TW201017914A - Flexible thin film photovoltaic modules and manufacturing the same - Google Patents

Flexible thin film photovoltaic modules and manufacturing the same Download PDF

Info

Publication number
TW201017914A
TW201017914A TW098126994A TW98126994A TW201017914A TW 201017914 A TW201017914 A TW 201017914A TW 098126994 A TW098126994 A TW 098126994A TW 98126994 A TW98126994 A TW 98126994A TW 201017914 A TW201017914 A TW 201017914A
Authority
TW
Taiwan
Prior art keywords
solar cell
module
sealant
protective sheet
moisture
Prior art date
Application number
TW098126994A
Other languages
Chinese (zh)
Inventor
Bulent M Basol
Original Assignee
Solopower Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/189,627 external-priority patent/US8207440B2/en
Priority claimed from US12/250,507 external-priority patent/US20100031996A1/en
Application filed by Solopower Inc filed Critical Solopower Inc
Publication of TW201017914A publication Critical patent/TW201017914A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A continuous flexible sheet for use in fabricating flexible solar cell modules is provided. The continuous flexible sheet includes an elongated protective sheet having a front surface and a back surface. The back surface includes at least two barrier regions and an at least one separation region. At least two moisture barrier layers attached to the at least two barrier regions. The at least one separation region surrounds and physically separates the at least two barrier layers attached to the at least two barrier regions.

Description

201017914 六、發明說明: 【發明所屬之技術領域】 本發明之該等態樣及優點一般而言係關於光電或太陽 . ... .... . ... -.. . . - 能模組設計及製造的裝置及方法,且更特定而言之,係 關於用於使用薄膜太陽能電池之撓性模組的卷對卷或連 續封裝技術。 ❹ 【先前技術】 太陽能電池係光電裝置,其將太陽光直接轉換成電功 率。最常見之太陽能電池材料為矽,其係為單一或多晶 晶圓之形式。然而,使用矽^{太陽能電池來產生電力的 成本高於以該等較傳統方法來產生電力的成本。因此 自1970年代初期起即不斷致力於減低在陸地上使用 陽能電池之成本。減低太陽能電池之該成本的一種方 為開發低成本薄膜生長技術,其可在大面積之基板上 積太陽能電池品質之吸收體材料,以及使用高產量、 成本方法來製造該等裝置。 包含週期表中1B族(銅、銀、金)、ΠΙΑ族(棚、銘、録 銦、蛇)及VIA族(氧、硫、碼、碲、針)材料或元素中 一些的IBIIIAVIA族化合物半導體係用於薄膜太陽能 池結構之極佳的吸收體材料。特別是,通常稱之 201017914 CIGS(S)的銅、銦、嫁、砸及硫之化合_物,或是 Cu(In,Ga)(S,Se)2 或 CuInbxGax (SySebyh(其中 , OSySl及k約為2)其已應用在可產生轉換效率達20%的 . . ..... ' . . . . ' 太陽能電池結構中。因此,總結來說,包含:i)IB族之 銅’ ii)IIIA族之銦、鎵,及鋁中之至少一個,及Η〇νΐΑ • 族之硫 '砸,及錄中之至少一個的化合物係太陽能電池 • 應用中所極感興趣的。應注意雖然CIGS(S)之化學式通 φ 常寫成CuGi^GaXSJe)2 ’但該化合物之一更正;g|的化學 式為Cu(In,Ga)(S,Se)k ’其中k通常接近2,但可能並非 剛好為2。為簡化而言,該k值將以2表示。進一步地 應注意在該化學式中之該記號「Cu(X,Y)」係指從(χ = 〇% 及Υ=100%)至(χ.= 1〇〇°/。及γ=〇%)之所有的X及Υ化學組 成。例如:Cu(In,Ga)係指由Culn至CuGa之所有組成。 同樣地’ Cu(In,Ga)(S,Se)2係指具Ga/(Ga+In)莫耳比由〇 • 至1變化且Se/(Se+s)莫耳比由〇至1變化之整個家族的 化合物。 第1圖顧示一習知之IBIIIAVIA族化合物光電電池的 結構’像是一 Cu(In,Ga,Al)(S,Se,Te)2薄臈太陽能電池。 一光電電池10係在一基板11上製造,像是:一片玻璃、 一片金屬、一絕緣箱或網,或是一導電箔或網。包括在 Cu(In,Ga,Al)(S,Se,Te)2之該家族中之一材料的一吸收體 膜12在一導電層13或接觸層上生長,其係事先在該基 201017914 板11上沈積’且其作為至該裝置之該電接觸。該基板 11及該導電層13形成一基部20,該吸收體膜12於其上 形成。包含鉬、钽、鎢、鈦及其氮化物的各種導電層已 在第1圖之該太陽能電池結構中使用。若該基板本身係 一經適當地選擇之導電材料’其可能不須使用該導電層 13,因為該基板11之後可用來作為該裝置之該歐姆接 • 觸。在生長該吸收體膜12後,像是一硫化鎘(cdS)、氧 ❹ 化鋅(ZnO)、硫化鎘/氧化鋅(CdS/ZnO)或硫化鎘/氧化辞/ 氧化銦錫(CdS/ZnO/ITO)之堆叠的一透明層14於該吸收 體膜12上形成。輻射15經由該透明層14進入該裝置。 也可在該透明層14上沈積金屬格柵(未示出)以減低該裝 置之該有效串聯電阻。該吸收體膜12之較佳電類型為p 型,且該透明層14之較佳電類型為η型。然而,也可使 用一 η型吸收體及一 ρ型窗口層。第丨圖之該較佳裝置 參 結構稱為一「基板型」結構。一「基板型」結構之建構 * 也可藉由在一透明頂置板(像是:玻璃或透明聚合箱)上 沈積一透明導電層,然後沈積該Cu(In,Ga,Al)(S,Se,Te)2 吸收體膜,最後以一導電層形成至該裝置的一歐姆接 觸。在此頂置板結構中,光自該透明頂置板側進入該裝 置。.. • · . . . . 有兩種用來製造PV模組的不同方法。在可應甩至薄 膜碲化録(CdTe)、非晶性矽及CIGS技術之一方法中,該 201017914 等太陽能電池係在一絕緣基板(像是玻璃)上沈積或形 成,該基板也可作為一後方保護片或一前方保護片,分 別依照該裝置是否為Γ基板型」或「頂置板型」而定。 在此例中’當該等太陽能電池在該基板上沈積時其係電 互連的。換句話說,當形成該等太陽能電池時其係以單 -晶體式積體在該單件式基板上。該等模組係單晶體積體 -結構。對於CdTe薄膜技術而言’該頂置板係玻璃,其也 φ 係用於該單晶體積體模組的該前保護片。在CIGS技術 中,該基板係玻璃或聚醯亞胺,並作為該單晶體積髅模 組的該後保護片。在單晶體積體模組結構中,將已在該 基板或頂置板上積體並串聯地電互連的太陽能電池形成 後,將一囊封材料放置在該積體模組結構之上,並將一 保護片貼附至該囊封材料上。一邊緣密封也可沿著該模 組之邊緣形成以避免水蒸氣或液體經由該邊緣穿透進入 參 該單晶體積禮模組結構内。 在標準矽模組技術中,以及對於在導電基板(像是:鋁 或不鏽鋼箔)上製造之CIGS及非晶性矽電池而言,該等 太陽能電池並非在該保護片上沈積或形成、其係分開製 造的,然後該等製成之太陽能電池藉由將其串接或將其 以板覆蓋來電互連以形成太陽能電池串。在該串接或覆 板程序中,一電池之該(+)端通常電連接至該鄰近裝置之 該㈠端。對於第1圖所示之該IBIIIAVIA族化合物太陽 201017914201017914 VI. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The aspects and advantages of the present invention relate generally to optoelectronic or solar. ..... The apparatus and method of designing and manufacturing, and more particularly, the roll-to-roll or continuous packaging technique for flexible modules using thin film solar cells. ❹ [Prior Art] A solar cell photovoltaic device that converts sunlight directly into electrical power. The most common solar cell material is germanium, which is in the form of a single or polycrystalline wafer. However, the cost of using 太阳能^{solar cells to generate electricity is higher than the cost of generating electricity in these more conventional methods. Therefore, since the early 1970s, efforts have been made to reduce the cost of using solar cells on land. One way to reduce this cost of solar cells is to develop low cost thin film growth techniques that can stack solar cell quality absorber materials over large areas of substrates and use high throughput, cost methods to fabricate such devices. IBIIIAVIA compound semiconductors containing some of the materials or elements of Group 1B (copper, silver, gold), samarium (shed, Ming, recorded indium, snake) and VIA (oxygen, sulfur, code, yttrium, needle) It is an excellent absorber material for thin film solar cell structures. In particular, it is commonly referred to as 201017914 CIGS(S) for the combination of copper, indium, marry, tantalum and sulfur, or Cu(In,Ga)(S,Se)2 or CuInbxGax (SySebyh (where OSySl and k Approx. 2) It has been applied to solar cell structures that can produce conversion efficiencies of up to 20%. Therefore, in summary, it contains: i) Copper of the IB family' ii At least one of Group IIIA indium, gallium, and aluminum, and Η〇νΐΑ • Group of sulfur '砸, and at least one of the compounds listed in the solar cell are of great interest in applications. It should be noted that although the chemical formula φ of CIGS(S) is often written as CuGi^GaXSJe)2' but one of the compounds is corrected; the chemical formula of g| is Cu(In,Ga)(S,Se)k ' where k is usually close to 2, But it may not be exactly 2. For simplicity, the k value will be represented by 2. It should be further noted that the symbol "Cu(X, Y)" in the chemical formula means from (χ = 〇% and Υ = 100%) to (χ.= 1〇〇°/. and γ=〇%) All of the X and bismuth chemical compositions. For example, Cu(In, Ga) means all the compositions from Culn to CuGa. Similarly, 'Cu(In,Ga)(S,Se)2 means that the Ga/(Ga+In) molar ratio varies from 〇• to 1 and the Se/(Se+s) molar ratio varies from 〇 to 1 The entire family of compounds. Fig. 1 shows a structure of a conventional IBIIIAVIA compound photovoltaic cell, which is like a Cu(In, Ga, Al) (S, Se, Te) 2 thin tantalum solar cell. A photovoltaic cell 10 is fabricated on a substrate 11 such as a piece of glass, a piece of metal, an insulating box or mesh, or a conductive foil or mesh. An absorber film 12 comprising one of the materials of the family of Cu(In,Ga,Al)(S,Se,Te) 2 is grown on a conductive layer 13 or a contact layer, which is previously in the base 201017914 11 is deposited 'and it acts as the electrical contact to the device. The substrate 11 and the conductive layer 13 form a base portion 20 on which the absorber film 12 is formed. Various conductive layers comprising molybdenum, niobium, tungsten, titanium and their nitrides have been used in the solar cell structure of Figure 1. If the substrate itself is a suitably selected conductive material' it may not be necessary to use the conductive layer 13, since the substrate 11 can then be used as the ohmic contact of the device. After the growth of the absorber film 12, it is like cadmium sulfide (cdS), zinc oxynitride (ZnO), cadmium sulfide/zinc oxide (CdS/ZnO) or cadmium sulfide/oxidized/indium tin oxide (CdS/ZnO). A transparent layer 14 of a stack of /ITO) is formed on the absorber film 12. Radiation 15 enters the device via the transparent layer 14. A metal grid (not shown) may also be deposited over the transparent layer 14 to reduce the effective series resistance of the device. The preferred electrical type of the absorber film 12 is p-type, and the preferred electrical type of the transparent layer 14 is n-type. However, an n-type absorber and a p-type window layer can also be used. The preferred device structure of the first diagram is referred to as a "substrate type" structure. The construction of a "substrate type" structure can also be performed by depositing a transparent conductive layer on a transparent overhead plate (such as a glass or transparent polymerization box) and then depositing the Cu (In, Ga, Al) (S, Se, Te) 2 absorbs the body film and finally forms a ohmic contact to the device with a conductive layer. In this overhead plate structure, light enters the device from the side of the transparent top plate. .. • . . . . There are two different methods for making PV modules. In one of the methods of CdTe, amorphous germanium and CIGS, the solar cell of 201017914 is deposited or formed on an insulating substrate (such as glass), and the substrate can also be used as A rear protective sheet or a front protective sheet is determined according to whether the device is a substrate type or a top plate type. In this case, the solar cells are electrically interconnected when they are deposited on the substrate. In other words, when the solar cells are formed, they are monolithically integrated on the one-piece substrate. These modules are single crystal volume bodies - structures. For the CdTe thin film technology, the overhead glass is also used for the front protective sheet of the single crystal bulk module. In the CIGS technique, the substrate is glass or polyimide, and serves as the rear protective sheet of the single crystal volume mold group. In the single crystal volume module structure, after a solar cell that has been integrated and electrically interconnected on the substrate or the top plate is formed, an encapsulating material is placed on the integrated module structure. A protective sheet is attached to the encapsulating material. An edge seal can also be formed along the edge of the mold to prevent water vapor or liquid from penetrating through the edge into the single crystal volume module structure. In standard 矽 module technology, and for CIGS and amorphous 矽 batteries fabricated on conductive substrates (such as aluminum or stainless steel foil), the solar cells are not deposited or formed on the protective sheet, Separately manufactured, the fabricated solar cells are then interconnected by wire-bonding them or by boarding them to form a solar cell string. In the series or overlay process, the (+) terminal of a battery is typically electrically coupled to the (one) end of the adjacent device. For the IBIIIAVIA family compound sun shown in Figure 1 201017914

能電池,若該基板u㈣電性的,像是m則該 基板(其係該電池之該下方接觸)建構該裝置之該⑴端。 在該透明層上沈積之該金屬格柵(未示出)係該裝置之 該上方接觸並建構該電池之該㈠端。在覆板程序中,將 個別之電池以一交錯方式放置,因此一電池之一下方表 面(即:該(+)端)構成對一鄰近電池之一上方表面(即卜該 ㈠端)的直接實體及電接觸。因此’在兩覆板電池間沒有 間隙》串接通常係藉由並排地放置該等電池且在該等電 池間有一小間隙,並使用導電線或導電帶,其連接一電 池之該(+)端至一鄰近電池之該㈠端。將藉由串接或覆板 個別之太陽能電池而得的太陽能電池串互連以形成電 路。然後,可將電路封裝在保護封裝内以形成模組。每 一模組一般而言包括彼此電連接的複數個太陽能電池 串。該等太陽能模組係使用各種封裝材料建構以在該等 太陽能電池内機械地支撐並保護該等太陽能電池不受機 械性損害》該最常見之封裝技術包含在透明囊封材料中 之電路的疊層。一般來說,在一疊層程序中,該等電互 連太陽能電池係以一透明及撓性囊封層覆蓋,其填滿該 等電池間之任何中空空間,並緊密地將其密封在一模組 結構内,較隹地將其表面皆覆蓋。可使甩各種材料作為 囊封材料’對於封裝太陽能電池模組而言,該尊材料係 像疋·乙稀醋酸乙烯:醋(ethylene vinyl, acetate,EVA).共,聚 201017914 物、熱塑性聚胺酯(thermoplastic p〇lyurethanes,τρυ), 及矽樹脂。然而,一般來說,此等囊封材料係濕氣可滲 透的;因此’其必須進一步地以一保護殼對該環境密封, 其形成濕氣穿透進該模組封裝内的阻力。該保護殼之特 性決定可進入該封裝的水量。該保護殼包括一前保護片 及一後保護片,以及視情況包括在該模組結構之該周界 處的一邊緣密封劑(參見例如··公開申請案 ❹ WO/2003/050891「密封薄膜PV模組」)。該上保護片通 常係玻璃,其係水不可滲透的。該後保護片可以是一片 玻璃或聚合片,像是:TEDLAR®(杜邦公司產品)。該後 保護聚合片在其結構中可或可不具n氣阻障層像 是:如一鋁膜之一金屬膜。光經由該前保護片進入該模 組。目前用在具玻璃/玻璃結構之該薄臈碲化鎘模組中的 該邊緣密封劑係可能為一黏滯流體之形式的一濕氣阻障 籲材料,其可由-喷嘴分散至該模組結構之該周圍邊緣, 或是可能為-帶之形式’其可應用在該模組結構之該周 圍邊緣。在矽基模組中之該邊緣密封劑不在該等上保護 片及下保護片之間’而是在貼附於該模組之邊緣上的該 框架中。用於矽型模組之邊緣密封的濕氣祖障特性不適 用於其後將討論的CIGS型模組β 可使用撓性CIGS或非晶性矽太陽能電池來建構撓性 模組結構。撓性模組係輕量化的,且不像該等標準之破 201017914 璃型矽太陽能模組,其係不可打破的。因此,用於撓性 模組之封裝及運輸成本大為降低。然而,撓性結構之封 裝係較具挑戰性的。用在玻璃型PV模組製造之玻璃處 理叹備已由許多设備供應者完全地發展。撓性片之處理 不能使用此種標準設備來實行《可將建構在該撓性棋組 結構中之各穰層的該等撓性片切割成接近該模組之所需 ' 面積的大小’然後該等標準模組囊封程序可藉由處理並 . 到處移動該等片來實行。吾人需要一種用於撓性模組製 造之較容易製造的方法,以增加此等模組之可靠性並減 低其製造成本。美國專利第4746618、4773944、5131954、 5968287、5457057及5273608號描述一些用於撓性非晶 性矽型裝置製造的先前技術處理方法。 【發明内容】 本發明之該等態樣及優點一般而言係關於光電或太陽 能模組設計及製造的裝置及方法,且更特定而言之,係 關於用於利用薄膜太陽能電池之撓性模組的卷對卷或連 續封裝技術.。 一特定實施例中提供一種裝置,其包含:一連續撓性 片’其用來製造撓性太陽能模組,該連續撓性片包括: ..一前表_面:及一後表面,該前表面及該後表.面.之一 _包括至_ 少兩個濕氣阻障區域及一分隔區域,其中該分隔區域圍 201017914 繞每一濕氣阻障區域並實體上分隔鄰近之濕氣阻障區 域;及一濕氣阻障層,其在每一該等濕氣阻障區域上但 不在該分隔區域上形成。 在另一實施例中描述一單晶體積體多模組功率供應, 該單晶體積體多模組功率供應包括濕氣阻障層,其覆蓋 複數個密封室之每一室的每一該等天花板上,該等密封 至固持電互連之兩個太陽能電池。 _ 在進一步之實施例中描述製造一光電模組的方法。 【實施方式】 在此描述之該等較佳實施例提供製造繞性光電模組的 方法,其使用薄膜IBIIIAVIA族化合物太陽能電池。該 等模組每一個包括一抗濕氣保護殼,撓性互連太陽能電 池或電池串係被封裝並保護在該抗潮保護殼中。該保護 ❹ 殼包含一濕氣阻障上保護片,光可經由該濕氣阻障上保 護片進入該模組,並包含一濕氣阻障下保護片、一支撐 材料或覆蓋每一電池或電池串之一前侧及一後側中之至 少一個的囊封材枓?該支撐材料較佳地可用來完全地囊 封每一太陽能電池及每一串、上方及下方。此外,該保 護殼還包含一濕氣密封劑,其放置在該上保護片及該下 保護片之間沿著該模組之周圍處,並形成—阻障以避免 濕氣由該邊緣區域沿著該模組之周圍自外界進入該保護 201017914 殼内。不像在非晶切型撓性模組般,本模組之該上保 護片及該下保護片具有少於w克/平方公尺/天(較佳地 係少於5省4克坪方公尺/天)的—濕氣穿透率。此外, 具類似之濕氣阻陣特性的一濕氣密封劑。A battery, if the substrate u (four) is electrically, such as m, the substrate (which is in contact with the lower side of the battery) constructs the (1) end of the device. The metal grid (not shown) deposited on the transparent layer contacts the top of the device and constructs the (one) end of the cell. In the superimposing process, individual batteries are placed in a staggered manner, so that the lower surface of one of the batteries (ie, the (+) end) constitutes a direct surface to one of the adjacent cells (ie, the (one) end) Physical and electrical contact. Therefore, 'without gaps between the two stacked battery cells' is usually connected by placing the batteries side by side and having a small gap between the batteries, and using a conductive wire or a conductive tape, which is connected to a battery (+) End to the (one) end of a neighboring battery. The solar cell strings obtained by serially or superimposing individual solar cells are interconnected to form a circuit. The circuit can then be packaged in a protective package to form a module. Each module generally includes a plurality of solar cell strings electrically connected to each other. The solar modules are constructed using a variety of packaging materials to mechanically support and protect the solar cells from mechanical damage within the solar cells. The most common packaging technique involves the stacking of circuits in a transparent encapsulating material. Floor. Generally, in a lamination process, the electrically interconnected solar cells are covered by a transparent and flexible encapsulation layer that fills any hollow spaces between the cells and tightly seals them together. Within the module structure, the surface is covered more sturdyly. The various materials can be used as the encapsulating material. For packaging solar cell modules, the material is like ethylene vinyl acetate (EVA). A total of 201017914, thermoplastic polyurethane ( Capillary p〇lyurethanes, τρυ), and bismuth resin. However, in general, such encapsulating materials are moisture permeable; therefore, they must be further sealed to the environment by a protective shell that forms the resistance of moisture to penetrate into the module package. The nature of the protective casing determines the amount of water that can enter the package. The protective case includes a front protective sheet and a rear protective sheet, and optionally an edge sealant at the perimeter of the module structure (see, for example, the published application WO/2003/050891 "Seal film PV module"). The upper protective sheet is typically a glass that is water impermeable. The rear protective sheet can be a piece of glass or a polymeric sheet, such as: TEDLAR® (product of DuPont). The post-protective polymeric sheet may or may not have an n-gas barrier layer in its structure: a metal film such as an aluminum film. Light enters the module via the front protective sheet. The edge sealant currently used in the thin cadmium telluride module having a glass/glass structure may be a moisture barrier material in the form of a viscous fluid that can be dispersed by the nozzle to the module The peripheral edge of the structure, or possibly in the form of a band, can be applied to the peripheral edge of the module structure. The edge sealant in the base module is not between the upper and lower protective sheets but in the frame attached to the edge of the module. The moisture apex barrier properties for the edge seal of the 矽-type module are not suitable for the CIGS-type module β which will be discussed later. Flexible CIGS or amorphous 矽 solar cells can be used to construct the flexible module structure. The flexible modules are lightweight and do not break through the 201017914 glass-type solar modules. As a result, the cost of packaging and shipping for flexible modules is greatly reduced. However, the packaging of flexible structures is more challenging. Glass sighs made with glass-type PV modules have been completely developed by many equipment suppliers. The handling of flexible sheets cannot be performed using such standard equipment to "cut the flexible sheets of the layers of the layers built into the flexible structure into the size required for the module" and then These standard module encapsulation procedures can be implemented by processing and moving the pieces around. We need an easier method of manufacturing flexible module manufacturing to increase the reliability of these modules and reduce their manufacturing costs. Some prior art processing methods for the manufacture of flexible amorphous tantalum devices are described in U.S. Patent Nos. 4,746,618, 4,773,944, 5,131,954, 5,968,287, 5,457,057, and 5,273,608. SUMMARY OF THE INVENTION The aspects and advantages of the present invention are generally directed to apparatus and methods for the design and manufacture of optoelectronic or solar modules, and more particularly to flexible molds for use with thin film solar cells. Group of roll-to-roll or continuous packaging technologies. A particular embodiment provides a device comprising: a continuous flexible sheet for manufacturing a flexible solar module, the continuous flexible sheet comprising: a front surface and a rear surface, the front One of the surface and the back surface. The surface includes one to two less moisture barrier regions and a separation region, wherein the separation region surrounds 201017914 around each moisture barrier region and physically separates the adjacent moisture resistance a barrier region; and a moisture barrier layer formed on each of the moisture barrier regions but not on the separation region. In another embodiment, a single crystal volume multi-module power supply is described, the single crystal volume multi-module power supply including a moisture barrier layer covering each of the plurality of sealed chambers On the ceiling, the seals are sealed to two solar cells that hold electrical interconnections. _ In a further embodiment a method of fabricating a photovoltaic module is described. [Embodiment] The preferred embodiments described herein provide a method of fabricating a wound photovoltaic module that uses a thin film IBIIIAVIA compound solar cell. Each of the modules includes a moisture resistant protective casing, and the flexible interconnected solar battery or battery string is packaged and protected in the moisture resistant protective casing. The protective casing comprises a moisture barrier upper protective sheet, and the light can enter the module through the moisture barrier upper protective sheet, and comprises a moisture barrier protective sheet, a supporting material or covering each battery or An encapsulating material of at least one of the front side and the rear side of the battery string? The support material is preferably used to completely encapsulate each solar cell and each string, above and below. In addition, the protective case further comprises a moisture sealant disposed between the upper protective sheet and the lower protective sheet along the periphery of the module, and forming a barrier to prevent moisture from being passed along the edge region The perimeter of the module enters the protection 201017914 from the outside. Unlike the amorphous cut flexible module, the upper protective sheet and the lower protective sheet of the module have less than w g/m 2 /day (preferably less than 5 provinces and 4 grams square) Metric/day) - moisture penetration rate. In addition, a moisture sealant with similar moisture barrier properties.

