TW201017284A - Light emitting device, backlight module and liquid crystal display - Google Patents

Light emitting device, backlight module and liquid crystal display Download PDF

Info

Publication number
TW201017284A
TW201017284A TW97140057A TW97140057A TW201017284A TW 201017284 A TW201017284 A TW 201017284A TW 97140057 A TW97140057 A TW 97140057A TW 97140057 A TW97140057 A TW 97140057A TW 201017284 A TW201017284 A TW 201017284A
Authority
TW
Taiwan
Prior art keywords
light
scattering particles
wafers
illuminating
emitting
Prior art date
Application number
TW97140057A
Other languages
Chinese (zh)
Inventor
Kun-Chang Yang
Li-Wei Mao
Original Assignee
Chi Mei Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Optoelectronics Corp filed Critical Chi Mei Optoelectronics Corp
Priority to TW97140057A priority Critical patent/TW201017284A/en
Publication of TW201017284A publication Critical patent/TW201017284A/en

Links

Landscapes

  • Planar Illumination Modules (AREA)

Abstract

A light emitting device, a backlight module and a liquid crystal display is provided. The backlight module includes a frame and a light source. The light source has a substrate and multiple light emitting device. Each light emitting device has at least one light emitting chip, multiple diffusing particles, and an encapsulant. The light emitting chip, the diffusing particles, and the encapsulant are all disposed on the substrate, wherein the diffusing particles are located by the side of the light emitting chip. The encapsulant covers the light emitting chip and many of the diffusing particles.

Description

201017284, ▲ 〜“」Z1TW 28320twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光裝置、背光模組及液晶顯示 器,且特別是有關於具有均勻發光光形的發光裝置以及使 用此發光裝置的背光模組及液晶顯示器。 【先前技術】 液晶顯示器可大致分為液晶顯示面板以及背光模組兩 大組成,其中背光模組用以提供足夠的亮度給液晶顯示面 板’液晶顯示面板才能夠顯示圖像。此外,由於發光裝置 具有體積小、壽命長、低電壓/電流驅動、不易破裂、不含 水銀(沒有污染問題)以及發光效率佳(省電)等特性, 因此背光模組中也開始使用發光裝置取代傳統冷陰極螢光 燈管。 圖1A為習知一種發光裝置的示意圖。如圖ία示,此 種發光裝置100是將多個發光晶片110直接設置在基板 參 120上(Chip on Board)(圖1A僅示意地繪示一個發光晶 片)’然後再使封膠130覆蓋每一個發光晶片11〇,以形成 光條(Light Bar)或是面光源。這種類型的發光裝置100可 以降低光條的散熱問題。但是,與封裝成一顆顆單體的發 光裝置相比,將這種發光晶片110設置在基板120上的發 光裝置100應用於背光模組内,發光裝置1〇〇的發光效率 遠低於單顆的發光裝置。詳究其原因,是因為當發光晶片 110發光時,僅會有部分的光線離開封膠130而被使用者 5 201017284201017284, ▲~""Z1TW 28320twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting device, a backlight module, and a liquid crystal display, and more particularly to having a uniform light-emitting shape Light emitting device and backlight module and liquid crystal display using the same. [Prior Art] A liquid crystal display can be roughly divided into a liquid crystal display panel and a backlight module. The backlight module is used to provide sufficient brightness for the liquid crystal display panel to display an image. In addition, since the light-emitting device has the characteristics of small volume, long life, low voltage/current driving, non-breaking, no mercury (no pollution problem), and good luminous efficiency (power saving), the backlight module also uses the light-emitting device. Replace traditional cold cathode fluorescent tubes. FIG. 1A is a schematic diagram of a conventional light emitting device. As shown in FIG. ία, such a light-emitting device 100 directly sets a plurality of light-emitting wafers 110 on a chip on board (FIG. 1A schematically shows only one light-emitting chip)', and then covers the sealant 130. A light-emitting chip 11 is formed to form a light bar or a surface light source. This type of illuminating device 100 can reduce the heat dissipation problem of the light strip. However, compared with the light-emitting device packaged as a single cell, the light-emitting device 100 having the light-emitting chip 110 disposed on the substrate 120 is applied to the backlight module, and the light-emitting efficiency of the light-emitting device 1 is much lower than that of the single device. Light-emitting device. The reason for the detailed reason is that when the light-emitting chip 110 emits light, only part of the light leaves the sealant 130 and is used by the user 5 201017284

Z1TW 28320twf.doc/n 看到,而其餘的光線會因為封膠130與空氣的折射率不 同’發生全反射的現象,所以降低了發光裝置100的發光 效率’進而降低了背光模組的亮度,影響液晶顯示器的顯 示品質。 此外’圖1A之發光裝置1〇〇中的發光晶片11〇為白 光發光晶片,而也有發光裝置1〇〇,是利用紅光發光晶片 ll〇a、藍光發光晶片ii〇b以及綠光發光晶片ii〇c混光成 均勻的白光。圖1B為使用紅、藍、.綠光發光晶片混米的 發光裝置及其光形的示意圖《由圖1B可知,紅、藍、綠 光發光晶片U〇a、ll〇b、ll〇c的設置位置會使發光裝置 100’有明顯的亮、暗交錯的光形’所以需要增加這三個發 光晶片的混光距離’或是在背光模組中配置適當的光學膜 片來增加其均齊度。 【發明内容】 ❿ 本發明提供一種發光裝置,其具有均勻的光形。 本發明提供一種背光模組,其具有良好的光均齊度。 本發明提供一種液晶顯示器,其具有良好的顯示品質。 、曰本發明提出一種發光裝置,其包括—基板、至少一發 光曰曰片夕個散射粒子以及一封膠。發光晶片、散射粒子 及封膠白配置於基板上,其中散射粒子位於發光晶片旁, 而封膠包覆發光晶片及散射粒子。 尺發明之發光裝置的—實施例中,每—散射粒子的 、九王相同。其中,越相對靠近發光晶片的散射粒子 6 201017284 太 ^JZITW 28320twf.doc/n 的尺寸越小。 在本發明之發光裝置的一實施例中,越遠離發光晶片 之散射粒子的尺寸越大。 ^本發明之發光裝置的一實施例中,越遠離發光晶片 且越靠近封膠邊緣之散射粒子的尺寸越小。Z1TW 28320twf.doc/n sees, and the rest of the light will be totally reflected by the refractive index of the sealant 130 and the air, so the luminous efficiency of the light-emitting device 100 is lowered, thereby reducing the brightness of the backlight module. Affect the display quality of liquid crystal displays. In addition, the illuminating wafer 11 in the illuminating device 1 of FIG. 1A is a white light emitting chip, and the illuminating device 1 利用 is a red light emitting chip 11a, a blue light emitting chip ii 〇b, and a green light emitting chip. Ii〇c mixes light into a uniform white light. FIG. 1B is a schematic diagram of a light-emitting device using red, blue, and green light-emitting wafers and its light shape. As can be seen from FIG. 1B, red, blue, and green light-emitting wafers U〇a, ll〇b, ll〇c Setting the position causes the illuminating device 100' to have a distinct bright and dark staggered light shape 'so it is necessary to increase the light mixing distance of the three illuminating wafers' or to arrange an appropriate optical film in the backlight module to increase its uniformity. degree. SUMMARY OF THE INVENTION The present invention provides a light-emitting device having a uniform light shape. The invention provides a backlight module which has good uniformity of light. The present invention provides a liquid crystal display having good display quality. The present invention provides a light-emitting device comprising a substrate, at least one light-emitting sheet, and a gel. The luminescent wafer, the scattering particles and the sealant white are disposed on the substrate, wherein the scattering particles are located beside the luminescent wafer, and the encapsulant encapsulates the luminescent wafer and the scattering particles. In the embodiment of the light-emitting device of the invention, the particles of the scattering particles are the same as the nine kings. Among them, the closer to the luminescent wafer, the smaller the size of the scattering particles 6 201017284 too ^JZITW 28320twf.doc / n. In an embodiment of the light-emitting device of the present invention, the size of the scattering particles further away from the light-emitting wafer is larger. In an embodiment of the illuminating device of the present invention, the further away from the illuminating wafer, the smaller the size of the scattering particles closer to the edge of the encapsulant.

