TW201016860A - Method for making magnesium matrix composite material - Google Patents

Method for making magnesium matrix composite material Download PDF

Info

Publication number
TW201016860A
TW201016860A TW97140858A TW97140858A TW201016860A TW 201016860 A TW201016860 A TW 201016860A TW 97140858 A TW97140858 A TW 97140858A TW 97140858 A TW97140858 A TW 97140858A TW 201016860 A TW201016860 A TW 201016860A
Authority
TW
Taiwan
Prior art keywords
magnesium
nano
composite material
gas
based composite
Prior art date
Application number
TW97140858A
Other languages
Chinese (zh)
Other versions
TWI458837B (en
Inventor
Kam-Shau Chan
Cheng-Shi Chen
Kuo-Jung Chung
Qing-Chun Du
Wen-Zhen Li
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097140858A priority Critical patent/TWI458837B/en
Publication of TW201016860A publication Critical patent/TW201016860A/en
Application granted granted Critical
Publication of TWI458837B publication Critical patent/TWI458837B/en

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention relates to a method for making a magnesium matrix composite material. The method includes the following steps of: providing a liquid magnesium matrix material; providing a plurality of nano-scale materials mixed with the liquid magnesium matrix material to get a mixture; and stirring the mixture by an ultrasonic process; and spray-forming the mixture to get the composite.

