TW201017155A - Automatic dynamic pixel map correction and drive signal calibration - Google Patents

Automatic dynamic pixel map correction and drive signal calibration Download PDF

Info

Publication number
TW201017155A
TW201017155A TW98132274A TW98132274A TW201017155A TW 201017155 A TW201017155 A TW 201017155A TW 98132274 A TW98132274 A TW 98132274A TW 98132274 A TW98132274 A TW 98132274A TW 201017155 A TW201017155 A TW 201017155A
Authority
TW
Taiwan
Prior art keywords
panel
image
template
pixels
difference
Prior art date
Application number
TW98132274A
Other languages
Chinese (zh)
Other versions
TWI484159B (en
Inventor
Sam-Soo Jung
Danhua Zhao
Jong-Ho Lee
Original Assignee
Photon Dynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photon Dynamics Inc filed Critical Photon Dynamics Inc
Publication of TW201017155A publication Critical patent/TW201017155A/en
Application granted granted Critical
Publication of TWI484159B publication Critical patent/TWI484159B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Abstract

To determine the pixel positions of a flat panel display, signals are applied to the gate lines and the data lines of the flat panel display without exciting the pixels. The gate lines and data lines have the same periodicity or pitch as the panel pixels but because the gate and data lines have narrower dimensions than the camera pixels, they provide sharper and more distinct signals. The intersections of the gate and data lines provide information about the position of the pixels. The pixel positions are subsequently used to generate a dynamic pixel map. Enhanced computational techniques use the pixel positions to determine the magnification of the imaging sensor head as well as the degree of rotation and offset of the panel pixel plane relative to the pixel plane of the imaging sensor head.

Description

201017155 六、發明說明: 【發明所屬之技術領域j 交互參照相關申請案 本發明主張在2008年9月25日提出名稱為“Automatic Dynamic Pixel Map Correction And Drive Signal Calibration”之美國臨時申請案第61/100241號之利益,其内 谷全部作為參考併入本文。 發明背景 本發明係有關於在平板顯示器之製造期間及較特定地 在液晶顯示面板的陣列製造步驟期間之缺陷檢測。201017155 VI. Description of the Invention: [Technical Field of the Invention] J. Cross-Reference Related Application The present invention claims to file the US Provisional Application No. 61/ entitled "Automatic Dynamic Pixel Map Correction And Drive Signal Calibration" on September 25, 2008. The benefits of No. 100241, all of which are incorporated herein by reference. BACKGROUND OF THE INVENTION The present invention relates to defect detection during manufacture of flat panel displays and, more particularly, during array fabrication steps of liquid crystal display panels.

C Λ* 奸 J 在平板液晶顯示器(LCD)的製造期間,使用薄玻璃的大 透明板作為一基板供薄膜電晶體(TFT)陣列的沉積。通常, 多個獨立的TFT陣列被包含在一玻璃基板中而經常被稱為 TFT面板。另外,一主動式矩陣LCD(或AMLCD)涵蓋在每 一像素或次像素(sub-pixel)使用一電晶體或二極鱧之顯示 器之類別,且因此此類玻璃基板也被稱為AMLCD面板。平 板顯示器也可使用OLED技術來製造,且雖然平板顯示器典 型地用玻璃來製造但也可用塑膠或其它基板來製造。 TFT圖案沉積在許多階段中執行,其中在每一階段,一 特定材料(諸如一金屬、銦錫氧化物(ITO)、結晶矽、非晶矽 等)被沉積在前一層(或玻璃)的上面,與一預定圖案一致。 每一階段典型地包括多個步驟,諸如沉積、遮罩、蝕刻、 剝離等。 201017155 在這些階段的每一階段及在每一階段中的各種步驟 中,可能出現許多生產缺陷影響最終的LCD產品之電氣及/ 或光學性能。參考第1圖,此類缺陷包括但不局限於進入到 ITO 112中的金屬突出11〇、進入到金屬116中的ιτο突出 114、所謂的鼠唾(mouse bite)118、開口電路120、電晶體124 中的短路122、外來顆粒126及在像素下的殘留物128。在一 像素下的非晶矽(a-Si)殘留物128可能由於蝕刻不足或微影 問題而產生。其它缺陷包括遮罩問題、過度蝕刻等。 在一完成的液晶平板中,液晶(LC)材料的一薄層被配 Θ 置在兩片玻璃之間。一片玻璃包含該圖案化的二維TFT電極 陣列。每一電極在大小上可大約為1〇〇微米且藉由沿著該面 板邊緣被設置的驅動電路可具有施加於其上之一獨特的電 - 壓。在一完成的產品中’由每一個別電極所產生的電場耦 合至該LC材料並調變在該像素化的區域中發射光的量。此 效果當遍及整個二維陣列整體實施時在該完成的平板上產 生一可見的影像。 雖然該TFT圖案化及沉積製程是嚴格控制的,但在該 @ TFT陣列中出現缺陷仍是不可避免的。這限制了產品良率且 不利地影響生產成本。當該LC材料被注入上層玻璃板(一般 地載有濾色器陣列)與下層玻璃板(載有該T F T陣列)之間時 就出現與LCD面板相關聯之製造成本的一重要部分。因 此,在此製造步驟之前識別並且校正任何影像品質問題是 重要的。在注入該液晶材料之前檢驗LCD面板的問題是在 沒有LC材料的情況下不可得可見的影像來檢查。在LC材料 4 201017155 的沉積之前,出現在一給定像素位點上的唯一信號是由在 與該特定像素相關聯之電極上的電壓所產生的電場(假定 與該等像素沒有做實體接觸)。 爲了克服此限制,Photon Dynamics公司已開發出一電 光檢驗及測試系統,其也被稱為一陣列測試器或陣列檢查 器(AC)。該陣列測試器透過使用如例如在美國專利 4,983,911、5,097,201及5,124,635中所述之—電壓成像感測 器(VI0S)可識別在LC顯示器中的缺陷。如例如在美國專利 5,235,272及5,459,410中所述’使用特定型樣來電氣地驅動 在該面板内要被測試之該等像素電極。當受測試面板遭電 氣地驅動時’與缺陷相關聯的一些像素電極較之該等正常 像素電極電氣地表現不同。使用該電壓成像感測器及相關 聯的影像處理軟體可檢測此類不同。透過使用不同驅動型 樣(drive pattern)之組合’可推導出該等缺陷中的許多缺陷 之類型及位置。 第2圖及第3A圖是在一玻璃板10上移動以檢測其上的 缺陷之一攝影機35及調變器15之透視圖及前視圖。第3B圖 是被設置以感測來自該面板上該等像素電極的該等電場之 攝影機35及調變器15之一前視圖。如第3A至3B圖所說明, 爲了測試該圖案化的玻璃板1 〇 ’包括一調變器15之該成像 感測器頭(由Photon Dynamics開發)在要遭檢驗之受測試面 板(PUT)之一區域20上移動並接著下降至距該面板的表面 幾微米内。使用特定驅動型樣電氣地驅動在該面板上的該 等像素電極陣列。在該等面板像素電極30與該調變器15之 201017155 間之該小的空氣間隙25允許來自該圖案化玻璃板10上每一 受驅動像素電極30之電場耦合至調變器15以產生該面板之 一暫時可見的顯示(或電壓影像)。此可見的顯示隨後被該成 像感測器頭的攝影機35所擷取用來識別缺陷。在檢驗區域 20之後,調變器15移動至該面板上的另一區域並重複此過 程。透過此步進重複式(step-and-repeat)過程,可檢驗及測 試整個PUT的缺陷。在第2B圖及第2C圖中,LC調變器15被 顯示為包括一LC材料45及一平坦玻璃50。 一玻璃板(plate)可能相當大(例如,第7代大小的板每一 ® 邊近乎兩米),因而經常被劃分成多個面板(panel)。例如, 第2圖的玻璃板10顯示為包括六個面板18。習知地,每一面 板包含驅動液晶顯示器所需之薄膜電晶體(TFT)陣列電 - 路。典型地藉由觀測該TFT電路對被施加驅動電壓尤其是型 _ 樣及序列之響應來完成該面板的測試。使用利用一電光調 變器檢測該等TFT響應或較特定地在該像素電極上的該等 電場之諸如Photon Dynamics的VIOS之一成像感測器頭,或 使用利用一電子束檢測該等TFT響應之AKT的感測器頭來 ® 觀測並記錄該等TFT響應。使用一成像裝置,諸如一CCD 攝影機(當使用VIOS時)或一檢測器(當使用電子束時)來記 錄έ亥等觀測到的響應。如第2圖所示,一成像感測器頭典型 地小於一受測試面板(PUT)。爲了測試該玻璃板上的所有面 板’該成像感測器頭必須隨著該面板而移動,如上所述, 在每一位置擷取影像。Photon Dynamics的VIOS系統產生該 面板之該等缺陷的一電壓圖(v〇ltage map,VM)影像。該電廢 6 201017155 圖識別每一檢測到的缺陷在該面板座標空間内的該等座標 以使得它們可易於被諸如修復及檢視系統之其他系統再次 定位。 第4圖是設置在一LCD面板18上面之成像感測器35之 一俯視示意圖。LCD面板18顯示為沿著由X*板-Y“座標轴 所定義的該平面被設置。成像感測器35顯示為沿著由X感測器 -Y*«座標軸所定義的該平面被設置。爲了確定該等平面中 之一平面相對於另一平面的位置,需要三個自由度,諸如 (□)一已知的LCD像素(諸如像素70)與一已知的成像感測 器像素(諸如像素60)之間之X及γ偏移,及(□)該成像感測 器與該LCD面板之X-Y軸之間的旋轉角度α。 第5圖顯示在如在先前技藝中習知的用於產生一電壓 圖之一系統的各種元件之間的控制及資料流程。一型樣產 生器100提供一驅動型樣給該PUT。之後,一VIOS 102使用 其CCD攝影機產生該PUT的一電壓影像。該產生的電壓影 像包括一量測影像及一校準影像。在一板測試的開始,一 機械像素圖(MPM)、光學校正資料及對準資訊被供應給一 電腦,該電腦作為響應產生一動態像素圖1〇6。該MpM是自 °亥面板及該板之該等對準標記及幾何資訊而取得。該動態 像素圖(DPM)連同該量測影像及該校準影像隨後被一影像 處理電腦1〇4使用以產生該電壓圖。 第6A圖是一面板15〇之一俯視示意圖,如在先前技藝中 $知的,該面板150包括設置在該面板之兩對角相對的角之 面板對準標記152及162。使用耦接至墊片2〇〇、2〇2、2〇4及 201017155 206的該等信號線來啟動在該主動顯示區(active display area)160中的該等像素。在第6圖中還顯示了面板切割線 156。針對該等LCD像素電極的幾何資訊包括該像素大小及 該像素陣列沿X及γ的間距及它們相對於該等對準標記的 位置關係。第6B圖是主動顯示區160之區域17〇之一放大視 圖’顯示為包括位在列172、174與行182、184、186、188 的相交處之八個像素。對於每一面板,該測試系統量測該 等對準標記的相對位置及方位並接著計算該面板的該χ、γ 位置及旋轉。該系統技術之典型的準確度大約為2〇微米, 而一典型的LCD像素電極大約為1〇〇微米χ3〇〇微米寬。光學 校正資料是在該系統的安裝期間累積。此類光學校正資料 包括’例如’(□)該成像攝影機相對於整個成像感測器頭的 旋轉及位置,(□)該成像感測器頭相對於其在該測試系統内 Χ-Υ方向上的行進之初始位置及旋轉,(□)其它光學資訊, 諸如失真,及(□)階段錯誤。使用此資訊產生一dpm。 該DPM提供指導該ac找到每一LCD像素電極的中心 位置之一虛擬座標系統,藉此使得該VM影像能夠表示真實 的電壓資訊。該VM影像可經歷附加的影像處理以決定該等 缺陷的確切性質。因此,該DPM的準確度影響該等電壓值, 及藉此也影響該缺陷檢測性能。 典型地,一DPM必須準確到一lCD像素電極之尺寸以 内,例如在100微米至1〇微米以内。習知的DPM處理序列, 諸如第5圖所示,不允許自動併入自該LCD像素陣列本身之 量測或影像擷取之位置資料。例如,在一習知方法中,該 8 201017155 使用者手動調整一理想的DPM方格以匹配該LCD像素電極 陣列之一電壓影像。此方法是冗長且耗時的,因為其對於 受測試的每個板都重複。經常,由於時間限制,執行—二欠 此方法而將該產生圖供後續的板再使用,儘管該等先前結 果可能不適用。準確度也視該使用者的一致性及判斷而定。 對於某些LCD面板組態,提供相鄰LCD像素之間足夠 的信號對比與其它相比而言較容易實現。習知的棋盤型樣 可能適用於一2閘2資料(2G2D)面板150(見第6A圖),該2間2 資料(2G2D)面板150包括用於驅動兩分離的閘輸入(“閘偶 (gate even)’,GE 200及“閘奇(gate odd),’GO 202)及兩分離的 資料輸入(“資料偶(data even)’’DE 204及“資料奇(data odd)”DO 206)之短路棒(shorting bar)。在陣列測試及處理之 後及組裝成最終的平板顯示器產品之前,沿著面板切割線 156切割該面板以移除該短路棒圖案及對準標記。第7圖是 一 1閘1資料(1G1D)面板180之一俯視示意圖,該資料 (1G1D)面板180包括用於驅動閘線208之一單一短路棒及用 於驅動資料輸入線210之一單一短路棒。其他型樣,諸如 1G2D也是可能的。C Λ* 奸 J During the manufacture of flat panel liquid crystal displays (LCDs), a large transparent plate of thin glass was used as a substrate for deposition of a thin film transistor (TFT) array. Generally, a plurality of individual TFT arrays are included in a glass substrate and are often referred to as TFT panels. In addition, an active matrix LCD (or AMLCD) covers a category in which a transistor or a diode is used for each pixel or sub-pixel, and thus such a glass substrate is also referred to as an AMLCD panel. Flat panel displays can also be fabricated using OLED technology, and although flat panel displays are typically fabricated from glass, they can also be fabricated from plastic or other substrates. The TFT pattern deposition is performed in a number of stages, in which a specific material such as a metal, indium tin oxide (ITO), crystalline germanium, amorphous germanium, etc. is deposited on top of the previous layer (or glass). , consistent with a predetermined pattern. Each stage typically includes multiple steps such as deposition, masking, etching, stripping, and the like. 201017155 At each stage of these phases and in the various steps in each phase, many manufacturing defects may affect the electrical and/or optical performance of the final LCD product. Referring to FIG. 1, such defects include, but are not limited to, metal protrusions 11〇 entering the ITO 112, ιτο protrusions 114 entering the metal 116, so-called mouse bites 118, opening circuits 120, transistors Short circuit 122 in 124, foreign particles 126, and residue 128 under the pixel. Amorphous germanium (a-Si) residues 128 at one pixel may result from underetching or lithography problems. Other defects include masking problems, over-etching, and the like. In a completed liquid crystal panel, a thin layer of liquid crystal (LC) material is placed between the two sheets of glass. A piece of glass contains the patterned two-dimensional TFT electrode array. Each electrode may be approximately 1 micron in size and may have a unique electrical voltage applied thereto by a drive circuit disposed along the edge of the panel. In a finished product, the electric field generated by each individual electrode is coupled to the LC material and modulates the amount of light emitted in the pixelated region. This effect produces a visible image on the finished panel as it is implemented throughout the entire two-dimensional array. Although the TFT patterning and deposition process is strictly controlled, the occurrence of defects in the @TFT array is still unavoidable. This limits product yield and adversely affects production costs. An important portion of the manufacturing cost associated with the LCD panel occurs when the LC material is injected between the upper glass sheet (generally carrying the color filter array) and the lower glass sheet (which carries the TF T array). Therefore, it is important to identify and correct any image quality issues prior to this manufacturing step. The problem of verifying the LCD panel before injecting the liquid crystal material is to check for images that are not visible without the LC material. Prior to deposition of LC material 4 201017155, the only signal that appears at a given pixel location is the electric field produced by the voltage on the electrode associated with that particular pixel (assuming no physical contact with the pixels) . To overcome this limitation, Photon Dynamics has developed an electro-optic inspection and test system, also known as an array tester or array checker (AC). The array tester can identify defects in the LC display by using a voltage imaging sensor (VIOS) as described in, for example, U.S. Patent Nos. 4,983,911, 5,097,201, and 5,124,635. The particular type is used to electrically drive the pixel electrodes to be tested within the panel as described, for example, in U.S. Patent Nos. 5,235,272 and 5,459,410. When the panel being tested is electrically driven, some of the pixel electrodes associated with the defect behave differently than the normal pixel electrodes. This difference can be detected using this voltage imaging sensor and associated image processing software. The type and location of many of these defects can be derived by using a combination of different drive patterns. 2 and 3A are perspective and front views of the camera 35 and the modulator 15 which are moved on a glass sheet 10 to detect defects thereon. Figure 3B is a front elevational view of one of camera 35 and modulator 15 configured to sense the electric fields from the pixel electrodes on the panel. As illustrated in Figures 3A through 3B, in order to test the patterned glass plate 1 'the imaging sensor head including a modulator 15 (developed by Photon Dynamics) on the tested panel to be tested (PUT) One of the regions 20 moves and then drops within a few microns from the surface of the panel. The pixel electrode arrays on the panel are electrically driven using a particular drive pattern. The small air gap 25 between the panel pixel electrodes 30 and the 201017155 of the modulator 15 allows an electric field from each of the driven pixel electrodes 30 on the patterned glass sheet 10 to be coupled to the modulator 15 to produce the A display (or voltage image) that is temporarily visible on one of the panels. This visible display is then captured by the camera 35 of the imaging sensor head to identify defects. After inspection of zone 20, modulator 15 is moved to another zone on the panel and the process is repeated. Through this step-and-repeat process, the entire PUT defect can be tested and tested. In Figs. 2B and 2C, the LC modulator 15 is shown to include an LC material 45 and a flat glass 50. A glass plate can be quite large (for example, a 7th generation sized plate is nearly two meters per side) and is therefore often divided into multiple panels. For example, the glass sheet 10 of Figure 2 is shown to include six panels 18. Conventionally, each panel contains a thin film transistor (TFT) array circuit required to drive a liquid crystal display. Testing of the panel is typically accomplished by observing the response of the TFT circuit to the applied drive voltage, particularly the pattern and sequence. Imaging the sensor head using one of the VIOS such as Photon Dynamics that detects the TFT response or the electric field on the pixel electrode using an electro-optical modulator, or detects the TFT response using an electron beam The AKT's sensor heads are used to observe and record these TFT responses. An imaging device such as a CCD camera (when using a VIOS) or a detector (when an electron beam is used) is used to record the observed response such as έ. As shown in Figure 2, an imaging sensor head is typically smaller than a test panel (PUT). In order to test all of the panels on the glass panel, the imaging sensor head must move with the panel, as described above, capturing images at each location. Photon Dynamics' VIOS system produces a voltage map (VM) image of the defects in the panel. The electrical waste 6 201017155 map identifies each of the detected defects within the coordinate space of the panel such that they can be easily repositioned by other systems such as the repair and inspection system. Figure 4 is a top plan view of the imaging sensor 35 disposed over an LCD panel 18. The LCD panel 18 is shown as being disposed along the plane defined by the X* board-Y "coordinate axis. The imaging sensor 35 is shown as being disposed along the plane defined by the X sensor-Y*« coordinate axis. In order to determine the position of one of the planes relative to the other plane, three degrees of freedom are required, such as (□) a known LCD pixel (such as pixel 70) and a known imaging sensor pixel ( The X and γ offset between pixels 60), and (□) the angle of rotation α between the imaging sensor and the XY axis of the LCD panel. Figure 5 shows the use as is conventional in the prior art. A control and data flow between various components of a system for generating a voltage map. A pattern generator 100 provides a drive pattern to the PUT. Thereafter, a VIOS 102 uses its CCD camera to generate a voltage image of the PUT. The generated voltage image includes a measurement image and a calibration image. At the beginning of a board test, a mechanical pixel map (MPM), optical correction data, and alignment information are supplied to a computer, and the computer generates a response as a response. Dynamic pixel map 1〇6. The MpM is from the °H panel The alignment marks and geometric information of the board are obtained. The dynamic pixel map (DPM) together with the measurement image and the calibration image are then used by an image processing computer 1 to generate the voltage map. FIG. 6A is A top view of one of the panels 15A, as is known in the prior art, includes 150 panel alignment marks 152 and 162 disposed at opposite diagonal angles of the panel. Use coupling to the spacer 2〇 The signal lines of 〇, 2〇2, 2〇4, and 201017155 206 activate the pixels in the active display area 160. The panel cut line 156 is also shown in Figure 6. The geometric information of the LCD pixel electrodes includes the pixel size and the pitch of the pixel array along X and γ and their positional relationship with respect to the alignment marks. FIG. 6B is an enlarged view of the area 17 of the active display area 160. The view 'is shown to include eight pixels at the intersection of columns 172, 174 and rows 182, 184, 186, 188. For each panel, the test system measures the relative position and orientation of the alignment marks and then Calculate the χ, γ of the panel Position and rotation. The typical accuracy of this system technology is approximately 2 μm, while a typical LCD pixel electrode is approximately 1 μm to 3 μm wide. Optical correction data is accumulated during installation of the system. Optical-like correction data includes, for example, '□' the rotation and position of the imaging camera relative to the entire imaging sensor head, (□) the imaging sensor head relative to its Χ-Υ direction in the test system The initial position and rotation of the travel, (□) other optical information, such as distortion, and (□) phase error. Use this information to generate a dpm. The DPM provides a virtual coordinate that guides the ac to find the center of each LCD pixel electrode. The system whereby the VM image is capable of representing true voltage information. The VM image can undergo additional image processing to determine the exact nature of the defects. Therefore, the accuracy of the DPM affects the voltage values, and thereby also affects the defect detection performance. Typically, a DPM must be accurate to within 1 to 10 pixel electrode dimensions, such as within 100 microns to 1 〇 microns. Conventional DPM processing sequences, such as shown in Figure 5, do not allow automatic incorporation of positional data from the measurement or image capture of the LCD pixel array itself. For example, in a conventional method, the 8 201017155 user manually adjusts an ideal DPM grid to match a voltage image of the LCD pixel electrode array. This method is tedious and time consuming because it is repeated for each board being tested. Often, due to time constraints, this method is used to reuse the generated pattern for subsequent boards, although such prior results may not apply. Accuracy is also dependent on the consistency and judgment of the user. For some LCD panel configurations, providing sufficient signal contrast between adjacent LCD pixels is easier to implement than others. The conventional checkerboard pattern may be suitable for a 2G2D panel 150 (see Figure 6A), which includes two gate inputs for driving two separates ("gates (" Gate even)', GE 200 and "gate odd", 'GO 202) and two separate data inputs ("data even" 'DE 204 and 'data odd' DO 206) A shorting bar. After the array is tested and processed and assembled into the final flat panel display product, the panel is cut along the panel cut line 156 to remove the shorting bar pattern and alignment marks. Figure 7 is a A top view of a 1G1D panel 180, the data (1G1D) panel 180 includes a single shorting bar for driving the gate 208 and a single shorting bar for driving the data input line 210. Other patterns Such as 1G2D is also possible.