在本發明之發光裝置的一實施例中,越靠近發光晶片 之散射粒子的尺寸越小’越遠離發光晶片之散射粒子的尺 寸越大且越靠近封膠邊緣之散射粒子的尺寸越小。 在本發明之發光襞置的一實施例中,越靠近兩相鄰之 發光晶片中間之散射粒子的尺寸越大。 在本發明之發光裝置的一實施例中,越靠近發光晶片 的散射粒子的間距越大。 在本發明之發光裝置的一實施例中,越遠離發光晶片 之散射粒子的間距越小。 在本發明之發光裝置的一實施例中,越遠離發光晶片 且越靠近封膠邊緣之散射粒子的間距越大。 在本發明之發光裝置的一實施例中,越靠近發光晶片 之散射粒子的間距越大,越遠離發光晶片之散射粒子的間 距越小且越靠近封膠邊緣之散射粒子的間距越大。 在本發明之發光襞置的一實施例中,越靠近兩相鄰之 發光晶片中間之散射粒子的間距越小。 在本發明之發光裝置的一實施例中,發光晶片為藍光 發光晶片且封膠中具有可發出黃光之螢光顆粒。 在本發明之發光装置的一實施例中,發光晶片包括一 7 201017284 j. 28320twf.doc/n 紅光發光晶片、一藍光發光晶片以及一綠光發光晶片。 在本發明之發光裝置的一實施例中,散射粒子的材質 為具有高反射性之材質。此材質可為氧化鈦(Ti〇2)或白色 油墨。 本發明另·^出一種背光模組’包括一框架以及·一光 源,且光源配置於框架内。光源包括一基板以及多個上述 之發光裝置。 隱在本發明之者光核組的一實施例中,光源為一條狀光 ® 贱-面狀絲。 '、 在本發明之背光模組的一實施例中,更包括一配置於 框架的底部上的反射片。 在本發明之背光模組的一實施例中,更包括一配置於 框架内的導光板,且導光板位於光源旁。 在本發明之背光模組的一實施例中,更包括一配置於 框架的頂部上的光學膜片。其中,光學膜片為增光片、稜 鏡片或擴散片。 參本發明再提出一種液晶顯示器,其包括一液晶顯示面 板以及一上述之背光模組,且背光模組配置於液晶顯示面 板下。 在本發明之液晶顯示器的一實施例中,光學膜片配置 於框架與液晶顯示面板之間。 於本發明之發光裴置中,散射粒子配置於基板上且位 於發光晶片旁’因此可以減少發光晶片發出的光因為封膠 而產生全反射的情形,提高發光裝置的發光效率,且發光 8 201017284 * ZiTW 28320twf.doc/n 顯示品質 為讓本發明之上述特徵和優點能更明顯易僅, 舉較佳實施例’並配合所關式,作詳細說明如下。文特 【實施方式】 [第一實施例] 圖2A為本發明一實施例之發光裝置的示意圖。铁 考圖2A,發光裝置200包括一基板21〇、一發光晶片^、 多個散射粒子230以及一封膠24〇。發光晶片22〇、散 子230以及封膠240皆配置於基板21〇上,其中散射粒子 230分佈於基板210上’且位於發光晶片22〇旁。封膠 包覆發光晶丨220以及至少部分的散射粒子23〇。當發光 晶片220發光時’因為封膠24〇的折射率大於空氣^射 率而發生全反射的光會射至散射粒子23〇,之後再被散射 • 粒子230反射至封膠240之外。所以,本實施例之發光裝 置200具有較佳的發光效率。 士请繼績參考圖2A,在製作本實施例之發光裝置2〇〇 % ’是先將發光晶片220配置在基板21〇上,其中此發光 晶片220可以是藍光發光晶片並且封膠24〇中具有可發出 黃光之螢光顆粒242。然後,將發光晶片22〇與配置於基 板210上的銅箔線路212做電性連接。圖2B為應用一版 模於基板上形成散射粒子的示意圖。接著如囷示,應 9 201017284 ^ 28320twf.doc/n 用一刻好網點的版模300,然後於版模300上刷上含有高 反射成份的染料,如氧化鈦(Ti02)或白色油墨,而染料會 從版模300的孔洞302滴到基板210上以形成散射粒子 230。之後,再將封膠240塗佈於基板210上,以覆蓋基板 210、發光晶片220及位於發光晶片220附近的散射粒子 230。或者,也可以是利用網版印刷的方式在基板21〇上形 成散射粒子230 » $ 接著請繼續參考圖2A,在基板210上形成散射粒子 230之前,更可以先在基板上21〇形成一層反射層214,且 反射層214覆蓋於部分的銅箔線路212。此反射層214的 材質可為白漆,以提南發光裝置2〇〇的光利用率。 圖2C為圖2A之發光裝置的發光示意圖。為了圖示簡 潔’因此圖2C中並未繪示銅箔線路212及反射層214。請 參考圖2C,當發光晶片220發光時,以近乎垂直於封膠 240之界面的入射光可以射出於封膠24〇之外。此外,一 4伤的入射光會因為與封膠240之界面的炎角恰好落在全 參 反射角的範圍中,而產生全反射的現象,且被反射回來。 被反射的光在射至散射粒子240之後,會被散射出封膠24〇 外,所以可以提升發光裝置2〇〇的發光效率。 圖2D為圖2A之發光裝置的上視圖。請參考圖2D, 配置在基板210上的每一個散射粒子23〇的尺寸可以是不 完全相同。其中,越相對靠近發光晶片220的散射粒子230 的尺寸可以越小,而越相對遠離發光晶片22〇的散射粒子 230的尺寸可以越大。而在其他的實施例中,散射粒子23〇 201017284 ruouwojooZlTW 28320twf.doc/n 的尺寸也可以是完全相同。 圖2E為圖2A之散射粒子的排列疏密的示意圖。請參 考圖2E,越相對靠近發光晶片220的散射粒子23〇之間的 間距可越大,而越相對遠離發光晶片220的散射粒子23〇 之間的間距可越小。換言之,相對靠近發光晶片22〇的散 射粒子230的排列越疏,反之則越密。請同時參考圖2A 及圖2C,由於封膠240在基板210邊緣處的曲率變大,所 以由發光晶片220所發出之朝向外部空氣方向行進之入射 光在封膠與空氣之交界的入射角度較小,因此入射光在封 膠240與基板210交界的邊緣處較容易穿出於封膠240之 外,比較不會造成全反射。所以,對應位於封膠24〇與基 板210交界的邊緣處的散射粒子23〇的排列可相對地越疏 或者散射粒子230的尺寸可設計為相對地越小。當然,以 上敘述僅為舉例之用本發明並不以此為限,設計者也可 依照實際的設計需求來改變散射粒子230之間的間距大小 以及散射粒子230的尺寸大小。 圖3為具有圖2A之發光裝置的液晶顯示器的示意 圖。請參考圖3 ’本實施例之液晶顯示器1〇00包括一液晶 顯示面板400以及一背光模組500,其中背光模組500例 如是侧邊入光式背光模組,且其配置於液晶顯示面板4〇〇 下。 背光模組500包括一框架510以及一光源52Q,且光 源520配置在框架510内,其申光源520為一條狀光源, 可稱為光條(Light Bar)。值得留意的是,同一基板210上 11 201017284 λ. 28320twf.doc/n 配置有多個發光晶片220,而散射粒子230設置於基板210 上並位於發光晶片220旁,因此是利用封膠240包覆發光 晶片220以及發光晶片220周圍的散射粒子230以區隔出 每一個發光裝置200。 此外,背光模組500更包括一導光板530,配置於框 架510内,並位於光源520旁。導光板530用以將發光晶 片220的光導向朝著液晶顯示面板4〇〇的方向出射。另外, 背光模組500更包括一反射片540,配置於該框架51〇的 底部上’用以幫助將光導向朝著液晶顯示面板4〇〇的方向 出射以及避免光源520的光從框架510的底部漏出於框架 510之外。再者,背光模組500更包括一配置於液晶顯示 面板400以及框架510之間的光學膜片550,此光學膜片 550可以提升背光模組500的出光效果,進而提升液晶顯 示器1000的顯示品質。 雖然本實施例之背光模組500是以側邊入光式為例說 明,但本技術領域具通常知識者也可將發光裝置2〇〇應用 癱 於直下式背光模組。 [第二實施例] 本實施例與第一實施例大致相同,且相同或相似的_ 件標號代表相同或相似的元件。 70 圖4A為本發明之第二實施例的發光裝置的示意圖。 請參考圖4A,本實施例與第一實施例不同之處在於:本奋 施例之發光裝置1400包括三個發光晶片142〇,其分別^ 12 201017284 ruouwo^oDZlTW 28320twf.doc/n 紅光發光晶片1420a、藍光發光晶片1420b以及綠光發光 晶片1420c。藉由散射粒子230的設置,可以使紅光發光 晶片420a、藍光發光晶片420b以及綠光發光晶片420c個 別發出的光,在被全反射之後可以於封膠240中更為均勻 地混光後被散射出封膠240之外。另外,也可以使本實施 例之發光裝置1400的光形均勻。所以,將本實施例之發光 裝置應用於液晶顯示器的背光模組中,可以提升背光模組 φ 的光均齊度以及白光的均勻度,進而增加液晶顯示器的顯 示品質。 圖4B為圖4A之發光裝置的局部上視圖。請同時參考 圖4A及4B,朝向發光晶片1420上方射出的光,因為入 射光以近乎垂直的角度入射至封膠240外,所以比較不會 有全反射的問題存在,散射粒子230的數量可較少。因此, 越相對靠近發光晶片220的散射粒子230之間的間距可越 大。並未正對於發光晶片1420上方的封膠240,入射光便 是以一較大之入射角入射至封膠240,而此入射角可能會 春 造成全反射,散射粒子230的數量需要較多,所以越相對 退離發光晶片220的散射粒子230之間的間距可越小。換 言之,相對靠近發光晶片220的散射粒子230的排列越疏, 反之則越密。特別的是,封膠240在基板210邊緣處因為 曲率變大,所以由發光晶片220所發出之朝向外部空氣方 向行進之入射光在封膠與空氣之交界的入射角度較小,因 此入射光在封膠240與基板210交界的邊緣處較容易穿出 於封膠240之外,比較不會造成全反射。所以,對應位於 13 201017284 28320twf.doc/n 封膠240與基板210交界的邊緣處的散射粒子230的排列 可越疏。 當然,以上敘述僅為舉例之用,本發明並不以此為限, 設計者也可依照實際的設計需求來改變散射粒子23〇之間 的間距大小以及散射粒子230的尺寸大小。圖4C為散射 粒子的另一種排列樣態圖。由圖4C可知,在兩個發光晶 片發光晶片1420的中間處的散射粒子230的顆粒尺寸較 ❹ 大,而越鄰近發光晶片1420的散射粒子230的顆粒尺寸越 小。此外,越接近封膠240與基板210交界的邊緣處的散 射粒子230的顆粒尺寸也會越小。 圖4D為發光晶片二維排列時,散射粒子的一種排列 樣態圖。圖4E為發光晶片二維排列時,散射粒子的一種 排列樣態圖。請同時參考圖4D及圖4E,散射粒子230也 可應用在發光晶片1420為二維排列的發光裝置(未標示) 中。詳細而言,散射粒子23〇也可應用於多個發光晶片Μ% ㈤時封裝於-個發光裝置内,其中發光晶片簡的排列可 © 依照设計者之需求有不同的應用顆數以及排列方式,例如 環狀排歹、多邊形排列等,或者是環狀排列及多邊形排列 的發光晶片1420中間更包圍了至少一個以上的發光晶片 H20,其中1MD及圖4E示之發光晶片的排列形狀 呈矩形。另外,散射粒子23〇的排列形狀也可以依照實際 需求加以變化。有關於發光晶片142〇及散射粒子23〇的排 列方式及尺寸小為支術領域具通常知識者可以依照實際 需求加以變化,因此不再多作描述。 14 201017284 ruouuojooZITW 28320twf.doc/n 綜上所述’於本發明之發光裝置中,利用散射粒子的 設置’可以增加發光裝置的發光效率,並且調整發光裝置 的光形’使發光裝置具有良好的光均齊度。所以,使用此 發光裝置的背光模組具有良好的發光效果,進而提升液晶 顯示器的顯示品質。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作些許之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範圍所界定者 為準。 【圖式簡單說明】 圖1A為習知一種發光裝置的示意圖。 圖1B為使用紅、藍、綠光發光晶片混光的發光裝置 及其光形的示意圖。 圖2A為本發明一實施例之發光裝置的示意圖。 φ 圖2B為應用一版模於基板上形成散射粒子的示意圖。 圖2C為圖2A之發光裝置的發光示意圖。 圖2D為圖2A之發光裝置的上視圖。 圖2E為圖2A之散射粒子的排列疏密的示意圖。 圖3為具有圖2A之發光裝置的液晶顯示器的示意圖。 圖4A為本發明之第二實施例的發光裝置的示意圖。 圖4B為圖4A之發光裝置的局部上視圖。 圖4C為散射粒子的另一種排列樣態圖。 舞&圖為發光晶片二維排列時,散射粒子的一種排列 15 201017284 ^ r uov/uojodZITW 28j20twf.doc/n 圖4E為發光晶片二維排列時,散射粒子的一種排列 樣態圖。 