在一實施例中,本發明明_地提供―種連續製造方法 以形成-連續封裝結構,其包括在拉長保護片基部上之 複數個太陽能電池模組1首先在具有預先指派模組區域 之該拉長保護片上應用—濕氣阻障框架。該濕氣阻障框 架係一濕氣密封劑(穿透率為<1〇-3克/平方公尺/天或 具濕氣通過該密封之至少20年的失效時間),其可以一 帶、膠或液體應用在該拉長保護片上。該濕氣阻障框架 之該等牆圍繞每一該等複數個指派模組區域的該等周界 並形成複數個孔穴’其以該濕氣阻障框架及該等指派模 組區域之該等牆來界定。該濕氣阻障框架之該等牆包括 側牆及分配器牆。該等側牆可形成該等複數個孔穴的側 牆.。分配器牆藉由在兩孔穴間形成.戚鄰之牆以將個.別的 孔穴彼此分隔。太陽能電池串放置在每一該等孔穴内, 並以填滿每一孔穴之一支撐材料來支撐。在該等鄰近孔 穴中之該等串未與彼此電連接。一對功率輸出電線或佟 . . ..... ' . 端係自該等串經由該等側牆向外界延伸。為完成該組 合,將一第二支撐材料放置在該等串之上,且將一第二 11 201017914 拉長保護片放置在該支撐材料及該濕氣阻障框架之上以 包圍該等複數個孔穴’因而形成該等複數個太陽能電池 模組。在以一連續方式完成該連續封裝結構後,將其叠 層以形成一連續多模組裝置,其包括複數個疊層之太陽 能電池模組。可將該連續多模組裝置切割成包括一所需 數目之疊層太陽能電池模組的區段,其可使用在太陽能 產生應用上。在每一區段中之該等疊層太陽能電池模組 ® 也可有助地藉由連接自每一太陽能電池模組向外延伸之 功率輸出線來電連接。若在該應用期間有任何太陽能電 池模組故障,可輕易地移除該故障部分並再連接該等其 餘模組以使該系統可繼續運作。此一移除事實上可以是 僅移除電,即藉由簡單地分離其㈣輸线以自該電路 移去該失效模組之電。其也可能係藉由沿著該等兩分配 器牆在其兩側上切割以實體上地移除該失效模組,而不 參負面地影響該等分配器牆之談濕氣密封特性。 可藉由在以一卷對卷方式提供之一連續拉長保護片上 堆疊該等模組之各種組件來執行該等模組之一製造程 序或者可在一連績撓性模組基部上執行談製造程序, 該連續撓性模組基部包含具有在該透明拉長保護片之一 後表面上沈積之濕氣阻障層區段的一透明拉長片。談等 濕氣阻障層區段係以一分隔區域(也稱之為一濕氣密封 區域)彼此實體地分隔’其全面地圍繞該等濕氣阻障層區 12 201017914 段,且不包含任何減阻障層m態巾,在該分隔 區域上應用一濕氣阻障框架,且該濕氣阻障框架之該等 牆圍繞每一該等濕氣阻障層區段,並形成複數個孔穴, 其以該濕氣阻障_之料牆及該等濕氣阻障層區段來 界定。 現將參考該等圖式,其中全中 π — τ主又τ相冋之數字參照相同 之部分。第2Α·圖顯示一示例抖墙祕措4 Φ ❹ 不例性攙性模組1之該截面圖。 第2Β圖係同一模組的一俯滿 ^ _ 俯視圖該不例性撓性模組1 係一極簡化模組,其僅自冬 _ L ^ 丹偟已含形成一電池串之三個電池 2a、2b及2c。事實上,可Α田 I上了使用更多電池及電池串。該等 三個電池2a、2b及2c係#用邋碰,尤± 栉便用導線3互連以形成該電池 串2AA,且終端線4延伸 T主适上保瘦片7及該下保護片 8所形成之該周界外。應注意在製造中,可藉由沿著第 2Β圖中所示之線Α·Α切割該連續封裝結構來將該等電 線4延伸至該模組外,缺 Γ然後移除存在於線B1及B2間之 該區域内之材料9a, 因而留下延伸到該模組之周界外側 的該等電線4。或去^,φ城、 次者電線4可於該封裝内绪合在一起, 然後僅有一單一電線(夫千山 电叉(未不出)可延伸到該模組外側。也 可能將該終端線自該摸纟 、、,且1之後側帶出,如終端線5之 例中所示。然而,較佳祕,—+ 侄也以一雄、封方式將該等終端電 線穿過該濕氣密封劑9。若一玖嫂 : 剛'右終鈿係穿過該上保護片7 5 I下保護片8帶出’則濕氣可經由開給該等終端穿過 13 201017914 之該(等)孔洞進入該模組結構。因此,將必須密封此等 孔同以避免濕氣滲透。將該電池串2AA以一上支撐材料 或囊封材料6a及一下囊封材料6b覆蓋。該上囊封材料 6a及該下囊封材料6b 一般而言係相同材料,但也可以 是一起融化並包圍該電池串2AA之上方及下方的兩種不 同材料。透明且抗濕氣滲透之該上保護片7、抗濕氣滲 . 透之該下保護片8,以及沿著該模組之邊緣的一濕氣密 ❹ 封劑9形成一保護殼100,其以該電池串2AA、該上囊 封材料6a及該下囊封材料61>填滿。應注意在該等圖式 中所示之該等組件的該等厚度並非按實際尺寸之比例。 本發明說明之以下部分包括一實施例,其描述如何以 一連續方式使用連續製造技術(像是:線上或卷對卷程序) 來製造一撓性模組結構(像是如第2A圖及第26圖中所示 之該撓性模組結構)’以及相關通過該濕氣密封劑延伸至 參該撓m結狀—周界外侧之該等終料的該挽性模In one embodiment, the present invention provides a continuous manufacturing method to form a continuous package structure comprising a plurality of solar cell modules 1 on an elongated protective sheet base first having a pre-assigned module area The elongated protective sheet is applied to the moisture barrier frame. The moisture barrier frame is a moisture sealant (penetration rate <1 〇 -3 g / m ^ 2 / day or at least 20 years of failure time of moisture passing through the seal), which may be A glue or liquid is applied to the elongated protective sheet. The walls of the moisture barrier frame surround the perimeters of each of the plurality of assigned module regions and form a plurality of apertures, such that the moisture barrier frame and the assigned module regions The wall is defined. The walls of the moisture barrier frame include side walls and distributor walls. The side walls can form the side walls of the plurality of holes. The distributor wall separates the other holes by forming a wall adjacent to each other. A string of solar cells is placed in each of the cavities and supported by a support material that fills one of each of the cavities. The strings in the adjacent holes are not electrically connected to each other. A pair of power output wires or 佟 . . . . . . . . ends from the strings extending through the side walls to the outside. To complete the assembly, a second support material is placed over the strings, and a second 11 201017914 elongated protective sheet is placed over the support material and the moisture barrier frame to surround the plurality of The holes ' thus form the plurality of solar cell modules. After the continuous package structure is completed in a continuous manner, it is stacked to form a continuous multi-module device comprising a plurality of stacked solar cells. The continuous multi-module device can be cut into sections comprising a desired number of stacked solar cell modules that can be used in solar energy generating applications. The stacked solar cell modules in each segment can also be electrically connected by a power output line extending from each solar cell module. If any solar module fails during the application, the faulty portion can be easily removed and the remaining modules can be reconnected to allow the system to continue to operate. This removal may in fact be to remove only the electricity, i.e., by simply separating its (four) transmission line to remove the power of the failed module from the circuit. It is also possible to physically remove the failed module by cutting along the two distributor walls on both sides thereof without adversely affecting the moisture sealing characteristics of the distributor walls. The manufacturing process of one of the modules may be performed by stacking the various components of the modules on a continuous stretch protection sheet provided in a roll-to-roll manner or may be executed on the base of a continuous flexible module. The process, the continuous flexible module base includes a transparent elongated sheet having a moisture barrier layer deposited on a rear surface of one of the transparent elongated protective sheets. The isolating barrier layer segments are physically separated from one another by a separate region (also referred to as a moisture sealing region) that completely surrounds the moisture barrier zone 12 201017914 segment and does not contain any a drag reduction m-type towel, applying a moisture barrier frame on the separation region, and the walls of the moisture barrier frame surround each of the moisture barrier layer segments and forming a plurality of holes , which is defined by the moisture barrier _ material wall and the moisture barrier layer segments. Reference will now be made to the drawings in which the numbers of π - τ main and τ opposite are referenced to the same part. Fig. 2 shows an example of the wall-shaking secrets 4 Φ ❹ This sectional view of the exemplary squat module 1. The second figure is a full-scale _ top view of the same module. The exemplary flexible module 1 is a one-pole simplified module, which only contains three batteries 2a forming a battery string from winter _L ^ 丹偟, 2b and 2c. In fact, I can use more batteries and battery strings in Putian I. The three batteries 2a, 2b, and 2c are bumped, and the wires 3 are interconnected to form the battery string 2AA, and the terminal wire 4 extends T to fit the thin sheet 7 and the lower protective sheet. 8 is formed outside the perimeter. It should be noted that in manufacturing, the wires 4 may be extended outside the module by cutting the continuous package structure along the line Α·Α shown in FIG. 2, and then missing and then present on the line B1 and The material 9a in this region between B2 thus leaves the wires 4 extending to the outside of the perimeter of the module. Or go to ^, φ city, the second wire 4 can be combined in the package, and then only a single wire (Fu Qianshan electric fork (not shown) can be extended to the outside of the module. It is also possible to The line is taken from the rear side, and the rear side is taken out as shown in the example of the terminal line 5. However, it is preferable that the -+ 侄 also passes the terminal wires through the moisture in a male and a sealed manner. Sealant 9. If a 玖嫂: just the right final 穿过 passes through the upper protective sheet 7 5 I under the protective sheet 8 carries out 'the moisture can be passed through to the terminals through 13 201017914 (etc.) The holes enter the module structure. Therefore, it will be necessary to seal the holes to avoid moisture infiltration. The battery string 2AA is covered with an upper support material or encapsulation material 6a and a lower encapsulation material 6b. 6a and the lower encapsulating material 6b are generally the same material, but may also be two different materials that melt together and surround the battery string 2AA above and below. The upper protective sheet 7 is transparent and resistant to moisture penetration. Resistance to moisture permeation. The lower protective sheet 8 and a moisture-tight seal along the edge of the module The encapsulant 9 forms a protective casing 100 which is filled with the battery string 2AA, the upper encapsulating material 6a and the lower encapsulating material 61> It should be noted that such components of the components shown in the drawings The thickness is not a ratio to the actual size. The following portions of the description of the invention include an embodiment that describes how to fabricate a flexible module structure in a continuous manner using continuous manufacturing techniques such as on-line or roll-to-roll procedures ( Such as the flexible module structure as shown in Figures 2A and 26) and the associated extension of the final material through the moisture sealant extending to the outside of the perimeter Sex model

造包括複數個太陽能電池模組之一 r組之其它組件以製 連續封裝結構v然 14 201017914 :’所得之連續多模組裝置可在一接收轴上滾軋以形成 -卷’或是可將該連續多模組裝置切割成較小之區段, 其每-個包含一或多個模组,如其後將說明。 第从圖顯示該程序之—第—步驟,在該程序期間提供 * 一後表面202及兩個邊緣2〇3之該上方拉長保護片 2〇〇A的一區段。該拉長保護片之寬度一般而言可在 . 3〇_300 Cm的範圍内。該上方拉長保護片形成該等模組之 參 X前側或該光接收側,其將使用本發明之程序來製造。 如在第3B圖之俯視圖及在第3C圖之側視圖中所示,在 一第二程序步驟中,在該上方拉長保護片200A之該後表 面202上應用一濕氣密封劑204。該濕氣密封劑2〇4包 圍模組空間208,且其較佳地係沿著該保護片2〇〇A之該 等兩個邊緣203及在該等模組空間208之間沈積。沿著 該上方延長保護片2〇〇A之該等邊緣2〇3A沈積之該濕氣 © 密封劑204的該部分將稱作侧密封劑2〇6或側牆,且佈 置在該等模組空間208間或該等模組空間之末端之該濕 氣密封劑的該部分將稱作分配器密封劑2〇7或分配器 牆。該濕氣密封劑204可以是一帶之形式,或其可以是 一黏滯性流體,其可在該上方拉長保護片2〇〇A之該後表 面202上分散。該等模組空間2〇8係在讓後表面2〇2上 之該等空間’其以應用在該後表面2〇2上之該濕氣密封 劑204接界或包圍。如在第3c圖中所示,該濕氣密封劑 15 201017914 204之該等侧牆206及該等分配器牆207在該上方拉長 保護片200A上形成複數個孔穴2〇9。每一孔穴2〇9可以 由一個模組空間2〇8及圍繞該模組空間208之該等側牆 206及分配器牆207界定。在此態樣中,該濕氣密封劑 204可形成一單件式連續框架,其包括該等侧牆及該等 分配器牆,該等牆係根據讓所需之太陽能電池模組形狀 •及尺寸來塑形及決定大小。當在該上方拉長保護片2〇〇A 參 之該後表面202上應用此框架時,其形成該等孔穴209 β 如第3D囷中之俯視圖及第3E圖中之側視示意圖中所 示’在佈置該濕氣密封劑204後,將支撐材料層21〇或 囊封材料放置在該等孔穴209内之每一模組空間2〇8 上,然後將該等太陽能電池串212以正面向下的方式放 置在該支撑材料210上。在每一串212中之.每一太陽.能 電池213的一光接收側215Α係面向該拉長上保護片 參 200Αι該模組之電引腳214或終端較佳地可通過沿著該 拉長保護.片20.0Α之.該等-長邊緣中.之至:少:一個饰置之該 濕氣密封劑204的該侧牆206自該孔穴209中帶出,在 一方式中’該濕氣密封劑204也密封該等電引腳21 4周 圍。如該等圖式所示’太陽能電池串212包括電互連之 太陽能電池213。然而,在每一該等孔穴209中之該等 串2.12並:未彼此電互連’ 即在,一孔穴中'之.電池與.在一 鄰近孔穴中之該筝電池之間沒有電連接。然而,可能有 16 201017914 如美國專利申請案第12/】89627號中所描述之此等互 連’其專利名稱為:「具改良之可靠性的光電模組」, 2008年8月11日申請,其中一所製模組可包含二或多 個密封間隔(例如··該等孔穴2〇9),其每一個包含太暢能 電池串》 如第3F圖之側視示意圖中所示,在該以下步驟中該 等太陽能電池213之後側215B或基部係以另一層之支撐 ® 材料210覆蓋。將一後方拉長保護片200B放置在該濕氣 密封劑204及該支撐材料21〇上以完成具有複數個太陽 能電池模組結構3〇2之一連續封裝結構3〇〇之該等組件 的該組合。 如第4A圓中所示,該連續封裝結構3〇〇在一鲞層機中 處理,像是:具滾筒45〇之一滾乳叠層機,以將其轉換 成具有複數俩太陽能電池模組3〇2A的一連續多模組裝 參 置3〇〇A。在該疊層程序期間,在每一模組結構3〇2中之 該支撐材料210融化並黏附在該等太陽能電池串212及 該等上方及後方拉長保護片2〇〇六及2〇〇化上。該濕氣密 封劑204也融化並黏附在該等上方及後方拉長保護片 200A-及 200B 上。 第4B圖之俯視圖中顯示在該連續封裝結構3〇〇於該叠 層機中處理後之具有該等太陽能電池模組3〇2a的該連 續多模組裝置300A。應注意在此連績程序中,不包含化 17 201017914 學交聯之支撐材料較包含交聯的支撐材料為佳,像是: EVA。該等較佳之支撐材料包括矽樹脂及熱塑性材料, 其具有在90-15(TC之範圍中之融化溫度。該濕氣密封劑 204也可係一熱塑塑膠,其可容易地在一滚軋疊層機中 融化,其中可於真空或非真空下將壓力及熱應用在該模 ' 組結構中。應注意該密封材科204可用液體形式來分 . 散,或是可用一黏膠帶之形式,其黏附在該上方拉長保 ❹ 護片2〇〇A之該後表面202上。若使用液體矽樹脂作為該 支撐材料210,則該矽樹脂可分散在每一模組區域上, 該區域係以該後表面2〇2及該密封材料2〇4所形成之該 孔穴209來界定。因此,該後表面2〇2及該密封材料2〇4 如一容器般作用以包含該液體矽樹脂支撐材料21(^可 在將該電池串放置於該矽樹脂支撐材料21〇上前將其部 分地固化(參見第3D圖及第3E圖),因此該電池串不會 Φ 沈入該液體内而觸碰到該上方拉長保護片2〇〇八之該後 表面202。對於包含在不鏽鋼基板上所製之撓性cI(JS太 陽能電池的電池串而言,難以將所有在該串中之該等電 池保持平躺於該半固化矽樹脂層之該上表面上1因此, 可在該上方拉長保護片2〇〇A之下使用一序列之磁鐵。該 等磁鐵將該電池串拉往該上方拉長保護片2〇〇A ,並將其 相對於在磁性不翁鋼箱(像是規格43〇級不鏽鋼)上所製 之用於CIGS太陽能電池的該半固化前支撐材料保持平 18 201017914 坦。在將該等磁鐵置放在適當的位置後,該後方支撐矽 材料可分散在該等電池串之上以覆蓋該等電池之該後 侧i在該等磁鐵仍放在適當的位置時,可加熱該矽樹脂 以將其部分或全部固化。因此該等電池可陷在部分或全 部固化之矽樹脂層的兩層之間。然後,可移除該等磁鐵, '可將該後方拉長保護片200B放置在該濕氣密封劑2〇4 ' 及該支撐材料210上卩完成形成包括複數個模組結構之 • 一連續封裝結構300。可在60·1〇〇χ:之一溫度範圍下達 成部分固化梦樹脂。 ❹ 再參照第4A圖,為了消除空氣陷入該等模組内在言 等模組結構302間之該等分配器密封劑207可具有小七 割或孔洞,因此當該連續封裝結構3〇〇將任何空氣七 進一特定模組結構302内時,可在將其轉換進在該^ 筒450間的-模組内時經由在該等兩個模組結構間之寫 未固化分配器密封劑穿透進該下一模組結構中。因為尚 未將該下一模組叠層因此並去 亚未將其密封,陷入空氣係自 此模組結構中释放且具有切割孔同 i次孔洞之該分配器密封劑 207融化並填褚該尊切割 mm,為避免空氣陷 入,可在一真空環境中 值在毫托爾(mUli_T〇rr)的等 級下執行該滾軋疊層。此等 此等真空釭度可藉由建立分開之 幫浦室來獲得,該連續封褒 3 农構300通過該等幫浦室以 到達執行該滾軋疊層程序哕 的該至例如:該連續封裝結 19 201017914 構可經由—狹窄裂縫進入-第-室中,然後在到達該滾 乳疊層室内之前經由狹窄裂縫進出一些室,然後在通過 最後一室離開該系統前行$經過數個其它室。因此,該 壓力可由在該等第-及最後室中接近大驗(76。托爾) 的壓力改變至該#層室中之—極低值(像是ι⑼毫把爾)。Manufacture of other components including a plurality of solar cell modules to form a continuous package structure. 14 201017914: 'The resulting continuous multi-module device can be rolled on a receiving shaft to form a roll' or can be The continuous multi-module device is cut into smaller sections, each of which contains one or more modules, as will be described later. The first figure shows the -step of the program during which a section of the upper surface 202 and the two edges 2〇3 of the upper elongated protective sheet 2A is provided. The width of the elongated protective sheet can generally be in the range of .3 〇 300 Cm. The upper elongate protective sheet forms the front side of the X or the light receiving side of the modules, which will be fabricated using the procedure of the present invention. As shown in the top view of Fig. 3B and the side view of Fig. 3C, in a second process step, a moisture sealant 204 is applied to the rear surface 202 of the upper elongated protective sheet 200A. The moisture sealant 2〇4 surrounds the module space 208 and is preferably deposited along the two edges 203 of the protective sheet 2A and between the module spaces 208. The portion of the moisture© sealant 204 deposited along the edges 2〇3A of the upper extended protective sheet 2A will be referred to as a side sealant 2〇6 or a side wall, and disposed in the modules This portion of the moisture sealant between the spaces 208 or the end of the module spaces will be referred to as the distributor sealant 2〇7 or the distributor wall. The moisture sealant 204 can be in the form of a belt, or it can be a viscous fluid that can be dispersed over the rear surface 202 of the upper elongated protective sheet 2A. The module spaces 2〇8 are in the space that allows the rear surface 2〇2 to be bordered or surrounded by the moisture sealant 204 applied to the rear surface 2〇2. As shown in Fig. 3c, the side walls 206 of the moisture sealant 15 201017914 204 and the distributor walls 207 form a plurality of holes 2 〇 9 on the upper elongated protective sheet 200A. Each of the apertures 2〇9 can be defined by a modular space 2〇8 and the side walls 206 and the distributor wall 207 surrounding the modular space 208. In this aspect, the moisture sealant 204 can form a one-piece continuous frame including the side walls and the distributor walls, which are based on the shape of the desired solar cell module. Size to shape and size. When the frame is applied to the rear surface 202 of the upper elongated protective sheet 2A, the holes 209 are formed as shown in the top view in FIG. 3D and the side view in FIG. 3E. After the moisture sealant 204 is disposed, the support material layer 21 or the encapsulating material is placed on each of the module spaces 2〇8 in the holes 209, and then the solar cell strings 212 are oriented in the front direction. The lower method is placed on the support material 210. In each string 212, a light receiving side 215 of each solar cell 213 is facing the elongated upper protective sheet 200. The electrical pin 214 or terminal of the module is preferably passed along the pull Long protection. Sheet 20.0 .. The same - long edge. To: less: a side wall 206 of the moisture sealant 204 is carried out from the hole 209, in one way 'the wet The gas sealant 204 also seals around the electrical leads 21 4 . The solar cell string 212, as shown in the figures, includes electrically interconnected solar cells 213. However, the strings 2.12 in each of the apertures 209 are: not electrically interconnected with each other 'i.e., in a hole'. There is no electrical connection between the battery and the kite battery in an adjacent aperture. However, there may be 16 201017914 such as the interconnection described in U.S. Patent Application Serial No. 12/86,962, the patent name of which is: "Optical Module with Improved Reliability", filed on August 11, 2008 One of the modules may include two or more sealing intervals (eg, such holes 2〇9), each of which contains a string of solar cells, as shown in the side view of FIG. 3F, In the following step, the rear side 215B or the base of the solar cells 213 is covered with another layer of support material 210. A rear elongated protective sheet 200B is placed on the moisture sealant 204 and the support material 21A to complete the components of the continuous package structure 3 of the plurality of solar battery module structures 3〇2. combination. As shown in the 4A circle, the continuous package structure 3 is processed in a layering machine, such as a roller laminating machine with a roller 45 , to convert it into a plurality of solar battery modules. A continuous multi-mode assembly of 3〇2A is placed in 3〇〇A. During the lamination process, the support material 210 in each of the module structures 3〇2 is melted and adhered to the solar cell strings 212 and the upper and rear elongated protective sheets 2〇〇6 and 2〇〇 On. The moisture sealant 204 also melts and adheres to the upper and rear elongated protective sheets 200A- and 200B. The top view of Fig. 4B shows the continuous multi-module device 300A having the solar cell modules 3〇2a after the continuous package structure 3 is processed in the laminator. It should be noted that in this performance procedure, the support material that is not included in the cross-linking process is better than the cross-linked support material, such as: EVA. The preferred support materials include tantalum resins and thermoplastic materials having a melting temperature in the range of 90-15 (TC). The moisture sealant 204 can also be a thermoplastic, which can be easily rolled in one roll. Melting in a laminating machine, in which pressure and heat can be applied in the mold's structure under vacuum or non-vacuum. It should be noted that the sealing material section 204 can be divided into liquid forms, or in the form of a sticky tape. And adhering to the rear surface 202 of the upper elongated protective sheet 2A. If liquid enamel resin is used as the supporting material 210, the resin can be dispersed on each module area, and the area is The rear surface 2〇2 and the hole 209 formed by the sealing material 2〇4 are defined. Therefore, the rear surface 2〇2 and the sealing material 2〇4 act as a container to contain the liquid silicone resin supporting material. 21 (^ can partially cure the battery string before placing it on the resin support material 21〇 (see FIGS. 3D and 3E), so the battery string does not Φ sink into the liquid and touch Suffering from the rear surface of the upper elongated protective sheet 2 202. For a flexible cI (JS solar cell battery string) fabricated on a stainless steel substrate, it is difficult to keep all of the cells in the string lying on the upper surface of the semi-curable resin layer. 1 Therefore, a sequence of magnets can be used under the upper elongated protective sheet 2A. The magnets pull the battery string to the upper elongated protective sheet 2A and are opposite to the magnetic The semi-cured front support material for CIGS solar cells made on a steel box (such as a size 43 stainless steel) is kept flat. After placing the magnets in the proper position, the rear Supporting material may be dispersed over the battery strings to cover the back side of the batteries i may heat the resin to partially or fully cure the magnets while they are still in place. The battery may be trapped between two layers of the partially or fully cured resin layer. Then, the magnets may be removed, 'the rear elongated protective sheet 200B may be placed on the moisture sealant 2〇4' and the The completion of the formation of the support material 210 includes a plurality of Group structure • A continuous package structure 300. Partially cured dream resin can be achieved in a temperature range of 60·1〇〇χ: ❹ Refer to Figure 4A again, in order to eliminate air trapping in the modules. The dispenser sealant 207 between the structures 302 can have a small cut or hole, so that when the continuous package structure 3 turns any air into a particular module structure 302, it can be converted into the ^ During the module between the cylinders 450, the uncured dispenser sealant between the two module structures penetrates into the next module structure. Since the next module has not been laminated, Go to Yawei to seal it, and the dispenser sealant 207, which is released from the air system and has a cutting hole and a hole, melts and fills the cut mm. To avoid air trapping, a vacuum can be obtained. The environmental median value is performed at the level of millitor (mUli_T〇rr). Such vacuum enthalpy can be obtained by establishing separate pump chambers through which the cultivating chamber 300 reaches the execution of the rolling stacking process, for example: the continuation The package junction 19 201017914 can enter into the - chamber via a narrow crack, then enter and exit some of the chamber through the narrow crack before reaching the mill stack chamber, and then go through several other systems before leaving the system through the last chamber. room. Therefore, the pressure can be changed from the pressure in the first and last chambers to the large test (76. Thor) to the extremely low value (such as ι(9) millibars) in the #层室.

