TW201020282A - Compound of silver nanowire with polymer and compound of metal nanostructure with polymer - Google Patents

Compound of silver nanowire with polymer and compound of metal nanostructure with polymer Download PDF

Info

Publication number
TW201020282A
TW201020282A TW98119262A TW98119262A TW201020282A TW 201020282 A TW201020282 A TW 201020282A TW 98119262 A TW98119262 A TW 98119262A TW 98119262 A TW98119262 A TW 98119262A TW 201020282 A TW201020282 A TW 201020282A
Authority
TW
Taiwan
Prior art keywords
composite
resin
nano
polymer
nano silver
Prior art date
Application number
TW98119262A
Other languages
Chinese (zh)
Other versions
TWI389954B (en
Inventor
Ming-Hsiung Wei
Kuo-Chu Hwang
Chieh-Lin Kuo
Kai-Yia Chang
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW98119262A priority Critical patent/TWI389954B/en
Publication of TW201020282A publication Critical patent/TW201020282A/en
Application granted granted Critical
Publication of TWI389954B publication Critical patent/TWI389954B/en

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention provides a compound of silver nanowire with polymer which comprises a resin, a dispersant, and a plurality of silver nanowires. The dispersant copolymerizes with the resin. The dispersant has a plurality of functional groups capable of connecting with the silver nanowires respectively. Therefore, the silver nanowires could be spread in the resin through the functional groups of the dispersant.

