201015154 * 九、發明說明: 【發明所屬之技術領域】 . 本發明涉及一種台式電腦,尤其涉及一種觸摸式台式 .電腦。 【先前技術】 近年來,伴隨著移動電話與觸摸導航系統等各種電子 没備的面性能化和多樣化的發展,在液晶等顯示設備的前 面安裝透光性的觸摸屏的電子設備逐步增加。電子設備的 使用者通過觸摸屏,一邊對位於觸摸屏背面的顯示設備的 顯示内容進行視覺確認,一邊利用手指或筆等方式按壓觸 摸屏來進行操作。由此,可以操作電子設備的各種功能。 先前技術中的台式電腦的顯示屏可爲液晶顯示屏。該 液晶顯不屏的表面上設置有至少一個觸摸屏,該觸摸屏可 用作信號輸入裝置,來代替鼠標和鍵盤用於信號的輸入, 從而控制所述台式電腦的各種功能的開啓和關閉,以及文 ❹字的輸入。所述觸摸屏可根據其工作原理和傳輸介質的不 同,通常分爲四種類型,分別爲電阻式、電容感應式、紅 外線式以及表面聲波式。其中電阻式觸摸屏和電容式觸摸 屏由於其具有向解析度、高靈敏度及耐用等優點,被廣泛 應用在台式電腦中。 然而’先前技術中的電容式和電阻式觸摸屏通常包括 一個作爲透明導電層的銦錫氧化物層(ITO層),其採用離 子束濺射或濺鍍等工藝製備,Kazuhiro Noda等在文獻 Production of Transparent Conductive Films with Inserted 6 201015154 - Si〇2 Anchor Layer, and Application to a Resistive Touch Panel ( Electronics and Communications in Japan,Part 2, .V〇1.84,P39-45(2001))中介紹了一 種採用 ITO/Si02/PET 層 ,的觸摸屏。該ITO層作在製備的過程,需要較高的真空環 境及需要加熱到200~300°C,有鑒於此,使得ΙΤΟ層的製 備成本較高。此外,先前技術中的ITO層作爲透明導電層 具有機械性能不够好、難以彎曲及阻值分布不均勻等缺 點。另外,ITO在潮濕的空氣中透明度會逐漸下降。從而 ® 導致先前的觸摸屏及使用該觸摸屏的台式電腦存在耐用性 不够好,靈敏度低、線性及準確性較差等缺點。 有鑒於此,提供一種採用觸摸屏的台式電腦實為必 要,該台式電腦具有耐用性好、靈敏度高、線性及準確性 强的優點。 【發明内容】 一種台式電腦,其包括:一電腦主機;一顯示器,該 顯示器通過數據線與電腦主機相連接,該顯示器包括一顯 示屏;以及一觸摸屏,該觸摸屏設置於所述顯示屏表面, 該觸摸屏包括至少一透明導電層,其中,所述觸摸屏中的 透明導電層爲一奈米碳管結構。 相較於先前技術,本技術方案實施例提供的採用奈米 碳管結構作爲觸摸屏的透明導電層的台式電腦具有以下優 點:其一 ’由於採用奈米碳管的觸摸屏可直接輸入操作命 令和文字數據,從而可代替傳統的鍵盤和鼠標等輸入設 備’簡化了所述台式電腦的結構。其二,由於奈米碳管在 7 201015154 , 潮濕的條件下具有良好的透明度’故採用奈米碳管結構作 爲觸摸屏的透明導電層’可以使該觸摸屏具有較好的透明 •度’進而有利於提高使用該觸摸屏的台式電腦解析度。其 .三,由於奈米碳管具有優異的力學性能,則由奈米碳管組 成的奈米碳管結構具有較好的韌性及機械强度,故採用該 奈米碳管結構作爲觸摸屏的透明導電層,可以相應的提高 觸摸屏的耐用性,進而提高使用該觸摸屏的台式電腦的耐 用性。其四,由於奈米碳管具有優異的導電性能,則由奈 米碳管組成的奈米碳管結構具有均勻的阻值分布,因而, 採用上述奈米碳管結構作透明導電層,可以相應的提高觸 摸屏的解析度和精確度,進而提高應用該觸摸屏的台式電 腦的解析度和精確度。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例提供的台 式電腦。 ❹ 明參閱圖1,本技術方案第一實施例提供一台式電腦 100二其包括:一電腦主機102,一顯示器1〇4及一觸摸屏 10。該顯示器104通過數據線108與電腦主機1〇2相連接。 該顯示器104包括-顯示屏遍。所述觸摸屏⑺設置於所 述顯示屏106表面。 所述電腦主機102包括主板、中央處理器(cpu)、内 存及硬盤等部件。主板擁有系統總線、數據總線、控制總 線、多種插槽、接口等部件。cpu、内存、顯卡、聲卡、 網卡視頻卡等安插在主板上,安裝在電腦主機⑽内的 8 201015154 = ;〇ΠΤ與主板通過嶋相互連接。所述電腦 .件。所述括一觸摸屏控制元件和一顯示器控制元 .理器電連接。、、工制疋件和顯不器控制元件與所述中央處 出的觸摸位晉Γ述中央處理器接收所述觸摸屏控制元件輸 控制顯示器過該顯示器控制元件 ❹ ❹ 示燈、電源還可將機箱按紐、提 相庳位β 硬魅示燈、電源燈等部件都插到主板 揚:翌二另’在電腦主機102的側面還可設置有兩個 示)及磁盤驅動裝置(未標示)。另外,在所 式電腦1〇〇的電腦主機102的側面設置至少一個輸入/ 輸出端口(未標示),用於將顯示屏106、觸摸屏10與電 腦主機1G2連接起來。本技術方案實施例中,所述電腦主 $ 〇2匕括至少兩個輸入/輸出端口,所述顯示器及觸 、屏1〇分別通過數據線1〇8連接至所述輸入/輸出端口。 另外’所述電腦主機102也可與所述顯示器104 —體設置。 此時,所述顯示器1〇4可設置在電腦主機ι〇2的一側。 所述顯示器104爲液晶顯示器、場發射顯示器、電漿 ,示器、電致發光顯示器及真空螢光顯示器中的一種。該 顯示器104用於顯示電腦主機1〇2輸出的數據和圖像。優 選地,所述的顯示器104爲一液晶顯示器。該顯示器1〇4 用於顯示電腦主機102輸出的數據和圖像。 所述觸摸屏10具有輸入信號的功能,用戶可用手指或 觸摸筆等在觸摸# 10 i通過觸摸或按Μ將信號輪入給電 9 201015154 .腦主機102。具體地,所述觸摸屏10的面積可與顯示屏1〇6 的面積相同。可以理解,當觸摸屏1G的面積小於所述顯示 .屏106的面積時,可在顯示屏愿上設置多個觸摸屏1〇, -以便於同時實現不同的功能。可以理解,觸摸屏1〇輸入的 信號可以爲命令信號和文字信號,從而可代替先前技術的 台式電腦中使用的鼠標和鍵盤。另,爲了多樣化的輸入信 息,還可在顯示屏106表面顯示一屏幕鍵盤(圖未示),從 而可通過對觸摸屏10的觸摸直接輸入文字信息。另外,爲 了方便使用者更好地使用所述的台式電腦1〇〇,所述台式 電腦100可進-步包括—外接鼠標和,或鍵盤(圖示),該 鼠標和/或鍵盤可通過電纜線與電腦主機102的輸入/輸出 端口相連接。 所述觸摸屏10可以與所述顯示屏1〇6間隔一預定距離 設置,也可與所述顯示屏106集成設置。具體地,當所述 觸摸屏10與所述顯示屏106集成設置時,所述觸摸屏10 β可通過黏結劑直接設置在顯示屏1〇6表面或所述觸摸屏ι〇 可與所述顯不屏106共用基板設置^所述觸摸屏1〇具有輸 入信號的功能,用戶可用手指或觸摸筆等在觸摸屏1〇上通 過觸摸或按壓將信號輸入給電腦主機1〇2。本技術方案實 把例中,所述觸摸屏10與所述顯示屏1〇6共用基板集成設 置。所述觸摸屏10可以爲電阻式或電容式觸摸屏。 明參閱圖2及圖3,本技術方案第一實施例提供了一 電阻式觸摸屏10,其包括一第一電極板12,一第二電極板 14以及设置在第一電極板12與第二電極板14之間的多個 201015154 • 透明的點狀隔離物16。 該電阻式觸摸屏10的第一電極板12包括一第一基體 120第導電層122以及兩個第一電極124。該第一基 ,體120爲平面結構,其具有一第一表面。該第一導電層‘ 與兩個第一電極124均設置在第-基體120的第-表面。 兩個第電極124分別設置在第一導電層122沿第一方向 的兩端並與第—導電層122電連接。所述第-方向爲X坐 ❹標方向。該觸摸屏10的第二電極板14包括一第二基體 140’ -第二導電層142以及兩個第二電極144。所述第二 =⑽爲平面結構’且具有一第二表面。該第二基體14〇 的第一表面與第一基體12〇的第一表面相對設置。該第二 ΓΠ2與兩個第二雜144均設置在所述第二基體 第-表面。&個第二祕144分別設置在第二導 第二方向的兩端並與第二導電層142電連接。所述 第一方向爲¥坐標方向。該X坐標方向垂直於γ坐椤方 ❹向,即兩個第-電極124與兩個第二電極144正交設 ::,該第一基體120爲透明的且具有一定柔軟度的 Si 第二基體140爲透明基板。該第二基體⑽ 選擇爲玻璃、石英、金剛石等硬性材料或塑料及 材料。所述第二基體140主要起支撑的作用。 管膜或其料㈣料,^確料電施^碳 ;第:=材料爲聚酷膜’該第二基_破場基 板,5亥第一電極124與第二電請爲奈米碳管臈,該;; 11 201015154 米碳管膜的寬度均爲1微米〜5毫米。 進步地,該第二電極板14遠離顯示屏⑽的表面的 外圍設置有一絕緣層18。μ、+、μ雄 絕緣層18上,且兮第二t 板Η設置在該 μ第電極板12的第一導電層122正對 ^二電極板14的第二導電層142設置。上述多個透明點狀 隔離物16设置在第二電極板14的第二導電層142上且201015154 * IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a desktop computer, and more particularly to a touch type desktop computer. [Prior Art] In recent years, with the development of various types of electronic devices such as mobile phones and touch navigation systems, and the development of diversified electronic devices, a light-sensitive touch panel is gradually installed on the front surface of a display device such as a liquid crystal. The user of the electronic device visually confirms the display content of the display device located on the back of the touch screen through the touch screen, and presses the touch panel to operate the operation by means of a finger or a pen. Thereby, various functions of the electronic device can be operated. The display screen of the desktop computer in the prior art can be a liquid crystal display. The surface of the liquid crystal display screen is provided with at least one touch screen, which can be used as a signal input device instead of a mouse and a keyboard for inputting signals, thereby controlling opening and closing of various functions of the desktop computer, and text The input of the ❹ word. The touch screen can be generally classified into four types according to the working principle and the transmission medium, and is respectively a resistive type, a capacitive sensing type, an infrared line type, and a