated on the optical waveguide structure, it is generally produced simultaneously in the step of fabricating the optical waveguide core layer (Core), in which the material of the heart sound is mostly transparent, so the alignment key is also Light-transmissive material f, such that in the alignment, the _ on the alignment is often caused by poor contrast. In addition, because the material of the optical waveguide itself is too soft, so that the offset and misalignment (4) problems are made on it, so that the alignment will be lost. How can Wei's manufacturing method of traditional light wave editing and the keyness become important? Question. The invention relates to a method for fabricating an optical waveguide structure, which is formed by at least-aligning a bond on a surface of a hard substrate; coating a first 5 201020597 coating layer in the foregoing Forming a hard substrate surface and covering the alignment key; forming at least one optical channel on the first cladding layer for transmitting an optical signal; coating a second cladding layer on the first first cladding layer and covering the optical channel And separating the hard substrate from the first cladding layer such that the alignment bond is exposed on one of the first surfaces of the first cladding layer. In an embodiment, the alignment key is a non-transparent material. In an embodiment, the alignment key is made of a metal material. In one embodiment, the para-bond may be nickel, copper or titanium germanium (TiW). In one embodiment, the para-bonds are formed on the rigid substrate by electroplating. In one embodiment, the alignment bond is formed on a smooth surface of one of the rigid substrates. In one embodiment, the foregoing manufacturing method further comprises: curing the first cladding layer to cure the first cladding layer and tightly bonding with the alignment bond. In one embodiment, the manufacturing method further includes: curing the second cladding layer 10 to cure the second cladding layer and tightly bond with the optical channel. In one embodiment, the manufacturing method further includes: forming at least one electrical signal channel on the surface of the hard substrate for transmitting the electrical signal; and separating the hard substrate from the first cladding layer, so that the electrical signal channel is exposed to the first The first surface of the cladding. In an embodiment, the rigid substrate may include a body and a buffer layer, the buffer layer is formed on the body, and the alignment key is formed on the buffer layer 201020597. One embodiment of the present invention further provides an optical waveguide structure, which is mainly The invention comprises a first cladding layer, a non-transparent alignment key, a light channel and a second cladding layer. The first cladding layer has a first surface and a second surface, wherein the second surface is opposite to the first surface. The aforementioned registration bond is formed on the first surface for alignment bonding with an object. The optical channel is formed on the second surface of the first cladding layer for transmitting optical signals. The second second cladding layer is formed on the first cladding layer and covers the light tunnel. In one embodiment, the optical waveguide structure further includes an electrical signal φ channel formed on the first surface of the first cladding layer for transmitting an electrical signal. In one embodiment, the alignment bond is pre-formed on a rigid substrate, and then the first cladding layer is overlaid on the alignment key and the hard substrate until the alignment key is tightly bonded to the first cladding layer. The hard substrate is peeled off such that the alignment bond is exposed on the first surface. In one embodiment, the rigid substrate includes a body and a buffer layer, the buffer layer is formed on the body, and the alignment key is formed on the buffer layer. The above described objects, features and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments. [Embodiment] Referring to FIG. 1 , in the method for fabricating an optical waveguide structure disclosed in the embodiment, at least a pair of bit bonds are formed on a hard substrate S, and the alignment bond may be non-transparent. Metal material for improved contrast and recognizability. For example, a material such as nickel, copper, or titanium tungsten (TiW) may be formed on the hard substrate S by electroplating to form a para-bond Μ, wherein the above-mentioned para-bond 2010 may be a cross, a circle, or the like. Geometric patterns, in addition to the scale of the ruler spacing (as shown in Figure 1). Referring to FIG. 2, after the alignment key Μ is formed on the surface of the hard substrate S, a first cladding layer 10 is applied over the hard substrate S and the alignment key ,, and then the heat or ultraviolet ray (UV) can be transmitted or applied. The first cladding layer 10 is cured in a manner such that it is tightly bonded to the para-bonding layer. As shown in FIG. 2, after the first cladding layer 10 is cured, the alignment bond 紧密 can be closely adhered to the first surface 11 under the first cladding layer 10 to facilitate subsequent assembly of the ❹-waveguide