TW201016301A - Carbon dioxide capturing method - Google Patents

Carbon dioxide capturing method Download PDF

Info

Publication number
TW201016301A
TW201016301A TW097141441A TW97141441A TW201016301A TW 201016301 A TW201016301 A TW 201016301A TW 097141441 A TW097141441 A TW 097141441A TW 97141441 A TW97141441 A TW 97141441A TW 201016301 A TW201016301 A TW 201016301A
Authority
TW
Taiwan
Prior art keywords
carbon dioxide
hydroxide
seawater
magnesium
calcium
Prior art date
Application number
TW097141441A
Other languages
Chinese (zh)
Inventor
Jian-Feng Lin
Original Assignee
Jian-Feng Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jian-Feng Lin filed Critical Jian-Feng Lin
Priority to TW097141441A priority Critical patent/TW201016301A/en
Publication of TW201016301A publication Critical patent/TW201016301A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

This invention provides a carbon dioxide capturing method comprising the steps of: (1) preparing sodium hydroxide by electrolyzing saturated salt water; (2) adding sodium hydroxide into sea water so that magnesium chloride and calcium chloride contained in sea water are converted into magnesium hydrate and calcium hydroxide; and (3) introducing carbon dioxide into water containing magnesium hydrate and calcium hydroxide so that carbon dioxide is converted into magnesium carbonate and calcium carbonate. Carbon dioxide can be captured effectively, efficiently, and safely, and the amount of carbon dioxide contained in the atmosphere can be reduced so that emission of carbon dioxide is reduced.