surface acoustic wave type. Among them, resistive touch screens and capacitive touch screens are widely used in desktop computers due to their advantages such as resolution, high sensitivity and durability. However, the capacitive and resistive touch screens of the prior art typically include an indium tin oxide layer (ITO layer) as a transparent conductive layer, which is prepared by ion beam sputtering or sputtering, Kazuhiro Noda et al. in the catalog of Production of Transparent Conductive Films with Inserted 6 201015154 - Si〇2 Anchor Layer, and Application to a Resistive Touch Panel ( Electronics and Communications in Japan, Part 2, .V〇 1.84, P39-45 (2001)) describes the use of ITO/ Si02/PET layer, touch screen. The ITO layer is used in the preparation process, requires a high vacuum environment and needs to be heated to 200 to 300 ° C. In view of this, the preparation cost of the germanium layer is high. Further, the prior art ITO layer as a transparent conductive layer has disadvantages such as insufficient mechanical properties, difficulty in bending, and uneven distribution of resistance. In addition, ITO will gradually decrease in transparency in humid air. Thus ® causes the previous touch screen and the desktop computer using the touch screen to have poor durability, low sensitivity, linearity and poor accuracy. In view of this, it is necessary to provide a desktop computer using a touch screen which has the advantages of durability, sensitivity, linearity, and accuracy. SUMMARY OF THE INVENTION A desktop computer includes: a computer host; a display connected to the host computer via a data line, the display includes a display screen; and a touch screen disposed on the display surface The touch screen includes at least one transparent conductive layer, wherein the transparent conductive layer in the touch screen is a carbon nanotube structure. Compared with the prior art, the desktop computer using the carbon nanotube structure as the transparent conductive layer of the touch screen provided by the embodiments of the present technical solution has the following advantages: one of the 'operating commands and words can be directly input through the touch screen using the carbon nanotubes The data, which can replace the traditional input devices such as keyboards and mice, simplifies the structure of the desktop computer. Second, because the carbon nanotubes have good transparency under wet conditions at 7 201015154, the use of a carbon nanotube structure as a transparent conductive layer of the touch screen can make the touch screen have better transparency and thus facilitate Improve the resolution of desktop computers using this touch screen. Third, due to the excellent mechanical properties of the carbon nanotubes, the carbon nanotube structure composed of carbon nanotubes has good toughness and mechanical strength, so the carbon nanotube structure is used as a transparent conductive layer of the touch screen. The durability of the touch screen can be correspondingly improved, thereby improving the durability of the desktop computer using the touch screen. Fourth, since the carbon nanotubes have excellent electrical conductivity, the carbon nanotube structure composed of carbon nanotubes has a uniform resistance distribution, and thus, the above-mentioned carbon nanotube structure is used as a transparent conductive layer, which can be correspondingly Improve the resolution and accuracy of the touch screen, thereby increasing the resolution and accuracy of the desktop computer to which the touch screen is applied. [Embodiment] Hereinafter, a desktop computer according to an embodiment of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 1, a first embodiment of the present technical solution provides a desktop computer 100. The computer includes a computer host 102, a display 1 and a touch screen 10. The display 104 is connected to the host computer 1〇2 via a data line 108. The display 104 includes a display screen. The touch screen (7) is disposed on a surface of the display screen 106. The computer host 102 includes components such as a main board, a central processing unit (CPU), an internal memory, and a hard disk. The motherboard has system bus, data bus, control bus, multiple slots, interfaces and other components. Cpu, memory, graphics card, sound card, network card video card, etc. are installed on the motherboard, installed in the host computer (10) 8 201015154 = ; 〇ΠΤ and the motherboard through the 嶋 interconnect. The computer. The touch screen control element and a display control unit are electrically connected. And the control unit and the display control unit and the centrally located touch position, the central processing unit receives the touch screen control component, and the control unit displays the display control element, the power indicator, and the power supply. The chassis button, the phase-in-phase β-hard charm light, the power light and other components are all plugged into the motherboard: 翌2, another 'two sides can be set on the side of the computer host 102' and the disk drive device (not labeled) . Further, at least one input/output port (not shown) is provided on the side of