Description

201016860 九、發明說明: *【發明所屬之技術領域】 ‘ 本發明涉及一種複合材料的製備方法,尤其涉及一種 鎂基複合材料的製備方法。 【先前技術】 鎂係地殼中含量最高的元素之一,約占地殼組成的 25%,資源豐富。鎂合金係現代結構金屬材料中最輕的一 種,由於具有比重小、比強度高、減震性好,同時還具有 ❿優良的鑄造性能、切削加工性能、導熱性能和電磁遮罩性 能,被譽為21世紀的時代金屬,在3C產品、汽車、航空 航太等各個領域具有廣泛的應用。此外,由於鎂在價格上 較鋁更有競爭力,使得鎂合金的研發和應用領域進一步擴 大。 鎂合金領域研究的熱點之一係鎂基複合材料,尤其係 含有奈米級增強體的鎂基複合材料。該含有奈米級增強體 @的鎂基複合材料在保證鎂合金上述優點的同時,還可有效 的提高鎂合金的強韌性及耐磨性。然而,先前技術中製備 這種鎂基複合材料常採用粉末冶金、熔體滲透、攪拌鑄造 等。以上這些方法形成的鎂基複合材料在鎂合金熔融狀態 中分散奈米級增強體容易引起奈米級增強體的團聚,造成 分散不均勻。由於奈米級增強體在鎂基材料中分散不均 勻,從而導致鎂基複合材料的強度和韌性較差。 為解決上述問題,C S Goh等人研究出另外一種製備 鎂基複合材料的方法(請參見,Development of novel carbon 201016860 nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, C S Goh et al·, Nanotechnology,vol 17,p7(2006)),該方法為通過 V-擾 拌器將純度為9 8 · 5 %的鎂基材料粉末和奈米碳管顆粒混合 10小時;在高壓下擠壓上述鎂基材料粉末與奈米碳管顆粒 的混合物,得到微米級的鎂基複合材料坯段;在氬氣保護 下,上述微米級的坯段在熔爐中燒結成具有觸變結構的鎂 基複合材料半固態料。採用該方法製備鎂基複合材料雖然 ®可以相對改善奈米碳管顆粒在鎂基材料中分散不均勻的問 題,但由於粉末狀的奈米碳管顆粒容易聚集在一起,引起 奈米碳管的團聚,從而造成奈米碳管在鎂基材料中仍然存 在分散不均勻的問題,導致鎂基複合材料的強度和韌性仍 比較差。 有鑒於此,提供一種鎂基複合材料的製備方法實為必 要,該方法能夠使奈米級增強體均勻的分散在鎂基材料 @中,從而使得由該方法製備的鎂基複合材料具有較好的強 度和韌性。 【發明内容】 一種鎂基複合材料的製備方法,其包括以下步驟:提 供一鎂基材料熔體;提供多個奈米級增強體與上述鎂基材 料熔體混合;採用超聲波處理上述鎂基材料與奈米級增強 體的混合物;以及喷覆成型上述鎂基材料與奈米級增強體 的混合物得到該鎮基複合材料。 一種鎂基複合材料的製備方法,其包括以下步驟:在 201016860 保護氣體環境下,將鎂基材料熔體置於一熔爐中;利用一 ‘氣體攜帶裝置將多個奈米級增強體加入所述熔爐中,同時 ‘採用一攪拌器混合上述鎂基材料與奈米級增強體;採用至 少一個超聲波裝置處理上述鎂基材料與奈米級增強體的混 合物;以及採用喷覆成型裝置喷覆成型上述鎂基材料與奈 米級增強體的混合物,得到該鎂基複合材料。 相較於先前技術,上述鎂基複合材料的製備方法,具 有以下優點:首先,採用超聲波處理鎂基材料與奈米級增 ®強體的混合物,使得奈米級增強體均勻的分散在鎂基材料 中。其次,採用喷覆成型所述超聲波處理後的鎂基材料與 奈米級增強體的混合物的方法,使奈米級增強體更加均勻 地分散在鎂基材料中。因此,本技術方案能夠使奈米級增 強體均勻地分散在鎂基材料中,從而使得由本技術方案所 製備的鎂基複合材料具有強度高和韌性好的優點。 【實施方式】 Φ 以下將結合附圖及具體實施例,對本技術方案提供的 一種鎂基複合材料的製備方法作進一步的詳細說明。 請參閱圖1,本技術方案提供的鎂基複合材料的製備 方法主要包括以下步驟: 步驟一:提供一鎂基材料熔體。 所述鎂基材料熔體的製備方法包括以下步驟: 首先,提供一鎂基材料。所述鎂基材料為純鎂或鎂合 金。該鎮合金的組成元素除鎮外,還含有辞、猛、銘、錯、 钍、鋰、銀及鈣等其他金屬元素中的一種或幾種。其中, 201016860 鎂元素占鎂合金總質量百分比80%以上,其他金屬元素占 ‘鎂合金總質量百分比20%以下。本實施例中,優選的鎂基 材料為純鎖。 其次,在保護氣體環境下,對上述鎂基材料進行加熱 熔化,得到所述鎂基材料熔體。其中,加熱溫度與鎂基材 料的熔點相關。優選地,加熱溫度範圍為630-670°C。本 實施例中,優選的加熱溫度為650°C。所述保護氣體為氮 氣、氮氣與六氟化硫(SF6)的混合氣體或二氧化硫與乾燥的 ®空氣的混合氣體。本實施例中,所述保護氣體優選為氮氣。 保護氣體的作用係在鎂基材料熔體表面形成一層保護膜從 而把熔體與空氣隔絕開,以防止鎂基材料熔體氧化燃燒。 最後,停止加熱,保溫並維持上述保護氣體環境。所 述保溫係指保持上述鎂基材料熔融時的溫度。 可以理解,所述鎂基材料熔體也可用其他方法製備。 步驟二:提供多個奈米級增強體,與上述鎂基材料熔 ©體混合° 所述混合鎂基材料與奈米級增強體的方法具體包括以 下步驟: 首先,提供多個奈米級增強體。所述奈米級增強體的 材料為奈米碳管、碳化矽、氧化鋁及碳化鈦中的一種或幾 種。本實施例中,所述奈米級增強體的材料採用奈米碳管。 所述奈米級增強體的粒徑為1-100奈米。本實施例中,所 述奈米級增強體的粒徑優選為20-30奈米。所述奈米級增 強體的作用為增強鎂基材料的強度及韌性。 201016860 可以理解,本技術方案中所述奈米級增強體的材料不 局限于奈米碳管、碳化矽、氧化鋁及碳化鈦中的一種或幾 ‘種,任何其他增強體材料,如纖維材料,只要其可對鎂基 材料起到與上述增強體相同的增強增韌效果,均在本技術 方案的保護範圍内。 其次,將上述奈米級增強體與上述鎂基材料熔體混合。 具體地,所述將上述奈米級增強體與上述鎂基材料熔 體混合的方法包括以下步驟:在所述保護氣體環境下,採 ®用氣體攜帶的方式將所述奈米級增強體加入到所述鎂基材 料熔體中;機械攪拌該鎂基材料熔體。其中,上述混合過 程中,所述的鎂基材料熔體應保持在熔融狀態。所述鎂基 材料的熔融態溫度與鎂基材料本身的物質組成有關。本實 施例中,所述的鎂基材料在上述混合過程中的溫度保持在 670-680°C,其作用為降低鎂基材料的粘度,防止鎂基材料 的粘度過高,以避免所述奈米級增強體團聚;以及防止溫 @度過高破壞所述保護氣體在鎂基材料熔體表面形成的保護 膜,從而使鎂基材料氧化燃燒。 所述氣體攜帶方式的具體過程包括以下步驟:一攜帶 氣體吹浮所述的奈米級增強體;以及通過所述攜帶氣體的 流動將該奈米級增強體加入所述鎂基材料熔體中。所述攜 帶氣體為氬氣、氮氣、氬氣與氮氣的混合氣體或二氧化硫 與氮氣的混合氣體。本實施例中,所述攜帶氣體優選為氬 氣。所述奈米級增強體在上述鎂基複合材料中的質量百分 比含量為0.01-10%。本實施例中,所述奈米級增強體在上 11 201016860 述鎂基複合材料中的質量百分比含量優選為5%。所述機 '械攪拌的方式包括正轉、反轉或其兩者交替進行。本實施 '例中,所述機械攪拌的方式優選為正轉。所述採用氣體攜 帶添加奈米級增強體與機械攪拌鎂基材料熔體相結合的方 式,使得奈米級增強體持續少量加入到鎂基材料熔體中, 並能夠使其逐步分散在鎂基材料熔體中,避免奈米級增強 體一次性加入後,因較大的比表面而造成集結上浮的問題。 步驟三:採用超聲波處理上述鎂基材料與奈米級增強 ®體。 具體地,所述採用超聲波處理上述鎂基材料與奈米級 增強體的混合物的方法包括以下步驟:在保護氣體的環境 下,採用至少一個頻率的超聲波震盪所述鎂基材料與奈米 級增強體的混合物總共1-10分鐘;停止超聲波震盪。其 中,為了使所述鎂基材料與奈米級增強體的混合物保持在 熔融狀態,避免所述奈米級增強體團聚及鎂基材料與奈米 @級增強體的混合物氧化燃燒。所述鎂基材料與奈米級增強 體的混合物的熔融態溫度與該鎂基材料與奈米級增強體混 合物的具體物質組成有關。本實施例中,所述鎂基材料與 奈米級增強體的混合物的溫度應保持在670-680°C。 所述保護氣體為氮氣、氮氣與六氟化硫(SF6)的混合氣 體或二氧化硫與乾燥的空氣的混合氣體。本實施例中,所 述保護氣體優選為氮氣。所述超聲波處理的方式包括間歇 式和不間斷式。優選地,所述超聲波處理的方式為間歇式。 所述超聲波的頻率範圍為15-20千赫茲。本實施例中,所 12 201016860 述超聲波的頻率優選為兩個,分別為15千赫兹和2〇千赫 •兹。超聲波的頻率超過20千赫兹時,其震盪速度快,但作 用範圍比較窄,對奈米級增強體的分散作用不明顯;超聲 波的頻率低於15千㈣時,對人耳有危害,卫業上一般不 會使用低於15千赫茲的超聲波。所述超聲波處理可以使奈 米級增強體更均勻的分散在鎂基材料中。本實施例中,採 用15千赫茲和20千赫茲兩個超聲波頻率超聲波震盪所述 ❺鎂基材,與奈米級增強體的混合物的過程包括以下步驟: 在保護氣體的環境下,先採用15千赫㈣超較震盈所述 鎮基材料與奈米級增強體的混合物,再採用15千赫兹的超 聲波震盈所述鎮基材料與奈米級增強體的混合物,上述超 聲波震盪的時間總共分鐘;停止超聲波震盈。 步驟四··噴覆成型上述鎂基材料與奈米級增強體的混 合物,得到該鎂基複合材料。 所述喷覆成型上述鎂基材料與奈米級增強體的混合物 體包括以下步驟:在一定的壓強下,採用惰性氣 物言、^具有一定溫度的鎂基材料與奈米級增強體的混合 厭嘴覆至一基板上’得到鎮基複合材料。其中,所述 氣、氮氣二兆帕,優選為〇·8兆帕。所述惰性氣體為氬 ί氣、虱氣與氮氣的混合氣體或二氧化硫與氮氣的混 二述鎂基氣體優選為氣氣。所述採用惰性氣體將 /、不米級增強體的混合嫁體高速噴覆至一基 血太半,程具體包括··所述的惰性氣體先將上述镁基材料 …丁…、%強體的混合物霧化成細小液滴,然後再將該細 13 201016860 小液滴高速喷覆至一基板上,從而在基板上形成鎂基複合 材料。其中,該步驟中的鎂基材料與奈米級增強體的混合 1勿為超聲波處理後的鎂基材料與奈米級增強體的混合物。 為了使所述鎂基材料與奈米級增強體的混合物噴覆成型的 過程中,奈米級增強體細化的更均勻、分散效果更好,所 述鎂基材料與奈米級增強體的混合物的溫度應該比較高, 這樣才能使其粘度比較小。惟,在高溫下所述鎂基材料與201016860 IX. Description of the invention: * [Technical field to which the invention pertains] ‘ The present invention relates to a method for preparing a composite material, and more particularly to a method for preparing a magnesium-based composite material. [Prior Art] One of the most abundant elements in the magnesium-based crust, accounting for about 25% of the composition of the earth's crust, is rich in resources. Magnesium alloy is the lightest of the modern structural metal materials. It is known for its small specific gravity, high specific strength, good shock absorption, and excellent casting properties, cutting performance, thermal conductivity and electromagnetic shielding performance. It is a 21st century metal that has a wide range of applications in 3C products, automobiles, and aerospace. In addition, since magnesium is more competitive in price than aluminum, the development and application of magnesium alloys has further expanded. One of the hotspots in the field of magnesium alloys is magnesium-based composites, especially magnesium-based composites containing nano-scale reinforcements. The magnesium-based composite material containing the nano-scale reinforcement @ can effectively improve the toughness and wear resistance of the magnesium alloy while ensuring the above advantages of the magnesium alloy. However, the preparation of such a magnesium-based composite material in the prior art is often carried out by powder metallurgy, melt infiltration, stirring casting, and the like. The magnesium-based composite material formed by the above methods disperses the nano-sized reinforcement in the molten state of the magnesium alloy, which tends to cause agglomeration of the nano-scale reinforcement, resulting in uneven dispersion. Due to the uneven dispersion of the nano-scale reinforcement in the magnesium-based material, the strength and toughness of the magnesium-based composite material are poor. In order to solve the above problems, CS Goh et al. have developed another method for preparing a magnesium-based composite material (see, Development of novel carbon 201016860 nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, CS Goh et al., Nanotechnology, vol 17, P7 (2006)), the method is to mix the magnesium-based material powder and the carbon nanotube particles having a purity of 9 8 · 5 % by a V-scrambler for 10 hours; and extruding the above-mentioned magnesium-based material powder and nai under high