TW201016668A - Ruthenium complex and photoelectric component using the same - Google Patents

Ruthenium complex and photoelectric component using the same Download PDF

Info

Publication number
TW201016668A
TW201016668A TW097140421A TW97140421A TW201016668A TW 201016668 A TW201016668 A TW 201016668A TW 097140421 A TW097140421 A TW 097140421A TW 97140421 A TW97140421 A TW 97140421A TW 201016668 A TW201016668 A TW 201016668A
Authority
TW
Taiwan
Prior art keywords
metal complex
dye
base metal
bipyridine
complex according
Prior art date
Application number
TW097140421A
Other languages
Chinese (zh)
Other versions
TWI377199B (en
Inventor
Ching-Lin Chen
Ta-Chung Yin
Der-Gun Chou
Original Assignee
Everlight Chem Ind Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everlight Chem Ind Corp filed Critical Everlight Chem Ind Corp
Priority to TW097140421A priority Critical patent/TWI377199B/en
Publication of TW201016668A publication Critical patent/TW201016668A/en
Application granted granted Critical
Publication of TWI377199B publication Critical patent/TWI377199B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a ruthenium complex and a photoelectric component using the same, and the ruthenium complex is represented by the following formula (I): RuL2(NCS)2Am (I) wherein L, A and m are defined the same as the specification. The ruthenium complex of the present invention is suitable for Dye-Sensitized Solar Cell (DSSC). Hence, the photoelectric characteristics of the DSSC manufactured with the ruthenium complex of the present invention can be improved.

Description

201016668 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種釕金屬錯合物及用此錯合物製作之 光電元件,特別是一種適用於染料敏化太陽能電池 5 (Dye-Sensitized Solar Cell,DSSC)之訂金屬錯合物及染料 敏化太陽能電池。 【先前技術】 ® 隨著人類文明發展,全球面臨嚴重的能源危機及環境 10 污染等問題,以光電太陽能電池將太陽能直棲轉變成電 能,是解決全世界能源危機及降低環境污染的重要方法之 一;其中染料敏化太陽能電池以其製造成本低、可製成大 面積、可撓性、透光性可用於建築物上等優異特性,而成 為一種有前景的新型太陽能電池。 15 近年,GrStzel等人發表一系列染料敏化太陽能電池相 關文獻(例如 O’ Regan, B·; Gratzel, M. Nature 1991,353, ❹ 737),顯示染料敏化太陽能電池具有實用性。一般而言, 染料敏化太陽能電池的結構包括有陰/陽電極、奈米二氧化 鈦、染料及電解質;染料敏化太陽能電池中的染料對電池 20 效率有關鍵性的影響,理想的染料要具有可以吸收較大範 圍的太陽光譜、高莫耳吸收係數(absorption coefficient)、 高溫安定性及光安定性等。201016668 VI. Description of the Invention: [Technical Field] The present invention relates to a base metal complex and a photovoltaic element produced using the same, in particular to a dye-sensitized solar cell 5 (Dye-Sensitized Solar) Cell, DSSC) metal complex and dye-sensitized solar cells. [Prior Art] ® With the development of human civilization, the world faces serious energy crisis and environmental pollution. The photoelectric solar cell converts solar direct electricity into electric energy, which is an important method to solve the global energy crisis and reduce environmental pollution. A dye-sensitized solar cell is a promising new type of solar cell because of its low manufacturing cost, large area, flexibility, and light transmittance for use on buildings. 15 In recent years, GrStzel et al. published a series of related literatures on dye-sensitized solar cells (eg, O'Regan, B.; Gratzel, M. Nature 1991, 353, ❹ 737), showing the utility of dye-sensitized solar cells. In general, the structure of a dye-sensitized solar cell includes a cathode/anode electrode, a nano titanium dioxide, a dye, and an electrolyte; a dye in a dye-sensitized solar cell has a critical influence on the efficiency of the battery 20, and an ideal dye has an Absorbs a wide range of solar spectrum, high absorption coefficient, high temperature stability and light stability.

Gratzel實驗室發表了一系列之釕錯合物作為染料敏化 太陽能電池中的染料。1993年Gratzel實驗室發表使用N3染 4 201016668 料所製備之染料敏化太陽能電池,其效率達10.0%(AM 1.5)。N3染料之單波光光電流轉換效率(IPCE)值在 400nm〜600nm範圍可達80%,而其後所開發之數百種染料錯 合物,其效能測試皆無法超越N3染料。N3染料之結構如下 式(a)所示。Gratzel Laboratories has published a series of complexes as dyes in dye-sensitized solar cells. In 1993, Gratzel Laboratories published a dye-sensitized solar cell prepared using N3 Dye 4 201016668 with an efficiency of 10.0% (AM 1.5). The single-wave photo-current conversion efficiency (IPCE) of the N3 dye can reach 80% in the range of 400 nm to 600 nm, and hundreds of dye complexes developed thereafter cannot exceed the N3 dye. The structure of the N3 dye is as shown in the following formula (a).

參 ίο 直至2003年Gratzel實驗室發表使用N719染料所製備 之染料敏化太陽能電池,其效率提升到10.85%(AM 1.5)。 N719染料之結構如下式(b)所示。2003 ίο Until 2003, Gratzel Laboratories published a dye-sensitized solar cell prepared using N719 dye, which increased its efficiency to 10.85% (AM 1.5). The structure of the N719 dye is as shown in the following formula (b).

COOTBA (b) 5 201016668 而後2004年同實驗室發表使用黑染料(Black dye)所製 備之染料敏化太陽能電池,其效率則達到11.04%(AM 1.5)。黑染料可強化紅光區和紅外光區的光譜應答,從而提 昇染料敏化太陽能電池的效能。黑染料之結構如下式(c)所 示。COOTBA (b) 5 201016668 Then in 2004, the same laboratory published a dye-sensitized solar cell using Black dye, which achieved an efficiency of 11.04% (AM 1.5). The black dye enhances the spectral response of the red and infrared regions, thereby improving the performance of the dye-sensitized solar cell. The structure of the black dye is as shown in the following formula (c).

