TW201017987A - A planar dual-band dipole array antenna - Google Patents

A planar dual-band dipole array antenna Download PDF

Info

Publication number
TW201017987A
TW201017987A TW97141794A TW97141794A TW201017987A TW 201017987 A TW201017987 A TW 201017987A TW 97141794 A TW97141794 A TW 97141794A TW 97141794 A TW97141794 A TW 97141794A TW 201017987 A TW201017987 A TW 201017987A
Authority
TW
Taiwan
Prior art keywords
metal surface
sub
segment
paragraph
branch
Prior art date
Application number
TW97141794A
Other languages
Chinese (zh)
Inventor
Jui-Han Lu
ren-hao Chen
Original Assignee
Univ Nat Kaohsiung Marine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Kaohsiung Marine filed Critical Univ Nat Kaohsiung Marine
Priority to TW97141794A priority Critical patent/TW201017987A/en
Publication of TW201017987A publication Critical patent/TW201017987A/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An Omni-directional planar dual-band dipole array antenna comprises a FR4 substrate, double-edged radiating metal plates and a hold for feeding point. The double-sided radiating metal plates on the FR4 substrate are symmetrical and composed of 1st, 2nd, 3rd, 4th main metal planes and secondary metal planes. The feeding network is composed of 1st to 11th section microstrip lines, 1st, 2nd, 3rd, 4th nodes and branches. The 1st, 2nd, 3rd and 4th secondary metal planes are connected to the 1st, 2nd, 3rd and 4th main metal planes, respectively. The above metal planes are connected to the 1st, 2nd, 3rd, 4th nodes and branches, respectively. And, they are connected to the feeding network 8th, 9th, 10th and 11th section, respectively. The proposed Omni-directional planar dual-band dipole array antenna can be excited to operate at 2.4 / 5 GHz with high peak antenna gain.