【主要元件符號說明】 100、100’、200、1400 :發光裝置 110、220、1420 :發光晶片 110a、1420a :紅光發光晶片 110b、1420b :藍光發光晶片 φ 110c、1420c :綠光發光晶片 120、210 :基板 130、240 :封膠 212 :銅箔線路 214 :反射層 230 :散射粒子 242 :螢光顆粒 300 :版模 302 :孔洞 ❿ 400:液晶顯示面板 500 :背光模組 510 :框架 520 :光源 530 :導光板 540 ··反射片 550 :光學膜片 1000 :液晶顯示器 16In an embodiment of the light-emitting device of the present invention, the smaller the size of the scattering particles closer to the light-emitting wafer, the larger the size of the scattering particles farther from the light-emitting wafer and the smaller the size of the scattering particles closer to the edge of the sealant. In an embodiment of the illuminating device of the present invention, the closer the scattering particles are to the middle of the two adjacent illuminating wafers, the larger the size. In an embodiment of the light-emitting device of the present invention, the closer the scattering particles are to the light-emitting wafer, the larger the pitch. In an embodiment of the light-emitting device of the present invention, the pitch of the scattering particles farther away from the light-emitting wafer is smaller. In an embodiment of the illumination device of the present invention, the further away from the luminescent wafer and the closer the scattering particles are to the edge of the encapsulant. In an embodiment of the light-emitting device of the present invention, the closer the pitch of the scattering particles to the light-emitting wafer, the smaller the distance between the scattering particles farther from the light-emitting wafer and the larger the pitch of the scattering particles closer to the sealant edge. In an embodiment of the illuminating device of the present invention, the closer the scattering particles are to the middle of the adjacent illuminating wafers, the smaller the pitch. In an embodiment of the light-emitting device of the present invention, the light-emitting wafer is a blue light-emitting wafer and the sealant has fluorescent particles that emit yellow light. In an embodiment of the illuminating device of the present invention, the illuminating wafer comprises a 7201017284 j. 28320 twf.doc/n red light emitting chip, a blue light emitting chip and a green light emitting chip. In an embodiment of the light-emitting device of the present invention, the material of the scattering particles is a material having high reflectivity. This material can be titanium oxide (Ti〇2) or white ink. In the present invention, a backlight module 'includes a frame and a light source, and the light source is disposed in the frame. The light source includes a substrate and a plurality of the above-described light emitting devices. In an embodiment of the photon set of the present invention, the light source is a strip of light ® 贱-face filament. In an embodiment of the backlight module of the present invention, a reflective sheet disposed on the bottom of the frame is further included. In an embodiment of the backlight module of the present invention, the method further includes a light guide plate disposed in the frame, and the light guide plate is located beside the light source. In an embodiment of the backlight module of the present invention, an optical film disposed on the top of the frame is further included. Among them, the optical film is a light-increasing film, a prism lens or a diffusion sheet. The invention further provides a liquid crystal display comprising a liquid crystal display panel and a backlight module as described above, and the backlight module is disposed under the liquid crystal display panel. In an embodiment of the liquid crystal display of the present invention, the optical film is disposed between the frame and the liquid crystal display panel. In the illuminating device of the present invention, the scattering particles are disposed on the substrate and located beside the illuminating wafer. Therefore, it is possible to reduce the situation in which the light emitted from the illuminating wafer is totally reflected by the encapsulation, thereby improving the luminous efficiency of the illuminating device, and illuminating 8 201017284 * ZiTW 28320 twf.doc / n Display quality in order to make the above features and advantages of the present invention more obvious, and the preferred embodiment 'with the closed type, as described in detail below. [Embodiment] [First Embodiment] Fig. 2A is a schematic view of a light-emitting device according to an embodiment of the present invention. Iron Test Figure 2A shows a light-emitting device 200 comprising a substrate 21, a light-emitting wafer, a plurality of scattering particles 230, and a glue 24. The luminescent wafer 22, the scatterer 230, and the encapsulant 240 are disposed on the substrate 21, wherein the scattering particles 230 are distributed on the substrate 210 and located adjacent to the luminescent wafer 22'. The encapsulant encapsulates the luminescent crystal 220 and at least a portion of the scattering particles 23A. When the luminescent wafer 220 emits light, the light which is totally reflected by the refractive index of the encapsulant 24 大于 is greater than the air irradiance, is incident on the scattering particles 23 〇, and then is scattered. The particles 230 are reflected outside the encapsulant 240. Therefore, the light-emitting device 200 of the present embodiment has better luminous efficiency. Referring to FIG. 2A, in the fabrication of the light-emitting device of the present embodiment, the light-emitting wafer 220 is first disposed on the substrate 21, wherein the light-emitting wafer 220 may be a blue light-emitting chip and the adhesive is sealed. There are fluorescent particles 242 which emit yellow light. Then, the light-emitting chip 22 is electrically connected to the copper foil line 212 disposed on the substrate 210. Fig. 2B is a schematic view showing the formation of scattering particles on a substrate by using a plate. Then, as shown, 9 201017284 ^ 28320twf.doc/n is used to print the die 300 with a good dot, and then apply a dye containing high reflection component such as titanium oxide (Ti02) or white ink to the die 300, and the dye Drops 302 from the die 300 are dropped onto the substrate 210 to form scattering particles 230. Thereafter, the encapsulant 240 is applied to the substrate 210 to cover the substrate 210, the luminescent wafer 220, and the scattering particles 230 located in the vicinity of the luminescent wafer 220. Alternatively, the scattering particles 230 may be formed on the substrate 21 by means of screen printing. Next, please continue to refer to FIG. 2A. Before the scattering particles 230 are formed on the substrate 210, a reflection may be formed on the substrate 21 Layer 214, and reflective layer 214 covers a portion of copper foil line 212. The material of the reflective layer 214 may be white lacquer to increase the light utilization efficiency of the south illuminating device 2 . 