第8A顯示施加於諸如在第6A圖中顯示的面板150之一 2G2D面板上的該等電壓信號以產生一棋盤型樣。第8B圖顯 示相鄰像素之間對第8A圖之該等棋盤驅動信號的響應之對 比。由於在一 2G2D面板中,有兩獨立的資料驅動信號及兩 獨立的閘驅動信號驅動該陣列的交替列及行,一資料/閘對 (例如,GO 202與DO 204)較之第二資料/閘對(ge 200與DE 9 201017155 206)可以一不同的型樣及序列來遭驅動。較特定地,奇列 及行可遭尚驅動而所有的該等偶列及行遭低驅動。例如, 一LCD像素電極可帶正電而其在X及γ方向上之相鄰的 LCD像素電極帶負電;各該帶負電的像素在X及γ方向同樣 地被帶正電的像素所圍繞。因此,針對每一成像感測器位 點的一峰值平均電壓可根據該CCd電壓影像來計算,藉此 提供用來調整該DPM的結果。因此’在一棋盤型樣中,相 鄰LCD像素電極在X及γ方向上都可互相區別開來。此方法 之一缺點在於(□)它局限於某些類型的LCd面板,及(□)要 得到預期的準確度,需要大量的資料樣本及/或額外的信號Section 8A shows the voltage signals applied to a 2G2D panel such as panel 150 shown in Figure 6A to produce a checkerboard pattern. Figure 8B shows a comparison of the responses of adjacent pixels to the board drive signals of Figure 8A. Since in a 2G2D panel, two independent data drive signals and two independent gate drive signals drive alternate columns and rows of the array, a data/gate pair (eg, GO 202 and DO 204) is compared to the second data/ The gate pair (ge 200 and DE 9 201017155 206) can be driven in a different pattern and sequence. More specifically, the odd columns and rows can be driven and all of the even columns and rows are driven low. For example, an LCD pixel electrode can be positively charged and its adjacent LCD pixel electrodes in the X and gamma directions are negatively charged; each of the negatively charged pixels is likewise surrounded by positively charged pixels in the X and gamma directions. Thus, a peak average voltage for each imaging sensor location can be calculated from the CCd voltage image, thereby providing a result for adjusting the DPM. Therefore, in a checkerboard pattern, adjacent LCD pixel electrodes can be distinguished from each other in the X and γ directions. One of the disadvantages of this method is that it is limited to certain types of LCd panels, and (□) requires the expected accuracy and requires a large amount of data samples and/or additional signals.

