TW201017500A - Capacitance touch panel and sensinf method - Google Patents

Capacitance touch panel and sensinf method Download PDF

Info

Publication number
TW201017500A
TW201017500A TW97141241A TW97141241A TW201017500A TW 201017500 A TW201017500 A TW 201017500A TW 97141241 A TW97141241 A TW 97141241A TW 97141241 A TW97141241 A TW 97141241A TW 201017500 A TW201017500 A TW 201017500A
Authority
TW
Taiwan
Prior art keywords
touch panel
substrate
capacitive touch
conductive
conductive pattern
Prior art date
Application number
TW97141241A
Other languages
Chinese (zh)
Inventor
Jian-Feng Li
Gwo-Sen Lin
Original Assignee
Wintek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintek Corp filed Critical Wintek Corp
Priority to TW97141241A priority Critical patent/TW201017500A/en
Publication of TW201017500A publication Critical patent/TW201017500A/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

A capacitance touch panel including a first substrate, a second substrate, a plurality of first conductive patterns, a plurality of second conductive patterns and a deformable insulating layer. The second substrate disposed in parallel to the first substrate is a flexible substrate. The first conductive patterns are disposed on the first substrate and located between the first and the second substrates. Each first conductive pattern extends along a first direction. The second conductive patterns are disposed on the second substrate and located between the first and the second substrates. Each second conductive pattern extends along a second direction. The first direction intersects the second direction. The deformable insulating layer is disposed between the first conductive patterns and the second conductive patterns such that a gap is formed between the first conductive patterns and the second conductive patterns. The gap changes with an external force applied on the deformable insulating layer.

Description

201017500 -* -, J400-0769 27807twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電容式觸控面板及其感測方 法,且特別是有關於一種可利用多種介質進行輸入操作的 電容式觸控面板及其感測方法。 【先前技術】 在現今資訊時代中’人類對於電子產品之依賴性與曰 ❿ 倶增。筆記型電腦、行動電話、個人數位助理器(personal digital assistant,PDA )、數位隨身聽等電子產品均已成為 現代人生活及工作中不可或缺之應用工具。上述之電子產 品均具有一輸入介面,用以輸入使用者所須指令,以使電 子產品之内部系統自動執行此項指令。目前使用最廣泛之 輸入介面裝置包括鍵盤(keyboard)、滑鼠(mouse)以及 觸控面板(touch panel)。 目前,觸控面板可依照其驅動方式以及結構設計區分 φ 為兩種類型’一為電阻式觸控面板,另一為電容式觸控面 板。其中,電容式觸控面板具有可同時多點觸控的特性, 因而電容式觸控面板逐漸受到歡迎。除此之外,使用者使 用電容式觸控面板時,僅需接觸而不需施壓就可使電容式 觸控面板進行感應,所以電容式觸控面板不易因使用者施 壓不當而損壞。但是,使用者無法在戴上手套的情形下或 是以絕緣物質來操作電容式觸控面板。因此,電容式觸控 面板的設計尚有其不便之處。 5 201017500 ;400-0769 278〇7twf.doc/n 【發明内容】 —本發明是提供—種電容式觸控面板,以解決習知的電 容式觸控面板無法以非導體介質操作的問題。201017500 -* -, J400-0769 27807twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a capacitive touch panel and a sensing method thereof, and in particular to an available A capacitive touch panel with a plurality of media input operations and a sensing method thereof. [Prior Art] In today's information age, human dependence on electronic products has increased. Electronic products such as notebook computers, mobile phones, personal digital assistants (PDAs), and digital walkmans have become indispensable tools for modern people's lives and work. Each of the above electronic products has an input interface for inputting instructions required by the user so that the internal system of the electronic product automatically executes the command. The most widely used input interface devices today include a keyboard, a mouse, and a touch panel. At present, the touch panel can be distinguished according to its driving mode and structural design. φ is of two types. One is a resistive touch panel, and the other is a capacitive touch panel. Among them, the capacitive touch panel has the characteristics of simultaneous multi-touch, and thus the capacitive touch panel is gradually welcomed. In addition, when the user uses the capacitive touch panel, the capacitive touch panel can be sensed only by touching without pressing, so the capacitive touch panel is not easily damaged by improper pressure applied by the user. However, the user cannot operate the capacitive touch panel with gloves or with an insulating material. Therefore, the design of the capacitive touch panel has its inconvenience. 5 201017500 ;400-0769 278〇7twf.doc/n SUMMARY OF THE INVENTION The present invention provides a capacitive touch panel to solve the problem that the conventional capacitive touch panel cannot be operated with a non-conductor medium.