Description

201016301 九、發明説明: 【發明所屬之技術領域】 本發明係關於一種可使二氧化破(c〇2)減量之捕捉方 法,尤其是指一種以化學反應來將工業排放二氧化碳(C〇2) 進行捕捉之方法。 【先前技術】 在大氣環境中具有多種的化學物質’於一般的情況及 ❹濃度下都不會對生態造成影響,但隨著工業化的腳步,使 用各種的工業化機械及交通工具’所排的化學物質越來越 多’並且排放之濃度超出標準只要任· 種化學物的濃度 超出標準,即造成空氣污染。 現今的空氣污染物有很多種’一般常見及被監測的空 氣污染物有:二氧化礙(Carbon dioxide C02)、一氧化碳 (Carbon monoxide CO)、二氧化硫(Sulfur dioxide S02)、亞 ❹ 氧化氮(Nitr〇gen oxides NOx)、懸浮粒子(Suspended particulates)、臭氧(〇zone〇3)及揮發性有機化合物(v〇latUe Organic Compounds VOCs) ° 空氣污染會對人類及環境成直接或間接的影響,其中 直接的影響包含:對生態圈生存的人類及動植物的健康造 成傷害;而間接的影響包括:酸雨及全球暖化所帶來的相 關琢·境問題。 大氣中最主要的「溫室氣體」為二氧化碳(C02)'甲烷 (CEU)及一氧化氮(N〇2)等三種,所謂「溫室氣體」就是會 201016301 造j地球氣溫上升的大氣氣體,地球氣候的高溫化是目前 最又重視的環保課題,尤其以二氧化碳(⑶2)對全球氣候暖 ^的影響最大’而氣候高溫化最主要的时在於大氣的溫 室氣,增加’因此’如何使大氣中的二氧化碳(co2)濃度降 ,’疋目前地球環保最迫切的課題,各國無不積極進 氧化碳(C〇2)排放減量的工作。 ^法避免繼續使用化石燃料的情況τ,提高化石燃 ^j用效率’並搭配二氧化礙的捕捉、封存與再利用技 二將可有效減緩溫室致應的惡化,使人類繼續享用「低 」的1源「’逐步购過渡到未來_能源紀元。- 自然碳:存」是指把二氧化碳存放在特定的 人工貯槽、化學反庵V/的目的。森林、海洋、地層、 器」。 予反應Μ都可做為封存二氧化碳的「容 而在國際間所提出「大規 =,、地表封存及海洋封二二= …美元、每=里的操作成本’分別約為5 jH- , 3.2 美元舆 〇·5 〜1〇〇 一 為,複循環發電崎嘲二氧化礙捕獲成: /美70 ’海洋封存成本約為5〜30美元,地為〇 $本約為5〇,美元。參見林鎮國所著,,二^化見 存”,科學發展,肅年5月,413期,28〜=匕碳別 201016301 在上述之封存二氧化碳之技術中,將面對是否有適當 容ϋ」,且此-封存技術亦未見絲,亦有其穩定 性及/、後續監控之問題。 【發明内容】 、冑鐵於上述習知二氧化碳封存技術之缺憾,發明人有 .感其未臻於完善’遂竭其心智悉心研究克服,憑其從事該 ❻項奉業夕年之累積經驗,進而研發出一種二氧化石炭之捕捉 方法,以期達至可大量、快速並安全的捕捉二氧化碳,其 減低全球二氧化碳濃度升高之困境。 /、 本發明係提供一種二氧化碳之捕捉方法,其步驟包含: (1) 電解飽和食鹽水,取得氫氧化鈉,其反應式為: 2 NaCl + 2 H20 2 NaOH + Cl2 + H2 .; (2) 於海水中加入氫氧化鈉,使海水中的氯化鎂及氯 化鈣轉化成氫氧化鎂及氫氧化鈣,其反應式為: 參 MgCl2 + 2 NaOHy[g(〇H)2 + 2 NaCl201016301 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for capturing a reduction in dioxide (c〇2), in particular to a chemical reaction to emit carbon dioxide (C〇2) The method of capturing. [Prior Art] There are many kinds of chemical substances in the atmospheric environment, which do not affect the ecology under normal conditions and radon concentrations. However, with the footsteps of industrialization, the chemical used in various industrialized machinery and vehicles is used. More and more substances' and the concentration of emissions exceeds the standard, as long as the concentration of any chemical exceeds the standard, it causes air pollution. There are many kinds of air pollutants in today's common and monitored air pollutants: Carbon dioxide C02, Carbon monoxide CO, Sulfur dioxide S02, and Nitrogen oxide. Gen oxides NOx, Suspended particulates, ozone (〇zone〇3) and volatile organic compounds (VOCs). Air pollution has direct or indirect effects on humans and the environment, of which direct The impact includes: harm to the health of human beings and animals and plants that survive in the ecosystem; and indirect effects include: the related problems caused by acid rain and global warming. The most important "greenhouse gases" in the atmosphere are carbon dioxide (C02), methane (CEU) and nitrogen monoxide (N〇2). The so-called "greenhouse gas" is the atmospheric gas that will increase the temperature of the earth in 201016301. The high temperature is the most important environmental issue at present, especially the impact of carbon dioxide ((3)2) on the global climate warming'. The most important time for climate hyperthermia is the atmospheric greenhouse gas, which increases the 'how' of the atmosphere. The concentration of carbon dioxide (co2) has dropped, and 'the most urgent issue for the earth's environmental protection. All countries are actively engaged in the reduction of carbon dioxide emissions (C〇2). ^The law avoids the use of fossil fuels τ, improve the efficiency of fossil fuel combustion, and with the capture, storage and reuse technology of the oxidizing barrier, it will effectively reduce the deterioration of the greenhouse response, so that humans continue to enjoy the "low" The 1 source "'Step-by-step transition to the future_Energy era.- Natural carbon: deposit" refers to the purpose of storing carbon dioxide in a specific artificial tank and chemical reaction V/. Forest, ocean, stratum, device." The reaction can be used as a storage for carbon dioxide. In the international arena, "big regulations =, surface sealing and ocean sealing 22 = ... US dollars, operating costs per =" are about 5 jH-, 3.2 US dollars舆〇·5~1〇〇一为, the recycling of the cycle of power generation sneak smouldering trapped into: / US 70 'sea storage costs about 5 to 30 US dollars, the ground is 〇 $ this is about 5 〇, the dollar. See Lin Zhenguo In the book, "2" sees the deposit", scientific development, May, 413, 28~=匕碳别 201016301 In the above-mentioned technology for sequestration of carbon dioxide, will there be appropriate tolerance?" - The storage technology has not seen silk, and it also has problems of stability and/or subsequent monitoring. SUMMARY OF THE INVENTION In view of the shortcomings of the above-mentioned conventional carbon dioxide storage technology, the inventor has felt that it has not been perfected to improve the 'satisfaction of his heart and mind research, and based on his accumulated experience in the eve of the year. In turn, a method for capturing carbon dioxide carbon has been developed in order to achieve a large, rapid and safe capture of carbon dioxide, which reduces the global carbon dioxide concentration. The present invention provides a method for capturing carbon dioxide, the steps of which include: (1) electrolyzing saturated brine to obtain sodium hydroxide, and the reaction formula is: 2 NaCl + 2 H20 2 NaOH + Cl2 + H2 ;; Sodium hydroxide is added to seawater to convert magnesium chloride and calcium chloride in seawater into magnesium hydroxide and calcium hydroxide. The reaction formula is: ginseng MgCl2 + 2 NaOHy[g(〇H)2 + 2 NaCl

