TW201018955A - Optical imaging system, exposure device and device manufacturing method - Google Patents

Optical imaging system, exposure device and device manufacturing method Download PDF

Info

Publication number
TW201018955A
TW201018955A TW098133825A TW98133825A TW201018955A TW 201018955 A TW201018955 A TW 201018955A TW 098133825 A TW098133825 A TW 098133825A TW 98133825 A TW98133825 A TW 98133825A TW 201018955 A TW201018955 A TW 201018955A
Authority
TW
Taiwan
Prior art keywords
mirror
optical system
imaging optical
light
imaging
Prior art date
Application number
TW098133825A
Other languages
Chinese (zh)
Inventor
Hideki Komatsuda
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW201018955A publication Critical patent/TW201018955A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0657Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An optical imaging system with high performance is a reflective optical system suitable for an exposure device using EUV light, so as to ensure a relatively large axial separation between a first reflective mirror and an object surface and to compensate well an aberration. An optical imaging system (6) that forms the image of a first surface (4) onto a second surface (7) includes, according to a light incident sequence, a first reflective mirror (M1), a second reflective mirror (M2), a third reflective mirror (M3), a fourth reflective mirror (M4), a fifth reflective mirror (M5), and a sixth reflective mirror (M6). The first reflective mirror (M1) is arranged closer to a second surface than the fourth reflective mirror (M4), and the third reflective mirror (M3) is arranged closer to the second surface than the second reflective mirror (M2). The second reflective mirror and the third reflective mirror are arranged between a first specified surface and the fourth specified surface. The first specified surface specifies a reflective surface of the first reflective mirror, and the fourth specified surface specifies a reflective surface of the fourth reflective mirror. The incident pupils of the optical imaging system clamp the first surface and are located at the opposite side of the optical imaging system.

Description

201018955 32513pif.doc 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種成像光學系統、曝光裝置' 以及元 件製造方法。更詳細而言,本發明是有關於一種適合於如 下曝光裝置的成像光學系統,該曝光裝置使用例如極紫外 線(Extreme Ultraviolet,EUV)光藉由鏡面投影 (mirror projection)方式而將光罩上的電路圖案轉印至感光性基板 上。 【先前技術】 先前’作為半導體元件等的製造中所用的曝光裝置, 使用具有例如5〜40 nm左右波長的EUV (Extreme201018955 32513pif.doc VI. Description of the Invention: [Technical Field] The present invention relates to an imaging optical system, an exposure apparatus, and a method of manufacturing the same. More particularly, the present invention relates to an imaging optical system suitable for an exposure apparatus that uses, for example, Extreme Ultraviolet (EUV) light to mirror the reticle by means of mirror projection. The circuit pattern is transferred onto the photosensitive substrate. [Prior Art] Previously, as an exposure apparatus used in the manufacture of a semiconductor element or the like, EUV having a wavelength of, for example, about 5 to 40 nm was used (Extreme)

Ultraviolet:極紫外線)光的曝光裝置備受矚目。當使用 EUV光作為曝光光時,由於不存在可使用的透射光學材料 以及折射光學材料,故而使用反射型光罩,並且使用反射 光學系統(僅由反射構件構成的光學系統)作為投影光學 糸統。 先前’作為使用EUV光的曝光裝置的投影光學系統 中可適用的成像光學系統,提出有夾著物體面且在光學系 統的相反侧具有入射光瞳的反射光學系統(參照專利文獻 1以及專利文獻2)。以下,本說明書中’將「失著物體面 且在光學系統的相反側具有入射光瞳的成像光學系統」稱 為「逆光瞳光學系統」。 [先行技術文獻] [專利文獻] 201018955 32513pif.doc [專利文獻]] 曰本專利特開2004—170869號公報 [專利文獻2] 國際專利公開第2006/119977號小冊子Ultraviolet: Ultra-violet light exposure devices are attracting attention. When EUV light is used as the exposure light, since there is no transmissive optical material and a refractive optical material that can be used, a reflective reticle is used, and a reflective optical system (an optical system composed only of a reflective member) is used as a projection optical system. . A reflective optical system that has an entrance pupil and has an entrance pupil on the opposite side of the optical system has been proposed as an imaging optical system that is applicable to a projection optical system using an exposure device for EUV light (refer to Patent Document 1 and Patent Literature). 2). Hereinafter, in the present specification, an "imaging optical system having an entrance pupil and having an entrance pupil on the opposite side of the optical system" is referred to as a "backlit optical system". [Prior Art Document] [Patent Document] 201018955 32513pif.doc [Patent Document] Japanese Patent Laid-Open Publication No. 2004-170869 [Patent Document 2] International Patent Publication No. 2006/119977

專利文獻1所揭示的成像光學系統中,像差得到良好 修正。但S ’該成像光學系統中,未能確保來自物體面的 光首先所人射的反射鏡(町,稱為「第】反射鏡」)與物 體面之轴上_充分大,故而難以避免自照明光學系統入 射至配置於照明光學系統與反射型光罩之間的偏轉鏡 (deflectingmi_)的光束與成像絲系統的第1反射鏡 產生干涉。 專利文獻2所揭示的成像光學系統巾,確保了第1反 射鏡與物體面的軸上間隔相對較A,故而容易避免自照明 =學系統人射至偏轉鏡的光束與成像光料統的第i反射 2生干涉。但是,該成像光衫統巾,像差未能得到良 【發明内容】 ^發明是#於上述課題開發而成,其目的在於提供一 的成像光學系統’其為適用於使用例如EUV光 的二上ίίΓ反射光學系統,可確保第1反射鏡與物體面 較大且像差得到良好修正。而且,本發明 的本發明的成像光學系統適用於曝光裝置 而使用EUV光作為例如曝光光以確保 的Μ象力(職>lvingpower),以高解析度進行投影曝 201018955 32513pif.doc 光。 為了解決上述課題,本發明第1形態提供一種成像光 學系統,其將第1面的像形成於第2面上, 其特徵在於·按知、來自上述第1面的光的入射順序, 包括第1反射鏡、第2反射鏡、第3反射鏡、第射 第5反射鏡、以及第6反射鏡, 弟反祕 上述第1反射鏡較上述第4反射鏡更靠近上述第2面 側而配置, 上述第3反射鏡較上述第2反射鏡更靠近上述第2面 侧而配置, 上述苐2反射鏡以及上述苐3反射鏡,配置於規定上 述第1反射鏡的反射面的第1規定面與規定上述第4反射 鏡的反射面的第4規定面之間, 上述成像光學糸統的入射光瞳夾著上述第1面且位於 上述成像光學系統的相反侧。 本發明第2形態提供一種成像光學系統,其將第1面 的像形成於第2面上, 其特徵在於:按照來自上述第1面的光的入射順序, 包括第1反射鏡、第2反射鏡、第3反射鏡、第4反射鏡、 第5反射鏡、以及第6反射鏡, —自上述第1面沿著上述成像光學系統的光轴朝向上述 第2面,存在有規定上述第4反射鏡的反射面的第4規定 面與上述光軸的交點、規定上述第2反射鏡的反射面的第 2規定面與上述光軸的交點、規定上述第3反射鏡的反射 201018955 32513pif.doc 面的第3規定面與上述光軸的交點、以及規定上述第】反 射鏡的反射面的第1規定面與上述光軸的交點, 上述成像光學系統的入射光瞳夹著上述第1面且位於 上述成像光學糸統的相反側。 本發明第3形態提供一種曝光裝置,其特徵在於包 括:照明系統,用於藉由來自光源的光來對設置於上述第 1面的規定的圖案進行照明;以及第i形態或第2形態的 ® 成像光學系統’用於將上述規定的圖案投影至設置於上述 第2面的感光性基板。 本發明第4形態中提供一種元件製造方法,其特徵在 於包括: 曝光步驟’使用第3形態的曝光裝置,將上述規定的 圈案曝光於上述感光性基板; 顯影步驟’使轉印有上述規定的圖案的上述感光性基 _顯影’將形狀與上述規定的圖案相對應的光罩層形成於 Q 上述感光性基板的表面;以及 加工步驟’經由上述光罩層來對上述感光性基板的表 雨進行加工。 [發明的效果] ^本發明的實施形態中,於作為使用EUV光的逆光瞳 ^學系統的成像光學系統中,藉由第1反射鏡、第2反射 =第3反射鏡、以及第4反射鏡而構成Offner型光學系 Μ、並藉由第5反射鏡以及第6反射鏡而構成Schwarzshild <光學系統。而且’關於第1至第4反射鏡,採用倍率 201018955 32513pif.doc (power)配置對稱性良好的 實現-種高性_成像光學^n本實施形態可 光的曝絲置岐射光料冬讀用· 的軸上間隔相對較大且像差得到良好^正反射鏡與物體面 ❹ 時,可將且形^的成像光學系統適用於曝光農置 光。此時,可使應予以轉印的光罩皮的長的黯光用作曝光 J對於成像光學系統進行相、: = = =掃描型曝光裝置,‘ 【實施方式】 是概it附Γ式來對本發日㈣實施雜騎說明。圖1 實施形態的曝光裝置的構成的圖。而 ^不形成於晶圓上的圓弧狀的有效成像區域盥 ==位置關係的圖。於圖Η,沿著成像光學系統6的 印面)X方向亦即作為感光性基板的晶圓7的曝光面(轉 )的法線方向設定2軸,於晶圓7的曝光面内沿著與 iis、氏面平行的方向設定Υ軸,於晶圓7的曝光面内沿著 與圖1紙面垂直的方向設定χ轴。 以供21的曝光裝置包括例如雷射電漿X射線源,作為用 '、給曝光光的光源1。作為光源1,可使用放電電漿先源 8 201018955 32513pif.doc 或其他X射線源。自朵 的波長選擇濾波器(未:_射出的光經由根據需要而配置 波長選職波器具統江。 使規定波長(例如13·5_)的EUV光選擇性 蔽其他波長光的透射。 ^㈣透過’而遮In the imaging optical system disclosed in Patent Document 1, the aberration is well corrected. However, in the imaging optical system of S', it is difficult to ensure that the mirror (the "first" mirror) which is the first person to emit light from the object surface is sufficiently large on the axis of the object surface. The illumination optical system is incident on a deflection beam disposed between the illumination optical system and the reflective reticle to interfere with the first mirror of the imaging ray system. The imaging optical system towel disclosed in Patent Document 2 ensures that the axial distance between the first mirror and the object plane is relatively A, so that it is easy to avoid the light beam and the imaging light source from the illumination system. i reflection 2 interference. However, the image-forming optical towel has not been well received, and the invention has been developed. The object of the invention is to provide an imaging optical system which is suitable for use in, for example, EUV light. The ίίΓ reflection optical system ensures that the first mirror and the object surface are large and the aberrations are well corrected. Moreover, the imaging optical system of the present invention of the present invention is suitable for use in an exposure apparatus and uses EUV light as, for example, exposure light to ensure the image power (function >lvingpower), and projection exposure is performed at a high resolution 201018955 32513pif.doc light. In order to solve the above problems, a first aspect of the present invention provides an imaging optical system in which an image of a first surface is formed on a second surface, wherein the order of incidence of light from the first surface is included, including a mirror, a second mirror, a third mirror, a fifth reflecting mirror, and a sixth reflecting mirror, wherein the first reflecting mirror is disposed closer to the second surface than the fourth reflecting mirror The third mirror is disposed closer to the second surface than the second mirror, and the 苐2 mirror and the 苐3 mirror are disposed on a first predetermined surface defining a reflection surface of the first mirror. The entrance pupil of the imaging optical system sandwiches the first surface and is located on the opposite side of the imaging optical system between the fourth predetermined surface defining the reflection surface of the fourth mirror. According to a second aspect of the present invention, there is provided an imaging optical system comprising: an image on a first surface formed on a second surface, wherein the first mirror and the second reflection are included in accordance with an incident order of light from the first surface a mirror, a third mirror, a fourth mirror, a fifth mirror, and a sixth mirror, wherein the first surface is oriented along the optical axis of the imaging optical system toward the second surface The intersection of the fourth predetermined surface of the reflecting surface of the mirror and the optical axis, the intersection of the second predetermined surface defining the reflecting surface of the second mirror and the optical axis, and the reflection of the third mirror are defined 201018955 32513pif.doc An intersection of the third predetermined surface of the surface with the optical axis and an intersection of the first predetermined surface defining the reflection surface of the first mirror and the optical axis, wherein the entrance pupil of the imaging optical system sandwiches the first surface Located on the opposite side of the imaging optics described above. A third aspect of the present invention provides an exposure apparatus including: an illumination system for illuminating a predetermined pattern provided on the first surface by light from a light source; and an i-th or second aspect The ® imaging optical system 'is used to project the predetermined pattern onto the photosensitive substrate provided on the second surface. According to a fourth aspect of the present invention, there is provided a method of manufacturing a device, comprising: exposing a step of exposing the predetermined pattern to the photosensitive substrate using an exposure apparatus according to a third aspect; and developing the step of transferring the predetermined portion The photosensitive layer-developing pattern of the pattern is formed on the surface of the photosensitive substrate with Q corresponding to the predetermined pattern; and the processing step 'the table of the photosensitive substrate via the mask layer Rain is processed. [Effects of the Invention] In the embodiment of the present invention, in the imaging optical system which is a backlight system using EUV light, the first mirror, the second reflection = the third mirror, and the fourth reflection are used. The mirror forms an Offner-type optical system, and the Schwarzshild optical system is constituted by the fifth mirror and the sixth mirror. And 'About the 1st to 4th mirrors, using the magnification of 201018955 32513pif.doc (power) to achieve a good symmetry implementation - high intensity _ imaging optics ^ n this embodiment of the light can be used to expose the illuminating material for winter reading · The on-axis spacing is relatively large and the aberration is good. When the positive mirror and the object surface are ,, the imaging optical system can be applied to expose the agricultural light. At this time, a long calender of the mask skin to be transferred can be used as the exposure J for the imaging optical system, and: = = = scanning type exposure apparatus, 'Embodiment】 The implementation of the hybrid ride on this date (four). Fig. 1 is a view showing the configuration of an exposure apparatus according to an embodiment. And ^ is an image of an arc-shaped effective imaging area that is not formed on the wafer 盥 == positional relationship. In the figure, the X direction of the printing surface of the imaging optical system 6 is set to the normal direction of the exposure surface (rotation) of the wafer 7 as the photosensitive substrate, and is set to 2 axes in the exposure surface of the wafer 7. The axis is set in the direction parallel to the iis, and the x-axis is set in the direction perpendicular to the plane of the paper of FIG. 1 in the exposure surface of the wafer 7. The exposure apparatus for 21 includes, for example, a laser plasma X-ray source as the light source 1 for giving exposure light. As the light source 1, a discharge plasma source 8 201018955 32513pif.doc or other X-ray source can be used. The self-selecting wavelength selection filter (not: _ emitted light is configured by the wavelength-selective wave device as required. The EUV light of a predetermined wavelength (for example, 13·5_) is selectively shielded from the transmission of other wavelengths of light. ^(4) Covered by '