2C is a schematic view showing the illumination of the light-emitting device of FIG. 2A. The copper foil line 212 and the reflective layer 214 are not shown in Figure 2C for simplicity of illustration. Referring to FIG. 2C, when the illuminating wafer 220 emits light, incident light near the interface perpendicular to the encapsulant 240 may be emitted outside the encapsulant 24 。. In addition, the incident light of a 4 injury will cause a total reflection phenomenon due to the inflammatory angle at the interface with the sealant 240, which is reflected in the range of the total reflection angle, and is reflected back. The reflected light is scattered out of the sealant 24 after being incident on the scattering particles 240, so that the luminous efficiency of the light-emitting device 2 can be improved. 2D is a top view of the light emitting device of FIG. 2A. Referring to FIG. 2D, the size of each of the scattering particles 23A disposed on the substrate 210 may be different. The smaller the size of the scattering particles 230 relatively closer to the luminescent wafer 220, the larger the size of the scattering particles 230 that are relatively farther away from the luminescent wafer 22 。. In other embodiments, the size of the scattering particles 23〇 201017284 ruouwojooZlTW 28320twf.doc/n may also be identical. 2E is a schematic view showing the arrangement of the scattering particles of FIG. 2A. Referring to Figure 2E, the spacing between the scattering particles 23〇 relatively closer to the luminescent wafer 220 can be greater, and the spacing between the scattering particles 23 相对 relatively farther away from the luminescent wafer 220 can be smaller. In other words, the arrangement of the scattered particles 230 relatively close to the light-emitting wafer 22 is thinner, and conversely, the denser. Referring to FIG. 2A and FIG. 2C simultaneously, since the curvature of the encapsulant 240 at the edge of the substrate 210 becomes larger, the incident angle of the incident light emitted by the illuminating wafer 220 toward the outside air is at the angle of intersection of the sealant and the air. Small, so the incident light is easier to wear outside the sealant 240 at the edge of the interface between the sealant 240 and the substrate 210, and does not cause total reflection. Therefore, the arrangement of the scattering particles 23A corresponding to the edge located at the boundary between the sealant 24〇 and the substrate 210 can be relatively loose or the size of the scattering particles 230 can be designed to be relatively small. Of course, the above description is by way of example only and the invention is not limited thereto. The designer can also change the size of the spacing between the scattering particles 230 and the size of the scattering particles 230 according to actual design requirements. Fig. 3 is a schematic view of a liquid crystal display having the light-emitting device of Fig. 2A. Referring to FIG. 3 , the liquid crystal display device 100 of the present embodiment includes a liquid crystal display panel 400 and a backlight module 500 , wherein the backlight module 500 is, for example, a side-lit backlight module, and is disposed on the liquid crystal display panel. 4 〇〇. The backlight module 500 includes a frame 510 and a light source 52Q, and the light source 520 is disposed in the frame 510. The light source 520 is a light source, which may be referred to as a light bar. It is to be noted that a plurality of light-emitting wafers 220 are disposed on the same substrate 210, and the scattering particles 230 are disposed on the substrate 210 and located beside the light-emitting wafer 220, and thus are covered by the sealant 240. The luminescent wafer 220 and the scattering particles 230 around the luminescent wafer 220 are spaced apart from each of the illuminating devices 200. In addition, the backlight module 500 further includes a light guide plate 530 disposed in the frame 510 and located beside the light source 520. The light guide plate 530 is configured to guide the light of the light-emitting wafer 220 toward the liquid crystal display panel 4A. In addition, the backlight module 500 further includes a reflective sheet 540 disposed on the bottom of the frame 51 ' to help guide the light toward the liquid crystal display panel 4 以及 and to avoid the light of the light source 520 from the frame 510 . The bottom leaks out of the frame 510. Furthermore, the backlight module 500 further includes an optical film 550 disposed between the liquid crystal display panel 400 and the frame 510. The optical film 550 can enhance the light-emitting effect of the backlight module 500, thereby improving the display quality of the liquid crystal display 1000. . Although the backlight module 500 of the present embodiment is exemplified by the side entrance light type, those skilled in the art can also apply the light emitting device 2 to the direct type backlight module. [Second Embodiment] This embodiment is substantially the same as the first embodiment, and the same or similar reference numerals denote the same or similar elements. 70A is a schematic view of a light emitting device according to a second embodiment of the present invention. Referring to FIG. 4A, the embodiment is different from the first embodiment in that the illuminating device 1400 of the present embodiment includes three illuminating wafers 142, which respectively illuminate the red light. Wafer 1420a, blue light emitting wafer 1420b, and green light emitting chip 1420c. By the arrangement of the scattering particles 230, the light emitted by the red light emitting chip 420a, the blue light emitting chip 420b, and the green light emitting chip 420c can be more uniformly mixed in the sealing paste 240 after being totally reflected. Scattered out of the sealant 240. Further, the light shape of the light-emitting device 1400 of the present embodiment can be made uniform. Therefore, applying the illuminating device of the embodiment to the backlight module of the liquid crystal display can improve the uniformity of light of the backlight module φ and the uniformity of white light, thereby increasing the display quality of the liquid crystal display. 