CaCl2 + 2 NaOH Ca(OH)2 + 2 NaCl ; (3) 導入二氧化碳於含.氫氧化鎂及氳氧化耔之水 中,使其轉換成碳酸鎂及碳酸鈣,其反應式為: Mg(OH)2 + C02 MgC03 + H20CaCl2 + 2 NaOH Ca(OH)2 + 2 NaCl; (3) Introducing carbon dioxide into water containing magnesium hydroxide and barium strontium oxide to convert it into magnesium carbonate and calcium carbonate. The reaction formula is: Mg(OH) 2 + C02 MgC03 + H20

Ca(OH)2 + C02 CaC03 + H20。 在上述之二氧化碳捕捉方法中,其中該步驟(1)中之餘 和艮鹽水係為高鹽濃度之南水,且較佳為海水淡化後的麥 棄產物。 Λ 201016301 電解食鹽水生成氣 另’該步驟(1)中之氫氧化鈉係可為 氣之副產物.。 【實施方式】 為充分瞭解本發明之目的、特徵及功效,兹藉由下述 具體之實施例,並配合所附之圖式,對本發明做 明,說明如後: 凡· 本發明所提供之-種二氧化碳捕捉方法,主要包含二‘ 個步驟:⑴電解鮮食鹽水,取得絲⑺於海:© 中加入氫氧化納,使海水中的氣化鎂及氣化約轉化成氣氧 ⑽及氫氧倾,其反應式為;(3)導人二氧化礙於含氣 氧化鎮及氫氧倾之水巾,使其轉換成錢鎂及碳_。 其中在氫氧化納(NaOH)之製備中,該氫氧化納係可為 工業生,氯氣過程的副產物,常見之作法係電解飽和食鹽 至氯元素全部變成氯氣逸出,此時留在溶液裡的只有 氫氧化鈉一種溶質,其反應方程式為: 2 NaCl + 2 H20 — 2 NaOH + Cl2 + H2 、、經由電解飽和食鹽水,即可製得本發明二氧化碳捕捉 方法中所需之反應物氫氧化鈉,其中該飽和食鹽水係可從 海水淡化後的廢棄產物取得。 早期海水淡化都聚集在乾燥的中東地區,而工商業快 速發展的現在,加上人口逐漸增加,全世界都需要大量的 水,在水源開發日漸困難的今日,世界上的各個國家必需 快速找尋新的水源,其中海水淡化技術來開發為先進國家 201016301 最常採用的方法。 地球上海洋佔最大面積,海洋即為地球上最大的水 最穩定的水源,-年四季,不管刮風下雨,海洋之總 1變動不大且不會消失’加上晚近提升之海水淡化的技 術,海水便成為最高品質的人類用水的來源。 其中海水淡水化是一種處理水的技術,原理是把能源 將鹽水分開成兩個部分部分為含鹽份量低的淡水,另 ❺ 一部分是含高鹽量之由水,然後變成淡化水。部份淡化技 術,在試驗階段’而至顧年7月,兩種最常用的淡化技 術是逆滲透(全球淡化能力的47.2%)及多級職(全球 淡化能力的36.5%)。 而本發明之二氧化碳捕捉方法,可湘海水淡化後所 得之尾棄⑯自7jC」’來進行氫氧化納的製備,有效的廢物 利用,同時將地球資源善加管理。 而於裝備氫氧化鋼同時產生的氯氣,亦廣泛使用於製 備聚氯乙烯仰2CHC1)n_的生產,而由於聚氣乙稀是由 乙烯氣和催化劑所製成,具防火耐熱作用,故相關之聚 氯乙婦亦可被歧料各行各t各式各樣產品:電線電 規、光纖電纜、鞋子、丰蔣代 ^手棱衣、袋子、飾物、招牌與廣告 、/、、傢俱、掛飾、滾輪、喉管、玩具、門 簾、捲門、輔助醫療用U、主 些時裝......等。H、手套、某些食物的保鮮紙、某 在海水中加入氫氧化納, 轉化成氳氧化鎂及氳氧化飼令 使海水中的氯化鎂及氯化舞 ’其反應式為·· 201016301Ca(OH)2 + C02 CaC03 + H20. In the above carbon dioxide capture method, the remainder of the step (1) and the cesium salt water are the south water having a high salt concentration, and preferably the wheat discarded product after the seawater is desalinated. Λ 201016301 Electrolyzed brine generation gas The sodium hydroxide in the step (1) can be a by-product of gas. DETAILED DESCRIPTION OF THE INVENTION In order to fully understand the objects, features and advantages of the present invention, the present invention will be described by the following specific embodiments and the accompanying drawings. - a carbon dioxide capture method, mainly comprising two steps: (1) electrolyzing fresh brine, obtaining silk (7) in the sea: © adding sodium hydroxide to convert magnesium gasification and gasification in seawater into gas oxygen (10) and hydrogen Pour, the reaction formula is; (3) lead to the oxidation of the gas-containing oxidation town and the hydrogen-oxygen water towel, which is converted into money magnesium and carbon. Among them, in the preparation of sodium hydroxide (NaOH), the sodium hydroxide system can be an industrial raw material, a by-product of the chlorine gas process, and the common method is to electrolyze the salt to the chlorine element and all of the chlorine gas escapes, and then stay in the solution. There is only one solute of sodium hydroxide, and the reaction equation is: 2 NaCl + 2 H20 - 2 NaOH + Cl2 + H2, and the hydroxide of the reactants in the carbon dioxide capture method of the present invention can be obtained by electrolytically saturating the brine. Sodium, wherein the saturated brine is obtained from waste products after desalinization of seawater. Early seawater desalination is concentrated in the dry Middle East, and the rapid development of industry and commerce, coupled with the increasing population, the world needs a lot of water. In today's increasingly difficult water source development, countries around the world must quickly find new ones. The water source, in which desalination technology is developed, is the most commonly used method for advanced countries 201016301. The ocean has the largest area on the earth, and the ocean is the most stable water source on the earth. In the four seasons, no matter how windy or rainy, the total 1 of the ocean will not change much and will not disappear. Technology, seawater is the source of the highest quality human water. Among them, seawater desalination is a technology for treating water. The principle is to separate the salt water into two parts, which are low-salt fresh water, and the other part is high-salt water and then desalinated water. Part of the desalination technology, in the experimental phase, and in July of the year, the two most commonly used desalination technologies are reverse osmosis (47.2% of global desalination capacity) and multi-level (36.5% of global desalination capacity). The carbon dioxide capture method of the present invention can be used to prepare sodium hydroxide by abandoning 16 from 7jC" after the desalination of the seawater in Hunan, and effective waste utilization, and at the same time, the earth resources are well managed. The chlorine gas produced at the same time as the steel hydroxide steel is also widely used in the production of polyvinyl chloride 2CHC1)n_, and since the polyethylene gas is made of ethylene gas and catalyst, it has fireproof and heat-resistant effects. Polychlorinated women can also be misappropriated in a variety of different products: wire electrical regulations, fiber optic cables, shoes, Feng Jiangdai ^ hand ribs, bags, accessories, signs and advertising, /, furniture, hanging Decorations, rollers, pipes, toys, curtains, roller doors, auxiliary medical U, main fashion, etc. H, gloves, plastic wrap for certain foods, adding sodium hydroxide to seawater, converting into barium magnesium oxide and oxidizing feed to make magnesium chloride and chlorination in seawater. The reaction formula is... 201016301

MgCl2 + 2 NaOH Mg(OH)2 + 2 NaCl CaCl2 + 2 NaOH Ca(OH)2 + 2 NaCl 其中地球海水中之元素構成成份如下表一 表一、地球海水中之元素構成成份MgCl2 + 2 NaOH Mg(OH)2 + 2 NaCl CaCl2 + 2 NaOH Ca(OH)2 + 2 NaCl The composition of the elements in the earth's seawater is shown in Table 1 below.

元素名稱 ' ——_____ 百分比(質量百分比) 氧 —---- 85.7 氫 10.8 氣 ' --- 1.9 鈉 " 1.05 ----- 0.1350 硫 0.0885 4弓 '~ ~~ ~~~~_ 0.04 鉀 ~ . _ 0.0380 溴 0.0065 碳 0.0026 -JElement name ' —— _____ Percentage (mass percentage) Oxygen—---- 85.7 Hydrogen 10.8 Gas ' --- 1.9 Sodium " 1.05 ----- 0.1350 Sulfur 0.0885 4 bow '~ ~~ ~~~~_ 0.04 Potassium ~ . _ 0.0380 Bromine 0.0065 Carbon 0.0026 -J

利用海水所含有之鹤及鎮元素’將此二元素於海水日尹 之氣化鎂及氯化鈣之化合物加以運用,與氣氧化鋼力 守 應,以取得下一步驟之反應物氫氧化鎂及氫氧化鈣^ 本以有效降低本發明中二氧化碳捕捉方法之原料取得成 本,同時亦同有效運用地球的自然資源。 上述反應完成取付虱氧化鎂及氫氧化飼之後,將工業 排放的二氧化碳(C〇2)導入後,二氧化碳將與水中的氮氧化 10 201016301 鎮及氫氧化辦反應轉化成碳酸鎂與碳酸舞,其反應式為. Mg(OH)2 + C02 -> MgC03 + H20 Ca(OH)2 + C02 -> CaC03 + H20 經由上述反應’而成功的將二氧化碳補捉並轉換成石炭 酸鎂與碳酸鈣,可成功的運用目前產業所產生的廢棄物(海 水淡化之1¾水)或附產品(製氣所得之氫氧化納)來捕捉二氧 化碳,不僅整個化學反應速度快(比較目前的物理法或生.物 法)’整體成本亦可有效降低。 而經本發明二氧化碳捕捉法所得之終產物:碳酸約, 其可被使用在防火建築材料及油漆,亦可廣泛運用於煉 鋼兩为子及造紙荨生產作業,而碳酸鎂,則可被運用在 地板、防火、滅火產品、化妝品、擦粉及牙膏,並亦可應 用於填料材料、或在塑膠製品内產生冒煙抑制作用、或加 入氯丁橡膠(Neoprene Rubber)作為乾燥劑、或腸的緩瀉放 鬆劑及食品顏色保留劑。 " 下列實驗設計係為說明,不應限制本發明之範疇,合 理的變化,諸如對於熟習此項技藝者顯而易見為合理者, 可於不脫離本發明之範疇下進行。 實施例1 ⑴氫氧化鈉(NaOH)之製備 如第一圖所示,係以連續式導入飽和食鹽水或鹵 水(Brine)以保持電解反應得以連續進行,並可以連續 取得氫氧化鈉(NaOH)溶液,其中於一電解槽1〇中, 11 201016301 通入穩定的電流40安培(A) ’並將電位控制大於15 伏特(V),且於該電解槽1〇之中央設置—離子交換膜 而於入口 12處導入鹵水,而該1¾水流經該電解槽 …於電解槽之陽極^之反應為::“:^ +以-, 電解產生氯氣自陽極釋出;而於電解槽之陰極18反應 為:2H2〇 + 2e-_>20ir + H2’電解產生氫氣自陰極, 而溶液中之鈉離子(Na+)與氫氧離子(OH—)結合形成氫 氧化鈉溶液(NaOH(aq))而自出口 14·流出,並經連續24 小時操作之結果,其結果平均每小時可得5S克之氳氧 化〇 (2) 氫氧化鎂及氫氧化鈣之製備並捕捉二氧化碳 如第二圖所示,於一反應槽20中,具有一海水入 口 22,用於導入海水、一氫氧化鈉入口 24,用於導 入上一步驟所得之氫氧化溶液、及一二氧化碳入口 26 ’用於導入二氧化碳,並使該等反應物:海水、氫 氧化鈉及二氧化碳於反應槽20中反應;反應形成之❹ 碳酸鎂/碳酸鈣沈滅物29係沈澱於該反應槽20之底 部’而反應後之海水經反應麼液流出口 28流出,所 包含之反應式如下:Using the crane and town elements contained in seawater, the two elements are used in the gasification of magnesium and calcium chloride in the seawater, and the gas oxidation steel is used to obtain the next step of the reactant magnesium hydroxide. And calcium hydroxide ^ This is effective in reducing the cost of raw materials for the carbon dioxide capture method of the present invention, and at the same time effectively utilizing the natural resources of the earth. After the above reaction is completed and the magnesium oxide and the hydroxide are fed, the industrial carbon dioxide (C〇2) is introduced, and the carbon dioxide is converted into magnesium carbonate and carbonic acid by reacting with nitrogen in the water. The reaction formula is: Mg(OH)2 + C02 -> MgC03 + H20 Ca(OH)2 + C02 -> CaC03 + H20 successfully captures and converts carbon dioxide into magnesium carbonate and calcium carbonate via the above reaction. It can successfully use the waste generated by the current industry (13⁄4 water for seawater desalination) or the product (sodium hydroxide obtained