通過波長選擇錢器的£UV ❹ integrator )。藉由縱横且 (optical 凹面鏡要素而分別構;複眼鏡; ==構成,,可參照例如美= ^此’於第2複眼鏡片处的反射 =娜面光源。該實質性面光源形成3;!: 稷眼鏡片2aM2b的朗光 =對 照明光學线IL的射^“ ^ W瞳位置。 的反射面罢、里位置(亦即第2複眼鏡片2b 學夸统(η與系’f構成為逆光瞳光學系統的成像光 子糸,、先u又衫先學糸統)6的入射光瞳的位置一致。 來自貫質性面光源的光、亦即自照明光學系統正 射出的光藉由偏魏3騎之後,介隔 且 配=反射型光罩4的視場光闌(visualfielddiaph^^ (未圖不)的圓弧狀的孔徑部(透光部),而於光罩4上形 成圓弧狀的照域。如此,光源丨以及照明光學系統^ (2a、2b)構成用以對設置有規定的圖案的光罩4進行柯 勒照明(Kohler illumination )的照明系統。 201018955 32513pif.doc 光罩4藉由可沿Y方向移動的光罩載物台5而保持 著,以使其圖案面沿著XY平面延伸。光罩載物台5之移 動藉由雀略圖示的雷射干涉儀(〗aser interfer〇meter)來測 量。於光罩4上形成有例如相對γ軸對稱的圓弧狀照明區 域。來自受到照明的光罩4的光經由成像光學系統6,而 於作為感光性基板的晶圓7上形成光罩4的圖案像。 亦即,如圖2所示,於晶圓7上形成有相對γ轴對稱 的圓弧狀的有效成像區域ER。參照圖2,於以光軸人乂為 中心的具有半徑YG的圓形區域(成像圈(imagedrde)) ❿ IF内,以與該成像圈IF相接的方式,形成有χ方向的長 度為LX且γ方向的長度為LY的圓弧狀有效成像區域 ER。圓弧狀有效成像區域ER為以光軸Αχ為中心的帶狀 區域的一部分,長度LY為沿著將圓弧狀有效成像區域£]1 的中心與光軸連接的方向的有效成像區域ER的寬度尺寸。 阳圓7藉由可沿著X方向以及Y方向二維移動的晶 圓裁物台8來保持著,以使其曝光面沿著χγ平面延伸曰。曰 晶圓载物台8之移動與光罩載物台5相同,藉由省略圖八 的毎射干涉儀來測量。如此,一方面使光罩載物台5以^ 晶圓载物台8沿著Υ方向移動,亦即使光罩4以及晶圓7 著Υ方向而對成像光學系統6進行相對移動,一方面進 ,掃描(scanning)曝光’藉此將光罩4的圖案轉印至曰 圓7的1個曝光區域中。 曰曰 此時,當成像光學系統6的投影倍率(轉印倍率)為 1/4時’將晶圓載物台8的移動速度設定為光罩載物台'’'5 10 201018955 32513pif.doc 的移動速度的1/4,以進行同步掃描。 晶圓載物台8沿著X方向以及γ方向進,且’藉由一面使 覆進行掃描曝光,來將光罩4的圖家、&行一維移動一面反 各曝光區域中。 —轉印至晶圓7的 如上所述,當將作為逆光瞳光學系 、Select the £UV ❹ integrator of the money by wavelength. By vertical and horizontal (optical concave mirror elements separately constructed; multiple glasses; == composition, can refer to, for example, the beauty = ^ this 'reflection at the second complex ophthalmic lens = Na surface light source. The substantial surface light source forms 3; : 朗 稷 稷 2 = = = = = = = = = = = = = = = = = = 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明The position of the entrance pupil of the optical system is the same as that of the entrance pupil. The light from the permeabilized surface source, that is, the light emitted from the illumination optical system, is biased by the Wei (3) After the ride, the arc-shaped aperture portion (light-transmitting portion) of the visual field diaphragm (not shown) is interposed and matched with the field of view of the reflective mask 4, and an arc is formed on the mask 4. Thus, the light source 丨 and the illumination optical system ^ (2a, 2b) constitute an illumination system for performing Kohler illumination on the reticle 4 provided with a predetermined pattern. 201018955 32513pif.doc 4 is held by the reticle stage 5 movable in the Y direction to make its pattern edge The XY plane extends. The movement of the reticle stage 5 is measured by a laser interferometer ("aser interfer 〇 meter"). On the reticle 4, for example, an arc-shaped illumination that is symmetrical with respect to the γ axis is formed. The light from the illuminating reticle 4 passes through the imaging optical system 6 to form a pattern image of the reticle 4 on the wafer 7 as a photosensitive substrate. That is, as shown in FIG. 2, on the wafer 7. An effective imaging region ER having an arc shape symmetrical with respect to the γ axis is formed. Referring to FIG. 2, a circular region (imagedrde) ❿ IF having a radius YG centered on the optical axis ape, and The imaging circle IF is connected to form an arc-shaped effective imaging region ER having a length LX in the x-direction and a length γ in the γ direction. The arc-shaped effective imaging region ER is a band-shaped region centered on the optical axis Αχ In part, the length LY is the width dimension of the effective imaging area ER along the direction connecting the center of the arc-shaped effective imaging area £]1 with the optical axis. The male circle 7 is two-dimensionally movable along the X direction and the Y direction. The moving wafer stage 8 is held so that its exposure surface is along the χ The plane extension 曰. The movement of the wafer stage 8 is the same as that of the reticle stage 5, and is measured by omitting the sputum interferometer of Fig. 8. Thus, on the one hand, the reticle stage 5 is made of wafer The stage 8 is moved in the Υ direction, and the imaging optical system 6 is relatively moved even if the reticle 4 and the wafer 7 are in the direction of the yoke, and the scanning exposure is performed on the one hand, thereby patterning the reticle 4 Transfer to one exposure area of the circle 7. At this time, when the projection magnification (transfer magnification) of the imaging optical system 6 is 1/4, 'the moving speed of the wafer stage 8 is set to a mask. The stage''5 10 201018955 32513pif.doc is 1/4 of the moving speed for simultaneous scanning. The wafer stage 8 advances in the X direction and the γ direction, and by scanning and exposing the surface of the wafer cover 4, the image of the mask 4 and the line are moved one-dimensionally in the respective exposure areas. - transfer to wafer 7 as described above, when used as a backlighting optical system,