雜訊濾波演算法,這些都需要較多時間。第8C圖顯示第8B 圖的該等像素沿XX方向或γγ方向接收之該等電壓。第 圖顯不記錄第8C圖的該等面板像素之該等響應之該等相關 聯的攝影機像素。第8E圖顯示第犯圖的該等攝影機像素之 該等輸出信號。由於會導致信號降_各種因素,該净信 號可能不如在第88至_中所示的信號清晰,但是仍可讀 的。 s像素電極具有相對銳利的實體邊界,圍繞該 等像素的該錢電路相㈣⑼如大約_^二十微米寬的 線,具有大_同或較小的_)。像相的距離也短, 幾十微米。這麼短的距離可致使在—像素中的該等電 ==電路。該等Μ像素電極電荷在該電極的 專邊緣也—局㈣場效應,這可㈣在料相鄰電極 内的電荷之分佈,因而導致何_成像攝影機看 201017155 信號之不一致的分佈。 諸如第7圖的面板180之一 1G1D面板之該單一閘及資 料驅動輸入致使所有的LCD像素電極以相同方式來響應。 第9A圖顯示施加於一 1G1D面板上的該閘及資料電壓信 號。第9B圖顯示該等像素之間對第9A圖的該等驅動信號響 應的對比。如自第9B圖所見,該等像素彼此不能輕易區分 開來。第9C圖顯示由第9B圖的該等像素沿著該等又乂或γγ 方向所接收之該等電壓。第9D圖顯示記錄第9C圖的該等面 板像素的該等響應之該等相關聯的攝影機像素。由於會導 致該等信號的降級的各種因素,一LCD像素電極與另一 LCD像素電極的該信號實際上無法區分。 雖然與該板(plate)或面板(panel)之該等對準標記相 比,LCD像素電極的一影像或量測為該旋轉參數提供一較 可靠的值,但是來自該LCD像素陣列的該資訊之準確度受 該影像或量測之解析度是否允許將該等L c D像素電極彼此 區分開來而影響。該影像或量測之解析度進—步視多個影 響因素而定。第一是一對準系統的光學器件。第二是相鄰 LCD像素電極之間的信號對比。第三是由於不完美的材料 及/或電效應導致的橫跨一給定像素電極兩端及像素電極 之間的該信號之失真。第四是由於一不完美的對準系統橫 跨-給定像素電極兩端及像素電極之_信號的降級。 該影像或量測的解析度對該等LCD像素電極及該等攝 影機CCD像素及出現在該攝影機與LCD像素電極之間的任 何光學器件具有強烈的依賴。-CCD像素在大小上典型地 201017155 大約10至15微米’而其投影影像在大小上大約3〇至4〇微 米。一LCD像素電極在大小上典型地大約121微米X大約363 微米。因此’如果該等光學器件對準良好,用該攝影機及 其光學器件易於將LCD像素電極彼此區分開來。然而,因 為該LCD及攝影機像素電極是規則的陣列且因為該兩陣列 具有不同的間距或週期’ 一莫爾(moir0)(或干擾)條紋 (pattern)可產生,尤其當該等各自的陣列之該等間距相對於 彼此不是整數時。此外,一陣列相對於另一陣列的—輕微 旋轉產生一干擾條紋。這導致該陣列内該等LCD像素電極 之不一致的信號強度。 檢驗及測試的一挑戰是測定該等L C D像素電極相對於 該感測器的數位攝影機的位置以使得該擷取到的可見顯示 或電壓影像能夠被進一步處理來擁取缺陷資訊。一旦該等 影像被處理且該等缺陷被檢測,可使用該等LCD像素電極 與該等缺陷之間的該映射資訊來識別該等缺陷的位置供在 諸如檢視或修復系統之其它系統中的進一步使用。自該等 電壓影像擷取詳細的缺陷資訊需要準確地知道該等LCD像 素電極位置。此外,測定LCD像素電極之位置需要將該成 像感測器頭的攝影機陣列與該成像感測器頭上的一參考位 置實體相關或相映射,並隨後將該感測器頭的該位置與該 面板上的一位置相關或相映射。 典型地’將該系統的成像攝影機與整個感測器頭相映 射疋该系統之校準程序的一部分,該系統的校準程序在初 始安裝時完成並此後間或地被核對,例如每隔幾個月一 12 201017155 次。然而’測定該感測器頭相對於該板的位置必須在測試 每一板之前完成。此外,一典型的TFT像素電極大約1〇〇微 米X300微米。因此,LCD像素之位置的準確度必須測定在 例如10至1GG微米之内。在大批量生產許多產品的情況下, 平板顯示器的商業供應商日益需要高的生產量及快速的 時間因此,t費在對準或校準一面板上的時間理想 地應該被保持短。The noise filtering algorithm takes more time. Fig. 8C shows the voltages received by the pixels of Fig. 8B in the XX direction or the γγ direction. The figure shows that the associated camera pixels of the responses of the panel pixels of Figure 8C are not recorded. Figure 8E shows the output signals of the camera pixels of the first map. The net signal may not be as clear as the signal shown in pages 88 to _ due to various factors that may cause signal drop, but it is still readable. The s pixel electrode has a relatively sharp physical boundary, and the money circuit phase (4) (9) surrounding the pixels has a large _ the same or a smaller _). The distance between the phases is also short, tens of microns. Such a short distance can cause the equal power == circuit in the pixel. The charge of the pixel electrode at the edge of the electrode is also a local (four) field effect, which can (4) the distribution of the charge in the adjacent electrode of the material, thus causing an inconsistent distribution of the signal of the 201017155 signal. The single gate and data drive input of a 1G1D panel, such as panel 180 of Figure 7, causes all of the LCD pixel electrodes to respond in the same manner. Figure 9A shows the gate and data voltage signals applied to a 1G1D panel. Figure 9B shows a comparison of the responses of the pixels to the driving signals of Figure 9A. As can be seen from Figure 9B, the pixels cannot be easily distinguished from one another. Figure 9C shows the voltages received by the pixels of Figure 9B along the equal or gamma gamma directions. Figure 9D shows the associated camera pixels recording the responses of the panel pixels of Figure 9C. The signal of one LCD pixel electrode and another LCD pixel electrode is virtually indistinguishable due to various factors that can cause degradation of the signals. Although an image or measurement of the LCD pixel electrode provides a more reliable value for the rotation parameter than the alignment mark of the plate or panel, the information from the LCD pixel array The accuracy is affected by whether the resolution of the image or measurement allows the LcD pixel electrodes to be distinguished from one another. The resolution of the image or measurement is determined by a number of factors. The first is an optics that aligns the system. The second is the signal contrast between adjacent LCD pixel electrodes. The third is the distortion of the signal across the ends of a given pixel electrode and between the pixel electrodes due to imperfect material and/or electrical effects. The fourth is due to an imperfect alignment system traversing - the degradation of the signal at both ends of the given pixel electrode and the pixel electrode. The resolution of the image or measurement is strongly dependent on the LCD pixel electrodes and the camera CCD pixels and any optics present between the camera and the LCD pixel electrodes. The CCD pixel typically has a size of approximately 10 to 15 microns in 201017155 and its projected image is approximately 3 to 4 microns in size. An LCD pixel electrode is typically about 121 microns X and about 363 microns in size. Therefore, if the optical devices are well aligned, it is easy to distinguish the LCD pixel electrodes from each other with the camera and its optics. However, because the LCD and camera pixel electrodes are regular arrays and because the two arrays have different pitch or period 'moir0' (or interference) patterns, especially when the respective arrays are The spacings are not integers relative to each other. In addition, a slight rotation of one array relative to the other produces an interference fringe. This results in inconsistent signal strength of the LCD pixel electrodes within the array. One challenge in inspection and testing is to determine the position of the L C D pixel electrodes relative to the digital camera of the sensor such that the captured visible display or voltage image can be further processed to capture defect information. Once the images are processed and the defects are detected, the mapping information between the LCD pixel electrodes and the defects can be used to identify locations of the defects for further use in other systems such as viewing or repair systems. use. The detailed defect information from these voltage images requires accurate knowledge of the position of the LCD pixel electrodes. Furthermore, determining the position of the LCD pixel electrode requires correlating or mapping the camera array of the imaging sensor head with a reference position entity on the imaging sensor head, and then the location of the sensor head with the panel A position related or phase map on. Typically 'the imaging camera of the system is mapped to the entire sensor head as part of the calibration procedure of the system, the calibration procedure of the system is completed during initial installation and is checked afterwards, for example every few months One 12 201017155 times. However, determining the position of the sensor head relative to the board must be done before testing each board. In addition, a typical TFT pixel electrode is approximately 1 〇〇 micrometer x 300 micrometers. Therefore, the accuracy of the position of the LCD pixel must be measured within, for example, 10 to 1 GG μm. In the case of mass production of many products, commercial suppliers of flat panel displays increasingly require high throughput and fast time. Therefore, the time required to align or calibrate one side panel should ideally be kept short.

t智^明内容—3 發明概要 種測疋-平板顯示器相對於—感測頭位置之位置的 方法依據本發明之—實齡丨其部分地包括下列步驟,將 -第-信號施加於_至形成在該面板上的該等像素之多 個閘線上,擷取該等閘線對該第—信號的響應,將一第二 信號施加於_至形成在該面板上_等像素之多個資料 線上,擷取該等資料線對該第二信號的響應,將該第—及 第二響應相組合以產生—組合響應,並使用該組合響應來 測定該等閘線與資料_料相交。料相交表示該等像 素的位置。在-些實施射,財法進—步包括使用該等 像素位置來測定該平板顯㈣相對於域_之偏移及旋 轉值。 一種可操作關定-平板顯示器的像素位置之裝置, 依據本發明之-實施例部分地包括…信號產生器、一感 測頭及-電腦系統。該信號產生器可操作以將信號供應給 柄接至形成在該面板上之該等像素之多個閘線及資料線, 13 201017155 一感測頭可操作以擷取該等閘及資料線對該第一信號之響 應及一電腦系統。該等電腦系統具有將該等閘及資料線的 該等響應組合以產生一組合響應之一模組,及使用該組合 響應來測定該等閘線與資料線的該等相交之一模組。該等 相交表示該等像素的該等位置。在一些實施例中,該裝置 進一步包括使用該等像素位置來測定該平板顯示器相對於 該感測頭的該等偏移及旋轉值之一模組。 一種識別形成在一平板顯示器之多個面板中之像素的 該等位置之方法,依據本發明之一實施例,其部分地包括 下列步驟,供應一電壓給該等面板中之一面板以使得沿著 該面板之該等邊緣之至少一邊緣設置的像素呈現與非沿著 該面板之此邊緣設置的剩餘像素之一子集之該影像對比不 同的一影像對比,並使用該等影像對比之間的不同來識別 該面板之該等像素的位置。 一種可操作以識別形成在一平板顯示器之一或多個面 板上的像素之該等位置之裝置,依據本發明之一實施例, 其部分地包括,一信號產生器、一感測頭及一電腦系統。 該信號產生器供應電壓信號給該等面板中之至少一面板。 該感測頭擷取設置在該面板上之該等像素之一或多個電壓 影像。該等擷取的電壓影像呈現與沿著該面板之該等邊緣 之至少一邊緣設置的像素相關聯之一第一對比。該等擷取 的電壓影像呈現與該面板之該等剩餘像素相關聯之一第二 對比。該電腦系統使用該第一與第二對比之間的不同來識 別該面板之該等像素之位置。 201017155 圖式簡單說明 第1圖顯示如在先前技藝中習知的一平板上的多個示 範缺陷。 第2圖顯示如在先前技藝中習知的在一圖案化的玻璃 板上移動以檢測缺陷之一示範攝影機及一示範調變器。 第3A圖是第2圖的在該圖案化的玻璃板上移動之該示 範攝影機及示範調變器之一前視圖。The invention relates to the method of measuring the position of the flat panel display relative to the position of the sensing head. According to the invention, the method includes the following steps, and the signal is applied to the _ to Forming a plurality of gate lines of the pixels on the panel, capturing the response of the gate lines to the first signal, and applying a second signal to the plurality of data formed on the panel On the line, the data lines are retrieved in response to the second signal, and the first and second responses are combined to generate a combined response, and the combined response is used to determine that the gate lines intersect the data. The intersection of materials indicates the location of the pixels. In some implementations, the method further includes using the pixel locations to determine the offset and rotation values of the panel display (4) relative to the domain. A device operable to determine the pixel location of a flat panel display, in accordance with an embodiment of the invention, includes, in part, a signal generator, a sensor head, and a computer system. The signal generator is operative to supply a signal to a plurality of gate lines and data lines of the pixels formed on the panel, 13 201017155 a sensor head operable to capture the gates and data line pairs The response of the first signal and a computer system. The computer systems have a combination of the responses of the gates and data lines to produce a combined response module, and the combined response is used to determine the one of the intersections of the gate lines and the data lines. The intersections represent the locations of the pixels. In some embodiments, the apparatus further includes a module that uses the pixel locations to determine the offset and rotation values of the flat panel display relative to the sensing head. A method of identifying such locations of pixels formed in a plurality of panels of a flat panel display, in accordance with an embodiment of the invention, comprising, in part, the step of supplying a voltage to one of the panels to cause Pixels disposed on at least one edge of the edges of the panel exhibit an image contrast that is different from the image of a subset of the remaining pixels that are not disposed along the edge of the panel, and use the image contrast between The difference is to identify the location of the pixels of the panel. A device operable to identify such locations of pixels formed on one or more panels of a flat panel display, in accordance with an embodiment of the invention, partially including a signal generator, a sensing head, and a computer system. The signal generator supplies a voltage signal to at least one of the panels. The sensor head captures one or more voltage images of the pixels disposed on the panel. The captured voltage images exhibit a first contrast associated with pixels disposed along at least one edge of the edges of the panel. The captured voltage images exhibit a second comparison with the remaining pixels of the panel. The computer system uses the difference between the first and second contrasts to identify the locations of the pixels of the panel. 201017155 Brief Description of the Drawings Figure 1 shows a number of exemplary defects on a plate as is conventional in the prior art. Figure 2 shows an exemplary camera and an exemplary modulator that are moved on a patterned glass plate to detect defects as is conventional in the prior art. Figure 3A is a front elevational view of the exemplary camera and exemplary modulator moving on the patterned glass sheet of Figure 2.