本發明令是提供一種感測方法,以解決習知 觸控面板無法以多段式感測的問題。 I 本發明提出一種電容式觸控面板,包括一第一美板 -第二基板、多個第一導電圖案、多個第二導電圖‘以及 一可形變絕緣層。第二基板平行配置於第—基板上,且 二基板為一軟質基板。第一導電圖案配置於第—芙板上, 並位於第-基板與第二基板之間,且各第—導電^案沿;_ 第-方向延伸。第二導電圖案配置於第二基板上,並位於 第基板與第二基板之間,且各第二導電圖案沪一第二 =伸,其中第-方向與第二方向相交。可形__位 於第-導電圖案與第二導電圖案之間,以使第—導電圖案 與第-導電随之間具有-間紅間隙隨著可形變絕緣芦 承受一外力而改變。 參 ^本發明之-實施例中,上述之可形變絕緣層之材質 可以為-雜㈣,其情轉體•切縣壓克力膠。 在^明之-實,中’上述之可形變絕緣層之材質 也可以為-氣體…液體或-液晶材料。實務上,用於$ =變絕緣層讀料制旨麻合物。心卜,絲作為可形 變絕緣層之氣體包括线、1氣、_氣體或上述之址合。 當可形變麟層之材Ϊ為液晶_、㈣或是氣體時 容式觸控面板更包括㈣咖物。物配置 201017500 wry /uz-^400-0769 27807twf.doc/n 導電圖案與第二導電圖案之間,並位於可形變絕緣層中。 在本發明之一實施例中’上述之間隙隨著可形變絕緣 層承受外力而產生的一變化量介於10%至70%,其中以原 間隙G大小之10%至50%為其最佳範圍。 在本發明之一實施例中’上述之第二基板為一可撓性 透明基板。在本發明之一實施例中,上述之第二基板的材 質包括壓克力、聚碳酸樹脂(PC)、聚乙烯對苯二曱酸醋 (polyethylene terephthalate,PET)、聚亞醯胺(pi)或環稀共聚 物(cyclic olefin copolymer, COC )。 在本發明之一實施例中’上述之第一基板之材質包括 玻璃、壓克力、聚碳酸樹脂(PC)、聚乙烯對苯二甲酸酯 (polyethylene terephthalate, PET)、聚亞酿胺(pi)或環烤共 聚物(cyclic olefin copolymer, C0C )。 在本發明之一實施例中’上述之第一方向與第二方向 的夾角實質上為90。。 在本發明之一實施例中,上述之第一導電圖案與第二 © 導電圖案之材質為一導電氧化物材料。實務上,導電氧化 物材料包括銦錫氧化物、銦辞氧化物、鋁鋅氧化物、氧化 鋅'氧化錫或上述之組合。 本發明另提出一種感測方法。首先,提供如前所示之 —觸控面板,其中第一導電圖案與第二導電圖案之間具有 一電容值。然後,以一導電物件輕觸或接近觸控面板,以 使電容值之大小改變並輸出對應的一第一感測訊號。隨 之,使間隙具有一第一變化量以使電容值之大小改變並輸 201017500 肩0-0769 27807twf.doc/n 出對應的一第二感測訊號。 在本發明之-實施例中’上述之感測方法更包括使間 隙,有^第二變化量以使電容值之大小改變並輸出對應的 一弟二感測訊*號,其中第一變化量與第二變化量不同。 在本發明之-實施例中,上述之導電物件為手 觸控筆。 一 本發明的電容式觸控面板是以可形變的材質作為配 i在第—導電圖案與第二導電_之_絕緣層。當使用 者知壓電谷式觸控面板時,按壓的動作即可使電容式觸控 面板產生對應的觸控訊號,而不須限定以導電介質進行觸 控控制的操作。所以,本發明的電容式觸控面板具有高度 的使用便利性。另外,本發明的觸控面板的輸入功能可以 設計為多段式輸入模式,以進一步提升本發明之電容式觸 控面板的功能性。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂’下文特舉較佳實施例,並配合所附圖式,作詳細說 應 明如下。 【實施方式】 圖1繪不為本發明之第一實施例的電容式觸控面板。 请參照圖1 ’電容式觸控面板100包括一第一基板110、一 第二基板120、多個第—導電圖案13〇、多個第二導電圖案 140以及一可形變絕緣層150。第二基板120平行配置於第 一基板110上。第—導電圖案130配置於第一基板110上, 8 201017500 »vw,w^.-v:400-0769 27807twf.doc/n 並位於第一基板110與第二基板120之間,且各第一導電 圖案130沿一第一方向D1延伸。第二導電圖案“ο配置 於第二基板120上,並位於第一基板11〇與第二基板12〇 之間。各第二導電圖案140沿一第二方向D2延伸,其中 第一方向D1與第·一方向D2相父。可形變絶緣層mo位於 第一導電圖案130與第二導電圖案140之間,以使第一導 電圖案130與第一導電圖案140之間具有—間隙G且間隙 G會隨著可形變絕緣層150承受一外力而改變。 ’ 電容式觸控面板100將可形變絕緣層15〇配置於第一 導電圖案130與第二導電圖案140之間。當電容式觸控面 板100被按壓時,可形變絕緣層150可以產生形變以使得 第一導電圖案130與第一導電圖案140之間的電容值產生 變化。因此,使用者可藉由按壓方式以進行 板100的觸控控制。如此一來,電容式觸控面板1〇〇 ^但 可以藉由導電介質進行觸控控制,更可以藉由非導電介質 進行觸控控制。因而本發明的電容式觸控面板1〇()具有較 〇 高的使用便利性。 在本實施例中,可形變絕緣層150之材質可以為一彈 性膠體,其中彈性膠體例如為石夕膠或壓克力膠。石夕膠或壓 克力膠等彈性膠體具有可回復力。所以,可形變絕緣層150 爻到外力按壓時會產生形變,而外力移除後即可回復原本 的狀態。也就是說,本實施例中,間隙G會隨著可形變絕 緣層150承受外力的狀態而產生改變。因此,利用彈性膠 體以製作可形變絕緣層150,則電容式觸控面板 100可以 201017500。4〇_ 27807twf.d〇c/n 被反覆按壓以進行觸控控制功能。 在外力作用下,間隙G的變化量一般而言會隨著可形 變絕緣層15G之材料特性而有所不同,其中本實施例之間 隙G的-變化量介於10%至7〇%,其中以原嶋〇大小 之10%至50%為其最佳範圍。值得一提的是,可形變絕緣 層150受到掩壓時,會因其本身所具有的彈性而產生形 變,但可形變絕緣層150仍可在第一導電圖案13〇與第二 ㈣圖案之’供良好的絕緣制,此,電容式觸控面 罾 板100在可形變絕緣層15〇冑到擠壓的狀態下仍可維持正 常的運作’而不致於發生短路的現象。 另外,為了使電容式觸控面板1〇〇具有良好的光學特 性以便與一顯示面板結合,第二基板120例如為一可撓性 透明基板。實務上,第二基板12〇的材質包括壓克力、聚 碳酸樹脂(polycarbonate,PC)、聚乙烯對苯二甲酸酯 (polyethylene terephthalate, PET)、聚亞醯胺(polyimide,PI) 或壤烯共聚物(cyclic olefin copolymer,C0C)。電容式觸 ❹ 控面板1〇0被使用時,使用者的按壓動作可使得可撓性的 第二基板120彎曲,並擠壓可形變絕緣層15〇而使第一導 電圖案130與第二導電圖案140之間產生電容值的變化。 電容式觸控面板100便可藉由這個電容值的變化來進行觸 控位置的感測。 第一基板110之材質則例如是玻璃、壓克力、聚碳酸 樹脂(PC)、聚乙稀對苯二甲酸g旨(p〇iyethyiene terephthalate, PET)、聚亞醢胺(PI)或環烯共聚物(CyCiic 〇iefjn c〇p〇iymer, ^ -400-0769 27807twf.doc/n coc)。以第一基板no之材質為玻璃為例,可撓性的第 二基板120被按壓而彎曲並擠壓可形變絕緣層15〇時,第 一基板110可以提供適當的支撐力以避免整個電容式觸控 面板100被彎曲而無法正確地進行觸控感測。 另方面,電谷式觸控面板.100與其他面板貼附在一 起時’係由第一基板1〇〇貼附於其他面板上,也就是使第 二基板120朝向使用者。此時,第一基板1〇〇之材質即使 為可挽性材貝’精由其他面板的支樓力仍可達到避免電容 • 式觸控面板100整體被彎曲的情形。 為了提供適當的光學性質,第一導電圖案130與第二 導電圖案140之材質可以為一導電氧化物材料。實務上, 導電氧化物材料包括銦錫氧化物、銦鋅氧化物、鋁鋅氡化 物、氧化鋅、氧化錫或上述之組合。除此之外,電容式觸 控面板100的導電圖案設計可與既有的設計相同。舉例而 言,本實施例將第一導電圖案130與第二導電圖案14〇繪 示為長條狀為例。 〇 在其他實施例中,第一導電圖案130與第二導電圖案 140可以分別是沿著第一方向〇1與第二方向〇2延伸並以 規則方式或是不規則方式排列的圖案。實務上,第一導電 圖案130與第二導電圖案14〇的圖案設計可以隨不同產品 而改變。另外’上述之第一方向m與第二方向〇2的爽角 實質上為90,當然第一方向D1與第二方向D2之間的炎 角也可以是不為〇。的其他角度。 圖2A繪示為本發明之第一實施例的電容式觸控面板 11 201017500 --------400-0769 27807twf.doc/n 之部^元件,而圖2B繪示為本發明之第一電容式觸控面 板進行觸控動作時,可形變絕緣層的狀態。請同時參照圖 2A ,沿著第一方向D1延伸的第一導電圖案 與沿著第二方向D2延伸的第二導電圖案14〇例如分別為 條狀。當使用者以手接近觸控點A所在位置時,第一導電 圖案130與第二導電圖案14〇之間的電容會產生變化以產 生觸控控制訊號。此時,使用者的手僅接近或是僅輕觸第 ❹ 一導電圖案140而未實際按壓於觸控點a上,所以可形變 絕緣層150呈現如2B所繪示的第一狀態I。 當使用者的手實際施力並按壓觸控點A,則可形變絕 緣層150會呈現如2B所繪示的第二狀態π。此時,可形 變絕緣層150因為使用者的按壓而產生形變,也使得間隙 G減小。根據電容作用的原理’第一導電圖案13〇與第二 導電圖案140之間的電容大小與間隙〇成反比,因此使用 者的手實際按壓的動作也可以產生對應的電容變化。換言 之’使用者實際的按壓動作也可以產生對應的觸控感測訊 ❷ 號。 由於’使用者的手接近第二導電圖案140時所造成的 電容值改變與可形變絕緣層150實際產生形變時所造成的 電容值改變不同。若經由適當的設計,可以將兩種電容值 改變情形設定為不同的功能指令,則本發明之電容式觸控 面板100可具有多段式的觸控控制功能。詳細而言,觸控 面板100中,間隙G的變化量可以由其大小的0%至70%’ 且第一導電圖案130與第二導電圖案140之間的電容值會 12 1 V/ 丄 / &lt;^^400-0769 27807twf.doc/n 隨間隙G的變化量而變化。因此,本實施例例如可以將間 隙G的變化量切割成多個區段以區分成不同觸控訊號並進 行不同的功能。 圖2C繪示為圖1的觸控面板的測方法。請同時參照 圖1與圖4,在步驟410中’使用者尚未觸碰觸控面板1〇〇, 也就是在待機狀態下’第一導電圖案13〇與第二導電圖案 140之間的電容值例如為α。 ^ 接著’在步驟420中,使用者以導電物件接近或是輕 β 觸觸控面板100表面。在本實施例中,導電物件例如是手 指或是觸控筆等。此時’第一導電圖案13〇與第二導電圖 案140之間的間隙G與待機時的狀態相同。不過,第一導 電圖案130與第二導電圖案M〇之間的電容值則例如會受 到導電物件的影響而由C1改變為C2。觸控面板1〇〇便可 根據此電容值的改變而產生對應的第一感測訊號F1。裝設 有觸控面板100的電子裝置例如可以利用第一感測訊號F1 執行第一功能(步驟422)。 Φ 隨後’在步驟43〇中,使用者例如是按壓觸控面板1〇〇 以改變第一導電圖案130與第二導電圖案140之間之間隙 1。此%,間隙G例如產生一第一變化量且電容值之大小 隨間隙G之變化量而改變為C3,且觸控面板1〇〇輸出對 應的一第二感測訊號F2。裝設有觸控面板1〇〇的電子裝置 例如利用第二感測訊號F2執行第二功能(步驟432)。 進步在步驟440中,使用者可以選擇性地按壓觸控 面板100以使第—導電圖案130與第二導電圖案140之間 13 201017500 w it 7 / vn400-0769 27807twf.doc/n 之間隙G產生-第二變化量。此時’第一導電圖案請食 第二導糊案140之_電容值例如改變為C4。觸控面板 削便可根據電容值C4輪出對應的第三麵訊號ρ3以使 電子裝置執行第三功能(步驟442)。 