Description

201017987 九、發明說明: 【發明所屬之技術領域】 — 本發鶴有關於—種雙頻平面健p車列天線,具有-雙寬頻的操 作頻寬,且在其所有鮮均具有良好的全向性鋪場型與平穩的 . 益特性! u 【先前技術】 1977年’國際電機電子工程師學會(IEEE)正式採用並公佈說^ 為業界第-種無線乙太網路標準;雖然觀u提供多雜作模式,但 資料速率最高只有2 Mbps,因此推出不久後,許多人就開始著手改善 ❹ 其效能’最後產生出802.llb和802.11a兩種互不相容的新標準,而 8〇2.Ug標準則須與8G2.llb標準相容;其中"b”版本頻率範圍和8〇2 u 相=,都使用2.4 GHz的ISM頻帶,"a"版本則是使用5 GHz仏· 頻▼ 802.11b規疋支援CCK編碼’速率5.5和11 Mbps,PBCCTM則 為可選用編碼技術,所使用的Barker編碼與· u完全相同。·⑴ 貝j採用另種夕載波編碼技術,稱為正交分頻彡工技術,最高 提供54 Mbps的資料速率。由於無線區域網路是使用Fcc制定的iw 以下的ISM公用頻帶’以天線收發無線射頻(Rp)技術,串連各項資訊 通,設備,並與有線區域網路連接以進行無線上網,提供一較有彈性 及行動士的上網方式’可為有線網路的延伸或取代。然而,天線增益 值的好壞’蚊著收發距離與㈣訊息是否優良,所以天線的設計與 相畴|±〇 . ^具備&好的全向性轄射場型、高增益等等)就顯得 特別重要’且隨著無線通訊產品的縮小化,因此在天線尺寸的設計上 2開始往縮小化發展,要將天線安裝在通訊產品中,就必須朝結構簡 化、小型化、低姿態的方向來發展丨目前市面上較常見的益線區域 網路ί地台的天線幾乎都是立體金屬棒狀天線,且大多為單頻天線, 、、有著面積過大擺放不易的問題;有鑑於此,為解決以上問題,我 =針對目前市面天_缺點加以改良。當然,目前有很多相關設計 都疋針對提高增益的方法來做討論,而較常見的方法有下述幾種,如: ⑴增力σ天線的尚度(Increasing antenna, s height); (2)増加天線有效的輕射面積(Increasing⑽仿咖,s_); 201017987 (3) 增加寄生平面(with parasitic patch); (4) 介質共振(Dielectric resonator); (5) PBG 結構(Photonic Band-Gap structures); . ⑹八木天線(YAGI antenna)等等方法。 . 而一般為了要縮小天線的尺寸,常用的方法有以下幾種: (1) 在天線的輻縫植人觀(S㈣,或槽縫(Sli棘增加天線表面電 流的電流路徑。 (2) 在天線的輻射體的邊緣與接地面加上一短路金屬片來產生14入 的共振模態。 ⑶在天線中輻射體與接地面間植入短路棒(shortingpin)。 (4) 在天線中輻射體與接地面間植入晶片型電阻(chip _㈣或晶 片型電容(chip capacitor)來替代短路棒(sh〇rtingpin)。 (5) 增加天線所用介質的相對介電係數(relative permittivity) & 如:陶瓷天線。 相關技術例如中華民國專利第200705741號"對數周期偶極陣列天 線(L〇g-Peri〇dicDipoleArrayAntenna)",其揭示利用一種周期式偶極陣 列天線’是由每個單-元件的對數排列方式來達到較高的増益需求. 然而此-設計’在餘上,雜為_,且在_上仍有縮小的空間,。 中華民國專利第廳測號”具寬頻高增益之摺疊式偶極陣列天線", ® 麵示利用摺疊式的偶極元件所組成之陣狀線,是在有限的體積 下’藉由青曲指疊天線的形式來達到縮小化;但如此一來 增加了其在設計上困難度。 ' 此外’中華民國專利第Μ282337號"陣列天線,,,其揭示一種 用偶極元件作為單-元件所組成之_形式的天線,以達到較高的辦 益需求;不過此-設計,實際顧上,可齡因為沒有完全符合亀二 所有頻段規格(IEEE 8〇2.11 a/b/g)的影響,而導致系統不相容等等 題! ... 因在有限的天線尺寸及天線材質的限制下,我們發現上述的方 在目前天線設計應用上並不容易實現。因此我們所提出的雙頻平面偶 極陣列天線是麵發設計郝巾敎—平面式結構改良了立體結構與 201017987 尺寸過大的缺點,所設計的天線主要應用的頻段在2 4、52及5 8 GHz (IEEE 802.11 a/b/g / Bluetooth / HiperLAN);加上陣列形式的天線可以利 用疋件與元件間增益的加乘效果,以明顯的提升增益,並得到一良好 之全向性輻射場型,同時天線製作成本亦大幅降低。 【發明内容】 我們所提出的雙頻平面偶極陣列天線將以一平面式結構改良了立 體、Mf與尺寸過大的缺點’主要細的頻段在2 4、5 2及5.8 GHz (IEEE =2」ll a/b/g / Bluetooth / HiperLAN);且陣列形式的天線可以利用元件 間增益的加乘效果’以明顯的提升增益,並得到—良好之全向 > s t場型’同時天線製作成本亦大巾爾低。以達到天線尺寸縮小化、 兩增益展及全向性的輻射場型之需求。 ❿ 本發明天線之實施例卜包括:_ FR4賴纖維板、雙面輻射金 =-貫孔(作為饋入點)。雙面輕射金屬面(分置於刚玻璃纖維板 Λ細^面)為對稱式結構,其結構上包括(以輻射金屬面(正)為例):饋 至十知',第一節點與分支、第二節點與分支、第三節點 ϋ四段節點與分支;第—子主金屬面、第二子主金屬面、第三 f μ第四子主金屬面及第—子次金屬面、第二子次金屬面、 ii四子次金屬面。該第—子主金屬面、第二子主金 筮-工主金屬面、第四子主金屬面分別連接第一子次金屬面、 接r ιΐ三子次金屬面、第四子次金屬面;之後再分別連 節點與、为支、第二段節點與分支、第三段節點與分支、四段 入網路第八、九、十、十一段,其中第八段、第九 ϊίίϊ相連在其中心連接第四段與第二段;另外第十段、第 “ίίίΐί相連並在其中心連接第五段與第三段;最後第二段 與第二&再透過第—段相連接並在其中心、置人—饋入點。 ’我們可以藉由改變輻射金屬面之主金屬面與次金 頻控制天線在高、低頻的頻率^點,使主要應用的 ϊ 及 (IEEE 8〇2·11 _ / Bluetooth / Η_ΑΝ), 面與次金屬面之長度分別約為〇鳥@ 24孤及〇32 ‘ 錄餹入、外,調整輕射金屬面之四片主金屬面之間距,可調整天 、、’ ’系'統的電流相位,即可得到在所需頻率範圍的良好阻抗匹 8 201017987 配與增益,以達到天線尺寸縮小化、高增益及一良好之全向性輻射場 . 型之需求! 【實施方式】 第1圖與第2圖是本發明天線之一實施例1,包括:一 FR4玻璃 • 纖維板11、雙面輻射金屬面(12'21)及一貫孔31(作為饋入點)。雙面輻 射金屬面(12、21)(分置於FR4玻璃纖維板11的正反兩面),兩輻射金 屬面(12、21)為對稱式結構,其結構上包括(以輻射金屬面12(正)為例): 饋入網路第一 1U、第二段191、第三段192、第四段181、第五段 182、第六段171、第七段Π2、第八段16卜第九段162、第十段163、 參 第十一段164 ;第一段節點Μ卜第二段節點142、第三段節點143、 第四段節點144 ;第一段分支151、第二段分支152、第三段分支153、 第四段分支154 ;第一子主金屬面121、第二子主金屬面122、第三子 主金屬面123、第四子主金屬面124及第一子次金屬面131、第二子次 金屬面132、第三子次金屬面133、第四子次金屬面134。 該第一子主金屬面121、第二子主金屬面丨22、第三子主金屬面 123、第四子主金屬面124分別連接第一子次金屬面131、第二子次金 屬面132、第三子次金屬面133、第四子次金屬面134 ;之後再分別連 接第一段節點14卜第二段節點142、第三段節點143、第四段節點144 與第一段分支151、第二段分支152、第三段分支153、第四段分支154 ; 響 再分別連接饋入網路第八段16卜第九段162、第十段163、第十 一段164,其中第八段16卜第九段162透過第六段171相連並在其中 心連接第四段181與第二段191 ;另外第十段163、第十一段164透過 第七段172相連並在其中心連接第五段182與第三段192;最後第二段 191與第三段192再透過第一段111相連接並在其中心置入一饋入點 3卜 第3圖是本發明天線之一實施例1的電壓駐波比量測結果圖,橫 軸表示操作頻率,本實施例選擇下列尺寸做測試: 第一子主金屬面121、第二子主金屬面122、第三子主金屬面123與第 四子主金屬面124其長度約為22 mm,寬度為9.5 mm ;第一子次金屬 201017987 面131、第二子次金屬面132、第三子次金屬面133與第四子次金屬面 • 134;其長度約為 5 mm,寬度為1 mm。 天線製作材質選用介電常數εΓ = 4.7,厚度為0.8 mm,損耗正切 • Loss tangent = 0.0245,尺寸大小為260 X 25 mm2的FR4玻璃纖維板來 設計,而天線的饋入方式採用100 cm的50Ω Cable Line (RG-174)同轴 饋入線作為信號饋入,如第3圖所示,為所得的測試結果,在2:1 VSWR 反射損失的定義下,其操作範圍在低頻為2389〜2790 MHz,其阻抗頻 寬為401 MHz ;高頻為4855〜6300 MHz,其阻抗頻寬為1445 MHz ; 滿足IEEE 802.11 a/b/g之系統頻寬要求。 第4圖、第5圖與第6圖為本發明天線之一實施例1分別於2450 Φ MHz、5200 MHz與5800 MHz的天線輻射場型量測結果; 其中’在X-Y Plane具有全向性(Omni-directional)的輻射場型,而χ_ζ Plane則具有典型的垂向(Broadside)輻射場型,可看出有些許旁波辦。 第7圖與第8圖分別為本發明天線之上述實施例於其高、低操作 頻帶中之天線增益實驗量測結果;縱軸表示天線增益,橫轴表示操作 頻率,由所得實驗結果,可發現在低頻段峰值增益(Peak Gain)可達7 8 dBl ;而頻段峰值增益(Peak Gain)可達10 dBi,滿足一般無線區域網路 的增益需求。 綜合上述說明,本發明之無線區域網路用雙頻平面偶極陣列天線 φ 具有雙寬頻的操作頻寬,全方向性的輻射場型;此外,不僅製作簡單、 成本低、體積小,及高於一般市售天線的增益(低頻最高可達7 8dBi ; 高頻部分最高可達10 dBi)等的優勢,證明本發明天線之產業應用價值 極高,足以符合發明之範疇。 在上述說明中所敘述之實施例僅為說明本發明裝置之原理及其功 $,而非限制本發明。本發明之權利範圍應如後述之申請專利範圍所 201017987 【圖式簡單說明】 . 第1圖為本發明之全向性雙頻平面偶極陣列天線之一實施例結構圖 (Top View) ° 第2圖為本發明之全向性雙頻平面偶極陣列天線之一實施例結構圖 (Bottom View) ° 第3圖為本發明天線一實施例之電壓駐波比量測結果。 第4圖為本發明天線一實施例操作於2450 MHz之輕射場型量測結果。 第5圖為本發明天線一實施例操作於5200 MHz之輕射場型量測結果。 第6圖為本發明天線一實施例操作於5800MHz之轉射場型量測結果。 第7圖為本發明天線一實施例之天線於低頻段峰值增益量測、纟士果。 第8圖為本發明天線一實施例之天線於高頻段峰值増益量測、纟士果 201017987 【主要元件符號說明】 • 1本發明之無線區域網路用雙頻平面偶極陣列天線一實施例 11 FR4玻璃纖維板 . 