6適用於使用EUV光的曝光裝置時,則、产的成像光學系統 照明光學系統IL與反射型光罩4之間的^用如下構成:於 3 ’並藉由該偏轉鏡3而將來自照明以二路中配置偏轉鏡 而導向光罩4。其原因在於,若不插入:二 射型光罩4的作用而使成像光學系絲 兄J則《因反 像光學系統6自身的光路中,從而▲ 位於成 的入射光瞳的位置與照明光學系統IL的射出光二^置6 一致0 作為形成偏轉鏡3的反射_代纽㈣(素材), 眾所周知有Ru (釕)。圖3表示藉叫形成的反射面的反 射特性。於圖3中’縱軸表示相對於波長μ⑽的歷 光的反射率(%),橫軸表示光對反射面的人射角(度)。 而且’於圖3中’參照符號31表示s偏光相對於反射面的 光反射特性’參射植32絲p料蝴反射面的光反射 特性,參照符號33表示無偏光的光反射特性。 參照圖3可知,為了於偏轉鏡3中獲得充分的反射 率,而將曰光由照明光學系、统IL至偏轉鏡3的反射面的 入射角《又疋得較大。然而,當使光由照明光學系統IL至偏 轉鏡3的反射面的入射角較大時,只要來自物體面的光(來 11 201018955 32513pif.doc 自光罩4的圖案面的反射光)最初所入射的第】反射鏡 Ml與物體面的軸上間隔未確保充分大,則將難以避免自 照明光學系統IL入射至偏轉鏡3的光束與第丨反射鏡m 產生干涉。換s之,本實施形態的成像光學系統6中,重 要的是,像差得到良好修正,並且確保光罩4與第丨反射 鏡Ml的軸上間隔充分大。 原本專利文獻1以及專利文獻2所揭示的成像光學系 統中,按照來自物體面的光的入射順序,前段的4片反射 鏡構成Offner型光學系統,後段的2片反射鏡構成 © Schwarzshild型光學系統。一般而言’ 〇ffner型光學系統 可確保某一程度大的視場,但只要不用於以等倍或接近等 倍的倍率來成像,則容易產生較大的像差。另一方面, Schwarzshild型光學系統中,可用於以等倍以外的倍率來 成像而不會發生較大像差,但是難以確保較大的視場。 因此,包含如上所述的6片反射鏡的逆光瞳光學系統 中’藉由包含後段的2片反射鏡的Schwarzshild型光學系 統而確保所需的倍率,且藉由包含前段的4片反射鏡的 ❹ Offner型光學系統而形成物體的大致等倍的中間成像。此 時’先前的逆光瞳光學系統中,藉由後段的Schwarzshild 型光學糸統而勉強擴大視場,故而藉由前段的〇ffner型光 學糸統來修正後段的Schwarzshild型光學系統中所產生的 像差(主要為場曲(f^eld curvature )、像散現象(astigmatism) 等)。6 When it is applied to an exposure apparatus using EUV light, the image between the imaging optical system illumination optical system IL and the reflective reticle 4 is configured as follows: 3' and by the deflection mirror 3 The reticle 4 is guided to the reticle in the second way. The reason is that, if it is not inserted: the action of the two-beam type photomask 4, the imaging optical system brother J is "in the optical path of the optical system 6 itself, and thus the position of the entrance pupil and the illumination optics The emission light of the system IL is set to be equal to 0. As the reflection _ generation (four) (material) forming the deflection mirror 3, Ru (钌) is known. Fig. 3 shows the reflection characteristics of the reflecting surface formed by the borrowing. In Fig. 3, the vertical axis represents the reflectance (%) of the calendar with respect to the wavelength μ (10), and the horizontal axis represents the angle (degree) of the light incident on the reflecting surface. Further, in Fig. 3, reference numeral 31 denotes a light reflection characteristic of the light reflection characteristic of the s polarized light with respect to the reflection surface, and reference numeral 33 denotes a light reflection characteristic of the unpolarized light. Referring to Fig. 3, in order to obtain a sufficient reflectance in the deflection mirror 3, the incident angle of the illumination from the illumination optical system to the reflection surface of the deflection mirror 3 is made larger. However, when the incident angle of the light from the illumination optical system IL to the reflection surface of the deflection mirror 3 is made large, as long as the light from the object surface (the light reflected from the pattern surface of the reticle 4) is originally When the axial distance between the incident mirror M1 and the object plane is not sufficiently ensured, it is difficult to prevent the light beam incident on the deflection mirror 3 from the illumination optical system IL from interfering with the 丨 mirror m. In the imaging optical system 6 of the present embodiment, it is important that the aberration is well corrected, and that the axial distance between the mask 4 and the second mirror M1 is sufficiently large. In the imaging optical system disclosed in Patent Document 1 and Patent Document 2, in the order of incidence of light from the object surface, the four mirrors in the front stage constitute an Offner type optical system, and the two mirrors in the latter stage constitute an Schwarzshild type optical system. . In general, the 〇ffner type optical system can ensure a certain degree of field of view, but as long as it is not used for imaging at a magnification of equal magnification or nearly equal magnification, large aberrations are likely to occur. On the other hand, in the Schwarzshild type optical system, it is possible to image at a magnification other than the equal magnification without causing a large aberration, but it is difficult to secure a large field of view. Therefore, in the backlit optical system including the six mirrors as described above, the required magnification is ensured by the Schwarzshild type optical system including the two mirrors of the latter stage, and by including the four mirrors of the front stage ❹ Offner-type optical system to form an approximately equal-fold intermediate image of the object. At this time, in the previous backlight optical system, the field of view was barely enlarged by the Schwarzshild type optical system in the latter stage. Therefore, the image generated in the Schwarzshild type optical system of the latter stage was corrected by the 〇ffner type optical system in the front stage. Poor (mainly field curvature (f^eld curvature), astigmatism, etc.).