structure. The use of the time. Referring to FIG. 3, after the first cladding layer 10 is formed, a plurality of optical channels C1 (optical channels) are formed over the first slope layer 10 for transmitting optical signals. In this embodiment, the second surface 12 above the first cladding layer 10 is formed with four optical channels C1, wherein the second surface 12 is opposite to the first surface 11 described above. Next, a second cover layer 20 is applied over the first slope layer 10 (as shown in FIG. 4), and the second cladding layer 20 covers the optical channel C1, and then can be heated or applied with UV rays. The second cladding layer 20 is cured (UV) or the like so as to be in close contact with the optical channel C1 and the first cladding layer 10. When the foregoing steps are completed, the hard substrate S can be peeled from below, even if it is separated from the first cladding layer 10 and the alignment bond. As shown in FIG. 5, since the alignment key 已 is completely fitted to the first surface 11 below the first cladding layer 10 after curing, it does not fall off along with the hard substrate S, and thus a non-functionality can be obtained. Optical waveguide structure of transparent alignment key. It should be understood that when the alignment bond 分离 is separated from the hard substrate S, the first surface u under the first cladding layer ίο will be revealed to facilitate the subsequent assembly alignment. For example, the optical waveguide structure having the alignment key M can be aligned with a circuit board or other objects, wherein the alignment key is made of a non-transparent material, so that the contrast is high. And the degree of recognizability, which will help to carry out the alignment assembly through machine vision or automated image inspection, so as to improve product accuracy and achieve mass production. It should be particularly noted that in order to enable the alignment bond 稳 to be firmly bonded to the pupil waveguide structure without peeling off the hard substrate S, the adhesion between the first cladding layer 10 and the alignment bond ( ( The adherabiiity must be greater than the adhesion between the hard substrate s and the alignment key M; in order to achieve this, the alignment bond can be formed on a smooth surface of the hard substrate S to reduce the adhesion and make the hard The substrate S is smoothly peeled off from the first surface 11 below the first cladding layer 1 . In addition, a hard substrate s as shown in FIG. 6 may be used. The eight-layer is composed of a body S1 and a buffer layer S2, wherein the alignment key M is formed on the buffer layer S2 of the hard substrate S. Since the adhesion between the buffer layer S2 and the first cladding layer 1 is small, the alignment bond is not damaged when the hard substrate S is peeled off from under the optical waveguide structure. Referring to FIG. 7 again, the optical waveguide structure fabrication unit according to another embodiment of the present invention performs the alignment key 形成 on the rigid substrate s, and simultaneously forms the ~-signal channel C2 to transmit the optical signal, as for other processes. This is roughly the same as the method shown in 1 to Figure. It should be understood that, in the hard substrate; after that, the pen δ hole 7 tiger channel C2 and the alignment key Μ are exposed on the first surface 11 of the draping layer 10, wherein the telecommunication channel C2 can be aligned with the alignment The 201020597 key Μ also has a registration function. In summary, the present invention provides an optical waveguide structure having a non-transparent alignment bond and a method of fabricating the same, wherein a non-transparent alignment bond is preliminarily formed on a rigid substrate, and the alignment key is transferred to the light. The hard substrate is stripped on the waveguide structure, so that the optical waveguide itself is prevented from being offset or misaligned due to the material being too soft. On the other hand, since the alignment key in the present invention adopts a non-transparent material, it has better contrast and recognizability, which is advantageous for the optical waveguide structure and the like by machine vision or automatic image detection. Circuit boards or other objects are combined in alignment to improve product accuracy and achieve mass production. While the invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention. It is within the spirit and scope of the invention to make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. ❿ 10 201020597 [Simplified description of the drawings] Figs. 1 to 5 are views showing a manufacturing method of an optical waveguide structure according to an embodiment of the present invention; Fig. 6 is a view showing a state in which a registration key is formed on a buffer layer of a hard substrate; and Fig. 7 A schematic diagram showing the formation of a telecommunication path on a rigid substrate. [Main component symbol description] ❿ First and second cladding layer 1 〇 First surface 11 Second surface 12 Second cladding layer 20 Optical channel C1 Electrical signal channel C2 Registration key 硬 Hard substrate S ❿ Body S1 Buffer layer S2 11