Description

201020282 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種奈米金屬線與高分子之複合物,並 且特別地’本發明係關於-種可均勻分佈奈米金屬體於其 中並能抑制金屬遷移之複合物。 【先前技術】 ❹ 導電金屬耗以金麻子摻歸獅(例如,環氧樹 脂)中而形成’ -般市面上常見以銀顆粒摻雜而構成導電 銀膠。由於導電銀膠呈膠狀,因此可藉由印刷(繼 prmt)方式印製於各種電子產品上而具有廣泛的應用。舉 例而言,導電銀膠可用來製作特定之電路、製作薄膜開關 以及用以接著兩導電線路。 上述市面上用以摻雜銀顆粒一般係呈微米尺寸,然 而,若是將奈米級的銀顆粒摻雜於樹脂中,可更進一步降 ❹ 低導電銀膠電阻以及提升由導電銀膠所印製出的薄膜線路 的品質與良率。此外,以奈米銀顆粒摻雜之導電銀膠亦可 降低其所需之熱處理,可進-步適用於無法承受高溫孰處 理之塑膠基材上。 另一方面,不同銀奈米型態之摻雜(例如,奈米銀顆 粒、奈米銀線或奈米銀線)也可用來調整導電銀膠之的性 質。舉例而言,若於樹脂中摻雜奈米銀線,由於電子的傳 導路徑增長(conducting path length)並且電子於兩個導電島 (conducting islands)之間的平均跳躍(h〇pping)間距縮短之 3 201020282 緣故 增加。 ’所形成之奈米銀膠製作出的電子線路其導 電度將會 ㈣ί先=術中,已有各種製備方法能製備銀的各種奈 ,、、〜、例如濕式化學還原法、機械研磨法、熱 之前驅物以及高能電衆裂解法等。然、而,即使ς = 率 因此 的重點 中已發展出這些可製備奈鋒齡、奈米銀線以及1平银 線之製備方法’導電銀膠仍存有許多問題待克服;二 銀的奈米型態於樹脂中需均勻分佈才能確保導電銀膠的良 杰· m··,如何均勻散佈奈米銀於樹脂中即成為各界研^ 此外,導電銀膠於薄膜開關的應用方面還存在有「銀 遷移」(若以其他金屬奈米顆粒摻雜,亦可能會發生金屬t 遷移之狀況)之問題。銀遷移之現象係當導電銀膠形成之 薄膜開關處於濕氣條件下而外加偏壓時,薄臈開關中之銀 顆粒將會根據電場進行遷移而在薄膜中聚集形成較大之顆 粒或是樹枝狀結構,進而影響電子元件使其發生不正常狀 態’甚至導致電子元件損壞。 於先前技術中,為避免銀遷移現象之影響,在薄膜開 關上方可設置一層碳膠層以隔絕水氣滲入薄膜開關,進一 步避免薄膜中之銀顆粒氧化或遷移。然而,增設碳膠層將 會增加薄膜開關的生產成本並且複雜化其製程。另二方 面,碳膠層的厚度也需要精密的控制以避免因其厚度太厚 而剝落導致剝落的碳膠層影響電子元件本身。 【發明内容】 201020282 因此,本發明之-範嗜在於提供一種奈米金屬線與高 分子之複合物,以解決上述問題。 根據-具體實施例’本發明之奈来金属線與高分子之 複合物包含膠體、分散劑以及奈米金屬體。其中,分散劑 酸之單體具有至少-官能基,並且其與膠體共聚合而形成 膠狀的聚合物。此外’奈米金相鱗雜於_與分散劑 酸所形成的膠狀聚合物中。 於本具體實施例中,分散劑單體的官能基團會與奈米 金屬體相連接,並且由於分散劑係與膠體共聚合,致使奈 米金屬體藉由與具有官能基®之分散劑酸單體散佈於勝體 中。同樣地,由於分散劑與膠體共聚合,因此與分散劑單 體之官能基81連接的奈米金屬體可藉由共聚合之力量抑制 其遷移。 本發明之一範疇在於提供一種奈米銀線與高分子之複 合物,其係以奈米銀線均勻摻雜於樹脂中並能抑制銀遷移 之現象。 根據一具體實施例,本發明之奈米銀線與高分子之複 合物可包含樹脂(resin)、分散劑以及奈米銀線。其中,分 月欠劑具有至少一官能基,並且其與樹脂共聚合而形成膠 狀的聚合物。此外,奈米銀線係摻雜於樹脂與分散劑所形 成的膠狀聚合物中。 於本具體實施例中,分散劑單體的官能基團會與奈米 銀線相連接,並且由於分散劑係與樹脂共聚合,致使奈米 5 201020282 銀線藉由與具有官能基團之分散劑散佈於樹脂中。同 地’由於分散雜樹脂綠合,因此與分散狀官能基圍 連接的奈米銀線可藉由共聚合之力量抑制其遷移。土 ^匕外,於相同之銀固含量下,本具體實施例之奈米銀 線與高分子之複合物的導電度較以奈米銀顆⑽雜之^ 銀膠的導電度高。另-方面,於低電阻值(高導電度)之條 件下’奈練線於複合物巾之雜t可低於奈米銀顆粒^ 關於本發明之優點與精神可以藉由以下的發明詳述 所附圖式得到進一步的瞭解。 【實施方式】 本發明提供一種奈米銀線與高分子之複合物,其係利 用奈米銀轉雜人雜巾,並且奈綠射藉纟分散劑均 勻散佈於膠體中以形成此複合物。 根據一具體實施例,本發明之奈米銀線與高分子之複 f物内包含樹脂、分散劑以及奈米銀線。其中,分散劑與 树脂共聚合而形成膠狀的聚合物。分散劑的單體分別具有 官能基團,這倾根可連接奈米銀線錄制奈米銀線的移 動。由於分散劑單體連接奈米銀線並且同時與樹脂共聚 合,因此,奈米銀線可散佈於壓克力酸與樹脂共聚合而形 成之膠狀聚合物中。於實務中,分散劑(如,壓克力酸)能 以其他可與樹脂共聚合之單體來代替,而不受限於本具體 實施例。另一方面,樹脂可為,但不受限於脂肪族氨基曱 酸酯乙烯酸酯以及2(2-乙氧基_乙氧基)乙基丙烯酸酯所組 201020282 成之聚合物。 同時’於本具體實施例中’由於分散劑(如,麼克力 酸)單體限制了奈米銀線的移動,因此,在實務上由本發 明之奈米銀線與高分子之複合物所製成之薄膜開關可有效 抑制銀遷移的效果。換言之,相較於先前技術之未使用分 散劑(如’壓克力酸)之導電銀膠所製成的薄膜開關,本發 明之奈米銀線與高分子之複合物所製成的薄膜開關可具備 較長的生命週期而不至於因銀遷移現象而輕易損壞。 請參閱圖一,圖一係繪示根據本發明之一具體實施例 之奈米銀線與向分子之複合物的SEM圖。於本具體實施 例中’奈米銀線的固含量為67 wt%。如圖一所示,長條 狀結構物即為奈米銀線1,其分佈均勻而不聚集成樹枝狀 結構或塊狀結構。於實務中,本發明之奈米銀線與高分子 之複合物可由熱重分析儀測出’然而,即便是加熱至 1000°C(—般熱重分析儀加熱樣品之溫度),仍有少部分的 樹脂會碳化為碳纖維而殘留。 於實務中,奈米銀線於複合物中的固含量會影響複合 物的導電度。請參閱表一,表一列舉六個具體實施例之奈 米銀線與咼分子之複合物的奈米銀線固含量以及導電卢。 請注意,表一中導電度係由電阻來表示,換言之,電阻越 低的複合物具有越高的導電度。進—步,複合物薄膜之電 阻係以其平均電限乘上其膜厚而得到。 、 7 201020282 兔一、複合物薄膜之奈米銀線固含量以之導電度201020282 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a composite of a nanowire and a polymer, and in particular, the invention relates to a homogeneous distribution of a nanometallic body therein A composite that inhibits metal migration. [Prior Art] 导电 Conductive metal is formed by the addition of ginseng to lions (for example, epoxy resin). On the market, silver particles are often doped to form conductive silver paste. Since the conductive silver paste is gelatinous, it can be widely used by printing (continuously prmt) on various electronic products. For example, a conductive silver paste can be used to make a particular circuit, make a thin film switch, and use it to follow two conductive traces. The above-mentioned silver-doped particles are generally micron-sized. However, if nano-sized silver particles are doped into the resin, the low-conductive silver-glued resistor can be further lowered and the conductive silver paste can be printed. The quality and yield of the film line. In addition, the conductive silver paste doped with nano silver particles can also reduce the heat treatment required, and can be further applied to plastic substrates that cannot withstand high temperature enthalpy treatment. On the other hand, doping of different silver nanotypes (for example, nanosilver particles, nanosilver wires or nanosilver wires) can also be used to adjust the properties of conductive silver paste. For example, if a nano-silver wire is doped into the resin, the conduction path length of the electron is increased and the average jump spacing of electrons between the two conductive islands is shortened. 3 201020282 The reason is increased. 'The conductivity of the electronic circuit produced by the nano-silver glue will be (4) ί first = intraoperative, various preparation methods can be used to prepare various kinds of silver, such as ~, such as wet chemical reduction method, mechanical grinding method, Pre-heating and high-energy electricity cracking methods. However, even if the ς = rate has been developed, these preparation methods for preparing Naifeng age, nano silver wire and 1 flat silver wire have been developed. There are still many problems to be solved in the conductive silver paste; The rice type needs to be evenly distributed in the resin to ensure the good silver · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · "Silver migration" (the problem of metal t migration may occur if it is doped with other metal nanoparticles). The phenomenon of silver migration is that when the membrane switch formed by the conductive silver paste is under humid conditions and the bias voltage is applied, the silver particles in the thin tantalum switch will migrate according to the electric field to form larger particles or branches in the film. The structure, which in turn affects the electronic components to cause an abnormal state, even causes damage to the electronic components. In the prior art, in order to avoid the influence of silver migration, a layer of carbon glue may be disposed above the film switch to prevent moisture from penetrating into the membrane switch, further avoiding oxidation or migration of silver particles in the film. However, the addition of a carbon glue layer will increase the production cost of the membrane switch and complicate its process. On the other hand, the thickness