4B is a partial top view of the light emitting device of FIG. 4A. Referring to FIG. 4A and FIG. 4B simultaneously, the light emitted toward the upper surface of the light-emitting chip 1420 is incident on the outside of the sealant 240 at a nearly vertical angle, so that there is no problem of total reflection, and the number of the scattering particles 230 can be compared. less. Therefore, the spacing between the scattering particles 230 relatively closer to the light-emitting wafer 220 can be made larger. The encapsulant 240 is not incident on the encapsulant 240 above the illuminating wafer 1420. The incident light is incident on the encapsulant 240 at a large incident angle, and the incident angle may cause total reflection in the spring, and the number of scattering particles 230 needs to be large. Therefore, the spacing between the scattering particles 230 that are relatively relatively separated from the light-emitting wafer 220 can be smaller. In other words, the arrangement of the scattering particles 230 relatively close to the light-emitting wafer 220 is sparse, and conversely, the denser. In particular, since the sealant 240 has a large curvature at the edge of the substrate 210, the incident light emitted by the light-emitting chip 220 toward the outside air has a smaller incident angle at the interface between the sealant and the air, so the incident light is The edge of the sealant 240 and the substrate 210 is easier to wear outside the sealant 240, and does not cause total reflection. Therefore, the arrangement of the scattering particles 230 at the edge of the boundary between the sealant 240 and the substrate 210 at 13 201017284 28320 twf.doc/n can be made sparse. Of course, the above description is for illustrative purposes only, and the present invention is not limited thereto. The designer can also change the size of the spacing between the scattering particles 23〇 and the size of the scattering particles 230 according to actual design requirements. Fig. 4C is another alignment diagram of scattering particles. As is apparent from Fig. 4C, the particle size of the scattering particles 230 at the middle of the two light-emitting wafer light-emitting wafers 1420 is larger, and the particle size of the scattering particles 230 closer to the light-emitting wafer 1420 is smaller. In addition, the closer to the particle size of the scattered particles 230 at the edge of the interface between the sealant 240 and the substrate 210, the smaller the particle size. Fig. 4D is a view showing an arrangement of scattering particles when the luminescent wafer is two-dimensionally arranged. Fig. 4E is a view showing an arrangement of scattering particles when the luminescent wafer is two-dimensionally arranged. Referring to Figures 4D and 4E simultaneously, the scattering particles 230 can also be applied to a light-emitting device (not labeled) in which the light-emitting wafers 1420 are arranged in two dimensions. In detail, the scattering particles 23 〇 can also be applied to a plurality of illuminating wafers 五 ( ( 封装 封装 封装 封装 封装 封装 封装 封装 封装 封装 , , , , , , , , , , , 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光In a manner, for example, an annular row, a polygonal arrangement, or the like, or an annular array and a polygonal array of the light-emitting wafers 1420 further surround at least one of the light-emitting wafers H20, wherein the array of the light-emitting wafers of 1MD and FIG. 4E has a rectangular shape. . Further, the arrangement shape of the scattering particles 23A can also be changed in accordance with actual needs. The arrangement and size of the illuminating wafer 142 〇 and the scattering particles 23 小 are small and can be changed according to actual needs, and therefore will not be described. 14 201017284 ruouuojooZITW 28320twf.doc/n In summary, in the light-emitting device of the present invention, the arrangement of scattering particles can increase the luminous efficiency of the light-emitting device, and adjust the light shape of the light-emitting device to make the light-emitting device have good light. Uniformity. Therefore, the backlight module using the illuminating device has a good illuminating effect, thereby improving the display quality of the liquid crystal display. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic view of a conventional light-emitting device. Fig. 1B is a schematic view of a light-emitting device and its light shape using a red, blue, and green light-emitting wafer. 2A is a schematic view of a light emitting device according to an embodiment of the present invention. φ Figure 2B is a schematic diagram of the formation of scattering particles on a substrate using a plate. 2C is a schematic view showing the illumination of the light-emitting device of FIG. 2A. 2D is a top view of the light emitting device of FIG. 2A. 2E is a schematic view showing the arrangement of the scattering particles of FIG. 2A. 3 is a schematic view of a liquid crystal display having the light emitting device of FIG. 2A. 4A is a schematic view of a light emitting device according to a second embodiment of the present invention. 4B is a partial top view of the light emitting device of FIG. 4A. Figure 4C is another alignment pattern of scattering particles. The dance & image is an arrangement of scattering particles when the luminescent wafer is two-dimensionally arranged. 15 201017284 ^ r uov/uojodZITW 28j20twf.doc/n Figure 4E is an alignment diagram of scattering particles when the luminescent wafer is two-dimensionally arranged. [Main component symbol description] 100, 100', 200, 1400: light-emitting devices 110, 220, 1420: light-emitting chips 110a, 1420a: red light-emitting chips 110b, 1420b: blue light-emitting chips φ 110c, 1420c: green light-emitting wafer 120 210: substrate 130, 240: sealant 212: copper foil line 214: reflective layer 230: scattering particles 242: fluorescent particles 300: plate 302: hole ❿ 400: liquid crystal display panel 500: backlight module 510: frame 520 : Light source 530 : Light guide plate 540 · · Reflecting sheet 550 : Optical film 1000 : Liquid crystal display 16