第3B圖顯示第2圖的設置在該圖案化的玻璃板附近以 檢測缺陷之该示範攝影機及示範浮動調變器。 第4圖是設置在-LCD面板上面之—成像感測器之一 俯視示意圖。 第5圖顯示如在先前技藝中習知的用於產生一電壓圖 之一系統的各種元件之間的控制及資料流程。 第6A圖顯示包括一 TFT陣列、面板參考標記及用來測 試該陣列的一2G2D短路棒之一示範面板。 第侧是第6A圖之該面板的_區域之—放大視圖。 第7圖顯示包括-TFT陣列、面板參考標記及用來測試 該陣列的一 1G1D短路棒之一示範面板。 第8·顯示如在先前技藝中f知的施加於第6A圖之 該2G2D面板以產生_棋盤型樣之示範電壓。 =示由於施加第8A圖所示的示範電壓而產生 μ像素電極之該棋盤型樣電壓圖。 沿著該等XX或γγ方 第8C圖顯示由第8Β圖的該等像素 向所接收之該等示範電壓。 15 201017155 第8D圖顯示記錄第8C圖的該等面板像素之該等響應 之該等相關聯的攝影機像素。 第8E圖顯示第8D圖的該等攝影機像素之該等輸出信 號。 第9A圖顯示如在先前技藝中習知的施加於第7圖所示 的該1G1D面板之示範電壓。 第9B圖是由於施加第9A圖所示的示範電壓而產生之 該等像素電極之一空間電壓圖。 第9C圖顯示由第9B圖的該等像素沿著該等XX或YY方 向所接收之該等電壓。 第9D圖顯示記錄第9C圖的該等面板像素之該等響應 之該相關聯的攝影機像素。 第9E圖顯示第9D圖的該等攝影機像素之示範輸出信 號。 第10A圖是依據本發明之一示範實施例之適用於測定 一平板顯示器之該等像素的該等位置的該等信號之一示範 時序圖。 第10 B至10 G圖是依據本發明之一實施例之接收在第 10 A圖中所示之該等電壓的該等閘線及資料線之示範影像。 第11A圖是使用依據本發明之一示範實施例的電壓信 號來驅動資料及閘線的一平板的一部分之一畫面截圖。 第11B及11C圖是第11A圖的該影像沿著X及Y方向所 獲之強度曲線(profile)。 第12A至12C圖顯示依據本發明之一示範實施例之用 201017155 於測定一平板平面與—攝影機平面之間的偏移量之-示範 過程。 第13A至13D圖顯示依據本發明之一示範實施例之用 於測定一平板平面與—攝影機平面之間的旋轉角度之-示 範過程。 第14圖顯祕據本發明之1範實施例之用於產生一 電壓圖之-系統的各種元件之_控制及資料之流程。 第15圖顯示依據本發明之一實施例而使用之一影像處 理電腦600。 【實施方式;j 本發明之詳細說明 ★依據本發明之-實施例’在—平板上形成之像素的該 等位置在用於檢測平板上的缺陷之諸如—攝影機之一感測 頭的座標工間巾相對快速的被測定。爲了駭該等像素位 置’把設計以提絲補雜的像素找等位置(或較特定 地,該像素中_特性點的該等位置,例如其中心或一隅角) 之較銳利、較清晰的信號之一信號驅動型樣施加於該面Fig. 3B shows the exemplary camera and exemplary floating modulator of Fig. 2 disposed adjacent to the patterned glass sheet to detect defects. Figure 4 is a top plan view of one of the imaging sensors disposed above the -LCD panel. Figure 5 shows the control and data flow between the various components of a system for generating a voltage map as is conventional in the prior art. Figure 6A shows an exemplary panel including a TFT array, panel reference marks, and a 2G2D shorting bar for testing the array. The first side is an enlarged view of the area of the panel of Figure 6A. Figure 7 shows an exemplary panel including a -TFT array, panel reference marks, and a 1G1D shorting bar used to test the array. Figure 8 shows an exemplary voltage applied to the 2G2D panel of Figure 6A as previously known in the art to produce a checkerboard pattern. = shows the checkerboard pattern voltage diagram of the μ pixel electrode due to the application of the exemplary voltage shown in Fig. 8A. The exemplary voltages received by the pixels of Fig. 8 are shown along the XX or γ gamma side 8C. 15 201017155 Figure 8D shows the associated camera pixels recording the responses of the panel pixels of Figure 8C. Figure 8E shows the output signals of the camera pixels of Figure 8D. Fig. 9A shows an exemplary voltage applied to the 1G1D panel shown in Fig. 7 as is conventional in the prior art. Fig. 9B is a spatial voltage diagram of the pixel electrodes generated by applying the exemplary voltage shown in Fig. 9A. Figure 9C shows the voltages received by the pixels of Figure 9B along the XX or YY directions. Figure 9D shows the associated camera pixels recording the responses of the panel pixels of Figure 9C. Figure 9E shows an exemplary output signal for the camera pixels of Figure 9D. Figure 10A is an exemplary timing diagram of one of the signals suitable for determining the locations of the pixels of a flat panel display in accordance with an exemplary embodiment of the present invention. 10B through 10G are exemplary images of the gate lines and data lines receiving the voltages shown in FIG. 10A in accordance with an embodiment of the present invention. Figure 11A is a screenshot of a portion of a slab that uses a voltage signal to drive data and gate lines in accordance with an exemplary embodiment of the present invention. Figures 11B and 11C are the intensity profiles of the image taken along the X and Y directions of Figure 11A. Figures 12A through 12C show an exemplary process for determining the offset between a flat plane and a camera plane using 201017155 in accordance with an exemplary embodiment of the present invention. Figures 13A through 13D show an exemplary process for determining the angle of rotation between a plane of a flat panel and a plane of a camera in accordance with an exemplary embodiment of the present invention. Fig. 14 is a view showing the flow of control and data for various components of a system for generating a voltage map according to a first embodiment of the present invention. Figure 15 shows an image processing computer 600 in accordance with an embodiment of the present invention. [Embodiment] j Detailed Description of the Invention ★ According to the present invention - the position of the pixel formed on the flat plate is used to detect a defect on the flat plate such as a coordinate head of a sensor head of a camera The towel was measured relatively quickly. In order to locate the pixel locations, the pixels that are designed to be matte-finished are sharper and clearer (or, more specifically, the locations of the _ characteristic points in the pixel, such as their centers or corners). One of the signals is applied to the surface of the signal drive pattern

板^,而不論該面板類型為何,其可能是-2G2D 、1G1D 或八匕的此後,在該攝影機的像素之座標空間中擷取並 平關於該等平板像素電極的位置資訊。測定該等LCD像 素相對於雜倾的像素之财及旋轉被自動化藉此改 進TACT時間。使用由該感測頭擷取的影像自該面板所操取 的缺貝訊及該面板的像素位置隨後被運送至其它系統, 諸如檢視或修復系統。 17 201017155 下面’要明白的是,該術語面板像素電極與LCD像素 (或LCD像素電極)是可交換使用的來指正在受測試的形成 在忒面板上的該TFT電極電路。還要明白的是該等術語成 像感測器像素、攝影機像素或CCD像素也是可交換使用的 且指擷取該等面板像素之影像的該成像感測器(也稱為攝 影機)陣列的-部分^此外,要明白的是,一LCD空間由該 LCD的像素電極座標來定義及一CCD空間由一相關攝影機 的CCD座標來定義。進一步要明白的是,當下面的描述參 考一CCD攝影機或CCD像素提供時,本發明之實施例同樣 魯 地適用於包括其它感測器陣列諸如CM〇S4類似物之攝影 機感測器。 依據本發明之一實施例,信號驅動型樣在沒有激發該 等像素的情況下施加於該等閘線及該等資料線。該等閘線 及資料線具有與該等面板像素相同的週期或間距但是因為 該等閘線及資料線具有比該等攝影機像素較窄的尺寸,故 它們提供杈銳利的且較清晰的信號。該等閘及資料線的該 等相交提供關於該等像素位置的資訊。該等像素位置隨後 _ 被用來產生一動態像素圖(Dpm)。 第10A圖顯示依據本發明之一示範實施例之施加於一 面板的閘及資料線之一驅動型樣。該等各種驅動電壓之時 序以-選定的圖框速率與該攝影機的影像記錄相關聯。如 在第10A圖中所不,該等資料線在圖如期間被驅動至—正 的電壓而该等閘線被保持在接地電位。在第丨囷框週期屆滿 之前’觸發該攝影機並記錄__影像,如在第·圖中所示。 18 201017155 在第10E圖中的該五點線顯示接收第10A圖中所示的該電 壓型樣之五示範資料線。 在圖框2期間,以接地電位供應該等資料線而以一非零 電壓驅動該等閘線。在圖框2屆滿之前且在該驅動電壓已給 該等資料線充電之後,觸發該攝影機及記錄另一影像,如 在第10C圖中所示。在第10F圖中的該兩點線顯示接收第 10A圖中所示的該電壓型樣之兩示範閘線。 該等閘及資料驅動型樣可重複多次以收集與第10B圖 及第10C圖所示相類似的影像。隨後組合該等結果以形成一 組合影像,如在第10D圖中所示。第10G圖顯示第10E圖及 第10F圖之該等資料及閘線之該十個相交。這十個相交定義 該等LCD像素之該等隅角的該等位置(或可選擇地它們可 用來測定該等L C D像素的中心)。可使用可能具有該等閘與 資料線之該等驅動器之間的不同排序、該等閘與資料線之 該等驅動器之間的不同時序或不同電壓之其它閘/資料線 驅動型樣。在其它實施例中,可同時驅動該等閘及資料線, 只要該等像素未被充電(激發)。此外,在第10D圖中顯示的 該組合影像可以以多種不同方式而產生。例如,在一實施 例中,許多資料線及閘線被獨立地驅動以使它們相關聯影 像能夠被擷取及處理。此後,它們的影像遭組合以定位它 們的相交。在另一實施例中,該等資料線的一影像與該等 閘線之一影像相組合以定位它們的相交。 第11A圖是具有使用依據本發明之一示範實施例的電 壓信號驅動之資料及閘線的一平板的一部分之一畫面截 19 201017155 ^ 圖及第11C圖是第11A圖的該影像沿著該x方向 (貝料線)及γ方向(閘線)所擷取之該等強度曲線。在第 C圖中的該週期最大值分別表示該等資料線及閘 線位置。身料及閘線之該相交的位置可由沿著在一組合數 位影像中的料線之該強度最大值的位置來識別,因為t 是該資料錢與該閘信號的總和。 —因為該等資料及閘線寬度小於該等攝影機像素寬度, 門乜號的相當一部分遭分佈在一單一攝影機像素内, 此由於莫爾效應而導致的任何電位改變相對容易識 魯 別匕外,因為與該等面板像素電極相比,該等閘及資料 線具有較小的總截面且彼此較遠分離,故它們具有較小的 電荷达、度及減小的電場干擾效應。因此,依據本發明之f 施例由於集中的電荷而引起之邊緣場(fringe field)效應明 顯減弱。 依據本發明之另一實施例’增強的計算技術使用該等 面板像素位置允許測定該成像感測器頭的放大率(透過比 較由該成像感測||所量測的該間距與該面板之幾何規格) Ο 及該面板像素平面相對於該攝影機像素平面的旋轉及偏移 度。換§之,如上所述或使用任何其它技術(例如棋盤或即 時驅動型樣化)測定之該等面板像素位置可用來校正階段 誤差、由於光學器件的誤差等。這接著允許放寬對該等階 段及光學器件的要求。 第12A圖顯示具有許多示範chevronTM形狀的像素 302〗、3022、3023之一LCD面板3〇〇,像素302〗、3022、3〇23 20 201017155 的位置用來測定面板300與一成像攝影機之該等χγ平面之 間的偏移及旋轉度。該面板之一重複特徵的一模板,諸如 其像素,自一位點的影像來擷取。一位點被理解為指其影 像可被一成像攝影機在一單次拍攝中擷取之該面板的—區 域。選擇諸如位在例如該面板之一隅角(例如,該成像攝影 機於此開始其掃描)的像素3〇1之一 LCD像素作為一參考像 素。一相對應攝影機像素312〗之該預期的位置也顯示在第 12A圖中。接著,建構該重複LCD像素電極之一影像模板 350,如在第12B圖中所示。在第12b圖中的每一方格表示 一攝影機像素。使用一點線方格在第12B圖中顯示攝影機像 素3122的位置。接著,模板35()被設置在其預期的位置(基於 該參考像素的位置)以計算該模板的實際位置與其預期的 位置之間的S。此後,該模板以一系統方式來移位直至滿 足一條件。當例如該模板的實際位置與其預期的位置之間 的差符合由一臨限值所定義的最小值時此條件可滿足。可 以以夕種方式來發現這樣的—最小差。例如’該模板可以 自該開始點在四個方向以固定步階來移位或其可以以使用 尋求使該錢斂至―⑸、值之計算所蚊之增量及方向來 移動’等等。要明白岐’可使用任何其它像素形狀及可 使用任何其它㈣㈣為參考像素電極。該模板的實際位 置與其預期的位置之間的差(對應於攝影機像素之該實際 位置312,與預期的位置3122之間的差,如第咖圖所示)當這 樣的一條件滿足時表示該LCD與該攝影機在該χ_γ平面的 偏移參考第以圖,該參考LCD像素電極的位置經常被知 21 201017155 曉為在至少一LCD像素大小的一半(50至100微米,典型地) 之内。依據本發明之實施例,當使用二維内插法時,該XY 偏移可被測定達一攝影機像素大小以内或更小。依據本發 明之其它實施例,爲了測定該偏移,自面板上的一位點選 擇多個子區域,例如5個。此後’位在該等選定區域中的該 等像素之該等量測的位置與該等預期的位置之間的平均偏 差被用來測定該偏移。The board ^, regardless of the panel type, may be -2G2D, 1G1D or gossip thereafter, and the positional information about the flat pixel electrodes is extracted and plotted in the coordinate space of the pixels of the camera. The profit and rotation of these LCD pixels relative to the parallel pixels are automated to improve the TACT time. The missing pixels and the pixel locations of the panel from the panel captured using the image captured by the sensor head are then transported to other systems, such as a viewing or repair system. 17 201017155 Next, it is to be understood that the term panel pixel electrode and LCD pixel (or LCD pixel electrode) are used interchangeably to refer to the TFT electrode circuit being formed on the 忒 panel. It will also be understood that the terms imaging sensor pixel, camera pixel or CCD pixel are also interchangeable and refer to the portion of the imaging sensor (also referred to as a camera) array that captures images of the panel pixels. In addition, it is to be understood that an LCD space is defined by the pixel electrode coordinates of the LCD and a CCD space is defined by the CCD coordinates of an associated camera. It is further understood that embodiments of the present invention are equally applicable to camera sensors including other sensor arrays such as the CM〇S4 analog when the following description is provided with reference to a CCD camera or CCD pixel. In accordance with an embodiment of the invention, the signal driven pattern is applied to the gate lines and the data lines without exciting the pixels. The gates and data lines have the same period or spacing as the panel pixels, but because the gates and data lines have a narrower size than the camera pixels, they provide sharp and sharper signals. The intersection of the gates and the data lines provides information about the location of the pixels. These pixel locations are then used to generate a dynamic pixel map (Dpm). Figure 10A shows a drive pattern of a gate and data line applied to a panel in accordance with an exemplary embodiment of the present invention. The timing of the various drive voltages is associated with the camera's image record at a selected frame rate. As shown in Fig. 10A, the data lines are driven to a positive voltage during the period of the graph and the gate lines are maintained at the ground potential. The camera is triggered and the __ image is recorded before the expiration of the frame period, as shown in the figure. 18 201017155 The five-dot line in Fig. 10E shows five exemplary data lines that receive the voltage pattern shown in Fig. 10A. During frame 2, the data lines are supplied with a ground potential and the gate lines are driven with a non-zero voltage. The camera is triggered and another image is recorded before the expiration of frame 2 and after the drive voltage has been charged to the data lines, as shown in Figure 10C. The two-dot line in Fig. 10F shows two exemplary gate lines that receive the voltage pattern shown in Fig. 10A. The gates and data driven patterns can be repeated multiple times to collect images similar to those shown in Figures 10B and 10C. The results are then combined to form a combined image, as shown in Figure 10D. Figure 10G shows the ten intersections of the data and the gate lines of Figures 10E and 10F. The ten intersections define the locations of the corners of the LCD pixels (or alternatively they can be used to determine the center of the L C D pixels). Other gate/data line drive patterns may be used that may have different orders between the drivers of the gates and the data lines, different timings between the gates and the drivers of the data lines, or different voltages. In other embodiments, the gates and data lines can be driven simultaneously as long as the pixels are not charged (excited). Moreover, the combined image displayed in Figure 10D can be produced in a number of different ways. For example, in one embodiment, a plurality of data lines and gate lines are independently driven to enable their associated images to be captured and processed. Thereafter, their images are combined to locate their intersections. In another embodiment, an image of the data lines is combined with an image of the ones to locate their intersection. Figure 11A is a diagram of a portion of a plate having a voltage signal driven by a voltage signal and a gate line according to an exemplary embodiment of the present invention. Figure 19 and Figure 11C is the image of Figure 11A. The intensity curves taken in the x direction (bedding line) and the gamma direction (gate line). The maximum value of the period in Figure C represents the position of the data lines and the gates, respectively. The intersection of the body and the brake line can be identified by the location of the intensity maximum along the line in a combined digital image, since t is the sum of the data and the gate signal. - because the data and gate width are smaller than the pixel width of the cameras, a significant portion of the threshold is distributed in a single camera pixel, and any potential change due to the Moire effect is relatively easy to distinguish. Because the gates and data lines have a smaller overall cross-section and are separated from each other than the panel pixel electrodes, they have a lower charge reach and a reduced electric field interference effect. Therefore, the fringe field effect due to the concentrated charge is significantly weakened in accordance with the f embodiment of the present invention. In accordance with another embodiment of the present invention, an enhanced computing technique uses the panel pixel locations to allow for determining the magnification of the imaging sensor head (by comparing the spacing measured by the imaging sensing || with the panel) Geometric specification) Ο and the rotation and offset of the panel pixel plane relative to the camera pixel plane. Alternatively, the panel pixel locations as described above or using any other technique (e.g., a checkerboard or instant drive patterning) can be used to correct for phase errors, errors due to optics, and the like. This in turn allows for relaxation of the requirements for these stages and optics. Figure 12A shows the LCD panel 3 of one of the pixels 302, 3022, 3023 having a number of exemplary chevronTM shapes. The positions of the pixels 302, 3022, 3〇23 20 201017155 are used to determine the panel 300 and an imaging camera. The offset and rotation between the χγ planes. A template of one of the repeating features of the panel, such as its pixels, is captured from an image of a single point. A point is understood to mean the area of the panel whose image can be captured by an imaging camera in a single shot. An LCD pixel such as one of the pixels 3〇1 located at, for example, one of the corners of the panel (e.g., the imaging camera is initially scanned) is selected as a reference pixel. The expected position of a corresponding camera pixel 312 is also shown in Figure 12A. Next, one of the repeating LCD pixel electrodes image templates 350 is constructed as shown in Fig. 12B. Each square in Figure 12b represents a camera pixel. The position of the camera pixel 3122 is displayed in Fig. 12B using a one-line square. Next, the template 35() is set at its intended position (based on the position of the reference pixel) to calculate S between the actual position of the template and its intended position. Thereafter, the template is shifted in a systematic manner until a condition is met. This condition may be satisfied when, for example, the difference between the actual position of the template and its intended position meets the minimum defined by a threshold. This can be found in the same way as the smallest difference. For example, the template may be shifted by a fixed step in four directions from the starting point or it may be used to seek to make the money converge to - (5), the value of the calculated mosquito increments and directions to move, and the like. It is to be understood that any other pixel shape can be used and any other (four) (four) can be used as the reference pixel electrode. The difference between the actual position of the template and its expected position (corresponding to the difference between the actual position 312 of the camera pixel and the expected position 3122, as shown in the figure), when such a condition is satisfied The offset of the LCD from the camera in the χ γ plane is referenced to the figure, and the position of the reference LCD pixel electrode is often known to be within half (50 to 100 microns, typically) of at least one LCD pixel size. In accordance with an embodiment of the present invention, when two-dimensional interpolation is used, the XY offset can be determined to be within a pixel size of a camera or less. In accordance with other embodiments of the present invention, to determine the offset, a plurality of sub-regions, e.g., five, are selected from a single point on the panel. The average deviation between the measured positions of the pixels in the selected regions and the expected positions is then used to determine the offset.