第4B圖顯示在該滾軋叠層程序後之該連續多模組裝 置3〇〇A的俯視圖,其中該等太陽能電池213之該光接收 側係朝向該紙平面。可將該連續多模組裝置300A滾軋進 -接收卷(未示出)中’其中在該多模組裝置中之每一模 組的該等電引腳214或終端係自該接收卷之該側伸出。 此該等終端不會干擾該滾軋程序。可將該卷送往該場 中作進-步處理或安裝。第4B圖顯示在該#層及密封程 序後所得的該連續多模組裝置扇Αβ密封在該多模組裝 置中之每一該等模組302α以避免濕氣自外界環境穿透 進囊封該等太陽能電池串212處的該模組結構^ 以上所描述之該連續程序係極通用的。一旦形成了該 連續多模組裝置’此裝置可以各種方式來使用_在一方 法中,將該連續多模組封裝裝置沿著該等虛線「Α」切割 成個別之模組302Α以產生完全分開且密封的個別模 組’其中該等虛線「A」係在如第4Β圖中所示之該等分 配器牆内。每一模組3 02 A之該等電引腳2丨4係在該側上 且不受此程序影響或切割,該濕氣密封劑2〇4之完整性 201017914 在沿著每一模組之該周界的任何一處均不受影響。在保 持該溼氣密封劑2〇4之完整性下,在沿著該連續多模組 裝置302A之該等兩長邊緣203中之至少一傭邊緣處的該 側帶出電引腳2 14也使每一模組之該活動面積最大化。 在另一方法中,該連續多模組裝置可用來形成單晶體 積體多模組功率供應,其包含在一共用、未切割基板或 頂置板上之一或多個電互連的模組,如以下將更完整描 ® 述者。第5圖之側視圖中顯示一個別模組302A,其係使 用本發明之程序藉由將每一該等模組3〇2A自如第4B圖 中所不之該連續多模組裝置300A切割及分開來製造而 成。該太陽能電池串212係以該支撐材料210塗布並佈 置在一上保護片303A及一下保護片303B之間。該上保 護片303A及該下保護片3〇3B係該等上方及下方拉長保 護片200A及200B的部分。該濕氣密封劑204在該等保 ® 護片303A及303B之間延伸並密封該模組之周界1如所 述,每一太陽能電池213包括該前方部分215A或光接收 部分以及該後方部分215B或基部。應了解在操作時’太 陽光經由該上保護片303A進入該模組並經過該支撐材 料210抵達該等太陽能電池的該前方部分215A。該基部 215B包括一基板及在該基板上所形成之一接觸層。一較 佳之基板材料可係一金屬材料,像是:不鏽鋼、銘或諸 如此類。一示例性接觸層材料可係鉬。該等太陽能電池 21 201017914 之該前方部分21 5A可包括一吸收體層305,像是在該接 觸層上形成之一 CIGS吸收體層,以及一透明層306,在 該吸收體層上形成,像是一緩衝層/氧化鋅(ZnO)堆疊。 一示例性緩衝層可係一(Cd,Zn)S層。.可在該透明層之上 形成導電指狀物308。導電引腳310將該等太陽能電池 ' 其中之一的該基板或該接觸層電連接至該下一太陽能電 ' 池之該透明層。然而,該等太陽能電池可使用任何該領 ❹ 域中已知的其它方法來互連,像是:覆板。 該前保護片200A可係一透明撓性聚合膜,像是: TEFZEL®,或另一聚合膜。該前保護片200A包含一透明 濕氣阻障塗層,其可包含透明無機材料,像是:礬土、 矽酸鋁、矽酸鹽、氮化物等等。此等塗層之示例可於文 獻中發現(參見例如:L. Olsen等人之「CIGSS及碲化鎘 電池之阻障塗層(Barrier coatings, for CIGSS and CdTe ❿ cells)」,第三十一屆電機電子工程師學會(IEEE)光電專 家研討會,第 327 頁,2005 年)。TEDLAR®及 TEFZEL® 係DuPont公司之氟聚合物材料的品牌名。TEDLAR®係 聚氟乙烯(polyvinyl fluoride ’ PVF) ’ 及 TEFZEL®{系乙稀 -四氟乙烯(tetrafluoroethylene,ETFE)氟聚合物。該後保 護片200B可係像是TEDLAR®之一聚合片,或是可係透 明的或可不透明的另一聚合材料。該後保護片可包含堆 22 201017914 像是:作為濕氣阻障的 疊片,其包含各種材料組成物 金屬膜(例如:銘 如先前所述’本發明夕—底Figure 4B shows a top view of the continuous multimode assembly 3A after the rolling stacking process, wherein the light receiving side of the solar cells 213 is oriented toward the plane of the paper. The continuous multi-module device 300A can be rolled into a receive-receive roll (not shown) where the electrical pins 214 or terminals of each of the multi-module devices are from the receiving roll The side is extended. These terminals do not interfere with the rolling procedure. The volume can be sent to the field for further processing or installation. FIG. 4B shows that the continuous multi-module device fan Αβ obtained after the # layer and the sealing process is sealed in each of the multi-module devices 302α to prevent moisture from penetrating into the encapsulation from the external environment. The modular structure at the solar cell string 212 is generally versatile as described above. Once the continuous multi-module device is formed, the device can be used in various ways. In one method, the continuous multi-module package device is cut into individual modules 302 along the dashed lines to create a complete separation. And the sealed individual modules 'where the dashed lines "A" are in the distributor walls as shown in Figure 4. The electrical pins 2丨4 of each module 3 02 A are on the side and are not affected or cut by the program. The integrity of the moisture sealant 2〇4 is along each module. Any part of the perimeter is unaffected. While maintaining the integrity of the moisture sealant 2〇4, the side strap output pin 2 14 at at least one of the two long edges 203 along the continuous multi-module device 302A is also Maximize the active area of each module. In another method, the continuous multi-module device can be used to form a single crystal volume multi-module power supply comprising one or more electrically interconnected modules on a common, uncut substrate or overhead plate As described below, the description will be more fully described. In the side view of FIG. 5, a different module 302A is shown which is cut by the continuous multi-module device 300A of FIG. 4B by using the program of the present invention by using each of the modules 3〇2A. Made separately. The solar cell string 212 is coated with the support material 210 and disposed between an upper protective sheet 303A and a lower protective sheet 303B. The upper protective sheet 303A and the lower protective sheet 3〇3B are portions of the upper and lower elongated protective sheets 200A and 200B. The moisture sealant 204 extends between the protective sheets 303A and 303B and seals the perimeter of the module. As described, each solar cell 213 includes the front portion 215A or the light receiving portion and the rear portion. 215B or base. It should be understood that during operation, sunlight enters the module via the upper protective sheet 303A and passes through the support material 210 to the front portion 215A of the solar cells. The base 215B includes a substrate and a contact layer formed on the substrate. A preferred substrate material can be a metallic material such as stainless steel, inscription or the like. An exemplary contact layer material can be molybdenum. The front portion 21 5A of the solar cells 21 201017914 may include an absorber layer 305, such as a CIGS absorber layer formed on the contact layer, and a transparent layer 306 formed on the absorber layer, such as a buffer. Layer/zinc oxide (ZnO) stack. An exemplary buffer layer can be a (Cd, Zn) S layer. Conductive fingers 308 can be formed over the transparent layer. A conductive pin 310 electrically connects the substrate or the contact layer of one of the solar cells to the transparent layer of the next solar cell. However, such solar cells can be interconnected using any other method known in the art, such as: a superstrate. The front protective sheet 200A can be a transparent flexible polymeric film such as: TEFZEL®, or another polymeric film. The front protective sheet 200A comprises a transparent moisture barrier coating which may comprise a transparent inorganic material such as alumina, aluminum niobate, niobate, nitride or the like. Examples of such coatings can be found in the literature (see, for example, L. Olsen et al., "CIGSS and Barrier Coatings for CIGSS and CdTe ❿ cells", Thirty-first The Institute of Electrical and Electronics Engineers (IEEE) Optoelectronics Expert Seminar, p. 327, 2005). TEDLAR® and TEFZEL® are the brand names of fluoropolymer materials from DuPont. TEDLAR® is a polyvinyl fluoride ‘PVF’ and TEFZEL®{tetrafluoroethylene (ETFE) fluoropolymer. The rear protective sheet 200B may be a polymeric sheet of TEDLAR® or another polymeric material that may be transparent or opaque. The rear protective sheet may comprise a stack 22 201017914 like: a laminate as a moisture barrier comprising various material compositions of a metal film (for example: as previously described)

φ 額定功率。 所有的太陽能電池及串互連來製成。在具備本發明之該 等輕量及撓性結構下可建構單晶體積體多模組功率# 應,其具有600W之額定功率以及高於及等於超過1〇〇〇w 之額定功率》在單一基板上具有多让评額定功率之一卷 撓性及輕量功率產生器可在大規模太陽能功率領域中實 現新的應用。應注意的是,使用本發明之該等教導可建 ® 立多kW額定(像是2000-5000 W)之一單一模組,該單一 模組在其周界周圍具有為一濕氣阻障框架形式的一個濕 氣也、封劑(.例如參見第_ 2A圖)’。然.而製.造包.含.許多個別 模組且每一個別模組具有其自己的濕氣不可滲透或抗濕 氣結構的單晶體積體多模組功率供應有許多優點。在此 等多模組裝置中一項優點係較佳之可靠性。若因為在該 模組位置處之該上保護片、該下保護片或側密封劑的一 . ' ...... .. . . . 失效使任何濕氣進入任何該單晶體積體撓性多模組功率 23 201017914 供應的該等個別模組中,則因為分配器密封劑或分配器 牆的存在’該濕氣將不能行進通過其它模組。因此,該 其餘之單晶體積體多模組功率供應將繼續產生功率^此 .. ..... ...... 等可靠性改善在美國專利申請案序號第12/189,627號中 詳細討論,其於2008年8月11日申請,專利名稱為: 「具改良之可靠性的光電模組」。另一優點係該上述之 製造方法所提供的該應用彈性。如先前所討論,可將第φ rated power. All solar cells and strings are interconnected to make. The single crystal volume multi-module power # should be constructed under the lightweight and flexible structure of the present invention, which has a rated power of 600 W and a rated power higher than or equal to more than 1 〇〇〇w" A flexible and lightweight power generator with a wide range of rated power ratings on the substrate enables new applications in the field of large-scale solar power. It should be noted that the use of the teachings of the present invention enables the construction of a single kW rated (e.g., 2000-5000 W) single module having a moisture barrier frame around its perimeter. A form of moisture is also used as a sealant (see, for example, Figure _ 2A). However, a single-cell volume multi-module power supply with many individual modules and each individual module having its own moisture impermeable or moisture resistant structure has many advantages. One advantage in such multi-module devices is better reliability. If any of the upper protective sheet, the lower protective sheet or the side sealant at the position of the module fails, any moisture enters any of the single crystal volume Sexual Multi-Module Power 23 201017914 Among these individual modules, the moisture will not travel through other modules due to the presence of the dispenser sealant or distributor wall. Therefore, the remaining single-crystal volume multi-module power supply will continue to generate power. This is a detailed improvement in the US Patent Application Serial No. 12/189,627. Discussion, which was filed on August 11, 2008, the patent name is: "Photovoltaic module with improved reliability". Another advantage is the flexibility of the application provided by the above described manufacturing method. As discussed earlier,

4B圖中所示之該連續多模組裝置3〇〇A切割成單一模組 結構以用於需要低瓦數(1〇〇_6〇〇%)的應用上。對於大型 屋頂之應用,可將該連續多模組裝置切割成包括5至1〇 個模組,因此提供了具在例如500至2〇〇〇瓦之範圍内之 一額定的一單晶體積鱧多模組功率供應。對於極大之功 率領域應用’可使用具1000至20000瓦或更高之額定功 率的單晶體積韹多模組功率供應。重點是所有該等產品 可藉由只改變該等切割步驟以相同製造線來製造。在單 兀模組間之分配器密封劑的存在可實現此種製造。若分 配器密封劑不存在,則不能將長且連續模組結構切割成 較小單元且無法使用該等長且連續模組結構,因為經由 該等切割邊緣進人的濕氣將限制該等仙割模組或多模 組結構的壽命遠少於2〇 I。例如,不含_適當之邊· 封劑的C咖模組在喪失約观之其額定功率前將僅具 有數年之壽命。 24 201017914 本發明之某些優點可用第6A圖所示之一示例性連續 多模組裝置500來證明,其可使用上述之本發明的程序 來製造。如第6A圖中所示,包括太陽能電池模組 502A-502J之該連磧多模組裴置5〇〇可係—較長連績妗 構的一部分。每一模組包括一太陽能電池串512,其具 有互連之太陽能電池513及朝向該紙平面之該等太陽能 電池213的該光接收側。來自每一模組之電引腳Η*或 ❹The continuous multi-module device 3A shown in Figure 4B is cut into a single module structure for applications requiring low wattage (1 〇〇 _6 〇〇 %). For large roof applications, the continuous multi-module device can be cut to include 5 to 1 module, thus providing a single crystal volume rated at one of, for example, 500 to 2 watts. Multi-module power supply. For the field of extreme power applications, a single-crystal volume multi-module power supply that can provide a rated power of 1000 to 20,000 watts or more. The point is that all such products can be manufactured in the same manufacturing line by only changing the cutting steps. This manufacture can be achieved by the presence of a dispenser sealant between the individual modules. If the dispenser sealant is not present, the long and continuous module structure cannot be cut into smaller units and the same length and continuous module structure cannot be used because the moisture entering the person through the cutting edges will limit the fairy The life of a cutting module or multi-module structure is much less than 2〇I. For example, a C-Caf module that does not contain an appropriate side sealant will only have a life span of several years before it loses its rated power rating. 24 201017914 Certain advantages of the present invention may be demonstrated by an exemplary continuous multi-module device 500 illustrated in Figure 6A, which may be fabricated using the procedures of the present invention described above. As shown in Fig. 6A, the multi-module device including the solar cell modules 502A-502J can be part of a longer continuous structure. Each module includes a solar cell string 512 having interconnected solar cells 513 and the light receiving side of the solar cells 213 facing the paper plane. Electrical pin Η* or 来自 from each module