of the carbon rubber layer also needs to be precisely controlled to avoid the peeling off of the carbon glue layer which affects the electronic component itself due to its thickness being too thick. SUMMARY OF THE INVENTION 201020282 Therefore, the present invention is to provide a composite of a nanowire and a high molecule to solve the above problems. According to the specific embodiment, the composite of the nematic wire and the polymer of the present invention comprises a colloid, a dispersant, and a nanometal. Among them, the monomer of the dispersant acid has at least a -functional group, and it is copolymerized with a colloid to form a gelatinous polymer. In addition, the 'nano metallurgical scale is mixed with the colloidal polymer formed by the dispersant acid. In this embodiment, the functional group of the dispersant monomer is linked to the nanometal body, and the dispersant is copolymerized with the colloid, causing the nanometal body to act with the dispersant acid having the functional group The monomer is scattered in the winning body. Also, since the dispersant is copolymerized with the colloid, the nanometal body attached to the functional group 81 of the dispersing agent monomer can inhibit migration by the force of copolymerization. One aspect of the present invention is to provide a composite of a nanosilver wire and a polymer which is uniformly doped into a resin by a nano silver wire and which inhibits the migration of silver. According to a specific embodiment, the composite of the nanosilver wire and the polymer of the present invention may comprise a resin, a dispersant, and a nano silver wire. Among them, the monthly eliminator has at least one functional group, and it is copolymerized with a resin to form a gelatinous polymer. Further, the nano silver wire is doped in a gel polymer formed of a resin and a dispersant. In this embodiment, the functional group of the dispersant monomer is linked to the nano silver wire, and the dispersant is copolymerized with the resin, causing the nanowire 5 201020282 silver wire to be dispersed by having a functional group. The agent is dispersed in the resin. In the same place, since the dispersed hetero resin is green, the nano silver wire connected to the dispersed functional group can be inhibited from migration by the force of copolymerization. Outside the soil, at the same silver solid content, the conductivity of the composite of the nano silver wire and the polymer of the specific embodiment is higher than that of the nano silver (10) miscellaneous silver paste. On the other hand, under the condition of low resistance value (high conductivity), the miscellaneous t of the composite towel can be lower than the nano silver particles. The advantages and spirit of the present invention can be detailed by the following invention. The drawings are further understood. [Embodiment] The present invention provides a composite of a nanosilver wire and a polymer, which utilizes a nanosilver-to-male rag, and the chlorophyll-dispersing agent is uniformly dispersed in the colloid to form the composite. According to a specific embodiment, the nano silver wire and the polymer of the present invention contain a resin, a dispersing agent, and a nano silver wire. Among them, the dispersant is copolymerized with the resin to form a gelatinous polymer. The monomers of the dispersant each have a functional group which can be attached to the nano silver wire to record the movement of the nano silver wire. Since the dispersant monomer is bonded to the nano silver wire and simultaneously copolymerized with the resin, the nano silver wire can be dispersed in a gel polymer formed by copolymerization of an acrylic acid and a resin. In practice, the dispersant (e.g., acrylic acid) can be replaced with other monomers copolymerizable with the resin, without being limited to this embodiment. Alternatively, the resin may be, but is not limited to, an aliphatic amino phthalate vinyl ester and a 2,2-ethoxy-ethoxy)ethyl acrylate group of 201020282. At the same time, in the present embodiment, the dispersing agent (e.g., micotinic acid) monomer restricts the movement of the nano silver wire, and therefore, in practice, the composite of the nano silver wire and the polymer of the present invention is used. The membrane switch made can effectively inhibit the effect of silver migration. In other words, the membrane switch made of the composite of the nano silver wire and the polymer of the present invention is compared with the membrane switch made of the conductive silver paste which does not use a dispersant (such as 'acrylic acid) in the prior art. It has a long life cycle and is not easily damaged by silver migration. Referring to Figure 1, there is shown an SEM image of a composite of nanowires and molecules to a molecule in accordance with an embodiment of the present invention. In the present embodiment, the solid content of the nano silver wire was 67 wt%. As shown in Fig. 1, the long strip structure is a nano silver wire 1, which is evenly distributed without being aggregated into a dendritic structure or a massive structure. In practice, the composite of the nanowire and the polymer of the present invention can be measured by a thermogravimetric analyzer. However, even if it is heated to 1000 ° C (the temperature of the sample is heated by the thermogravimetric analyzer), there are still few Some of the resin will be carbonized and left as a carbon fiber. In practice, the solid content of the nanosilver in the composite affects the conductivity of the composite. Referring to Table 1, Table 1 lists the nanosilver solid content and conductivity of the composite of the nano silver wire and the ruthenium molecule of the six specific examples. Note that the conductivity in Table 1 is represented by a resistor, in other words, the lower the resistance, the higher the conductivity. Further, the resistance of the composite film is obtained by multiplying its average electrical limit by its film thickness. , 7 201020282 Rabbit I. The nano-silver solid content of the composite film and its conductivity