12輻射金屬面(正面) 111饋入網路第一段(正面) ' 121輻射金屬面(正)之第一子主金屬面(正面) 122輻射金屬面(正)之第二子主金屬面(正面) 123輻射金屬面(正)之第三子主金屬面(正面) 124輻射金屬面(正)之第四子主金屬面(正面) 131輻射金屬面(正)之第一子次金屬面(正面) ❹ 132輻射金屬面(正)之第二子次金屬面(正面) 133輻射金屬面(正)之第三子次金屬面(正面) 134輻射金屬面(正)之第四子次金屬面(正面) 141連接第一子主金屬面之第一節點(正面) 142連接第二子主金屬面之第二節點(正面) 143連接第三子主金屬面之第三節點(正面) 144連接第四子主金屬面之第四節點(正面) 151連接第一子主金屬面之第一分支(正面) 152連接第二子主金屬面之第二分支(正面) 153連接第三子主金屬面之第三分支(正面) 瘳 154連接第四子主金屬面之第四分支(正面) 161饋入網路第八段(正面) 162饋入網路第九段(正面) 163饋入網路第十段(正面) 164饋入網路第十一段(正面) 171饋入網路第六段(正面) 172饋入網路第七段(正面) 181饋入網路第四段(正面) 182饋入網路第五段(正面) 191饋入網路第二段(正面) 12 201017987 192饋入網路第三段(正面) 21輻射金屬面(反面) 211饋入網路第一段(反面) . 221輻射金屬面(反)之第一子主金屬面(反面) 222輻射金屬面(反)之第二子主金屬面(反面) ' 223輻射金屬面(反)之第三子主金屬面(反面) 224輻射金屬面(反)之第四子主金屬面(反面) 231輻射金屬面(反)之第一子次金屬面(反面) 232輻射金屬面(反)之第二子次金屬面(反面) 233輻射金屬面(反)之第三子次金屬面(反面) φ 234輻射金屬面(反)之第四子次金屬面(反面) 241連接第一子主金屬面之第一節點(反面) 242連接第二子主金屬面之第二節點(反面) 243連接第三子主金屬面之第三節點(反面) 244連接第四子主金屬面之第四節點(反面) 251連接第一子主金屬面之第一分支(反面) 252連接第二子主金屬面之第二分支(反面) 253連接第三子主金屬面之第三分支(反面) 254連接第四子主金屬面之第四分支(反面) 261饋入網路第八段(反面) ® 262饋入網路第九段(反面) 263饋入網路第十段(反面) 264饋入網路第十一段(反面) 2Ή饋入網路第六段(反面) 272饋入網路第七段(反面) 281饋入網路第四段(反面) 282饋入網路第五段(反面) 291饋入網路第二段(反面) 292饋入網路第三段(反面) 31貫孔(饋入點) 13201017987 IX. Description of the invention: [Technical field to which the invention pertains] — This is a dual-frequency plane-p-car antenna with a double-bandwidth operating bandwidth and good omnidirectionality in all its fresh Sex shop type and smooth. Benefits! u [Prior technology] In 1977, the International Institute of Electrical and Electronics Engineers (IEEE) officially adopted and announced that it is the industry's first wireless Ethernet standard; although it provides a multi-hybrid mode, the data rate is only 2 Mbps. So, shortly after the launch, many people started to improve their performance. Finally, the two new standards of 802.11b and 802.11a are incompatible. The 8〇2.Ug standard must be compared with the 8G2.llb standard. The volume range of the "b" version and the 8〇2 u phase= both use the 2.4 GHz ISM band, and the "a" version uses the 5 GHz 仏 802.11b specification to support CCK encoding 'rate 5.5 And 11 Mbps, PBCCTM is an optional coding technology, the Barker code used is exactly the same as · u. · (1) Bay J uses another kind of carrier encoding technology, called orthogonal frequency division completion technology, providing up to 54 Mbps Data rate. Because the wireless local area network is the ISM common frequency band under the iw developed by Fcc, the antenna transmits and receives radio frequency (Rp) technology, connects various information channels, devices, and connects to the wired area network for wireless Internet access. , providing a more Sex and Action's Internet access method can be extended or replaced by a wired network. However, the antenna gain value is good or not, 'the mosquito transmission and reception distance and (4) the message is excellent, so the antenna design and the domain|±〇. & good omnidirectional field type, high gain, etc.) is particularly important' and with the shrinking of wireless communication products, the design of the antenna size began to shrink, and the antenna should be installed. In communication products, it is necessary to develop the structure in a simplified, miniaturized, and low-profile manner. The antennas that are more common in the market today are almost all three-dimensional metal rod antennas, and most of them are single-frequency antennas. Antennas, ,, and the problem that the area is too large to be placed; in view of this, in order to solve the above problems, I = to improve the current market _ shortcomings. Of course, there are many related designs to discuss the method of increasing the gain. The more common methods are as follows: (1) Increasing antenna, s height; (2) Effective light-emitting area of the antenna (Increasing (10) Imitation coffee, s_); 201017987 (3) increase parasitic patch (with parasitic patch); (4) dielectric resonance (Dielectric resonator); (5) PBG structure (Photonic Band-Gap structures); (6) Yagi antenna (YAGI antenna) And other methods. And generally in order to reduce the size of the antenna, the commonly used methods are as follows: (1) in the antenna of the antenna to implant the view (S (four), or slot (Sli spine increases the current path of the antenna surface current. (2) Add a short-circuited metal piece to the edge of the radiator of the antenna and the ground plane to generate a 14-in resonance mode. (3) A shorting pin is implanted between the radiator and the ground plane in the antenna. (4) Insert a chip-type resistor (chip_(4) or chip-type capacitor instead of a short-circuit bar) between the radiator and the ground plane in the antenna. (5) Increase the relative dielectric constant of the medium used for the antenna. (relative permittivity) & Such as: ceramic antenna. Related art such as the Republic of China Patent No. 200705741 "Logarithmic Period Dipole Array Antenna (L〇g-Peri〇dicDipoleArrayAntenna)", which discloses the use of a periodic dipole array antenna 'It is achieved by the logarithmic arrangement of each single-element to achieve higher profit requirements. However, this-design is on the balance, mixed with _, and there is still room for reduction in _. The Republic of China Patent Office No. "Folding Dipole Array Antenna with Wide Frequency and High Gain", the face of a folded dipole element is formed in a limited volume by the form of a curved antenna. To achieve downsizing; but this has increased its difficulty in design. 