pressure The mixture of carbon nanotube particles obtains a micron-sized magnesium-based composite billet; under the protection of argon, the above-mentioned micron-sized billet is sintered in a furnace into a magnesium-based composite semi-solid material having a thixotropic structure. The method for preparing a magnesium-based composite material can improve the uneven dispersion of the carbon nanotube particles in the magnesium-based material, but the powdered carbon nanotube particles are easily aggregated to cause the carbon nanotubes. The agglomeration causes the problem that the carbon nanotubes still have uneven dispersion in the magnesium-based material, resulting in poor strength and toughness of the magnesium-based composite material. In view of the above, it is necessary to provide a method for preparing a magnesium-based composite material, which can uniformly disperse a nano-scale reinforcement in a magnesium-based material, so that the magnesium-based composite material prepared by the method has better properties. Strength and toughness. SUMMARY OF THE INVENTION A method for preparing a magnesium-based composite material, comprising the steps of: providing a magnesium-based material melt; providing a plurality of nano-scale reinforcements to melt with the magnesium-based material; and ultrasonically treating the magnesium-based material a mixture with a nano-scale reinforcement; and spray-forming a mixture of the above-described magnesium-based material and a nano-scale reinforcement to obtain the town-base composite. A method for preparing a magnesium-based composite material, comprising the steps of: placing a magnesium-based material melt in a furnace under a protective gas environment of 201016860; adding a plurality of nano-scale reinforcements to the In the furnace, simultaneously mixing the magnesium-based material and the nano-scale reinforcement with a stirrer; treating the mixture of the magnesium-based material and the nano-scale reinforcement with at least one ultrasonic device; and spraying the above-mentioned molding by a spray molding device A mixture of a magnesium-based material and a nano-scale reinforcement provides the magnesium-based composite material. Compared with the prior art, the above preparation method of the magnesium-based composite material has the following advantages: First, ultrasonic treatment of the mixture of the magnesium-based material and the nano-scaled strong body enables the nano-scale reinforcement to be uniformly dispersed in the magnesium-based In the material. Next, a method of forming a mixture of the ultrasonically treated magnesium-based material and the nano-scale reinforcement by spray coating is used to more uniformly disperse the nano-scale reinforcement in the magnesium-based material. Therefore, the present technical solution enables the nano-sized reinforcing body to be uniformly dispersed in the magnesium-based material, so that the magnesium-based composite material prepared by the present technical solution has the advantages of high strength and good toughness. [Embodiment] Φ Hereinafter, a method for preparing a magnesium-based composite material provided by the present technical solution will be further described in detail with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1, the preparation method of the magnesium-based composite material provided by the technical solution mainly comprises the following steps: Step 1: providing a magnesium-based material melt. The method for preparing the magnesium-based material melt comprises the following steps: First, a magnesium-based material is provided. The magnesium-based material is pure magnesium or magnesium alloy. In addition to the town, the elements of the town's alloys contain one or more of other metal elements such as rhetoric, fierce, inferior, erbium, antimony, lithium, silver and calcium. Among them, 201016860 magnesium accounted for more than 80% of the total mass of magnesium alloy, and other metal elements accounted for less than 20% of the total mass of magnesium alloy. In this embodiment, the preferred magnesium-based material is a pure lock. Next, the above magnesium-based material is heated and melted in a protective gas atmosphere to obtain a melt of the magnesium-based material. Among them, the heating temperature is related to the melting point of the magnesium substrate. Preferably, the heating temperature ranges from 630 to 670 °C. In the present embodiment, the preferred heating temperature is 650 °C. The shielding gas is a mixed gas of nitrogen, nitrogen and sulfur hexafluoride (SF6) or a mixed gas of sulfur dioxide and dry ® air. In this embodiment, the shielding gas is preferably nitrogen. The protective gas acts to form a protective film on the surface of the melt of the magnesium-based material to isolate the melt from the air to prevent oxidative combustion of the magnesium-based material. Finally, the heating is stopped, the temperature is maintained and the above protective gas atmosphere is maintained. The heat retention means a temperature at which the above magnesium-based material is kept molten. It will be appreciated that the magnesium based material melt can also be prepared by other methods. Step 2: providing a plurality of nano-scale reinforcements, which are mixed with the above-mentioned magnesium-based material fusion body. The method for mixing the magnesium-based materials and the nano-scale reinforcements specifically includes the following steps: First, providing a plurality of nano-level enhancements body. The material of the nano-scale reinforcement is one or more of a carbon nanotube, a tantalum carbide, an alumina, and a titanium carbide. In this embodiment, the material of the nano-scale reinforcement is made of a carbon nanotube. The nano-sized reinforcement has a particle diameter of from 1 to 100 nm. In the present embodiment, the nano-sized reinforcing body preferably has a particle diameter of 20 to 30 nm. The nano-sized reinforcement acts to enhance the strength and toughness of the magnesium-based material. 