from gas production) to capture carbon dioxide, not only the entire chemical reaction rate is fast (compared with the current physical method or raw material) Law) 'The overall cost can also be effectively reduced. The final product obtained by the carbon dioxide capture method of the present invention: carbonic acid, which can be used in fireproof building materials and paints, can also be widely used in the production of steelmaking and papermaking, while magnesium carbonate can be used in Flooring, fire protection, fire-fighting products, cosmetics, powders and toothpastes, can also be applied to filler materials, or to produce smoke suppression in plastic products, or to add neoprene rubber as a desiccant, or intestinal laxative Relaxing agents and food color retention agents. The following experimental design is intended to be illustrative, and is not intended to limit the scope of the invention, and it is obvious that such modifications may be made without departing from the scope of the invention. Example 1 (1) Preparation of sodium hydroxide (NaOH) As shown in the first figure, a saturated brine or brine (Brine) was continuously introduced to keep the electrolysis reaction continuously, and sodium hydroxide (NaOH) was continuously obtained. a solution in which a stable current of 40 amps (A) is applied to an electrolytic cell 1 , 11 201016301 and the potential is controlled to be greater than 15 volts (V), and an ion exchange membrane is disposed in the center of the electrolytic cell 1〇 The brine is introduced at the inlet 12, and the 13⁄4 water flows through the electrolytic tank. The reaction at the anode of the electrolytic cell is: ": ^ + with -, the electrolytic chlorine is released from the anode; and the reaction at the cathode 18 of the electrolytic cell For: 2H2〇+ 2e-_>20ir + H2' electrolysis produces hydrogen from the cathode, and the sodium ion (Na+) in the solution combines with hydroxide ions (OH-) to form a sodium hydroxide solution (NaOH (aq)). The outlet 14 is discharged, and after 24 hours of continuous operation, the result is an average of 5 S grams of ruthenium oxide per hour (2) preparation of magnesium hydroxide and calcium hydroxide and capture of carbon dioxide as shown in the second figure. In the reaction tank 20, there is a seawater inlet 22 for guiding The seawater, a sodium hydroxide inlet 24, is used to introduce the hydrogenation solution obtained in the previous step, and a carbon dioxide inlet 26' for introducing carbon dioxide, and the reactants: seawater, sodium hydroxide and carbon dioxide in the reaction tank 20 The reaction is carried out; the reaction is formed. The magnesium carbonate/calcium carbonate precipitate 29 is precipitated at the bottom of the reaction tank 20, and the seawater after the reaction flows out through the reaction liquid outlet 28, and the reaction formula is as follows:

MgCl2 + 2 NaOH Mg(〇H) 2 + 2 NaCl Mg(OH) 2 + C02 -> MgC03 + H2〇 CaCl2 + 2 NaOH — Ca(〇H) 2 + 2 NaCl Ca(OH) 2 + C02 一 CaC〇3 + H20 其中’氯化鎂與氫氧化鈉反應生成氫氧化鎂,該 12 201016301 氫氧化鎂再與通入之二氧化碳反應生成碳酸鎮而沈 澱於該反應槽20之底部;氯化鈣與氫氧化鈉反應生 成氣氧化詞,該氫氧化弼再與通入之二氧化碳反應生 成石炭酸舞亦沈澱於該反應槽20之底部。 在上述設備中,以海水一公斤加入9〇克之氫氧 化鋼後’並加入足量曝氣之二氧化碳’平均可得445.9 克碳酸鎂及92.3克碳酸鈣,經換算後,平均一公斤 海水加入90克之氫氧化鈉可捕捉277克之二氧化碳。 (3)評估二氧化碳捕捉技術之成本 經上述換算後,每一公斤海水加入9〇克之氫氧 化納可捕捉277克之'一氣化端_,而評估一公n頓.二氧化 碳捕捉之成本如下表二所示: 表二、評估處理一公噸二氧化碳之成太 支出項目 所費成本 電能 約31.511美金 設備 _ _ 約5.351美金 操作 約1.338美金 材料 約23.438美金 其他 約1.000美金 總計 .....美金MgCl2 + 2 NaOH Mg(〇H) 2 + 2 NaCl Mg(OH) 2 + C02 -> MgC03 + H2〇CaCl2 + 2 NaOH — Ca(〇H) 2 + 2 NaCl Ca(OH) 2 + C02 a CaC 〇3 + H20 wherein 'magnesium chloride reacts with sodium hydroxide to form magnesium hydroxide, the 12 201016301 magnesium hydroxide reacts with the carbon dioxide which is passed to form a carbonated town and precipitates at the bottom of the reaction tank 20; calcium chloride and sodium hydroxide The reaction produces a gas oxidized word which is then reacted with the passed carbon dioxide to form a carbolic acid dance which is also deposited at the bottom of the reaction tank 20. In the above equipment, adding 9 grams of hydroxide steel to one kilogram of seawater and adding a sufficient amount of aerated carbon dioxide can obtain an average of 445.9 grams of magnesium carbonate and 92.3 grams of calcium carbonate. After conversion, an average of one kilogram of seawater is added to 90. Sodium hydroxide can capture 277 grams of carbon dioxide. (3) Evaluating the cost of carbon dioxide capture technology After the above conversion, adding 9 grams of sodium hydroxide per kilogram of seawater can capture 277 grams of 'one gasification end _, and evaluate one ton. The cost of carbon dioxide capture is as shown in Table 2 below. Show: Table 2, the estimated cost of processing a metric ton of carbon dioxide into the cost of the project is about 31.511 US dollars equipment _ _ about 5.351 US dollars operation about 1.338 dollars material about 23.438 dollars other about 1.000 dollars total ..... US dollars

經由估算後之成本約為捕捉每公噸二氧化碳需花費 62.638美金,與目前地質封存技術成本每公嘴二氧化碳需 50〜1〇〇美仙近,但本㈣之二氧化韻捉方法具有:A 201016301 ===化學反應且較物理反應為 無需物理封存未來的監測成本二:==小-、 再降:成本;F、最終產品兼具諸多之:^值運用下將可 術者應中已以較佳實施例揭露’然熟習本項技 H實施例僅用於赠本發日月,而不應解 效:變化:之f圍。應注意的是’舉凡與該實施例等 /、換,均應設為涵蓋於本發明之範疇内。因此, 準:明之保護範圍當以下文之申請專利範圍所界定者為 【圖式簡單說明】 圖為本發明中電解飽和食鹽水(由水)之電解示意圖。 第二圖為本發明中氫氧化鎂及氫氧化鈣製備並捕捉二氧化 後之反應不意圖。 【主要元件符號說明】 10 電解槽 12 入口 14出口 16 離子交換膜 17 陽極 18 陰極 20 反應槽 14 201016301 ❿After the estimated cost, it costs about 62.638 US dollars per metric ton of CO2 capture. Compared with the current cost of geological storage technology, it costs 50~1 〇〇 per cent per cubic centimeter of CO2, but the method of dioxin capture of this (4) has: A 201016301 = ==Chemical reaction and physical reaction is no need to physically seal the future monitoring cost two: == small -, then lower: cost; F, the final product has many: ^ value will be used under the The preferred embodiment discloses that the embodiment of the present technology H is only used for the gift of the day and month, and should not be solved: the change: the fence. It should be noted that all of the embodiments and the like should be considered to be within the scope of the present invention. Therefore, the scope of protection of the following is defined by the scope of the patent application below. [Simplified illustration of the drawing] The figure is a schematic diagram of electrolysis of electrolytically saturated brine (from water) in the present invention. The second figure is a schematic view of the reaction of preparing magnesium hydroxide and calcium hydroxide in the present invention and capturing the oxidation. [Main component symbol description] 10 Electrolyzer 12 Inlet 14 Outlet 16 Ion exchange membrane 17 Anode 18 Cathode 20 Reaction tank 14 201016301 ❿

22 海水入口 24 氫氧化鈉入口 26 二氧化碳入口 28 反應廢液流出口 29 碳酸鎂/碳酸鈣沈澱物 1522 Seawater inlet 24 Sodium hydroxide inlet 26 Carbon dioxide inlet 28 Reaction waste effluent outlet 29 Magnesium carbonate/calcium carbonate precipitate 15

Claims (1)