COOTBA ΛCOOTBA Λ

TBAOOCTBAOOC

VN\VN\

HOOCHOOC

/NCS Ru ~NCS NCS (C) 10/NCS Ru ~NCS NCS (C) 10

15 除了 Gratzel實驗室發表之N3染料、N719染料與黑染料 等相關系列之釕錯合物之外,其他類似的有鉑錯合物、锇 錯合物、鐵錯合物、銅錯合物...等等。但是經過許多研究 顯示釕錯合物的效率仍為較佳。 由於染料敏化太陽能電池中的染料對電池效率有關鍵 性的影響。因此,尋找可以提高染料敏化太陽能電池效率 的染料分子,是改善染料敏化太陽能電池效率的重要方法 之一。 【發明内容】 本發明提供一種新穎釕金屬錯合物,其適用於染料敏 化太陽能電池,可以增加染料敏化太陽能電池之光電效率。 6 201016668 本發明另提供一種染料敏化太陽能電池’其有較高的 光電效率。 本發明之釕金屬錯合物,其結構如下式(I) ·’ 5 ❹ 10 15 2015 In addition to the related series of N3 dyes, N719 dyes and black dyes published by Gratzel Laboratories, other similar compounds are platinum complexes, ruthenium complexes, iron complexes, and copper complexes. ..and many more. However, after many studies, the efficiency of the ruthenium complex is still better. Dyes in dye-sensitized solar cells have a critical impact on cell efficiency. Therefore, finding dye molecules that can improve the efficiency of dye-sensitized solar cells is one of the important methods to improve the efficiency of dye-sensitized solar cells. SUMMARY OF THE INVENTION The present invention provides a novel base metal complex which is suitable for dye-sensitized solar cells and which can increase the photoelectric efficiency of dye-sensitized solar cells. 6 201016668 The present invention further provides a dye-sensitized solar cell which has a high photoelectric efficiency. The base metal complex of the present invention has the following formula (I) ·' 5 ❹ 10 15 20

RuL2(NCS)2Am (I) 其中 為 2,2’-雙。比咬·4,4’-二甲酸(2,2’-1^卩>^£171- 4,4’-dicarboxylic acid)、2,2,-雙吡啶-4,4,-二磺酸 (2,2 -bipyridyl-4,4’-disulfonic acid)或 2,2’-雙0比咬-4,4’-二 磷酸(2,2 -bipyridyl-4,4,-diphosphonic acid); A 為四級鱗陽離子(qUaternary ph〇Sphonium cation); m 為 1、2、3、或 4。 於上述式(I)中,L可為2,2,-雙吡啶-4,4,-二甲酸、2,2,-雙吡变-4,4 - 一罐酸或2,2’-雙吼啶_4,4’_二鱗酸。較佳的, L·為2,2’-雙》比。定_4,4’-二甲酸。 於上述式(I)中,Α可為為四級鎸陽離子(quaternary Ph〇Sph〇niUm Cati〇n);較佳的,A 為 P+RlR2R3R4,其中 Ri、 R2'R3'及R4各自獨立分別為Ci 2。烧基⑷㈣)、苯基⑽⑶州 或苯甲基(benZyl);更佳的’ A為四燒基鱗、苯甲基三烷 基鱗或苯基三烧基鱗,其中境基為心。烧基。 於上述式(I)中,m可為 為2或3;更佳的’m為2。 2、3、或4,較佳的,m 上述式⑴之釕金屬錯合物具體實例有: 7 201016668RuL2(NCS)2Am (I) where is 2,2'-double. Than 4,4'-dicarboxylic acid (2,2'-1^卩>^£171-4,4'-dicarboxylic acid), 2,2,-bipyridine-4,4,-disulfonic acid (2,2-bipyridyl-4,4'-disulfonic acid) or 2,2'-bis 0-bit 4,4'-diphosphate (2,2-bipyridyl-4,4,-diphosphonic acid); A It is a quaternary cation (qUaternary ph〇Sphonium cation); m is 1, 2, 3, or 4. In the above formula (I), L may be 2,2,-bipyridine-4,4,-dicarboxylic acid, 2,2,-bispyridyl-4,4-one-pot acid or 2,2'-double Acridine _4,4'-discalic acid. Preferably, L· is a 2,2'-double ratio. _4,4'-dicarboxylic acid. In the above formula (I), Α may be a quaternary cation (quaternary Ph〇Sph〇niUm Cati〇n); preferably, A is P+RlR2R3R4, wherein Ri, R2'R3' and R4 are each independently For Ci 2. The base (4) (4)), the phenyl (10) (3) state or the benzyl group (benZyl); more preferably 'A is a tetraalkyl scale, a benzyltrialkyl scale or a phenyl trialkyl scale, wherein the radical is a heart. Burning base. In the above formula (I), m may be 2 or 3; more preferably 'm is 2. 2, 3, or 4, preferably, m specific examples of the ruthenium metal complex of the above formula (1) are: 7 201016668

(Μ)(Μ)