Offner型光學系統因其基本性質,而在用於等倍以外 12 201018955 32513pif.doc 的成像時容易產生較大的像差。因此,為了抑制像差的產 生,較理想的是前段的4片反射鏡採用對稱的倍率配置。 專利文獻2中揭示的成像光學系統中,構成〇他灯型光學 纟統的前段4片反射鏡的倍率配置的對稱性被破壞,而該 倍率配置的對稱性破壞被視為造成無法完全修正像差的^ 因。 、 本實施形態的成像光學系統6中,前段的4個反射鏡 ❹ Μ卜M2、M3及M4構成0ffner型光學系統,後段的2個 反射鏡M5以及]VI6構成Schwarzshild型光學系統。而且, 藉由採用刖又的4個反射鏡Ml〜M4為倍率配置對稱性良 好的構成,而確保光罩4與第1反射鏡M1的軸上間隔^ 分大,且像差得到良好修正。以下,參照第丨實施例以及 第2實施例,對於成像光學系統6的具體構成進行說明。 如圖4以及圖5所示,第1實施例以及第2實施例的 成像光學系統6包括:第〗反射光學系統G1,用以沿著直 線狀延伸的單一光軸AX,於與光罩4的圖案面成光學性 ® 共軛的位置上形成圖案的中間成像;以及第2反射光學系 統G2,用以將光罩4的圖案的最終縮小像(中間成像的像) 形成於晶圓7上。亦即,將與光罩4的圖案面成光學性共 軛之面形成於第1反射光學系統G1與第2反射光學系統 G2之間的光路中。 弟1反射光學系統G1按照光的入射順序,由具有凹 面狀反射面的第1反射鏡Ml、具有凸面狀反射面的第2 反射鏡M2、具有凸面狀反射面的第3反射鏡m3、具有凹 13 201018955 32513pif.doc · 面狀反射面的第4反射鏡M4所構成。第2反射光學系統 G2按照光的入射順序,由具有凸面狀反射面的第5反射鏡 M5、具有凹面狀反射面的第6反射鏡M6所構成。於由第 2反射鏡M2至第3反射鏡M3的光路中,設置著孔徑光闌 AS。於成像光學系統6的光路中除了該孔徑光闌AS以外 未配置孔徑光闌’成像光學系統6的數值孔徑僅由孔徑光 闌AS對光束的限制來決定。 各實施例中’光罩4的圖案面(第1面)中來自偏離 光軸AX的區域(照明區域)的光,由第1反射鏡mi的 凹面狀反射面、第2反射鏡M2的凸面狀反射面、第3反 射鏡M3的凸面狀反射面、以及第4反射鏡M4的凹面狀 反射面依次反射之後,形成光罩圖案的中間成像。來自經 由第1反射光學系統G1而形成的中間成像的光,由第5 反射鏡M5的凸面狀反射面以及第6反射鏡M6的凹面狀 反射面依次反射之後,於晶圓7的表面(第2面)中偏離 光軸AX的區域(有效成像區域ER)形成光罩圖案的縮小 像。 於各實施例中’所有反射鏡Ml〜]\46的反射面由相對 於光軸AX為旋轉對稱的非球面狀(曲面狀)規定面S1〜 S6來規定。而且,第】反射鏡M1較第4反射鏡M4更靠 近晶圓側而配置,第3反射鏡M3較第2反射鏡M2更靠 近晶圓側而配置,第2反射鏡M2以及第3反射鏡M3配 置於規定第1反射鏡Ml的反射面的第1規定面S1與規定 第4反射鏡M4的反射面的第4規定面S4之間。 201018955 32513pif.doc 就其它表現而3 ’自光罩4沿者成像光學系統6的光 轴AX朝向晶圓7 ’存在有規疋弟4反射鏡的反射面 的第4規定面S1與光軸AX的交點、規定第2反射鏡M2 的反射面的第2規疋面S2與光轴ΑΧ的交點、規定第3 反射鏡M3的反射面的第3規定面S3與光麵Αχ的交點、 以及規定第1反射鏡Ml的反射面的第〗規定面S1與光轴 AX的交點。而且’第5反射鏡M5較第6反射鏡M6更靠 近晶圓側而配置。 各實施例的成像光學系統6是夾著光罩4且於與成像 光學系統6的相反侧相距規定距離的位置上具有入射光瞳 的逆光瞳光學系統。而且,各實施例的成像光學系統6為 相對於晶圓側(像侧)為遠心的光學系統。換言之,於各 實施例中,到達成像光學系統6的像面上各位^的主光線 相對於像面大致垂直。藉由該構成,而於成像光學系統6 的焦點深度(depth of focus)内即便晶圓存在凹凸亦可進 行良好之成像。 © [第1實施例] 如下表(1)中列出第丨實施例的成像光學系統的參 數值:於表(1)的主要參數欄中,又表示曝光光的波長, 冷表不成像倍率,ΝΑ表示像侧(晶圓側)數值孔徑,Υ0 表示晶圓7上的成像圈IF的半徑(最大像高),LX表示有 效成像區域ER之沿著χ方向的尺寸,LY表示有效成像區 域ER之沿著γ方向的尺寸(圓弧狀有效成像區域的 寬度尺寸)。 15 201018955 32513pif.doc 表(Ο的光線追蹤設定值的欄以及透鏡資料欄根據 ORA (Optical Research Associates)公司的光學設計軟體 即「Code V」格式來記述。於表⑴的光線追蹤設定值 的攔中,ΝΑΟ表示像側數值孔徑,MM」表示尺 寸為mm,WL表示光的波長(nm)。而且,χ〇Β是來自 像側(晶圓侧)的光線追蹤中所用的15條光線相對於ζ 方向的角度的X方向成分(單位:度),γ〇Β是15條光 線相對於Z方向的角度的γ方向成分(單位:度)。 於表(1 )的透鏡資料攔中,RDY表示面的曲率半徑 ® (非球面的情形時為頂點曲率半徑;單位:mm),THI表 示自該面至下一個面為止的距離亦即面間隔(單位: mm)’ RMD表不該面為反射面运是折射面。表示反 射面。INFINITY表示無限大,若rdy為INFINITY,則 表示該面為平面。OBJ表示作為像面的晶圓7的表面,STO 表示孔徑光闌AS的面,IMG表示作為物體面的光罩4的 圖案面。 面編號1表示虛擬面’面編號2表示第6反射鏡M6 〇 的反射面,面編號3表示第5反射鏡M5的反射面,面編 號4表示第4反射鏡M4的反射面,面編號5表示第3反 射鏡M3的反射面,面編號7表示第2反射鏡M2的反射 面,面編號8表示第1反射鏡Ml的反射面。ASP表示規 定各反射鏡Ml〜M6的反射面的規定面S1〜S6為由以下 式(a)所示的非球面。 s= (h2/r) (l+k).h2/r2}]/2[+C4.h4 16 201018955 32513pif.doc "c6 \h^!c h8+i° * hl〇+Cl2 *hl2+Cl4 * hl4+Cl6 · h,6 、式(J) Ϊ ’ h為與光軸垂直的方向的高度(單位: 著自非球面的頂點的切平面(tangent plane) 至=度h的非球面上的位置為止的光軸的距離(凹陷量)Due to its basic properties, the Offner-type optical system is prone to large aberrations when used for imaging at the same time as the 201018955 32513pif.doc. Therefore, in order to suppress the generation of aberrations, it is desirable that the four mirrors of the front stage adopt a symmetrical magnification configuration. In the imaging optical system disclosed in Patent Document 2, the symmetry of the magnification configuration of the front four mirrors constituting the 灯-lamp type optical system is broken, and the symmetry destruction of the magnification configuration is regarded as causing the image to be completely corrected. Poor ^ cause. In the imaging optical system 6 of the present embodiment, the four mirrors 前 M M2, M3, and M4 in the front stage constitute an OFDM type optical system, and the two mirrors M5 and VI6 in the latter stage constitute a Schwarzshild type optical system. Further, by using the four mirrors M1 to M4 which are further configured to have a good symmetry configuration, the axial distance between the mask 4 and the first mirror M1 is ensured to be large, and the aberration is well corrected. Hereinafter, a specific configuration of the imaging optical system 6 will be described with reference to the second embodiment and the second embodiment. As shown in FIG. 4 and FIG. 5, the imaging optical system 6 of the first embodiment and the second embodiment includes a reflection optical system G1 for linearly extending a single optical axis AX to and from the reticle 4. The pattern surface is an intermediate image formed by patterning at an optical conjugate position; and a second reflection optical system G2 for forming a final reduced image of the pattern of the reticle 4 (intermediate imaged image) on the wafer 7. . In other words, a surface that is optically conjugate with the pattern surface of the mask 4 is formed in the optical path between the first reflection optical system G1 and the second reflection optical system G2. The reflection optical system G1 has a first mirror M1 having a concave reflecting surface, a second mirror M2 having a convex reflecting surface, and a third mirror m3 having a convex reflecting surface in accordance with the incident order of light. Concave 13 201018955 32513pif.doc · The fourth reflecting mirror M4 of the planar reflecting surface. The second reflecting optical system G2 is composed of a fifth reflecting mirror M5 having a convex reflecting surface and a sixth reflecting mirror M6 having a concave reflecting surface in accordance with the incident order of light. An aperture stop AS is provided in the optical path from the second mirror M2 to the third mirror M3. The aperture of the imaging optical system 6 is not disposed in the optical path of the imaging optical system 6 except for the aperture stop AS. The numerical aperture of the imaging optical system 6 is determined only by the limitation of the aperture by the aperture stop AS. In the respective embodiments, the light from the region (illumination region) deviated from the optical axis AX in the pattern surface (first surface) of the mask 4 is convexly reflected by the first mirror mi and convex from the second mirror M2. The reflective surface, the convex reflecting surface of the third mirror M3, and the concave reflecting surface of the fourth mirror M4 are sequentially reflected, and an intermediate image of the mask pattern is formed. The light from the intermediate image formed by the first reflection optical system G1 is sequentially reflected by the convex reflection surface of the fifth mirror M5 and the concave reflection surface of the sixth mirror M6 on the surface of the wafer 7 (the The region (effective imaging region ER) that deviates from the optical axis AX in the two faces forms a reduced image of the reticle pattern. In the respective embodiments, the reflecting surfaces of the "all mirrors M1 to" \46 are defined by aspherical (curved surface) predetermined surfaces S1 to S6 which are rotationally symmetrical with respect to the optical axis AX. Further, the first mirror M1 is disposed closer to the wafer side than the fourth mirror M4, and the third mirror M3 is disposed closer to the wafer side than the second mirror M2, and the second mirror M2 and the third mirror are disposed. M3 is disposed between the first predetermined surface S1 defining the reflection surface of the first mirror M1 and the fourth predetermined surface S4 defining the reflection surface of the fourth mirror M4. 201018955 32513pif.doc For other performances, 3' from the optical axis AX of the photomask 4 edge imaging optical system 6 toward the wafer 7', there is a fourth predetermined surface S1 and an optical axis AX of the reflecting surface of the mirror 4 mirror. The intersection point, the intersection of the second gauge surface S2 defining the reflection surface of the second mirror M2 and the optical axis 、, the intersection of the third predetermined surface S3 defining the reflection surface of the third mirror M3 and the smooth surface 、, and the regulation The intersection of the predetermined surface S1 of the reflecting surface of the first reflecting mirror M1 and the optical axis AX. Further, the fifth mirror M5 is disposed closer to the wafer side than the sixth mirror M6. The imaging optical system 6 of each embodiment is a backlight optical system having an entrance pupil sandwiching the reticle 4 and at a predetermined distance from the opposite side of the imaging optical system 6. Moreover, the imaging optical system 6 of each embodiment is an optical system that is telecentric with respect to the wafer side (image side). In other words, in each of the embodiments, the chief ray reaching the image plane of the imaging optical system 6 is substantially perpendicular to the image plane. With this configuration, good imaging can be performed even if the wafer has irregularities in the depth of focus of the imaging optical system 6. © [First Embodiment] The parameter values of the imaging optical system of the second embodiment are listed in the following Table (1): in the main parameter column of Table (1), the wavelength of the exposure light is also indicated, and the cold table is not imaged. , ΝΑ denotes the image side (wafer side) numerical aperture, Υ0 denotes the radius of the imaging circle IF on the wafer 7 (maximum image height), LX denotes the size of the effective imaging area ER along the χ direction, and LY denotes the effective imaging area The dimension of the ER along the γ direction (the width dimension of the arc-shaped effective imaging area). 15 201018955 32513pif.doc Table (The column of ray tracing set value and the lens data column are described in the "Code V" format of the optical design software of ORA (Optical Research Associates). The ray tracing set value of Table (1) is blocked. In the middle, ΝΑΟ denotes the image side numerical aperture, MM” denotes the size of mm, WL denotes the wavelength of light (nm), and χ〇Β is the 15 rays used in ray tracing from the image side (wafer side) with respect to X The X-direction component of the angle of the direction (unit: degree), γ〇Β is the γ-direction component (unit: degree) of the angle of 15 rays with respect to the Z direction. In the lens data block of Table (1), RDY represents The radius of curvature of the face® (the radius of curvature of the vertex in the case of aspherical surface; unit: mm), THI indicates the distance from the face to the next face, ie the face spacing (unit: mm)' RMD table is not the reflection The surface transport is a refractive surface. It represents the reflective surface. INFINITY means infinity. If rdy is INFINITY, it means that the surface is a plane. OBJ represents the surface of the wafer 7 as the image plane, STO represents the surface of the aperture stop AS, and IMG represents As a thing The surface of the mask 4 of the surface. The surface number 1 indicates the virtual surface 'surface number 2 indicates the reflection surface of the sixth mirror M6 〇, the surface number 3 indicates the reflection surface of the fifth mirror M5, and the surface number 4 indicates the fourth reflection. The reflecting surface of the mirror M4, the surface number 5 indicates the reflecting surface of the third mirror M3, the surface number 7 indicates the reflecting surface of the second mirror M2, and the surface number 8 indicates the reflecting surface of the first mirror M1. The predetermined surfaces S1 to S6 of the reflecting surfaces of the mirrors M1 to M6 are aspherical surfaces represented by the following formula (a): s = (h2/r) (l+k).h2/r2}]/2[+C4. H4 16 201018955 32513pif.doc "c6 \h^!c h8+i° * hl〇+Cl2 *hl2+Cl4 * hl4+Cl6 · h,6 , (J) Ϊ ' h is perpendicular to the optical axis The height (unit: the distance from the tangent plane from the apex of the aspheric surface to the position on the aspheric surface of the degree h (the amount of the recess)

2位了)^頂點曲率半徑(單位‘Μ為圓錐 Η ^為n次非球面絲。於表⑴的透鏡資料欄中, ^ 數^為Μ的絲C4,B為h6的係數C6,C ,的4係數C8,D為h10的係數C]〇,E為h]2的係數Ci2, 為的係數C]4,G為h16的係數Cl6,H/%hI8的係數 Ci8 ’ J為h20的係數c2。。 而且,各反射鏡]VH〜M6的反射面(面編號2、3、4、 5、7、8)。中的XDE、YDE及ZDE表示面的離心的X方2 digits) ^ vertex curvature radius (unit 'Μ is cone Η ^ is n aspherical filament. In the lens data column of Table (1), ^ number ^ is the silk C4 of the ,, B is the coefficient C6, C of h6, The 4 coefficient C8, D is the coefficient of h10 C] 〇, E is the coefficient Ci2 of h]2, the coefficient C]4, G is the coefficient Cl6 of h16, and the coefficient Ci8 ' J of H/% hI8 is the coefficient of h20 C2. Moreover, the reflecting surfaces of the respective mirrors]VH to M6 (surface numbers 2, 3, 4, 5, 7, and 8). The XDE, YDE, and ZDE in the X-direction of the surface