201016860 It can be understood that the material of the nano-scale reinforcement in the technical solution is not limited to one or several kinds of carbon nanotubes, tantalum carbide, aluminum oxide and titanium carbide, and any other reinforcement material, such as fiber material. As long as it can exert the same reinforcing and toughening effect on the magnesium-based material as the above-mentioned reinforcement, it is within the protection scope of the present technical solution. Next, the above-mentioned nano-sized reinforcement is melt-mixed with the above-mentioned magnesium-based material. Specifically, the method of melt mixing the above-mentioned nano-scale reinforcement with the above-mentioned magnesium-based material comprises the steps of: adding the nano-scale reinforcement by means of gas carrying in the protective gas environment; And into the melt of the magnesium-based material; mechanically stirring the melt of the magnesium-based material. Wherein, in the above mixing process, the magnesium-based material melt should be maintained in a molten state. The molten state temperature of the magnesium-based material is related to the material composition of the magnesium-based material itself. In this embodiment, the temperature of the magnesium-based material during the above mixing process is maintained at 670-680 ° C, which serves to reduce the viscosity of the magnesium-based material and prevent the viscosity of the magnesium-based material from being too high to avoid the The rice-level reinforcement is agglomerated; and the protective film formed on the surface of the melt of the magnesium-based material is prevented from being destroyed by the excessive temperature, thereby causing the oxidative combustion of the magnesium-based material. The specific process of the gas carrying mode includes the steps of: blowing a nano-scale reinforcement by a carrier gas; and adding the nano-scale reinforcement to the melt of the magnesium-based material by the flow of the carrier gas . The carrier gas is a mixed gas of argon gas, nitrogen gas, argon gas and nitrogen gas or a mixed gas of sulfur dioxide and nitrogen gas. In this embodiment, the carrier gas is preferably argon. The nano-sized reinforcement has a mass percentage of 0.01 to 10% in the above-mentioned magnesium-based composite material. In this embodiment, the content of the nano-scale reinforcement in the magnesium-based composite material of the above 11 201016860 is preferably 5% by mass. The means of mechanical agitation includes forward rotation, reverse rotation or both. In the present embodiment, the mechanical agitation method is preferably forward rotation. The combination of the gas-carrying nano-reinforcing body and the mechanically-stimulated magnesium-based material melt enables the nano-scale reinforcement to be continuously added to the magnesium-based material melt in a small amount, and can be gradually dispersed in the magnesium-based material. In the material melt, the problem that the nano-level reinforcement is lifted up due to a large specific surface is avoided after the one-time addition of the nano-scale reinforcement. Step 3: Ultrasonic treatment of the above magnesium-based material and nano-scale enhancement ® body. Specifically, the method for ultrasonically treating a mixture of the above magnesium-based material and a nano-scale reinforcement comprises the steps of: oscillating the magnesium-based material with a nano-level enhancement using ultrasonic waves of at least one frequency in a protective gas atmosphere; The mixture of bodies is a total of 1-10 minutes; the ultrasonic vibration is stopped. Here, in order to maintain the mixture of the magnesium-based material and the nano-scale reinforcement in a molten state, the nano-scale reinforcement agglomeration and the oxidative combustion of the mixture of the magnesium-based material and the nano-level reinforcement are avoided. The molten state temperature of the mixture of the magnesium-based material and the nano-scale reinforcement is related to the specific material composition of the magnesium-based material and the nano-scale reinforcement mixture. In this embodiment, the temperature of the mixture of the magnesium-based material and the nano-scale reinforcement should be maintained at 670-680 °C. The shielding gas is a mixed gas of nitrogen, nitrogen and sulfur hexafluoride (SF6) or a mixed gas of sulfur dioxide and dry air. In this embodiment, the shielding gas is preferably nitrogen. The manner of the ultrasonic treatment includes intermittent and uninterrupted. Preferably, the manner of the ultrasonic treatment is intermittent. The ultrasonic waves have a frequency in the range of 15-20 kHz. In this embodiment, the frequency of the ultrasonic waves is preferably two, respectively, 15 kHz and 2 kHz. When the frequency of ultrasonic waves exceeds 20 kHz, the oscillation speed is fast, but the range of action is relatively narrow, and the dispersion effect on the nano-scale reinforcement is not obvious; when the frequency of ultrasonic waves is less than 15 thousand (four), it is harmful to the human ear. Ultrasonic waves below 15 kHz are generally not used. The ultrasonic treatment can more uniformly disperse the nano-scale reinforcement in the magnesium-based material. In this embodiment, the process of ultrasonically oscillating the magnesium-magnesium substrate with two ultrasonic frequencies of 15 kHz and 20 kHz, and the mixture of the nano-scale reinforcement comprises the following steps: in the environment of shielding gas, first adopting 15 a mixture of the base material and the nano-scale reinforcement, and a mixture of the town-based material and the nano-scale reinforcement, which is ultrasonic shock time of 15 kHz. Minutes; stop ultrasonic shock. Step 4: Spray-molding a mixture of the above magnesium-based material and a nano-scale reinforcement to obtain the magnesium-based composite material. The spray forming the mixture of the above magnesium-based material and the nano-scale reinforcement comprises the steps of: mixing a magnesium-based material having a certain temperature and a nano-scale reinforcement under an inert gas at a certain pressure; The anvil is overlaid onto a substrate to obtain a town-base composite. Wherein, the gas and nitrogen gas are two megapascals, preferably 〇·8 MPa. The inert gas is a mixture of argon gas, helium gas and nitrogen gas or a mixture of sulfur dioxide and nitrogen gas. The magnesium-based gas is preferably gas. The mixed gas of the /, non-meter-scale reinforcement is sprayed at a high speed to a base blood by an inert gas, and the inert gas containing the above-mentioned magnesium-based material first... The mixture is atomized into fine droplets, and then the fine 13 201016860 droplets are sprayed onto a substrate at a high speed to form a magnesium-based composite material on the substrate. Wherein, the mixing of the magnesium-based material and the nano-scale reinforcement in the step 1 is not a mixture of the ultrasonic-treated magnesium-based material and the nano-scale reinforcement. In order to spray-mold the mixture of the magnesium-based material and the nano-scale reinforcement, the nano-scale reinforcement is more uniform and more dispersed, and the magnesium-based material and the nano-scale reinforcement are The temperature of the mixture should be relatively high in order to make it less viscous. However, the magnesium-based material and the high temperature

奈米級增強體的混合物易氧化燃燒,所以所述鎂基材料與 A 奈米級增強體的混合物的溫度也不能太高。所述鎂基材料 與奈米級增強體的混合物的溫度應保持在680-730°C。本 實施例中,所述鎂基材料與奈米級增強體的混合物的溫度 範圍為690-710°C。該過程溫度之所以高於採用超聲波處 理過程中鎂基材料與奈米級增強體混合物的溫度,係因為 在該喷覆成型的過程中,所述鎂基材料與奈米級增強體的 混合物不需要震盪,所述保護氣體在鎂基材料熔體表面形 @成的保護膜不容易遭到破壞,所以所述鎂基材料與奈米級 增強體的混合物在680-730°C也不會氧化燃燒。 此外,本技術方案中,所述鎂基複合材料的製備方法 還進一步包括以下步驟··熔化上述鎂基複合材料;以及喷 覆成型該炼化後的鎮基複合材料。其中,上述步驟可多次 迴圈。上述步驟及其多次迴圈的目的係通過喷覆成型技 術,使得鎮基複合材料熔體霧化成細小液滴,以便上述奈 米級增強體更加均勻的分散在鎂基材料中,從而提高鎂基 複合材料的強度及韌性。 14 201016860 另外,可進一步將上述鎂基複合材料進行壓延處理, 得到預定厚度的鎂板片材。所述壓延處理的步驟包括將上 ‘述鎂基材料通過相對旋轉、水準設置的輥筒之間的輥隙。 其中,通過控制上述輥隙,得到預定厚度的鎂板片材。可 以理解’所述後續壓延處理的步驟可以根據實際情況選擇。 請一併參閱圖2至圖4,本技術方案實施例進一步地 提供一種採用具體裝置製備鎂基複合材料的方法,其主要 包括以下步驟·· ® 步驟一:在保護氣體環境下,將鎂基材料置於熔爐110 中並熔化。 保護氣體通過進氣管120通入封閉的熔爐110中;在 該保護氣體環境下,將鎂基材料置於熔爐110中進行加 熱,並加熱至該鎂基材料熔化,得到鎂基材料熔體150 ; 停止加熱。所述鎂基材料為純鎮或鎂合金。本實施例中, 所述鎂基材料優選為純鎂。所述加熱溫度為630-670°C, @優選加熱溫度為650°C。所述保護氣體為氮氣、氮氣與六 氟化硫(SF6)的混合氣體或二氧化硫與乾燥的空氣的混合 氣體。本實施例中,所述保護氣體優選為氮氣。所述保護 氣體的流量優選範圍為1-20毫升/分鐘。 步驟二:利用氣體攜帶裝置140將一奈米級增強體加 入熔爐110中,同時採用攪拌器130混合上述鎂基材料與 奈米級增強體,得到鎂基材料與奈米級增強體的混合物 210 (如圖3所示)。 具體地,所述混合鎂基材料與奈米級增強體的方法具 15 201016860 體包括以下步驟:將一奈米級增強體置於氣體攜帶裝置 140中,一攜帶氣體吹浮該奈米級增強體,該奈米級增強 ‘體在攜帶氣體的作用下,持續少量地加入熔爐110中,熔 爐110中的溫度為670-680°C,同時攪拌器130以20-60 轉/分鐘的轉速對熔爐110中的鎂基材料熔體150進行機械 攪拌;所述奈米級增強體添加完畢後,攪拌器130停止機 械攪拌,得到鎂基材料與奈米級增強體的混合物210 ;以 及將氣體攜帶裝置140和攪拌器130從熔爐110中移出。 ® 所述奈米級增強體的材料為奈米碳管、碳化矽、氧化 鋁及碳化鈦中的一種或幾種。本實施例中,所述奈米級增 強體的材料優選為奈米碳管。所述奈米級增強體的粒徑為 1-100奈米。本實施例中,所述奈米級增強體的粒徑優選 為20-30奈米。所述奈米級增強體在上述鎂基複合材料中 的質量百分比含量為0.01-10%。本實施例中,所述奈米級 增強體在上述鎂基複合材料中的質量百分比含量優選為 @5%。所述攜帶氣體為氬氣、氮氣、氬氣與氮氣的混合氣體 或二氧化硫與氮氣的混合氣體。本實施例中,所述攜帶氣 體優選為氬氣。所述機械攪拌的方式包括正轉、反轉或其 兩者交替進行。本實施例中,所述機械攪拌的方式優選為 正轉。 步驟三:採用至少一個超聲波裝置220處理上述鎂基 材料與奈米級增強體的混合物210。 具體地,所述保護氣體通過進氣管120通入熔爐110 中,熔爐110中的溫度保持在670-680°C,至少將一個超 16 201016860 聲波裝置220插入所述鎂基材料與奈米級增強體的混合物 210中,進行超聲波震盪1-10分鐘;以及停止超聲波震盪, >导到該鎂基材料與奈米級增強體的混合物312 (如圖4所 示)。本實施例中,所述超聲波裝置的數量優選為兩個,以 防止因超聲波的震盪範圍有限而不能使所述奈米級增強體 更均勻地分散在鎂基材料中。所述超聲波裝置超聲處理的 方法包括先採用15千赫茲對所述鎂基材料與奈米級增強 體的混合物210進行大範圍内的震盪;再採用20千赫茲對The mixture of nano-scale reinforcements is susceptible to oxidative combustion, so the temperature of the mixture of the magnesium-based material and the A-nano-grade reinforcement is not too high. The temperature of the mixture of the magnesium-based material and the nano-scale reinforcement should be maintained at 680-730 °C. In this embodiment, the temperature of the mixture of the magnesium-based material and the nano-scale reinforcement ranges from 690 to 710 °C. The temperature of the process is higher than the temperature of the magnesium-based material and the nano-scale reinforcement mixture during the ultrasonic treatment because the mixture of the magnesium-based material and the nano-scale reinforcement is not in the process of the spray coating. Need to oscillate, the protective gas is not easily damaged on the surface of the magnesium-based material melt, so the mixture of the magnesium-based material and the nano-scale reinforcement does not oxidize at 680-730 ° C combustion. In addition, in the technical solution, the method for preparing the magnesium-based composite material further includes the steps of: melting the magnesium-based composite material; and spray-molding the refining-based town-base composite material. Among them, the above steps can be looped multiple times. The above steps and the purpose of the multiple loops are to spray the agglomerated composite material into fine droplets by spray coating technology, so that the above-mentioned nano-scale reinforcement is more uniformly dispersed in the magnesium-based material, thereby improving magnesium. The strength and toughness of the matrix composite. 14 201016860 Further, the above-mentioned magnesium-based composite material may be further subjected to a calendering treatment to obtain a magnesium plate sheet having a predetermined thickness. The step of calendering comprises passing the above-mentioned magnesium-based material through a nip between rolls of relatively rotating, leveling. Among them, by controlling the above nip, a magnesium sheet having a predetermined thickness is obtained. It can be understood that the step of the subsequent calendering process can be selected according to the actual situation. Referring to FIG. 2 to FIG. 4 together, the embodiment of the present technical solution further provides a method for preparing a magnesium-based composite material by using a specific device, which mainly includes the following steps: · Step 1: In a protective gas environment, a magnesium base is used. The material is placed in the furnace 110 and melted. The shielding gas is introduced into the closed furnace 110 through the intake pipe 120; in the protective gas environment, the magnesium-based material is placed in the furnace 110 for heating, and heated to melt the magnesium-based material to obtain a magnesium-based material melt 150. ; Stop heating. The magnesium-based material is a pure town or a magnesium alloy. In this embodiment, the magnesium-based material is preferably pure magnesium. The heating temperature is 630-670 ° C, and @ preferably the heating temperature is 650 ° C. The shielding gas is a mixed gas of nitrogen, nitrogen and sulfur hexafluoride (SF6) or a mixed gas of sulfur dioxide and dry air. In this embodiment, the shielding gas is preferably nitrogen. The flow rate of the shielding gas preferably ranges from 1 to 20 ml/min. Step 2: a nano-scale reinforcement is added to the furnace 110 by using the gas carrying device 140, and the magnesium-based material and the nano-scale reinforcement are mixed by using the agitator 130 to obtain a mixture of the magnesium-based material and the nano-scale reinforcement. (As shown in Figure 3). Specifically, the method for mixing a magnesium-based material with a nano-scale reinforcement has a step of: placing a nano-scale reinforcement in a gas carrying device 140, and carrying a gas to blow the nano-level enhancement The nano-enhanced body is continuously added to the furnace 110 under the action of a carrier gas. The temperature in the furnace 110 is 670-680 ° C, and the agitator 130 is rotated at 20-60 rpm. The magnesium-based material melt 150 in the furnace 110 is mechanically stirred; after the addition of the nano-scale reinforcement, the agitator 130 stops mechanical agitation to obtain a mixture 210 of the magnesium-based material and the nano-scale reinforcement; and carries the gas Device 140 and agitator 130 are removed from furnace 110. The material of the nano-scale reinforcement is one or more of a carbon nanotube, a tantalum carbide, an aluminum oxide, and a titanium carbide. In this embodiment, the material of the nano-sized reinforcing body is preferably a carbon nanotube. The nano-sized reinforcement has a particle diameter of from 1 to 100 nm. In this embodiment, the nano-sized reinforcing body preferably has a particle diameter of 20 to 30 nm. The nano-scale reinforcement has a mass percentage of 0.01 to 10% in the above-mentioned magnesium-based composite material. In this embodiment, the content of the nano-scale reinforcement in the above-mentioned magnesium-based composite material is preferably 5% by mass. The carrier gas is a mixed gas of argon gas, nitrogen gas, argon gas and nitrogen gas or a mixed gas of sulfur dioxide and nitrogen gas. In this embodiment, the carrier gas is preferably argon. The manner of mechanical agitation includes forward rotation, reverse rotation, or both. In this embodiment, the manner of mechanical agitation is preferably forward rotation. Step 3: The mixture 210 of the above magnesium-based material and the nano-scale reinforcement is treated with at least one ultrasonic device 220. Specifically, the shielding gas is introduced into the furnace 110 through the intake pipe 120, the temperature in the furnace 110 is maintained at 670-680 ° C, and at least one super 16 201016860 acoustic wave device 220 is inserted into the magnesium-based material and the nano-scale. In the mixture 210 of the reinforcement, ultrasonic vibration is performed for 1-10 minutes; and the ultrasonic oscillation is stopped, > the mixture 312 of the magnesium-based material and the nano-scale reinforcement is introduced (as shown in Fig. 4). In the present embodiment, the number of the ultrasonic devices is preferably two to prevent the nano-scale reinforcement from being more uniformly dispersed in the magnesium-based material due to the limited oscillation range of the ultrasonic waves. The ultrasonic processing method of the ultrasonic device comprises first fluctuating a wide range of the mixture 210 of the magnesium-based material and the nano-scale reinforcement by using 15 kHz; and then adopting a 20 kHz pair