Claims (1)

201020597 十、申請專利範圍: /種光波導結構之製作方法,包括: Ζ成至f™對位鍵於-硬質基板表面; 鍵;布帛披覆層於該硬質基板表面並且覆蓋該對位 ❹ 號;於該第-披覆層上形成至少―光通道,用以傳遞光訊 道;第二披覆層於該第—披覆層上並且覆蓋該光通 露於=層分離,使得該對位鍵顯 2甘如申請專利範圍g i項所述之光 去,其中該對位鍵為非透明材質。 構之衣作方 法 申請專利範圍帛1項所述之光波導結構之製作方 其中該對位鍵為金屬材質。 乍方 所狀光波導結構之製作方 ί位鍵為4、鋼或鎢化鈦(Tiw)。 法,5其如中t專利範圍第1項所述之級導結構之製作方 :^位鍵係以電鍍方式形成於該硬質基板上。 法,^中㈣1摘狀光波導結構之製作方 7 謂位鍵㈣於該硬質基板之-光滑表面上。 甘如申請專利範圍$ !項所述之光 去’其中該製作方法更包括下列步驟:冑之氣作方 對該第一披覆層進行固化處理,使該第—披覆層固化 12 201020597 並與該對位鍵緊密結合。 法,时1摘収錢導結構之製作方 法/、中錢作方法更包括下列步驟: 對該第二披覆層進行固化處理, 並與該光通道緊密結合。 瑕復灣固化 法,範㈣1項所述之光波導結構之製作方 -中該衣作力法更包括下列步驟: 形成至少-第二光通道於該硬質基板 光訊號;以及 用Μ得遞 將該硬質基板與該第一披覆層分離 道顯露於該第一披覆層之該第—表面。 一-先通 1〇.如申請專利範圍第1項所述之光波導結構之势作方 其"硬質基板包括—本體以及—緩衝層,該緩衝層 /、於忒本體上,且該對位鍵形成於該緩衝層上。 一種光波導結構,包括: φ :第-披覆層,具有-第一表面以及一第二表面,其 中該第二表面相反於該第一表面; ’、 至少一非透明之對位鍵,形成於該第一表面,用以和 一物件進行對位結合; —光通道,形成於該第一披覆層之該第二表面上, 以傳遞光訊號;以及 通道 第二披覆層,形成於該第一被覆層上並且覆蓋該光 12.如申請專利範圍第π項所述之光波導結構,其中 13 201020597 5亥對位鍵為非透明材質。 节對=1請翻範圍帛11賴狀級導結構,其中 該對位鍵為金屬材質。 甲 14·如申請專利範圍帛n項所述之光 邊對位鍵具有鎳、銅錢化鈦(鹽)。 、中 15·如申請專利範圍帛u項所述之光波導結構, ❹ 鲁 :構更包括—電訊號通道’形成於該第—披覆層 亥乐—表面上,用以傳遞電訊號。 …16·如申請專利範圍第11項所述之光波導結構,其中 5亥對,鍵係預先形成於—硬質基板上,接著使該第―披产 1覆i於該對位鍵與該硬f基板上,直到該對位鍵與該^ 皮覆層緊洽結合後再將該硬質基板剝離,以使得兮 鍵顯露於該第一表面。 Μ 上_17,如申請專利範圍第16項所述之光波導結構,其中 5亥對位鍵係以電鍍方式預先形成於該硬質基板上。 二=·如申請專利範圍第16項所述之光波導結構,其中 5亥硬質基板具有一光滑表面,且該對位鍵形成於該光滑表 I9.如申請專利範圍第16項所述之光波導結構之光波 導結構,其中該硬質基板包括一本體以及一緩衝層,該緩 衝層形成於該本體上,且該對位鍵形成於該緩衝層上。 14201020597 X. Patent application scope: / The manufacturing method of the optical waveguide structure comprises: Ζ 至 to fTM aligning key on the surface of the hard substrate; a key; a cloth coating layer on the surface of the hard substrate and covering the alignment nickname Forming at least an "optical channel" on the first cladding layer for transmitting an optical channel; a second cladding layer on the first cladding layer and covering the light flux exposed to the layer separation, such that the alignment The key is as described in the patent application scope gi, wherein the alignment key is a non-transparent material. The fabric of the optical waveguide structure described in claim 1 wherein the alignment key is made of a metal material. The manufacturing method of the optical waveguide structure is 4, 4, steel or titanium tungsten (Tiw). The method of producing a level guide structure according to the first item of the patent range of the first aspect is: the ^ position key is formed on the hard substrate by electroplating. Method, ^ (4) 1 pick-up optical waveguide structure fabrication 7 The predicate key (4) on the smooth surface of the rigid substrate. For example, the method described in the patent application scope includes the following steps: wherein the manufacturing method further comprises the following steps: curing the first coating layer to cure the first coating layer 12 201020597 and Closely integrated with the alignment bond. The method for manufacturing the money guiding structure of the time 1 and the method for making money further comprises the following steps: curing the second coating layer and closely bonding with the light channel. The method of fabricating the optical waveguide structure described in the above-mentioned method of the invention is further comprising the steps of: forming at least a second optical channel on the hard substrate optical signal; The hard substrate and the first cladding layer separation track are exposed on the first surface of the first cladding layer. The first aspect of the optical waveguide structure according to claim 1 is that the rigid substrate includes a body and a buffer layer, the buffer layer/on the body, and the pair A bit key is formed on the buffer layer. An optical waveguide structure comprising: φ: a first-clad layer having a first surface and a second surface, wherein the second surface is opposite to the first surface; ', at least one non-transparent alignment bond, forming And the first surface is configured to perform an alignment with an object; the optical channel is formed on the second surface of the first cladding layer to transmit the optical signal; and the second coating layer is formed on the second coating layer The first coating layer is covered with the light. 12. The optical waveguide structure of claim π, wherein the 13 201020597 5 hop alignment key is a non-transparent material. For pair =1, please turn over the range 帛11 状-level guide structure, where the align key is made of metal. A. 14. The photo-edge para-bonds as described in the scope of patent application 帛n have nickel and copper-titanium (salt). In the optical waveguide structure described in the patent application scope, the structure of the optical waveguide is formed on the surface of the first layer to transmit electrical signals. [16] The optical waveguide structure according to claim 11, wherein the key is formed on the hard substrate, and then the first coating is overlaid on the alignment key and the hard On the f substrate, the hard substrate is peeled off until the alignment key is in close contact with the coating layer, so that the 兮 bond is exposed on the first surface. The optical waveguide structure of claim 16, wherein the 5 hp alignment key is pre-formed on the rigid substrate by electroplating. The optical waveguide structure of claim 16, wherein the 5-well rigid substrate has a smooth surface, and the alignment key is formed on the smooth surface I9. The light according to claim 16 The optical waveguide structure of the waveguide structure, wherein the rigid substrate comprises a body and a buffer layer, the buffer layer is formed on the body, and the alignment key is formed on the buffer layer. 14
TW97144651A 2008-11-19 2008-11-19 Optical waveguide and manufacturing method thereof TWI393928B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97144651A TWI393928B (en) 2008-11-19 2008-11-19 Optical waveguide and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97144651A TWI393928B (en) 2008-11-19 2008-11-19 Optical waveguide and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201020597A true TW201020597A (en) 2010-06-01
TWI393928B TWI393928B (en) 2013-04-21