向成刀(單位.mm )、γ方向成分(單位:江血)、以及Z 方向成分(單位:mm)。ADE、BDE、以及〇〇£表示面的 旋轉的θχ方向成分(圍繞X轴的旋轉成分;單位:度)、 θγ方向成分(圍繞γ軸的旋轉成分;單位:度)、以及0Directional knives (unit: mm), gamma-direction components (unit: Jiang blood), and Z-direction components (unit: mm). ADE, BDE, and 〇〇 represent the θχ direction component of the surface rotation (rotational component around the X axis; unit: degree), θγ direction component (rotational component around the γ axis; unit: degree), and 0

Ζ方向成分(圍繞2:轴的旋轉成分;單位:度)。而且,DAR 表示該面之後的座標(X、Y、Z)未變化。亦即,即便記 載為DAR的面產生離心,其後侧的面依然為僅記載為 DAR的面的單獨離心,而不會追隨離心後的新座標。再 者’表Ο)中的表述於以下的表(2)中亦為相同。 表⑴ (主要參數) λ =13.5 nm 17 201018955 32513pif.doc β = ΜΛ ΝΑ-0.33 Υ0= 30.5mm LX = 26mm LY = 2mm (光線追蹤設定值) ΝΑΟ 0.33000Ζ Directional component (rotational component around 2: axis; unit: degree). Moreover, DAR indicates that the coordinates (X, Y, Z) after the face have not changed. That is, even if the surface recorded as DAR is centrifuged, the surface on the rear side is still separately centrifuged on the surface described only as DAR, and does not follow the new coordinates after centrifugation. The expression in the 'Table' is also the same in the following Table (2). Table (1) (main parameters) λ = 13.5 nm 17 201018955 32513pif.doc β = ΜΛ ΝΑ-0.33 Υ0 = 30.5mm LX = 26mm LY = 2mm (ray tracing set value) ΝΑΟ 0.33000

DIM MM WL 13.50 XOB 0.00000 0.00000 0.00000 0.00000 0.00000 6.50000 6.50000 6.50000 6.50000 6.50000 13.00000 13.00000 13.00000 13.00000 13.00000 YOB 51.70000 52.20000 52.70000 53.20000 53.70000 51.29761 51.79761 52.29761 52.79761 53.29761 50.07142 50.57142 51.07142 51.57142 52.07142 (透鏡資料) THI RMD 〇.〇〇〇〇〇〇DIM MM WL 13.50 XOB 0.00000 0.00000 0.00000 0.00000 0.00000 6.50000 6.50000 6.50000 6.50000 6.50000 13.00000 13.00000 13.00000 13.00000 13.00000 YOB 51.70000 52.20000 52.70000 53.20000 53.70000 51.29761 51.79761 52.29761 52.79761 53.29761 50.07142 50.57142 51.07142 51.57142 52.07142 (Lens data) THI RMD 〇.〇〇〇〇〇〇

RDYRDY

OBJ: INFINITY 1: INFINITY 444.145481OBJ: INFINITY 1: INFINITY 444.145481

2: -516.73773 -397.097310 REFL ASP: K : 0.120649 A :0.483058E-10 B :0.684414E-16 C :0.983146E-22 D :-.967074E-28 E :-.246009E-32 F .-0.332682E-37 G rO.OOOOOOE+OO H :O.OOOOOOE+O0 J :0.000000E+00 XDE: 〇.〇〇〇〇〇〇 YDE: -0.323301 ZDE: 〇.〇〇〇〇〇〇 DAR ADE: 0.012756 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 -1231.10056 1104.842277 REFL ASP: K :19.093609 A :-.262384E-08 B :-.100647E-13 C :'435255E-18 D :0.111694E-22 E : -.158505E-26 F :0.809174E-31 G :0.000000E+00 H :0.000000E+00 J :O.OOOOOOE+O0 XDE: 〇.〇〇〇〇〇〇 YDE: -0.459401 ZDE: 〇.〇〇〇〇〇〇 ADE: 0.020732 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 ]8 201018955 32513pif.doc 4: -824.05681 -474.816098 REFL ASP: K :-0.133480 A :-.497022E-10 B >.913935E-16 C :-. E :-.540216E-33 F :-.552024E-39 J :O.OOOOOOE+O0 XDE: 〇.〇〇〇〇〇〇 YDE: 0.393802 ADE: 0.048115 BDE: 〇.〇〇〇〇〇〇2: -516.73773 -397.097310 REFL ASP: K : 0.120649 A :0.483058E-10 B :0.684414E-16 C :0.983146E-22 D :-.967074E-28 E :-.246009E-32 F .-0.332682E- 37 G rO.OOOOOOE+OO H :O.OOOOOOE+O0 J :0.000000E+00 XDE: 〇.〇〇〇〇〇〇YDE: -0.323301 ZDE: 〇.〇〇〇〇〇〇DAR ADE: 0.012756 BDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇-1231.10056 1104.842277 REFL ASP: K :19.093609 A :-.262384E-08 B :-.100647E-13 C :'435255E-18 D :0.111694 E-22 E : -.158505E-26 F :0.809174E-31 G :0.000000E+00 H :0.000000E+00 J :O.OOOOOOE+O0 XDE: 〇.〇〇〇〇〇〇YDE: -0.459401 ZDE : 〇.〇〇〇〇〇〇ADE: 0.020732 BDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇]8 201018955 32513pif.doc 4: -824.05681 -474.816098 REFL ASP: K :- 0.133480 A :-.497022E-10 B >.913935E-16 C :-. E :-.540216E-33 F :-.552024E-39 J :O.OOOOOOE+O0 XDE: 〇.〇〇〇〇〇〇 YDE: 0.393802 ADE: 0.048115 BDE: 〇.〇〇〇〇〇〇

G rO.OOOOOOE+OO H :O.OOOOOOE+QO ZDE: CDE:G rO.OOOOOOE+OO H :O.OOOOOOE+QO ZDE: CDE:

DAR 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 5: -1204.11353 175.948630 REFL ASP: K : 11.579347 A :0.122470E-08 B :-.43 7200E-14 C :0.489202E-19 D :0.614553E-24 E :-.218477E-28 F :0.570908E-33 G :O.OOOOOOE+O0 H :0.000000E+00 J rO.OOOOOOE+OO XDE: 〇.〇〇〇〇〇〇 YDE: -0.070744 ZDE: 〇.〇〇〇〇〇〇 DAR ADE: 0.035436 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 STO: INFINITY 160.769998 7: 369.83680 -375.908243 REFL ASP: K : 3.031373 A :-.764700E-08 B :-.955891E-13 C :-.230597E-17 D :-.925948E-22 E :0.18301 IE-26 F: :'127505E-30 G :0.000000E+00 H : :0.000000E+00 J :0.000000E+00 XDE: 〇.〇〇〇〇〇〇 YDE: 0.066453 ZDE: 〇.〇〇〇〇〇〇 DAR ADE: 0.008963 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 8: 831.60769 1362.095636 REFL ASP: K : -0.013655 A :-.407763E-10 B :'438104E-16 C :0.361354E-23 D : :-.316537E-27 E :0.610944E-33 F : :-.917668E-39 G :0.000000E+00 H : :0.000000E+00 J :O.OOOOOOE+O0 XDE: 〇.〇〇〇〇〇〇 YDE: 0.090858 ZDE: 〇.〇〇〇〇〇〇 DAR ADE: -0.000654 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 IMG: INFINITY 〇.〇〇〇〇〇〇 XDE: 〇.〇〇〇〇〇〇 YDE: 1.885739 ZDE: 〇.〇〇〇〇〇〇 DAR ADE: 〇.〇〇〇〇〇〇 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 ❹ ❹ [第2實施例] 以下表(2)中列出第2實施例的成像光學系統的參 19 201018955 32513pif.doc 數值。 表⑵ (主要參數) λ = :13.5 nm β = :1/4 ΝΑ: = 0.35 Y0 = =30.5mm LX = =26mm LY = =2mm (光線追蹤設定值) 參 XOB 0.00000 0.00000 0.00000 0.00000 0.00000 6.50000 6.50000 6.50000 6.50000 6.50000 13.00000 13.00000 13.00000 13.00000 13.00000 YOB 51.70000 52.20000 52.70000 53.20000 53.70000 51.29761 51.79761 52.29761 52.79761 53.29761 50.07142 50.57142 51.07142 51.57142 52.07142 (透鏡資料) RDY THI RMD OBJ: INFINITY 〇.〇〇〇〇〇〇 INFINITY 620.422956DAR 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇5: -1204.11353 175.948630 REFL ASP: K : 11.579347 A :0.122470E-08 B :-.43 7200E-14 C :0.489202E-19 D : 0.614553E-24 E :-.218477E-28 F :0.570908E-33 G :O.OOOOOOE+O0 H :0.000000E+00 J rO.OOOOOOE+OO XDE: 〇.〇〇〇〇〇〇YDE: -0.070744 ZDE: 〇.〇〇〇〇〇〇DAR ADE: 0.035436 BDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇STO: INFINITY 160.769998 7: 369.83680 -375.908243 REFL ASP: K : 3.031373 A :-.764700E-08 B :-.955891E-13 C :-.230597E-17 D :-.925948E-22 E :0.18301 IE-26 F: :'127505E-30 G :0.000000E+00 H : :0.000000 E+00 J :0.000000E+00 XDE: 〇.〇〇〇〇〇〇YDE: 0.066453 ZDE: 〇.〇〇〇〇〇〇DAR ADE: 0.008963 BDE: 〇.〇〇〇〇〇〇CDE: 〇. 〇〇〇〇〇〇8: 831.60769 1362.095636 REFL ASP: K : -0.013655 A :-.407763E-10 B : '438104E-16 C :0.361354E-23 D : :-.316537E-27 E :0.610944E-33 F : :-.917668E-39 G :0.000000E+00 H : :0.000000E+00 J :O.OOOO OOE+O0 XDE: 〇.〇〇〇〇〇〇YDE: 0.090858 ZDE: 〇.〇〇〇〇〇〇DAR ADE: -0.000654 BDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇 〇IMG: INFINITY 〇.〇〇〇〇〇〇XDE: 〇.〇〇〇〇〇〇YDE: 1.885739 ZDE: 〇.〇〇〇〇〇〇DAR ADE: 〇.〇〇〇〇〇〇BDE: 〇. 〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇❹ ❹ [Second Embodiment] The numerical value of the reference 19 201018955 32513 pif.doc of the imaging optical system of the second embodiment is listed in the following Table (2). Table (2) (main parameters) λ = :13.5 nm β = :1/4 ΝΑ: = 0.35 Y0 = =30.5mm LX = =26mm LY = =2mm (ray tracing set value) Ref. XOB 0.00000 0.00000 0.00000 0.00000 0.00000 6.50000 6.50000 6.50000 6.50000 6.50000 13.00000 13.00000 13.00000 13.00000 13.00000 YOB 51.70000 52.20000 52.70000 53.20000 53.70000 51.29761 51.79761 52.29761 52.79761 53.29761 50.07142 50.57142 51.07142 51.57142 52.07142 (Lens data) RDY THI RMD OBJ: INFINITY 〇.〇〇〇〇〇〇INFINITY 620.422956

GLAGLA

XDE: ADE: 〇.〇〇〇〇〇〇 YDE: 0.001466 BDE: 0.306420 ZDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 DAR 〇.〇〇〇〇〇〇 2: -688.04248 -574.987580 REFL ASP: K : 〇.〇〇〇〇〇〇 A :-. 140032E-10 B :-.642163E-16 C :-.121085E-21 D :-.437906E-27 E :0.693953E-33 F :-·777754Ε-38 G :〇.〇〇〇〇〇〇Ε+00 Η :〇.〇〇〇〇〇〇E+00 J :〇.〇〇〇〇〇〇E+00XDE: ADE: 〇.〇〇〇〇〇〇YDE: 0.001466 BDE: 0.306420 ZDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇DAR 〇.〇〇〇〇〇〇2: - 688.04248 -574.987580 REFL ASP: K : 〇.〇〇〇〇〇〇A :-. 140032E-10 B :-.642163E-16 C :-.121085E-21 D :-.437906E-27 E :0.693953E-33 F :-·777754Ε-38 G :〇.〇〇〇〇〇〇Ε+00 Η :〇.〇〇〇〇〇〇E+00 J :〇.〇〇〇〇〇〇E+00

3: -613.23857 1296.793834 REFL ASP: K : 〇.〇〇〇〇〇〇 A :-.453028E-08 B :-.49342 IE-13 C :-.595708E-18 D :-.237203E-22 E :0.246677E-26 F :-.125047E-30 G :0.000000E+00 H :O.OOOOOOE+O0 J :〇.〇〇〇〇〇〇E+00 XDE: 〇.〇〇〇〇〇〇 YDE: 0.292807 ZDE: 〇.〇〇〇〇〇〇 DAR ADE: 0.001532 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 20 201018955 32513pif.doc 4; -940.03142 -580.419215 REFL ASP: κ : 〇.〇〇〇〇〇〇 A:0.718298E-11 B :0.150706E-15 E :-.964020E-32 F :0.108329E-37 G rO.OOOOOOE+OO J :〇.〇〇〇〇〇〇E+00 XDE: 〇.〇〇〇〇〇〇 YDE: 0.518912 ZDE: 〇.〇〇〇〇〇〇 ADE: 0.009587 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 C :-.840890E-21 D :0.394436E-26 H :O.OOOOOOE+O03: -613.23857 1296.793834 REFL ASP: K : 〇.〇〇〇〇〇〇A :-.453028E-08 B :-.49342 IE-13 C :-.595708E-18 D :-.237203E-22 E :0.246677 E-26 F :-.125047E-30 G :0.000000E+00 H :O.OOOOOOE+O0 J :〇.〇〇〇〇〇〇E+00 XDE: 〇.〇〇〇〇〇〇YDE: 0.292807 ZDE : 〇.〇〇〇〇〇〇DAR ADE: 0.001532 BDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇20 201018955 32513pif.doc 4; -940.03142 -580.419215 REFL ASP: κ : 〇 .〇〇〇〇〇〇A:0.718298E-11 B :0.150706E-15 E :-.964020E-32 F :0.108329E-37 G rO.OOOOOOE+OO J :〇.〇〇〇〇〇〇E+ 00 XDE: 〇.〇〇〇〇〇〇YDE: 0.518912 ZDE: 〇.〇〇〇〇〇〇ADE: 0.009587 BDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇C :- .840890E-21 D :0.394436E-26 H :O.OOOOOOE+O0

DARDAR

5: -747.45027 176.728248 REFL ASP: K : 〇.〇〇〇〇〇〇 A :0.587092E-08 B :-.750098E-13 C :0.123917E-17 D :-.166889E-22 E :0.127172E-27F :-.353250E-33 G :O.OOOOOOE+QO H :0.000000E+0Q J :〇.00000〇E+00 XDE: 〇.〇〇〇〇〇〇 ADE: 0.006278 YDE: BDE: 0.413646 〇.〇〇〇〇〇〇 ZDE: CDE: 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇5: -747.45027 176.728248 REFL ASP: K : 〇.〇〇〇〇〇〇A :0.587092E-08 B :-.750098E-13 C :0.123917E-17 D :-.166889E-22 E :0.127172E-27F :-.353250E-33 G :O.OOOOOOE+QO H :0.000000E+0Q J :〇.00000〇E+00 XDE: 〇.〇〇〇〇〇〇ADE: 0.006278 YDE: BDE: 0.413646 〇.〇〇 〇〇〇〇ZDE: CDE: 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇

DAR STO: XDE: ADE: INFINITY 286.368636 〇.〇〇〇〇〇〇 YDE: -0.108380 ZDE: 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇DAR STO: XDE: ADE: INFINITY 286.368636 〇.〇〇〇〇〇〇YDE: -0.108380 ZDE: 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇BDE: 〇.〇〇〇〇〇〇CDE : 〇.〇〇〇〇〇〇

DAR 7: 2847.83559 -554.483922 REFL ASP: : 〇.〇〇〇〇〇〇 :-.816488E-09 B :0.162081E-14 C :-.845720E-20 D :0.192379E-24 :-.185513E-29 F :0.263527E-35 G rO.OOOOOOE+OO H rO.OOOOOOE+OO J :O.OOOOOOE+O0 XDE: 〇.〇〇〇〇〇〇 YDE: 0.403652 ZDE: BDE: 〇.〇〇〇〇〇〇 CDE:DAR 7: 2847.83559 -554.483922 REFL ASP: : 〇.〇〇〇〇〇〇:-.816488E-09 B :0.162081E-14 C :-.845720E-20 D :0.192379E-24 :-.185513E-29 F :0.263527E-35 G rO.OOOOOOE+OO H rO.OOOOOOE+OO J :O.OOOOOOE+O0 XDE: 〇.〇〇〇〇〇〇YDE: 0.403652 ZDE: BDE: 〇.〇〇〇〇〇〇CDE :

K A E ❹ ADE: 0.004636 8: 1276.50965 ASP: K : 〇.〇〇〇〇〇〇 A:-.203951E-10 B E :0.976574E-33 F J :0.000〇〇〇E+00K A E ❹ ADE: 0.004636 8: 1276.50965 ASP: K : 〇.〇〇〇〇〇〇 A:-.203951E-10 B E :0.976574E-33 F J :0.000〇〇〇E+00

1329.577044 REFL :-.284717E-16 :-.111237E-38 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇1329.577044 REFL :-.284717E-16 :-.111237E-38 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇

DAR C :0.392856E-22 D :-.371852E-27 G :〇.〇〇〇〇〇〇E+00 H :〇.〇〇〇〇〇〇E+00DAR C :0.392856E-22 D :-.371852E-27 G :〇.〇〇〇〇〇〇E+00 H :〇.〇〇〇〇〇〇E+00

XDE: 〇.〇〇〇〇〇〇 YDE: 0.309183 ZDE: 〇.〇〇〇〇〇〇 ADE: 0.007215 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 IMG: INFINITY 〇.〇〇〇〇〇〇 XDE: 〇.〇〇〇〇〇〇 YDE: -0.612201 ZDE: 〇.〇〇〇〇〇〇 ADE: 〇.〇〇〇〇〇〇 BDE: 〇.〇〇〇〇〇〇 CDE: 〇.〇〇〇〇〇〇 DAR DAR 21 201018955 32513pif.doc 其次’對各實施例的成像光學系統6的波前像差(wave aberration)進行驗證。第1實施例的成像光學系統6中, 對於圓弧狀有效成像區域ER内的各點求出波前像差的 RMS (ro〇t mean square :均方根或方均根)之值,結果最 小值(最佳值)為0.0141Λ ( λ :光的波長=135 nm), 最大值為(最差值)為0.0351又。而且,第2實施例的成 像光學系統6中,波前像差的RMS值的最小值為0.0273 λ,最大值為0.0428 λ。 上述各實施例中’對於波長為13.5 nm的EUV光,可 2保良好的成像性能以及〇.33的相對較大的像側數值孔 徑’並且可確保於晶圓7上各像差經良好修正的26mmx2 的圓弧狀有效成像區域。因此,於晶圓7中,可於具 有例如26 mmx34 mm或26 mmx37 mm之大小的各曝光區 域中’藉由掃描曝光而以0.1 Am或〇.1 以下的高解 像來轉印光罩4的圖案。 再者,上述各實施例是以14次幕級數來表現各反射 兄的非球面狀反射面,但並非限定於此,當然亦可使用更 向次的項。而且,上述各實施例中,各反射鏡的反射面形 成為旋轉對稱的非球面狀,但並非限定於此,亦可為非旋 轉對稱的面形狀。 而且’上述各實施例中’示例性地使用具有13.5 nm 波長的EUV光,但並非限定於此,對於使用具有例如5 〜4〇nm左右的波長的EUV光、或其其它適當波長的光的 成像光學系統亦可同樣適用本發明。 201018955 32513pif.doc 再者,上述實施形態中,可使用根據規定的電子資料 來形成規定的圖案的可變圖案形成裝置,來代替光罩。若 使用如此的可變圖案形成裝置,則即便圖案面為縱置,亦 可使對同步精度的影響為最低限度。再者,作為可變圖案 形成裝置’可使用包含根據例如規定的電子資料而驅動的 多個反射元件的數位微鏡裝置(digital micro-mirror device ’ DMD)。使用DMD的曝光裝置揭示於例如美國專XDE: 〇.〇〇〇〇〇〇YDE: 0.309183 ZDE: 〇.〇〇〇〇〇〇ADE: 0.007215 BDE: 〇.〇〇〇〇〇〇CDE: 〇.〇〇〇〇〇〇IMG: INFINITY 〇 .〇〇〇〇〇〇XDE: 〇.〇〇〇〇〇〇YDE: -0.612201 ZDE: 〇.〇〇〇〇〇〇ADE: 〇.〇〇〇〇〇〇BDE: 〇.〇〇〇〇〇 〇CDE: 〇.〇〇〇〇〇〇DAR DAR 21 201018955 32513pif.doc Next, the wavefront aberration of the imaging optical system 6 of each embodiment is verified. In the imaging optical system 6 of the first embodiment, the value of the RMS (ro 〇 mean square or square root) of the wavefront aberration is obtained for each point in the arc-shaped effective imaging region ER, and the result is the minimum value. (Optimal value) is 0.0141 Λ (λ: wavelength of light = 135 nm), and the maximum value (worst difference) is 0.0351 Å. Further, in the imaging optical system 6 of the second embodiment, the minimum value of the RMS value of the wavefront aberration is 0.0273 λ, and the maximum value is 0.0428 λ. In the above embodiments, 'EUV light with a wavelength of 13.5 nm can maintain good imaging performance and a relatively large image side numerical aperture of 〇.33' and ensure that the aberrations on the wafer 7 are well corrected. The 26mmx2 arc-shaped effective imaging area. Therefore, in the wafer 7, the photomask 4 can be transferred by high resolution of 0.1 Am or 〇.1 or less by scanning exposure in each exposure region having a size of, for example, 26 mm x 34 mm or 26 mm x 37 mm. picture of. Further, in each of the above embodiments, the aspherical reflecting surface of each reflecting brother is expressed by the number of screens of 14 times. However, the present invention is not limited thereto, and it is of course possible to use a more advanced term. Further, in each of the above embodiments, the reflecting surface of each of the mirrors has a rotationally symmetrical aspherical shape. However, the present invention is not limited thereto, and may be a non-rotating symmetrical surface shape. Further, 'EUV light having a wavelength of 13.5 nm is exemplarily used in the above embodiments, but is not limited thereto, and EUV light having a wavelength of, for example, about 5 to 4 〇 nm, or other light of a suitable wavelength thereof is used. The present invention is equally applicable to an imaging optical system. Further, in the above embodiment, a variable pattern forming device that forms a predetermined pattern based on predetermined electronic data may be used instead of the photomask. When such a variable pattern forming apparatus is used, even if the pattern surface is vertically placed, the influence on the synchronization accuracy can be minimized. Further, as the variable pattern forming device ', a digital micro-mirror device' DMD including a plurality of reflecting elements driven based on, for example, predetermined electronic materials can be used. An exposure device using a DMD is disclosed, for example, in the United States.

利公開第2007/0296936A1號公報中。而且,除了如DMD 般的非發光型的反射型空間光調變器(spatial light modulator)以外,亦可使用透射型空間光調變器,亦可使 用自發光型圖像顯示元件。再者,即便於圖案面為橫置時, 亦可使用可變圖案形成裝置。 八 上述實&形態的曝光裝置可藉由組裝包含本案申請 =耗圍巾所列舉的各構成要素的各種子系絲製造,以 2規定的機械精度、魏精度、絲精度。為了確保該 牲而於該纽裝之前後’對各種光學系統進行用 械产声όϋ度的5驗,對各雜械纟統進行用以達成機 :=子=電氣系統進行用以達成電氣精度的 統相互的機械連接的組裝步驟包含各種子系 管連接等。自哕久藉;的配線連接、氣壓電路的配 當然存在各子_的各光裝置的組裝步驟之前, 的組裳步驟結束後,進行子系統對曝光裝置 體的各種精度。再者,較理:,確保作為曝光裝置整 乂理想的是,曝光裝置的製造是於 201018955 32513pif.doc '皿度等得到管理的無塵室(Cleanr_)中進行。 方法進行說明述實__曝光裝置的元件製造 圖。如圖6所示ί疋表示半導體元件的製造步驟的流程 Β半導體兀件的製造步驟中,於作為半導 _上紐金屬膜(步驟_,對該經 ^ \膜上塗佈作為感光性材料的光阻劑Japanese Patent Publication No. 2007/0296936A1. Further, in addition to a non-light-emitting reflective spatial light modulator such as a DMD, a transmissive spatial light modulator may be used, and a self-luminous image display element may be used. Further, the variable pattern forming device can be used even when the pattern surface is horizontal. 8. The exposure apparatus of the above-described embodiment can be manufactured by assembling various sub-filaments including the respective constituent elements listed in the application of the present invention, and the mechanical precision, the precision of the yarn, and the precision of the yarn are specified by 2. In order to ensure that the animal is in front of the new installation, the sound sensitivity of the various optical systems is 5, and the various systems are used to achieve the machine: = sub = electrical system for electrical precision The assembly steps of the various mechanical connections include various sub-tube connections and the like. The wiring connection and the arrangement of the air pressure circuit are of course long after the assembly step of each optical device of each sub_ is completed, and various precisions of the subsystem to the exposure device are performed. Further, it is reasonable to ensure that the exposure apparatus is preferably manufactured in a clean room (Cleanr_) managed in 201018955 32513pif.doc. The method will be described as a component manufacturing diagram of the exposure apparatus. As shown in FIG. 6, a flow chart showing a manufacturing step of a semiconductor element, in a manufacturing step of a semiconductor element, is used as a semi-conductive metal film (step _, coating the film as a photosensitive material) Photoresist

暖m腦^(步驟s42)。接著,使用上述實施形態的 :先裝置,將形成於光罩(標線(ret M =晶圓w上的各擷取(shc)t)區域(步驟s44== )’並進該轉印結束後的晶s w的顯影、?卩,轉印有 圖案的光阻劑的顯影(步驟S46 :顯影步驟)。然後,將藉 由步驟S46而生成於晶圓w的表面上的光阻圖案作為光 罩’對晶圓w的表面進行蝴(etehing)等的加工 S48 :加工步驟)。 此處,所謂光阻圖案是指生成有形狀與藉由上述實施 形態的曝光裝置而轉印的圖案相對應的凹凸的光阻劑層, 且其凹部穿透細劑層。步驟S48巾,經由該光阻圖案進 行晶圓W的表面加工。步驟S48中所進行的加工,包含例 如晶圓w的表面的蝕刻或金屬膜等的成膜中的至少一 方。再者,步驟S44中,上述實施形態的曝光裝置,將塗 佈有光阻劑的晶圓W作為感光性基板進行圖案轉印。 再者,上述實施形態中,使用雷射電漿又射線源作為 用以供給EUV光的光源,但並非限定於此,亦可使用例 如同少加速器軌道輻射(synchrotron orbital radiation,SOR) 201018955 325I3pif.doc 光作為EUV光。 而且,上述實施形態中,將本發明適用於具有用以供 給EUV光的光源的曝光裝置,但並非限定於此,亦可將 本發明適用於具有供給EUV光以外的其他波長光的光源 的曝光裝置。 ❹ Ο 而且,上述實施形態中,將本發明適用於作為曝光裝 置的投影料系統的成像光學系統,但並雜定於此,一 般而言亦可同樣地將本發明_於使第〗面的像形成於第 2面上的成像光學系統。 士议雖然本㈣已以實簡揭露如上,然其並非用以限定 二二^何所屬技術領域中具有通常知識者,在不脫離 發曰狀保圍内’當可作些許之更動與潤飾,故本 【圖式簡視伽之申料聰_界定者為準。 的圖圖1是概略性表示本發明實__曝光裝置的構成 軸的成於晶圓上的圓弧狀有效成像區域與光 =,示由_成的反射面的反射特性。 的圖讀魏絲第1實關㈣像光«統的構成 的圖圖5讀略縣42實施_成像光㈣統的構成 疋表不獲得作為微型元件的半導體元件時的方法 201018955 32513pif.doc 的一例的流程的圖。 【主要元件符號說明】 1 :雷射電漿X射線源 2a、2b :複眼鏡片 3 :偏轉鏡 4 :光罩Warm m brain ^ (step s42). Next, using the apparatus of the above-described embodiment, the mask is formed on the reticle (ret M = each shk t area on the wafer w (step s44 == )' and the transfer is completed. Development of the crystal sw, development of the transferred photoresist (step S46: development step). Then, the photoresist pattern formed on the surface of the wafer w by the step S46 is used as a mask 'Processing such as etching (ething) on the surface of the wafer w: processing step). Here, the photoresist pattern means a photoresist layer having irregularities having a shape corresponding to the pattern transferred by the exposure apparatus of the above-described embodiment, and the concave portion penetrates the fine layer. In step S48, the surface of the wafer W is processed through the photoresist pattern. The processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer w or film formation of a metal film or the like. Further, in step S44, in the exposure apparatus of the above embodiment, the wafer W coated with the photoresist is patterned and transferred as a photosensitive substrate. Further, in the above embodiment, the laser plasma and the radiation source are used as the light source for supplying the EUV light, but the invention is not limited thereto, and for example, synchrotron orbital radiation (SOR) may be used. 201018955 325I3pif.doc Light as EUV light. Further, in the above embodiment, the present invention is applied to an exposure apparatus having a light source for supplying EUV light. However, the present invention is not limited thereto, and the present invention may be applied to an exposure having a light source that supplies light of other wavelengths than EUV light. Device. ❹ Ο In the above embodiment, the present invention is applied to an imaging optical system of a projection material system as an exposure apparatus, but it is also abbreviated to this. In general, the present invention can be similarly applied to the first surface. Like an imaging optical system formed on the second surface. Although this (4) has been exposed as above in the actual situation, it is not intended to limit the ordinary knowledge in the technical field of the two or two, and it can be used to make some changes and refinements without leaving the hairpin. Therefore, this [simplified version of the map is based on the definition of the product. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing the arc-shaped effective imaging region formed on a wafer of the shaft of the present invention, and the reflection characteristic of the reflecting surface shown by _. Figure 1 shows the composition of the Weiss 1st real (4) image like the structure of the light system Figure 5 The implementation of the image of the county 42 _ imaging light (four) system 疋 table does not obtain the semiconductor component as a micro component 201018955 32513pif.doc A diagram of an example of a process. [Main component symbol description] 1: Laser plasma X-ray source 2a, 2b: Multi-eye lens 3: Deflection mirror 4: Mask

5:光罩載物台 6:成像光學系統 7 .晶圓 8:晶圓載物台 31 : s偏光相對反射面的光反射特性 32 : p偏光相對反射面的光反射特性 33 :無偏光的光反射特性 AS :孔徑光闌5: reticle stage 6: imaging optical system 7. wafer 8: wafer stage 31: s polarized light reflecting characteristic of reflective surface 32: light reflecting characteristic of p-polarized light relative to reflecting surface 33: unpolarized light Reflection characteristics AS: aperture stop

AX :光轴 ER :有效成像區域 IL :照明光學系統 IF :成像圈 G卜G2 :反射光學系統 LX : X方向的長度 LY:Y方向的長度 Ml〜M6 :反射鏡 S1〜S6 :規定面 S40〜S48 :步驟 26 201018955 32513pif.doc Y0 :半徑AX: optical axis ER: effective imaging area IL: illumination optical system IF: imaging circle Gb G2: reflection optical system LX: length in the X direction LY: length in the Y direction M1 to M6: mirrors S1 to S6: prescribed surface S40 ~S48: Step 26 201018955 32513pif.doc Y0 : Radius

2727

Claims (1)