'In addition, 'Republic of China Patent No. 282337" Array Antenna, which discloses a dipole element as a single-element _ form of antenna to achieve higher demand; but this - design, the actual consideration, age can not fully comply with the requirements of all frequency bands (IEEE 8 〇 2.11 a / b / g), resulting in System incompatibility and so on! ... Due to limited antenna size and antenna material limitations, we found that the above is not easy to implement in current antenna design applications. Therefore, we propose a dual-frequency planar dipole The array antenna is a face-to-face design. The planar structure improves the three-dimensional structure and the size of the 201017987 is too large. The designed antennas are mainly used in the frequency bands of 2, 4, 52 and 5 8 GHz (IEEE 802.11 a/b/g / Bluetooth / HiperLAN); plus the array form of the antenna can take advantage of the gain of the component and the component to significantly increase the gain, and get a good omnidirectional radiation field, while the antenna production cost is also greatly reduced. SUMMARY OF THE INVENTION Our proposed dual-frequency planar dipole array antenna will improve the stereo, Mf and oversize shortcomings in a planar structure. The main fine frequency bands are 2 4, 5 2 and 5.8 GHz (IEEE = 2). Ll / / / / / / / / / / / / / / / It is also low in size. It is required to achieve antenna size reduction, two gain spread and omnidirectional radiation pattern. 实施 The embodiment of the antenna of the present invention includes: _ FR4 Lai fiberboard, double-sided radiation gold =-through hole (as a feed point). The double-sided light-emitting metal surface (separated on the surface of the fiberglass board) is a symmetrical structure, and its structure includes (taking the radiating metal surface (positive) as an example): feeding to the ten-zhi, the first node and the branch , the second node and the branch, the third node, the four nodes and the branch; the first sub-metal surface, the second sub-metal surface, the third f μ fourth sub-metal surface, and the first-sub-metal surface, Two sub-metal faces, ii four sub-metal faces. The first sub-master metal surface, the second sub-master metal-worker metal surface, and the fourth sub-metal surface are respectively connected to the first sub-metal surface, the r ιΐ three-sub-metal surface, and the fourth sub-metal surface Then connect the node and the branch, the second node and the branch, the third node and the branch, and the fourth segment into the eighth, ninth, tenth, and eleventh segments, of which the eighth and the ninth are connected. The fourth segment and the second segment are connected at the center thereof; the tenth segment is connected to the fifth segment and the third segment at the center thereof; the second segment is connected to the second & And at the center, the person-feeding point. 'We can make the main application ϊ and (IEEE 8〇) by changing the main metal surface of the radiating metal surface and the secondary gold frequency control antenna at the high and low frequency frequencies. 2·11 _ / Bluetooth / Η_ΑΝ), the length of the surface and the secondary metal surface are about 〇 @ @ 24 孤 and 〇 32 ' respectively, and the distance between the four main metal faces of the light metal surface is adjusted. Adjust the current phase of the ', system' to get a good resistance in the desired frequency range. Anti-Picture 8 201017987 is equipped with gain to achieve antenna size reduction, high gain and a good omnidirectional radiation field. Type of application! [Embodiment] Figs. 1 and 2 are an embodiment of the antenna of the present invention. 