the host computer 102 of the computer 1 for connecting the display screen 106 and the touch panel 10 to the computer host 1G2. In the embodiment of the technical solution, the computer main unit 匕2 includes at least two input/output ports, and the display and the touch screen 1〇 are connected to the input/output port through the data line 1〇8, respectively. In addition, the computer host 102 can also be provided integrally with the display 104. At this time, the display 1〇4 can be disposed on one side of the host computer 〇2. The display 104 is one of a liquid crystal display, a field emission display, a plasma, an indicator, an electroluminescence display, and a vacuum fluorescent display. The display 104 is used to display data and images output by the host computer 1〇2. Preferably, the display 104 is a liquid crystal display. The display 1〇4 is used to display data and images output by the host computer 102. The touch screen 10 has a function of inputting a signal, and the user can turn on the signal by touching or pressing # at the touch # 10 i with a finger or a touch pen or the like. Specifically, the area of the touch screen 10 may be the same as the area of the display screen 〇6. It can be understood that when the area of the touch screen 1G is smaller than the area of the display screen 106, a plurality of touch screens can be set on the display screen, so as to achieve different functions at the same time. It can be understood that the input signal of the touch screen 1 可以 can be a command signal and a text signal, so that it can replace the mouse and keyboard used in the prior art desktop computer. In addition, for a variety of input information, an on-screen keyboard (not shown) may be displayed on the surface of the display screen 106, so that text information can be directly input by touching the touch screen 10. In addition, in order to facilitate the user to better use the desktop computer, the desktop computer 100 can further include an external mouse and/or a keyboard (pictured), and the mouse and/or keyboard can pass the cable. The line is connected to the input/output port of the host computer 102. The touch screen 10 may be disposed at a predetermined distance from the display screen 〇6 or may be integrated with the display screen 106. Specifically, when the touch screen 10 is integrated with the display screen 106, the touch screen 10β may be directly disposed on the surface of the display screen 1〇6 by an adhesive or the touch screen may be connected to the display screen 106. The common substrate is provided with the function of inputting a signal, and the user can input a signal to the host computer 1〇2 by touch or pressing on the touch screen 1〇 with a finger or a touch pen or the like. In the technical solution, the touch screen 10 and the display screen 1 are shared by the substrate. The touch screen 10 can be a resistive or capacitive touch screen. Referring to FIG. 2 and FIG. 3, a first embodiment of the present technical solution provides a resistive touch screen 10 including a first electrode plate 12, a second electrode plate 14, and a first electrode plate 12 and a second electrode. Multiple 201015154 between plates 14 • Transparent dot spacers 16. The first electrode plate 12 of the resistive touch panel 10 includes a first substrate 120 conductive layer 122 and two first electrodes 124. The first substrate 120 is a planar structure having a first surface. The first conductive layer 'and the two first electrodes 124 are disposed on the first surface of the first base 120. The two first electrodes 124 are respectively disposed at both ends of the first conductive layer 122 in the first direction and are electrically connected to the first conductive layer 122. The first direction is the direction in which the X is positioned. The second electrode plate 14 of the touch screen 10 includes a second substrate 140' - a second conductive layer 142 and two second electrodes 144. The second = (10) is a planar structure ' and has a second surface. The first surface of the second substrate 14A is disposed opposite the first surface of the first substrate 12A. The second ΓΠ 2 and the two second 144 are both disposed on the first surface of the second substrate. & second secrets 144 are respectively disposed at both ends of the second conductive second direction and electrically connected to the second conductive layer 142. The first direction is a ¥ coordinate direction. The X coordinate direction is perpendicular to the γ 椤 , , ie, the two first electrodes 124 are orthogonal to the two second electrodes 144 :: the first substrate 120 is transparent and has a certain degree of softness. The base 140 is a transparent substrate. The second substrate (10) is selected from hard materials such as glass, quartz, diamond, or plastics and materials. The second substrate 140 serves mainly as a support. Tube film or its material (four) material, ^ is expected to apply electricity to carbon; the first: material is poly film 'the second base _ broken field substrate, 5 hai first electrode 124 and second electricity please be carbon nanotube臈, the;; 11 201015154 m carbon tube film width is 1 micron ~ 5 mm. Progressively, the second electrode plate 14 is provided with an insulating layer 18 on the periphery of the surface of the display screen (10). The μ, +, and μ male insulating layers 18 are disposed on the second conductive layer 142 of the second electrode plate 14 disposed on the first conductive layer 122 of the second electrode plate 12. The plurality of transparent dot spacers 16 are disposed on the second conductive layer 142 of the second electrode plate 14 and
=個透明點狀隔離物16彼此間隔設置。第―電極板12 電極板14之間的距離爲2〜1〇〇微米。該絕緣層18 ^點狀隔離物16均可採用絕緣透明樹脂或其他絕緣透明 料製成Α置絕緣層18與點狀隔離物可使得第一電 士板14與第—電極板12電絕緣。可以理解,當電阻式觸 摸屏10尺寸較小時,點狀隔離物16爲可選擇的結構只 f確保第-電極板14與第二電極板12電絕緣即可。 另卜該第電極板12遠離第二電極板14的表面可 設置-透明保護膜126。所述透明保護膜126可以通過黏 結劑直接黏結在第-基體12〇遠離顯示屏1〇6的表面,也 可採用熱壓法,與第-電極板壓合在—起。該透明保護膜 126可採用-層表面硬化處理、光滑防刮的塑料層或樹脂 層,該樹脂層可由苯丙環丁烯(BCB)、聚甲基丙烯酸曱醋 (PMMA)、聚醋、以及丙烯酸樹脂等材料形成。本實施例 中,形成該透明保護膜126的材料爲聚對苯二甲酸乙二醇 醋(PET),用於保護第—電極板12,提高耐用性。該透明 保護膜126經特殊工藝處理後,可用以提供一些附加功 能’如可以减少眩光或降低反射。 12 201015154 . 所述第一導電層122與第二導電層142中的至少一個 導電層包括-奈米碳管結構,該奈米碳管結構包括多個均 .句分^奈米碳管,且上述的奈米碳管無序排列或有序排 列。這晨的無序指奈来碳管的排列方向不固定,即沿各方 =排列的奈米碳管數量基本相等;有序指至少多數奈米碳 管的排列方向具有-定規律,如基本沿一個固定方向擇優 取向或基本沿幾個固定方向擇優取向。所述無序排列的奈 ο 未石反管通過凡德瓦爾力相互纏繞、相互吸引且平行於夺米 碳管結構的表面。所述有序排列的奈求碳管沿一個方向或 多個方向擇優取向排列。 ❹ 不同結構的奈米碳管結構可由不同的方法製備。所述 有序排列的奈来碳管形成的有序奈求碳管結構可由直接拉 伸-奈米碳管陣列獲得的有序奈来碳管膜組成。該有序夺 米碳管膜中的奈米碳管首尾相連且沿拉伸方向擇優取向排 列’且相鄰的奈米碳管之間通過凡德瓦爾力緊密結合。所 ,有,奈米碳管臈進-步包括多個首尾相連的奈米碳管片 =’母個奈米碳管片段具有大致相等的長度且每個奈米碳 段由多個相互平行的奈米碳管構成,奈米碳管片段兩 端通過凡德瓦爾力相互連接。所述奈米碳f膜的厚度爲〇5 〜100微米,寬度爲0.01厘米〜10厘米。所述有序奈米 碳管結構可進一步包括至少兩個重叠設置的有序奈米碳管 、相鄰的兩個有序奈米碳管膜中的奈米碳管具有一交叉 且〇度SaS90度。所述有序排列的奈米碳管形成 的有序奈米碳管結構也可通過礙壓一奈米碳管陣列獲得。 13 201015154 二=:陣列獲得的有序奈米碳管結構中的奈 米厌二—或多個方向擇優取向排列。所述益序排 列的=好形成的無序奈米碳管結構可通過絮化處理-奈未奴官原枓而獲得。該無序奈米碳管結構 2過凡德瓦㈣相互纏繞、則且平行於奈米碳管結構的 表面。 所述奈米碳管結構中的奈米碳管包括單壁奈米碳管、 雙壁奈米碳管和多壁奈米碳管中的—種或多種。所述單壁 奈米碳管的直徑爲0.5奈米,奈米,雙壁奈米碳管的直 徑爲1奈米〜5〇奈米,多壁奈米碳管的直徑爲1.5奈米〜50 奈米。 本技術方案實施例中,所述第一導電層122與第二導 電層142均包括-奈米碳管結構,所述奈米碳管結構爲一 =序奈米碳管膜’請參_ 4’該奈米碳管膜中的奈来碳 e首尾相連且沿拉伸方向擇優取向排列。所述奈米碳管結 ❽構爲重叠設置的多層有序奈米碳管膜,每層奈米碳管膜中 的不米故管/0同一方向擇優取向排列。所述奈米碳管膜進 步包括多個首尾相連的奈米碳管片段,每個奈米碳管片 段具有大致相等的長度且每個奈米碳管片段由多個相互平 行的奈米碳管構成,奈米碳管片段兩端通過凡德瓦爾力相 互連接。具體的,所述第一導電層122中的多層奈米碳管 膜均沿第一方向重叠設置,第二導電層142中的多層奈米 碳管膜均沿第二方向重叠設置。所述奈米碳管膜的厚度爲 0·5奈米〜100微米,寬度爲0.01厘米〜1〇厘米。 201015154 ,、將所述觸摸屏1G與顯示屏⑽㈣設置時,爲了進一 =减=顯不⑨備産生的電磁干擾’避免從觸摸屏1〇發出 .=産生錯誤,還可在觸摸屏的下表面上設置一屏蔽層 ^圖未不)。該屏蔽層可由銦錫氧化物(IT〇)、錄錫氧化 ^ 或奈米碳管膜等導電材料形成。作爲屏蔽層的 奈未石反&膜中的奈米碳管的排列方式不限,可爲定向排列 t可爲其它的排列方式。本實施例中,該屏蔽層採用奈求 破管媒’其中的奈米碳管定向排列。該奈米碳管膜作爲電 接地點,起到屏蔽的作用,從而使得觸摸屏i〇#在無干擾 的環境中工作。 ^ 進一步地,爲確保所述顯示屏1〇6不致於由於外力過 大而損壞,可以在所述的顯示屏1〇6與觸摸屏1〇之間設置 一鈍化層(圖未示)。該鈍化層可由氮化矽、氧化矽等材料 形成。 以下將具體介紹本實施例所述的台式電腦1〇〇通過電 0阻式觸摸屏的觸摸進行顯示的具體過程。 請參見圖5,以下將具體介紹本實施例所述的台式電 腦100通過電阻式觸摸屏10的觸摸進行顯示的具體過程。 使用時,在所述電阻式觸摸屏10的第一電極板12之 間與第一電極板14之間分別施加5 V電壓。使用者一邊視 覺確認在觸摸屏10下面設置的顯示屏1〇6的顯示,一邊通 過觸摸物180如手指或筆按壓電阻式觸摸屏1〇第一電極板 12進行操作。第一電極板12中第一基體120發生彎曲, 使得按壓處182的第一導電層122與第二電極板14的第二 15 201015154 .導電層142接觸形成導通。所述電腦主機102中的觸摸屏 控制元件150測量第一導電層122第一方向上的電壓變化 與第一導電層142第二方向上的電壓變化,進行精確計 .算,將它轉換成觸點坐標,並將該觸點坐標命令數據輸入 到電腦主機102中的中央處理器16〇,之後,中央處理器 160對接收到的數據進行處理;然後,將處理後的數據傳 輸給顯示屏106的顯示器控制元件17〇,從而顯示屏ι〇6 能根據使用者輸入的數據進行相應地顯示。 請一並參閱圖6和圖7,爲本技術方案第二實施例提 供的一台式電腦200,其包括一顯示器2〇4、一電腦主機 202及一電容式觸摸屏2〇。該顯示器2〇4包括一顯示屏 206 ° 所述台式電腦200與本技術方案第一實施例提供的台 式電腦100結構大體相似,所不同的係,該觸摸屏2〇爲一 電容式觸摸屏20。該觸摸屏2〇進一步包括一基體22、一 β透明導電層24、至少兩個電極28及一透明保護膜%。該 基體22罪近顯不器204設置。所述基體22具有一第一表 面221以及與第一表面221相對的第二表面222。透明導 電t 24設置在基體22的第一表面221,該第一表面221 爲遠離顯示屏的-表面;上述至少兩個電極28分別設置在 透明導電層24的每個角處或邊上,且與透明導電層以形 成電連接,用以在透明導電層24上形成等電位面。透明保 護膜26可直接設置在透明導電層%以及電極28上。 具體地可以採用四個電極28分別設置於透明導電層 16 201015154 的四個角或四條邊上,用以在上述的透明導電層24上 形成均勻的電阻網絡。在本實施例中,四個帶狀電極% 間隔設置在上述的透明導電層24同一表面的四個邊上。可 以理解’上述的電極28也可以設置在透明導電層Μ的不 冋表面上’其關鍵在於上述電極28的設置能使得在透 =層Μ上形成等電位面即可。本實施财,所述電極28 «又置在透明導電層24的遠離基體22的一個表面上。 可以理解’所述的四個電極28亦可設置於透明導户 24與基體22之間,且與透明導電層24電連接。 所述基體22爲-曲面型或平面型的結構。該基體^ 璃、石英、金剛石或塑料等硬性材料或柔性材料形成。 所述基體22主要起支撐的作用。 斤述透月導電層24包括-奈米碳管結構,該奈米碳管 =包括多個㈣分布时米碳管,且上述的奈米碳管無 序排列或有序排列。具體地,所述奈米碳管結構可以與第 實施例中第一導雷層199 等冤層122或第一導電層142中的奈米碳 官結構相同。 所述四個電極28的材料爲金屬、奈米碳管膜或其他 電材料’只要確保導電性即可。本實施例中,所述四個 極28爲由銀或銅等低電阻的導電金屬鍍層或者金属羯 組成的條狀電極28。 進一步地,爲了延長透明導電層24的使用壽命和限制 搞合在接觸點與透日月導雷Μ 穴处月等電層24之間的電容,可以在透明導 電層24和電極28遠離其<1* 通離暴體22的表面设置一透明的透明保 17 201015154 .護膜26,透明保護膜26可由氮化矽、氧化矽、苯丙環丁 烯(BCB)、聚酯膜或丙烯酸樹脂等形成。該透明保護膜% .具有一定的硬度,對透明導電層24起保護作用。可以理 .解,還可通過特殊的工藝處理,從而使得透明保護膜% 具有以下功能,例如减小炫光、降低反射等。 在本實施例令,在形成有電極28的透明導電層24上 設置一二氧化矽層用作透明保護膜26,該透明保護膜26 ❹的硬度可達到7H(H爲洛氏硬度試驗中,卸除主試驗力 後,在初試驗力下壓痕殘留的深度)。可以理解,透明保護 膜26的硬度和厚度可以根據需要進行選擇。所述透明保護 臈26可以通過黏結劑直接黏結在透明導電層24遠離顯示 屏204的表面。 此外,可選擇地,爲了减小由顯示設備產生的電磁干 擾,避免從觸摸屏20發出的信號産生錯誤,還可在基體 22的第二表面222上設置一屏蔽層23〇。該屏蔽層23〇可 ❹由銦錫氧化物(IT0)膜、銻錫氧化物(AT〇)膜或奈米碳 管膜等透明導電材料形成。該奈米碳管膜可以係定向排列 的或其它結構的奈米碳管膜。本實施例中,該奈米碳管膜 包括多個奈米碳管,所述多個奈米碳管在上述的奈米碳管 膜中定向排列,其具體結構可與所述透明導電層24相同。 該奈米碳管膜作爲電接地點’起到屏蔽的作用,從而使得 觸摸屏20能在無干擾的環境中工作。進一步地,爲使所述 顯示器204不致於由於外力過大而損壞,可以於所述的顯 示器204與屏蔽層230之間設置一鈍化層232。該鈍化層 18 201015154 • 232可由氮化矽、氧化矽等材料形成。 請參見圖8,町將具體介財技㈣㈣二實 .所述的台式電腦200通過觸摸屏2〇的觸摸進行顯示的 .過程。 ,、瓶 在使用時’㈣導電層24上施加—預定電壓。電 過電極28施加到透明導電層24上’從而在該透明導 24上形成等電位面。使用者一邊視覺確認在觸摸屏加後 面設置的顯示屏204的顯示,一邊通過手指或筆等觸摸物 (圖未不)按壓或接近觸摸屏2〇的透明保護膜%進行操 作時,觸摸物與透明導電層24之間形成一雜合電容。對於 高頻電流來說,電容係直接導體,於係手指從接觸點吸走 了一部分電流。這個電流分別從觸摸屏2〇上的電極中流 出,並且流經這四個電極的電流與手指到四角的距離成正 比,台式電腦200中的觸摸屏控制元件25〇通過對這四個 電流比例的精確計算,得出觸摸點的位置。之後,觸摸屏 ❹控制7G件250將數字化的觸摸位置數據傳送給電腦主機 202中的中央處理器260 ;之後,中央處理器260對接受到 的數據進行處理;然後,將處理後的數據通過輸出端口傳 輸給顯示器控制元件270,從而顯示器2〇6能根據顯示器 控制元件270接受的數據進行顯示。 本技術方案實施例提供的台式電腦採用含有奈米碳管 的觸摸屏,具有以下優點:其一,由於採用奈米碳管的觸 摸屏可直接輪入操作命令和文字數據,從而可代替傳統的 鍵盤和鼠標等輸入設備,簡化了所述台式電腦的結構。