Claims (1)

201017284 -JZ1TW 28320twf.doc/n 十、申請專利範圍: 1·一種發光裝置,包括: 一基板; f少一發光晶片,配置於該基板上; 多個散射粒子,配置於該基板上,並位於該些發光晶 片旁;以及 封膠’配置於該基板上並包覆該些發光晶片及該些 ❹ 籲 散射粒子。 其中每一 其中越靠 2.如申請專利範圍第丨項所述之發光裝置 散射粒子的尺寸不完全相同。 、3.如申請專利_第丨項所述之發光裝置 近該些發光晶片之該些散射粒子的尺寸越小。 其中越遠 4. 如申請專利範圍第1項所述之發光裝置 離該些發光晶片之該些散射粒子的尺寸越大。 5. 如申請專娜㈣!項㈣之發光裝置, ^些發光^且越靠近雖膠邊緣之該趋子的^ 6. 如申請專利範圍第!項所述之發光裝置, 近該些發光晶>|找些散雜子的尺寸越小 發光晶片之該些散射粒子的尺寸越大且越靠近 之該些散雜子㈣尺悄,;、。 /封膠邊緣 7. 如申請專職圍第!項所述之發光裝| ^兩相鄰之該些發光晶片中間之該些散射教子的 17 201017284 wjJZITW 28320twf.doc/n 8. 如申請專利範圍第丨項所述之發光裝置,其中越靠 近该些發光晶片之該些散射粒子的間距越大。 9. 如申請專利範圍第丨項所述之發光裝置,其中越遠 離該些發光晶片之該些散射粒子的間距越小。 10. 如申請專利範圍第丨項所述之發光裝置,其中越遠 離該些發光晶片且越靠近該封膠邊緣之該些散射粒子的間 距越大。 ❹ 1L如申請專利範圍® 1項所述之發光裝置,其中越靠 ==光晶片之該些散射粒子的間距越大,越遠離該些 U曰曰片之該些散射粒子的間距越小且 緣 之該些散射粒子的間距越大。 得遺緣 12.如申請專利範圍第i項所述之發光裝置, ^兩相鄰之該些發光晶片中狀該些散射粒子的間距越 恭丄1 2 3 4 曰3,如申請專利範圍第1項所述之發絲置,其忖此 ❿為藍光發光晶片’且該封膠中具有可發出Si 發光^範圍第1項所述之發光裝置,其中_ 毛九日日片包括一紅光發光晶片、一藍 - 光發光晶片。 尤心九日日片U及一綠 18 1 5.如申請專利範圍第1項所述之發光 2 散射粒子的材質為具有高反射性之材^先褒置’其中該些 3 16·如申睛專利範圍第7項所述之發 4 散射粒子的材質騎化鈦或白色油墨。錢置其中該些 201017284Z1TW 28320fwf.doc/n 17·—種背光模組,包括: 一框架; 光源’配置於該框架内,包括—基板以及多個發光 裝置,其中每一發光裝置包括: 至少一發光晶片,配置於該基板上; 彡個散射粒子,配置於該基板上,並位於該些發 光晶片旁;以及 封膠’ 置於該基板上並&覆發光晶片及 至少部份該些散射粒子。 18.如申請專利範圍第π項所述之背光模組,其中每 一散射粒子的尺寸不完全相同。 止I9.如申請專利範圍第η項所述之背光模組,其中越 罪近該些發光晶片之該些散射粒子的尺寸越小。 20. 如申請專利範圍第17項所述之背光模組,其中越 遠離該些發光晶片之該些散射粒子的尺寸越大。 21. 如申請專利範圍第17項所述之背光模組,其中越 ® 離該些發光晶片且靠近該封膠邊緣之該些散射粒子的尺 寸越小。 止=2.如申請專利範圍帛17項所狀背光模組’其中越 罪近该些發光晶片之該些散射粒子的尺寸越小,越遠離該 些發光a曰片之s亥些散射粒子的尺寸越大且越靠近該封膠邊 緣之§亥些散射粒子的尺寸越小。 土 23.如申睛專利範圍第17項所述之背光模組,其中越 #近兩相鄰之該些發光晶片中間之該些散射粒子的尺寸越 19 201017284^ 28320twf.doc/n 大。 24.如申請專利範圍第π項所述之背光模組,其中越 靠近該些發光晶片之該些散射粒子的間距越大。、 土 25.如申請專利範圍第17項所述之背光模組’其中越 遠離該些發光晶片之該些散射粒子的間距越小。 土 26.如申請專利範圍第17項所述之背光模組,其中越 ❹ 遠離該些發光晶片及越靠近該封膠邊緣之該些散射粒子 間距越大。 ^ 27.如申請專利範圍第17項所述之背光模組,其中越 罪近该些發光晶片之該些散射粒子的間距越大,越遠離該 些發光晶片之該些散射粒子的間距越小且越靠近該封膠邊 緣之該些散射粒子的間距越大。 - ^ 28.如申請專利範圍第17項所述之背光模組,其中越 靠近兩相鄰之該些發光晶片中間之該些散射粒子的間距越 /J\ 〇201017284 -JZ1TW 28320twf.doc/n X. Patent application scope: 1. A light-emitting device comprising: a substrate; f one less light-emitting chip disposed on the substrate; a plurality of scattering particles disposed on the substrate and located The luminescent wafers are disposed adjacent to the luminescent wafers, and the encapsulants are disposed on the substrate and encapsulate the luminescent wafers and the smear scattering particles. The lower of each of them 2. The size of the scattering particles of the illuminating device as described in the scope of the patent application is not completely the same. 3. The illuminating device according to the above-mentioned _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The farther of the illuminating device as described in claim 1, the larger the size of the scattering particles from the luminescent wafers. 5. If you apply for a special (four)! The illuminating device of item (4), ^ some illuminating ^ and closer to the tang of the edge of the glue ^ 6. As claimed in the patent scope! The illuminating device of the present invention, the illuminating crystals of the illuminating crystals are smaller, and the smaller the size of the scatterers, the larger the size of the scattering particles of the illuminating wafer and the closer to the scatterers (4). . / Sealing edge 7. If you apply for a full-time job! The illuminating device of the above-mentioned illuminating wafers of the two adjacent illuminating wafers. The illuminating device of the ninth aspect of the illuminating wafer is the same as that of the illuminating device. The spacing of the scattering particles of the luminescent wafers is greater. 9. The illuminating device of claim 2, wherein the distance between the scattering particles of the illuminating wafers is smaller. 10. The illuminating device of claim 2, wherein the distance from the luminescent particles and the closer to the edge of the encapsulating layer is greater. ❹ 1L The light-emitting device of claim 1, wherein the distance between the scattering particles of the == optical wafer is larger, and the spacing of the scattering particles farther away from the U-chips is smaller and The spacing of the scattering particles is greater. 12. The illuminating device of claim i, wherein the spacing between the scattering particles in the two adjacent illuminating wafers is more than 1 2 3 4 曰3, as claimed in the patent application. The hairline of the item 1 is a blue light-emitting chip, and the light-emitting device of the first item of the first aspect is provided in the sealant, wherein the hair crop includes a red light. A light-emitting chip, a blue-light emitting chip.尤心九日日片U and 一绿18 1 5. The material of the illuminating 2 scattering particles as described in claim 1 is a material with high reflectivity, which is the first one. The material of the 4 scattering particles described in Item 7 of the patent scope rides titanium or white ink. The backlight module includes: a frame; the light source is disposed in the frame, including a substrate and a plurality of light emitting devices, wherein each of the light emitting devices comprises: at least one a light-emitting chip disposed on the substrate; a plurality of scattering particles disposed on the substrate and located beside the light-emitting wafers; and a sealant disposed on the substrate and covering the light-emitting wafer and at least a portion of the scattering particle. 18. The backlight module of claim π, wherein each of the scattering particles is not exactly the same size. The backlight module of claim n, wherein the smaller the size of the scattering particles of the light-emitting wafers, the smaller the size. 20. The backlight module of claim 17, wherein the size of the scattering particles further away from the light-emitting wafers is larger. 21. The backlight module of claim 17, wherein the size of the scattering particles from the luminescent wafers and adjacent to the edge of the encapsulant is smaller. If the size of the scattering particles of the illuminating wafers is smaller, the distance from the scatterers of the luminescent particles is smaller. The larger the size and the closer to the edge of the sealant, the smaller the size of the scattering particles. The backlight module of claim 17, wherein the size of the scattering particles in the middle of the adjacent two adjacent light-emitting wafers is greater than 19 201017284^28320twf.doc/n. 24. The backlight module of claim π, wherein the spacing of the scattering particles closer to the luminescent wafers is greater. 25. The backlight module as described in claim 17 wherein the spacing of the scattering particles further away from the light-emitting wafers is smaller. The backlight module of claim 17, wherein the distance between the scattering particles that are further away from the light-emitting wafers and the closer to the edge of the sealant is greater. The backlight module of claim 17, wherein the greater the distance between the scattering particles of the luminescent wafers, the smaller the spacing of the scattering particles away from the luminescent wafers. The closer the scattering particles are to the edge of the sealant, the greater the spacing. The backlight module of claim 17, wherein the distance between the scattering particles in the middle of the two adjacent light-emitting wafers is closer to /J\ 〇 29.如申請專利範圍第I?