A %該鎂基材料與奈米級增強體的混合物210進行快速震盪。 採用該方法處理可以將奈米級增強體充分均勻地分散在鎂 基材料中。所述超聲波處理的方式包括間歇式和不間斷 式。本實施例中,所述超聲波震盪的方式優選為間歇式。 步驟四:採用喷覆成型裝置330喷覆成型上述鎂基材 料與奈米級增強體的混合物312,得到該鎂基複合材料 314。 @ 所述喷覆成型裝置330至少包括一漏斗332、一連接 管339、一進氣管331、一喷嘴336及一霧化室334,連接 管339連接漏斗332與霧化室334,進氣管331與連接管 339連接,喷嘴336位於連接管339靠近霧化室334的一 端,霧化室334内設置有至少一收集板338,收集板338 與上述喷嘴336相對設置。 所述採用喷覆成型裝置330喷覆成型上述鎂基材料與 奈米級增強體的混合物312的方法包括以下步驟:通過泵 浦320將熔爐110中的鎂基材料與奈米級增強體的混合物 17 201016860 312注入到喷覆成型裝置330的具有一定溫度的漏斗332 中;惰性氣體經進氣管331通入連接管339内,在0.5-0.9 •兆帕的壓強下,上述混合物312在連接管339内被上述惰 性氣體霧化成細小液滴;以及該細小液滴通過噴嘴336高 速喷覆至霧化室334内的收集板338上,得到鎂基複合材 料314。本實施例中,所述漏斗332中的溫度範圍為680-730°C。本實施例中,所述漏斗332中的溫度優選為660-670°C,所述壓強優選為0.8兆帕。所述惰性氣體為氬氣、 ®氮氣、氬氣與氮氣的混合氣體或二氧化硫與氮氣的混合氣 體。本實施例中,所述惰性氣體優選為氮氣。所述喷嘴336 到收集板338的距離為200-700毫米。本實施例中,所述 喷嘴336到收集板338的距離優選為300毫米。所述收集 板338可以為固定的或移動的。本實施例中,所述收集板 338優選為移動的。 此外,所述鎂基複合材料的製備方法還進一步包括以 φ下步驟:將上述鎂基複合材料314置於熔爐110中熔化; 以及採用喷覆成型裝置330喷覆成型上述熔化後的鎂基複 合材料314,得到一奈米級增強體分散更均勻的鎂基複合 材料。可以理解,該步驟可重複迴圈將鎂基複合材料置於 熔爐中熔化,以及採用喷覆成型裝置喷覆成型上述熔化後 的鎮基複合材料。 另外,可進一步將上述鎂基複合材料經過壓延機的壓 延處理,得到預定厚度的鎂板片材。其中通過控制上述壓 延機中輥隙的大小,可得到預定厚度的鎂板片材。 18 201016860 本技術方案實施例提供的鎂基複合材料的製備方法, 具有以下優點:第一,在攪拌器機械攪拌所述鎂基材料熔 體的同時,通過氣體攜帶裝置添加奈米級增強體,使得奈 米級增強體持續少量加入到鎂基材料熔體中,能夠使奈米 級增強體逐步分散在鎂基材料熔體中,避免奈米級增強體 一次性加入後,因較大的比表面而造成集結上浮的問題。 第二,在奈米級增強體與鎂基材料熔體機械攪拌混合後, 再採用超聲波裝置進行超聲波震盪處理,使得奈米級增強 ®體均勻的分散在鎂基材料中。第三,利用喷覆成型技術高 速喷吹惰性氣體使混合物霧化成液滴的方法來達到奈米級 增強體在鎂基材料中的進一步分散,採用多次喷覆成型技 術使奈米級增強體在鎂基材料中更加均勻的分散。因此, 本技術方案能夠使奈米級增強體均勻地分散在鎂基材料 中,從而使得由本技術方案實施例所製備的鎂基複合材料 具有強度高和韌性好的優點。 _ 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案提供的鎂基複合材料的製備方法流 程圖。 圖2係本技術方案實施例機械攪拌鎂基材料熔體與奈 19 201016860 '米級增強體的裝置的結構示意圖。 ' 圖3係本技術方案實施例超聲波處理鎂基材料與奈米 '級增強體的混合物的裝置的結構示意圖。 圖4係本技術方案實施例喷覆成型鎂基材料與奈米級 增強體的混合熔體的裝置的結構示意圖。 【主要元件符號說明】 熔爐 110 進氣管 120 ❿攪拌器 130 氣體攜帶裝置 140 镁基材料熔體 150 鎂基材料與奈米級增強體的混合物 210; 312 超聲波裝置 220 鎂基複合材料 314 泵浦 320 _喷覆成型裝置 330 進氣管 331 漏斗 332 霧化室 334 喷嘴 336 收集板 338 連接管 339 20A% The mixture of the magnesium-based material and the nano-scale reinforcement is rapidly oscillated. By this method, the nano-scale reinforcement can be sufficiently uniformly dispersed in the magnesium-based material. The manner of the ultrasonic treatment includes intermittent and uninterrupted. In this embodiment, the manner of the ultrasonic oscillation is preferably intermittent. Step 4: The mixture 312 of the magnesium substrate and the nano-scale reinforcement is spray-molded by a spray molding apparatus 330 to obtain the magnesium-based composite material 314. The spray forming device 330 includes at least a funnel 332, a connecting pipe 339, an intake pipe 331, a nozzle 336, and a spray chamber 334. The connecting pipe 339 connects the funnel 332 with the atomizing chamber 334, and the air inlet pipe 331 Connected to the connecting pipe 339, the nozzle 336 is located at one end of the connecting pipe 339 near the atomizing chamber 334, and the atomizing chamber 334 is provided with at least one collecting plate 338, and the collecting plate 338 is disposed opposite to the above-mentioned nozzle 336. The method of spray forming the mixture 312 of the magnesium-based material and the nano-scale reinforcement by the spray coating device 330 includes the following steps: mixing the magnesium-based material in the furnace 110 with the nano-scale reinforcement by the pump 320 17 201016860 312 is injected into the funnel 332 having a certain temperature in the spray molding apparatus 330; the inert gas is introduced into the connecting pipe 339 through the intake pipe 331, and the mixture 312 is in the connecting pipe at a pressure of 0.5-0.9 • MPa. The inside of 339 is atomized into fine droplets by the inert gas; and the fine droplets are sprayed at high speed through the nozzle 336 onto the collecting plate 338 in the atomizing chamber 334 to obtain a magnesium-based composite material 314. In this embodiment, the temperature in the funnel 332 ranges from 680 to 730 °C. In this embodiment, the temperature in the funnel 332 is preferably 660-670 ° C, and the pressure is preferably 0.8 MPa. The inert gas is argon gas, ® nitrogen gas, a mixed gas of argon gas and nitrogen gas or a mixed gas of sulfur dioxide and nitrogen gas. In this embodiment, the inert gas is preferably nitrogen. The distance from the nozzle 336 to the collection plate 338 is 200-700 mm. In this embodiment, the distance from the nozzle 336 to the collecting plate 338 is preferably 300 mm. The collection plate 338 can be fixed or mobile. In this embodiment, the collection plate 338 is preferably mobile. In addition, the method for preparing the magnesium-based composite material further includes the steps of: φ placing the magnesium-based composite material 314 in the melting furnace 110; and spraying the molten magnesium-based composite by spray coating device 330. Material 314 provides a more uniform magnesium-based composite material with a nano-scale reinforcement. It will be understood that this step may be repeated to recirculate the magnesium-based composite material in a furnace for melting, and to spray the above-described molten town-base composite material by a spray molding apparatus. Further, the above-mentioned magnesium-based composite material may be further subjected to a calendering treatment by a calender to obtain a magnesium plate sheet having a predetermined thickness. Here, by controlling the size of the nip in the above calender, a magnesium sheet of a predetermined thickness can be obtained. 18 201016860 The method for preparing a magnesium-based composite material provided by the embodiments of the present technical solution has the following advantages: first, while the stirrer mechanically stirs the melt of the magnesium-based material, the nano-scale reinforcement is added by a gas carrying device, The nano-level reinforcement is continuously added to the melt of the magnesium-based material, and the nano-scale reinforcement can be gradually dispersed in the melt of the magnesium-based material, thereby avoiding the larger ratio of the nano-scale reinforcement after one-time addition. The surface causes the problem of assembly floating up. Secondly, after the nano-scale reinforcement and the magnesium-based material melt are mechanically stirred and mixed, the ultrasonic vibration device is used for the ultrasonic vibration treatment, so that the nano-sized reinforcement body is uniformly dispersed in the magnesium-based material. Thirdly, the spray-forming technology is used to spray the inert gas at a high speed to atomize the mixture into droplets to achieve further dispersion of the nano-scale reinforcement in the magnesium-based material, and the nano-scale reinforcement is applied by multiple spray forming techniques. More uniform dispersion in magnesium based materials. Therefore, the present technical solution enables the nano-scale reinforcement to be uniformly dispersed in the magnesium-based material, so that the magnesium-based composite material prepared by the embodiment of the present technical solution has the advantages of high strength and good toughness. _ In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method for preparing a magnesium-based composite material provided by the present technical solution. 2 is a schematic view showing the structure of a device for mechanically stirring a magnesium-based material melt and a nanometer reinforcement of the present invention. Figure 3 is a schematic view showing the structure of an apparatus for ultrasonically treating a mixture of a magnesium-based material and a nano-grade reinforcement in the embodiment of the present invention. Fig. 4 is a schematic view showing the structure of a device for spray-molding a mixed melt of a magnesium-based material and a nano-reinforcing body according to an embodiment of the present invention. [Main component symbol description] Furnace 110 Intake pipe 120 ❿Agitator 130 Gas carrying device 140 Magnesium-based material melt 150 Magnesium-based material and nano-scale reinforcement mixture 210; 312 Ultrasonic device 220 Magnesium-based composite material 314 Pump 320 _spray molding device 330 intake pipe 331 funnel 332 spray chamber 334 nozzle 336 collection plate 338 connecting pipe 339 20