由上述流程可知,在-電子產品中,使用者實際按壓 電容式觸控面板100時所產生的電容變化不同於使用者的 手接近或輕觸電容式觸控面板100時所產生的電容變化。 ❹ 此’觸控面板1〇〇可以是將其中一者之電容變化設定為 第一功能的指令訊號,例如使開啟或關閉電子產品電源的 指令訊號’而另-者之電容變化設定為其他功能的指令訊 號。如此一來,使用者僅需在某個觸控區域或是觸控點中 進行觸控控制即可使電子產品執行不同的功能,因^本發 明的電容式觸控面板100提供了相當便利的操作方式。 萬然,本發明之電容式觸控面板100的觸控控制方式 不僅於此,由於間隙G的改變量不同會使第一導電圖案 =〇與第二導電圖案14〇之間的電容值產生不同的變化 ® 里。所以,電子產品的設計可以將不同間隙G之下所產生 的電各值變化設定為不同的指令訊號,則電容式觸控面板 1〇〇可以藉由不同外力的大小而執行不同的功能。也因 此,電容式觸控面板100可以使用非導電性介質進行觸控 操作。 二 若使用者以非導電介質進行電容式觸控面板100的觸 控操作’則非導電介質接近或輕觸電容式觸控面板時不會 產生對應的電容變化’也就是不會有觸控訊號的產生。所 --------:400-0769 27807twf.doc/n 以使用者以非導電)丨質進行觸控操作時,須以實際按壓 的方式以完成觸控操作。此時,電容式觸控面板若欲 達到多段式觸控控制的設計,則需以使用者輕壓時的電容 變化以及重壓時的電容變化作為不同指令的區分。整體而 言’電容式觸控面板100非但有多區段觸控控制的優勢, 更因為使用者可以利用任何介質進行觸控操作而具有很高 的使用便利性。 3外’圖3繪示為本發明之第二實施例的電容式觸控 ❹ 面板。請參關3 ’電容式觸控面板與祕之電容式 觸控面板100相似’其差異僅在可形變絕緣層35〇的設計。 詳細來說’本實施例的可形變絕緣層35〇之材質為一氣 體、一液體或一液晶材料。此外,當可形變絕緣層35〇之 材質為液晶材料、液體或是氣體時,電容式觸控面板3〇〇 更包括多個間隔物360。這些間隔物36〇配置於第—導電 圖案130與第二導電圖案140之間,並位於可形變絕緣層 350中。實務上’用於可形變絕緣層35〇之液體可為酯類 φ 化合物。另外,用來作為可形變絕緣層350之氣體包括空 氣、氮氣、惰性氣體或上述之組合。 液體、氣體及液晶材料具有可流動的性質,因此電容 式觸控面板300受到使用者的按壓時,第一導電圖案13〇 與第一導電圖案140之間的間隙G會產生變化。電容式觸 控面板300便可藉著間隙G的變化所對應產生的電容值改 變而產生觸控訊號。也就是說’具有可流動性的可形變絕 緣層350有助於電容式觸控面板300完成觸控控制的動作。 15 201017500 .t00-0769 27807twf.doc/n 利用流體作為可形變絕緣層350,則使用者的按壓動 作會使第二基板120彎曲而改變第一導電圖案13〇與第二 導電圖案140之間的電容值。使用者所施加的外力越大, 第二基板120彎曲程度越大則間隙G將會縮減得越小。因 此,為了避免因第二基板120過度脊曲而使第一導電圖宰 130與第二導電圖案140發生短路,電容式觸控面板3〇〇 中更配置有間隔物360。這些間隔物360可以是球狀間隔 物或是光阻間隔物等等。 ❿ 間隔物360的配置不举有助於避免第一導電圖案130 與第二導電圖案140之間發生短路,還有助於維持觸控控 制的正常運作。舉例而言’使用者按壓第二基板12〇並放 開後’間隔物360的支撐可以提供適當的作用力使第二基 板120回復至原本的狀態。也就是說,可形變絕緣層350 雖不具彈性回復力,但在間隔物360的配置之下,電容式 觸控面板300被反覆的按壓仍可維持正常的觸控控制動 作。另外,電容式觸控面板3〇〇也可以與第—實施例之電 ⑩ 谷式觸控面板100 —1樣具有多段式的觸控控制設計。 綜上所述’本發明因採用可形變絕緣層配置於兩導電 圖案間的結構,因此電容式觸控面板可以感測可形變絕緣 層受外力而變形時在導電圖案之間所產生的電容變化。換 言之’本發明的電容式觸控面板非但可以感應到導電介質 接近時所產生的電容變化也可以感測因外力按壓而產生的 電容變化。所以,本發明的電容式觸控面板不限於僅以導 電介質操作的方式,也可適用於非導電介質操作的方式。 201017500 wr„u.-v.400-0769 27807twf.doc/n it传Ιΐΐ絕緣層受不同程度外力而產生的變形程度不 谷式觸控面板具有多區段式的觸控模式。 月之電 ❹ 雖然本發明已以較佳實施例揭露如上然其並非 Hi發明,任何所屬技術領域中具有通常知識者,在不 因此本=之精神和範圍内,當可作些許之更動與潤飾’ 為準。發域範圍當視後社巾料鄉圍所界定者 【圖式簡單說明】 圖1緣示為本發明之第—實施例的電容式觸控面板。 圖2A繪示為本發明之第一實施例的電容式觸控面板 之部分元件。 圖2B繪示為本發明之第一電容式觸控面板進行觸控 動作時,可形變絕緣層的狀態。 圖2C繪示為圖1的觸控面板的感測方法。 圖3繪示為本發明之第二實施例的電容式觸控面板。 【主要元件符號說明】 100、300 :電容式觸控面板 110 :第一基板 120 :第二基板 130:第一導電圖案 140 :第二導電圖案 17 .-rOO-0769 27807twf.doc/n 150、350 :可形變絕緣層 360 :間隔物 410、420、422、430、432、440、442 :步驟 A :區域 D1 :第一方向 D2 :第二方向 G :間隙 I :第一狀態The present invention provides a sensing method to solve the problem that the conventional touch panel cannot be sensed in multiple stages. The present invention provides a capacitive touch panel comprising a first slab-second substrate, a plurality of first conductive patterns, a plurality of second conductive patterns ‘and a deformable insulating layer. The second substrate is disposed in parallel on the first substrate, and the two substrates are a flexible substrate. The first conductive pattern is disposed on the first plate and located between the first substrate and the second substrate, and each of the first conductive lines extends along the first direction. The second conductive pattern is disposed on the second substrate and located between the first substrate and the second substrate, and each of the second conductive patterns is second and second, wherein the first direction intersects with the second direction. The shape __ is between the first conductive pattern and the second conductive pattern such that a red gap between the first conductive pattern and the first conductive is changed as the deformable insulating argon receives an external force. In the embodiment of the present invention, the material of the deformable insulating layer may be - (tetra), and the body of the transforming body is Cheshire acrylic. The material of the deformable insulating layer described above may also be a gas-liquid or liquid crystal material. In practice, it is used for $=variable insulation readings. The wire, as a gas that can deform the insulating layer, includes a wire, a gas, a gas, or the above. When the material of the deformable layer is liquid crystal _, (4) or gas, the capacitive touch panel further includes (4) coffee objects. Configuration 201017500 wry / uz-^400-0769 27807twf.doc / n between the conductive pattern and the second conductive pattern, and located in the deformable insulating layer. In an embodiment of the present invention, the amount of change caused by the external force of the deformable insulating layer is between 10% and 70%, wherein 10% to 50% of the original gap G is optimal. range. In an embodiment of the invention, the second substrate is a flexible transparent substrate. In an embodiment of the present invention, the material of the second substrate comprises acrylic, polycarbonate (PC), polyethylene terephthalate (PET), polyimide (pi). Or cyclic olefin copolymer (COC). In one embodiment of the present invention, the material of the first substrate includes glass, acrylic, polycarbonate (PC), polyethylene terephthalate (PET), poly-branched amine ( Pi) or cyclic olefin copolymer (C0C). In an embodiment of the invention, the angle between the first direction and the second direction is substantially 90. . In an embodiment of the invention, the material of the first