其 19 201015154 •二,由於奈米碳管在潮濕的條件下具有良好的透明度,故 採用奈米碳管結構作爲觸摸屏的透明導電層,可以使該觸 摸屏具有較好的透明度,進而有利於提高使用該觸摸屏的 •台式電腦解析度4三,由於奈米碳管具有優異的力學性 能,則由奈米碳管組成的奈米碳管結構具有較好的韌性及 機械强度,故採用該奈米碳管結構作爲觸摸屏的透明導電 層,可以相應的提高觸摸屏的耐用性,進而提高使用該觸 ❹摸屏的台式電腦的耐用性。其四,由於奈米碳管具有優異 的導電性能,則由奈米碳管組成的奈米碳管結構具有均勻 的阻值分布,因而,採用上述奈米冑管結構作透明導電層, 可以相應的提高觸摸屏的解析度和精確度,進而提高應用 該觸摸屏的台式電腦的解析度和精確度。 w 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 ❹之人士援依本發明之精神所作之等效修飾或變化, 蓋於以下申請專利範圍内。 旁應涵 【圖式簡單說明】 圖1係本技術方案第一實施例台式電腦的結構示意 圖。 心' 一實施例台式電腦中的觸摸屏的 圖2係本技術方案第 立體結構示意圖。 圖3係本技術方案第一實施例台式電腦中的觸摸 剖視結構示意圖。 、' 20 201015154 • 圖4係本技術方案第一實施例台式電腦中奈米碳管膜 的掃描電鏡照片。 ’ 圖5係本技術方案第一實施例台式電腦工作原理的示 •意圖。 圖6係本技術方案第二實施例台式電腦中的觸摸屏的 立體結構示意圖。 圖7係圖6所示第二實施例台式電腦中的觸摸屏沿 VII-VII剖視圖。 ® 圖8係本技術方案第二實施例台式電腦工作原理的的 示意圖。= a transparent dot-like spacer 16 is spaced apart from each other. The distance between the first electrode plates 12 and the electrode plates 14 is 2 to 1 μm. The insulating layer 18 of the dot spacers 16 may be made of an insulating transparent resin or other insulating transparent material, and the insulating layer 18 and the dot spacers may electrically insulate the first metal plate 14 from the first electrode plate 12. It can be understood that when the size of the resistive touch panel 10 is small, the dot spacer 16 is of an optional structure only f ensures that the first electrode plate 14 is electrically insulated from the second electrode plate 12. Further, a transparent protective film 126 may be disposed on the surface of the first electrode plate 12 away from the second electrode plate 14. The transparent protective film 126 may be directly bonded to the surface of the first substrate 12 〇 away from the display 1〇6 by a bonding agent, or may be pressed together with the first electrode plate by a hot pressing method. The transparent protective film 126 may be a layer-hardened, smooth scratch-resistant plastic layer or a resin layer, which may be composed of phenylcyclobutene (BCB), polymethyl methacrylate (PMMA), polyester, and A material such as an acrylic resin is formed. In the embodiment, the material for forming the transparent protective film 126 is polyethylene terephthalate (PET) for protecting the first electrode plate 12 to improve durability. The transparent protective film 126 can be used to provide some additional functions, such as to reduce glare or reduce reflection, after special processing. 12 201015154 . The at least one conductive layer of the first conductive layer 122 and the second conductive layer 142 comprises a carbon nanotube structure, and the carbon nanotube structure comprises a plurality of equal-segment carbon nanotubes, and The above carbon nanotubes are randomly arranged or ordered. This morning disorder means that the arrangement direction of the carbon nanotubes is not fixed, that is, the number of carbon nanotubes arranged along each side is substantially equal; orderly means that at least most of the arrangement of carbon nanotubes has a regular law, such as basic Preferred orientation along a fixed direction or preferred orientation along several fixed directions. The disordered array of navel stones is intertwined by van der Waals forces, attracting each other and parallel to the surface of the carbon nanotube structure. The ordered carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions.奈 Different configurations of carbon nanotube structures can be prepared by different methods. The ordered carbon nanotube structure formed by the ordered carbon nanotubes can be composed of an ordered natrile film obtained by directly stretching the carbon nanotube array. The carbon nanotubes in the ordered carbon nanotube film are connected end to end and are preferentially oriented along the stretching direction and the adjacent carbon nanotubes are tightly bonded by van der Waals force. In addition, the carbon nanotubes step-by-step includes a plurality of end-to-end carbon nanotube sheets = 'the mother carbon nanotube segments have substantially equal lengths and each nano carbon segment is parallel to each other. The carbon nanotubes are formed, and the carbon nanotube segments are connected to each other by van der Waals force. The nano carbon film has a thickness of 〇5 to 100 μm and a width of 0.01 cm to 10 cm. The ordered carbon nanotube structure may further comprise at least two ordered carbon nanotubes arranged in an overlapping manner, and the carbon nanotubes in the adjacent two ordered carbon nanotube membranes have a cross and a twist SaS90 degree. The ordered carbon nanotube structure formed by the ordered arrangement of carbon nanotubes can also be obtained by blocking an array of carbon nanotubes. 