(1-2) 8 201016668(1-2) 8 201016668

❹ 5 (1-4) 本發明提供之染料敏化太陽能電池,其含有上述之釕 金屬錯合物。 此外,本發明之染料敏化太陽能電池,包括:一含有 上述釕金屬錯合物之光電陽極(photoanode); —陰極 10 (cathode);以及位於光電陽極及陰極之間的電解質層 (electrolyte layer) ° 9 201016668 於本發明之染料敏化太陽能電池中,光電陽極包括 有:透明基板、透明導電膜、多孔性半導體膜、以及釕金 屬錯合物染料。 於本發明之染料敏化太陽能電池中,光電陽極之透明 5 基板之材質並無特別限制,只要是透明的基材均可使用。 較佳地,透明基板之材質為對於由染料敏化太陽能電池外 部侵入之水分或氣體具有良好的遮斷性、财溶劑性、耐候 性等之透明基材。透明基板之具體列舉,包括有:石英、 ® 玻璃等透明無機基板;聚乙稀對苯二甲酸酯(PET)、聚(萘二 10 甲酸乙二酯)(PEN)、聚碳酸酯(PC)、聚乙烯(PE)、聚丙烯 (PP)、聚醯亞胺(PI)等透明塑膠基板,但是,並非限定於這 些。此外,透明基板之厚度並無特別限制,可依照透光率、 染料敏化太陽能電池特性要求而自由選擇。較佳的,透明 基板之材質為玻璃。 15 此外,於本發明之染料敏化太陽能電池中,透明導電 膜的材料可為氧化銦錫(ITO)、氟摻雜的氧化錫(FT〇)、氧 ❿ 化鋅-二氧化二鎵(Zn〇-Ga2〇3)、氧化鋅-三氧化二銘 (ΖηΟ-Α12〇3)、或以鍚為基礎的氧化物材料。 再者,於本發明之染料敏化太陽能電池中,多孔性半 20導體膜是用+導體微粒所製成。適當的帛導體微粒可包 括:梦、二氧化欽、二氧化錫、氧化鋅、三氧化鶴、五氧 化二鈮、三氧化鈦鋰、及其組合;較佳的,半導體微粒是 二氧化鈦。半導體微粒的平均粒徑為5至5〇〇奈米,較佳的 為10至50奈米。多孔性半導體膜的厚度為5〜25微米。 201016668 ' 於本發明之染料敏化太陽能電池中,釕金屬錯合物染 料如上所述之釕金屬錯合物。 此外,作為染料敏化太陽能電池之陰極材料並無特別 限制,可包括任何具有傳導性之材料。或者,陰極材料也 5 可以是一絶緣材料,只要有傳導層形成於朝向光電陽極的 表面上。電化學穩定的物質就可作為陰極,且適用於陰極 材料的非限制實例包括:鉑、金、碳、及其相似物。 再者,作為染料敏化太陽能電池之電解質層並無特別 〇 限制,可包括任何具有電子及/或電洞傳導性之基材。 10 【實施方式】 本發明之釕金屬錯合物可以下列方式合成。 廣-二硫氰基雙(2,2’_雙吡啶-4,4’-二曱酸基)釕(II) (c/i-di(thiocyanato)-iV,J/V,-bis(2,2,-bipyridyl-4,4,-15 dicarboxylic acid)ruthenium(II),N3 dye)依照 Inorganic C/zewk/r;)/, Vol. 38 , No. 26,1999,6298-6305 的方法合成。 將廣-二硫氰基-愚雙(2,2,-雙吡啶-4,4’-二甲酸基)釕 (II)溶於蒸餾水中,再滴入10%的氫氧四正丁基鱗水溶液 (tetrabutylphosphonium hydroxide reagent , TCI Co. Ltd.)到 20 反應液中,直到反應液的pH值穩定達到11,然後濃縮得 到黏稠液。將此黏稠液溶於甲醇(methanol)中,然後加入乙 醚(diethyl ether)沈殿出產物,取出此吸濕性固體產物後在 真空下乾燥一天。將此乾燥後的固體溶於蒸餾水中,再用 0.1 Μ的墙酸(nitric acid)水溶液調整pH值到5以下,即可 25 得到式(1-1)之釕金屬錯合物。 11 201016668 本發明之染料敏化太陽能電池的製造方法並無特別限 制,可用一般已知的方法製造。 透明基板之材質並無特別限制,只要是透明的基材均 可使用。較佳地,透明基板之材質為對於由染料敏化太陽 5 10 15 ❹ 20 能電池外部侵入之水分或氣體具有良好的遮斷性、耐溶劑 性、耐候性等之透明基材,具體列舉,有石英、玻璃等透 明無機基板,聚乙烯對苯二甲酸酯(PET)、聚(萘二甲酸乙二 曰)(PEN)聚碳酸酯(PC)、聚乙烯(PE)、聚丙烯(pp)、聚醢 亞胺(PI)等透明塑朦基板,但是,並非限定於這些。透明基 板之厚度並無特別限制,可以藉由透光率、染料敏化太陽 能電池特性要求而自由選擇。在—具體實例中,透明基板 是使用玻璃基板。 _透明導電膜的材料可以選自氧化銦錫(ITO)、氟摻雜的 氧化錫(FTO)、氧化辞-三氧化二鎵(ZnO-Ga2〇3)、氧化辞_ 三氧化二鋁(ZnO-Al^3)、以及鍚為基礎的氧化物材料。在 -具體實例中’透明導電膜是使用氟摻雜的氧化錫。 多孔性半導體膜是用半導體微粒所製成。適當的半導 體微粒包括有碎、二氧化欽、二氧化錫、氧化鋅、三氧化 鎢五氧化二鈮、三氧化鈦銘及其組合。首先,先將半導 體微粒配製成糊狀物,再將其塗佈到透明導電基板上,塗 佈方法可用刮墨刀、網印、旋轉塗佈、喷激等或—般濕式 塗佈。此外,為了得到適當的膜厚,可以塗佈一次或多次。 =導體膜層可以為單層或多層’多層是指各層使用不同粒 徑的半導體微粒。例如,可先塗佈粒徑為5至5〇奈米的半導 12 201016668 體微粒,其塗佈厚度為5至20微米,然後再塗佈粒徑為200 至400奈米的半導體微粒,其塗佈厚度為3至5微米。然後在 5〇至100°C乾燥後’再在400至5〇(TC燒結30分鐘可製得一多 層半導體膜層。 5 10 15 20 釕金屬錯合物染料可以溶於適當的溶劑配製成染料溶 液。適當的溶劑包括有乙腈、曱醇、乙醇、丙醇、丁醇、 二甲基甲醯胺、N-甲基吡咯烷酮或其混合物,但是,並非 限定於這些。在此,將塗佈有半導體膜的透明基板浸泡到 染料溶液中,讓其充分吸收染料溶液中的染料,並於染料 吸收完成後取出乾燥,可製得一染料敏化太陽能電池之光 電陽極。 作為陰極的材料並無特別限制,可包括任何具有傳導 性之材料。或者,陰極材料也可以是一絶緣材料,只要有 傳導層形成於朝向光電陽極的表面上。此外,電化學穩定 的物質就可作為陰極,且適用於陰極材料的非限制實例包 括:鉑、金、碳、及其相似物。 電解質層並無特別限制,可以包括任何具有電子及/或 電洞傳導性之基材。另夕卜,液態電解質可以是含㈣乙腈 溶液、含蛾的NH叫㈣溶液、或含峨的3_▼氧基丙 =液。在一具體實例中,液態電解質為-含有碘的乙腈 本發明之染料敏化太陽能電池—具體製造方式如下。 首先,將包括具有粒徑為2〇〜3〇太 粒的糊狀物,難ώ 一 A々* 不' >、(nm)之氧化鈦微 曰-:人或數次的網印塗佈在覆蓋有氟摻雜 13 201016668 • 的氧化錫(FTO)玻璃板上,而後在450°C燒結30分鐘。 將釕金屬錯合物溶於乙腈(acetonitrile)及三.親-丁醇 (ί-butanol)的混合液(1:1 v/v)中,配成釕金屬錯合物染料溶 液。接著,將上述含有多孔氧化鈦膜的玻璃板浸泡在染料 5 溶中,讓其吸收染料溶液中的染料後,取出乾燥即可得到 一光電陽極(photoanode)。 將覆蓋有氟摻雜的氧化錫玻璃板鑽一直徑為0.75毫米 之注入口,以備注入電解質用。再將氣化鉑酸(H2PtCl6)溶 〇 液塗佈在覆蓋有氟摻雜的氧化錫玻璃板上,然後加熱到400 10 °C處理15分鐘即可得到一陰極(cathode)。 然後,將厚度60微米的熱塑性聚合物膜配置在光電陽 極和陰極之間,在120至140°C下施加壓力於此二電極,以 黏合此兩電極。 將電解液(0.03 Μ Ι2/0·3 M LiI/0.5 Μ三級丁基吡啶的乙 15 腈溶液)注入,再用熱塑性聚合物膜將注入口密封,即可得 到本發明之染料敏化電池。 _ 以下實例僅用以說明本發明,本發明之申請專利範圍 並不會因此而受限制。若無特別註明,則溫度為攝氏溫度, 份數及百分比係以重量計。重量份數和體積份數之關係就 20 如同公斤和公升之關係。 實施例1 合成膺-二硫氰基雙(2,2,-雙吡啶-4,4’-二甲酸基)釕(II) 雙(苯甲基三 丁基銨)(c^-di(thiocyanato)-7V,A^-bis(2,2’-bi 25 pyridy 1-4,45-dicarboxy lie acid)ruthenium(II)bis(tetrabutyl 14 201016668 * phosphonium)) (1-1) 將0.50份膺二硫氰基-W’·雙(2,2,-雙吡啶-4,4’-二甲 酸基)釕(II) (cz5-di(thiocyanato)-iV,^,-bis(2,2,-bipyridyl-4,4’-dicarboxylic acid)ruthenium(II),N3 dye)(依照 5 Inorganic Chemistry, Vol. 38 , No. 26, 1999, 6298-6305 ^ 法合成)以及10份蒸餾水加入反應瓶中攪拌混合,再滴入 10%的氫氧四正丁基鱗水溶液(tetrabutylphosphonium hydroxide reagent,TCI Co. Ltd.)到反應液中,直到反應液 ❹ 的pH值穩定達到11,然後用旋轉蒸發儀(rotary-evaporator) 10 蒸除溶劑得到黏稠液。接著,將此黏稠液溶於曱醇(methanol) 中,然後加入乙醚(diethyl ether)產生沈澱物,取出此吸濕 性固體產物後在真空下乾燥一天。將此乾燥後的固體溶於 10份的蒸德水中,再用0.1 Μ的硝酸(nitric acid)水溶液調 整pH值到5以下,用燒結玻璃過遽器(sintered glass filter) 15 過濾收集產物,並用5份pH 5的蒸餾水沖洗產物,得到式 (1-1)之黑色固體產物0.39份,產率75.9%。 ❹賁施例2 製造染料敏化太陽能電池 20 將包括具有粒徑為20〜30奈米(nm)之氧化鈦微粒的糊 狀物’藉由一次或數次的網印塗佈在覆蓋有氟摻雜的氧化 錫(FTO)玻璃板(厚度4 mm,電阻ΙΟΩ/口)上,使得燒結後 的多孔氧化鈦膜的厚度為10至12微米m),而後在45〇 °C燒結30分鐘。 25 將實施例1之釕金屬錯合物溶於乙腈(acetonitrile)及 15 201016668 . 三毅·丁醇㈣utanol)的混合液(1] wv)中,配成釕金屬錯合 物濃度為0.5 Μ的染料溶液,接著,將上述含有多孔氧化 鈦膜的玻璃板浸泡在染料溶中,讓其吸收染料溶液中的染 料16至24小時後,取出乾燥即可得到一光電陽極 5 (photoanode) ° 將覆蓋有氟摻雜的氧化錫玻璃板鑽一直徑為〇·75毫 米’以備注入電解質用,再將氣化始酸溶液(丨毫 升的乙醇中含有2毫克的鉑)塗佈在氧化錫玻璃板上,然後 φ 加熱到400°C處理15分鐘即可得到一陰極(cath〇de)。 10 將厚度60微米的熱塑性聚合物膜配置在光電陽極和 陰極之間’在120至140°C下施加壓力於此二電極,以黏合 該兩電極。 