conductive pattern and the second conductive pattern is a conductive oxide material. In practice, the conductive oxide material includes indium tin oxide, indium oxide, aluminum zinc oxide, zinc oxide 'tin oxide, or a combination thereof. The invention further provides a sensing method. First, a touch panel as shown in the foregoing is provided, wherein a capacitance value is present between the first conductive pattern and the second conductive pattern. Then, touch or touch the touch panel with a conductive object to change the magnitude of the capacitance value and output a corresponding first sensing signal. Then, the gap has a first variation to change the magnitude of the capacitance value and input a corresponding second sensing signal to the 201017500 shoulder 0-0769 27807twf.doc/n. In the embodiment of the present invention, the sensing method further includes: causing the gap to have a second amount of change to change the magnitude of the capacitance value and outputting a corresponding one of the second sensing signals, wherein the first variation Different from the second amount of change. In an embodiment of the invention, the conductive object is a hand stylus. A capacitive touch panel of the present invention is provided with a deformable material as an insulating layer between the first conductive pattern and the second conductive layer. When the user knows the piezoelectric valley touch panel, the pressing action can cause the capacitive touch panel to generate a corresponding touch signal without limiting the operation of the touch control with the conductive medium. Therefore, the capacitive touch panel of the present invention has a high degree of ease of use. In addition, the input function of the touch panel of the present invention can be designed as a multi-segment input mode to further enhance the functionality of the capacitive touch panel of the present invention. The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Embodiment] FIG. 1 illustrates a capacitive touch panel which is not a first embodiment of the present invention. Referring to FIG. 1 , the capacitive touch panel 100 includes a first substrate 110 , a second substrate 120 , a plurality of first conductive patterns 13 , a plurality of second conductive patterns 140 , and a deformable insulating layer 150 . The second substrate 120 is disposed in parallel on the first substrate 110. The first conductive pattern 130 is disposed on the first substrate 110, 8 201017500 »vw, w^.-v:400-0769 27807twf.doc/n and is located between the first substrate 110 and the second substrate 120, and each first The conductive pattern 130 extends along a first direction D1. The second conductive pattern “o” is disposed on the second substrate 120 and located between the first substrate 11〇 and the second substrate 12〇. Each of the second conductive patterns 140 extends along a second direction D2, wherein the first direction D1 is The first direction D2 is the father. The deformable insulating layer mo is located between the first conductive pattern 130 and the second conductive pattern 140 such that the first conductive pattern 130 and the first conductive pattern 140 have a gap G and a gap G The deformable insulating layer 150 is changed between the first conductive pattern 130 and the second conductive pattern 140. The capacitive touch panel 100 is disposed between the first conductive pattern 130 and the second conductive pattern 140. When the 100 is pressed, the deformable insulating layer 150 can be deformed to change the capacitance between the first conductive pattern 130 and the first conductive pattern 140. Therefore, the user can perform the touch of the board 100 by pressing. Therefore, the capacitive touch panel can be controlled by a conductive medium, and can be controlled by a non-conductive medium. Therefore, the capacitive touch panel of the present invention is Have a better In this embodiment, the material of the deformable insulating layer 150 may be an elastic colloid, wherein the elastic colloid is, for example, a gelatin or an acrylic glue, an elastic colloid such as a gelatin or an acrylic adhesive. It has a recoverable force. Therefore, the deformable insulating layer 150 deforms when pressed by an external force, and the external force is removed to restore the original state. That is, in this embodiment, the gap G is insulated along with the deformable The layer 150 is subjected to a change in the state of the external force. Therefore, by using the elastic colloid to form the deformable insulating layer 150, the capacitive touch panel 100 can be repeatedly pressed for touch using 201017500. 