13 201015154 Two =: The nano-tubes in the ordered carbon nanotube structure obtained by the array are arranged in a preferred orientation. The well-ordered disordered carbon nanotube structure can be obtained by flocculation treatment - Naiwu Nuoguan. The disordered carbon nanotube structure 2 is entangled with Van der Waals (4) and parallel to the surface of the carbon nanotube structure. The carbon nanotubes in the carbon nanotube structure include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm, the diameter of the nano-walled carbon nanotube is 1 nm to 5 〇 nanometer, and the diameter of the multi-walled carbon nanotube is 1.5 nm to 50 Nano. In the embodiment of the technical solution, the first conductive layer 122 and the second conductive layer 142 each include a carbon nanotube structure, and the carbon nanotube structure is a =Nanocarbon tube film. The naicarbone in the carbon nanotube film is connected end to end and arranged in a preferred orientation along the stretching direction. The carbon nanotube structure is a multi-layered ordered carbon nanotube film which is arranged in an overlapping manner, and each layer of the carbon nanotube film is arranged in a preferred orientation in the same direction. The carbon nanotube film advancement comprises a plurality of end-to-end carbon nanotube segments, each of the carbon nanotube segments having substantially equal lengths and each of the carbon nanotube segments being composed of a plurality of mutually parallel carbon nanotubes In the composition, the carbon nanotube segments are connected to each other by Van der Waals force. Specifically, the plurality of layers of the carbon nanotube film in the first conductive layer 122 are overlapped in the first direction, and the plurality of layers of the carbon nanotube film in the second conductive layer 142 are overlapped in the second direction. The carbon nanotube film has a thickness of from 0.5 nm to 100 μm and a width of from 0.01 cm to 1 cm. 201015154, when the touch screen 1G and the display screen (10) (4) are set, the electromagnetic interference generated for the input/subtraction=display=preparation is prevented from being emitted from the touch screen 1. If an error occurs, a lower surface of the touch screen may be disposed. The shielding layer is not shown. The shielding layer may be formed of a conductive material such as indium tin oxide (IT〇), a tin oxide oxide or a carbon nanotube film. The arrangement of the carbon nanotubes in the Neissinite & film as the shielding layer is not limited, and the alignment order t may be other arrangements. In this embodiment, the shielding layer is arranged in a direction in which the carbon nanotubes are oriented. The carbon nanotube film acts as an electrical grounding point and acts as a shield, thereby allowing the touch screen to operate in a non-interfering environment. Further, in order to ensure that the display screen 1 6 is not damaged due to excessive external force, a passivation layer (not shown) may be disposed between the display screen 1 6 and the touch panel 1 . The passivation layer may be formed of a material such as tantalum nitride or hafnium oxide. The specific process of displaying the desktop computer 1 described in this embodiment through the touch of the electric resistance touch screen will be specifically described below. Referring to FIG. 5, a specific process of displaying the desktop computer 100 through the touch of the resistive touch screen 10 according to the embodiment will be specifically described below. In use, a voltage of 5 V is applied between the first electrode plates 12 of the resistive touch panel 10 and the first electrode plates 14, respectively. The user visually confirms the display of the display screen 1 设置 6 provided under the touch screen 10 while pressing the resistive touch panel 1 〇 the first electrode plate 12 by the touch object 180 such as a finger or a pen. The first substrate 120 in the first electrode plate 12 is bent such that the first conductive layer 122 of the pressing portion 182 is in contact with the second layer 15100015154 of the second electrode plate 14 to form a conduction. The touch screen control component 150 in the computer host 102 measures the voltage change in the first direction of the first conductive layer 122 and the voltage change in the second direction of the first conductive layer 142, performs accurate calculation, and converts it into a contact. Coordinates, and the contact coordinate command data is input to the central processing unit 16 in the computer host 102, after which the central processing unit 160 processes the received data; and then transmits the processed data to the display 106. The display control element 17 is so that the display screen 能6 can be displayed correspondingly according to the data input by the user. Referring to FIG. 6 and FIG. 7 together, a desktop computer 200 provided by the second embodiment of the present invention includes a display 2〇4, a computer host 202, and a capacitive touch screen. The display device 2〇4 includes a display screen 206°. The desktop computer 200 is substantially similar in structure to the desktop computer 100 provided by the first embodiment of the present technical solution. The touch screen 2 is a capacitive touch screen 20. The touch screen 2 further includes a substrate 22, a β transparent conductive layer 24, at least two electrodes 28, and a transparent protective film%. The base 22 is set up near the display 204. The base 22 has a first surface 221 and a second surface 222 opposite the first surface 221. The transparent conductive t 24 is disposed on the first surface 221 of the substrate 22, the first surface 221 is a surface away from the display screen; the at least two electrodes 28 