No. A B C D E F Ag固含量% 69 67 63 60 50 49 平均電阻ηιΩ 6.96 63.61 3.82 9.26 20.51 32.96 膜厚Mm 21.9 48 48.5 77.63 52.22 88.8 Ω · m 1.52E-7 1.73E-7 1.85E-7 7.19E-7 1.07E-6 2.93E-6 由表一中可看出’隨著奈米銀線於複合物中固含量的 上升,複合物之電阻將隨之下降,亦即,其導電度上升。 於具體實施例E中’當膜厚為100 μιη時其電阻約為2e_6 Ωιη。相較於相同厚度(1〇〇 μιη)的塊材銀塊之電阻(15E_ 8) ’具體實施例E之電阻仍明顯地較大,然而,相較於相 同厚度(100 μπι)並摻雜相同固含量之奈米銀顆粒(5〇 wt%) 之複合物薄膜的電阻(1E-5),具體實施例E之電阻明顯地 較低。 另-方面,於先前技術中,若摻雜奈米銀顆粒之導電 ,膠(膜厚刚_欲達到如同具體實施例E,其推雜之奈 j顆粒的固含量需達90 wt%以上。因此,若以相同導 看來’所需摻雜奈米銀線的固含量將明顯低於 Ιΐίϊ 顆粒的固含量。於實務中,此結果可用來 降低銀材料的使用量進而降低生產成本。 如上所述,以奈米銀線摻雜而成高分子複合物,其導 201020282 電性將優㈣奈祕雜摻_成之導電_ 銀線之長度較奈練顆粒長,因此,相較於以=来 摻雜而成之導電銀膠而言,本發明之奈米銀線上, 1物具有較長的低電阻傳導路徑(奈米銀材料=:之 的同電阻傳輪路徑(樹脂),進而形成較佳的導電性。乂短 切參閱圖二’圖二係纷示根據本發明之另〜 參 ❹ 例之奈米銀線與高分子之複合物之耐磨耗職的ς施 線段2〇代表岭練線雜之複合物,狀 米銀顆粒(粒徑為35奈米)摻雜之導電銀膠,料為2 之銀固含量均為49 wt%。於本具體實施例中,:=者 :板摩擦輪試驗法進行測試’橫轴χ係摩擦輪= 數’縱軸γ縣複合物損失的重量(公克)。如圖$之圈 經過摩擦祕動兩百_,線段2G職 =& 段22損耗的重量。另-方面,線段2〇大約經線 轉,員相當於㈣經過摩擦輪轉動兩; °如上所述’相較於以奈米銀顆粒摻雜 ^ L本發明之奈米銀線與高分子之複合物具有較佳it =而’需注意的是’即使上述以奈米銀線摻 =合物相較独奈米銀雛摻雜之導電轉而具有= 速電度以及财磨度,藉由分散劑之螯合官能基團抑 遷移現象的機制並不僅僅_於奈練線,而可進! 用於奈米銀顆粒或銀材料的其他奈米㈣。更甚者,2 用於以其他金狀各縣米型祕狀高分 :適 9 201020282 根據另一具體實施例,本發明之奈米金屬體與高分子 之複合物包含膠體、共聚體以及奈米金屬體。其中,共聚 體可與膠體共聚合而形成膠狀的聚合物。共聚體之單體分 別具有整合官能基團,這些螯合官能基團可連接奈米金屬 體以限制奈米金屬體的移動。於實務中’螯合官能基團可 為酸根’並且酸根可為羧酸根(-COOH)、磷酸根(_p〇xy_ x,y ’ X及y為介於1〜4之整數)、硫化氫酸根(·8Η,_s_)、 硫酸根(-S03-)或上述螯合官能基團之組合。由於共聚體 之單體連接奈米金屬體並且同時與膠體共聚合,因此,奈 米金屬體可散佈於共聚體與膠體共聚合而形成之膠狀聚合 Q 物中。於實務中,膠體可為,但不受限於樹脂,更進一步 地,膠體亦可為脂肪族氨基甲酸酯乙烯酸酯以及2(2-乙氧 基-乙氧基)乙基丙烯酸酯所組成之聚合物。此外,分散劑 共聚體於實務中可為’但不受限於壓克力酸。同樣地,奈 米金屬體於實射可為,但衫限於奈米銀線。 上述奈米銀線與高分子之複合物於實務中可由以下方 法製備而成。首先’以分散劑(如,壓克力酸)之單體吸附 奈米銀線’因壓克力酸之單體具械根可連接奈米銀線,Q 故可將奈米銀線分散於分散劑(如,壓克力酸)中。接著, 將連接奈米銀m制(如,壓克力酸)無職氨基 酸醋乙稀酸醋及2(2_乙氧基_乙氧基)乙基丙烯酸酯所ς成 之聚合物(以下稱為樹脂)均勻分散於溶劑中而形成第一溶 液。請注意,於此溶劑可使用乙晴(acetonitrile),然而實 務中並不受此限,端看使用者需求而定。 由於樹脂與壓克力酸之單體均具有可再聚合之C=c 10 201020282 雙―,因此,將上述第-溶液加入自由基起始劑並加敎至 二疋溫度後樹脂與分散劑(如,a克力酸)之單體即可“ 二成進而形紅述複合物。於實務中,上述自由基起ς劑 :ρ。、,Γ又限於過氧化苯甲醯(Benzoyl Peroxide, BPO)。此外,樹脂與壓克力酸產生共聚合所處之溫度可 ==於⑽’實務上亦侧光取代加熱方式 鲁 ,參關三’圖三麟示根據本發明之—具體實施例 之:米銀線與南分子之複合物製作方法的步驟流程圖。如 圖三所示’上述複合物的製備方法可具有詳細步驟如下: 於步驟S3G ’將數克分散_D,壓克力酸)與—定量(此定 量的多寡錄據使时需求心)之奈米銀線加入數毫升 的乙晴溶劑中混合形成第一溶液;於步驟S32,取一克之 第一浴液與適量樹脂混合形成第二溶液;於步驟幻4,將 第-洛液以及第二溶液混合,並加人自由基起始劑混合均 勻而獲得第三溶液;於步驟S36,將第三溶液平鋪於载體 表面,並加溫至120。(:致使樹脂與分散劑進行共聚合反應 2小時。藉由上述各步驟可得到如前述具體實施例之奈^ 銀線與局分子之複合物。 上述奈米銀線與高分子之複合物以及奈米金屬體與高 分子之複合物,基於其優良的導電性以及耐磨性,於實務 中還可應用於油漆、塗料、樹脂、纖維、導電油墨、電磁 屏蔽或抑菌#應用領域中,並不受限於本說明書所列舉之 導電膠體。 11 201020282 ❹ 相較於先前技術,本發明之奈米銀線與高分子之複合 物係以奈米銀線摻雜至樹脂中而形成。相較於以奈米銀顆 粒掺雜之導電銀膠,以奈米銀線摻雜之導電銀膠具有較佳 的導電度以及耐磨度,進而可降低其生產成本。本發明之 複合物進一步包含具有螯合官能基團(如,酸根)之分散 劑,其螯合官能基團可連接奈米銀線,同時分散劑單體可 與樹脂共聚合。藉由螯合官能基團,奈米銀線可均勻分散 於複合物中,並且由於螯合官能基團牢牢抓住奈米銀線= 因此可抑制銀遷移的現象,進而增進以本發明之奈米銀線 與高分子之複合物所製成之薄膜開關的良率。進一步地, 本發明之複合物所製成之薄膜_不須額外設置碳膠層, 因此可避免先前技術中因碳膠層過厚剝落所導致之影&。 此外,本發明用以分散奈米銀線於複合物之方法,^可 適用於其他的奈米型態以及其他金屬,另—方面,本發明 之奈米金屬體與高分子複合物亦可應用於其他領域中,如 屏蔽電磁波、吸收雷達波、抑菌塗料、油墨或油漆 ° 而不受限於導電膠體。 ’ 藉由以上較佳具體實施例之詳述,係希望能更加产 描述本發明之特徵浦神,*並非以±述所揭露的較二 體實施例來對本發明之範疇加以限制。相反地,其目 希望能涵蓋各觀變及具相等性的安排於本發明ς申 之專利範圍的範疇内。因此,本發明所申請之 乾_應該根據上述的綱作最寬廣的解釋,以 = 所有可能的改變以及具相等性的安排。 '、r 12 201020282 【圖式簡單說明】 圖一係繪示根據本發明之一具體實施例之奈米銀線與 高分子之複合物的SEM圖。 ❹ 高分;另一具體實施例之奈米銀線 磨耗剛試的示意圖。 圖三係繪示根據本發 高分子之複合物製作方^之一具體實施例之奈米銀線與 圖 與 【主要元件符號說明】 驟流程圖 20、22 :線段 Y:損失重量 1 :奈米銀線 X ··摩擦輪旋轉圈數 S30〜S36 :流程步驟No. ABCDEF Ag solid content% 69 67 63 60 50 49 Average resistance ηιΩ 6.96 63.61 3.82 9.26 20.51 32.96 Film thickness Mm 21.9 48 48.5 77.63 52.22 88.8 Ω · m 1.52E-7 1.73E-7 1.85E-7 7.19E-7 1.07E-6 2.93E-6 As can be seen from Table 1, 'As the solid content of the nano silver wire rises in the composite, the resistance of the composite will decrease, that is, its conductivity will increase. In the specific embodiment E, when the film thickness is 100 μm, the electric resistance is about 2e_6 Ωιη. The resistance of the block silver block (15E_8) compared to the same thickness (1〇〇μιη)' is still significantly larger in the specific embodiment E, however, compared to the same thickness (100 μπι) and doping the same solid The electric resistance (1E-5) of the composite film of the content of nano silver particles (5 Å wt%) was significantly lower in the electric resistance of the specific example E. On the other hand, in the prior art, if the doped nano silver particles are electrically conductive, the film thickness is just as specific as in the embodiment E, and the solid content of the particles is required to be 90 wt% or more. Therefore, if the same conductivity is used, the solid content of the desired doped nano silver wire will be significantly lower than the solid content of the Ιΐίϊ particle. In practice, this