Claims (1)

201016860 十、申請專利範圍 « •1. 一種鎂基複合材料的製備方法,其包括以下步驟:提供 一鎂基材料熔體;提供多個奈米級增強體與上述鎂基材 料熔體混合;採用超聲波處理上述鎂基材料與奈米級增 強體的混合物;以及喷覆成型上述鎂基材料與奈米級增 強體的混合物,得到該鎂基複合材料。 2. 如申請專利範圍第i項所述的鎂基複合材料的製備方 ❹法,其中,所述鎂基材料為純鎂或鎂合金。 3. 如申明專利範圍第1項所述的鎂基複合材料的製備方 法,其中,所述奈米級增強體的材料為奈米碳管、碳化 石夕、氧化銘及碳化鈦中的一種或幾種。 4. 如申請專利範圍第1項所述的鎂基複合材料的製備方 法’其中,所述奈米級增強體的粒徑為1_1〇〇奈米。 5. 如申請專利範圍第i項所述的鎂基複合材料的製備方 法,其中,所述奈米級增強體在所述鎂基複合材料中的 φ 質量百分比含量為0.01-10%。 6·如申明專利範圍第1項所述的鎂基複合材料的製備方 法,其中,所述混合鎂基材料熔體與奈米級增強體的方 法包括以下步驟:在保護氣體環境下,將所述奈米級增 強體通過氣體攜帶的方式加入所述鎂基材料熔體中;以 及機械攪拌該鎂基材料熔體。 7.如申凊專利範圍第6項所述的鎂基複合材料的製備方 法’其中’所述保護氣體包括氮氣、氮氣與六氟化硫的 混合氣體或二氡化硫與乾燥的空氣的混合氣體。 21 201016860 8.如申請專利範圍第6項所述賴基複合材料的製備方 • 八中所述氣體攜帶方式的具體過稈包括以下步驟: :攜帶氣體吹浮所述的奈米級增強體;以及通過所述攜 τ氣體的流動將該奈米級增強體加入所述鎂基材料熔體 中。 9·如申凊專利範圍帛8帛所述的鎮基複合材料的製備方 =,其中,所述攜帶氣體為氬氣、氮氣、氬氣與氮氣的 ❹混合氣體或二氧化硫與氮氣的混合氣體。 瓜如申請專利範圍帛i帛所述的鎮基複合材料的製備方 法,其中,所述超聲波處理上述鎂基材料與奈米級增強 體的混合物的方法包括在保護氣體環境下,超聲波震盪 處理該鎂基材料與奈米級增強體的混合物1-10分鐘的 步驟。 如申請專利範圍第1〇項所述的鎂基複合材料的製備方 去’其中’所述超聲波的頻率範圍為15_2〇千赫茲。 ❹12\如申請專利範圍第1項所述的鎂基複合材料的製備方 法’其中,所述喷覆成型的方法包括在〇.5_〇·9兆帕的壓 強下,採用惰性氣體將所述的鎂基材料與奈米級増強體 的混合物高速喷覆至一基板上的步驟。 13·、如申請專利範圍第12項所述的鎂基複合材料的製備方 去j其中,所述惰性氣體為氬氣、氮氣、氬氣與氮氣的 5氟體或一氧化硫與氮氣的混合氣體。 •如申請專利範圍第1項所述的鎂基複合材料的製備方 法’其十,所述鎂基複合材料的製備方法還進一步包括 22 201016860 以下步驟:熔化上述鎂基複合材料;以及喷覆成型該熔 化後的鎮基複合材料。 '5.如申請專利範圍第1項所述的鎂基複合材料的製備方 法,其中,進一步包括將所述鎂基複合材料進行壓延處 理,得到預定厚度的鎂板片材。 16. —種鎂基複合材料的製備方法,其包括以下步驟:在 保護氣體環境下,將一鎂基材料置於一熔爐中並熔化; 利用一氣體攜帶裝置將多個奈米級增強體加入所述熔爐 ® 中,同時採用一攪拌器混合上述鎂基材料與奈米級增強 體;採用至少一個超聲波裝置處理上述鎂基材料與奈米 級增強體的混合物;以及採用喷覆成型裝置喷覆成型上 述鎂基材料與奈米級增強體的混合物,得到該鎂基複合 材料。 17. 如申請專利範圍第16項所述的鎂基複合材料的製備方 法,其中,所述喷覆成型裝置至少包括一漏斗、一連接 φ 管、一進氣管、一喷嘴及一霧化室,所述連接管連接上 述漏斗與霧化室,所述進氣管與上述連接管連接,所述 喷嘴位於上述連接管靠近霧化室的一端,所述霧化室内 設置有至少一收集板,該收集板與上述喷嘴相對設置。 18. 如申請專利範圍第16項所述的鎂基複合材料的製備方 法,其中,所述採用喷覆成型裝置喷覆成型上述鎂基材 料與奈米級增強體的混合物的方法包括以下步驟:將上 述鎂基材料與奈米級增強體的混合物注入到喷覆成型裝 置的漏斗中;保持上述鎂基材料與奈米級增強體的混合 23 201016860 物溫度在680-73(TC ;以及在0.5-0.9兆帕的壓強下,將 惰性氣體通過進氣管通入連接管,並將上述鎂基材料與 奈米級增強體的混合物在連接管内霧化成細小液滴,同 時通過噴嘴將上述細小液滴高速喷覆至霧化室内的收集 板上。 、 19. 如申請專利範圍第18項所述的鎂基複合材料的製備方 务其中’所述喷嘴到收集板有一定的距離,該距離範 圍為200-700毫米。 20. 如申請專利範圍第16項所述的鎂基複合材料的製備方 法,其中,進一步包括將所述鎂基複合材料進 理,得到預定厚度的鎂板片材。 參 24201016860 X. Patent application scope «•1. A method for preparing a magnesium-based composite material, comprising the steps of: providing a magnesium-based material melt; providing a plurality of nano-scale reinforcements to be melt-mixed with the above-mentioned magnesium-based material; Ultrasonic treatment of a mixture of the above magnesium-based material and a nano-scale reinforcement; and spray-molding a mixture of the above-mentioned magnesium-based material and a nano-scale reinforcement to obtain the magnesium-based composite material. 2. The method according to claim 1, wherein the magnesium-based material is pure magnesium or a magnesium alloy. 3. The method for preparing a magnesium-based composite material according to claim 1, wherein the material of the nano-scale reinforcement is one of a carbon nanotube, a carbon carbide, an oxidation, and a titanium carbide. Several. 4. The method for producing a magnesium-based composite material according to claim 1, wherein the nano-sized reinforcement has a particle diameter of 1 to 1 nm. 5. The method of preparing a magnesium-based composite material according to the invention of claim 1, wherein the nano-scale reinforcement has a mass percentage of φ of 0.01 to 10% in the magnesium-based composite material. 6 . The method for preparing a magnesium-based composite material according to claim 1 , wherein the method for mixing a magnesium-based material melt with a nano-scale reinforcement comprises the steps of: The nano-scale reinforcement is added to the melt of the magnesium-based material by gas-carrying; and the magnesium-based material melt is mechanically stirred. 7. The method for preparing a magnesium-based composite material according to claim 6, wherein the protective gas comprises a mixed gas of nitrogen, nitrogen and sulfur hexafluoride or a mixture of sulfur dioxide and dry air. gas. 21 201016860 8. The specific stalk of the gas-carrying mode described in the preparation of the lysine composite material according to claim 6 of the scope of the patent application includes the following steps: carrying the gas to float the nano-scale reinforcement; And adding the nano-scale reinforcement to the melt of the magnesium-based material by the flow of the τ gas. 9. The preparation of the town-base composite material according to the patent application 帛8帛, wherein the carrier gas is a mixed gas of argon gas, nitrogen gas, argon gas and nitrogen gas or a mixed gas of sulfur dioxide and nitrogen gas. The method for preparing a town-base composite material as described in the patent application scope, wherein the method of ultrasonically treating the mixture of the magnesium-based material and the nano-scale reinforcement comprises ultrasonic vibration treatment in a protective gas atmosphere A mixture of a magnesium-based material and a nano-scale reinforcement for a period of from 1 to 10 minutes. The preparation of the magnesium-based composite material as described in the first aspect of the patent application is in which the ultrasonic wave has a frequency range of 15_2 〇 kHz. ❹12\, the method for preparing a magnesium-based composite material according to claim 1, wherein the method of spray coating comprises: using an inert gas at a pressure of 〇5_〇·9 MPa The step of spraying a mixture of the magnesium-based material and the nano-sized sturdy body onto the substrate at a high speed. 13. The preparation of the magnesium-based composite material according to claim 12, wherein the inert gas is a mixture of argon, nitrogen, argon and nitrogen, or a combination of sulfur monoxide and nitrogen. gas. The method for preparing a magnesium-based composite material according to claim 1, wherein the method for preparing the magnesium-based composite material further comprises 22 201016860, the following steps: melting the above-mentioned magnesium-based composite material; and spray forming The molten town-base composite. The method for producing a magnesium-based composite material according to claim 1, wherein the magnesium-based composite material is subjected to calendering treatment to obtain a magnesium plate sheet having a predetermined thickness. 16. A method of preparing a magnesium-based composite material, comprising the steps of: placing a magnesium-based material in a furnace and melting in a protective gas atmosphere; adding a plurality of nano-scale reinforcements by using a gas carrying device In the furnace, the magnesium-based material and the nano-scale reinforcement are mixed by a stirrer; the mixture of the magnesium-based material and the nano-scale reinforcement is treated by at least one ultrasonic device; and the spray-molding device is used for spraying A mixture of the above magnesium-based material and a nano-scale reinforcement is molded to obtain the magnesium-based composite material. 17. The method for preparing a magnesium-based composite material according to claim 16, wherein the spray coating apparatus comprises at least a funnel, a connecting φ tube, an intake pipe, a nozzle, and a spray chamber. The connecting tube is connected to the funnel and the atomizing chamber, the air inlet tube is connected to the connecting tube, the nozzle is located at an end of the connecting tube near the atomizing chamber, and the atomizing chamber is provided with at least one collecting plate. The collecting plate is disposed opposite to the above nozzle. 18. The method for preparing a magnesium-based composite material according to claim 16, wherein the method of spray-molding the mixture of the magnesium-based material and the nano-scale reinforcement by a spray molding apparatus comprises the following steps: Injecting a mixture of the above magnesium-based material and a nano-scale reinforcement into a funnel of a spray molding apparatus; maintaining the mixing of the above-mentioned magnesium-based material with a nano-scale reinforcement 23 201016860 The temperature of the material is 680-73 (TC; and at 0.5 At a pressure of -0.9 MPa, an inert gas is introduced into the connecting pipe through the intake pipe, and the mixture of the above-mentioned magnesium-based material and the nano-grade reinforcing body is atomized into fine droplets in the connecting pipe, and the fine liquid is passed through a nozzle. The high-speed spray is sprayed onto the collecting plate in the atomization chamber. 19. The preparation method of the magnesium-based composite material according to claim 18, wherein the nozzle has a certain distance from the collecting plate, the distance range The method for preparing a magnesium-based composite material according to claim 16, wherein the method further comprises: feeding the magnesium-based composite material to obtain a pre-preparation A fixed thickness of magnesium sheet.
TW097140858A 2008-10-24 2008-10-24 Method for making magnesium matrix composite material TWI458837B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097140858A TWI458837B (en) 2008-10-24 2008-10-24 Method for making magnesium matrix composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097140858A TWI458837B (en) 2008-10-24 2008-10-24 Method for making magnesium matrix composite material