are respectively disposed at each corner or side of the transparent conductive layer 24, and An electrical connection is formed with the transparent conductive layer for forming an equipotential surface on the transparent conductive layer 24. The transparent protective film 26 can be directly disposed on the transparent conductive layer % and the electrode 28. Specifically, four electrodes 28 may be respectively disposed on the four corners or four sides of the transparent conductive layer 16 201015154 for forming a uniform resistance network on the transparent conductive layer 24 described above. In the present embodiment, four strip electrodes are spaced apart from each other on four sides of the same surface of the above-mentioned transparent conductive layer 24. It can be understood that the above-mentioned electrode 28 can also be disposed on the surface of the transparent conductive layer ’. The key point is that the electrode 28 can be disposed such that an equipotential surface is formed on the via layer. In the implementation, the electrode 28 is further disposed on a surface of the transparent conductive layer 24 away from the substrate 22. It can be understood that the four electrodes 28 can also be disposed between the transparent guide 24 and the substrate 22 and electrically connected to the transparent conductive layer 24. The base 22 is of a curved surface type or a planar type. The substrate is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The base 22 serves primarily as a support. The carbon conductive layer 24 includes a carbon nanotube structure, and the carbon nanotubes include a plurality of (four) distributed carbon nanotubes, and the above-mentioned carbon nanotubes are randomly arranged or ordered. Specifically, the carbon nanotube structure may be the same as the nano-carbon structure in the first layer 124 or the first conductive layer 142 in the first embodiment. The material of the four electrodes 28 is a metal, a carbon nanotube film or other electrical material as long as conductivity is ensured. In this embodiment, the four poles 28 are strip electrodes 28 composed of a low-resistance conductive metal plating such as silver or copper or a metal crucible. Further, in order to extend the service life of the transparent conductive layer 24 and limit the capacitance between the contact point and the monthly isoelectric layer 24 at the point of the radon, the transparent conductive layer 24 and the electrode 28 may be away from the < 1* The surface of the body 22 is provided with a transparent transparent guarantee 17 201015154. The protective film 26, the transparent protective film 26 may be made of tantalum nitride, hafnium oxide, styrene bromide (BCB), polyester film or acrylic resin. Formed. The transparent protective film has a certain hardness and protects the transparent conductive layer 24. It can be solved by special treatment, so that the transparent protective film% has the following functions, such as reducing glare, reducing reflection, and the like. In the present embodiment, a ruthenium dioxide layer is disposed on the transparent conductive layer 24 on which the electrode 28 is formed as a transparent protective film 26, and the hardness of the transparent protective film 26 can reach 7H (H is a Rockwell hardness test. The depth of the indentation remaining under the initial test force after the main test force is removed. It will be understood that the hardness and thickness of the transparent protective film 26 can be selected as needed. The transparent protective layer 26 can be directly bonded to the surface of the transparent conductive layer 24 away from the display screen 204 by a bonding agent. Further, alternatively, in order to reduce electromagnetic interference generated by the display device and to avoid errors in signals emitted from the touch screen 20, a shield layer 23 may be disposed on the second surface 222 of the substrate 22. The shield layer 23 may be formed of a transparent conductive material such as an indium tin oxide (ITO) film, a tantalum oxide (AT〇) film, or a carbon nanotube film. The carbon nanotube film can be a aligned or otherwise structured carbon nanotube film. In this embodiment, the carbon nanotube film comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are aligned in the carbon nanotube film, and the specific structure thereof and the transparent conductive layer 24 the same. The carbon nanotube film acts as a shield for electrical grounding, allowing the touch screen 20 to operate in a non-interfering environment. Further, in order to prevent the display 204 from being damaged due to excessive external force, a passivation layer 232 may be disposed between the display 204 and the shielding layer 230. The passivation layer 18 201015154 • 232 may be formed of a material such as tantalum nitride or tantalum oxide. Referring to Figure 8, the town will be specifically introduced to the financial technology (4) (four) two real. The desktop computer 200 is displayed by the touch screen 2 〇 touch. , the bottle is applied to the (four) conductive layer 24 - a predetermined voltage. The electric electrode 28 is applied to the transparent