result can be used to reduce the amount of silver material used and thus reduce the production cost. According to the nano-silver line doped polymer composite, the conductivity of the 201020282 is superior (4), and the length of the silver wire is longer than that of the nano-particles. Therefore, compared with = Conductive silver paste to be doped, in the nano silver wire of the present invention, 1 has a long low-resistance conduction path (nano silver material =: the same resistance transmission path (resin), and further The preferred conductivity is formed. Referring to Figure 2, the second embodiment of the present invention is based on the other aspects of the present invention, the nano silver wire and the polymer composite wear-resistant service line 2〇 Representing the compound of Lingling Line, the silver-doped particles (particle size of 35 nm) doped conductive silver The silver solid content of the material is 49 wt%. In this embodiment, the ==: plate friction wheel test method is tested 'horizontal axis tether friction wheel=number' vertical axis γ county compound loss Weight (g). As shown in Fig. $, the friction is secreted by two hundred _, the line segment 2G job = & section 22 weight loss. On the other hand, the line segment 2 〇 is about the warp, the member is equivalent to (four) after the friction wheel rotation Two; ° as described above 'compared to nano silver particles doped with the nano silver wire and polymer composite of the invention has better it = and 'note that' even if the above-mentioned nano silver The wire doping compound has a higher conductivity and richness than the conductivity of the dolomite silver doped, and the mechanism of the chelating functional group inhibiting migration by the dispersing agent is not only Line, but can enter! Other nano (4) for nano silver particles or silver material. Moreover, 2 is used for high scores of rice type in other gold-like categories: suitable 9 201020282 according to another embodiment The composite of the nano metal body and the polymer of the present invention comprises a colloid, a copolymer, and a nano metal body. The colloid is copolymerized to form a gelatinous polymer. The monomers of the interpolymer have respectively integrated functional groups, and these chelating functional groups can be attached to the nano metal body to limit the movement of the nano metal body. In practice, 'chelating The functional group may be an acid ' and the acid group may be a carboxylate (-COOH), a phosphate (_p〇xy_ x, y 'X and y is an integer between 1 and 4), a hydrogen sulfide (·8Η, _s_) Sulfate (-S03-) or a combination of the above chelating functional groups. Since the monomer of the interpolymer is bonded to the nanometal and simultaneously co-polymerized with the colloid, the nanometal can be dispersed in the interpolymer and the colloid. In the colloidal polymerization Q formed by polymerization. In practice, the colloid may be, but not limited to, a resin. Further, the colloid may also be an aliphatic urethane vinyl ester and 2 (2-ethoxylated). A polymer composed of ethoxy-ethyl acrylate. In addition, the dispersant interpolymer may be 'but not limited to acrylic acid in practice. Similarly, the nano metal body can be used for real shot, but the shirt is limited to the nano silver wire. The above composite of nano silver wire and polymer can be prepared by the following method in practice. First, 'the nano silver wire is adsorbed by a monomer of a dispersing agent (for example, acrylic acid). Because the monomer of the acrylic acid can be connected to the nano silver wire, Q can disperse the nano silver wire. In a dispersant (eg, acrylic acid). Next, a polymer obtained by connecting nano-silver m (for example, acrylic acid) unworked amino acid vinegar ethyl vinegar and 2 (2-ethoxy-ethoxy) ethyl acrylate (hereinafter referred to as The resin is uniformly dispersed in a solvent to form a first solution. Please note that acetonitrile can be used for this solvent, but this is not limited in practice, depending on the needs of the user. Since both the resin and the acrylic acid monomer have a repolymerizable C=c 10 201020282 double, the above-mentioned first solution is added to the radical initiator and added to the second temperature after the resin and the dispersant ( For example, the monomer of a kelic acid can be “two-dimensional and then red-formed complex. In practice, the above-mentioned