將電解液(0.03 Μ I2/0.3 M LiI/0.5 Μ三級丁基b比咬的乙 腈溶液)注入’再用熱塑性聚合物膜將注入口密封,可得本 15 實施例之染料敏化太陽能電池。 ❷ 20 比較例 同實施例2之相同步驟製備染料敏化太陽能電池,除 了使用Ν719取代實施例1之釕金屬錯合物。 測試方法與結果 光電效率測試 將實施例2及比較例之染料敏化太陽能電池在AM 1.5 的照明下,測試其短路電流(Jsc)、開路電壓(Voc)、填充因 子(FF)、光電轉換效率(η)及單波光光電流轉換效率(Incident 16 25 201016668❹ 5 (1-4) A dye-sensitized solar cell provided by the present invention contains the above-described ruthenium metal complex. Further, the dye-sensitized solar cell of the present invention comprises: a photoanode containing the above-described base metal complex; a cathode 10; and an electrolyte layer between the photoanode and the cathode. ° 9 201016668 In the dye-sensitized solar cell of the present invention, the photoanode includes: a transparent substrate, a transparent conductive film, a porous semiconductor film, and a ruthenium metal complex dye. In the dye-sensitized solar cell of the present invention, the material of the photoanode is transparent. The material of the substrate is not particularly limited, and any substrate can be used as long as it is transparent. Preferably, the material of the transparent substrate is a transparent substrate having good barrier properties, fuel solubility, weather resistance and the like for moisture or gas intruded from the outside of the dye-sensitized solar cell. Specific examples of transparent substrates include transparent inorganic substrates such as quartz and ® glass; polyethylene terephthalate (PET), poly(naphthalene dicarboxylate) (PEN), and polycarbonate (PC). ), a transparent plastic substrate such as polyethylene (PE), polypropylene (PP), or polyimide (PI), but is not limited thereto. Further, the thickness of the transparent substrate is not particularly limited, and can be freely selected in accordance with the light transmittance and the characteristics of the dye-sensitized solar cell. Preferably, the transparent substrate is made of glass. Further, in the dye-sensitized solar cell of the present invention, the material of the transparent conductive film may be indium tin oxide (ITO), fluorine-doped tin oxide (FT〇), zinc antimonide-digallium dioxide (Zn). 〇-Ga2〇3), zinc oxide-three-oxides (ΖηΟ-Α12〇3), or yttrium-based oxide materials. Further, in the dye-sensitized solar cell of the present invention, the porous semi-conductor film is made of +conductor particles. Suitable germanium conductor particles may include: dream, dioxins, tin dioxide, zinc oxide, trioxane, bismuth oxide, lithium titania, and combinations thereof; preferably, the semiconductor particles are titanium dioxide. The semiconductor fine particles have an average particle diameter of 5 to 5 nm, preferably 10 to 50 nm. The thickness of the porous semiconductor film is 5 to 25 μm. 201016668 'In the dye-sensitized solar cell of the present invention, the ruthenium metal complex dye is a ruthenium metal complex as described above. Further, the cathode material as the dye-sensitized solar cell is not particularly limited and may include any material having conductivity. Alternatively, the cathode material 5 may be an insulating material as long as a conductive layer is formed on the surface facing the photoanode. Electrochemically stable materials are useful as cathodes, and non-limiting examples of suitable cathode materials include platinum, gold, carbon, and the like. Further, the electrolyte layer as the dye-sensitized solar cell is not particularly limited and may include any substrate having electron and/or hole conductivity. [Embodiment] The base metal complex of the present invention can be synthesized in the following manner. --Dithiocyano bis(2,2'-bipyridine-4,4'-didecanoyl) ruthenium (II) (c/i-di(thiocyanato)-iV, J/V, -bis(2 , 2,-bipyridyl-4,4,-15 dicarboxylic acid)ruthenium(II), N3 dye) synthesized according to the method of Inorganic C/zewk/r;)/, Vol. 38, No. 26, 1999, 6298-6305 . Dissolve gal-dithiocyano-stupid (2,2,-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) in distilled water, and then add 10% oxytetra-n-butyl squama An aqueous solution (tetrabutylphosphonium hydroxide reagent, TCI Co. Ltd.) was added to the reaction solution until the pH of the reaction solution reached 11 and then concentrated to obtain a viscous liquid. The viscous liquid was dissolved in methanol, and then the product was precipitated by adding diethyl ether. The hygroscopic solid product was taken out and dried under vacuum for one day. The dried solid was dissolved in distilled water, and the pH was adjusted to 5 or less with a 0.1 Torr aqueous solution of nitric acid to obtain a ruthenium metal complex of the formula (1-1). 