201016301 十、申請專利範圍: 1、一種二氧化碳之捕捉方法,其步驟包含: (1) 電解飽和食鹽水,取得氳氧化鈉,其反應式為: 2 NaCl + 2 H2〇 2 NaOH + Cl2 + π2 ; (2) 於海水中加入氫氧化鈉,使海水中的氣化鎂及氯化 鈣轉化成氫氧化鎂及氳氧化鈣,其反應式為: . MgCl2 + 2 NaOH Mg(OH)2 + 2 NaCl · CaCl2 + 2 NaOH 十ca(OH)2 + 2 NaCl ; ❹ (3) 導入二氧化碳於含氫氧化鎂及氫氧化鈣之水中,使其 轉換成碳酸鎮及碳酸妈,其反應式為: Mg(OH)2 + C02 MgC03 + H20 Ca(OH)2 + C02 -» CaC03 + H20 ° I、如申請專利範圍第i項之二氧化碳捕捉方法,其中該步 / 驟⑴中之飽和食鹽水係為高鹽濃度之4水。 、如申請專利範圍第2項之二氧化碳捕捉方法,其中該鹵❹ 水係為海水淡化後的廢棄產物。 、=申請專利範圍第1項之二氧化碳捕捉方法,其中該步 ⑴中之氫氧化㈣可為電解食鹽水生成氯氣之副產 16201016301 X. Patent application scope: 1. A method for capturing carbon dioxide, the steps thereof include: (1) Electrolyzing saturated brine to obtain sodium bismuth oxide, the reaction formula is: 2 NaCl + 2 H2〇2 NaOH + Cl2 + π2; (2) Adding sodium hydroxide to seawater to convert magnesium gasification and calcium chloride in seawater into magnesium hydroxide and calcium strontium oxide. The reaction formula is: . MgCl2 + 2 NaOH Mg(OH)2 + 2 NaCl · CaCl2 + 2 NaOH ten ca(OH)2 + 2 NaCl; ❹ (3) Introduce carbon dioxide into water containing magnesium hydroxide and calcium hydroxide, and convert it into carbonated and carbonated mom. The reaction formula is: Mg ( OH)2 + C02 MgC03 + H20 Ca(OH)2 + C02 -» CaC03 + H20 ° I, the carbon dioxide capture method according to claim i, wherein the saturated brine in the step (1) is high salt 4 water in concentration. For example, in the carbon dioxide capture method of claim 2, the brine system is a waste product after seawater desalination. , = the carbon dioxide capture method of claim 1 of the patent scope, wherein the hydroxide (4) in the step (1) can produce chlorine as a by-product of the electrolyzed brine.
TW097141441A 2008-10-28 2008-10-28 Carbon dioxide capturing method TW201016301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097141441A TW201016301A (en) 2008-10-28 2008-10-28 Carbon dioxide capturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097141441A TW201016301A (en) 2008-10-28 2008-10-28 Carbon dioxide capturing method

Publications (1)

Publication Number Publication Date
TW201016301A true TW201016301A (en) 2010-05-01

Family

ID=44830389

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097141441A TW201016301A (en) 2008-10-28 2008-10-28 Carbon dioxide capturing method

Country Status (1)

Country Link
TW (1) TW201016301A (en)

Similar Documents

Publication Publication Date Title
JP2010125354A (en) Method of capturing carbon dioxide
AU2008209322B2 (en) Carbon dioxide sequestration and capture
AU2007101174A4 (en) Improved method of capturing carbon dioxide and converting to carbonate anions and then combining with calcium cations to form calcium carbonate
KR101026566B1 (en) A method of capturing carbon dioxide
CN101773766A (en) Method for trapping carbon dioxide
US20100150803A1 (en) Method for capturing carbon dioxide
CA2581157A1 (en) Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
JP7305356B2 (en) Energy-saving removal of CO2 from air by integration with H2 generation
NO20075881L (en) Method of treating a spent sulfur-containing caustic refinery stream using a membrane electrolyzer powered by a fuel cell
JP2008514406A5 (en)
TW200946210A (en) Methods of sequestering CO2
JP6174703B2 (en) Hydrogen production
JP2013514877A (en) Carbon dioxide sequestration by formation of group II carbonates and silicon dioxide
CN102125793A (en) Method for capturing and purifying carbon dioxide
AU2008101140A4 (en) Improved method of capturing carbon dioxide and converting to bicarbonate anions and then sequestering as sodium bicarbonate in aqueous solution
EP3895785A1 (en) Unit for desalination and greenhouse gas sequestration
KR101938424B1 (en) Device for Inorganic Carbonation of Carbon Dioxide
WO2019023414A1 (en) A cyclic process using alkaline solutions created from electrolytically decarboxylated water as an atmosphereic co2 collector followed by repeated electrochemical recovery of co2 with simultaneous production of dihydrogen
JP2009112996A (en) Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor
JP2003326155A (en) Method for reducing carbon dioxide in atmosphere and its device
JP2006137620A (en) Collection system for carbon dioxide in waste gas, and its collection method
JP2009112996A5 (en)
CN109851125A (en) A kind of electrochemistry full dose treatment process of consumer waste infiltration liquid film-filter concentration liquid
TW201016301A (en) Carbon dioxide capturing method
JP2006522213A (en) Electrochemical oxidation process of bromide to bromine