radical creping agent: ρ., Γ is limited to Benzoyl Peroxide (BPO). In addition, the temperature at which the resin and the acrylic acid are copolymerized can be == (10)' practically, the side light is substituted for the heating method, and the reference is made according to the present invention. The flow chart of the steps for preparing the composite of the rice silver wire and the south molecule. As shown in FIG. 3, the preparation method of the above composite may have the following detailed steps: in the step S3G, the number of grams is dispersed _D, acrylic acid And the nano silver wire of - quantitative (the quantitative amount of time required) is added to several milliliters of acetonitrile solvent to form a first solution; in step S32, one gram of the first bath is mixed with an appropriate amount of resin Forming a second solution; in step 4, the first solution and the second solution Mixing, and adding a free radical initiator to mix uniformly to obtain a third solution; in step S36, the third solution is laid on the surface of the carrier and heated to 120. (: causing the resin to co-polymerize with the dispersant 2 hours. By the above steps, a composite of the silver wire and the local molecule of the above specific embodiment can be obtained. The composite of the nano silver wire and the polymer and the composite of the nano metal body and the polymer, Based on its excellent electrical conductivity and wear resistance, it can also be applied to paints, coatings, resins, fibers, conductive inks, electromagnetic shielding or antibacterial applications in practice, and is not limited to the conductive materials listed in this specification. Colloid. 11 201020282 ❹ Compared with the prior art, the composite of the nano silver wire and the polymer of the present invention is formed by doping nano silver wire into the resin. Compared with the conductive doped with nano silver particles. Silver colloid, the conductive silver paste doped with nano silver wire has better conductivity and wear resistance, thereby reducing the production cost thereof. The composite of the present invention further comprises a chelate functional group (eg, acid group). Division a powder whose chelating functional group can be bonded to a nano silver wire, and the dispersant monomer can be copolymerized with the resin. By chelating the functional group, the nano silver wire can be uniformly dispersed in the composite, and due to chelation The functional group firmly grasps the nano silver wire = thus suppressing the phenomenon of silver migration, thereby improving the yield of the membrane switch made of the composite of the nano silver wire and the polymer of the present invention. Further, The film made of the composite of the invention does not require an additional carbon layer, so that the prior art is caused by the excessive peeling of the carbon layer. In addition, the present invention is used to disperse the nano silver wire. The composite method can be applied to other nano types and other metals. On the other hand, the nano metal body and polymer composite of the present invention can also be applied to other fields, such as shielding electromagnetic waves and absorbing radar waves. , bacteriostatic coatings, inks or paints are not limited to conductive colloids. The features of the present invention are intended to be more exemplified by the above detailed description of the preferred embodiments, and the scope of the invention is not limited by the specific embodiments disclosed. On the contrary, it is intended that the scope of the invention and the scope of the invention are covered by the scope of the invention. Therefore, the application of the present invention should be interpreted broadly according to the above-mentioned outline, with all possible changes and equal arrangements. ', r 12 201020282 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a SEM image showing a composite of nano silver wire and a polymer according to an embodiment of the present invention. ❹ High score; a schematic diagram of a nano silver wire abrasion test in another embodiment. Figure 3 is a diagram showing the nano silver wire and the diagram of the specific embodiment of the composite of the present invention. [Summary of the main component symbols] Flowchart 20, 22: Line Y: Loss weight 1: Nai Rice silver line X ··friction wheel rotation number S30~S36: process step

1313

Claims (1)

201020282 * · 七、申請專利範圍: 1、 一種奈米銀線與高分子之複合物,包含: 一樹脂; 一分散劑’能與該樹脂共聚合,該分散劑包含複數個 分散劑單體,並且該複數個分散劑單體分別具有至 少一螯合官能基團;以及 複數個奈米銀線,分別連接於該複數個螯合官能基團 而散佈於該樹脂中。 ❹ 2、 如申請專利範圍第1項所述之複合物,其中該樹脂包含脂 肪族氨基曱酸酯乙烯酸酯以及2(2-乙氧基_乙氧基)乙基丙 婦酸酯所組成之一聚合物。 3、 如申請專利範圍第1項所述之複合物,其中該分散劑包含 壓克力酸。 4、 如申請專利範圍第1項所述之複合物’其中該螯合官能基 團包含羧酸根、磷酸根、硫化氫酸根以及硫酸根所組成 群組中之至少一。 5、 如申請專利範圍第1項所述之複合物’進一步包含一溶劑 用以溶解該膠體、該壓克力酸以及該複數個奈米銀線。 6、 如申請專利範圍第5項所述之複合物’其中該溶劑係乙 晴0 14 201020282 , 7、 如申明專利範圍第丨項所述之複合物,其中該樹脂以及該 壓克力酸係於-加熱溫度下或—照光條件下,藉由一自 由基起始劑輔助而進行共聚合。 8、 如申明專利範圍第7項所述之複合物,其中該力口熱溫度係 120oC。 、如申吻專利範圍第7項所述之複合物,其中該自由基起始 劑係過氧化笨曱醯。 ❹ 10、一種奈米金屬體與高分子之複合物,包含: 一膠體; 一共聚體,與該膠體共聚合,該共聚體包含複數個共 聚體單體’並且該複數個共聚體單體分別具有一酸 根;以及 複數個奈米金屬體’分別連接於該複數個酸根而散佈 _ 於該膠體中。 u、如申請專利範圍第10項所述之複合物,其中該膠體係一 樹脂。 1 ^ 、如申請專利範圍第11項所述之複合物,其中該樹脂包含 脂肪族氨基曱酸酯乙烯酸酯以及2(2-乙氧基·乙氧基)乙基 内歸酸酯所組成之一聚合物。 13 、如申請專利範圍第10項所述之複合物,其中該共聚體係 15 201020282 一壓克力酸。 14、 如申請專利範圍第1〇項所述之複合物,進一牛勹人 劑用以溶解該膠體、該共聚體以及該奈米金屬體L 3 一容 15、 如申請專利範圍第㈣所述之複合物,其中該六 晴。 Λ /合齊丨J係乙 16、 如申請專簡㈣卿所述之複合物, 該並赘鲈尨从 /、甲該膝'體以及 "鬈體係於一加熱溫度或一照光條件下,萨由一 ❹ 基起始劑輔助而進行共聚合。 自由 17、 如申請專利範圍第16項所述之複合物, 係 120〇C。 其中該加熱溫度 、=申請專概㈣16項所狀複合物,其巾該自由基起 始劑係過氧化笨曱醯。 19、2請專利範__所述之複合物,其中該奈米金屬 體係由金屬之一奈米型態所構成。 2〇、,申請專利範圍第19項所述之複合物,其中該奈米型態 糸包含奈米銀顆粒以及奈米銀線中之至少一。 16201020282 * · VII. Patent application scope: 1. A composite of nano silver wire and polymer, comprising: a resin; a dispersant 'copolymerizable with the resin, the dispersant comprising a plurality of dispersant monomers, And the plurality of dispersant monomers respectively have at least one chelating functional group; and a plurality of nano silver wires are respectively attached to the plurality of chelating functional groups and dispersed in the resin. 2. The composite according to claim 1, wherein the resin comprises an aliphatic amino phthalate vinyl ester and 2 (2-ethoxy-ethoxy) ethyl propyl acrylate. One of the polymers. 3. The composite of claim 1, wherein the dispersing agent comprises acrylic acid. 4. The composite of claim 1, wherein the chelating functional group comprises at least one of the group consisting of carboxylate, phosphate, hydrogen sulfide, and sulfate. 5. The composite of claim 1 further comprising a solvent for dissolving the colloid, the acrylic acid, and the plurality of nano silver wires. 6. The composite according to claim 5, wherein the solvent is acetonitrile 0 14 201020282, 7. The composite according to the ninth aspect of the invention, wherein the resin and the acrylic acid system Copolymerization is carried out with the aid of a radical initiator at -heating temperature or under light conditions. 8. The composite of claim 7, wherein the heat temperature is 120oC. The composite of claim 7, wherein the free radical initiator is albino. ❹ 10. A composite of a nano metal body and a polymer, comprising: a colloid; an interpolymer, copolymerized with the colloid, the interpolymer comprising a plurality of interpolymer monomers and the plurality of interpolymer monomers respectively Having a monoacid; and a plurality of nanometal bodies 'attached to the plurality of acid radicals respectively and dispersed in the colloid. U. The composite of claim 10, wherein the gum system is a resin. The composite according to claim 11, wherein the resin comprises an aliphatic amino phthalate vinyl ester and a 2 (2-ethoxyethoxy) ethyl internal acid ester. One of the polymers. 13. The composite of claim 10, wherein the copolymer system 15 201020282 is an acrylic acid. 14. The composite of claim 1, wherein the burdock agent is used to dissolve the colloid, the interpolymer, and the nanometal body L3, as described in claim 4 (4). The complex, which is the six clear. Λ / 合齐丨JJ B16, as applied for the complex described by the syllabus (4), the 赘鲈尨 赘鲈尨 from /, A the knee 'body and & 鬈 鬈 system under a heating temperature or a light, Co-polymerization is carried out with the aid of a ruthenium-based starter. Freedom 17. The compound described in claim 16 is 120 〇C. Among them, the heating temperature, = the application of the general (four) 16-like composite, the towel of the free radical initiator is albino. 19, 2 The compound described in the patent specification, wherein the nano metal system is composed of one nano type of metal. The composite of claim 19, wherein the nanotype 糸 comprises at least one of nano silver particles and nano silver wires. 16
TW98119262A 2008-11-25 2008-11-25 Compound of silver nanowire with polymer and compound of metal nanostructure with polymer TWI389954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98119262A TWI389954B (en) 2008-11-25 2008-11-25 Compound of silver nanowire with polymer and compound of metal nanostructure with polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98119262A TWI389954B (en) 2008-11-25 2008-11-25 Compound of silver nanowire with polymer and compound of metal nanostructure with polymer

Publications (2)

Publication Number Publication Date
TW201020282A true TW201020282A (en) 2010-06-01
TWI389954B TWI389954B (en) 2013-03-21

Family

ID=44832132

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98119262A TWI389954B (en) 2008-11-25 2008-11-25 Compound of silver nanowire with polymer and compound of metal nanostructure with polymer

Country Status (1)

Country Link
TW (1) TWI389954B (en)

Also Published As

Publication number Publication date
TWI389954B (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Wen et al. Synthesis of polypyrrole nanoparticles and their applications in electrically conductive adhesives for improving conductivity
CN1127567A (en) Conductive microparticles and pressure-sensitive adhesive tapes made therefrom
KR102647120B1 (en) Conductive particles, conductive materials and connection structures
CN110603607B (en) Copper-based conductive paste and preparation method thereof
KR20130134122A (en) Electrical conductive adhesives with hybrid fillers and fabrication method therof
CN103299484B (en) Anisotropic conductive film
CN110000372A (en) Electroconductive particle, conductive material and connection structural bodies
JP5459759B2 (en) Compound of silver nanowire having polymer and compound of metal nanostructure having polymer.
TWI780137B (en) Conductive particle, conductive material, and connecting structure
TW201719679A (en) Conductive particles, conductive material, and connection structure
JP7412100B2 (en) Conductive particles with insulating particles, conductive materials and connected structures
TW201020282A (en) Compound of silver nanowire with polymer and compound of metal nanostructure with polymer
US8029700B2 (en) Compound of silver nanowire with polymer and compound of metal nanostructure with polymer
WO2021246523A1 (en) Conductive parti cles, conductive material, and connection structure
JP6637391B2 (en) Conductive particles, conductive material and connection structure
TW201717217A (en) Connection structure production method, conductive particles, conductive film, and connection structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
TW201903786A (en) Resin composition and conduction inspection member
WO2023136204A1 (en) Substrate particles, conductive particles, conductive material, and connection structure
JP7235611B2 (en) Conductive materials and connecting structures
TWI822753B (en) Conductive particles with insulating particles, manufacturing method of conductive particles with insulating particles, conductive material and connected structure
TWI768068B (en) Electroconductive particle, method for producing electroconductive particle, conductive material, and connection structure
WO2019107572A1 (en) Electrically-conductive composition and cured product thereof, member for conduction inspection device, and conduction inspection device
JP2014032921A (en) Electroconductive fine particle
JPWO2019194134A1 (en) Conductive particles with insulating particles, methods for producing conductive particles with insulating particles, conductive materials and connecting structures