11 201016668 The method for producing the dye-sensitized solar cell of the present invention is not particularly limited and can be produced by a generally known method. The material of the transparent substrate is not particularly limited as long as it is a transparent substrate. Preferably, the material of the transparent substrate is a transparent substrate having good barrier properties, solvent resistance, weather resistance and the like for moisture or gas in which the battery is externally infiltrated by the dye sensitized sun 5 10 15 ❹ 20, specifically, There are transparent inorganic substrates such as quartz and glass, polyethylene terephthalate (PET), poly(ethylene naphthalate) (PEN) polycarbonate (PC), polyethylene (PE), and polypropylene (pp). A transparent plastic substrate such as polyimine (PI), but is not limited thereto. The thickness of the transparent substrate is not particularly limited and can be freely selected by the light transmittance and the characteristics of the dye-sensitized solar cell. In a specific example, the transparent substrate is a glass substrate. The material of the transparent conductive film may be selected from the group consisting of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), oxidized-bis-gallium trioxide (ZnO-Ga2〇3), and oxidized _ aluminum oxide (ZnO) -Al^3), and bismuth-based oxide materials. In the specific example, the transparent conductive film is tin oxide doped with fluorine. The porous semiconductor film is made of semiconductor fine particles. Suitable semiconductor particles include pulverized, dioxins, tin dioxide, zinc oxide, tungsten trioxide pentoxide, titanium oxide and combinations thereof. First, the semiconductor fine particles are first formulated into a paste, which is then applied to a transparent conductive substrate by a doctor blade, screen printing, spin coating, spray or the like or wet coating. Further, in order to obtain an appropriate film thickness, it may be applied one or more times. = The conductor film layer may be a single layer or a plurality of layers. The term "multilayer" means that the layers use semiconductor particles of different particle diameters. For example, semi-conductive 12 201016668 bulk particles having a particle diameter of 5 to 5 nanometers may be coated first, and coated with a thickness of 5 to 20 micrometers, and then coated with semiconductor particles having a particle diameter of 200 to 400 nm. The coating thickness is 3 to 5 microns. Then, after drying at 5 Torr to 100 ° C, 'more 400 to 5 〇 (TC can be sintered for 30 minutes to obtain a multilayer semiconductor film layer. 5 10 15 20 ruthenium metal complex dye can be dissolved in a suitable solvent. A dye solution. Suitable solvents include acetonitrile, decyl alcohol, ethanol, propanol, butanol, dimethylformamide, N-methylpyrrolidone or a mixture thereof, but are not limited thereto. The transparent substrate coated with the semiconductor film is immersed in the dye solution to fully absorb the dye in the dye solution, and is taken out and dried after the dye absorption is completed, thereby obtaining a photoanode of a dye-sensitized solar cell. Any material having conductivity may be included without limitation, or the cathode material may be an insulating material as long as a conductive layer is formed on the surface facing the photoanode. Further, an electrochemically stable substance can serve as a cathode, and Non-limiting examples of suitable cathode materials include: platinum, gold, carbon, and the like. The electrolyte layer is not particularly limited and may include any electron and/or hole transmission. In addition, the liquid electrolyte may be a solution containing (iv) acetonitrile solution, a moth-containing NH (four) solution, or a ruthenium-containing 3_-h-propoxypropane solution. In one embodiment, the liquid electrolyte is-containing Acetonitrile of iodine The dye-sensitized solar cell of the present invention is specifically produced as follows. First, a paste having a particle size of 2 〇 3 to 3 Å is included, which is difficult to be 々* 不* >, (nm Titanium oxide micro-twist-: man or several times of screen printing on a tin oxide (FTO) glass plate covered with fluorine doping 13 201016668 • and then sintered at 450 ° C for 30 minutes. The solution is dissolved in a mixture of acetonitrile and tri-butanol (1:1 v/v) to form a ruthenium metal complex dye solution. Next, the above-mentioned porous titanium oxide is contained. The glass plate of the film is immersed in the dye 5 solution, so that it absorbs the dye in the dye solution, and then taken out and dried to obtain a photoanode. The fluorine-doped tin oxide glass plate is drilled to have a diameter of 0.75 mm. The injection port is