1, including: a FR4 glass • fiberboard 11, double-sided radiation metal surface (12'21) and consistent hole 31 (as a feed point). Double-sided radiation metal surface (12, 21) (divided into FR4 fiberglass board 11 The two sides of the radiating metal surface (12, 21) are symmetrical structures, and the structure includes (taking the radiating metal surface 12 (positive) as an example): feeding the first 1U, the second segment 191 of the network, Third paragraph 192, fourth paragraph 181, fifth paragraph 182, sixth paragraph 171, seventh paragraph Π2, eighth paragraph 16b ninth paragraph 162, tenth paragraph 163, participate in the eleventh paragraph 164; the first paragraph The node includes a second segment node 142, a third segment node 143, and a fourth segment node 144; a first segment branch 151, a second segment branch 152, a third segment branch 153, and a fourth segment branch 154; the first sub-master metal The surface 121, the second sub-master metal surface 122, the third sub-master metal surface 123, the fourth sub-master metal surface 124, the first sub-metal surface 131, and the second sub-metal surface 132. The third sub-metal surface 133 and the fourth sub-metal surface 134. The first sub-master metal surface 121, the second sub-metal surface 22, the third sub-metal surface 123, and the fourth sub-metal surface 124 is respectively connected to the first sub-metal surface 131, the second sub-metal surface 132, the third sub-metal surface 133, and the fourth sub-metal surface 134; and then respectively connected to the first segment node 14 and the second segment node 142 The third segment node 143, the fourth segment node 144 and the first segment branch 151, the second segment branch 152, the third segment branch 153, and the fourth segment branch 154 are respectively connected to the eighth segment 16 of the feed network. Ninth paragraph 162, tenth paragraph 163, tenth paragraph 164, wherein the eighth paragraph 16b ninth paragraph 162 is connected through the sixth paragraph 171 and connects the fourth paragraph 181 and the second paragraph 191 at its center; Segment 163, eleventh segment 164 are connected through seventh segment 172 and connect fifth segment 182 and third segment 192 at its center; finally second segment 191 and third segment 192 are connected through first segment 111 and are The center is placed at a feed point 3. FIG. 3 is a graph showing the measurement results of the voltage standing wave ratio of Embodiment 1 of the antenna of the present invention, and the horizontal axis represents the operating frequency. In this embodiment, the following dimensions are selected for testing: the first sub-master metal surface 121, the second sub-master metal surface 122, the third sub-primary metal surface 123, and the fourth sub-master metal surface 124 have a length of about 22 mm and a width of 9.5. Mm; first sub-metal 201017987 face 131, second sub-metal face 132, third sub-metal face 133 and fourth sub-metal face 134; its length is about 5 mm, width is 1 mm. The antenna is made of FR4 fiberglass with dielectric constant εΓ = 4.7, thickness of 0.8 mm, loss tangent • Loss tangent = 0.0245, size 260 X 25 mm2, and antenna feeding method using 100 cm 50Ω cable. The Line (RG-174) coaxial feed line is fed as a signal. As shown in Figure 3, the resulting test results are at a low frequency of 2389 to 2790 MHz under the definition of 2:1 VSWR reflection loss. Its impedance bandwidth is 401 MHz; the high frequency is 4855~6300 MHz, and its impedance bandwidth is 1445 MHz; it meets the system bandwidth requirements of IEEE 802.11 a/b/g. 4, 5, and 6 are measurement results of antenna radiation pattern measurements of antennas of Embodiment 1 of the present invention at 2450 Φ MHz, 5200 MHz, and 5800 MHz, respectively; wherein 'the omnidirectionality is in XY Plane ( Omni-directional's radiation pattern, while χ_ζ Plane has a typical broadside radiation pattern, which can be seen in some sideways. 7 and 8 are respectively experimental results of antenna gain in the high and low operating bands of the above embodiment of the antenna of the present invention; the vertical axis represents the antenna gain, and the horizontal axis represents the operating frequency, and the obtained experimental result is It is found that the Peak Gain can reach 7 8 dBl in the low frequency band and the Peak Gain can reach 10 dBi in the low frequency band, which satisfies the gain requirement of the general wireless local area network. According to the above description, the dual-frequency planar dipole array antenna φ for the wireless local area network of the present invention has dual wide frequency operation bandwidth and omnidirectional radiation field type; in addition, it is not only simple to manufacture, low in cost, small in size, and high in height. The advantages of the gain of the commercially available antenna (low frequency up to 7 8dBi; high frequency part up to 10 dBi) prove that the industrial application value of the antenna of the invention is extremely high enough to meet the scope of the invention. The embodiments described in the above description are merely illustrative of the principles of the apparatus of the present invention and its function, and are not intended to limit the invention. The scope of the present invention should be as described in the following patent application scope 201017987 [Simplified description of the drawings]. Fig. 1 is a structural view of an embodiment of an omnidirectional dual-frequency planar dipole array antenna of the present invention (Top View) 2 is a block diagram of an embodiment of an