第13A至13D圖示意地顯示依據本發明之另一示範實 施例之用於測定該LCD面板與該攝影機成像陣列之間的該 旋轉角度之一方法。對於該偏移量測,該方法使用該LCD 像素陣列的重複圖案。爲了測定該旋轉,操取一 Lcd影像 位點400,如在第13A圖中所示。接著,選擇諸如在該擷取Figures 13A through 13D schematically illustrate one method for determining the angle of rotation between the LCD panel and the imaging array of the camera in accordance with another exemplary embodiment of the present invention. For this offset measurement, the method uses a repeating pattern of the LCD pixel array. To determine this rotation, an Lcd image site 400 is taken, as shown in Figure 13A. Next, choose something like this

的影诼位點宁的子區域402之一位點子區域作為一參考 點。該子區域可位在例如該位點影像的—隅角且跨越例 以100個攝㈣像素寬之職攝影機像素之—區域。 著,如在第13C圖中所示,該參考子區域影像之一影像小 橫向地(例如,沿著該攝影機的該父轴)被置於影像姻預 要重複的-位置。第13C圖也顯示該面板與該ccd攝影機: 該等χ-γ座標。此後,計算該參考子區_2與該子區域; 像4〇4在其預期位置之間的差。此後,該參考子區域以心 於該橫向移動方向9〇度的—方向(例如沿著該攝影機_ 以-系統方式來移位直至滿足—條件。當例如此差符〜 一臨限值所定義的—最小值時,此條件可滿足。在第13 圖中顯示為《的職轉角度由產生—最小值的該參考子[ 22 201017155 域影像404之最終位置、該參考影像4〇2的該初始位置及該 參考影像404的該預期的位置來定義。如本文方法所描述之 該旋轉角度的準確度部分地由該兩子區域之間的距離、該 子區域的大小及該内插解析度來決定。在一範例中,可實 現大約0.055弧分或2微米的一準確度。可以以多種方式中 之任一種來找到該該最小差。例如,該參考影像可自開始 點移動在例如四個方向的固定步或其可在使用尋求使該差 收斂至一最小值之計算所決定之增量或方向上來移動,等 等。要明白的是,該等參考子區域可以具有不同的大小且 位在不同位點。 第14圖顯示依據本發明之一示範實施例之用於產生一 電壓圖之一系統500的各種元件之間的控制及資料的流 程。一型樣產生器400提供一像素驅動型樣及線驅動型樣給 該党測試面板。此後,一VIOS使用其可以是CCD攝影機或 其它攝影機之攝影機產生該受測試面板之一電壓影像、一 校準影像及一量測影像。一影像處理電腦5〇6使用此資料來 測定該等面板像素位置以及該面板相對於該攝影機的影像 平面在該X-Y平面中之偏移及旋轉量。一動態像素圖產生器 508自影像處理電腦5〇6接收此資訊且作為響應計算一機械 像素圖(MPM)、光學校正資料及對準資訊。影像處理電腦 506自動態像素圖產生器508接收該計算的機械像素圖 (MPM)、光學校正資料及對準資訊以產生一電壓圖。 使用影像計算偏移及旋轉的時間視該初始影像的信號 對比的品質而定。因為一LCD面板包括重複陣列,可應用 23 201017155 多種^號增強/貞算法巾的任-軸號增強演算法 。對於具 有低l號對tb的讀可能需純複㈣演算法或連續應用 多種演算法。 父互相關演算法、絕對差值和(sum of absolute 法或其它類似的演算法來執洲於測定偏 η —比較°習知地,交互相關是兩影像他十 /2(x,y)之相似性的一量測,如下面定義: n_1 v σ,σ2 #2、〇^及口2是該兩影 '1與1之間變化。如 其中《是在每一影像中的像素數,及A、 像的該等平均值及標準偏差。參數r可在 果兩影像相同,則r=l。One of the sub-regions of the sub-region 402 of the shadowing site is used as a reference point. The sub-region may be located, for example, at the corner of the image of the site and spanning the region of the camera pixel of 100 pixels (four) pixels wide. As shown in Fig. 13C, one of the images of the reference sub-area is placed in a small lateral direction (e.g., along the parent axis of the camera) at a position where the image is to be repeated. Figure 13C also shows the panel and the ccd camera: the χ-γ coordinates. Thereafter, the difference between the reference sub-region 2 and the sub-region is calculated; like 4〇4 between its expected positions. Thereafter, the reference sub-area is shifted in the direction of the lateral movement direction by 9 degrees (for example, along the camera_system-by-system mode until the condition is satisfied). When, for example, the difference is defined by a threshold value This condition is satisfied when the minimum value is satisfied. It is shown in Fig. 13 as "the position of the job rotation angle from the generation-minimum value [22 201017155 the final position of the domain image 404, the reference image 4〇2 The initial position and the expected position of the reference image 404 are defined. The accuracy of the rotation angle as described in the method herein is partly due to the distance between the two sub-regions, the size of the sub-region, and the interpolation resolution. In one example, an accuracy of about 0.055 arc minutes or 2 microns can be achieved. The minimum difference can be found in any of a variety of ways. For example, the reference image can be moved from a starting point in, for example, four. Fixed steps of directions or they may be moved in increments or directions determined by calculations that seek to converge the difference to a minimum, etc. It will be appreciated that the reference sub-regions may have different The size and location are at different locations. Figure 14 shows a flow of control and data between various components of a system 500 for generating a voltage map in accordance with an exemplary embodiment of the present invention. A pattern generator 400 A pixel drive pattern and a line drive pattern are provided to the party test panel. Thereafter, a VIOS uses a camera that can be a CCD camera or other camera to generate a voltage image, a calibration image, and a measurement image of the test panel. An image processing computer 5〇6 uses this data to determine the pixel position of the panel and the offset and rotation of the panel relative to the image plane of the camera in the XY plane. A dynamic pixel map generator 508 is self-image processing. The computer receives the information and calculates a mechanical pixmap (MPM), optical correction data, and alignment information in response. The image processing computer 506 receives the calculated mechanical pixmap (MPM), optical from the dynamic pixmap generator 508. Correcting the data and aligning the information to generate a voltage map. The time to calculate the offset and rotation using the image depends on the quality of the signal contrast of the initial image. Since an LCD panel includes a repeating array, the any-axis enhancement algorithm of 23 201017155 can be applied. For readings with low l-to-tb, a pure complex (four) algorithm or continuous application may be required. Algorithm. Parent cross-correlation algorithm, absolute difference sum and (sum of absolute method or other similar algorithm to determine the bias η - comparison ° conventionally, the cross-correlation is two images he ten / 2 (x, y) A measure of the similarity, as defined below: n_1 v σ, σ2 #2, 〇^ and port 2 are the changes between the two shadows '1 and 1. For example, "is the pixel in each image The number, and the average and standard deviation of the image, the parameter r can be the same in both images, then r = l.

參考第13C圖,如果所*的該兩子區域之間的距離是多 個LCD像素大小,當無旋轉時,該兩子區域之間的交互相 關是一最大值。如果有一旋轉,該峰值交互相關將針對該 子區域影像404而移動至一新的位置。因此,該旋轉角度可 藉由找尋子區域影像404的偏移來檢測。如果使用交互相關 來測定偏移及旋轉而非找尋最大值點,則搜尋最大值點。 執行交互相關可能是耗時的。依據另—實施例,使用 如下定義的絕對差值和(SAD)可實現用於測定偏移或旋轉 的影像比較: ^^=^\I,(x,y)-I2(x,y)\ xy 習知地,一SAD可在0與無窮間變化。該兩影像越相似,該 SAD值越小。如果該兩影像相同’ 5^D==〇。參考第13D圖, 24 201017155 可藉由找尋子區域404之最小SAD位置來檢測旋轉誤差。 SAD演算法比交互相關演算法較快但較不準確。 第15圖顯示依據本發明之一實施例使用的一影像處理 電腦600。影像處理電腦600顯示為包括至少一處理器6〇2, 該處理器602經由一匯流排子系統6〇4與多個周邊裝置通 汛。14些周邊裝置可包括一儲存子系統6〇6(部分地包括一 記憶體子系統608及-檔案儲存子祕61())、使用者介面輸Referring to Fig. 13C, if the distance between the two sub-regions of * is a plurality of LCD pixel sizes, when there is no rotation, the interaction between the two sub-regions is a maximum. If there is a rotation, the peak cross-correlation will move to a new location for the sub-region image 404. Therefore, the angle of rotation can be detected by looking for the offset of the sub-area image 404. If cross-correlation is used to determine the offset and rotation instead of finding the maximum point, then the maximum point is searched. Performing interaction correlations can be time consuming. According to another embodiment, an image comparison for determining the offset or rotation can be achieved using the absolute difference sum (SAD) as defined below: ^^=^\I,(x,y)-I2(x,y)\ Xy Conventionally, a SAD can vary between 0 and infinity. The more similar the two images are, the smaller the SAD value is. If the two images are the same '5^D==〇. Referring to Fig. 13D, 24 201017155, the rotation error can be detected by finding the minimum SAD position of the sub-area 404. The SAD algorithm is faster but less accurate than the cross-correlation algorithm. Figure 15 shows an image processing computer 600 for use in accordance with an embodiment of the present invention. The image processing computer 600 is shown to include at least one processor 〇2 that communicates with a plurality of peripheral devices via a busbar subsystem 〇4. 14 peripheral devices may include a storage subsystem 6〇6 (partially including a memory subsystem 608 and a file storage sub-function 61 ()), user interface input

入裝置612、使用者介面輸出裝置614及一網路介面子系統 616。該等輸人及輸出裝置允許㈣者與資料處理系統咖 互動。 "面子系統616提供與其它電腦系統、網路及健存 資源604的-介面。該等網路可包括網際網路、-區域網路 =AN)、一廣域網路(侧)、一無線網路、-内部網路、一 用網路、—公_路、—哺網路或任何其它適當 用網路介面子系統616充當用於接收來自其它來二 ' 於自°亥電腦(貧料處理裝置)將資料傳輸至其 :之:介面。網路介面子系統616之實施例包括_乙太二 數據機(電話、衛星、電# $ 戶線路咖)單彻錄等)、(異步)數位用 使用者介面輸入裝置612可包括一鍵盤、諸如一心 =跡球、觸控板之指向裝置朗形輸人板、厂、 :,、併入顯示器的一觸控屏、諸如聲:=、-麥克風之音印^ ^識別系統、 使用該術,二 類型的輸入裝置。-般地, ”入裝置意圖是包括將資訊輸入至處理裝置之 25 201017155 所有可能類型的裝置及方式。 機 使用者介面輸”置614可包括1示子祕、一印表 -傳真機或諸如音訊輸出裝置之非視覺顯示。該顯示 子系統可以是陰極射線管(CRT)、諸如—液晶顯示器(lcd) :-平板裝置或-投刪。一般地使用該術語輸出裝置 意圖是包括自該處理裝置將資訊輪出之所有 置及方式。The device 612, the user interface output device 614, and a network interface subsystem 616. These input and output devices allow (4) to interact with the data processing system. The "face subsystem 616 provides an interface to other computer systems, networks, and health resources 604. Such networks may include the Internet, - Regional Network = AN), a wide area network (side), a wireless network, - an internal network, a network, a public network, a network, or Any other suitable network interface subsystem 616 acts as a means for receiving data from other computers that are transmitted from the computer (the poor material processing device). The embodiment of the network interface subsystem 616 includes an _Ethernet data machine (telephone, satellite, electric line, single line, etc.), and the (asynchronous) digital user interface input device 612 can include a keyboard, Such as a heart = track ball, touchpad pointing device, a shape input panel, factory, :, a touch screen incorporated into the display, such as sound: =, - microphone sound recording ^ ^ recognition system, using the technology , two types of input devices. In general, the "input device is intended to include all of the possible types of devices and methods for inputting information to the processing device. The user interface input 614 may include a display, a printer, a fax machine, or the like. Non-visual display of the audio output device. The display subsystem can be a cathode ray tube (CRT), such as a liquid crystal display (lcd): a flat panel device or a drop device. The term output device is generally used to include all of the ways in which information is rotated from the processing device.

儲存子系細6可較㈣財提供依據本發明之實 施例的該功能性之基本規劃及資料建構。例如,依據本發 明之-實施例,實現本發明之功能性的軟體模組可儲存在 儲存子系統_中。這些軟體模組可由處理祕2來執行。 諸存子系統606也可提供帛於儲存依據本發明所使用的資 料之-儲存庫。儲存子系細6可包_如記憶體子系統 608及檔案/磁碟儲存系統61〇。The storage subsystem 6 can provide basic programming and data construction of the functionality in accordance with an embodiment of the present invention. For example, in accordance with an embodiment of the present invention, a software module implementing the functionality of the present invention can be stored in a storage subsystem. These software modules can be executed by the processing secret 2. The storage subsystem 606 can also provide a repository for storing the information used in accordance with the present invention. The storage subsystem can be packaged as a memory subsystem 608 and a file/disk storage system 61.

記憶體子系統608可包括多個記憶體,包括用於儲存程 式執行期Fa’的指資料之-线機#取記憶體 (RAM)618及儲存固定指令之一唯讀記憶體(R〇M)62〇。播 案儲存子纟統_提供針對料及資㈣案讀久的(非依 電的)儲存’且可包括—硬碟驅動機、一軟磁碟驅動機以及 相關聯之可移除媒體、一光碟唯讀記憶體(CD_R〇M)驅動 機、一光學驅動機、可移除媒體匣及其它類似的儲存媒體。 匯流排子系統6〇4提供用於致能該處理裝置之該等各 種疋件及子系統彼此相互通訊之—機制。儘管匯流排子系 顯*為—單―匯流排,但是該匯流排子系統之 26 201017155 可選擇的實施例可使用多個匯流排。 該處理裝置可為不同類型,包括一個人電腦、一可攜 式電腦、一工作站、一網路電腦、一主機(mainframe)、一 資訊站或任何其它資料處理系統。要明白的是,該電腦系 統600的描述只是作為一範例。具有比第15圖所示的該系統 較多或較少的許多其它組態是可能的。 本發明之實施例提供多個優點。第一,如上所述,該 閘/資料線與該等周圍的像素區域之間的較高對比使該面 板與攝影機之間之偏移及旋轉的量測能夠比習知的技術更 為準確。第二’由於該等閘線、資料線及它們的相交具有 與該等面板像素電極相同的週期或間距,故這些線的該等 電壓影像可用來以比該等習知技術較高的準確度不僅測定 該等面板像素電極的間距及週期而且測定該等面板像素電 極中心之位置。第三,由該成像感測器頭所量測的該像素 間距與該面板的幾何規格之比較提供該成像感測器頭的光 學放大率之一量測。這接著允許放寬該等感測器頭光學器 件要求。 依據本發明之另一實施例,檢測面板邊緣。爲了實現 此目的,以一電壓來給面板中所有的該等LCD像素充電以 使得在該面板之最外周邊與該面板本身之主動區(見例如 第6A圖、第6B圖及第7圖)之間產生一高的對比。以這樣的 一方式來驅動該面板致能該面板之該等邊緣(即該主動區 的該等邊界)的一清晰輪廓。使用影像處理演算法及該機械 像素圖’在一棋盤板型樣不能使用(例如1G1D面板)時可使 27 201017155 用此類實施例來測定像素中心的位置。在此類實施例中’ 探測框(probe frame)提供該等驅動電壓給該等接觸墊片,該 等接觸墊片被設置在靠近該主動區處。如果整個主動區在 該面板的一側不可見,則該面板的該等剩餘邊緣可用來決 定該像素圖。 儘管上面的描述是參考使用一VIOS技術之一電光測 試方法來提供的,但是本發明之實施例可同樣地應用於使 用需要複雜及昂貴的校準板之電子束技術之TFT陣列的測 5式。另外,由於該等資料及閘線信號以所施加的電壓之一 函數而線性地變化,本發明之實施例可用於電子束測試 器、VIOS測试器等中之電壓靈敏度校準。 因為依據本發明’響應於施加電壓至該等閘線及資料 線所獲得的該等電壓影像典型地具有良好的信號對比,該 映射過程可足夠快且可在每一面板(pane丨)的基礎上應用而 無總TACT時間之明顯降級。依據習知的方法,該映射過程 最多按每—板(plate)來執行且通常較少執行 ,與之不同,本 發明之實施例提供映射中的自動動態調整^換言之,本發 明之實施例在-板内發生多次調整。習知的方法需要大約 例如4至5秒來完成偏移及旋轉及最終DpM的計算,而本發 月之實施例可在例如—秒或不到―秒内執行更準破的計 算。 本發月之上面的實施例是說明性的而非限制。各種替 代,等效物是可能的。鑑於本揭露,其它增加減少或修 月顯的且意欲人後附的中請專利範圍之範圍内。 28 201017155 I:圖式簡單說明3 ”圖顯示如在先前技藝中習知的—平板上的多個示 範缺陷。 ' 第2圖顯示如在先前技藝中習知的在_圖案化的破璃 板上移動以檢測缺陷之一示範攝影機及一示範調變器。 第3A圖是第2圖的在該圖案化的玻璃板上移動之該示 範攝影機及示範調變器之一前視圖。 第3B圖顯示第2圖的設置在該圖案化的破璃板附近以 檢測缺陷之該示範攝影機及示範浮動調變器。 .第4圖是設置在-LCD面板上面之—成像感測器之一 俯視示意圖。 第5圖顯示如在先前技藝中習知的用於產生一電壓圖 之一系統的各種元件之間的控制及資料流程。 ▲第6A圖顯示包括-TFT陣列、面板^標記及用來測 试该陣列的一 2G2D短路棒之一示範面板。 第6B圖是第6A圖之該面板的一區域之 第7圖顯示包括-TFT陣列、面板參考襟記及絲測試 該陣列的一 1G1D短路棒之一示範面板。 二圖顯示如在先前技藝中習知的施加於第Μ圖之 &G2D面板以產生—棋盤型樣之示範電壓 向所_娜卿方 29 201017155 第8D圖顯示記錄第8C圖的該等面板像素之該等響應 之該等相關聯的攝影機像素。 第8E圖顯示第8D圖的該等攝影機像素之該等輸出信 號。 第9A圖顯示如在先前技藝中習知的施加於第7圖所示 的該1G1D面板之示範電壓。 第9B圖是由於施加第9A圖所示的示範電壓而產生之 該等像素電極之一空間電壓圖。 第9C圖顯示由第9B圖的該等像素沿著該等XX或YY方 向所接收之該等電壓。 第9D圖顯示記錄第9C圖的該等面板像素之該等響應 之該相關聯的攝影機像素。 第9E圖顯示第9D圖的該等攝影機像素之示範輸出信 號。 第10A圖是依據本發明之一示範實施例之適用於測定 一平板顯示器之該等像素的該等位置的該等信號之一示範 時序圖。 第10B至10G圖是依據本發明之一實施例之接收在第 10A圖中所示之該等電壓的該等閘線及資料線之示範影像。 第11A圖是使用依據本發明之一示範實施例的電壓信 號來驅動資料及閘線的一平板的一部分之一晝面截圖。 第11B及11C圖是第11A圖的該影像沿著X及Y方向所 獲之強度曲線。 第12A至12C圖顯示依據本發明之一示範實施例之用 201017155 於測定一平板平面與一攝影機平面之間的偏移量之一示範 過程。 第13A至13D圖顯示依據本發明之一示範實施例之用 於測定一平板平面與一攝影機平面之間的旋轉角度之一示 範過程。 第14圖顯示依據本發明之一示範實施例之用於產生一 電壓圖之一系統的各種元件之間的控制及資料之流程。 第15圖顯示依據本發明之一實施例而使用之一影像處 ❿ 理電腦600。 【主要元件符號說明】 10...玻璃板 124...電晶體 15...調變器 126...外來顆粒 18.. .LCD 面板 128...殘留物 20、170...區域 150、180···面板 25...空氣間隙 152、162...面板對準標記 30...面板像素電極 156...面板劃線 35...攝影機、成像感測器 160…主動顯不區 45…LC材料 172、174 …列 50...平坦玻璃 182、184、186、188...行 60、70…像素 200...墊片、閘偶 100...型樣產生器 202…墊片、閘奇 102...VIOS 204…墊片、資料奇 104...影像處理電腦 206…墊片、資料偶 106...動態像素圖 208...閘線 110...金屬突出 210...資料輸入線 112...ITO 300.. .LCD 面板 114...ITO 突出 302,' 3022'3023...Chevron™ 116...金屬 形狀像素 118…鼠喊 312!...攝影機像素、實際位置 120...開口電路 3122...攝影機像素、預期位置 122...短路 350…影像模板 31 201017155 400··. LCD影像位點 402…子區域、參考子區域、 參考影像 404·.·影像、子區域影像、參 考子區域、參考子區域 影像、參考影像、子區 域 500···系統 5〇6…影像處理電腦 508.··動態像素圖產生器 600..·影像處理電腦、電腦系 統 602...處理器 6〇4·..匯流排子系統 606··.儲存子系統 608·..記憶體子系統 610·.,檔案儲存子系統 612…使用者介面輸入裝晋 614…使用者介面輪出裝^ 616…網路介面子系統裒置 618…主隨機存取記憶 620…唯讀記憶體 32The memory subsystem 608 can include a plurality of memories, including pointer data for storing the program execution period Fa', a line machine # memory (RAM) 618, and a read-only memory (R〇M). ) 62〇. The broadcast storage system provides a long-term (non-electrical storage) for the materials and resources (4) and can include - a hard disk drive, a floppy disk drive and associated removable media, a CD-ROM only Read memory (CD_R〇M) drivers, an optical drive, removable media, and other similar storage media. The busbar subsystem 〇4 provides a mechanism for enabling the various components and subsystems of the processing device to communicate with each other. Although the busbar system is a single-bus bar, the alternative embodiment of the busbar subsystem 26 201017155 can use multiple busbars. The processing device can be of a different type including a personal computer, a portable computer, a workstation, a network computer, a mainframe, a kiosk or any other data processing system. It is to be understood that the description of the computer system 600 is only an example. Many other configurations with more or less than the system shown in Figure 15 are possible. Embodiments of the present invention provide a number of advantages. First, as discussed above, the higher contrast between the gate/data line and the surrounding pixel regions enables the measurement of the offset and rotation between the panel and the camera to be more accurate than conventional techniques. Secondly, since the gate lines, data lines, and their intersections have the same period or spacing as the panel pixel electrodes, the voltage images of the lines can be used for higher accuracy than the prior art. The position and period of the pixel electrodes of the panel are measured, and the positions of the center of the pixel electrodes of the panel are measured. Third, the comparison of the pixel pitch measured by the imaging sensor head to the geometry of the panel provides one measure of the optical magnification of the imaging sensor head. This in turn allows for relaxation of the sensor head optics requirements. According to another embodiment of the invention, the edge of the panel is detected. To accomplish this, all of the LCD pixels in the panel are charged at a voltage such that the outermost perimeter of the panel and the active area of the panel itself (see, for example, Figures 6A, 6B, and 7) There is a high contrast between them. Driving the panel in such a manner enables a sharp outline of the edges of the panel (i.e., the boundaries of the active region). The use of an image processing algorithm and the mechanical pixel map' can be used to determine the position of the pixel center using such an embodiment when a board pattern cannot be used (e.g., a 1G1D panel). In such embodiments, a probe frame provides the drive voltages to the contact pads, the contact pads being disposed adjacent to the active region. If the entire active area is not visible on one side of the panel, then the remaining edges of the panel can be used to determine the pixmap. Although the above description has been made with reference to an electro-optic test method using a VIOS technique, embodiments of the present invention are equally applicable to the measurement of a TFT array using an electron beam technique requiring a complicated and expensive calibration plate. Additionally, embodiments of the present invention can be used for voltage sensitivity calibration in electron beam testers, VIOS testers, etc., as the data and gate signals vary linearly as a function of the applied voltage. Since the voltage images obtained in response to the application of a voltage to the gates and data lines typically have good signal contrast in accordance with the present invention, the mapping process can be fast enough and can be based on each panel. Applyed without significant degradation of total TACT time. In accordance with conventional methods, the mapping process is performed at most per-plate and is typically performed less. In contrast, embodiments of the present invention provide automatic dynamic adjustment in mapping. In other words, embodiments of the present invention are - Multiple adjustments occur within the board. The conventional method requires about 4 to 5 seconds to complete the offset and rotation and the final DpM calculation, and the embodiment of the present month can perform a more accurate calculation in, for example, -second or less than seconds. The above embodiments of this month are illustrative and not limiting. Various alternatives, equivalents are possible. In view of the present disclosure, other additions are made within the scope of the patent claims that are reduced or repaired and intended to be attached. 28 201017155 I: Schematic description of the drawings 3 "The figure shows a number of exemplary defects on the plate as is known in the prior art. ' Figure 2 shows a patterned glass plate as conventionally known in the prior art. An exemplary camera and an exemplary modulator that move up to detect defects. Figure 3A is a front view of the exemplary camera and exemplary modulator moving on the patterned glass plate of Figure 2. Figure 3B The exemplary camera and the exemplary floating modulator disposed near the patterned glass plate to detect defects are shown in Fig. 4. Fig. 4 is a top view of one of the imaging sensors disposed on the -LCD panel. Figure 5 shows the control and data flow between the various components of a system for generating a voltage map as is conventional in the prior art. ▲ Figure 6A shows the inclusion of a -TFT array, panel marks, and Try one of the 2G2D shorting bars of the array to demonstrate the panel. Figure 6B is a 7th image of the panel of Figure 6A showing a 1G1D shorting bar including a TFT array, a panel reference, and a wire test array. One of the demonstration panels. An exemplary voltage applied to the & G2D panel as shown in the prior art to produce a checkerboard pattern is shown in FIG. 8A. FIG. 8D shows the panel pixels of the 8Cth image. The associated camera pixels of the response. Figure 8E shows the output signals of the camera pixels of Figure 8D. Figure 9A shows the application of Figure 7 as shown in the prior art. The exemplary voltage of the 1G1D panel. Figure 9B is a spatial voltage diagram of the pixel electrodes generated by applying the exemplary voltage shown in Figure 9A. Figure 9C shows the pixels along the 9B diagram along the same The voltages received in the XX or YY direction. Figure 9D shows the associated camera pixels recording the responses of the panel pixels of Figure 9C. Figure 9E shows an exemplary of the camera pixels of Figure 9D. Figure 10A is an exemplary timing diagram of one of the signals suitable for determining the positions of the pixels of a flat panel display in accordance with an exemplary embodiment of the present invention. Figures 10B through 10G are diagrams in accordance with the present invention. An embodiment Exemplary images of the gate lines and data lines receiving the voltages shown in FIG. 10A. FIG. 11A is a diagram of a flat panel for driving data and gate lines using a voltage signal according to an exemplary embodiment of the present invention. One of the sections is a screenshot. The 11B and 11C are the intensity curves obtained along the X and Y directions of the image of Figure 11A. Figures 12A to 12C show the measurement with 201017155 according to an exemplary embodiment of the present invention. An exemplary process of an offset between a plane of a plane and a plane of a camera. Figures 13A through 13D illustrate one of the angles of rotation for determining a plane between a plane and a plane of a camera in accordance with an exemplary embodiment of the present invention. Demonstration process. Figure 14 is a diagram showing the flow of control and data between various components for generating a voltage map system in accordance with an exemplary embodiment of the present invention. Figure 15 shows the use of an image processing computer 600 in accordance with an embodiment of the present invention. [Description of main component symbols] 10...glass plate 124...transistor 15...modulator 126...external particles 18..LCD panel 128...residue 20,170...region 150, 180··· panel 25...air gap 152,162...panel alignment mark 30...panel pixel electrode 156...panel scribe 35...camera, imaging sensor 160...active Display area 45...LC material 172, 174 ... column 50... flat glass 182, 184, 186, 188... line 60, 70... pixel 200... spacer, gate even 100... 202...gasket, gate 102...VIOS 204...shield, data odd 104...image processing computer 206...shield, data even 106...dynamic pixel map 208...gate line 110.. Metal protrusion 210...data input line 112...ITO 300.. .LCD panel 114...ITO protrusion 302, ' 3022'3023...ChevronTM 116...metal shape pixel 118...rat shout 312 !...camera pixel, actual position 120...open circuit 3122...camera pixel, expected position 122...short circuit 350...image template 31 201017155 400··. LCD image spot 402...sub-region, reference sub- Area, reference image 404·.·image Sub-area image, reference sub-area, reference sub-area image, reference image, sub-area 500···system 5〇6...image processing computer 508.··dynamic pixel map generator 600..·image processing computer, computer system 602...processor 6〇4·.. busbar subsystem 606·.. storage subsystem 608·.. memory subsystem 610·., file storage subsystem 612... user interface input 614... use Interface rounding out ^ 616... network interface subsystem set 618... primary random access memory 620... read only memory 32

Claims (1)

201017155 七、申請專利範圍: 1. 一種測定一平板顯示器相對於一感測頭的一位置之一 位置的方法,該平板顯示器包含耦接至多個資料線及閘 線之多個像素,該方法包含以下步驟: 將一第一信號施加於該等多個閘線; 擷取該等閘線對該第一信號的一響應; 將一第二信號施加於該等多個資料線; 擷取該等資料線對該第二信號的一響應; 將該第一及第二響應相組合以產生一組合響應; 使用該組合響應測定該等閘線與資料線的相交,該 等相交表示該等像素的該等位置; 使用該等像素位置來測定該平板顯示器相對該感 測頭的偏移及旋轉值。 2. 如申請專利範圍第1項所述之方法,其進一步包含以下 步驟: 在不激發該等像素的情況下同時施加該第一及第 二信號。 3. 如申請專利範圍第1項所述之方法,其進一步包含以下 步驟: 在一第一時間週期施加該第一信號;及 在一第二時間週期施加該第二信號,該第二時間週 期不與該第一時間週期重疊。 4. 如申請專利範圍第1項所述之方法,其中該感測頭包含 一成像攝影機,其中使用一第一電壓影像來擷取該等閘 33 201017155 線之該響應,及其中使用一第二電壓影像來擷取該等資 料線之該響應。 5. 如申請專利範圍第1項所述之方法,其中該感測頭包含 可操作以檢測對一電子束信號的響應之一檢測器。 6. 如申請專利範圍第1項所述之方法,其進一步包含以下 步驟: 擷取該面板上一位點的一影像; 擷取該面板之一重複特徵之一模板; 將該模板定義在該感測頭的一像素空間中; 自該擷取的影像位點建構該模板的一影像; 計算該模板之一實際位置與該模板之一預期位置 之間的一差,該模板之該實際位置由該模板的影像來定 義,該模板之該預期的位置由該面板之該等重複特徵之 已知位置來定義;及 相對於該模板的預期位置改變該模板的影像之一 位置直至該差滿足一預定條件,其中當該預定的條件滿 足時該差表示該面板相對於該感測頭之一 XY偏移之特 徵。 7. 如申請專利範圍第6項所述之方法,其中該重複圖案是 一面板像素。 8. 如申請專利範圍第6項所述之方法,其進一步包含以下 步驟: 在該面板上選擇一參考像素; 測定該參考像素在該模板影像上的一位置; 201017155 影像===,考像素在該 改變該模板的影像之一位置 鲁 期的位置與該參考像素在該影像模===—預定條件’其中#_定條件料時該參考像素之兮 預期的位置與該參考像素在該料模板上㈣位置二 間的該差表示該面板相對於該感測頭的該χγ偏移之特 徵 9.如申請專利範圍第6項所述之方法,其進一步包含以下 步驟: 在該位點中選擇多個子區域; 測定該等選定的多個子區域在該模板影像上的位 置;201017155 VII. Patent Application Range: 1. A method for determining a position of a flat panel display relative to a position of a sensing head, the flat panel display comprising a plurality of pixels coupled to a plurality of data lines and a gate line, the method comprising The following steps: applying a first signal to the plurality of gate lines; capturing a response of the gate lines to the first signal; applying a second signal to the plurality of data lines; a response of the data line to the second signal; combining the first and second responses to generate a combined response; determining the intersection of the gate lines with the data lines using the combined response, the intersections representing the pixels The positions; the pixel positions are used to determine the offset and rotation values of the flat panel display relative to the sensing head. 2. The method of claim 1, further comprising the step of: simultaneously applying the first and second signals without exciting the pixels. 3. The method of claim 1, further comprising the steps of: applying the first signal during a first time period; and applying the second signal during a second time period, the second time period Does not overlap with the first time period. 4. The method of claim 1, wherein the sensing head comprises an imaging camera, wherein a first voltage image is used to capture the response of the gate 33 201017155 line, and a second is used therein The voltage image captures the response of the data lines. 5. The method of claim 1, wherein the sensing head comprises a detector operative to detect a response to an electron beam signal. 6. The method of claim 1, further comprising the steps of: capturing an image of a point on the panel; capturing a template of one of the repeating features of the panel; defining the template in the a pixel space of the sensing head; constructing an image of the template from the captured image site; calculating a difference between an actual position of the template and an expected position of the template, the actual position of the template Defined by the image of the template, the expected position of the template is defined by the known position of the repeating features of the panel; and the position of one of the images of the template is changed relative to the expected position of the template until the difference is satisfied A predetermined condition, wherein the difference indicates a characteristic of the panel being offset XY with respect to one of the sensing heads when the predetermined condition is satisfied. 7. The method of claim 6, wherein the repeating pattern is a panel of pixels. 8. The method of claim 6, further comprising the steps of: selecting a reference pixel on the panel; determining a position of the reference pixel on the template image; 201017155 image ===, test pixel At a position where the position of the image of the template is changed, and a position of the reference pixel in the image mode ===-predetermined condition 'where#_the condition is expected, and the reference pixel is at the reference pixel The difference between the position of the (4) position on the material template indicates the feature of the χ γ offset of the panel relative to the sensor head. 9. The method of claim 6 further comprising the steps of: Selecting a plurality of sub-areas; determining a position of the selected plurality of sub-areas on the template image; 計算該等選定的多個子區域之預期的位置與該等 選定的多個子區域在該影像模板上的相對應的位置之 間之一差;並 改變該模板的影像之一位置直至該等選定的多個 子區域之預期的位置與該等選定的多個子區域在該影 像模板上的相對應的位置之間之一差滿足一預定條 件’其中當該預定條件滿足時該等選定的多個子區域之 預期的位置與該等選定的多個子區域在該影像模板上 的相對應的位置之間之該差表示該面板相對於該感測 頭之該XY偏移之特徵。 10.如申請專利範圍第6項所述之方法,其中當該差小於一 35 201017155 已知值時該條件滿足。 11. 如申請專利範圍第6項所述之方法,其中當該差大於一 已知值時該條件滿足。 12. 如申請專利範圍第6項所述之方法,其進一步包含以下 步驟: 在該擷取的影像位點中選擇一區域; 將該選定區域的影像橫向地設置在該選定區域的 影像依據該面板之該等重複特徵而被預期重複之一位 置; 相對於該橫向移動之該方向移位選定區域的影像 之一角位置直至該區域的實際及預期位置滿足一第二 條件,其中當該條件滿足時該面板與該感測頭之間的一 旋轉角度由該選定區域之一初始位置、該選定區域之一 預期位置及該選定區域的影像位置來定義。 13. 如申請專利範圍第6項所述之方法,其中該差是依據一 交互相關演算法而計算。 14. 如申請專利範圍第6項所述之方法,其中該差是依據一 絕對差值和演算法而計算。 15. —種可操作以測定一平板顯示器之像素位置的裝置,該 平板顯示器包含多個資料線及閘線,該裝置包含: 一信號產生器,其可操作以將一第一信號供應給該 等多個閘線及將一第二信號供應給該等多個資料線, 一感測頭,其可操作以擷取該等閘線對該第一信號 的一響應並進一步擷取該等資料線對該第二信號的一 201017155 響應;及 一電腦系統,其可操作以: 將該第一及第二響應相組合以產生一組合響 應, 使用該組合響應測定該等閘線與資料線的相 交,該等相交表示該等像素的該等位置;及 使用該等像素位置測定該平板顯示器相對該 感測頭的偏移及旋轉值。 16. 如申請專利範圍第15項所述之裝置,其中該信號產生器 可操作以在不激發該等像素的情況下同時供應該第一 及第二信號。 17. 如申請專利範圍第15項所述之裝置,其中該信號產生器 可操作以在一第一時間週期期間供應該第一信號及在 一第二時間週期期間供應該第二信號,該第二時間週期 不與該第一時間週期重疊。 18. 如申請專利範圍第15項所述之裝置,其中該感測頭包含 一成像攝影機,其中使用一第一電壓影像擷取該等閘線 的該響應及其中使用一第二電壓影像擷取該等資料線 的該響應。 19. 如申請專利範圍第15項所述之裝置,其中該感測頭包含 可操作以檢測對一電子束信號的響應之一檢測器。 20. 如申請專利範圍第15項所述之裝置,其中該電腦系統進 一步可操作以: 擷取該面板之一重複特徵之一模板; 37 201017155 將該模板定義在該感測頭之一像素空間中; 自藉由該感測頭所擷取的一位點影像建構該模板 之一影像; 計算該模板之一實際位置與該模板之一預期位置 之間的一差,該模板之該實際位置由該模板的影像來定 義,該模板之該預期的位置由該面板之該等重複特徵之 已知位置來定義;及 相對於該模板的預期位置改變該模板的影像之一 位置直至該差滿足一預定條件,其中當該預定的條件滿 足時該差表示該面板相對於該感測頭之一 X γ偏移之特 徵。 21. 如申請專利範圍第20項所述之裝置,其中該重複圖案是 一面板像素。 22. 如申請專利範圍第20項所述之裝置,其中該電腦系統進 一步可操作以: 在該面板上選擇一參考像素; 測定該參考像素在該模板影像上的一位置; 計算該參考像素之一預期位置與該參考像素在該 影像模板上之該位置之間之一差;並 改變該模板的影像之一位置直至該參考像素之預 期的位置與該參考像素在該影像模板上之該位置滿足 一預定條件,其中當該預定條件滿足時該參考像素之該 預期的位置與該參考像素在該影像模板上的該位置之 間的該差表示該面板相對於該感測頭的該XY偏移之特 38 201017155 徵0 23.如申請專利範圍第2()項所述之裝置 一步可操作以: 在該位點中選擇多個子區域; 測定該等選㈣乡個子區域在該模板影像上 的位 6十算該等選定的多個子區域之預期的位置與該等 選定的多個子區域在該影像模板上的相對應的位置之 間之一差;並Calculating a difference between an expected position of the plurality of selected sub-regions and a corresponding position of the selected plurality of sub-regions on the image template; and changing a position of the image of the template until the selected ones A difference between an expected position of the plurality of sub-regions and a corresponding position of the plurality of selected sub-regions on the image template satisfies a predetermined condition 'where the selected plurality of sub-regions are satisfied when the predetermined condition is satisfied The difference between the expected location and the corresponding location of the selected plurality of sub-regions on the image template represents a characteristic of the XY offset of the panel relative to the sensing head. 10. The method of claim 6, wherein the condition is satisfied when the difference is less than a known value of 35 201017155. 11. The method of claim 6, wherein the condition is satisfied when the difference is greater than a known value. 12. The method of claim 6, further comprising the steps of: selecting an area among the captured image points; and displaying an image of the selected area laterally in the selected area according to the image One of the repeating features of the panel is expected to repeat one of the positions; the angular position of the image of the selected region is shifted relative to the direction of the lateral movement until the actual and expected position of the region satisfies a second condition, wherein the condition is satisfied A rotation angle between the panel and the sensing head is defined by an initial position of the selected area, an expected position of the selected area, and an image position of the selected area. 13. The method of claim 6, wherein the difference is calculated according to an interaction correlation algorithm. 14. The method of claim 6, wherein the difference is calculated based on an absolute difference and an algorithm. 15. Apparatus for operating a pixel position of a flat panel display, the flat panel display comprising a plurality of data lines and gate lines, the apparatus comprising: a signal generator operative to supply a first signal to the And a plurality of gate lines and a second signal are supplied to the plurality of data lines, a sensing head operable to capture a response of the gate lines to the first signal and further extracting the data The line is responsive to a 201017155 of the second signal; and a computer system operable to: combine the first and second responses to produce a combined response, and use the combined response to determine the gate and data lines Intersecting, the intersections representing the locations of the pixels; and using the pixel locations to determine the offset and rotation values of the flat panel display relative to the sensing head. 16. The device of claim 15 wherein the signal generator is operative to simultaneously supply the first and second signals without exciting the pixels. 17. The device of claim 15 wherein the signal generator is operative to supply the first signal during a first time period and to supply the second signal during a second time period, the The two time periods do not overlap with the first time period. 18. The device of claim 15, wherein the sensing head comprises an imaging camera, wherein the first voltage image is used to capture the response of the gate lines and a second voltage image is captured therein The response of the data lines. 19. The device of claim 15 wherein the sensing head comprises a detector operative to detect a response to an electron beam signal. 20. The device of claim 15, wherein the computer system is further operable to: retrieve a template of one of the repeating features of the panel; 37 201017155 defining the template in a pixel space of the sensing head Constructing an image of the template from a point image captured by the sensing head; calculating a difference between an actual position of the template and an expected position of the template, the actual position of the template Defined by the image of the template, the expected position of the template is defined by the known position of the repeating features of the panel; and the position of one of the images of the template is changed relative to the expected position of the template until the difference is satisfied A predetermined condition, wherein the difference indicates a characteristic of the panel being offset with respect to one of the sensing heads X γ when the predetermined condition is satisfied. 21. The device of claim 20, wherein the repeating pattern is a panel of pixels. 22. The device of claim 20, wherein the computer system is further operable to: select a reference pixel on the panel; determine a position of the reference pixel on the template image; calculate the reference pixel a difference between an expected position and the position of the reference pixel on the image template; and changing a position of the image of the template until an expected position of the reference pixel and the position of the reference pixel on the image template Satisfying a predetermined condition, wherein the difference between the expected position of the reference pixel and the position of the reference pixel on the image template when the predetermined condition is satisfied represents the XY offset of the panel relative to the sensing head移特特38 201017155 征0 23. The device described in item 2 () of the patent application is operable in one step to: select a plurality of sub-regions in the site; and determine the selected (four) town sub-regions on the template image Bit 6 is calculated between the expected position of the selected plurality of sub-regions and the corresponding position of the selected plurality of sub-regions on the image template Poor; and ’其中該電腦系統進 改變該模板的影像之一位置直至該等選定的多個 子區域之預期的位置與該等選定的多個子區域在該影 像模板上的相對應的位置之間之一差滿足一預定條 件’其中當該預定條件滿足時該等選定的多個子區域之 預期的位置與該等選定的多個子區域在該影像模板上 的相對應的位置之間之該差表示該面板相對於該感測 頭之該XY偏移之特徵。 24_如申請專利範圍第2〇項所述之裝置’其中當該差小於一 已知值時該條件滿足。 25. 如申請專利範圍第2〇項所述之裝置,其中當該差大於一 已知值時該條件滿足。 26. 如申請專利範圍第2〇項所述之裝置,其中該電腦系統進 一步可操作以·· 在該擷取的影像位黠中選擇一區域; 將該選定區域的影像橫向地設置在該選定區域的 39 201017155 影像依據該面板之該等重複特徵而被預期重複之一位 置; 相對於該橫向移動之該方向移位選定區域的影像 之一角位置直至該區域的實際及預期位置滿足一第二 條件,其中當該條件滿足時該面板與該感測頭之間的一 旋轉角度由該選定區域之一初始位置、該選定區域之一 預期位置及該選定區域的影像位置來定義。 27. 如申請專利範圍第20項所述之裝置,其中該差是依據一 交互相關演算法而計算。 28. 如申請專利範圍第20項所述之裝置,其中該差是依據一 絕對差值和演算法而計算。 29. —種識別形成在一平板顯示器之多個面板中之多個像 素的位置之方法,該方法包含以下步驟: 將一電壓信號供應給該等面板中的一第一面板以 使得沿著該等面板之該第一面板之至少一第一邊緣設 置的像素呈現與由非沿著該等面板之該第一面板之該 至少該第一邊緣設置的像素之至少一子集所呈現之一 第二電壓影像對比不同的一第一電壓影像對比;及 使用該第一與第二影像對比之間的該不同來識別 該等面板之該第一面板之該等像素的位置。 30. 如申請專利範圍第29項所述之方法,其進一步包含以下 步驟: 將一第二電壓信號供應給該等面板之該第一面板 以使得沿著該等面板之該第一面板之至少一第二邊緣 201017155 設置的像素呈現與該第二電壓影像對比不同的一第三 電壓影像對比;及 使用該第三與第二影像對比之間的該差來識別該 等面板之該第一面板之該等像素的位置。 31.—種可操作以識別形成在一平板顯示器之一或多個面 板中之多個像素之位置的裝置,該裝置包含: 一信號產生器,其可操作以將一電壓信號供應給該 等面板之一第一面板; 一感測頭,其可操作以擷取該等面板之該第一面板 之像素之一電壓影像,該擷取的電壓影像呈現與沿著該 等面板之該第一面板之至少一第一邊緣設置之像素相 關聯的一第一對比,該擷取的電壓影像呈現與非沿著該 面板之該第一面板之該至少該第一邊緣設置的像素之 至少一子集相關聯之一第二對比,該第一對比與該第二 對比不同;及 一電腦系統,其適於使用該第一與第二對比之間的 該差來識別該等面板之該第一面板之該等像素的位置。 41'where the computer system enters a position of one of the images of the template until the expected position of the selected plurality of sub-areas and a corresponding position of the selected plurality of sub-areas on the image template meets a predetermined condition 'where the difference between the expected position of the selected plurality of sub-areas and the corresponding position of the selected plurality of sub-areas on the image template when the predetermined condition is satisfied indicates that the panel is relative to The characteristic of the XY offset of the sensing head. 24_ The device of claim 2, wherein the condition is satisfied when the difference is less than a known value. 25. The device of claim 2, wherein the condition is met when the difference is greater than a known value. 26. The device of claim 2, wherein the computer system is further operable to: select an area in the captured image position; set the image of the selected area laterally in the selection The region's 39 201017155 image is expected to repeat one of the positions depending on the repeating features of the panel; the direction relative to the lateral movement shifts the angular position of the image of the selected region until the actual and expected position of the region satisfies a second A condition wherein a rotation angle between the panel and the sensing head when the condition is satisfied is defined by an initial position of the selected area, an expected position of the selected area, and an image position of the selected area. 27. The device of claim 20, wherein the difference is calculated in accordance with an interaction correlation algorithm. 28. The device of claim 20, wherein the difference is calculated based on an absolute difference and an algorithm. 29. A method of identifying locations of a plurality of pixels formed in a plurality of panels of a flat panel display, the method comprising the steps of: supplying a voltage signal to a first panel of the panels such that Pixels disposed on at least one first edge of the first panel of the panel are presented with at least a subset of pixels disposed by the at least the first edge of the first panel of the panel The two voltage images are compared to different first voltage image contrasts; and the difference between the first and second image contrasts is used to identify the locations of the pixels of the first panel of the panels. 30. The method of claim 29, further comprising the steps of: supplying a second voltage signal to the first panel of the panels such that at least the first panel along the panels a second edge 201017155 sets the pixel to present a third voltage image contrast different from the second voltage image contrast; and uses the difference between the third and second image contrast to identify the first panel of the panel The location of the pixels. 31. Apparatus operable to identify a location of a plurality of pixels formed in one or more panels of a flat panel display, the apparatus comprising: a signal generator operative to supply a voltage signal to the a first panel of the panel; a sensing head operable to capture a voltage image of one of the pixels of the first panel of the panel, the captured voltage image being presented and the first along the panel a first comparison associated with the pixels of the at least one first edge of the panel, the captured voltage image exhibiting at least one of pixels disposed along the at least the first edge of the first panel of the panel a second comparison of the association, the first comparison being different from the second comparison; and a computer system adapted to use the difference between the first and second comparisons to identify the first of the panels The position of the pixels of the panel. 41
TW098132274A 2008-09-25 2009-09-24 Methods and apparatus for determining or identifying position(s) of a flat panel display or pixels thereof TWI484159B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10024108P 2008-09-25 2008-09-25

Publications (2)

Publication Number Publication Date
TW201017155A true TW201017155A (en) 2010-05-01
TWI484159B TWI484159B (en) 2015-05-11

Family

ID=42060090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098132274A TWI484159B (en) 2008-09-25 2009-09-24 Methods and apparatus for determining or identifying position(s) of a flat panel display or pixels thereof

Country Status (5)

Country Link
JP (1) JP2012503797A (en)
KR (3) KR101451352B1 (en)
CN (1) CN102203625B (en)
TW (1) TWI484159B (en)
WO (1) WO2010036818A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407801B (en) * 2010-08-11 2013-09-01 Silicon Motion Inc Method and apparatus for performing bad pixel compensation
TWI496091B (en) * 2012-04-06 2015-08-11 Benq Materials Corp Thin film detecting method and detecting device
TWI563273B (en) * 2011-06-07 2016-12-21 Photon Dynamics Inc Apparatus and method for identifying a defect in an electronic circuit having periodic features and computer-readable medium thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533024B (en) * 2015-04-06 2020-01-03 三菱电机株式会社 Nondestructive inspection system and critical point inspection system
CN108303640B (en) * 2016-01-25 2020-06-05 深圳睿晟自动化技术有限公司 Line detection method and device
CN110337712B (en) * 2016-12-16 2023-11-07 苹果公司 Light Emitting Diode (LED) testing apparatus and method of manufacture
WO2020244756A1 (en) * 2019-06-05 2020-12-10 Applied Materials, Inc. Method for identifying a defect on a substrate, and apparatus for identifying a defective driver circuit on a substrate
US20230153977A1 (en) * 2021-11-17 2023-05-18 Orbotech Ltd. Panel design to improve accurate defect location report

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805123B1 (en) * 1986-07-14 1998-10-13 Kla Instr Corp Automatic photomask and reticle inspection method and apparatus including improved defect detector and alignment sub-systems
IL99823A0 (en) * 1990-11-16 1992-08-18 Orbot Instr Ltd Optical inspection method and apparatus
US5235272A (en) * 1991-06-17 1993-08-10 Photon Dynamics, Inc. Method and apparatus for automatically inspecting and repairing an active matrix LCD panel
US5337151A (en) * 1992-07-28 1994-08-09 Optical Radiation Corporation Double-sided circuit board exposure machine and method with optical registration and material variation compensation
KR100189178B1 (en) * 1995-05-19 1999-06-01 오우라 히로시 Lcd panel test apparatus having means for correcting data difference among test apparatus
JP4275345B2 (en) * 2002-01-30 2009-06-10 株式会社日立製作所 Pattern inspection method and pattern inspection apparatus
US20060045383A1 (en) * 2004-08-31 2006-03-02 Picciotto Carl E Displacement estimation system and method
US7512260B2 (en) * 2004-09-06 2009-03-31 Omron Corporation Substrate inspection method and apparatus
US7468611B2 (en) * 2006-10-20 2008-12-23 Photon Dynamics, Inc. Continuous linear scanning of large flat panel media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407801B (en) * 2010-08-11 2013-09-01 Silicon Motion Inc Method and apparatus for performing bad pixel compensation
TWI563273B (en) * 2011-06-07 2016-12-21 Photon Dynamics Inc Apparatus and method for identifying a defect in an electronic circuit having periodic features and computer-readable medium thereof
TWI496091B (en) * 2012-04-06 2015-08-11 Benq Materials Corp Thin film detecting method and detecting device

Also Published As

Publication number Publication date
JP2012503797A (en) 2012-02-09
KR20140108694A (en) 2014-09-12
CN102203625A (en) 2011-09-28
KR20160142412A (en) 2016-12-12
KR20110070886A (en) 2011-06-24
KR101451352B1 (en) 2014-10-15
TWI484159B (en) 2015-05-11
CN102203625B (en) 2014-04-09
WO2010036818A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
TW201017155A (en) Automatic dynamic pixel map correction and drive signal calibration
KR101955052B1 (en) System and methods for defect detection using a whole raw image
US8762089B2 (en) Method and apparatus for testing a substrate for display device
KR102149480B1 (en) Method and apparatus for compensating a mura of display device
JP2008257186A (en) Method and apparatus for compensating for display defect of flat panel display
TWI321303B (en) Line short localization in lcd pixel arrays
CN1573482A (en) Method and apparatus for inspecting and repairing liquid crystal display device
JP2007334262A (en) Method for detecting defect of tft array substrate, and defect detector of tft array substrate
JP5590043B2 (en) TFT substrate inspection apparatus and TFT substrate inspection method
JP2008305667A (en) Charged particle beam device
TW201528235A (en) Direct testing for peripheral circuits in flat panel devices
TW471016B (en) Defect detection using gray level signatures
JP4158199B2 (en) TFT array inspection system
US20060092679A1 (en) Array substrate, method of inspecting the array substrate and method of manufacturing the array substrate
JP2013250098A (en) Method and apparatus for detecting wiring defect, and method for manufacturing wiring board
CN105046695A (en) Projective capacitive touch panel ITO (Indium Tin Oxide) circuit defect detection method based on one-dimensional image
JPH09265931A (en) Image acquisition device and its method
WO2005085938A1 (en) Board inspecting method, array board inspecting method and array board inspecting equipment
JP3479171B2 (en) LCD drive board inspection method
US20230153977A1 (en) Panel design to improve accurate defect location report
JP2005352470A (en) Display material circuit board, inspection method, and electronic equipment
JP2006267416A (en) Inspection method of active matrix substrate
JPH03123315A (en) Liquid crystal panel inspecting device
CN104024837A (en) Liquid crystal array inspection device, and signal processing method for liquid crystal array inspection device
CN115985918A (en) Array substrate and repairing method thereof