used for injecting electrolyte. The vaporized platinum acid (H2PtCl6) is dissolved. It is coated on a fluorine-doped tin oxide glass plate and then heated to 400 10 ° C for 15 minutes to obtain a cathode. Then, a 60 μm thick thermoplastic polymer film is disposed on the photoanode and Between the cathodes, a pressure is applied to the two electrodes at 120 to 140 ° C to bond the two electrodes. The electrolyte (0.03 Μ Ι 2/0·3 M LiI/0.5 Μ tri-butyl pyridine in an ethyl 15 nitrile solution) The dye-sensitized battery of the present invention can be obtained by injecting and sealing the injection port with a thermoplastic polymer film. The following examples are merely illustrative of the invention, and the scope of the invention is not limited thereby. Unless otherwise stated, the temperature is in degrees Celsius and the parts and percentages are by weight. The relationship between parts by weight and parts by volume is as much as the relationship between kilograms and liters. Example 1 Synthesis of 膺-dithiocyanobis(2,2,-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) bis(benzyltributylammonium) (c^-di(thiocyanato) -7V, A^-bis(2,2'-bi 25 pyridy 1-4,45-dicarboxy lie acid)ruthenium(II)bis(tetrabutyl 14 201016668 * phosphonium)) (1-1) 0.50 parts Thiocyanyl-W'·bis(2,2,-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) (cz5-di(thiocyanato)-iV,^,-bis(2,2,- Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II), N3 dye) (according to 5 Inorganic Chemistry, Vol. 38, No. 26, 1999, 6298-6305 ^ synthesis) and 10 parts of distilled water added to the reaction flask for stirring After mixing, a 10% tetrabutylphosphonium hydroxide reagent (TCI Co. Ltd.) was added dropwise to the reaction solution until the pH of the reaction solution was stable to 11, and then a rotary evaporator (rotary) was used. -evaporator) 10 Evaporate the solvent to give a viscous liquid. Next, the viscous liquid was dissolved in methanol, and diethyl ether was added to produce a precipitate. The hygroscopic solid product was taken out and dried under vacuum for one day. The dried solid was dissolved in 10 parts of steamed water, and the pH was adjusted to 5 or less with a 0.1 Torr aqueous solution of nitric acid, and the product was collected by filtration using a sintered glass filter 15 and used. The product was washed with 5 parts of distilled water of pH 5 to obtain 0.39 parts of a black solid product of formula (1-1), yield 75.9%. Example 2 Production of Dye-Sensitized Solar Cell 20 A paste comprising titanium oxide fine particles having a particle diameter of 20 to 30 nm is coated with fluorine by one or several screen printings. A doped tin oxide (FTO) glass plate (thickness 4 mm, resistance ΙΟ Ω / port) was applied so that the sintered porous titanium oxide film had a thickness of 10 to 12 μm, and then sintered at 45 ° C for 30 minutes. 25 The base metal complex of Example 1 was dissolved in a mixture of acetonitrile and 15 201016668 . Sanyi butanol (tetra) utanol (1) wv), and the concentration of the ruthenium metal complex was 0.5 Μ. a dye solution, and then immersing the above-mentioned glass plate containing a porous titanium oxide film in a dye solution, allowing it to absorb the dye in the dye solution for 16 to 24 hours, and then taking out and drying to obtain a photoanode 5 (photoanode) ° will cover A fluorine-doped tin oxide glass plate is drilled with a diameter of 〇·75 mm' for injection into the electrolyte, and then the vaporized acid solution (containing 2 mg of platinum in liter of ethanol) is coated on the tin oxide glass plate. Then, φ is heated to 400 ° C for 15 minutes to obtain a cathode (cath〇de). 10 A thermoplastic polymer film having a thickness of 60 μm is disposed between the photoanode and the cathode. A pressure is applied to the two electrodes at 120 to 140 ° C to bond the electrodes. The electrolyte (0.03 Μ I2/0.3 M LiI/0.5 Μ tertiary butyl b is immersed in a acetonitrile solution) is injected into the thermoplastic polymer film to seal the injection port, and the dye-sensitized solar cell of the 15th embodiment can be obtained. . ❷ 20 Comparative Example A dye-sensitized solar cell was prepared in the same manner as in Example 2 except that ruthenium 719 was used instead of the ruthenium metal complex of Example 1. Test Methods and Results Photoelectric Efficiency Test The dye-sensitized solar cells of Example 2 and Comparative Example were tested for short-circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), and photoelectric conversion efficiency under illumination of AM 1.5. (η) and single-wave photocurrent conversion efficiency (Incident 16 25 201016668