omnidirectional dual-frequency planar dipole array antenna of the present invention. FIG. 3 is a measurement result of a voltage standing wave ratio of an antenna according to an embodiment of the present invention. Figure 4 is a light shot field type measurement result of an embodiment of the antenna of the present invention operating at 2450 MHz. Figure 5 is a light shot field measurement result of an embodiment of the antenna of the present invention operating at 5200 MHz. Figure 6 is a measurement result of a rotating field type operation of the antenna of the present invention operating at 5800 MHz. Figure 7 is a diagram showing an antenna of an embodiment of the antenna of the present invention in a low-band peak gain measurement and a gentleman. FIG. 8 is a diagram showing an example of an antenna of an antenna according to an embodiment of the present invention in a high-band peak benefit measurement, a gentleman's fruit 201017987. [Main component symbol description] 1. An embodiment of a dual-band planar dipole array antenna for a wireless local area network according to the present invention 11 FR4 fiberglass board. 12 radiating metal surface (front) 111 feeding into the first section of the network (front) '121 radiating metal surface (positive) first sub-metal surface (front) 122 radiating metal surface (positive) The second sub-metal surface (front side) 123 the third main metal surface of the metal surface (positive) (front) 124 the fourth main metal surface of the metal surface (positive) (front) 131 radiating metal surface (positive) The first sub-metal surface (front) ❹ 132 the second metal surface of the metal surface (positive) (front) 133 the third metal surface of the metal surface (positive) (front) 134 the metal surface (positive) The fourth sub-metal surface (front surface) 141 is connected to the first node of the first sub-master metal surface (front surface) 142 is connected to the second node of the second sub-metal surface (front surface) 143 is connected to the third sub-metal surface The third node (front side) 144 is connected to the fourth node of the fourth sub-metal surface (front side) 151 The first branch of the first sub-master metal surface (front side) 152 is connected to the second branch of the second sub-master metal surface (front side) 153 is connected to the third branch of the third sub-master metal surface (front side) 瘳 154 is connected to the fourth sub-master The fourth branch of the metal surface (front) 161 is fed into the network segment 8 (front) 162 is fed into the network segment IX (front) 163 feeds into the network segment 10 (front) 164 feeds into the network eleventh Segment (front) 171 feeds the network segment 6 (front) 172 feeds the network segment 7 (front) 181 feeds the network segment 4 (front) 182 feeds the network segment 5 (front) 191 feed The second section of the network (front) 12 201017987 192 feeds into the third section of the network (front) 21 radiated metal surface (reverse) 211 feeds into the first section of the network (reverse). 221 radiated metal surface (reverse) One sub-metal surface (reverse surface) 222 radiates metal surface (reverse) second sub-master metal surface (reverse surface) '223 radiant metal surface (reverse) third sub-master metal surface (reverse surface) 224 radiated metal surface (reverse) The fourth sub-metal surface (reverse surface) 231 radiates the metal surface (reverse) of the first sub-metal surface (reverse surface) 232 radiates the metal surface (reverse) of the second sub-metal surface (reverse surface) 233 radiation The third sub-metal surface of the fascia (reverse) φ 234 radiates the metal surface (reverse) of the fourth sub-metal surface (reverse surface) 241 connects the first sub-metal surface of the first node (reverse surface) 242 connection The second node (reverse surface) 243 of the second sub-master metal surface is connected to the third node (reverse surface) of the third sub-master metal surface 244 is connected to the fourth node (reverse surface) of the fourth sub-master metal surface 251 is connected to the first sub-master metal The first branch of the face (reverse face) 252 connects the second branch of the second sub-master metal face (reverse face) 253 connects the third branch of the third sub-master metal face (reverse face) 254 connects the fourth branch of the fourth sub-master metal face (reverse) 261 feeds into the network segment 8 (reverse) ® 262 feeds the network segment IX (reverse) 263 feeds the network segment 10 (reverse) 264 feeds into the network segment 11 (reverse) 2Ή Feeding the network segment 6 (reverse) 272 feeding the network segment 7 (reverse) 281 feeding the network segment 4 (reverse) 282 feeding the network segment 5 (reverse) 291 feeding the network second Segment (reverse) 292 feeds into the third segment of the network (reverse) 31 through hole (feeding point) 13