置500之該側 輸出電線係放置在沿者該連續多模組裝 上,如第6A圖中所示之方式。該等模組係、以該濕氣密封 劑之分配器牆503來與彼此分隔。 如第6B圖中所示,當包括該等模組5〇2A至5〇2e之 一示例性區段504與上述之該連續多模組裝置5〇〇分隔 時,將輸出電線514互連以提供來自該區段5〇4之該等 模組502A至502E的一結合功率輸出。例如:若每一模 組之該額定功率係ioow,且若該切割區段包含1〇個互 連之模組,則該所得單晶體積體多模組功率供應係一連 續、單件式iooow之供應。若該切割區段包含2〇個模 組,則將獲得一 2000W之功率供應。如第6B圖中所示, 在該單晶體積體多模組功率供應之模組間的該互連可係 一串聯互連’其中每一模組之該(+ )端係連接至一鄰近模 、、且之(-)&。應注意在該單晶體多模組功率供應中之該 等個別模組也可以並聯之模式來互連。 201017914 第6B圖之該單晶體多模組功率供應設計提供了在該 場中部署之優勢。一優勢係在該場中安裝一撓性、單件 式、咼功率功率供應的簡單性。免除處理許多個別模組、 免除許多個別安裝結構係一些該等優勢。另一優勢係易 於除去在該單晶體積體多模組功率供應中的一失效模 • 組。此係由於該等内部模組互連終端係在外側且可取 . 得。例如:在區段504中,若該模組502故障(此處為求 _ 與則述之 malfuction之翻譯一致而改成”故障’,), 不用丟棄該整個區段504,可藉由分離其電線以將該模 組502B自該電路取出,且該等其餘模組5〇2A、5〇2c、 502D及502E將保持互連,且因此持續提供全部之功率。 也可將系統組件之旁通二極體及其它平衡器連接至該等 單晶體積體多模組功率供應的終端。儘管所示之在每一 模組中的該等電池串係與第6A圖及第6B圖中所示之談 ® 單晶體積體多模組功率供應的該長邊緣平行,實際上可 將電池串以不同方向放置在該模組結構中。例如:藉由 將電池串垂直該單晶體積體多模組功率供應之該長邊緣 來放置’吾人可相對每-模組之寬度減少其長度(其係以 該等分配器密封劑或牆間的該距離來界定)。因此將用來 互連該等鄰近模組之該等電線的長度最小化以節省在該 等互連電線及其它硬體中的成本及功率損失i 26 201017914 第7圖顯示一卷對卷系統4〇〇以製造第3A圖至第4B 圖中所示之該連續多模組裝置3〇〇Αβ該系統4〇〇包括一 處理站402 ’其包括一些處理單元4〇4A_4〇4F以在自該 供應卷405A供應該上方保護層2〇〇A並將其推進通過該 處理站402時實行上述之處理步驟。在於該疊層單元中 處理該連續封裝結構300後,拿起該連續封裝結構3〇〇 並將其繞著該接收卷405B纏繞〃在該以下步驟中,將該 ® 接收卷4〇5B放進一切割站中以切割該連續封裝結構 300A ^在不使用該接收卷之一替代性系統中可直接將 該疊層連續封裝結構300推進一切割站並切割成個別之 模組或切割成單晶體積體多模組功率供應。 在下文中,具自該連續多模組裝置之一側延伸之每一 棋組之該等電引腳或終端之一連續多模組裝置的一特定 組態將稱為一第一組態。如以下將更全面地描述,一第 & 二特定組態將參照至由一連續多模組裝置或一單晶體積 體多模組功率供應之兩側延伸的該等電引腳。 如以下將更全面地描述,在每一模組中之該等太陽能 電池的該數目及該相對分佈可幫助預先決定該單晶體積 體多模叙功率供應之製造是否可具有該第一組態或該第 二組態。在該第一組態中,每一模組之正及負電引腳傣 位於該單晶體積體多模組功率供應的相同侧上,因此該 等模組其令之一的一正電引腳較佳地係放置在一鄰近模 27 201017914 組之一負電引腳旁,如此其可使用一短電纜串聯地連接 以增加其個別電壓。若該等模組其中之一的一正電弓丨腳 係放置在一鄰近模組之一正電引腳旁,或是該等模紐其 中之一的一負電引腳係放置在一鄰近模組之一負電引聊 旁,則可輕易地將該等模组並聯地互連以增加其個別電 流。在該第二組態中,每一模組之正或負電引腳係位於 • 該多模組功率供應的該等相對側上,因此該等模組其中 ® 之一的一正電引腳較佳地係放置在一其後模組之一負電 引腳旁,因此其可使用一短電纜輕易地連接。應注意當 關聯至引腳或終端時,該等引腳實際上經過一接線盒, 其可在該模組結構之該邊緣處、在靠近該邊緣之該模組 ⑽構的後方,或在靠近該邊緣之該模組結構的前方。 該下述發明提供製造單晶體積體多模組功率供應的一 種方法’其具有與在每一模組中之該等太陽能電池之談 籲 分佈相關之電引腳的該第一或第二组態。因此,在第& 圖至第11圖之俯視圖中所示的該單晶體積體多模組功 率供應包括太陽能電池,該等太陽能電池之該光接收側 係朝向該紙平面。將在每一模組中之該等太陽能電池組 織進包括至少兩個太陽能電池的至少一列中。在讓以下 田述中,以字母A、B、c、等等註記的太陽能電池措出 一模紅之一列。進一步地,具偶數列之該等模組(例如: 列A及B ’或A、B、〇及D等尊)具有該等電引腳之該 28 201017914 第 組態,即自·~~也丨. 即自側延伸之該等電引腳,以及具奇數列The output wire of the side of the 500 is placed on the continuous multi-mode assembly of the edge, as shown in Figure 6A. The modules are separated from each other by a distributor wall 503 of the moisture sealant. As shown in FIG. 6B, when one of the exemplary segments 504 including the modules 5〇2A to 5〇2e is separated from the continuous multi-module device 5〇〇 described above, the output wires 514 are interconnected to A combined power output from the modules 502A through 502E of the segment 5〇4 is provided. For example, if the rated power of each module is ioow, and if the cutting section includes one interconnected module, the obtained single crystal volume multi-module power supply system is a continuous, one-piece iooow Supply. If the cutting section contains 2 模 modules, a 2000 W power supply will be obtained. As shown in FIG. 6B, the interconnection between the modules of the single-crystal volume multi-module power supply can be a series interconnection, wherein the (+) end of each module is connected to a neighbor Modular, and (-) & It should be noted that the individual modules in the single crystal multi-module power supply can also be interconnected in parallel mode. 201017914 The single crystal multi-module power supply design of Figure 6B provides the advantages of deployment in this field. One advantage is the simplicity of installing a flexible, single-piece, 咼 power supply in the field. Eliminating the handling of many individual modules and eliminating many of the individual mounting structures are some of these advantages. Another advantage is that it is easy to remove a failure mode group in the multi-module power supply of the single crystal volume. This is because the internal module interconnect terminals are on the outside and are available. For example, in the section 504, if the module 502 fails (here, the translation is changed to "fault" in accordance with the translation of the malfuction described above), the entire section 504 is not discarded, and the The wires take the module 502B out of the circuit, and the remaining modules 5〇2A, 5〇2c, 502D, and 502E will remain interconnected, and thus continue to provide full power. The system components can also be bypassed. Diodes and other balancers are connected to the terminals of the single-crystal volume multi-module power supply, although the battery strings shown in each module are shown in Figures 6A and 6B. The long edge of the single crystal volume multi-module power supply is parallel, and the battery strings can actually be placed in the module structure in different directions. For example, by multiplying the battery string perpendicular to the single crystal volume body The long edge of the group power supply is placed to 'we can reduce the length of each module relative to the width of each module (which is defined by the distance between the dispenser sealants or the walls). Therefore, it will be used to interconnect such Minimizing the length of such wires adjacent to the module to save on such Cost and power loss in interconnected wires and other hardware i 26 201017914 Figure 7 shows a roll-to-roll system 4 to manufacture the continuous multi-module device 3A shown in Figures 3A-4B The system 4 includes a processing station 402' which includes processing units 4〇4A_4〇4F to perform the above-described operation when the upper protective layer 2A is supplied from the supply roll 405A and is advanced through the processing station 402. After the processing of the continuous package structure 300 in the stacking unit, the continuous package structure 3 is picked up and wound around the receiving roll 405B. In the following step, the ® receiving roll 4 is The 〇5B is placed in a cutting station to cut the continuous package structure 300A. The stacked continuous structure 300 can be directly pushed into a cutting station and cut into individual modules or cuts in an alternative system that does not use the receiving roll. Multi-module power supply into a single crystal volume. Hereinafter, a specific group of one continuous multi-module device of each of the electric pins or terminals of each of the chess pieces extending from one side of the continuous multi-module device State will be called a first configuration As will be more fully described below, a second & two specific configuration will be referenced to the electrical pins extending from either side of a continuous multi-module device or a single-crystal volume multi-module power supply. It will be more fully described that the number and relative distribution of the solar cells in each module can help to predetermine whether the manufacturing of the single crystal volume multimode power supply can have the first configuration or Second configuration. In the first configuration, the positive and negative pins of each module are located on the same side of the multi-module power supply of the single-crystal volume, so that one of the modules A positive electrical pin is preferably placed next to a negative power pin of a group of adjacent modules 27 201017914 such that it can be connected in series using a short cable to increase its individual voltage. If a positive electric bow of one of the modules is placed beside a positive electrical pin of one of the adjacent modules, or a negative electrical lead of one of the modulars is placed in a proximity mode One of the groups is next to the negative electricity chat, and the modules can be easily interconnected in parallel to increase their individual currents. In the second configuration, the positive or negative pins of each module are located on the opposite sides of the multi-module power supply, such that one of the modules has a positive electrical pin The good system is placed next to one of the negative terminals of the module, so it can be easily connected using a short cable. It should be noted that when associated with a pin or terminal, the pins actually pass through a junction box that can be at the edge of the module structure, behind the module (10) structure near the edge, or near The edge is in front of the module structure. The invention described below provides a method of fabricating a single crystal volume multi-module power supply that has the first or second set of electrical pins associated with the distribution of the solar cells in each module state. Accordingly, the single crystal volume multi-module power supply shown in the top views of the & graph to the eleventh graph includes solar cells whose light receiving sides are oriented toward the plane of the paper. The solar cells in each module are woven into at least one column comprising at least two solar cells. In the following description, the solar cells marked with the letters A, B, c, and the like are listed as a red matrix. Further, the modules with even columns (for example: columns A and B' or A, B, 〇, and D) have the 28 201017914 configuration of the electrical pins, that is, since ~~~丨. that is, the electric pin extending from the side, and the odd column

之該等模組(例如:列A %) A 歹】A,或列A、B,及c等 等電引腳之該第二乾態,即自該單晶…)、有 平日菔積體多模組功率 供應之兩側延伸的該等電引腳。在第8圖至第u圖中所 不之該單晶艘積W模組功率供應可使用上述之該滾札 疊層程序的該等原理來製造。 ❹ 第8圖舉例說明一單曰 早日曰體積體多模組功率供應600, 其具有具該第-組態之電氣引腳。在第8圖中,具有一 第一側6 0 i A及-第二側6 〇 t B之該單晶體積體多模組功 率供應_包括具有以偶數列組織之太陽能電池603的 複數個模組602 在此示例中,每一模組包括兩列 其 中在該第一列中之該等太陽能電池係以A註記,且在該The second dry state of the modules (for example, column A%) A 歹 A, or columns A, B, and c, that is, from the single crystal...), there is a weekday hoard The electrical pins extending on both sides of the multi-module power supply. The power supply of the single crystal ship W module, which is not shown in Figs. 8 to u, can be manufactured using the principles of the above-described roll stacking procedure. ❹ Figure 8 illustrates a single 早 volumetric multi-module power supply 600 with an electrical pole with this first configuration. In FIG. 8, the single crystal volume multi-module power supply having a first side 6 0 i A and a second side 6 〇t B includes a plurality of modes having solar cells 603 organized in even columns. Group 602, in this example, each module includes two columns in which the solar cells in the first column are annotated with A, and

第一列中之該等太陽能電池係以B註記。每一樣組6〇2 係以具有邊緣密封部分6〇6及分配器密封部分6〇8,及 一上方拉長保護片(未示出)與一下方拉長保護片6〇9之 一濕氣阻障密封框架6〇4來圍繞。在每一模組6〇2中, 該等太陽能電池603係以一支撐材料610或囊封材料圍 繞。互連在每一模組中之讓等太陽能電池6〇3且一第一 電引腳614A或正引腳及一第二電引腳614B或負引腳具 有該第一組態,因此其藉由通過在該單晶體積體多模組 功率供應600之該第一側601A上的該等邊緣密封部分 606延伸至該等模組602的外侧。如上所述’由於在每 29 201017914The solar cells in the first column are marked with B. Each of the groups 6〇2 has an edge sealing portion 6〇6 and a dispenser sealing portion 6〇8, and an upper elongated protective sheet (not shown) and a lower elongated protective sheet 6〇9 are wet. The barrier sealing frame 6〇4 surrounds. In each module 6〇2, the solar cells 603 are surrounded by a support material 610 or encapsulating material. Interconnecting the solar cells 6〇3 in each module and a first electrical pin 614A or a positive pin and a second electrical pin 614B or a negative pin have the first configuration, so The edge seal portions 606 on the first side 601A of the single-crystal volume multi-module power supply 600 extend to the outside of the modules 602. As mentioned above, due to every 29 201017914

一模組6〇2中之該等太陽能電池6〇3係以兩列組織,即: 列Α及Β ’該等電引腳61 4Α及61 4Β係位在相同側上, 即:該第一側601A。如第8圖所示’當該等列數係偶數 時,由於以偶數列之方式佈置之該等太陽能電池係電連 接,在每一模組中之該等第一及第二電引腳614A及6i4BThe solar cells 6〇3 of a module 6〇2 are organized in two columns, namely: Lennon and Β 'the electric pins 61 4Α and 61 4Β are on the same side, ie: the first Side 601A. As shown in FIG. 8 'When the number of columns is even, the first and second electrical pins 614A in each module are electrically connected due to the arrangement of the solar cells in an even column. And 6i4B

φΦ

在同一側結束,因此該等電引腳之該極性係規律地沿著 該單晶體積體多模組功率供應600之該側交替地放置。 因此,可輕易地將在該等模組其中之一的該第一電引腳 614A連接至在該其後模組中相同側上的該第二電引腳 614B,如該圖式中所示。然雨,若在每一模组中之該列 數係一奇數’該正電引腳及該負電引腳將位在一單晶體 積想多模組功率供應的該等相對側上。 第9圖舉例說明一單晶體積體多模組功率供應·, 其具有具配置奇數列之太陽能電池之該第二組態的電引 聊。在第9圖中,具一第一侧7〇1A及一第二侧則β之 該連續多模組功率供應·包括具有以註記為A之一單 列來組織之太陽能電池6〇3的 每一模 702係以具有邊緣密封部分7 入刀配器密封部分7 之-濕氣阻障密封框架704 ’以及—上方拉長保護片( 示出)與-下方拉長保護片709來圍繞。在每H 7( 中’該等太陽能電池6〇3係以一支撐鉍 镙材枓71〇來圍繞 將在每一模組702中之該等太陽雷 呀恥電池603組織在一 ^ 30 201017914 一列中,即:列A,且一第一電引腳714A或正引腳以及 ——第二電引腳714B或負引腳係以一交替方式設置在該 第一侧701A及該第二側701卫處。將在每一模組中之該 等太陽能電池603互連,且具相對極性之該第一及該第 二電引腳714A及714B係藉由通過在該連續多模組功率 供應700之該第一側701A及該第二側701B上的該等邊 ’ 緣密封部分706延伸至該等模組703外側。因此,可將 _ 在該等模組703其中之一的一第一電引腳7UA輕易地連 接至在該其後模組中的一第二電引腳714b,如該囷式中 所示》應注意在該等圖式第8圖至第π圖中之終端Tl、 Τ2、Τ'3 ’及Τ'4係指該單晶體積體多模組功率供應的該等 終端。_ 第10圖舉例說明一單晶餿積體多模組功率供應800, 其具有具配置偶數列之太陽能電池之該第一組態的電引 ❹ 腳。在第1〇圖中,具一第一側801Α及一第二侧801Β 之該連續多模組功專供應800包括具有以註記為Α之一 單列來組織之太陽能電池603的一模組802。每一模 組802係以具有邊緣密封部分8〇6及分配器密封部分 之一濕氣阻障密封框架8〇4,以及一上方拉長保護片(未 不出)與一下方拉長保護片8〇9來圍繞。在每一模組8〇2 十’該等太陽能電池603係以一支撐材料81〇來圍繞。 將在每一模組8〇2中之該等太陽能電池6〇3組識成四 31 201017914 列,即·列A、B、C及D,且一第一電引腳814八或正 引腳以及一第二電引腳814B或負引腳係位在該第一側 801A上。將在每一模組中之該等太陽能電池6〇3互連, 且具相對極性之該第一及該第二電引腳814A及8l4B係 藉由通過在該單晶體積體多模組功率供應800之該第一 側801A上的該邊緣密封部分8〇6延伸至該等模組8〇3 r 外侧。因此,可將在該等模組803其中之一中的一第一 © 電引腳814A輕易地連接至在該其後模組中的一第二電 引腳814B上。在此實施例中,可有來自該等模組的額外 電引腳以容納像是旁通二極體的其它裝置。第10圖中圖 例顯示該等額外之電引腳8丨6 A及8丨6B。可連接至該等 額外之電引腳的該等連接裝置818A及/或818B可能係旁 通二極體及/或電纜’其可用來將可能已退化之一些列的 太陽能電池自該整個單晶體積體多模組功岸供應的該電 ® 路中取出。例如:若該等連接裝置818A係短電纜,若談 等列A及B之太陽能電池失效時使用此等短電窥可使該 等模組仍舊運作。由於在此例中該列A及B之太陽能電 池係藉由一電纜來短路,在列c及D中之其餘該等電池 將繼續適當地作用。第u圖舉例說明一單晶體積體多模 纟且功率供應900 ’其具有具配置奇數列之太陽能電池之 該第二組態的電引腳。在第U圖中,具一第一側90iA 及一第二侧901B之該單晶體積體多模組功率供應9〇〇 32 201017914 包括具有以註記為A、B、C、〇及E之五列來組織之太 陽能電池603的一模組902。每一模組902係以具有邊 緣密封部分906及分配器密封部分9〇8之一濕氣阻障密 封框架904,以及一上方拉長保護片(未示出)與一下方拉 長保護片909來圍繞。在每一模組9〇2中,該等太陽能 電池603係以一支撐材料91 〇來圍繞。第8圖至第11圖 , 顯示本發明之該等設計的撓性,其可具有太陽能電池的 ❹ 許多其它組態。 如上所述,製造包含許多個別模組且每一個別模組具 有其自己之濕氣不可滲透或抗濕氣結構的單晶體積體多 模組功率供應有許多優點。一項優點係在此等多模組裝 置中之較佳可靠性。若因為在該模組位置處之該上保護 片、該下保護片或側密封劑的一失效使住何濕氣進入任 何該單晶體積體撓性多模組功率供應的該等個別模組 φ 中’則因為分配器密封劑或分配器牆的存在,該濕氣將 * 不能行進通過其它模組、應注意在一模組結構中具有個 9 別之密封區段的此概念甚至可延伸至在一模組内的一太 陽能電池或一部分之一太陽能電池,可將其分別密封以 對抗濕氣。因此,在另一實施例中,該模組之該保護殼 包含上及下保護片,以及一邊緣密封劑以密封該等保護 片之該周界處的該等邊緣,及一或多個分配器密封劑以 將該保護殼之該内部體積或空間分隔成區段,每一區段 33 201017914 包含至少一部分之一太陽能電池及囊封該部分之該等前 及後表面的囊封材料。該邊緣及分配器密封劑係佈置在 該等上方及下方保護片之間。在此區段型模組組態中, 任何通過該保護殼的局部缺陷將影響在可與此缺陷接觸 之一特定區段内的該(等)太陽能電池或太陽能電池部 分,且將不影響在以該等分配器密封劑與該特定區段分 開之其它區段中的該(等)太陽能電池或太陽能電池部 分。因此’在不受該缺陷影響之該等區段中的該等太陽 能電池或太陽能電池部分將持續作用並產生功率。 第12A圖顯示一模組950之一俯視圖或前視圖。第12B 圖顯示沿著該線F1至F2的一截面圖。應注意該模組95〇 可非吾人可製造之一模組的該精確設計。而是,其係示 例性及說明用的,且係繪製來作為說明或顯示在一單一 模組結構中以--般方式之本發明的各種態樣。 該示例性模組950包含十二個太陽能電池,其以 951A、951B、951C、951D、951E、951F' 951G、951H、 9511、951J、951K’及951L·來標識,該等太陽能電池係 電互連。在該圖式中未顯示該等互連以簡化該圖式。在 第3圖中’在該等太陽能電池間存在間隙。然而如之前 所解釋,也可能可覆板該等太陽能電池,因此在該等太 陽能電池間可不存在間隙。電池也可有不同之形狀。例 如:可拉長一維度使其大於另一維度2至1〇〇倍《該模 ... . . . 34 201017914 組950具有一上保護片962及一下保護片964’及在該 上保護片962及該下保護片964間的一邊緣密封劑952。 將該邊緣密封劑952放置在該模組結構之該邊緣處且在 此例中其形狀係長方形的1對於具不同形狀之其它模組 結構而言,該邊緣密封劑也可具不同形狀,其係循該等 • 不同形狀模組的該周圍。該上保護片962、該下保護片 ' 964 ’及該邊緣密封劑952形成一保護殼。 _ 該模組95〇另包含分配器密封劑953,其在該保護殼 内形成’即在由該上方保護片962、該下方保護片964 及該邊緣密封劑952所建立的該體積或空間内形成❶該 分配器密封劑953形成一密封劑圖樣954,其將該保護 殼分配成密封之區段955。在第3圖之該示例性模組中 有十五個區段955。在該模組950之該中間區域中之該 等區段955中的一些係僅以該等分配器密封劑953來接 镦 界。另一方面,接近該模組950之該邊緣的區段係以分 配器密封劑953以及該邊緣密封劑952之部分接界。如 可由第3圖所見’每一區段可包含一太陽能電池、一太 陽能電池之一部分’超過一個太陽能電池的部分或超過 一個太陽能電池。例如:標記為9 5 5 A及95 5 B之區段每 一假包含該太陽能電池95 i A之一不同部分,然而標記為 955C之該區段包含該單一太陽能電池951b。另一方面, 樣記為955D之該區段包含該等太陽能電池951H及 201017914 951L,以及該太陽能電池951K的一部分。該等分配器 密封劑953之該密封劑圖樣954可用不同方式來塑形, 像是·長方形、曲形、圓形,等等。可將該等分配器密 封劑953之部分放置在該等太陽能電池間的該間隙中、 在該等太陽能電池上以及甚至在該等太陽能電池下。若 • 將該等分配器密封劑953或其部分放置在該等太陽能電 池上,較佳地係將其與該等太陽能電池之該等匯電條(未 ® 在圖中顯不以簡化圖式)對齊,因此可避免因該分配器密 封劑953所造成之該等電池的任何可能之額外遮蔽。 如第12Α圖及第12Β圖中所示,可將該等分配器密封 劑之該等部分放置在該等太陽能電池上的分配器密封劑 空間960上。將該等分配器密封劑空間96〇指派在該等 太陽能電池之該前表面或該後表面上的位置。該等分配 器密封劑空間960不包含任何支撐材料,因此可將該分 © 配器密封劑貼附在該太陽能電池的該前侧或後侧上。應 注意在太陽能電池上之匯電條已遮蔽在該等電池部分正 下方’因此在該等匯電條之上放置該等分配器密封劑953 將不會造成在該等裴置中的額外面積損失。如第ΐ2Β圖 中之該模組950的該截面圖中所見,該密封劑圖樣954 之一部分953Α係放置在該太陽能電池95u之上。另一 密封劑部分953B也可在該太陽能電池951J之下。換句 話說’可在該等太陽能電池之下使甩一下方密封劑圖樣 36 201017914 (未示出)。該下方密封劑圖樣可或可不叹配該密封劑圖 樣954之形狀《將在該模組95〇中之該等太陽能電池囊 封進圍繞及支撐該等太陽能電池的一囊封材料966中。 在使用本發明之各種教導之一一般模組結構的此一般描 述後’現將描述更多簡化之模組結構以解釋其獨特特徵 * 及優勢。 * 如上述連接第3A圖至第3F圖所示,在該等功率供應 φ 或模組結構的該卷對卷或連續或逐步製造期間,首先可 以一連續或逐步方式自一卷對卷模組製造系統之一供應 卷提供一拉長上方保護片,並行進通過一些程序站,其 在該拉長保護片上加入該等模組之其它組件以形成一連 續封裝結構或連續多模組裝置的一實施例,然後可將其 滾軋在一接收軸上以形成一卷。如以下將更全面地描 述’在其它實施例中,包含在該透明拉長片上沈積之一 參 透月拉長片及濕氣阻障層區段的一連績撓性模組基部係 用來製造用於至少兩個太陽能電池模組的一前側。為形 成談連讀撓性模組基部,可在該透明拉長片之一後表面 .$成至^兩個濕乱阻障層區段·。.不含該.濕氣阻障_層之 —分隔區域實體上彼此分隔該等濕氣阻障層區段並完全 將其圍繞。在該程序中進一步地,圍繞每一該等濕氣阻 障層區段的一濕氣阻降框架將位在該分隔區域上。在該 卷對卷程序期間’首先可用一連續或逐步方式自一卷對 37 201017914 卷模組製造系統之一供應卷提供該連蹟撓性模組基部, 並行進通過一些程序站’其在該拉長保護片上加入該等 模組之其它組件以形成一連續封裝結構或連續多模組裝 置的一實施例’然後可將其滾軋在一接收轴上以形成一 卷。製造一連續封裝結構250之另一實施例的一程序將 用第13A圖及第13B圖中所示之該連續封裝或模組結構 250的該分解圖來描述。應注意該圖式中並未顯示該模 ❿ 組結構之太陽能電池互連及電線與終端的細節以簡化該 圖式。 首先,提供具有一後表面251A及兩邊緣252之該上方 拉長保護片251的一區段,如第13A圖上所示。該上方 拉長保護片251形成將使用本發明之該等程序來製造的 該等模組之該前側或該光接收侧’因此其係透明的。 在一第二程序步驟中’在該上方拉長保護片251之該 ® 後表面251A上沈積一濕氣阻障屠253。該濕氣阻障層253 包括濕氣阻障層部分253A或區段’且其僅覆蓋模組空間 258。換句話說,談濕氣阻障層253僅在稱為在該上方拉 長保護片251之該後表面251A上之模組空間258的該等 預定位置上沈積並形成。—第13B圖以虛線長方形顯示該 等模組空間258,其係依在此所述來製造之在該上方拉 長保護片251之該後表面25 1A上未來模組之該等内部的 外形。包含濕氣阻障層部分253A之該上方拉長保護片 38 201017914 251及該濕氣阻障層253形成一連續撓性模組基部 250A。首先,在一實施例中,在該卷對卷程序之該第一 步驟中提供該連續撓性模組基部25〇A。接著,在該上方 拉長保護片251之該後表面251A上應用一濕氣密封劑 254。該濕氣密封劑254接觸在該後表面251A上的一濕 氣密封劑區域254A(也稱為一分隔區域),其在該位置處 與該後表面251A建立一良好的機械接合。第13B圖顯 ® 示圍繞該等模組空間258之該濕氣密封劑區域254A或該 分隔區域。當該濕氣密封劑254沈積在該濕氣密封劑區 域254A上時,其包圍在該等模組空間258上之該等濕氣 阻障層部分2 5 3 A ’且其較佳地係沿著該保護片2 5 1之該 等兩個邊緣252及在該等模組空間258上之該等濕氣阻 障部分253A之間沈積。沿著該上方延長保護片251之該 等邊緣252沈積之該濕氣密封劑254的該部分形成一側 ® 密封劑256或側牆及佈置在該等模組空間258間之該濕 氣密封劑的該部分’或是該等模組空間之末端形成一分 配器密封劑257或分配器牆。應注意在該分隔區域254A 上之該濕戒*密封劑2 5 4的該佈.置(其.不具有一濕氣阻障層) 確保在該分隔區域.2 5 4 A上之該濕氣密封劑 2 5 4'及:該後表 面25 1A間的良好機械接合。此種機械接合對使該濕氣密 封劑生效係必要的。放置在濕氣阻障層上之濕氣密封劑 通常不形成良好之機械接合’且濕氣可經由此等不牢固 39 201017914 之介面快速地擴散,即使該濕氣密封劑本身可能係一良 好的濕氣阻障。 如上所述,該濕氣密封劑254可以是一帶或一預先塑 形層之形式,或其可以是一黏滯性流體,其在該上方拉 長保護片251之該後表面251A的該濕氣密封劑區域 254A上分散。當在該後表面251 A上之該濕氣密封劑區 域254A上應用時’該濕氣密封劑254之該等側牆256 Φ 及該等分配器踏257在該上方拉長保護片251上形成複 數個孔穴259。每一孔穴259可用一濕氣阻障層部分253A 及圍繞該濕氣阻障層部分253 A之該等側牆256及分配器 牆257來界定。如上所述’該濕氣密封劑254可形成成 一單件式連續框架(濕氣阻障框架 &gt;,其包括該等側牆及 該等分配器牆,其係根據該所需之太陽能模組形狀及尺 寸來塑形及決定大小。當在該上方拉長保護片251之該 ® 後表面251A上的該濕氣密封劑區域254A上應用此濕氣 阻障框架時,其於該濕氣阻障層部分253 A上形成該等孔 穴259、應注意儘管該濕氣密封劑254中之一些部分係 實質上放置在該濕氣密封劑區域254A上,其可沿著該等 濕氣阻障層部分25 3 A-之邊緣在其上廷伸。 在處理該濕氣密封劑254後,支撐材料層260或囊封 材料及太陽能電池262或包含二或多個太陽能電池之太 陽能電池串係放在該等孔穴259内的每一濕氣阻障層部 201017914 分253A之上。在第13A圖中顯示至少一太陽能電池262 或太陽能電池串或電路(以虚線表示),其插入在該等支 撐材料層260之間。如上所述,該等太陽能電池262或 該等太陽能電池串或該等電路係以一正面向下之方式放 置在該支撐材料層260之上。每一太陽能電池260或太 陽能電池串或電路的一光接收側係面向該拉長上方保護 片251。該模組之電引腳(未示出)或終端較佳地可通過沿 φ 著該拉長保護片251之至少一個該等長邊緣放置之該濕 氣密封劑254的該側牆256自該孔穴259中帶出,其係 以該濕氣密封劑254也密封該等電引腳周圍的一方式。 如該等先前實施例所示’太陽能電池串或電路包括電互 連之太%能電池263。然而,在每一該等孔穴259中之 該等串可或可不彼此電互連。 回頭參考第13Α圖,在以下步驟中,將一後方拉長保 0 護片271放置在該濕氣密封劑254及該整個支撐材料26〇 上以在該叠層程序前完成一連續封裝結構250之該等組 件的該組合。該後方拉長保護片271可係透明的或不透 明的。第13C圖顯示在疊層後具模組27〇之該連續封裝 構2 5 0之該疋整結構的一截面圖:該截面孫沿著該舉 例之連續封裝結構250之中間截取而得'應注意該後方 拉長保護片271可具有濕氣阻障特性。在市場中有此等 片’其具有包括一金屬層(像是:鋁)之多層聚合結構以 201017914 作為一濕氣阻障。或著,另一組濕氣阻障層部分253A 可在該後方拉長保護片271之一前表面27 1B上塗布,就 像在該上方拉長保護片25 1上之該等阻障層部分^ 上述之第12A圖及第12B圖顯示一使用本發明之各種 教學的一般模組結構,以下將配合第14A圖、第14B圖、 ❿ 第15囷、第16圖、第17圖、第18圖及第19圖描述更 多簡化之模組結構以解釋其獨特特徵及優勢。 第14A圖及第14B圖顯示一太陽能電池模組1〇1,其 包括:至少兩個太陽能電池單元、—第一太陽能電池單 兀102及一第二太陽能電池單元1〇4。該等單元ι〇2及 1〇4可以是太陽能電池之串。該單元1〇2可包括太陽能 電池102A、102B及l〇2c,該單元1〇4可包括太陽能電 池104A、104B及104C »每一太陽能電池包括一光接收 則方部刀105A及一後方部&amp; 1〇5B或基部。該等太陽能 電池之該等光接收前方部分形成該等太陽能電池單元 〇2及104的該則側’而該等後方部分形成該等太陽能 電池單it的該後側。在每—單元或串中之太陽能電池係 藉由利用程序使用導電互連(未清楚示出)以彼此電互 連,該等料聽是_域巾㈣知料接《接。如 第m圖至第MB圖中所示,該模組ι〇ι具一多區段結 構,其含有一第一區段崎及-第二艮請 —區段遍包括該第-串1G2且該第二區段_包括 42 201017914 該第二串104。該等區段於該模組ιοί之一上方保護片 107及一後方保護片108間形成。一第一密封劑112或 一邊緣密封劑密封在其周界處之該等保護片的該等邊 緣’因而形成一保護殼110。一第二密封劑114或一分 配器密封劑分隔該等串102及104,因而形成該等區段 106A及106B。該邊緣密封劑112及該分配器密封劑兩 者皆放置在該等前及後保護片107及108間並貼附於其 © 上,如第14A圖及第14B圖中所示之該方式。該邊緣及 該等分配器密封劑可係一單件式密封劑的兩個部分。 在此實施例中’每一太陽能電池串係以一支撐材料層 116囊封。像是EVA之該支撐材料116可完全填滿該等 區段106A及106B,其以該邊緣密封劑112及該分配器 密封劑114以及該等第一及第二保護片1〇7及1〇8密 封。分開密封之區段獨立地保镬該等太陽能電池串,其 以該支撐材料116將其囊封在内。這提供了對該等太陽 能電池串的額外保護。例如··甚至若靠近該第一區段 106A在該邊緣密封劑112中的一缺陷允許濕氣洩露進該 第一區段1〇6八並引起該第一串1〇2之失效,在該第二區 段106B中之已密封的該第二串1〇4仍可作用並產生功 率。應注意當在一模組結構内之個別密封區段的數目增 加時’因在該保護殼中之一缺陷所造成之太陽能電池失 效的機率減少。該等缺陷可能在該邊緣密封劑中,或甚 201017914 至在該前方保護片及該後方保護片中之任一個中。若在 該保護殼中之一缺陷將濕氣帶進一密封區段内,該濕氣 陷入該密封區段中而不具擴散通過其餘之該模組結構的 能力。例如:第14A圖之該太陽能電池模組101可具有 六個區段而非所示之該等兩個區段。在此例中,每一該 等太陽能電池 102A、102B、102C、1.04A、104B 及 104C 可在其自身的一區段中。 第18圖中顯示一四區段模組設計。第J 8圖之該模組 150 包含六個電池 151A、151B、151C、151D、151E 及 151F’其全部可具有類似之設計。第19圖顯示該太陽能 電池設計。該太陽能電池151A包含一匯電條16〇及指狀 物161。該等太陽能電池之該等設計細節未於第18圖中 顯示以簡化該圖式。該模組1 5 〇具有一四區段結構,該 等四個區段152A、152B、152C及152D之每一個包含三 個電池的一半部分。例如:區段152A包含一部分之電池 151A、一部分之電池i51B及一部分之電池151C。該邊 緣密封劑155及該等分配器密封劑156形成區段152a、 152B、152C及152D ’其包含三個分配器密封劑部分 156A、156B及156C。該等分配器密封劑部分156_A及 156C實質上與該等太陽能電池151八、151B、151C、 . . . . 151Ό、151E及151F之該等匯電條160成一直線,因此 44 201017914 可最小化因該等分配器密封劑部分156A、156B及156C 所引起之遮蔽損失。 如第12A圖及第18圖中所述’在每一區段僅包含一太 陽能電池之一部分之該模組結構中形成密封之區段有一 優點。因此’若濕氣或其它蒸氣進入一區段内並損害一 太陽能電池之一部分時’包含在不受該濕氣影響之其它 區段中之該太陽能電池的其它部分將繼續有效地產生功 ⑩ 率。因此’相較於不具該等區段之一模組,可提升該模 組結構之該全部效能。該等邊緣密封劑及分配器密封劑 係高抗濕氣穿透的材料。該等邊緣及分配器密封劑之該 水蒸氣穿透率較佳地係低於〇.〇〇丨克/平方公尺/天,更佳 地係低於0.0001克/平方公尺/天。 以下將配合第15圖描述製造該太陽能模組ι〇1之一實 施例的一種方法。首先,將一對前方支撐層116A放置在 ® 預先清理之該前方保護片107的一内表面107B上。在該 保護片107之該邊緣之間以及在該等前方支撐層U6A 之間留下密封劑空間118以容納上述之該邊緣密封劑及 該分配器密封劑。在以下步驟中,可將該等太陽能電池 争1〇2及1〇4之該前方部分1〇5A放置在該等前方支稽層 116A上。然後’將該等後方支撐層i 16B放置在該等太 陽能電池串1〇2及104之該等後方側1〇SB上。該邊緣密 封劑112及該分配器密封劑114係貼附在該等密封劑空 45 201017914 間118上。最後,將該後方保護片108之一内表面108B 放置在該等後方支撐層116B及該邊緣及分配器密封劑 之上。談前方保護片i 07 —般而言係一玻璃,但也可係 一透明撓性聚合膜,像是:TEFZEL®,或具濕氣阻障塗 層之另一聚合膜。TEDLAR®及TEFZEL®係DuPont公司 之氣聚合物材料的品牌名。TEDLAR®係聚氟乙烯 (PVF),且 TEFZEL®係乙烯-四氟乙烯(ethylene 參 tetrafluoroethylene,ETFE)氟聚合物。該後方保護片108 可係一片玻璃或一聚合片,像是:TEDLAR®,或另一聚 合材料,其可係透明的或不透明的。該後方保護片108 可包含堆疊片’其包含各種林料組成物,像是金屬膜以 作為濕氣阻障。該等前方及後方支撐層材料較佳地可包 括 EVA 或熱塑聚胺甲酸醋(thermoplastic polyurethane, TPU)材料或兩者皆具。應注意在該等圖式中所示之該等 籲 組件的該等厚度並非按實際尺寸之比例。該模組1〇1可 有一長方形或任何其它幾何的形狀,因此可相應地安排 該等區段之該尺寸及該等太陽能電池串之該分佈。也可 能可自該等模組結構中去除談前方支樓層及該後方支撐 ·’層中之任一個或兩個。 ........... 將第15圖中所述之該太陽能電他模組的該等堆疊組 件放置在一疊層機中,並在壓力下於丨2〇。_16〇。匸之一溫 度範圍中熱處理約10-20分鐘。或者這可經由春對卷疊 46 201017914 層來達成。如第14B圖及第15圖中所示,每一太陽能電 池包括一則方部分及一後方部分或基部。該基部1 〇5B包 括一基板及在該基板上形成之一接觸層。一較佳之基板 材料可係一金屬材料,像是:不鏽鋼、鋁或諸如此類。 一示例性接觸層材料可係鉬。該前方部分1 05A可包括一 吸收體層’像是:在該接觸層上形成之一 CIGS吸收鱧 層,以及在該吸收體層上形成之一透明層,像是一緩衝 層/氧化辞堆疊。一示例性緩衝層可係一(Cd,Zn)s層。導 電指狀物(未示出)可於該透明層上形成。每一互連將該 等電池其中之.一的該基板或該接觸曆電連接至該下一電 池的該透明層。然而,可使用任何該領域中的其它方法 來互連該等太陽能電池。 第16圖以側視圖顯示該模組ι〇1之另一實施例。在此 實施例中,該等_ 102及104係以該等邊緣及分配器密 封劑112及1 14支撺。在該等串及該後方保護片1〇8的 該後側之間以及在該等串及該前方保護片1〇7的該前側 之間留下間隙122。在該等區段ι〇6Α及ι〇6Β冲,將該 等串1〇2及1〇4之該等邊緣固持在適當位置上並以該等 邊緣及分配器密封劑112及114來密封,如第圖中所 示的該方式。可能可以用在第15圖中識別為支撑層i 16A 或116B之一支樓層(未示出)填滿任何該等間隙122。 47 201017914 第17圖以側視圖顯示該模組1〇1之再另一實施例。在 此實施例中,在該等串1〇2及1〇4之該前側上出現一間 隙122A。該間隙122A可視情況以一前支撐層來填滿(未 不出’但其類似第15圖之該前支撐層U6A)。將該等串 102及104之該等後側放置在該後方片1 〇8上。將該等 串102及1〇4之該等邊緣固持在適當的位置並以該邊 緣及該等分配器密封劑112及114密封,如第17圖所示 〇 之該方式。 儘管在此已相對某些較佳實施例描述本發明之態樣及 優點,熟習本技術之人士將可清楚了解該等較佳實施例 之修正。 【圖式簡單說明】 在配合該等後附圖式於閱讀本發明之特定實施例的該 ® 卩&quot;F發明說明下’熟習本技術之人士將更了解本發明之 該等或其它態樣及特徵,其中: 第1圖係一薄膜太陽能電池之一示意圖; 第2A圖係一撓性薄膜太陽能模組的一示意截面圖; 第2B圖係第2八圖之該模組的一示意俯視圖; 第3A圖至第3F圖係製造本發明之一連續封裝結構之 一實施例的示意圖’其包括複數個棋組結構; 48 201017914 第4A圖至第4B圖係將該連續封裝結構轉換成一連續 多模組功率裝置的示意圖’其包括複數個太陽能模組; 第5圖係本發明之一太陽能模組的一示意侧視圖; 第6 A圖至第6B圖係製造單晶體積體多模組功率供應 之一實施例的斧意圖;及 , 第7圖係製造本發明之撓性光電模組之一卷對卷系統 的一示意圖。 Φ 第8圖舉例説明一單晶體積體多模組功率供應6〇〇, 其具有以該第一組態配置之電引腳。 第9圖舉例說明一單晶體積體多模組功率供應7〇〇, 其具有以該奇數列之太陽能電池之該第二組態配置的電 引腳。 第10圖舉例說明一單晶體積體多模組功率供應8〇〇, • 其具有以該偶數列之太陽能電池之該第一組態配置的電 ,• 引腳。 第Λ1圖舉例說明一單晶體積體多模組功率供應9〇〇, 其具有以該奇數列之太陽能電池之該第二組態配置的電 引腳。 第UA圖係根據一實施例之—太陽能電池模組的一示 意圖; -. . . .. .. . : . \第咖圖係第以圖所示沿著該線^至打之該太陽 電’也模組的一示意截面圖; 49 201017914 第13A圖至第13B圖顯示製造一連續封裝結構之另一 實施例的一程序; 第13C圖顯示根據第13A圖至第13B圖所述之該程序 所製之該實施例之該連續封裝結構的該完成結構; 第14A圖係一太陽能電池模組之一實施例的一示意 ffft 鲁 圏, 第14B圖係第14A圖所示沿著該線14B至14B之該太 ❿ 陽能電池模組的一示意橫截面圖; 第15圖顯示在製造期間之該太陽能電池模組之該等 組件的一示意圖; 第16圖及第17圖係該太陽能電池模組之各種實施例 的不意圖; 第18圖係一模組設計;及 第19圖係用在第18圖之該模組設計中的一太陽能電 .池。 【主要元件符號說明】 3導線 4終端線 5終端線 6a上囊·封材料 6b下囊封材料 1撓性樣組 2a電池 2b電池 2 c電池 2AA電池串 50 201017914 7上保護片 108B内表面 8下保護片 110保護殼 9濕氣密封劑 112邊緣密封劑 9a材料 114第二密封劑 10光電電池 114分配器密封劑 . 11基板 116支撐材料 , 12吸收體膜 116A前方支撐層 13導電層 11 6B後方支撐層 ® 14透明層 11 8密封劑空間 15輻射 122間隙 20基部 122A間隙 100保護殼 150模組 101太陽能電池模組 151A-151F 電池 102第一太陽能電池單元 152A-152D 區段 102A-102C太陽能電池 155邊緣密封劑 φ 104第二太陽能電池單元 104A-104C太陽能電池 156分配器密封劑 156A-156C分配器密封劑 105A光接收前方部分 部分 105B後方部分 160匯電條 106A第一區段 161指狀物 106B第二區段 200A上方拉長保護片 107上方保護片 200B後方拉長保護片 107B内表面 202後表面 108後方保護片 203邊緣 51The end is on the same side so that the polarity of the electrical pins is alternately placed along the side of the single crystal volume multi-module power supply 600. Thus, the first electrical pin 614A in one of the modules can be easily connected to the second electrical pin 614B on the same side of the module, as shown in the figure. . However, if the number of columns in each module is an odd number, the positive and negative pins will be placed on the opposite sides of a single crystal multi-module power supply. Figure 9 illustrates a single crystal volume multi-module power supply having an electrical configuration of the second configuration of a solar cell configured with odd columns. In FIG. 9, the continuous multi-module power supply having a first side 7〇1A and a second side β includes each of the solar cells 6〇3 having a single column labeled as A. The mold 702 is surrounded by a moisture barrier sealing frame 704' having an edge seal portion 7 into the knife seal portion 7, and an upper elongated protective sheet (shown) and a lower elongated protective sheet 709. In each H 7 (the solar cell 6〇3 series with a supporting coffin 枓71〇 to surround the solar ray battery 603 that will be in each module 702 is organized in a column of ^ 30 201017914 Medium, that is, column A, and a first electrical pin 714A or a positive pin and a second electrical pin 714B or a negative pin are disposed on the first side 701A and the second side 701 in an alternating manner. The solar cells 603 are interconnected in each module, and the first and second electrical pins 714A and 714B of opposite polarity are passed through the continuous multi-module power supply 700. The equilateral edge sealing portion 706 on the first side 701A and the second side 701B extends to the outside of the module 703. Therefore, a first electric device can be used in one of the modules 703 The pin 7UA is easily connected to a second electrical pin 714b in the subsequent module, as shown in the figure, it should be noted that the terminal T1 in the figure 8 to the figure π of the drawings, Τ2, Τ'3' and Τ'4 refer to the terminals of the single-crystal volume multi-module power supply. _ Figure 10 illustrates a single crystal spur multi-module power 800, which has the first configuration of the solar pump with the even-numbered solar cells. In the first diagram, the continuous multi-module function has a first side 801Α and a second side 801Β The specialty supply 800 includes a module 802 having solar cells 603 organized in a single column, each of which is sealed with a moisture barrier that has an edge seal portion 8〇6 and a dispenser seal portion. The frame 8〇4, and an upper elongated protective sheet (not shown) are surrounded by a lower elongated protective sheet 8〇9. In each module 8〇2, the solar cells 603 are supported by a supporting material. 81. The solar cells 6〇3 in each module 8〇2 are identified as four 31 201017914 columns, ie, columns A, B, C, and D, and a first electrical pin 814 An eight or positive pin and a second electrical pin 814B or a negative pin are tied to the first side 801A. The solar cells 6〇3 in each module are interconnected and have a relative polarity The first and second electrical leads 814A and 814B are passed through the first side 801A of the single-crystal volume multi-module power supply 800 The edge seal portion 8〇6 extends to the outside of the modules 8〇3 r. Therefore, a first electrical pin 814A in one of the modules 803 can be easily connected to the rear. A second electrical pin 814B of the module. In this embodiment, there may be additional electrical pins from the modules to accommodate other devices such as a bypass diode. Figure 10 shows the legend. The additional electrical pins 8丨6 A and 8丨6B. The connecting devices 818A and/or 818B connectable to the additional electrical pins may be bypass diodes and/or cables 'available A series of solar cells that may have been degraded are taken out from the electric circuit of the entire single-crystal volume multi-module work shore. For example, if the connecting device 818A is a short cable, the use of such short sneak can cause the modules to operate if the solar cells of columns A and B fail. Since the solar cells of columns A and B are short-circuited by a cable in this example, the remaining cells in columns c and D will continue to function properly. Figure u illustrates a single crystal volume multimode and power supply 900&apos; having an electrical pin of the second configuration of a solar cell configured with odd columns. In FIG. U, the single-crystal volume multi-module power supply having a first side 90iA and a second side 901B is 〇〇32 201017914 including five having the annotations A, B, C, 〇, and E A module 902 of solar cells 603 is organized. Each module 902 is provided with a moisture barrier sealing frame 904 having an edge sealing portion 906 and a dispenser sealing portion 9A, and an upper elongated protective sheet (not shown) and a lower elongated protective sheet 909. Come around. In each module 9〇2, the solar cells 603 are surrounded by a support material 91 〇. Figures 8 through 11 show the flexibility of the design of the present invention, which can have many other configurations of solar cells. As described above, the manufacture of a single crystal volume multi-module power supply comprising a plurality of individual modules each having its own moisture impermeable or moisture resistant structure has many advantages. One advantage is the better reliability in these multimode assemblies. If the moisture is admitted to any of the individual modules of the single-crystal volume flexible multi-module power supply due to a failure of the upper protective sheet, the lower protective sheet or the side sealant at the position of the module In φ', because of the presence of the distributor sealant or the distributor wall, the moisture will not travel through other modules, and it should be noted that this concept has a 9-seal section in a modular structure and can even be extended. A solar cell or a portion of a solar cell in a module can be sealed separately against moisture. Therefore, in another embodiment, the protective case of the module includes upper and lower protective sheets, and an edge sealant to seal the edges of the protective sheets at the perimeter, and one or more dispenses The sealant separates the interior volume or space of the protective casing into sections, and each section 33 201017914 includes at least a portion of a solar cell and an encapsulating material that encapsulates the front and back surfaces of the portion. The edge and dispenser sealant are disposed between the upper and lower protective sheets. In this segmented module configuration, any local defects passing through the protective casing will affect the solar cell or solar cell portion within a particular segment that can be in contact with the defect and will not affect The solar cell or solar cell portion of the other sections separated from the particular section by the dispenser sealant. Thus, such solar cells or solar cell portions in such segments that are not affected by the defect will continue to function and generate power. Figure 12A shows a top or front view of a module 950. Figure 12B shows a cross-sectional view along the line F1 to F2. It should be noted that this module 95 can be used to manufacture this precise design of one of the modules. Rather, it is used for purposes of illustration and description, and is illustrated as illustrative or representative of various aspects of the invention in the form of a single module. The exemplary module 950 includes twelve solar cells, which are identified by 951A, 951B, 951C, 951D, 951E, 951F' 951G, 951H, 9511, 951J, 951K', and 951L. even. These interconnections are not shown in this figure to simplify the drawing. In Fig. 3, there is a gap between the solar cells. However, as explained before, it is also possible to cover the solar cells so that there may be no gaps between the solar cells. The battery can also have different shapes. For example, the dimension can be lengthened to be larger than another dimension by 2 to 1 times. The mold ...... has a top protective sheet 962 and a lower protective sheet 964' and the upper protective sheet. An edge sealant 952 between the 962 and the lower protective sheet 964. The edge sealant 952 is placed at the edge of the module structure and in this case is rectangular in shape. For other module structures having different shapes, the edge sealant may have a different shape. Follow this • around the different shape modules. The upper protective sheet 962, the lower protective sheet '964' and the edge sealant 952 form a protective case. The module 95 further includes a dispenser sealant 953 that is formed within the protective casing, i.e., within the volume or space established by the upper protective sheet 962, the lower protective sheet 964, and the edge sealant 952 Forming the dispenser sealant 953 forms a sealant pattern 954 that distributes the protective shell into a sealed section 955. There are fifteen segments 955 in the exemplary module of Figure 3. Some of the sections 955 in the intermediate region of the module 950 are only joined by the dispenser sealant 953. On the other hand, the section adjacent to the edge of the module 950 is bordered by a portion of the dispenser sealant 953 and the edge sealant 952. As can be seen from Figure 3, each segment can comprise a solar cell, a portion of a solar cell, or more than one solar cell or more than one solar cell. For example, the segments labeled 9 5 5 A and 95 5 B each contain a different portion of the solar cell 95 i A , however the segment labeled 955C contains the single solar cell 951b. On the other hand, the section labeled 955D contains the solar cells 951H and 201017914 951L, and a portion of the solar cell 951K. The sealant pattern 954 of the dispenser sealant 953 can be shaped in a variety of ways, such as rectangular, curved, circular, and the like. Portions of the distributor sealant 953 can be placed in the gap between the solar cells, on the solar cells, and even under the solar cells. If the dispenser sealant 953 or a portion thereof is placed on the solar cells, it is preferably associated with the bus bars of the solar cells (not shown in the figure to simplify the drawing) Alignment, thus avoiding any possible additional shielding of the cells due to the dispenser sealant 953. As shown in Figures 12 and 12, the portions of the dispenser sealant can be placed on the dispenser sealant space 960 on the solar cells. The dispenser encapsulant spaces 96 are assigned to locations on the front or rear surface of the solar cells. The dispenser sealant spaces 960 do not contain any support material so that the dispenser sealant can be attached to the front or back side of the solar cell. It should be noted that the bus bars on the solar cells have been shielded directly underneath the battery sections' so placing the dispenser sealant 953 over the busbars will not result in additional area in the cells. loss. As seen in the cross-sectional view of the module 950 in FIG. 2, a portion of the sealant pattern 954 is placed over the solar cell 95u. Another sealant portion 953B can also be under the solar cell 951J. In other words, a lower sealant pattern can be placed under the solar cells 36 201017914 (not shown). The lower sealant pattern may or may not conform to the shape of the sealant pattern 954 "the solar cell capsules in the module 95" are enclosed in an encapsulating material 966 surrounding and supporting the solar cells. After this general description of a typical modular structure using one of the various teachings of the present invention, a more simplified modular structure will now be described to explain its unique features* and advantages. * As shown in the above connection diagrams 3A to 3F, during the roll-to-roll or continuous or step-by-step manufacturing of the power supply φ or module structure, a roll-to-roll module can be firstly or continuously implemented in a continuous or step-wise manner. One of the manufacturing system supply rolls provides an elongated upper protective sheet and travels through a number of program stations that add other components of the modules to the elongated protective sheet to form a continuous package structure or a continuous multi-module device For example, it can then be rolled onto a receiving shaft to form a roll. As will be more fully described below, 'in other embodiments, a continuous flexible module base comprising one of the permeable stretch panels and the moisture barrier layer deposited on the transparent elongated sheet is used for manufacturing. On a front side of at least two solar cell modules. For the formation of the flexible module base, the rear surface of one of the transparent elongated sheets can be formed into two wet barrier layer sections. Without the moisture barrier _ layer - the separation zone physically separates the moisture barrier segments from each other and completely surrounds them. Further in the program, a moisture barrier frame surrounding each of the portions of the moisture barrier layer will be positioned on the separation region. During the roll-to-roll process, the base of the track flexible module is provided by a continuous or step-by-step method from a roll of a supply roll of one of the 37 201017914 volume module manufacturing systems, and travels through some program stations. An embodiment of the elongated protective sheet incorporating other components of the modules to form a continuous package structure or continuous multi-module device can then be rolled onto a receiving shaft to form a roll. A procedure for fabricating another embodiment of a continuous package structure 250 will be described using the exploded view of the continuous package or module structure 250 shown in Figures 13A and 13B. It should be noted that the solar cell interconnections and wire and termination details of the module structure are not shown in this figure to simplify the drawing. First, a section of the upper elongate protective sheet 251 having a rear surface 251A and two edges 252 is provided as shown in Fig. 13A. The upper elongate protective sheet 251 forms the front side or the light receiving side of the modules to be manufactured using the procedures of the present invention and is therefore transparent. In a second process step, a moisture barrier 253 is deposited on the ® rear surface 251A of the upper elongated protective sheet 251. The moisture barrier layer 253 includes a moisture barrier layer portion 253A or section&apos; and it only covers the module space 258. In other words, the moisture barrier layer 253 is deposited and formed only at such predetermined positions as the module space 258 on the rear surface 251A of the upper elongated protective sheet 251. - Figure 13B shows the module spaces 258 in dashed rectangles, which are formed in accordance with the internal dimensions of the future modules on the rear surface 25 1A of the upper elongate protective sheet 251 as described herein. The upper elongated protective sheet 38 201017914 251 including the moisture barrier layer portion 253A and the moisture barrier layer 253 form a continuous flexible module base 250A. First, in an embodiment, the continuous flexible module base 25A is provided in the first step of the roll-to-roll process. Next, a moisture sealant 254 is applied to the rear surface 251A of the upper elongated protective sheet 251. The moisture sealant 254 contacts a moisture sealant region 254A (also referred to as a separation region) on the back surface 251A where it establishes a good mechanical engagement with the back surface 251A. Figure 13B shows the moisture sealant region 254A surrounding the module space 258 or the separation region. When the moisture sealant 254 is deposited on the moisture sealant region 254A, it surrounds the moisture barrier layer portions 2 5 3 A ' on the module spaces 258 and is preferably tied The two edges 252 of the protective sheet 251 are deposited between the moisture barrier portions 253A on the module spaces 258. The portion of the moisture sealant 254 deposited along the edges 252 of the upper extended protective sheet 251 forms a side® sealant 256 or sidewall and the moisture sealant disposed between the module spaces 258 This portion 'or the end of the module space forms a dispenser sealant 257 or distributor wall. It should be noted that the cloth of the wet ring sealant 2 5 4 on the partition region 254A (which does not have a moisture barrier layer) ensures the moisture on the partition region .2 5 4 A Sealant 2 5 4' and: good mechanical engagement between the back surface 25 1A. Such mechanical engagement is necessary to effect the moisture sealant. The moisture sealant placed on the moisture barrier layer generally does not form a good mechanical bond' and the moisture can diffuse rapidly through the interface of such a weak 39 201017914, even though the moisture sealant itself may be a good one. Moisture barrier. As described above, the moisture sealant 254 may be in the form of a belt or a pre-shaping layer, or it may be a viscous fluid that elongates the moisture of the rear surface 251A of the protective sheet 251. Dispersed on the sealant region 254A. The side walls 256 Φ of the moisture sealant 254 and the dispenser step 257 are formed on the upper elongated protective sheet 251 when applied to the moisture sealant region 254A on the rear surface 251 A. A plurality of holes 259. Each of the cavities 259 can be defined by a moisture barrier layer portion 253A and the side walls 256 and the distributor wall 257 surrounding the moisture barrier layer portion 253A. As described above, the moisture sealant 254 can be formed into a one-piece continuous frame (moisture barrier frame), which includes the side walls and the distributor walls, which are based on the required solar modules. Shape and size to shape and determine the size. When the moisture barrier frame is applied to the moisture sealant region 254A on the ® rear surface 251A of the upper elongated protective sheet 251, the moisture barrier is applied thereto. The apertures 259 are formed on the barrier portion 253 A. It should be noted that although some portions of the moisture sealant 254 are substantially disposed on the moisture sealant region 254A, they may be along the moisture barrier layer. The edge of the portion 25 3 A- is extended thereon. After processing the moisture sealant 254, the support material layer 260 or the encapsulating material and the solar cell 262 or the solar cell comprising two or more solar cells are placed Each of the moisture barrier layers 2010A is located above the 253A. In FIG. 13A, at least one solar cell 262 or a solar cell string or circuit (shown in phantom) is shown, which is inserted in the support Between material layers 260. As described above, the The solar cells 262 or the strings of the solar cells or the circuits are placed on the support material layer 260 in a front-down manner. Each of the solar cells 260 or a light-receiving side of the solar cell string or circuit faces The upper protective sheet 251 is elongated. The electrical leads (not shown) or terminals of the module are preferably disposed by arranging the moisture sealant along at least one of the elongated edges of the elongated protective sheet 251. The side wall 256 of 254 is carried from the aperture 259 in a manner that the moisture sealant 254 also seals around the isoelectric pin. As shown in the previous embodiments, the 'solar cell string or circuit includes The electrical interconnects are too versatile cells 263. However, the strings in each of the holes 259 may or may not be electrically interconnected with each other. Referring back to Figure 13, in the following steps, a rear extension is maintained. A sheet 271 is placed over the moisture sealant 254 and the entire support material 26A to complete the assembly of the components of a continuous package structure 250 prior to the lamination process. The rear elongate protective sheet 271 can be transparent. Or opaque. Figure 13C A cross-sectional view of the embossed structure of the continuous package structure 250 shown in the laminated module 27: the section is taken along the middle of the exemplified continuous package structure 250. The elongated protective sheet 271 may have a moisture barrier property. There are such sheets in the market that have a multilayer polymeric structure including a metal layer (such as aluminum) with 201017914 as a moisture barrier. A group of moisture barrier layer portions 253A may be coated on the front surface 27 1B of one of the rear elongated protective sheets 271, as in the upper barrier layer 25 on the upper protective sheet 25 1 12A and 12B show a general module structure using various teachings of the present invention, and will be used in conjunction with Figs. 14A, 14B, 15th, 16th, 17th, 18th, and 19th. The figure depicts a more simplified modular structure to explain its unique features and advantages. Figs. 14A and 14B show a solar cell module 101 including at least two solar cells, a first solar cell 102 and a second solar cell 1〇4. The units ι〇2 and 1〇4 may be strings of solar cells. The unit 1〇2 may include solar cells 102A, 102B and 102c, which may include solar cells 104A, 104B, and 104C. Each solar cell includes a light receiving square knife 105A and a rear portion &amp;; 1〇5B or base. The light receiving front portions of the solar cells form the side of the solar cells 〇2 and 104 and the rear portions form the rear side of the solar cells. The solar cells in each cell or string are electrically interconnected by means of a conductive interconnect (not explicitly shown) by means of a program, which is known as a "semiconductor". As shown in the mth to the MBth, the module ι〇ι has a multi-segment structure including a first segment and a second request—the segment includes the first string 1G2 and The second segment_ includes 42 201017914 the second string 104. The segments are formed between the protective sheet 107 and a rear protective sheet 108 above one of the modules ιοί. A first encapsulant 112 or an edge sealant seals the edges of the protective sheets at its perimeter thereby forming a protective casing 110. A second encapsulant 114 or a dispenser sealer separates the strings 102 and 104, thereby forming the segments 106A and 106B. Both the edge sealant 112 and the dispenser sealant are placed between the front and rear protective sheets 107 and 108 and attached to the same as shown in Figs. 14A and 14B. The edge and the dispenser sealant can be two parts of a one-piece sealant. In this embodiment, each solar cell string is encapsulated with a layer of support material 116. The support material 116, such as EVA, can completely fill the sections 106A and 106B with the edge sealant 112 and the dispenser sealant 114 and the first and second protective sheets 1〇7 and 1〇. 8 sealed. The separately sealed sections independently protect the strings of solar cells, which are encapsulated with the support material 116. This provides additional protection for these strings of solar cells. For example, even if a defect in the edge sealant 112 near the first section 106A allows moisture to leak into the first section 1〇8 and cause the first string 1〇2 to fail, The sealed second string 1〇4 in the second section 106B is still active and produces power. It should be noted that when the number of individual sealing segments within a modular structure is increased, the probability of failure of the solar cell due to a defect in one of the protective casings is reduced. These defects may be in the edge sealant, or in 201017914 to any of the front protective sheet and the rear protective sheet. If one of the defects in the protective casing carries moisture into a sealing section, the moisture is trapped in the sealing section without the ability to diffuse through the remaining module structure. For example, the solar cell module 101 of Fig. 14A may have six sections instead of the two sections shown. In this example, each of the solar cells 102A, 102B, 102C, 1.04A, 104B, and 104C may be in a section thereof. Figure 18 shows a four-segment module design. The module 150 of Fig. 8 includes six batteries 151A, 151B, 151C, 151D, 151E and 151F' which all have similar designs. Figure 19 shows the solar cell design. The solar cell 151A includes a bus bar 16A and a finger 161. These design details of the solar cells are not shown in Figure 18 to simplify the drawing. The module 15 5 has a four-segment structure, and each of the four segments 152A, 152B, 152C, and 152D includes half of the three cells. For example, the segment 152A includes a portion of the battery 151A, a portion of the battery i51B, and a portion of the battery 151C. The edge sealant 155 and the dispenser sealant 156 form sections 152a, 152B, 152C and 152D' which contain three dispenser sealant portions 156A, 156B and 156C. The dispenser sealant portions 156_A and 156C are substantially in line with the bus bars 160 of the solar cells 151, 151B, 151C, . . . 151Ό, 151E and 151F, so that 44 201017914 can minimize the cause The shielding loss caused by the dispenser sealant portions 156A, 156B and 156C. As described in Figures 12A and 18, the section forming the seal in the module structure in which only one portion of the solar cell is included in each section has an advantage. Thus 'if moisture or other vapors enter a section and damage a portion of a solar cell', the other portion of the solar cell contained in other sections not affected by the moisture will continue to effectively produce a work rate of 10 . Therefore, the overall performance of the modular structure can be improved compared to a module that does not have one of the segments. These edge sealants and dispenser sealants are materials that are highly resistant to moisture penetration. The water vapor transmission rate of the edge and dispenser sealant is preferably less than 〇.〇〇丨g/m 2 /day, more preferably less than 0.0001 g/m 2 /day. A method of manufacturing one of the solar modules ι〇1 will be described below with reference to Fig. 15. First, a pair of front support layers 116A are placed on an inner surface 107B of the front protective sheet 107 which is pre-cleaned. A sealant space 118 is left between the edges of the protective sheet 107 and between the front support layers U6A to accommodate the edge sealant and the dispenser sealant described above. In the following steps, the front portion 1〇5A of the solar cells contiguously 1〇2 and 1〇4 may be placed on the front side inspection layer 116A. Then, the rear support layers i 16B are placed on the rear side 1 SB of the solar battery strings 1 〇 2 and 104. The edge sealant 112 and the dispenser sealant 114 are attached to the sealant space 118 201017914 118. Finally, an inner surface 108B of the rear protective sheet 108 is placed over the rear support layer 116B and the edge and dispenser sealant. The front protective sheet i 07 is generally a glass, but it can also be a transparent flexible polymeric film such as: TEFZEL®, or another polymeric film with a moisture barrier coating. TEDLAR® and TEFZEL® are the brand names of DuPont's gas polymer materials. TEDLAR® is a polyvinyl fluoride (PVF), and TEFZEL® is an ethylene-tetrafluoroethylene (ETFE) fluoropolymer. The rear protective sheet 108 can be a piece of glass or a polymeric sheet, such as TEDLAR®, or another polymeric material that can be transparent or opaque. The rear protective sheet 108 may comprise a stacked sheet 'which contains various wood composition, such as a metal film, as a moisture barrier. Preferably, the front and rear support layer materials may comprise EVA or thermoplastic polyurethane (TPU) materials or both. It should be noted that the thicknesses of the components referred to in the figures are not to scale in actual dimensions. The module 101 can have a rectangular or any other geometric shape, so that the size of the segments and the distribution of the solar cell strings can be arranged accordingly. It is also possible to remove either or both of the front support floor and the rear support layer from the module structure. ........... The stacked components of the solar electric module described in Fig. 15 are placed in a laminating machine and pressed under pressure. _16〇. The heat treatment in one of the temperature ranges is about 10-20 minutes. Or this can be achieved by spring stacking 46 201017914 layers. As shown in Figures 14B and 15, each solar cell includes a square portion and a rear portion or base. The base 1 〇 5B includes a substrate and a contact layer is formed on the substrate. A preferred substrate material can be a metallic material such as stainless steel, aluminum or the like. An exemplary contact layer material can be molybdenum. The front portion 105A may include an absorber layer 'like: a CIGS absorbing layer formed on the contact layer, and a transparent layer formed on the absorber layer, such as a buffer layer/oxidation stack. An exemplary buffer layer can be a (Cd, Zn) s layer. A conductive finger (not shown) can be formed on the transparent layer. Each of the interconnects electrically connects the substrate or the contact pads of the battery to the transparent layer of the next battery. However, any other method in the art can be used to interconnect the solar cells. Figure 16 shows another embodiment of the module ι〇1 in a side view. In this embodiment, the _ 102 and 104 are supported by the edge and dispenser sealants 112 and 14 . A gap 122 is left between the strings and the rear side of the rear protective sheet 1〇8 and between the strings and the front side of the front protective sheet 1〇7. In the sections 〇6〇 and 〇6Β, the edges of the strings 1〇2 and 1〇4 are held in place and sealed by the edges and the dispenser sealants 112 and 114, This way is shown in the figure. It may be possible to fill any of the gaps 122 with a floor (not shown) identified as support layer i 16A or 116B in FIG. 47 201017914 Figure 17 shows a further embodiment of the module 101 in a side view. In this embodiment, a gap 122A appears on the front side of the strings 1〇2 and 1〇4. The gap 122A may optionally be filled with a front support layer (not shown but similar to the front support layer U6A of Figure 15). The rear sides of the strings 102 and 104 are placed on the rear panel 1 〇 8. The edges of the strings 102 and 1 are held in place and sealed by the edges and the dispenser sealants 112 and 114, as shown in Fig. 17. Although the present invention has been described with respect to the preferred embodiments thereof, the modifications of the preferred embodiments will be apparent to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS These and other aspects of the present invention will become more apparent to those skilled in the art of the <RTIgt; </ RTI> <RTIgt; And a feature, wherein: FIG. 1 is a schematic view of a thin film solar cell; FIG. 2A is a schematic cross-sectional view of a flexible thin film solar module; and FIG. 2B is a schematic top view of the module of FIG. 3A to 3F are schematic views of an embodiment of manufacturing a continuous package structure of the present invention, which includes a plurality of chess group structures; 48 201017914 4A to 4B are diagrams for converting the continuous package structure into a continuous A schematic diagram of a multi-module power device comprising a plurality of solar modules; Figure 5 is a schematic side view of a solar module of the present invention; and Figures 6A to 6B are a single module for manufacturing a single crystal volume The axe intent of one embodiment of the power supply; and, Figure 7, is a schematic view of a roll-to-roll system for manufacturing a flexible optoelectronic module of the present invention. Φ Figure 8 illustrates a single crystal volume multi-module power supply 6 〇〇 having an electrical pin configured in the first configuration. Figure 9 illustrates a single crystal volume multi-module power supply 7 具有 having electrical contacts in the second configuration of the odd-numbered solar cells. Figure 10 illustrates a single-crystal volume multi-module power supply 8 〇〇, • it has the first configuration of the solar cell of the even-numbered array of electrical, • pins. Figure 1 illustrates a single-crystal volume multi-module power supply 9 〇〇 having electrical contacts in the second configuration of the odd-numbered solar cells. The UA diagram is a schematic diagram of a solar cell module according to an embodiment; -. . . . . . . . . . . Fig. 1 is the figure shown in the figure along the line ^ to hit the solar power 'A schematic cross-sectional view of a module; 49 201017914 Figures 13A to 13B show a procedure for fabricating another embodiment of a continuous package structure; Figure 13C shows the method according to Figures 13A to 13B The completed structure of the continuous package structure of the embodiment made by the program; FIG. 14A is a schematic ffft recklessness of an embodiment of a solar cell module, and FIG. 14B is a line along the line of FIG. 14A to 14B are schematic cross-sectional views of the solar cell module; FIG. 15 is a schematic view showing the components of the solar cell module during manufacturing; FIGS. 16 and 17 are the solar energy Not intending for various embodiments of the battery module; Fig. 18 is a module design; and Fig. 19 is a solar cell used in the module design of Fig. 18. [Main component symbol description] 3 wire 4 terminal wire 5 terminal wire 6a upper bag, sealing material 6b lower encapsulating material 1 flexible sample group 2a battery 2b battery 2 c battery 2AA battery string 50 201017914 7 upper protective sheet 108B inner surface 8 Lower protective sheet 110 protective shell 9 moisture sealant 112 edge sealant 9a material 114 second sealant 10 photovoltaic cell 114 dispenser sealant. 11 substrate 116 support material, 12 absorber film 116A front support layer 13 conductive layer 11 6B Rear support layer 14 14 transparent layer 11 8 sealant space 15 radiation 122 gap 20 base 122A gap 100 protective shell 150 module 101 solar battery module 151A-151F battery 102 first solar battery unit 152A-152D section 102A-102C solar energy Battery 155 edge sealant φ 104 second solar battery unit 104A-104C solar battery 156 dispenser sealant 156A-156C dispenser sealant 105A light receiving front portion 105B rear portion 160 bus bar 106A first segment 161 finger shape The upper portion 200A of the object 106B is stretched over the protective sheet 107 above the protective sheet 200B, and the rear surface 108 of the inner surface 202 of the protective sheet 107B is elongated. 203 protective sheet edge 51

201017914 2 Ο 3 A邊緣 204濕氣密封劑 206側密封劑 206側牆 207分配器牆 207分配器密封劑 208模組空間 209孔穴 210支撐材料層 212太陽能電池串 213太陽能電池 214電引腳 215A光接收側 215B後側 250連續封裝結構 250A連續撓性模組基部 251上方拉長保護片 2 5 1A後表面 2 5 2邊緣. 253濕氣阻障層 253A濕氣阻障層部分 254濕氣密封劑 254A濕氣密封劑區域/分 隔區域_ 256侧密封劑 250側牆 257分配器密封劑 258模組空間 259孔穴 260支撐材料層 262太陽能電池 263太陽能電池 270模組 271後方拉長保護片 271B前表面 300連續封裝結構 300A連續多模組裝置 302模組結構 302A太陽能電池模組 303A上保護片 303B下保護片 305吸收體層 306透明層 3 08導電指狀物 310導電引腳 400卷對卷系統 402處理站 404A-404F處理單元 52 201017914201017914 2 Ο 3 A edge 204 moisture sealant 206 side sealant 206 side wall 207 distributor wall 207 distributor sealant 208 module space 209 hole 210 support material layer 212 solar battery string 213 solar battery 214 electric pin 215A light Receiving side 215B rear side 250 continuous packaging structure 250A continuous flexible module base 251 above elongated protective sheet 2 5 1A rear surface 2 5 2 edge. 253 moisture barrier layer 253A moisture barrier layer portion 254 moisture sealant 254A moisture sealant area / partition area _ 256 side sealant 250 side wall 257 distributor sealant 258 module space 259 hole 260 support material layer 262 solar battery 263 solar battery 270 module 271 rear elongated protective sheet 271B front surface 300 continuous package structure 300A continuous multi-module device 302 module structure 302A solar cell module 303A upper protection sheet 303B lower protection sheet 305 absorber layer 306 transparent layer 3 08 conductive fingers 310 conductive pins 400 volume to roll system 402 processing Station 404A-404F processing unit 52 201017914

❹ 405A供應卷 405B接收卷 450滚筒 500連續多模組裝置 502A-502J太陽能電池模 組 503分配器牆 504區段 512太陽能電池串 5 1 3太陽能電池 514電引腳 600單晶體積體多棋組功 率供應 601A第一側 601B第二側 602模組 603太陽能電池 604濕氣阻障密封框架 606邊緣密封部分 608分配器密封部分 609下方拉長保護片 610支.樓材料_ 614A第一電外腳 614B第二電弓丨卿 7〇〇單晶體積體多模組功 率供應 701A第一側 701B第二侧 702模組 703模組 704濕氣阻障密封框架 706邊緣密封部分 708分配器密封部分 709下方拉長保護片 710支撐材料 714A第一電引腳 714B第二電引腳 800單晶體積體多模組功 率供應 801A第一側 801B第二侧 802模組 803模組 804滿氣阻障密封框架 8 06邊緣密封部分 808分配器密封部分 809下方拉長保護片 810支撐材料 53 201017914 814A第一電引腳 910支撐材料 814B第二電引腳 950模組 816A電引腳 951A-951L太陽能電池 816B電引腳 952邊緣密封劑 818A連接裝置 953分配器密封劑 818B連接裝置 953A部分 900單晶體積體多模組功 953B密封劑部分 率供應 954密封劑圖樣 ® 901A第-側 955區段 901B第二側 955A-955D 區段 902模組 960分配器密封劑空間 904濕氣阻障密封框架 962上保護片 906邊緣密封部分 964下保護片 908分配器密封部分 909下方拉長保護片 參 966囊封材料 54405 405A supply roll 405B receiving roll 450 drum 500 continuous multi-module device 502A-502J solar battery module 503 distributor wall 504 segment 512 solar battery string 5 1 3 solar battery 514 electric pin 600 single crystal volume body chess group Power supply 601A first side 601B second side 602 module 603 solar cell 604 moisture barrier sealing frame 606 edge sealing portion 608 distributor sealing portion 609 under the elongated protective sheet 610. Floor material _ 614A first electric foot 614B second electric bow 丨 〇〇 7 〇〇 single crystal volume multi-module power supply 701A first side 701B second side 702 module 703 module 704 moisture barrier sealing frame 706 edge sealing portion 708 distributor sealing portion 709 Lower elongated protective sheet 710 supporting material 714A first electrical lead 714B second electrical lead 800 single crystal volume multi-module power supply 801A first side 801B second side 802 module 803 module 804 full gas barrier seal Frame 8 06 edge sealing portion 808 under the distributor sealing portion 809 elongated protective sheet 810 support material 53 201017914 814A first electrical pin 910 support material 814B second electrical pin 950 module 816A electrical pin 951A-951L Yang battery 816B electric pin 952 edge sealant 818A connection device 953 distributor sealant 818B connection device 953A part 900 single crystal volume body multi-module work 953B sealant part rate supply 954 sealant pattern ® 901A first side 955 area Segment 901B second side 955A-955D section 902 module 960 dispenser sealant space 904 moisture barrier sealing frame 962 upper protective sheet 906 edge sealing portion 964 lower protective sheet 908 dispenser sealing portion 909 under the elongated protective sheet 966 encapsulation material 54

Claims (1)

201017914 七、申請專利範圍: 1. 一種裝置,包含: 用來製造撓性太陽能電池模組之一連續換性 片’該連續撓性片包括: 前表面及一後表面,該前表面及該後表面其申 « . 之一包括至少兩個濕氣阻障區域及一分隔區域,其中 該分隔區域圍繞每一濕氣阻障區域並實體上分隔鄰 〇 近之濕氣阻障區域;及 一濕氣阻障層,其在每一該等濕氣阻障區域上但 不在該分隔區域上形成。 2. 如申請專利範圍第丨項所述之裝置,其中該拉長保護 片對可見光係透明的。 3. 如中請專利範圍第2項所述之裝置,其中該等至少兩 俯濕氣阻障層對可見光係透明的。 如申請專利範圍第3項所述之裝置,其中該等至少诗 個濕氣阻障層由一無機材料所構成,其具有小於1〇 克/平方公尺/天的一水蒸氣穿透率。 如申請專利範圍第4項所述之梦上 又裝置’其中該無機材半 由以下的至少一種所構成:礬土々 恭主、矽酸鋁、一矽酸鹽 及一氮化物。 ❿ 4. 5. 6.——種裝置,包含: ’該單晶體積體多 一單晶體積體多模組功率供應 . .. .... - ... . . ... . 55 201017914 模組功率供應包括: 一上方透明拉長保護片,其具有一上方月内表面 及一上方片外表面; 一下方拉長保護片,其具有一下方片内表面及一 下方片外表面; 一濕氣密封劑,其佈置在該下方片内表面及該上 丨 方片内表面之間以形成至少兩個密封室,其中每一密 ^ 封室包括以一部分之該上方片内表面形成的一天花 板以及以一部分之該下方片内表面形成的一地板,且 其中該濕氣密封劑係與該上方片内表面及該下方片 内表面實體地接觸; 一濕氣阻障層,其覆蓋每一該等密封室之每一該 等天花板; 至少兩個電互連且佈置在每一該等至少兩個密 封室中之太陽能電池,每一太陽能電池具有一前方光 接收侧及一後方側,其中該前方光接收側面對該上方 透明拉長保護片;及 一支撐材料,其在該前方光接收側及該後方側兩 者上至少部分地囊封每—太陽能電池。 7.如申請專利範圍第6項所述之裝置’其另包括覆蓋該 等至少兩個密封室之該等地板的濕氣阻障層。 8,如申請專利範圍第7項所述之裝置,其中該下方拉長 201017914 保護片係透明的。 9. 如申請專利範圍第6項所述之裝置,其中該下方拉長 保護片包含一濕氣阻陣膜。 10. —種製造一光電模組的方法,包含以下步驟: 提供具有一前表面及一後表面之一透明拉長保 ¥ 護片,該後表面包括二或多個濕氣阻障區域及一分隔 區域’其中該分隔區域圍繞每一濕氣阻障區域並實體 Φ 上分隔鄰近之濕氣阻障區域,· 在每一濕氣阻障區域上但不在該分隔區域上形 成一濕氣阻障層; 在每一該等濕氣阻障層之上佈置一太陽能電池 電路’每一太陽能電池電路包括一前方光接收側及一 後方基板側; 將一濕氣密封劑佈置在該分隔區域上因而形成 0 二或多個孔穴’每一孔穴係於對應該等二或多個濕氣 阻障區域的一位置,每一孔穴固持含面對該透明拉長 保護片之該前方光接收侧的一個太陽能電池電路; 以一支撐材料在該前方光接收側及該後方基板 側兩者上至少部分地覆蓋每一太陽能電池電路; 將一第二保護片放置在該支撐材料及該m氣密 封劑之上以包園該等至少兩個孔穴並形成一疊層;及 加熱該疊層以形成該光電模組。 57 201017914 u·如中請專利脑第1G項所述之方法,其中該透明拉 長保護片對可見光係透明的。 12·如申請專利範圍第u項所述之方法,其中該等二或 多個濕氣阻障層對可見光係透明的。 . U.如申請專利範圍第12項所述之方法其中該等二或 多個濕氣阻障層由一無機材科所構成,其具有小於 10 克/平方公尺/天的一水蒸氣穿透率。 β 14.如f請專利㈣第13項所述之方法,其中該無機材 料由以下至少一種所構成:礬土、矽酸鋁一矽酸鹽, 及一氮化物。 15. —光電模組,包含: 一第一保護片; 一第二保護片; 一邊緣密封劑,其在該等第一及第二保護片之間 ® 且連續地沿著一邊緣、該邊緣密封劑該第一保護片 及該第二保護片佈置’因而界定一抗濕氣保護殼; 至少一太陽能電池,其具有一前方光揍收側及一 後方基板側,其佈置在該抗濕氣保護殼内; ——支撐材料,其在該太陽能電池之該前方光接收 側及該後方基板側兩者上至少部分地囊封該至少一 個太陽能電池;及 一分配器密封劑’其佈置在該等第一及第二保護 58 201017914 片間及該抗濕乳保護殼内’其中該分配器密封劑將該 抗濕氣保護殼分配成至少兩個抗濕氣密封區段,且其 中該邊緣密封劑及該分配器密封劑可抵抗漏氣穿 透,且其中該邊緣密封劑及該分配器密封劑係以材料 製成並建構以使通過每一該邊緣密封劑及該分配器 密封劑的一水蒸氣穿透率少於0 001克/平方公尺/ 天。 ® 16.如申請專利範圍第15項所述之光電棋組,其中該至 少一太陽能電池包括一第一太陽能電池及電互連至 該第一太陽能電池的一第二太陽能電池。 17.如申請專利範圍第16項所述之光電模組,其中每一 該等至少兩個抗濕氣密封區段包含該第一太陽能電 池及電互連至該第一太陽能電池之該第二太陽能電 池中的至少一個。 ❿ 18.如申請專利範圍第16項所述之光電模組,其中一第 一支撐材料囊封該第一太陽能電池以形成一第一囊 封太陽能電池,及一第二支撐材料囊封該第二太陽能 電池因而形成一第二囊封太陽能電池。 . . . · . . 19·如申請專利範圍第18項所述之光電模組,其中每一 該等至少兩個抗濕氣密封區段包含該第一囊封太陽 忐電池及電互連至該第一囊封太陽能電池之該第二 囊封太陽能電池中的一個。 59 201017914 20. 如申請專利範圍第16項所述之光電模組其中一分 配器密封空間係位在該第一太陽能電池及該第二太 陽能電池中的至少一個..上_.。 21. 如申s青專利範圍第20項所述之光電模組,其中該支 撐材料囊封該第一太陽能電池及該第二太陽能電 ‘ 池’且其中該分配器密封劑空間不含並排除該支撐材 4 料。 _ 22.如申請專利範圍第21項所述之光電模組,其中至少 一部分之該分配器密封劑係佈置在位於該等第一及 第一太陽能電池之至少一個上的該分配器密封劑空 間上。 23.如申請專利範圍第22項所述之光電模組,其中該等 至少兩個抗濕氣密封區段每一個包含該第一太陽能 電池及該第二太陽能電池中之至少一個的至少一部 • 分。 惫- . 24.如申請專利範圍第23項所述之光電模組,其中該分 配器密封劑之該部分係與該等第一及第二太陽能電 池中之至少一個的一匯電條成一直線。 25.如申請專利範圍第23項所述之先電模組,其中該分 配器密封劑係佈置在該第一太陽能電池及第二太陽 能電池中之至少一個之該前方光接收側及該後方基 板側中的至少一個上。 60 201017914 26·如申請專利範圍第15項所述之光電模組,其中該分 配器密封劑之至少一部分係佈置在該至少一個太陽 能電池上,因此該等抗濕氣密封區段中之至少一個包 含該至少一個太陽能電池的至少一部分及囊封該至 少一個太陽能電池之至少一部分的該支撐材料。 27. 如申請專利範圍第26項所述之光電模組,其中該分 配器密封劑之該部分係佈置在該至少一個太陽能電 © 池之該前方光接收側及該後方基板側的至少一個上。 28. 如申請專利範圍第27項所述之光電模组,其中該分 配器密封劑之該部分係與該至少一個太陽能電池之 一匯電條成一直線。 29. 如申請專利範圍第15項所述之光電模組其中該支 撐材料係一透明聚合材料。 診 30.如申請專利範圍第15項所述之光電模組,其中該第 一保護片包括一濕氣阻障撓性聚合膜及玻璃中的一 個。. 31·如申請專利範圍第30項所述之光電模組,其中該第 二保護片包括一濕氣阻障撓性聚合膜及玻璃中的一 個。 . .. . . 32.如申請專利範圍第15項所述之光電模組,其中該等 太陽能電池係具不鏽鋼基板之ibiiiavia族薄膜太 陽能電池。 201017914 3 3.如申請專利範圍第32項所述之光電模組,其中該前 方保護片及該後方保護片係撓性的。 34. —種製造一太陽能電池模組的方法,包含以下步驟: 將至少一個太陽能電池佈置在一第一保護片之 上,該至少一親太陽能電池包括一前方光接收側及一 後方基板側; 將一邊緣密封劑沿著該第一保護片之讓等邊緣 ® 佈置,因而形成固持該至少一個太陽能電池的一孔 穴; 以一支撐材料在該太陽能電池之該前方光接收 側及該後方基板側兩者上至少部分地覆蓋該至少— 個太陽能電池; 佈置一分配器密封劑以將該孔穴分配成至少兩 個孔穴區段;及 ® 將一第二保護片放置在該支撐材料、該邊緣密封 劑及該分配器密封劑上以包圍該等至少兩個孔穴區 段,其中通過該邊緣密封劑及該分配器密封劑之該濕、 氣穿透率係少於0.001克/平方公尺/天。 3 5.如申請專利範.圍第3 4項所述之方法,其另.包_含以下 步驟:施加熱及壓力至該等保護片、至少一太陽能電 池、密封劑及談支樓材料之一所得組合上,因此將該 等太陽能電池單元疊層在該等兩保護片之間。 62 201017914 36. 37. 38. 39. ❹ 40. 41. 如申請專利範圍第3 5項所述之方法,其另包含以下 步驟:冷卻該所得組合以使該支撐材料接合至該等第 一及第一.保護片及該至少:一個太陽能電池上。 如申請專利範圍第34項所述之方法,其中該至少一 太陽能電池包括一第一太陽能電池及電互連至該第 一太陽能電池的一第二太陽能電池。 如申請專利範圍第37項所述之方法,其中每一該等 至少兩個孔穴區段包含該第一太陽能電池及電互連 至該第一太陽能電池之該第二太陽能電池中的一個。 如申請專利範圍第38項所述之方法,其中以該支撐 材料至少部分地覆蓋該至少一太陽能電池的該步驟 包含以下步驟:將該第一太陽能電池夾在該支撐材料 之一第一副分層之間,並將該第二太陽能電池夾在該 支撐材料之一第二副分層之間。 如申請專利範圍第39項所述之方法,其中該分配器 密封劑係與該等第一及第二太陽能電池之該至少一 個的一匯電條成一直線。 如申請專利範圍第37項所述之方法,其中一分配器 密封劑空間係位在該等第一及第二太陽能電池中的 至少—個上。 如申請專利範圍第41項所述之方法,其中以該支撐 材料至少部分地覆蓋該至少一太陽能電池的該步驟 42. 201017914 包3以下步驟:將該第一太陽能電池夾在該支撐材料 之一第一副分層之間,並將該第二太陽能電池夾在該 支撐材料之一第二副分層之間,其中該分配器密封劑 空間不含並排除該支撐材料。 43. 如申請專利範圍第42項所述之方法,其中佈置該分 配器密封劑之該步驟包含以下步驟:將至少一部分之 該分配器密封劑佈置在位於該等第一及第二太陽能 電池之至少一個上的該分配器密封劑空間上。 44. 如申清專利範圍第43項所述之方法,其中該分配器 密封劑之該部分係佈置在該第一太陽能電池及該第 二太陽能電池中之至少一個之該前方光接收側及該 後方基板側中的至少一個上。 45. 如申凊專利範圍第41項所述之方法,其中該等至少 兩個孔穴區段每一個包含該第一太陽能電池及電互 連至該第一太陽能電池之該第二太陽能電池中之至 少一個的至少一部分。 46. 如申請專利範圍第34項所述之方法,其、佈置該分 S匕器密封劑之該步驟包含以下步驟:將至少一部分之 该分配器密封劑佈置在該至少—個太陽能電池上,因 此該等孔穴區段中之至少—個包含該至少一個太陽 能電池之至少一部分及覆蓋該至少一個太陽能電池 之至少一部分的該支撐材料。 64 201017914 47. 48. 49. Ο 50. 51. 52. 53. 54. 如申請專利範圍第46項所述之方法,其中該分配器 密封劑之該部分係佈置在該至少―個太陽能電池之 該前方光接收侧及該後方基板側的至少一個上。 如申請專利範圍第46項所述之方法,其中該分配器密封劑之該部分係與該至少一個太陽能電池之一匯 電條成一.直線。 如申請專利範圍第34項所述之方法,其中該支撐材 料係一透明聚合材料。 如申請專利範圍第34項所述之方法,其中該第一保 護片包括一濕氣阻障撓性聚合膜及玻璃中的一個。 如申请專利範圍第50項所述之方法,其中該第二保 護片包括一濕、氣阻障撓性聚合膜及玻璃中的一個。 如申請專利範圍第34項料之方法,其巾該等太陽 能電池係具不鏽鋼基板之1Bin AVI Α族薄膜太陽能 電池。 如申請專利範圍第52項所述之方法,其中該等太陽 能電池、該前方保護片及該後方保護片係撓性的。 一種製造包括複數個太陽能電池模組之一連續多模 組功率供應的方法,包含以下步驟: 提供包括複數個指派模組區域的一第一拉長保 蔓片:其係以一端對端&lt;en(j_t〇_end)的方式'放置 將一濕氣阻障框架應用在圍繞該等複數個指派 65 201017914 模組區域之該等邊界的該第一拉長保護片,其中該濕 氣阻障框架包括沿著該等指派模組區域之該等侧佈 置的側牆,以及在該等鄰近之指派模組區域間佈置的 分配器牆’其令該第一保護片、該等側牆及該分配器 牆界定複數個孔穴; 將一太陽能電池串放進每一孔穴中,該太陽能電 • 池串包含電互連之二或多個太陽能電池,並包括面對 _ 該第一拉長保護片之一前方光接收側及一後方基板 側; 將兩個終端電線安排成具正極及負極,每一該等 兩個終端電線之一端係電連接至該太陽能電池串,且 每一該等兩個終端電線延伸通過該濕氣阻障框架,因 此每一該等兩個終端電線之另一端係延伸到該孔穴 及該濕氣阻障框架外側; ® 以一支撐材料在該前方光接收側及該後方基板 側兩者上至少部分地覆蓋每一該等太陽能電池串;及 將一第二拉長保護片放置在該支律材料及該濕 氣阻障框架之上以包圍該等複數個孔穴,因而形成包 括複數個太陽能電池模組的一連續拉長封裝於構。 55·如申請專利範圍第54項所述之方法,其中該安排之 步驟安排該等兩假終端電線以使每一該等兩個終端 電線延伸通過該濕氣阻障框架之該等侧牆中的至少 201017914 一個。 56.如申請專利範圍第55項所述之方法,其另包含以下 步驟:施加熱及壓力至具該等太陽能電池模組之該連 續拉長封裝結構以形成包括複數個疊層太陽能電池 模組的一連續多模組裝置,每一個疊層太陽能電池模 組具有延伸至該側牆外側的該等兩個終端電線' 如申請專利範圍第56項所述之方法,其中施加熱及 壓力之該步驟係於該連績拉長封裝在滾筒間滾軋時 執行,且因而轉換成該連續多模組裝置。 58. 如申請專利範圍第57項所述之方法,其中該滚乳程 序係在一真空環境下執行。 59. 如申請專利範圍第57項所述之方法,其另包含以下 步驟:將該連、續多模组裝置切割成區段,每一區段包 含一或多個疊層太陽能電池模組,其中該切割步称包 括以下步驟:切割穿過在該等疊層太陽能電池模組之 間的該等分配器牆。 6〇.如申請專利範圍第59項所述之方法,其另包含以下 步驟:在每一區段内將該等疊層太陽能電池模組串聯 地電連接以形成單晶體積體多模組功率供應。 6工·如申請專利範圍第57項所述之方法,其另包括以下 步驟:形成通過該濕氣阻障框架之該等分配器牆的孔 洞以允許當在滾筒間滾軋該連續拉長封裝時自該專 67 201017914 太陽能電池模組移除所陷入之空氣。 62. -種包括複數個太陽能電池模組的連續多模組功率 供應,包含: 具有拉長邊緣及短邊緣之-第-拉長保護片及 具有拉長邊緣及短邊緣之-第二拉長保護片至少該 第一拉長保護片係以一光透明材料製成; 至少兩個太陽能電池串係佈置在該等第一及第 二拉長保護片之間,每-該等至少兩個太陽能電池串 包含二或多個電互連之太陽能電池,且其中每一太陽 能電池串包括面對該第一拉長保護片之一前侧及面 對該第二拉長保護片之一後側; 一濕氣阻障框架,其以佈置在該等第一及第二保 護片之間的一密封劑形成,其中該濕氣阻障框架之一 邊緣係在該等第一及第二保護片之間及沿著其周界 處之該等拉長及短邊緣佈置,且該濕氣阻障框架之一 分配器係佈置在談等第一及第二保護片之間以及在 每一該等至少兩個太陽能電池_之間; 一支撐材料’其填滿該濕氣阻障柩架並覆蓋在該 濕氣阻障框架中之該等至少兩個太陽能電池宰的該 等則側及後侧上’因此形成至少兩個太陽能電池模 組;及 具正及負極性之兩個終端電線,其連接至每一該 68 201017914 等至少兩個太陽能電池串,其中對每一該等至少兩個 太陽能電池串而言,每—該等兩個終端電線之一端係 電連接至該太陽能電池串,每一該等兩個終端電線延 伸通過該密封劑,因此每一該等兩個終端電線之另一 端延伸到該密封劑的外側。 63.如申請專利範圍第Q項所述之連續多模組功率供 ' 應,其另包括佈置在該等至少兩個太陽能電池模組外 Φ 側的一互連電線以共同電連接一些該等終端電線。 64. 如申請專利範圍第62項所述之連續多模組功率供 應,其中每一該等兩個終端電線之另一端係藉由通過 在該等第一及第二保護片之一些該等拉長邊緣間之 該濕氣阻障框架的該拉長邊緣以延伸至該密封劑的 外側。 65. 如申請專利範圍第64項所述之連續多模組功率供 Φ 應,其中該支撐材料係一透明聚合材料。 66. 如申請專利範圍第64項所述之連續多模組功率供 應’其中該第一拉長保護片包括一濕氣阻障撓性聚合 膜。 67. 如申請專利範圍苐66項所述之連續多模組功率供 應’其中該第二拉長保護片包括一濕氣阻障挽牲聚合 膜。 68. 如申請專利範圍第64項所述之連續多模組功率供 69 201017914 應,其中該等至少兩個太陽能電池串每一個包括 IBIIIAVIA族薄膜太陽能電池。 69.如申請專利範圍第64項所述之連續多模組功率供 應,其中該至少兩個太陽能電池串、該前方保護片及 該後方保護片係撓性的。201017914 VII. Patent Application Range: 1. A device comprising: a continuous flexible sheet for manufacturing a flexible solar cell module. The continuous flexible sheet comprises: a front surface and a rear surface, the front surface and the rear surface One of the surface claims includes at least two moisture barrier regions and a separation region, wherein the separation region surrounds each moisture barrier region and physically separates the adjacent moisture barrier region; and a wet region A gas barrier barrier layer is formed on each of the moisture barrier regions but not on the separation regions. 2. The device of claim 2, wherein the elongated protective sheet is transparent to visible light. 3. The device of claim 2, wherein the at least two moisture barrier layers are transparent to visible light. The apparatus of claim 3, wherein the at least one moisture barrier layer is comprised of an inorganic material having a water vapor transmission rate of less than 1 gram per square meter per day. According to the fourth aspect of the patent application, the device is further characterized in that the inorganic material is composed of at least one of the following: 矾土々 gong, aluminum silicate, monosilicate, and nitrile. ❿ 4. 5. 6. - Kind of device, including: 'The single crystal volume is more than one single crystal volume multi-module power supply. . . . . - ... . . . . . . . 55 . The module power supply comprises: an upper transparent elongated protective sheet having an upper monthly inner surface and an upper outer surface; a lower elongated protective sheet having a lower inner surface and a lower outer surface; a moisture sealant disposed between the inner surface of the lower sheet and the inner surface of the upper square sheet to form at least two sealed chambers, wherein each sealing chamber includes a portion formed by a portion of the inner surface of the upper sheet a ceiling and a floor formed by a portion of the inner surface of the lower sheet, and wherein the moisture sealant is in physical contact with the inner surface of the upper sheet and the inner surface of the lower sheet; a moisture barrier layer covering each Each of the ceilings of the sealed chambers; at least two solar cells electrically interconnected and disposed in each of the at least two sealed chambers, each solar cell having a front light receiving side and a rear side, wherein The front light Receiving the elongated sides of the transparent upper protective sheet; and a support material, the light-receiving side and the rear side by two at least partially encapsulating each of the front - of the solar cell. 7. The device of claim 6 wherein the device further comprises a moisture barrier layer covering the floors of the at least two sealed chambers. 8. The device of claim 7, wherein the lower elongated 201017914 protective sheet is transparent. 9. The device of claim 6, wherein the lower elongated protective sheet comprises a moisture barrier film. 10. A method of manufacturing a photovoltaic module, comprising the steps of: providing a transparent elongated protective sheet having a front surface and a rear surface, the rear surface comprising two or more moisture barrier regions and a separation a region 'where the separation region surrounds each moisture barrier region and physically Φ separates adjacent moisture barrier regions, · forms a moisture barrier layer on each moisture barrier region but not on the separation region Having a solar cell circuit disposed above each of the moisture barrier layers' each solar cell circuit includes a front light receiving side and a rear substrate side; a moisture sealant is disposed on the separation region to form 0 two or more holes 'each hole is in a position corresponding to two or more moisture blocking regions, each hole holding a solar energy containing the front light receiving side facing the transparent elongated protective sheet a battery circuit; at least partially covering each solar cell circuit on both the front light receiving side and the rear substrate side with a supporting material; placing a second protective sheet on the supporting material M above the airtight package encapsulant to park at least two such apertures to form a laminate; and heating the laminate to form the photovoltaic module. 57. The method of claim 1, wherein the transparent elongated protective sheet is transparent to visible light. 12. The method of claim 5, wherein the two or more moisture barrier layers are transparent to visible light. U. The method of claim 12, wherein the two or more moisture barrier layers are composed of an inorganic material having a water vapor permeability of less than 10 g/m 2 /day. Transmittance. The method according to Item 13, wherein the inorganic material is composed of at least one of the following: alumina, aluminum niobate mononitrate, and a nitride. 15. An optoelectronic module comprising: a first protective sheet; a second protective sheet; an edge sealant between the first and second protective sheets® and continuously along an edge, the edge The first protective sheet and the second protective sheet are disposed to define a moisture resistant protective shell; at least one solar cell having a front light collecting side and a rear substrate side disposed on the moisture resistant a protective material that at least partially encapsulates the at least one solar cell on both the front light receiving side and the rear substrate side of the solar cell; and a dispenser sealant disposed therein Waiting for the first and second protections 58 201017914 between the sheets and the moisture-resistant milk protective shell 'where the dispenser sealant distributes the moisture-resistant protective shell into at least two moisture-resistant sealing sections, and wherein the edge seals And the dispenser sealant are resistant to gas leakage, and wherein the edge sealant and the dispenser sealant are made of a material and constructed to pass each of the edge sealant and the dispenser sealant A water vapor transmission rate less than 0001 g / m ^ / day. The optical chess set of claim 15, wherein the at least one solar cell comprises a first solar cell and a second solar cell electrically interconnected to the first solar cell. 17. The photovoltaic module of claim 16, wherein each of the at least two moisture resistant sealing sections comprises the first solar cell and the second electrically interconnected to the second solar cell At least one of the solar cells. 18. The photovoltaic module of claim 16, wherein a first support material encapsulates the first solar cell to form a first encapsulated solar cell, and a second support material encapsulates the first The second solar cell thus forms a second encapsulated solar cell. 19. The photovoltaic module of claim 18, wherein each of the at least two moisture-resistant sealing sections comprises the first encapsulated solar cell and electrically interconnected to The first encapsulated one of the second encapsulated solar cells of the solar cell. 59. The method of claim 16, wherein the distributor sealing space of the photovoltaic module of claim 16 is at least one of the first solar cell and the second solar cell. 21. The photovoltaic module of claim 20, wherein the support material encapsulates the first solar cell and the second solar cell and wherein the dispenser sealant space is free and excluded The support material is 4 materials. 22. The photovoltaic module of claim 21, wherein at least a portion of the dispenser sealant is disposed in the dispenser sealant space on at least one of the first and first solar cells on. The photovoltaic module of claim 22, wherein the at least two moisture resistant sealing sections each comprise at least one of the first solar cell and the second solar cell • Minute. The photovoltaic module of claim 23, wherein the portion of the dispenser sealant is in line with a bus bar of at least one of the first and second solar cells. . [25] The electric module according to claim 23, wherein the dispenser sealant is disposed on the front light receiving side and the rear substrate of at least one of the first solar cell and the second solar cell. At least one of the sides. The photovoltaic module of claim 15, wherein at least a portion of the dispenser sealant is disposed on the at least one solar cell, and thus at least one of the moisture-resistant sealing sections At least a portion of the at least one solar cell and the support material encapsulating at least a portion of the at least one solar cell. 27. The photovoltaic module of claim 26, wherein the portion of the dispenser sealant is disposed on at least one of the front light receiving side and the rear substrate side of the at least one solar power source. 28. The photovoltaic module of claim 27, wherein the portion of the dispenser sealant is in line with a bus bar of the at least one solar cell. 29. The photovoltaic module of claim 15 wherein the support material is a transparent polymeric material. The photovoltaic module of claim 15, wherein the first protective sheet comprises one of a moisture barrier flexible polymeric film and a glass. The photovoltaic module of claim 30, wherein the second protective sheet comprises one of a moisture barrier flexible polymeric film and a glass. 32. The photovoltaic module of claim 15, wherein the solar cell is an ibiiiavia thin film solar cell of a stainless steel substrate. The photovoltaic module of claim 32, wherein the front protective sheet and the rear protective sheet are flexible. 34. A method of manufacturing a solar cell module, comprising the steps of: arranging at least one solar cell on a first protective sheet, the at least one pro-solar cell comprising a front light receiving side and a rear substrate side; An edge sealant is disposed along the edge of the first protective sheet, thereby forming a hole for holding the at least one solar cell; and a supporting material on the front light receiving side and the rear substrate side of the solar cell Both at least partially covering the at least one solar cell; disposing a dispenser sealant to dispense the cavity into at least two cavity segments; and &lt; placing a second protective sheet on the support material, the edge seal And the dispenser sealant to surround the at least two hole segments, wherein the moisture and gas permeability through the edge sealant and the dispenser sealant are less than 0.001 g/m 2 /day . 3 5. The method of claim 34, wherein the package includes the following steps: applying heat and pressure to the protective sheets, at least one solar cell, the sealant, and the material of the branch building. As a result of the combination, the solar cells are stacked between the two protective sheets. The method of claim 35, further comprising the step of cooling the resulting combination to join the support material to the first and First, the protective sheet and the at least: one solar cell. The method of claim 34, wherein the at least one solar cell comprises a first solar cell and a second solar cell electrically interconnected to the first solar cell. The method of claim 37, wherein each of the at least two aperture segments comprises the first solar cell and one of the second solar cells electrically interconnected to the first solar cell. The method of claim 38, wherein the step of at least partially covering the at least one solar cell with the support material comprises the step of: clamping the first solar cell to a first side of the support material Between the layers, the second solar cell is sandwiched between a second sub-layer of one of the support materials. The method of claim 39, wherein the dispenser sealant is in line with the at least one of the first and second solar cells. The method of claim 37, wherein a dispenser sealant space is at least one of the first and second solar cells. The method of claim 41, wherein the supporting material at least partially covers the step of the at least one solar cell 42. 201017914 package 3 the following steps: sandwiching the first solar cell in one of the supporting materials Between the first sub-layers and sandwiching the second solar cell between a second sub-layer of the support material, wherein the dispenser encapsulant space does not contain and exclude the support material. 43. The method of claim 42, wherein the step of disposing the dispenser sealant comprises the step of disposing at least a portion of the dispenser sealant in the first and second solar cells At least one of the dispenser sealants on the space. 44. The method of claim 43, wherein the portion of the dispenser sealant is disposed on the front light receiving side of the at least one of the first solar cell and the second solar cell and At least one of the rear substrate sides. The method of claim 41, wherein the at least two hole segments each comprise the first solar cell and the second solar cell electrically interconnected to the first solar cell At least a portion of at least one. 46. The method of claim 34, wherein the step of disposing the sub-S sealer comprises the step of disposing at least a portion of the dispenser encapsulant on the at least one solar cell, Thus at least one of the plurality of aperture segments comprises at least a portion of the at least one solar cell and the support material covering at least a portion of the at least one solar cell. 64. The method of claim 46, wherein the portion of the dispenser sealant is disposed in the at least one solar cell. At least one of the front light receiving side and the rear substrate side. The method of claim 46, wherein the portion of the dispenser sealant is in line with a bus bar of the at least one solar cell. The method of claim 34, wherein the support material is a transparent polymeric material. The method of claim 34, wherein the first protective sheet comprises one of a moisture barrier flexible polymeric film and a glass. The method of claim 50, wherein the second protective sheet comprises one of a wet, gas barrier flexible polymeric film and glass. For example, in the method of claim 34, the solar battery is a 1Bin AVI Α thin film solar battery with a stainless steel substrate. The method of claim 52, wherein the solar cell, the front protective sheet, and the rear protective sheet are flexible. A method of fabricating a continuous multi-module power supply comprising a plurality of solar cell modules, comprising the steps of: providing a first elongated vine sheet comprising a plurality of assigned module regions: end to end &lt;en (j_t〇_end) manner of placing a moisture barrier frame applied to the first elongated protective sheet surrounding the boundaries of the plurality of assigned 65 201017914 module regions, wherein the moisture barrier frame Included with the side walls disposed along the sides of the assigned module areas, and a distributor wall disposed between the adjacent assigned module areas, the first protective sheet, the side walls, and the distribution The wall defines a plurality of holes; a solar cell string is placed in each of the holes, the solar cell string comprises two or more solar cells electrically interconnected, and includes a facing _ the first elongated protective sheet a front light receiving side and a rear substrate side; the two terminal wires are arranged to have a positive pole and a negative pole, and one of the two terminal wires is electrically connected to the solar battery string, and each of the two ends An electric wire extends through the moisture barrier frame such that the other end of each of the two terminal wires extends to the outside of the hole and the moisture barrier frame; and a support material is on the front light receiving side and the rear side At least partially covering each of the solar cell strings on both sides of the substrate; and placing a second elongated protective sheet over the support material and the moisture barrier frame to surround the plurality of holes, thereby A continuous elongated package comprising a plurality of solar cell modules is formed. 55. The method of claim 54, wherein the step of arranging the two dummy terminal wires to extend each of the two terminal wires through the side walls of the moisture barrier frame At least 201017914 one. 56. The method of claim 55, further comprising the steps of: applying heat and pressure to the continuous elongated package structure having the solar cell modules to form a plurality of stacked solar cell modules A continuous multi-module device, each of the stacked solar cell modules having the two terminal wires extending to the outside of the side wall, as in the method of claim 56, wherein heat and pressure are applied The step is performed when the continuous stretch package is rolled between rolls and thus converted into the continuous multi-module device. 58. The method of claim 57, wherein the rolling procedure is performed in a vacuum environment. 59. The method of claim 57, further comprising the steps of: cutting the continuous and continuous multi-module device into segments, each segment comprising one or more stacked solar cell modules, Wherein the cutting step includes the step of cutting through the distributor walls between the stacked solar cell modules. 6. The method of claim 59, further comprising the step of: electrically connecting the stacked solar cell modules in series in each segment to form a single crystal volume multi-module power supply. The method of claim 57, further comprising the steps of: forming a hole in the distributor wall through the moisture barrier frame to allow the continuous elongated package to be rolled between the rollers The air that was trapped in the solar cell module was removed from the special 67 201017914. 62. A continuous multi-module power supply comprising a plurality of solar cell modules, comprising: a first-elongated protective sheet having elongated edges and short edges, and a second elongated having elongated edges and short edges The protective sheet is at least the first elongated protective sheet is made of a light transparent material; at least two solar battery strings are arranged between the first and second elongated protective sheets, each of the at least two solar energy The battery string includes two or more electrically interconnected solar cells, and each of the solar cell strings includes a front side facing one of the first elongated protective sheets and a rear side facing the second elongated protective sheet; a moisture barrier frame formed by a sealant disposed between the first and second protective sheets, wherein one of the edges of the moisture barrier frame is attached to the first and second protective sheets And the elongated and short edges disposed along the perimeter thereof, and one of the moisture barrier frames is disposed between the first and second protective sheets and at least each of the Between two solar cells _; a support material 'which fills the wet Blocking the truss and covering the side and rear sides of the at least two solar cells in the moisture barrier frame' thus forming at least two solar cell modules; and having positive and negative polarities Two terminal wires connected to each of at least two solar cell strings, such as 68 201017914, wherein for each of the at least two solar cell strings, one of each of the two terminal wires is electrically connected to The solar cell string, each of the two terminal wires extending through the encapsulant, such that the other end of each of the two terminal wires extends to the outside of the encapsulant. 63. The continuous multi-module power supply as described in claim Q, further comprising an interconnecting wire disposed on the outer side of the at least two solar cell modules to electrically connect some of the interconnected wires. Terminal wire. 64. The continuous multi-module power supply of claim 62, wherein the other end of each of the two terminal wires is passed through some of the first and second protective sheets The elongated edge of the moisture barrier frame between the long edges extends to the outside of the encapsulant. 65. The continuous multi-module power supply Φ as described in claim 64, wherein the support material is a transparent polymeric material. 66. The continuous multi-module power supply of claim 64, wherein the first elongated protective sheet comprises a moisture barrier flexible polymeric film. 67. The continuous multi-module power supply as described in claim 66, wherein the second elongated protective sheet comprises a moisture barrier polymeric film. 68. The continuous multi-module power of claim 64, wherein the at least two solar cell strings each comprise an IBIIIAVIA family of thin film solar cells. 69. The continuous multi-module power supply of claim 64, wherein the at least two solar cell strings, the front protective sheet, and the rear protective sheet are flexible. 7070
TW098126994A 2008-08-11 2009-08-11 Flexible thin film photovoltaic modules and manufacturing the same TW201017914A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12/189,627 US8207440B2 (en) 2008-08-11 2008-08-11 Photovoltaic modules with improved reliability
US9762808P 2008-09-17 2008-09-17
US12/250,507 US20100031996A1 (en) 2008-08-11 2008-10-13 Structure and method of manufacturing thin film photovoltaic modules
US11708308P 2008-11-21 2008-11-21
US14594709P 2009-01-20 2009-01-20

Publications (1)

Publication Number Publication Date
TW201017914A true TW201017914A (en) 2010-05-01

Family

ID=41669223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126994A TW201017914A (en) 2008-08-11 2009-08-11 Flexible thin film photovoltaic modules and manufacturing the same

Country Status (3)

Country Link
EP (1) EP2319090A1 (en)
TW (1) TW201017914A (en)
WO (1) WO2010019496A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582834B (en) * 2013-08-19 2017-05-11 德州大學董事會 Programmable deposition of thin films of a user-defined profile with nanometer scale accuracy
US9718096B2 (en) 2013-08-19 2017-08-01 Board Of Regents, The University Of Texas System Programmable deposition of thin films of a user-defined profile with nanometer scale accuracy
TWI686053B (en) * 2018-11-26 2020-02-21 財團法人工業技術研究院 Solar cell panel and solar cell module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015740B4 (en) * 2010-04-21 2013-04-11 Mühlbauer Ag Device for producing a solar module with flexible thin-film solar cells
CH706582A1 (en) * 2012-05-31 2013-12-13 Iworks Ag Solar panel for solar system, has fold line that is provided between primary and secondary solar cells
TWI586096B (en) * 2015-10-22 2017-06-01 上銀光電股份有限公司 Flexible solar panel module
WO2017172056A1 (en) * 2016-03-30 2017-10-05 Exxonmobil Chemical Patents Inc. Photovoltaic module back sheets comprising thermoplastic vulcanizate compositions
CN107833935A (en) * 2016-09-14 2018-03-23 海口未来技术研究院 Solar cell module and aerostatics
CN115000236B (en) * 2022-04-22 2024-01-30 山西漳山发电有限责任公司 Photovoltaic module laminating machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754544A (en) * 1985-01-30 1988-07-05 Energy Conversion Devices, Inc. Extremely lightweight, flexible semiconductor device arrays
US5478402A (en) * 1994-02-17 1995-12-26 Ase Americas, Inc. Solar cell modules and method of making same
JP3222361B2 (en) * 1995-08-15 2001-10-29 キヤノン株式会社 Method of manufacturing solar cell module and solar cell module
US7150938B2 (en) * 2001-03-30 2006-12-19 Lithium Power Technologies, Inc. Structurally embedded intelligent power unit
US20070295388A1 (en) * 2006-05-05 2007-12-27 Nanosolar, Inc. Solar assembly with a multi-ply barrier layer and individually encapsulated solar cells or solar cell strings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582834B (en) * 2013-08-19 2017-05-11 德州大學董事會 Programmable deposition of thin films of a user-defined profile with nanometer scale accuracy
US9718096B2 (en) 2013-08-19 2017-08-01 Board Of Regents, The University Of Texas System Programmable deposition of thin films of a user-defined profile with nanometer scale accuracy
TWI686053B (en) * 2018-11-26 2020-02-21 財團法人工業技術研究院 Solar cell panel and solar cell module

Also Published As

Publication number Publication date
EP2319090A1 (en) 2011-05-11
WO2010019496A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
TW201017914A (en) Flexible thin film photovoltaic modules and manufacturing the same
US20100031997A1 (en) Flexible thin film photovoltaic modules and manufacturing the same
US9385255B2 (en) Integrated thin film solar cell interconnection
US20100031996A1 (en) Structure and method of manufacturing thin film photovoltaic modules
US20110239450A1 (en) Roll-to-roll manufacturing of flexible thin film photovoltaic modules
CN107634108B (en) Interconnection of integrated thin film solar cell
US8207440B2 (en) Photovoltaic modules with improved reliability
US8796064B2 (en) Method and device for producing a solar module comprising flexible thin-film solar cells, and solar module comprising flexible thin-film solar cells
US20110168238A1 (en) Flexible solar modules and manufacturing the same
WO2012174140A1 (en) Cigs based thin film solar cells having shared bypass diodes
US20120048349A1 (en) Flexible solar modules and manufacturing the same
US20100147364A1 (en) Thin film photovoltaic module manufacturing methods and structures
JP2020518999A (en) System and method for packaging photovoltaic roof tiles
US20120152349A1 (en) Junction box attachment for photovoltaic thin film devices
US20120318319A1 (en) Methods of interconnecting thin film solar cells
US20090260675A1 (en) Encapsulation of solar modules
JP5575882B2 (en) Airtight electrical package
AU2013362923A1 (en) Module assembly for thin solar cells
KR20120047894A (en) Method for manufacturing photovoltaic cells with multiple junctions and multiple electrodes
CN103730529A (en) Back-contact back-sheet for photovoltaic modules comprising a primer layer and manufacturing method thereof
WO2010082560A1 (en) Solar battery module and method of manufacturing same
JP4082651B2 (en) Manufacturing method of solar cell module
WO2013011707A1 (en) Solar battery module
WO2022130153A1 (en) Large-area solar module via continuous additive lamination method
TW201214727A (en) Photovoltaic module including transparent sheet with channel