項所述之背光模組,其中該 些發光晶片為藍光發光晶片,且該封膠中具有可發出黃光 之螢光顆粒。 30.如申請專利範圍第π項所述之背光模組,其中該 些發光晶片包括一紅光發光晶片、一藍光發光晶片以及一 綠光發光晶片。 31·如申請專利範圍第17項所述之背光模組,其中該 些散射粒子的材質為一具有高反射性之材質。 32.如申請專利範圍第Η項所述之背光模組,其中該 20 201017284. »/,lTW 28320twf.doc/n 些散射粒子的材質為氧化鈦或白色油墨。 “ 33.如申請專利範圍第17項所述之背光模組,其中該 光源為一條狀光源或一面狀光源。 34.如申請專利範圍第π項所述之背光模組,更包括 —反射片,配置於該框架之一底部上。 胃35.如申請專利範圍第17項所述之背光模組,更包括 —導光板,配置於該框架内,並位於該光源旁。29. The backlight module of claim 1, wherein the illuminating wafers are blue illuminating wafers, and the encapsulant has luminescent particles that emit yellow light. 30. The backlight module of claim π, wherein the illuminating wafer comprises a red illuminating wafer, a blue illuminating wafer, and a green illuminating wafer. The backlight module of claim 17, wherein the scattering particles are made of a material having high reflectivity. 32. The backlight module of claim 2, wherein the material of the scattering particles is titanium oxide or white ink. 33. The backlight module of claim 17, wherein the light source is a light source or a side light source. 34. The backlight module of claim π, further comprising a reflective sheet. The backlight module of claim 17, further comprising a light guide plate disposed in the frame and located beside the light source. —>36.如申請專利範圍第17項所述之背光模組,更包括 —光學膜片,配置於該框架之一頂部上。 37. 如申請專利範圍第36項所述之背光模組,其中該 光學膜片為增光片、稜鏡片或擴散片。 38. —種液晶顯示器,包括: —液晶顯示面板·, 月光模組,配置於該液晶顯示面板下,該背光模組 包括-框架以及—辆、,其中該光源配置於該框架内,且 邊光源包括一基板以及多個發光裝置,其中每一 包括: 至少一發光晶片,配置於該基板上; 多個散射粒子,配置於該基板上,並位於該些發 光晶片旁;以及 一封膠’配置於該基板上並包覆該些發光晶片及 至少部份該些散射粒子。 —39.如申請專利範圍第%項所述之液晶顯示器,立中 母—散射好的尺料完全_。 /、 21 201017284Z1TW 28320twf.doc/n 40. 如申請專利範圍第38項所述之液晶顯示器,其中 越靠近該些發光晶片之該些散射粒子的尺寸越小。 41. 如申請專利範圍第38項所述之液晶顯示器,其中 越遠離該些發光晶片之該些散射粒子的尺寸越大。 42. 如申請專利範圍第38項所述之液晶顯示器,其中 越遠離該些發光晶片且靠近該封膠邊緣之該些散射粒子的 尺寸越小。 43. 如申請專利範圍第38項所述之液晶顯示器,其中 越靠近該些發光晶片之該些散射粒子的尺寸越小,越遠離 §亥些發光晶片之該些散射粒子的尺寸越大且越靠近該封勝 邊緣之該些散射粒子的尺寸越小。 44·如申請專利範圍第38項所述之液晶顯示器,其中 越靠近兩相鄰之該些發光晶片中間之該些散射粒子的尺寸 越大。 45.如申請專利範圍第38項所述之液晶顯示器,其中 越罪近該些發光晶片之該些散射粒子的間距越大。 土46.如申請專利範圍第38項所述之液晶顯示器,其中 越m離該些發光晶片之該些散射粒子的間距越小。 土47.如申請專利範圍第%項所述之液晶顯示器,其中 越遠離該些發光晶片且越靠近該封膠邊緣之該些散射粒子 的間距越大。 土48.如申請專利範圍第π項所述之液晶顯示器,其中 越罪近該些發光晶片之該些散射粒子的間距越大,越遠離 為些發光晶片之該些散射粒子的間距越小且越靠近該封膠 22 201017284 SZ.1TW 28320twf.doc/n 邊緣之該些散射粒子的間距越大。 49·如申請專利範圍第38項所述之液晶顯示器,其中 越靠近兩相鄰之該些發光晶片中間之該些散射粒子的間距 越小。 50.如申請專利範圍第38項所述之液晶顯示器,其中 該些發光晶片為藍光發光晶片,且該封膠中具有可發出普 光之螢光顆粒。 φ 51.如申睛專利範圍第π項所述之液晶顯示器,其中 該些發光晶片包括一紅光發光晶片、一藍光發光晶片以及 一綠光發光晶片。 52. 如申請專利範圍第38項所述之液晶顯示器,其中 該些散射粒子的材質為一具有高反射性之材質。 53. 如申請專利範圍第38項所述之液晶顯示器,其中 該些散射粒子的材質為氧化鈦或白色油墨。 54. 如申睛專利範圍第38項所述之液晶顯示器,其中 該光源為一條狀光源或一面狀光源。 一 ❹ 55.如申請專利範圍帛38項所述之液晶顯示器,更勺 括一反射片,配置於該框架之一底部上。 ^ 56. 如申請專利範圍第%項所述之液晶顯示器, 一V光板,配置於框架内,並位於該光源旁。 57. 如申請專利範圍第%項所述之液晶_示器 光學膜片,配置於該框架與該液晶顯示面板之間。0 58. 如申請專利範圍第57項所述之液晶 該光學膜片騎Μ、稜鏡片缝散片。貞^其中 23The backlight module of claim 17, further comprising an optical film disposed on top of one of the frames. 37. The backlight module of claim 36, wherein the optical film is a brightness enhancement sheet, a enamel sheet or a diffusion sheet. 38. A liquid crystal display comprising: a liquid crystal display panel, a moonlight module disposed under the liquid crystal display panel, the backlight module comprising a frame and a vehicle, wherein the light source is disposed in the frame and the side The light source comprises a substrate and a plurality of light emitting devices, each of which comprises: at least one light emitting chip disposed on the substrate; a plurality of scattering particles disposed on the substrate and located beside the light emitting chips; and a glue Disposed on the substrate and covering the luminescent wafers and at least a portion of the scattering particles. — 39. The liquid crystal display according to item 5% of the patent application, the center-mounting-scattering good material is completely _. The liquid crystal display of claim 38, wherein the smaller the size of the scattering particles closer to the light-emitting wafers, the smaller the liquid crystal display of claim 38. The liquid crystal display of claim 38, wherein the size of the scattering particles further away from the light-emitting wafers is larger. 42. The liquid crystal display of claim 38, wherein the smaller the distance from the light-emitting wafers and the scattering particles near the edge of the sealant, the smaller the size. 43. The liquid crystal display of claim 38, wherein the smaller the size of the scattering particles closer to the light-emitting wafers, the larger the size of the scattering particles and the larger the distance from the light-emitting wafers. The smaller the size of the scattering particles near the edge of the seal. 44. The liquid crystal display of claim 38, wherein the closer to the two adjacent ones of the plurality of adjacent light-emitting wafers, the larger the size of the scattering particles. The liquid crystal display of claim 38, wherein the sin is closer to the scattering particles of the luminescent wafers. The liquid crystal display of claim 38, wherein the spacing of the scattering particles from the light-emitting wafers is smaller. The liquid crystal display of claim 5, wherein the distance from the light-emitting wafers and the closer to the edge of the sealant is larger. The liquid crystal display of claim π, wherein the greater the distance between the scattering particles of the illuminating wafers, the farther the spacing of the scattering particles from the luminescent wafers is smaller and The closer to the sealant 22 201017284 SZ.1TW 28320twf.doc / n the larger the spacing of the scattering particles. The liquid crystal display of claim 38, wherein the closer the scattering particles are to the middle of the two adjacent light-emitting wafers, the smaller the pitch. 50. The liquid crystal display of claim 38, wherein the illuminating wafers are blue illuminating wafers, and the encapsulant has luminescent particles that emit ordinary light. The liquid crystal display of claim π, wherein the illuminating wafer comprises a red illuminating wafer, a blue illuminating wafer and a green illuminating wafer. The liquid crystal display of claim 38, wherein the scattering particles are made of a material having high reflectivity. The liquid crystal display of claim 38, wherein the scattering particles are made of titanium oxide or white ink. 54. The liquid crystal display of claim 38, wherein the light source is a strip light source or a side light source. A liquid crystal display according to claim 38, further comprising a reflection sheet disposed on a bottom of the frame. ^ 56. The liquid crystal display of claim 100, wherein a V-plate is disposed in the frame and located beside the light source. 57. The liquid crystal display optical film of claim 100, disposed between the frame and the liquid crystal display panel. 0 58. The liquid crystal according to item 57 of the patent application. The optical film is riding on a plaque or a crepe sheet.贞^ where 23
TW97140057A 2008-10-17 2008-10-17 Light emitting device, backlight module and liquid crystal display TW201017284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97140057A TW201017284A (en) 2008-10-17 2008-10-17 Light emitting device, backlight module and liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97140057A TW201017284A (en) 2008-10-17 2008-10-17 Light emitting device, backlight module and liquid crystal display