Claims (1)

201017987 十、申請專利範圍: • 1.一種全向性雙頻平面偶極陣列天線,包括: 一 FR4玻璃纖維板、雙面輻射金屬面及一貫孔(作為饋入點)。雙面 . 輻射金屬面(分置於FR4玻螭纖維板的正反兩面),兩輻射金屬面為 . 對稱式結構’其結構上包括(以輻射金屬面(正)為例): 饋入網路第一段、第二段、第三段、第四段、第五段、第六段、第 七段、第八段、第九段、第十段、第十一段; 第一段節點、第二段節點、第三段節點、第四段節點; 第一段分支、第二段分支、第三段分支、第四段分支; ❷第一子主金屬面、第二子主金屬面、第三子主金屬面、第四子主金 屬面及第一子次金屬面、第二子次金屬面、第三子次金屬面、第四 子次金屬面。該第一子主金屬面、第二子主金屬面、第三子主金屬 面、第四子主金屬面分別連接第一子次金屬面、第二子次金屬面、 第三子次金屬面、第四子次金屬面; 之後再分別連接第一段節點、第二段節點、第三段節點、第四段節 點與第一段分支、第二段分支、第三段分支、第四段分支; 再分別連接饋入網路第八段、第九段、第十段、第十一段,其中第 八段、第九段透過第六段相連並在其中心連接第四段與第二段; 另外第十段、第十一段透過第七段相連並在其中心連接第五段與第 ❹ 三段; 最後第二段與第三段再透過第一段相連接並在其中心置入一饋入 點。 2. 如申請專利範圍第1項所述之全向性雙頻平面偶極陣列天線,其該 饋入點大致位於該天線之幾何中心。 3. 如申請專利範圍第1項所述之全向性雙頻平面偶極陣列天線,其各 段饋入網路設計之形狀、參數與連結結構大致相同。 4. 如申凊專利範圍第1項所述之全向性雙頻平面偶極陣列天線,其雙 面輻射金屬面中之主金屬片與次金屬片之形狀與對稱方式所組成之 一族群結構大致相同。201017987 X. Patent application scope: • 1. An omnidirectional dual-frequency planar dipole array antenna, including: an FR4 fiberglass board, double-sided radiating metal surface and consistent holes (as feed points). Double-sided. Radiant metal surface (on both sides of FR4 glass fiberboard), two radiating metal surfaces. Symmetrical structure's structure includes (radiation metal surface (positive) as an example): Feeding into the network The first paragraph, the second paragraph, the third paragraph, the fourth paragraph, the fifth paragraph, the sixth paragraph, the seventh paragraph, the eighth paragraph, the ninth paragraph, the tenth paragraph, the eleventh paragraph; a second segment node, a third segment node, and a fourth segment node; a first segment branch, a second segment branch, a third segment branch, and a fourth segment branch; ❷ a first sub-metal surface, a second sub-metal surface, The third sub-master metal surface, the fourth sub-primary metal surface, the first sub-metal surface, the second sub-metal surface, the third sub-metal surface, and the fourth sub-metal surface. The first sub-metal surface, the second sub-metal surface, the third sub-metal surface, and the fourth sub-metal surface are respectively connected to the first sub-metal surface, the second sub-metal surface, and the third sub-metal surface And the fourth sub-metal surface; then connecting the first segment node, the second segment node, the third segment node, the fourth segment node and the first segment branch, the second segment branch, the third segment branch, and the fourth segment respectively Branch; respectively, connected to the eighth, ninth, tenth, and eleventh segments of the feed network, wherein the eighth and ninth segments are connected through the sixth segment and connected to the fourth segment and the second at the center thereof. The other tenth and tenth paragraphs are connected through the seventh paragraph and connect the fifth and third paragraphs at their centers; the second and third paragraphs are connected through the first paragraph and placed at the center Enter a feed point. 2. The omnidirectional dual-frequency planar dipole array antenna of claim 1, wherein the feed point is located substantially at a geometric center of the antenna. 3. For the omnidirectional dual-frequency planar dipole array antenna described in claim 1, the shape, parameters and connection structure of each segment feeding network design are substantially the same. 4. The omnidirectional dual-frequency planar dipole array antenna according to claim 1, wherein the main metal piece and the sub-metal piece in the double-sided radiating metal surface form a group structure of a shape and a symmetrical manner Roughly the same.
TW97141794A 2008-10-30 2008-10-30 A planar dual-band dipole array antenna TW201017987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97141794A TW201017987A (en) 2008-10-30 2008-10-30 A planar dual-band dipole array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97141794A TW201017987A (en) 2008-10-30 2008-10-30 A planar dual-band dipole array antenna