Family

ID=44832272

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97144651A TWI393928B (en) 2008-11-19 2008-11-19 Optical waveguide and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI393928B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047055A (en) * 1998-07-28 2000-02-18 Japan Aviation Electronics Industry Ltd Optical waveguide device and its production
JP3503025B2 (en) * 2000-10-10 2004-03-02 日本航空電子工業株式会社 Optical waveguide substrate with alignment marker
KR100977235B1 (en) * 2002-11-12 2010-08-20 호야 코포레이션 유에스에이 Optical component for free-space optical propagation between waveguides
US7329481B2 (en) * 2004-01-23 2008-02-12 Fujitsu Limited Substrate optical waveguides having fiber-like shape and methods of making the same
TWI328877B (en) * 2006-07-20 2010-08-11 Au Optronics Corp Array substrate
US7977170B2 (en) * 2006-10-03 2011-07-12 Eastman Kodak Company Flexible substrate with electronic devices and traces

Also Published As

Publication number Publication date
TWI393928B (en) 2013-04-21

Similar Documents

Publication Publication Date Title
US9632263B2 (en) Opto-electric hybrid board and method of manufacturing same
US7869670B2 (en) Substrate for mounting an optical element, optical circuit substrate, and substrate on which an optical element is mounted
KR101027206B1 (en) Optoelectric hybrid film and electronic apparatus receiving the same
JP2011043835A (en) Printed circuit board and method of manufacturing the same
TW200942096A (en) Multilayer wiring substrate and method of manufacturing the same
JP2004535070A (en) System and method for integrating an optical layer into an interboard communication PCB
CN101193505A (en) Method for manufacturing stacking printing wiring plate
KR20080044174A (en) Semiconductor package and method for manufacturing the same
US20100065309A1 (en) Electrical and optical hybrid board and manufacturing method of the same
JP2014238455A (en) Photo-electric hybrid substrate
TWI260190B (en) Optical fibers embedded in a printed circuit board
TW201626015A (en) Optical/electric hybrid substrate, and production method therefor
EP1041410B1 (en) Optical circuit board and method of manufacturing the same
JP4258065B2 (en) Manufacturing method of optical / electrical wiring board
TW201020597A (en) Optical waveguide and manufacturing method thereof
US20150054162A1 (en) Method of manufacturing chip package substrate and method of manufacturing chip package
JPH06310833A (en) Manufacture of electrical/optical wiring board
TW200938041A (en) Method for fabricating flex-rigid circuit board
JP2006039046A (en) Optical waveguide mounting member, substrate, semiconductor device, manufacturing method of optical waveguide mounting member, and manufacturing method of substrate
JP2005300930A (en) Method for manufacturing optical and electrical consolidated substrate
JP2008124418A (en) Electric circuit substrate, and optical and electrical combined circuit substrate using it
JP2009021425A (en) Flexible-rigid printed circuit board, method of manufacturing flexible-rigid printed circuit board and electronic device
CN104754871B (en) A kind of circuit board manufacturing method
JP4507359B2 (en) Optical / electrical wiring board, its connection structure and its connection method
JP2006098672A (en) Flexible optical board