Photon to Current Conversion Efficiency,IPCE)。測試結果 整理如下表1 : 表1染料敏化太陽能池之測試結果 染料 Jsc (mA/cm2) V〇c (V) FF η (%) 實施例2 1-1 9.02 0.78 0.63 4.44 比較例 N719 7.36 0.76 0.61 3.38Photon to Current Conversion Efficiency, IPCE). The test results are summarized as follows: Table 1 Test results of dye-sensitized solar cells Dye Jsc (mA/cm2) V〇c (V) FF η (%) Example 2 1-1 9.02 0.78 0.63 4.44 Comparative Example N719 7.36 0.76 0.61 3.38

1010

15 由表1之測試結果顯示用本發明實施例之釕金屬錯 合物所製作的染料敏化太陽能電池,與比較例用N719所製 作的染料敏化太陽能電池相比’本發明之釕金屬錯合物可 以提局染料敏化太陽能電池之短路電流、開路電壓及填充 因子’因而增加染料敏化太陽能電池的光電轉換效率。 綜上所述,本發明無論就目的、手法及功效,或就其 技術層面與研發設計上,在在均顯示其迥異於習知技術之 特徵。惟應注意的疋’上述諸多實施例僅係為了便於說明 故舉例闡述之’然其並非用以限定本發明,任何熟習此技 藝者’在不脫離本發明之精神及範圍内,當可作些許之更 動與潤飾,因此本發明所主張之權利範圍自應以申請專利 範圍所述為準,而非僅限於上述實施例。 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 17 20 201016668 【圖式簡單說明】 無。 【主要元件符號說明】 5 無。15 The test results of Table 1 show that the dye-sensitized solar cell produced by the base metal complex of the embodiment of the present invention is compared with the dye-sensitized solar cell produced by the comparative example N719. The compound can improve the short-circuit current, open circuit voltage and fill factor of the dye-sensitized solar cell, thus increasing the photoelectric conversion efficiency of the dye-sensitized solar cell. In summary, the present invention exhibits characteristics that are different from conventional techniques in terms of purpose, technique, and efficacy, or in terms of its technical level and R&D design. However, it should be noted that the above-mentioned embodiments are merely illustrative for the sake of convenience of description, and are not intended to limit the invention, and that those skilled in the art can make some modifications without departing from the spirit and scope of the invention. The scope of the claims is intended to be limited to the above embodiments. The above-described embodiments are merely examples for the convenience of the description, and the scope of the claims is intended to be limited by the scope of the claims. 17 20 201016668 [Simple description of the schema] None. [Main component symbol description] 5 None.

1818

Claims (1)

201016668 七、申請專利範圍: h —種釕金屬錯合物,其結構如下式(I): RuL2(NCS)2Am (I) 5 10 15 20 其中 L為2,2’-雙吡啶-4,4,·二曱酸、2,2’-雙吡啶-4,4’-二磺酸或 2,2’-雙吡啶_4,4’_二磷酸; A為四級鱗陽離子;以及 m為1、2、3、或4。 2. 如申請專利範圍第1項所述之釕金屬錯合物,其中 L為2,2’-雙d比唆_4,4’_二甲酸。 3. 如申請專利範圍第1項所述之釕金屬錯合物,其中 L為2,2’-雙η比咬_4,4’-二確酸。 4. 如申請專利範圍第1項所述之釕金屬錯合物,其中 L為2,2’-雙吡啶_4,4,-二磷酸。 5·如申請專利範圍第1項所述之釕金屬錯合物,其中 A為’ Rl、r2、r3、及r4各自獨立分別為仏 烷基、苯基或苯甲基。 6·如申請專利範圍第2項所述之釕金屬錯合物,其中 A為P HH ’ R]、r2、r3、及r4各自獨立分別為匸 炫基、苯基或苯甲基。 7.如申請專利範圍第2項所述之釕金屬錯合物,其中 A為四烷基鱗、苯甲基三烷基鱗或苯基三烷基鳞,其中烧 基為Ci_2〇烧基。 19 201016668 8. 如申請專利範圍第2項所述之釕金屬錯合物,其中 m為 2、3、或 4。 9. 如申請專利範圍第3項所述之釕金屬錯合物,其中 八為P RlR2R3R4,R!、R2、R3、及R4各自獨立分別為CM。 5 烧基、笨基或苯甲基。 10. 如申請專利範圍第3項所述之釕金屬錯合物,其中 m為2或3。 11. 如申請專利範圍第4項所述之釕金屬錯合物,其中 ❹ Α為P+R丨R2r3r4,Ri、r2、R3、及尺4各自獨立分別為Ci ^ 10 烧基、本基或苯甲基。 12. 如申請專利範圍第4項所述之釕金屬錯合物,其中 m為2或3。 13. 如申請專利範圍第1項所述之釕金屬錯合物,其中 該釕金屬錯合物是一種用於染料敏化太陽能電池之染料化 15 合物。 14. 一種釕金屬錯合物,其結構如下式屮丨)或下式 〇 (1.2), 》201016668 VII. Patent application scope: h—a ruthenium metal complex with the following structure (I): RuL2(NCS)2Am (I) 5 10 15 20 where L is 2,2'-bipyridine-4,4 , dicapric acid, 2,2'-bipyridine-4,4'-disulfonic acid or 2,2'-bipyridine-4,4'-diphosphate; A is a quaternary scale cation; and m is 1 , 2, 3, or 4. 2. The base metal complex according to claim 1, wherein L is 2,2'-double d is more than 唆4,4'-dicarboxylic acid. 3. The base metal complex according to claim 1, wherein L is 2,2'-double η than _4,4'-dicarboxylic acid. 4. The base metal complex according to claim 1, wherein L is 2,2'-bipyridine-4,4,-diphosphate. 5. The base metal complex according to claim 1, wherein A is 'R1, r2, r3, and r4 are each independently a decyl group, a phenyl group or a benzyl group. 6. The base metal complex according to claim 2, wherein A is P HH ' R], r 2 , r 3 , and r 4 are each independently a fluorene group, a phenyl group or a benzyl group. 7. The base metal complex according to claim 2, wherein A is a tetraalkyl scale, a benzyl trialkyl scale or a phenyl trialkyl scale, wherein the alkyl group is a Ci 2 anthracenyl group. 19 201016668 8. The base metal complex according to claim 2, wherein m is 2, 3, or 4. 9. The ruthenium metal complex as described in claim 3, wherein VIII is P RlR2R3R4, and R!, R2, R3, and R4 are each independently CM. 5 burnt base, stupid base or benzyl. 10. The base metal complex according to claim 3, wherein m is 2 or 3. 11. The ruthenium metal complex according to claim 4, wherein ❹ is P+R丨R2r3r4, and Ri, r2, R3, and 4 are each independently Ci ^ 10 alkyl, base or Benzyl. 12. The base metal complex according to claim 4, wherein m is 2 or 3. 13. The base metal complex according to claim 1, wherein the base metal complex is a dye compound for a dye-sensitized solar cell. 14. A ruthenium metal complex having the structure of the following formula 或) or the following formula 1.2 (1.2), 》 20 201016668 (I-l)20 201016668 (I-l) (1-2)。 5 15.如申請專利範圍第14項所述之釕金屬錯合物,其該 釕金屬錯合物是一種用於染料敏化太陽能電池之染料化合 物。 16. —種染料敏化太陽能電池,其包括: (a) —光電陽極,其包括一如下式(I)之釕金屬錯合物; 10 RuL2(NCS)2Am 〇 ⑴ 其中 L為2,2’-雙吡啶-4,4’-二甲酸、2,2’-雙吡啶-4,4’-二磺酸或 2,2’-雙吡啶-4,4’-二磷酸; 15 A為四級鱗陽離子;且 m為 1、2、3、或4 ; (b) —陰極;以及 (c) 一電解質層,其在光電陽極與陰極間。 21 201016668 17. —種染料溶液,其包括: (A) —如下式(I)之釕金屬錯合物,其含量為0.01〜1重量 百分比: RuL2(NCS)2Am 5 ⑴ 其中 L為2,2’-雙吡啶-4,4’-二甲酸、2,2’-雙吡啶-4,4’-二磺酸或 2,2’-雙吡啶-4,4’-二磷酸; A為四級銷陽離子;且 • 10 m為1、2、3、或4;以及 (B) —種有機溶劑,其含量為99.99〜99重量苜分比,且 該有機溶劑係選自由:乙腈、甲醇、乙醇、丙醇、丁醇、 二甲基甲醯胺、及N-甲基吡咯烷酮所組成之群組。 ❹ 22 201016668 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無。(1-2). 5. The base metal complex according to claim 14, wherein the base metal complex is a dye compound for a dye-sensitized solar cell. 16. A dye-sensitized solar cell comprising: (a) a photoanode comprising a ruthenium metal complex of the following formula (I); 10 RuL2(NCS)2Am 〇(1) wherein L is 2, 2' -bipyridine-4,4'-dicarboxylic acid, 2,2'-bipyridine-4,4'-disulfonic acid or 2,2'-bipyridine-4,4'-diphosphate; 15 A is a grade 4 a scale cation; and m is 1, 2, 3, or 4; (b) - a cathode; and (c) an electrolyte layer between the photoanode and the cathode. 21 201016668 17. A dye solution comprising: (A) - a ruthenium metal complex of the following formula (I) in an amount of 0.01 to 1 weight percent: RuL2(NCS)2Am 5 (1) wherein L is 2, 2 '-Bipyridine-4,4'-dicarboxylic acid, 2,2'-bipyridine-4,4'-disulfonic acid or 2,2'-bipyridine-4,4'-diphosphate; A is a grade IV a pin cation; and • 10 m is 1, 2, 3, or 4; and (B) an organic solvent in an amount of 99.99 to 99 parts by weight, and the organic solvent is selected from the group consisting of: acetonitrile, methanol, ethanol a group consisting of propanol, butanol, dimethylformamide, and N-methylpyrrolidone. ❹ 22 201016668 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None. 五、本案若有化學式時,請揭示最能顯示發明特徵的化學 5 式: RuL2(NCS)2Am5. If there is a chemical formula in this case, please reveal the chemical that best shows the characteristics of the invention. 5 Formula: RuL2(NCS)2Am (I) 其中,L、A、及m之定義如說明書中所述。 3(I) wherein L, A, and m are as defined in the specification. 3
TW097140421A 2008-10-22 2008-10-22 Ruthenium complex and photoelectric component using the same TWI377199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097140421A TWI377199B (en) 2008-10-22 2008-10-22 Ruthenium complex and photoelectric component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097140421A TWI377199B (en) 2008-10-22 2008-10-22 Ruthenium complex and photoelectric component using the same