Publications (2)

Publication Number Publication Date
TW201016860A true TW201016860A (en) 2010-05-01
TWI458837B TWI458837B (en) 2014-11-01

Family

ID=44830564

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097140858A TWI458837B (en) 2008-10-24 2008-10-24 Method for making magnesium matrix composite material

Country Status (1)

Country Link
TW (1) TWI458837B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734602B2 (en) 2010-06-14 2014-05-27 Tsinghua University Magnesium based composite material and method for making the same
US8903115B2 (en) 2010-06-14 2014-12-02 Tsinghua University Enclosure and acoustic device using the same
TWI468528B (en) * 2010-06-25 2015-01-11 Hon Hai Prec Ind Co Ltd Magnesium based composite material, method for making the same, and application using the same in acousitc devcie
TWI565389B (en) * 2010-06-25 2017-01-01 鴻海精密工業股份有限公司 Enclosure and acoustic device using the same
CN108677053A (en) * 2018-06-22 2018-10-19 太原理工大学 A kind of preparation method for handing over frequency ultrasonic coupling hot pressing infiltration porous ceramics enhancing magnesium-based composite material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666819B1 (en) * 1990-09-19 1994-09-23 Inst Aluminievoi Magnievoi METHOD AND DEVICE FOR MANUFACTURING A COMPOSITE MATERIAL FROM A BASE METAL.
US5718863A (en) * 1992-11-30 1998-02-17 Lockheed Idaho Technologies Company Spray forming process for producing molds, dies and related tooling
US7837811B2 (en) * 2006-05-12 2010-11-23 Nissei Plastic Industrial Co., Ltd. Method for manufacturing a composite of carbon nanomaterial and metallic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734602B2 (en) 2010-06-14 2014-05-27 Tsinghua University Magnesium based composite material and method for making the same
US8903115B2 (en) 2010-06-14 2014-12-02 Tsinghua University Enclosure and acoustic device using the same
TWI468528B (en) * 2010-06-25 2015-01-11 Hon Hai Prec Ind Co Ltd Magnesium based composite material, method for making the same, and application using the same in acousitc devcie
TWI565389B (en) * 2010-06-25 2017-01-01 鴻海精密工業股份有限公司 Enclosure and acoustic device using the same
CN108677053A (en) * 2018-06-22 2018-10-19 太原理工大学 A kind of preparation method for handing over frequency ultrasonic coupling hot pressing infiltration porous ceramics enhancing magnesium-based composite material

Also Published As

Publication number Publication date
TWI458837B (en) 2014-11-01

Similar Documents

Publication Publication Date Title
CN101676421B (en) Method of preparing magnesium-based composite material
CN105624445B (en) A kind of graphene strengthens the preparation method of Cu-base composites
CN104475743B (en) A kind of preparation method of superfine spherical titanium and titanium alloy powder
CN101376932B (en) Preparation and preparing apparatus for magnesium-based composite material
TW201016860A (en) Method for making magnesium matrix composite material
WO2011082596A1 (en) Short-flow preparation method for fine spherical titanium powder
CN108103346A (en) Contain micro nano particle aluminium alloy welding wire wire rod and preparation method thereof
CN111230098B (en) Metal-based nano composite powder material, preparation method and application thereof
CN106893881B (en) A kind of method of zirconium oxide modified graphene enhancing magnesium-based composite material
CN107460376A (en) A kind of hybrid reinforced aluminum-matrix composite material and preparation method thereof
TWI437100B (en) Method for making magnesium-based metal matrix composites
CN108998707A (en) A kind of high-strength aluminum alloy composite material and preparation method
CN107377993B (en) A kind of metal nanometer line, dispersion liquid and preparation method thereof
CN105861862A (en) Production method of spherical copper powder containing nanometer dispersion strengthening phases
JPH10306333A (en) Production of metal base composite material
CN111872373A (en) Ceramic metal powder and preparation method and application thereof
CN104532046B (en) Method for preparing nano-aluminum-nitride reinforced aluminum-based composite semi-solid slurry based on ultrasonic and mechanical vibration combination
CN114749679A (en) Porous frame structure reinforced magnesium-based composite material and preparation method thereof
CN101748349B (en) Squeeze casting preparation method of carbon nano tube reinforced aluminum alloy composite material through
JP2002275356A (en) Filler for epoxy resin, and epoxy resin composition
CN108441732A (en) A kind of Nano diamond particle reinforced magnesium base compound material and preparation method thereof
CN110899692B (en) Preparation method of iron-based alloy powder
CN107058903A (en) A kind of graphene/stainless steel composite armour material
KR20120035526A (en) Method for manufacturing nano-particle reinforced metal matrix composites and the metal matrix composite
CN109128058A (en) The device and method of Composite Field casting production ODS steel