conductive layer 24 to form an equipotential surface on the transparent guide 24. When the user visually confirms the display of the display screen 204 provided on the touch screen plus the back surface, the touch object and the transparent conductive film are operated by a touch or a touch object such as a pen (not shown) or a transparent protective film % close to the touch screen 2〇. A hybrid capacitor is formed between layers 24. For high-frequency currents, the capacitor is a direct conductor, and the finger draws a portion of the current from the contact point. This current flows out of the electrodes on the touch screen 2, respectively, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch screen control element 25 in the desktop computer 200 passes the precision of the four current ratios. Calculate and get the position of the touch point. Thereafter, the touch screen control 7G unit 250 transmits the digitized touch position data to the central processing unit 260 in the computer host 202; thereafter, the central processing unit 260 processes the received data; and then passes the processed data through the output port. It is transmitted to display control element 270 so that display 2〇6 can be displayed in accordance with data accepted by display control element 270. The desktop computer provided by the embodiment of the technical solution adopts a touch screen containing a carbon nanotube, and has the following advantages: First, since the touch screen adopting a carbon nanotube can directly enter an operation command and text data, thereby replacing the traditional keyboard and An input device such as a mouse simplifies the structure of the desktop computer. 19 201015154 • Second, because the carbon nanotubes have good transparency under humid conditions, the use of a carbon nanotube structure as a transparent conductive layer of the touch screen can make the touch screen have better transparency, which in turn helps to improve the use. The touch screen has a desktop resolution of 43. Due to the excellent mechanical properties of the carbon nanotubes, the carbon nanotube structure composed of carbon nanotubes has good toughness and mechanical strength, so the carbon nanotube is used. The structure acts as a transparent conductive layer of the touch screen, which can correspondingly improve the durability of the touch screen, thereby improving the durability of the desktop computer using the touch screen. Fourth, since the carbon nanotubes have excellent electrical conductivity, the carbon nanotube structure composed of carbon nanotubes has a uniform resistance distribution, and thus, the above-mentioned nano-tube structure can be used as a transparent conductive layer, which can be correspondingly Improve the resolution and accuracy of the touch screen, thereby increasing the resolution and accuracy of the desktop computer to which the touch screen is applied. w In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art of the present invention in the spirit of the present invention are within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic structural view of a desktop computer according to a first embodiment of the present technical solution. Figure 2 is a perspective view of the first embodiment of the touch screen in the desktop computer. 3 is a schematic cross-sectional structural view of a desktop computer in a first embodiment of the present technical solution. , '20 201015154 • Fig. 4 is a scanning electron micrograph of a carbon nanotube film in a desktop computer of the first embodiment of the present technical solution. Figure 5 is an illustration of the working principle of the desktop computer of the first embodiment of the present technical solution. Fig. 6 is a perspective view showing the structure of a touch screen in a desktop computer according to a second embodiment of the present technical solution. Figure 7 is a cross-sectional view of the touch screen of the desktop computer of the second embodiment shown in Figure 6 taken along line VII-VII. ® Fig. 8 is a schematic view showing the operation principle of the desktop computer of the second embodiment of the present technical solution.
21 201015154 - 【主要元件符號說明】 觸摸屏 10, 20 •台式電腦 100, 200 -電腦主機 102, 202 顯示器 104, 204 顯示屏 106, 206 數據線 108 第一電極板 ®第一基體 12 120 第一導電層 122 第一電極 124 第二電極板 14 第二基體 140 第二導電層 142 第二電極 144 ^ 觸摸屏控制元件 點狀隔離物 150, 250 16 中央處理器 160, 260 顯示器控制元件 170, 270 絕緣層 18 觸摸物 180 按壓處 182 基體 22 第一表面 221 22 201015154 第二表面 222 透明導電層 24 •透明保護膜 26, 126 電極 2821 201015154 - [Key component symbol description] Touch screen 10, 20 • Desktop computer 100, 200 - Computer host 102, 202 Display 104, 204 Display 106, 206 Data line 108 First electrode plate ® First substrate 12 120 First conductive Layer 122 First electrode 124 Second electrode plate 14 Second substrate 140 Second conductive layer 142 Second electrode 144 ^ Touch screen control element dot spacer 150, 250 16 Central processing unit 160, 260 Display control element 170, 270 Insulation layer 18 Touch object 180 Pressing place 182 Base body 22 First surface 221 22 201015154 Second surface 222 Transparent conductive layer 24 • Transparent protective film 26, 126 Electrode 28
23twenty three