Publications (1)

Publication Number Publication Date
TW201017284A true TW201017284A (en) 2010-05-01

Family

ID=44830775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97140057A TW201017284A (en) 2008-10-17 2008-10-17 Light emitting device, backlight module and liquid crystal display

Country Status (1)

Country Link
TW (1) TW201017284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390597A (en) * 2014-09-02 2016-03-09 亿光电子工业股份有限公司 Light emitting element and display device
TWI624083B (en) * 2014-09-02 2018-05-11 億光電子工業股份有限公司 Light emitting device and display apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390597A (en) * 2014-09-02 2016-03-09 亿光电子工业股份有限公司 Light emitting element and display device
TWI572062B (en) * 2014-09-02 2017-02-21 億光電子工業股份有限公司 Light emitting device and display apparatus
TWI624083B (en) * 2014-09-02 2018-05-11 億光電子工業股份有限公司 Light emitting device and display apparatus

Similar Documents

Publication Publication Date Title
CN207611791U (en) Light source assembly, display device and electronic equipment
CN104321694B (en) Back light unit and display device
TWI255566B (en) Led
TWI527988B (en) Light emitting device and light unit using the same
KR101039881B1 (en) Light emitting device and light unit using the same
TW201108390A (en) Quasioptical LED package structure for increasing color render index and brightness
TW202009580A (en) Pixel array package structure and display panel
TW200823558A (en) Light source unit and backlight module with the light source unit
JP5474812B2 (en) Surface light source and display device
TW200926464A (en) Light source apparatus, and display apparatus
TWM289865U (en) Sectional light emitting diode backlight unit
KR20080038878A (en) Lighting device and liquid crystal display device having the same
TW200841089A (en) Light source module and liquid crystal display
KR101830717B1 (en) A light emitting device pakage
TW201143158A (en) Light emitting diode package structure
CN106299076A (en) A kind of quantum dot light emitting element, backlight module and display device
CN109148429B (en) Light emitting diode packaging structure
TWM609027U (en) Light source module and display device
TW201044651A (en) Semiconductor light emitting device
CN109003967B (en) Lamp panel, backlight module and display device
CN113539136A (en) Mini LED display module and display panel
US11024780B2 (en) LED light tube
KR101844477B1 (en) A Light emitting device package
TW201017284A (en) Light emitting device, backlight module and liquid crystal display
JP2023001231A (en) Light-emitting device