4〇_ 27807twf.d〇c/n Control function. Under the action of external force, the variation of the gap G generally varies with the material properties of the deformable insulating layer 15G, wherein the gap G of the present embodiment varies from 10% to 7〇. %, wherein 10% to 50% of the original size is the optimum range. It is worth mentioning that when the deformable insulating layer 150 is masked, it will be deformed due to its own elasticity, but can be deformed. Insulation layer 15 0 can still be used for good insulation in the first conductive pattern 13 〇 and the second (four) pattern, and the capacitive touch panel 100 can be maintained even when the deformable insulating layer 15 is squeezed. The normal operation 'does not cause a short circuit. In addition, in order to make the capacitive touch panel 1 良好 have good optical characteristics for combination with a display panel, the second substrate 120 is, for example, a flexible transparent substrate. The material of the second substrate 12A includes acrylic, polycarbonate (PC), polyethylene terephthalate (PET), polyimide (PI) or phosphonene. Cycloolefin copolymer (C0C). When the capacitive touch panel 1 is used, the pressing action of the user can bend the flexible second substrate 120 and press the deformable insulating layer 15 to make the first conductive pattern 130 and the second conductive A change in capacitance value occurs between the patterns 140. The capacitive touch panel 100 can sense the touch position by the change of the capacitance value. The material of the first substrate 110 is, for example, glass, acrylic, polycarbonate (PC), polyethylene terephthalate (PET), polytheneamine (PI) or cycloolefin. Copolymer (CyCiic 〇iefjn c〇p〇iymer, ^ -400-0769 27807twf.doc/n coc). For example, when the material of the first substrate no is glass, when the flexible second substrate 120 is pressed and bent and the deformable insulating layer 15 is pressed, the first substrate 110 can provide appropriate supporting force to avoid the entire capacitive type. The touch panel 100 is bent and cannot perform touch sensing correctly. On the other hand, when the electric valley type touch panel .100 is attached to other panels, the first substrate 1 is attached to the other panel, that is, the second substrate 120 is directed toward the user. At this time, even if the material of the first substrate 1 is a pullable material, it is possible to avoid the capacitance of the touch panel 100 as a whole. In order to provide suitable optical properties, the material of the first conductive pattern 130 and the second conductive pattern 140 may be a conductive oxide material. In practice, the conductive oxide material comprises indium tin oxide, indium zinc oxide, aluminum zinc telluride, zinc oxide, tin oxide or a combination thereof. In addition, the conductive pattern design of the capacitive touch panel 100 can be the same as the existing design. For example, this embodiment takes the first conductive pattern 130 and the second conductive pattern 14 〇 as a strip shape as an example. In other embodiments, the first conductive pattern 130 and the second conductive pattern 140 may respectively be patterns that extend along the first direction 〇1 and the second direction 〇2 and are arranged in a regular manner or an irregular manner. In practice, the pattern design of the first conductive pattern 130 and the second conductive pattern 14A may vary from product to product. Further, the above-described first direction m and the second direction 〇2 have a refreshing angle of substantially 90. Of course, the angle between the first direction D1 and the second direction D2 may not be 〇. Other angles. 2A is a component of a capacitive touch panel 11 201017500 --------400-0769 27807 twf.doc/n according to a first embodiment of the present invention, and FIG. 2B is a view of the present invention. When the first capacitive touch panel performs a touch operation, the state of the insulating layer can be deformed. Referring to Fig. 2A at the same time, the first conductive pattern extending along the first direction D1 and the second conductive pattern 14'' extending along the second direction D2 are, for example, strip-shaped. When the user approaches the location of the touch point A by hand, the capacitance between the first conductive pattern 130 and the second conductive pattern 14 turns to change to generate a touch control signal. At this time, the user's hand only approaches or only touches the first conductive pattern 140 without actually pressing on the touch point a, so the deformable insulating layer 150 exhibits the first state I as shown in FIG. 2B. When the user's hand actually applies force and presses the touch point A, the deformable insulating layer 150 exhibits a second state π as depicted by 2B. At this time, the deformable insulating layer 150 is deformed by the user's pressing, and the gap G is also reduced. According to the principle of the action of the capacitor, the magnitude of the capacitance between the first conductive pattern 13A and the second conductive pattern 140 is inversely proportional to the gap ,, so that the action of the user's hand actually pressing can also produce a corresponding change in capacitance. In other words, the user's actual pressing action can also generate a corresponding touch sensing signal. The change in capacitance caused by the user's hand approaching the second conductive pattern 140 is different from the change in capacitance caused by the deformation of the deformable insulating layer 150. If the two capacitance value change situations can be set to different function commands through appropriate design, the capacitive touch panel 100 of the present invention can have a multi-segment touch control function. In detail, in the touch panel 100, the amount of change of the gap G may be from 0% to 70% of its size and the capacitance between the first conductive pattern 130 and the second conductive pattern 140 may be 12 1 V/丄/ &lt;^^400-0769 27807twf.doc/n varies with the amount of change in the gap G. Therefore, the present embodiment can, for example, cut the variation of the gap G into a plurality of segments to distinguish into different touch signals and perform different functions. FIG. 2C illustrates a method of measuring the touch panel of FIG. 1. Referring to FIG. 1 and FIG. 4 simultaneously, in step 410, the user has not touched the touch panel 1 〇〇, that is, the capacitance value between the first conductive pattern 13 〇 and the second conductive pattern 140 in the standby state. For example, α. ^ Then, in step 420, the user touches or touches the surface of the touch panel 100 with a conductive object. In the present embodiment, the conductive member is, for example, a finger or a stylus pen or the like. At this time, the gap G between the first conductive pattern 13A and the second conductive pattern 140 is the same as the state at the time of standby. However, the capacitance value between the first conductive pattern 130 and the second conductive pattern M? is changed from C1 to C2, for example, by the influence of the conductive member. The touch panel 1 产生 can generate a corresponding first sensing signal F1 according to the change of the capacitance value. For example, the electronic device equipped with the touch panel 100 can perform the first function using the first sensing signal F1 (step 422). Φ Subsequently, in step 43A, the user presses the touch panel 1A, for example, to change the gap 1 between the first conductive pattern 130 and the second conductive pattern 140. For example, the gap G generates a first change amount, and the magnitude of the capacitance value changes to C3 according to the change amount of the gap G, and the touch panel 1 〇〇 outputs a corresponding second sensing signal F2. The electronic device equipped with the touch panel 1 例如 performs a second function, for example, using the second sensing signal F2 (step 432). Progressively, in step 440, the user can selectively press the touch panel 100 to generate a gap G between the first conductive pattern 130 and the second conductive pattern 140 13 201017500 w it 7 / vn400-0769 27807 twf.doc/n - The second amount of change. At this time, the capacitance value of the first conductive pattern is changed to C4. The touch panel is rotated to output a corresponding third surface signal ρ3 according to the capacitance value C4 to cause the electronic device to perform the third function (step 442). As can be seen from the above process, in the electronic product, the change in capacitance generated when the user actually presses the capacitive touch panel 100 is different from the change in capacitance generated when the user's hand approaches or touches the capacitive touch panel 100. ❹ The 'touch panel 1' can be a command signal that sets the capacitance change of one of the functions to the first function, for example, the command signal for turning the power of the electronic product on or off, and the capacitance change of the other is set to other functions. Command signal. In this way, the user only needs to perform touch control in a touch area or a touch point to enable the electronic product to perform different functions, because the capacitive touch panel 100 of the present invention provides a relatively convenient function. Operation method. The touch control method of the capacitive touch panel 100 of the present invention is not limited to this, and the capacitance value between the first conductive pattern=〇 and the second conductive pattern 14〇 is different due to the difference in the amount of change of the gap G. The change in ®. Therefore, the design of the electronic product can set different values of the electric power generated under different gaps G to different command signals, and the capacitive touch panel 1 can perform different functions by different external forces. Therefore, the capacitive touch panel 100 can perform touch operation using a non-conductive medium. 2. If the user performs the touch operation of the capacitive touch panel 100 with a non-conductive medium, the non-conductive medium will not have a corresponding capacitance change when approaching or touching the capacitive touch panel, that is, there will be no touch signal. The production. --------:400-0769 27807twf.doc/n When the user performs touch operation with non-conductive enamel, the touch operation must be completed by actual pressing. At this time, if the capacitive touch panel is to achieve the design of the multi-segment touch control, it is necessary to distinguish the capacitance change when the user is lightly pressed and the capacitance change during the heavy pressure as different instructions. Overall, the capacitive touch panel 100 not only has the advantages of multi-segment touch control, but also has a high ease of use because the user can perform touch operations using any medium. 