Publications (1)

Publication Number Publication Date
TW201017987A true TW201017987A (en) 2010-05-01

Family

ID=44831035

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97141794A TW201017987A (en) 2008-10-30 2008-10-30 A planar dual-band dipole array antenna

Country Status (1)

Country Link
TW (1) TW201017987A (en)

Similar Documents

Publication Publication Date Title
CN102299418B (en) Multilayer broadband microstrip antenna
US7202818B2 (en) Multifrequency microstrip patch antenna with parasitic coupled elements
US6906678B2 (en) Multi-frequency printed antenna
CA2596545C (en) Fractal dipole antenna
TWI376838B (en) Single-layer metallization and via-less metamaterial structures
CN105896091A (en) Miniaturized broadband high-gain circular polarized microstrip antenna
TWI245454B (en) Low sidelobes dual band and broadband flat endfire antenna
TW200919826A (en) Antenna structure and antenna radome thereof
WO2007066327A1 (en) Fractal monopole antenna
JP2016524414A (en) Broadband dual-polarization 4-leaf clover planar antenna
KR100601730B1 (en) Multiple Meander Strip Monopole Antenna with Broadband Characteristic
CN101479882A (en) Embedded multi-mode antenna architectures for wireless devices
TW200405613A (en) Broadband couple-fed planar antennas with coupled metal strips on the ground plane
CN101488604A (en) Composite fractal antenna comprising two fractals
KR20090028355A (en) Single feed wideband circular polarized patch antenna
CN109768380A (en) Ultralow section paster antenna, wireless communication system based on three mould resonance
CN104409841B (en) A kind of wide-band slot antenna
CN102904011A (en) Balance microstrip line transition full-mode dual-ridged integrated waveguide feed dipole printed antenna
US20200058999A1 (en) Method and arrangement for an elliptical dipole antenna
Sarkar et al. Multiband miniaturised fractal antenna for mobile communications
CN107181067A (en) Omni-directional antenna arrays
CN101707284B (en) LTCC electrically small integrated antenna for radio-frequency front-end system
TW200913375A (en) Wideband co-planar waveguide feeding circularly polarized antenna
TW201017987A (en) A planar dual-band dipole array antenna
CN201741806U (en) Low temperature co-fired ceramic (LTCC) electric small-integrated antenna for radio frequency (RF) front end system