201018955 32513pif.doc 七、申請專利範圍: 1. 一種成像光學系統,其使第1面的像形成於第2面 上, 其特徵在於:按照來自上述第1面的光的入射順序, 包括第1反射鏡、第2反射鏡、第3反射鏡、第4反射鏡、 第5反射鏡、以及第6反射鏡, 上述第1反射鏡較上述第4反射鏡更靠近上述第2面 侧而配置, ▲ 〇 上述第3反射鏡較上述第2反射鏡更靠近上述第2面 側而配置, 上述第2反射鏡以及上述第3反射鏡’配置於規定上 述第1反射鏡的反射面的第1規定面與規定上述第4反射 鏡的反射面的第4規定面之間, 上述成像光學系統的入射光瞳夾著上述第1面且位於 上述成像光學系統的相反側。 2. —種成像光學系統,其使第1面的像形成於第2面 上, © 其特徵在於··按照來自上述第1面的光的入射順序, 包括第1反射鏡、第2反射鏡、第3反射鏡、第4反射鏡、 第5反射鏡、以及第6反射鏡, ^自上述第1面沿著上述成像光學系統的光軸朝向上述 第2面’存在有規疋上述第4反射鏡的反射面的第4規定 面與上述光軸的交點、規定上述第2反射鏡的反射面的第 2規定面與上述光軸的交點、規定上述第3反射鏡的反射 28 201018955 32513pif.doc 面的第3規定面與上述光轴的交點、以及規定上述第1反 射鏡的反射面的第1規定面與上述光軸的交點, 上述成像光學系統的入射光瞳夾著上述第1面且位於 上述成像光學系統的相反側。 3. 如申請專利範圍第1項或第2項所述之成像光學系 統’其中上述第1反射鏡至上述第4反射鏡根據來自上述 第1面的光而形成與上述第1面共軛的位置, ® 上述第5反射鏡以及上述第6反射鏡根據來自上述共 輛位置的光,使上述像形成於上述第2面上。 4. 如申請專利範圍第1項至第3項中任一項所述之成 像光學系統’其中上述第1反射鏡以及上述第4反射鏡具 有凹面狀的反射面,上述第2反射鏡以及上述第3反射鏡 具有凸面狀的反射面。 5. 如申請專利範圍第1項至第4項中任一項所述之成 像光學系統,其中上述第5反射鏡較上述第6反射鏡更靠 φ 近上述第2面侧而配置。 6. 如申請專利範圍第5項所述之成像光學系統,其中 上述第5反射鏡具有凸面狀的反射面,上述第6反射鏡具 有凹面狀的反射面。 7. 如申請專利範圍第1項至第6項中任一項所述之成 像光學系統,其包括配置於上述第2反射鏡至上述第3反 射鏡的光路中的孔徑光闌。 8·如申請專利範圍第7項所述之成像光學系統,其中 上述成像光學系統的數值孔徑僅由上述孔徑光闌對光束的 29 201018955 32513pif.doc 限制所決定。 9. 如申請專利範圍第丨項至第8項中任 t學系統,其中使上述第〗_縮小像形成於2 面上。 10. 如申請專利範圍第i項至第9項中任 像光學⑽,其中上述成像光料'統 上= 側為遠心的辟系統。 W上述第2面 11. 如申請專利範圍第】項至第1Q 〇 成像光學系統,其中上述第丨搨佘& 、中任一項所述之 為曲面。第^面以及上述第4規定面 夢由i2自—,频徵在於㈣:照日線统,用於 猎由來自切的光對設置於上述第〗面 =4申:專:範圍第1項至第11項中任-= 述將上述規定的圖案投影至設置於上 _ 上述12項所述之曝域置,其中由 # IS相6 .、波長為5 nm至4〇麵的EUV光, 成像光學板姆於上述 至上述感紐基板。%將上錢案投影曝光 件製造枝,其特徵在於包括: 述之曝光裝置,將上述賴^專利乾圍第12項或第13項所 顯影步驟,使轉印^、m至·紐基板; 上述規疋的圖案的上述感光性基 30 201018955 32513pif.doc 板顯影,並使形狀與上述規定的圖案相對應的光罩層形成 於上述感光性基板的表面;以及 加工步驟,經由上述光罩層,對上述感光性基板的表 面進行加工。201018955 32513pif.doc VII. Patent Application Range: 1. An imaging optical system in which an image of a first surface is formed on a second surface, characterized in that the first order of light from the first surface includes the first a mirror, a second mirror, a third mirror, a fourth mirror, a fifth mirror, and a sixth mirror, wherein the first mirror is disposed closer to the second surface than the fourth mirror, ▲ The third mirror is disposed closer to the second surface than the second mirror, and the second mirror and the third mirror ' are disposed on a first predetermined surface defining a reflection surface of the first mirror The entrance pupil of the imaging optical system sandwiches the first surface and is located on the opposite side of the imaging optical system between the surface and the fourth predetermined surface defining the reflection surface of the fourth mirror. 2. An imaging optical system in which an image of a first surface is formed on a second surface, and is characterized in that: the first mirror and the second mirror are included in accordance with an incident order of light from the first surface a third mirror, a fourth mirror, a fifth mirror, and a sixth mirror, wherein the fourth surface is oriented from the first surface along the optical axis of the imaging optical system toward the second surface An intersection of a fourth predetermined surface of the reflecting surface of the mirror and the optical axis, an intersection of a second predetermined surface defining a reflecting surface of the second mirror and the optical axis, and a reflection of the third reflecting mirror 28 201018955 32513pif. An intersection of the third predetermined surface of the doc surface with the optical axis and an intersection of the first predetermined surface defining the reflection surface of the first mirror and the optical axis, and the entrance pupil of the imaging optical system sandwiches the first surface And located on the opposite side of the above imaging optical system. 3. The imaging optical system according to Item 1 or 2, wherein the first mirror to the fourth mirror are conjugated to the first surface based on light from the first surface. Position, the fifth mirror and the sixth mirror form the image on the second surface based on light from the common position. 4. The imaging optical system according to any one of claims 1 to 3, wherein the first mirror and the fourth mirror have a concave reflecting surface, the second mirror and the The third mirror has a convex reflecting surface. 5. The imaging optical system according to any one of claims 1 to 4, wherein the fifth mirror is disposed closer to the second surface than the sixth mirror. 6. The imaging optical system according to claim 5, wherein the fifth mirror has a convex reflecting surface, and the sixth reflecting mirror has a concave reflecting surface. 7. The imaging optical system according to any one of claims 1 to 6, comprising an aperture stop disposed in an optical path of the second mirror to the third mirror. 8. The imaging optical system according to claim 7, wherein the numerical aperture of the imaging optical system is determined only by the aperture aperture of the optical aperture of 29 201018955 32513 pif.doc. 9. For example, in the application of the second to eighth items of the patent scope, the above-mentioned reduced image is formed on two sides. 10. For example, in the patents (i) to (9), the image optics (10), wherein the above-mentioned imaging material is generally a side-centered system. W. The second surface as described above 11. The invention relates to the imaging optical system, wherein the above-mentioned third embodiment is a curved surface. The first face and the above-mentioned fourth rule face dreams are from i2, and the frequency sign is (4): according to the Japanese line system, used for hunting by the pair of light pairs set in the above-mentioned face = 4 application: special: range item 1 To the eleventh item -= the above-specified pattern is projected to the exposure area set in the above-mentioned item 12, wherein EVS light having a wavelength of 5 nm to 4 Å is composed of # IS phase 6 . The imaging optical plate is applied to the above-mentioned sense substrate. % will be a money projection projection member manufacturing branch, characterized in that it comprises: the exposure device described above, the step of developing the above-mentioned Lai ^ patent dry circumference item 12 or 13 to transfer the ^, m to · New Zealand substrate; The photosensitive layer 30 201018955 32513 pif.doc of the pattern of the above-mentioned pattern is developed, and a mask layer having a shape corresponding to the predetermined pattern is formed on the surface of the photosensitive substrate; and a processing step is performed through the mask layer The surface of the photosensitive substrate is processed. 3131
TW098133825A 2008-11-10 2009-10-06 Optical imaging system, exposure device and device manufacturing method TW201018955A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287356 2008-11-10

Publications (1)

Publication Number Publication Date
TW201018955A true TW201018955A (en) 2010-05-16

Family

ID=42152771

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098133825A TW201018955A (en) 2008-11-10 2009-10-06 Optical imaging system, exposure device and device manufacturing method

Country Status (2)

Country Link
TW (1) TW201018955A (en)
WO (1) WO2010052961A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015040A (en) * 2001-07-04 2003-01-15 Nikon Corp Projection optical system and exposure device equipped therewith
JP2004170869A (en) * 2002-11-22 2004-06-17 Nikon Corp Imaging optical system, and device and method for exposure
JP2006245148A (en) * 2005-03-01 2006-09-14 Canon Inc Projection optical system, exposure apparatus, and process for fabricating device
JP4366151B2 (en) * 2003-09-09 2009-11-18 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP2006243197A (en) * 2005-03-01 2006-09-14 Canon Inc Projection optical system, exposure device and manufacturing method of device
JP4438060B2 (en) * 2003-09-02 2010-03-24 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP4387902B2 (en) * 2004-09-09 2009-12-24 キヤノン株式会社 Reflective projection optical system, exposure apparatus having the projection optical system, and device manufacturing method
JP2006245147A (en) * 2005-03-01 2006-09-14 Canon Inc Projection optical system, exposure apparatus, and process for fabricating device
US7973908B2 (en) * 2005-05-13 2011-07-05 Carl Zeiss Smt Gmbh Six-mirror EUV projection system with low incidence angles
JP2008158211A (en) * 2006-12-22 2008-07-10 Canon Inc Projection optical system and exposure device using the same

Also Published As

Publication number Publication date
WO2010052961A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
US11467501B2 (en) Image-forming optical system, exposure apparatus, and device producing method
TWI328719B (en) A sensor for use in a lithographic apparatus
TWI468838B (en) Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type
JP6221160B2 (en) Mirror placement
TW200931061A (en) Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2003233001A (en) Reflection type projection optical system, exposure device, and method for manufacturing device
TWI283798B (en) A microlithography projection apparatus
US9146475B2 (en) Projection exposure system and projection exposure method
CN102870030B (en) Imaging optics, and a projection exposure apparatus for microlithography having such an imaging optics
TW200406593A (en) Projection optical system and exposure device equipped with the projection optical system
TWI701458B (en) Catadioptric optical system, illumination optical system, exposure device and article manufacturing method
TW201018955A (en) Optical imaging system, exposure device and device manufacturing method
JP6365723B2 (en) Reflective imaging optical system, imaging method, exposure apparatus, exposure method, and device manufacturing method
TW200915017A (en) Illumination optical system, illumination optical apparatus, exposure apparatus, and device manufacturing method
TW530335B (en) Image-forming optical system and exposure device equipped therewith
TW200907588A (en) Catoptric reduction projection optical system, exposure apparatus, and method for manufacturing device