3 is a capacitive touch panel according to a second embodiment of the present invention. Please refer to the 3' capacitive touch panel similar to the secret capacitive touch panel 100. The difference is only in the design of the deformable insulating layer 35〇. In detail, the material of the deformable insulating layer 35 of the present embodiment is a gas, a liquid or a liquid crystal material. In addition, when the material of the deformable insulating layer 35 is liquid crystal material, liquid or gas, the capacitive touch panel 3 further includes a plurality of spacers 360. The spacers 36 are disposed between the first conductive pattern 130 and the second conductive pattern 140 and are located in the deformable insulating layer 350. In practice, the liquid used for the deformable insulating layer 35 can be an ester φ compound. Further, the gas used as the deformable insulating layer 350 includes air, nitrogen, an inert gas or a combination thereof. The liquid, gas, and liquid crystal materials have flowable properties. Therefore, when the capacitive touch panel 300 is pressed by the user, the gap G between the first conductive pattern 13 〇 and the first conductive pattern 140 changes. The capacitive touch panel 300 can generate a touch signal by changing the capacitance value corresponding to the change of the gap G. That is to say, the deformable insulating layer 350 having flowability helps the capacitive touch panel 300 to perform the touch control action. 15 201017500 .t00-0769 27807twf.doc/n Using a fluid as the deformable insulating layer 350, the pressing action of the user causes the second substrate 120 to bend to change between the first conductive pattern 13 〇 and the second conductive pattern 140. Capacitance value. The greater the external force applied by the user, the greater the degree of bending of the second substrate 120, the smaller the gap G will be reduced. Therefore, in order to avoid short-circuiting of the first conductive pattern 130 and the second conductive pattern 140 due to excessive curvature of the second substrate 120, the capacitive touch panel 3 is further provided with a spacer 360. These spacers 360 may be spherical spacers or photoresist spacers and the like. The arrangement of the spacers 360 does not help to avoid a short circuit between the first conductive pattern 130 and the second conductive pattern 140, and also helps to maintain the normal operation of the touch control. For example, the support of the spacer 360 after the user presses the second substrate 12 and releases it can provide an appropriate force to return the second substrate 120 to its original state. That is to say, although the deformable insulating layer 350 does not have an elastic restoring force, under the arrangement of the spacer 360, the capacitive touch panel 300 is repeatedly pressed to maintain a normal touch control operation. In addition, the capacitive touch panel 3 can also have a multi-segment touch control design with the electric touch panel 100-1 of the first embodiment. In summary, the present invention adopts a structure in which a deformable insulating layer is disposed between two conductive patterns, so that the capacitive touch panel can sense a change in capacitance between the conductive patterns when the deformable insulating layer is deformed by an external force. . In other words, the capacitive touch panel of the present invention can sense the change in capacitance caused by the proximity of the conductive medium, as well as the change in capacitance caused by the pressing of the external force. Therefore, the capacitive touch panel of the present invention is not limited to the method of operating only with a dielectric, but is also applicable to the manner of operation of a non-conductive medium. 201017500 wr„u.-v.400-0769 27807twf.doc/n It is the degree of deformation caused by different degrees of external force. The valley touch panel has a multi-segment touch mode. Although the present invention has been disclosed in its preferred embodiments, it is not a Hi invention, and any person skilled in the art will be able to make some modifications and refinements within the spirit and scope of the present invention. The scope of the hair domain is defined as the first embodiment of the present invention. Figure 1A shows the first embodiment of the present invention. 2B is a part of the capacitive touch panel of the present invention. FIG. 2B illustrates the state of the deformable insulating layer when the first capacitive touch panel of the present invention performs a touch operation. FIG. 2C illustrates the touch panel of FIG. FIG. 3 illustrates a capacitive touch panel according to a second embodiment of the present invention. [Description of Main Components] 100, 300: Capacitive Touch Panel 110: First Substrate 120: Second Substrate 130 : first conductive pattern 140: second conductive pattern 17 .- rOO-0769 27807twf.doc/n 150, 350: deformable insulating layer 360: spacers 410, 420, 422, 430, 432, 440, 442: step A: region D1: first direction D2: second direction G: Gap I: first state

II :第二狀態II: second state

1818

Claims (1)

^00-0769 27807twf.doc/n 201017500 十、申請專利範困: 1· 一種電容式觸控面板,包括: 一第一基板; —第二基板,平行配置於該第一基板上,且該第二基 板為一軟質基板; 多個第-導電随,配置於該第—基板上,位於該第 一基板與該第二基板之間,且各該第一導電圖案沿一第一 方向延伸; / ❹ 鲁 多個第二導電_,配置於該第二基板上位於該第 —基板與該第二基板之間,且各該第二導 方向延伸,其中該第一方向與該第二方向=案:;及第- -可形魏緣層,位於該第—導電圖案與該第二導電 二之間’以使該第—導電圖案與該第二導電圖案之間具 間隙且該間隙隨著該可形變絕緣層承受一外力而改 變0 2· %中請專利範圍第i項所述之電容式觸控面板, ’、該可形變絕緣層之材質為一彈性膠體。 3· μ請專利範圍第2項所述之電容式觸控面板, -肀該彈性膠體為矽膠或壓克力膠。 4. 如申請專利範圍第1項所述之電容式觸控面板, ς該可形變絕緣層之材質為一氣體、一液體或一液晶材 科0 5. 如申請專利範圍第4項所述之電容式觸控面板, ,、中該液體為酯類化合物。 201017500 ----400-0769 27807twf. doc/π 6·如申請專利範圍第4項所述之電容式觸控面板, 其中該氣體包括空氣、氮氣、惰性氣體或上述之組合。 7.如申請專利範圍第4項所述之電容式觸控面板, 更包括多個間隔物’配置於該第一導電圖案與該第二導電 圖案之間,並位於該可形變絕緣層中。 δ·如申請專利範圍第1項所述之電容式觸控面板, 其中該間隙隨著該可形變絕緣層承受該外力而產生的一最 大變化量為該間隙大小之7〇%。 ❹ 9.如申請專利範圍第1項所述之電容式觸控面板, 其中該第二基板為一可撓性透明基板。 10.如申請專利範圍第9項所述之電容式觸控面板, 其中該第二基板的材質包括壓克力、聚碳酸樹脂(PC)、聚 乙浠對本一甲酸醋(polyethylene terephthalate,PET)、聚亞 酿胺(PI)或環烯共聚物(CyClic 〇lejQn c〇p〇lymer,C〇c)。 n.如申請專利範圍第1項所述之電容式觸控面板, 其中該第一基板之材質包括玻璃、壓克力、聚碳酸樹脂 ⑩ (PC)、聚乙烯對苯二甲酸酯(polyethylene terephthalate, PET)、1 亞酿胺(PI)或環烯共聚物(cyclic olefin copolymer, COC)。 12.如申請專利範圍第i項所述之電容式觸控面板, 其中該第一方向與該第二方向的夾角實質上為90。。 13·如申請專利範圍第1項所述之電容式觸控面板, 其中該些第一導電圖案與該些第二導電圖案之材質為一導 電氧化物材料。 20 201017500 ^♦00-0769 27807twf.doc/n 14. 如申請專利範圍第13項所述之電 板,其中該導電氧化物材料包括铜錫氧化物、銦辞氧化: 鋁鋅氧化物、氧化鋅、氧化錫或上述之組合。 15. —種感測方法,包括: 、提供如申請專利第1項所示之-觸控面板,其中該第 —導電圖案與該第二導電圖案之間具有—電容值; 以一導電物件輕觸或接近該觸控面板,以使該電容值 魯 大』改變並輸出對應的一第一感測訊號;以及 绳使該間隙具有一第一變化量以使該電容值之大小改 炎並輪出對應的—第二感測訊號。 括16.如申請專利範圍第15項所述之感測方法,更包 s亥間隙具有—第二變化量以使該電容值之大小改變並 ^對應的一第三感測訊號,其中該第一變化量與該第二 交化量不同。 17 •如申請專利範圍第15項所述之感測方法,其中 该導電物件為手指或是觸控筆。 21^00-0769 27807twf.doc/n 201017500 X. Patent application: 1. A capacitive touch panel comprising: a first substrate; a second substrate disposed in parallel on the first substrate, and the first The second substrate is a flexible substrate; a plurality of first-conducting electrodes are disposed on the first substrate, between the first substrate and the second substrate, and each of the first conductive patterns extends along a first direction; a plurality of second conductive electrodes _ disposed on the second substrate between the first substrate and the second substrate, and each of the second conductive directions extends, wherein the first direction and the second direction = And a - - a shapeable Wei margin layer between the first conductive pattern and the second conductive second ' such that a gap exists between the first conductive pattern and the second conductive pattern and the gap follows The deformable insulating layer is subjected to an external force and is changed by 0. 2%. The capacitive touch panel described in the above-mentioned patent scope, the material of the deformable insulating layer is an elastic colloid. 3. Please refer to the capacitive touch panel described in item 2 of the patent scope, - the elastic colloid is silicone or acrylic. 4. The capacitive touch panel of claim 1, wherein the deformable insulating layer is made of a gas, a liquid or a liquid crystal material. 5. The invention is as described in claim 4 In the capacitive touch panel, the liquid is an ester compound. The capacitive touch panel of claim 4, wherein the gas comprises air, nitrogen, an inert gas or a combination thereof. 7. The capacitive touch panel of claim 4, further comprising a plurality of spacers disposed between the first conductive pattern and the second conductive pattern and located in the deformable insulating layer. The capacitive touch panel of claim 1, wherein the gap has a maximum variation with the external force of the deformable insulating layer being 7〇% of the gap size. The capacitive touch panel of claim 1, wherein the second substrate is a flexible transparent substrate. 10. The capacitive touch panel of claim 9, wherein the material of the second substrate comprises acrylic, polycarbonate (PC), polyethylene terephthalate (PET). , polyalkylene amine (PI) or cycloolefin copolymer (CyClic 〇lejQn c〇p〇lymer, C〇c). The capacitive touch panel of claim 1, wherein the material of the first substrate comprises glass, acrylic, polycarbonate 10 (PC), polyethylene terephthalate (polyethylene) Terephthalate, PET), 1 chitosan (PI) or cyclic olefin copolymer (COC). 12. The capacitive touch panel of claim 1, wherein the angle between the first direction and the second direction is substantially 90. . The capacitive touch panel of claim 1, wherein the first conductive patterns and the second conductive patterns are made of a conductive oxide material. The invention relates to the electric board of claim 13, wherein the conductive oxide material comprises copper tin oxide, indium oxidization: aluminum zinc oxide, zinc oxide , tin oxide or a combination of the above. 15. The sensing method, comprising: providing a touch panel as shown in claim 1, wherein the first conductive pattern and the second conductive pattern have a capacitance value; Touching or approaching the touch panel, so that the capacitance value is changed and outputting a corresponding first sensing signal; and the rope has a first variation amount of the gap to change the size of the capacitance value and turn Corresponding - the second sensing signal. The method of claim 15, wherein the sensing method has a second variation, wherein the second variation is such that the magnitude of the capacitance changes and corresponds to a third sensing signal, wherein the A variation is different from the second amount of crosslinking. The sensing method of claim 15, wherein the conductive object is a finger or a stylus. twenty one
TW97141241A 2008-10-27 2008-10-27 Capacitance touch panel and sensinf method TW201017500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97141241A TW201017500A (en) 2008-10-27 2008-10-27 Capacitance touch panel and sensinf method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97141241A TW201017500A (en) 2008-10-27 2008-10-27 Capacitance touch panel and sensinf method

Publications (1)

Publication Number Publication Date
TW201017500A true TW201017500A (en) 2010-05-01

Family

ID=44830872

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97141241A TW201017500A (en) 2008-10-27 2008-10-27 Capacitance touch panel and sensinf method

Country Status (1)

Country Link
TW (1) TW201017500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450164B (en) * 2011-04-11 2014-08-21 Elan Microelectronics Corp Capacitive touchpad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450164B (en) * 2011-04-11 2014-08-21 Elan Microelectronics Corp Capacitive touchpad

Similar Documents

Publication Publication Date Title
CN101739183B (en) Capacitor touch panel and sensing method
US9791930B1 (en) Determination of input from force sensing input device under an unbroken exterior portion of a device
TWI231453B (en) Method and apparatus for avoiding pressing inaccuracies on a touch panel
JP4932773B2 (en) Capacitive pen
TWI508106B (en) Touch panel and handheld electronic device
JP2009146373A (en) Hybrid touch panel and method making thereof
KR20160113684A (en) Flexible sensor
JP2011516985A (en) Pointer device for capacitive sensing touchscreen
CN203616742U (en) Touch device and display device
US20120081331A1 (en) Touch screen
TWI447614B (en) Stylus
TW201510803A (en) Touch panel and liquid crystal display device using the same
TW201229850A (en) Touch-sensitive coordinate input apparatus, touch panel and electronic devices having the same
KR101524928B1 (en) Touch panel have digitizer function
US20120017433A1 (en) Method of manufacturing touch screen
US8810545B2 (en) Control circuit and dual touch control method thereof for a four-wire resistive touch panel
CN101526860B (en) capacitance pen
KR101119386B1 (en) Touch screen
TW201017500A (en) Capacitance touch panel and sensinf method
CN103176626B (en) Stylus
CN101706700B (en) Capacitive touch control display device and capacitive touch control panel
KR101084848B1 (en) Touch screen
TWI607359B (en) Three-dimensional touch screen assembly
WO2021076192A1 (en) Optically transparent pressure sensor
US20120092274A1 (en) Touch screen