Publications (2)

Publication Number Publication Date
TW201016668A true TW201016668A (en) 2010-05-01
TWI377199B TWI377199B (en) 2012-11-21

Family

ID=44830537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097140421A TWI377199B (en) 2008-10-22 2008-10-22 Ruthenium complex and photoelectric component using the same

Country Status (1)

Country Link
TW (1) TWI377199B (en)

Also Published As

Publication number Publication date
TWI377199B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
Carella et al. Research progress on photosensitizers for DSSC
Zhang et al. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer
Nwanya et al. Dyed sensitized solar cells: A technically and economically alternative concept to pn junction photovoltaic devices.
JP2009269987A (en) Novel compound, photoelectric transducer and solar cell
JP5351693B2 (en) Ruthenium complex and photoelectric component using the same
TW201116593A (en) Dye-sensitized solar cell and photoanode thereof
US20110005596A1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
CN101723983B (en) Ruthenium metal complex and photoelectric element manufactured by using same
TWI383988B (en) Novel ruthenium complex and photoelectric component using the same
JP5233318B2 (en) Photoelectric conversion element and solar cell
KR101551074B1 (en) Solid-state dye-sensitized solar cell with long-term stability containing pyridine compound as an adhesive
JP2014186995A (en) Transparent dye-sensitized solar cell and dye-sensitized solar cell module
TWI377196B (en) Ruthenium complex and photoelectric component using the same
TWI377199B (en) Ruthenium complex and photoelectric component using the same
Varishetty et al. A novel poly (acrylonitrile)/poly (ethylene glycol)-based polymer gel electrolyte for high efficiency dye sensitized solar cells
Panda Nanostructured organic solar cells
KR20100061321A (en) Dye compound for dye-sensitized solar cells, dye-sensitized photoelectric converter and dye-sensitized solar cells
JP2012116824A (en) New ruthenium complex and photoelectric component using the same
Pavithra et al. Advantages of Polymer Electrolytes Towards Dye‐sensitized Solar Cells
CN102443025B (en) Ruthenium metal complex and photoelectric component produced by using same
TWI470034B (en) Dye compound and photoelectric component using the same
JP5250989B2 (en) Photoelectric conversion element and solar cell
KR20120057959A (en) Novel ruthenium complex and photoelectric component using the same
de Jong Emerging Solar Cell Technology: Advances in Solid-state Polymer Hybrid Dye-sensitized Solar Cells
IE85727B1 (en) Ruthenium complex and photoelectric component using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees